diff options
Diffstat (limited to 'vignettes')
-rw-r--r-- | vignettes/FOCUS_L.html | 64 | ||||
-rw-r--r-- | vignettes/FOCUS_Z.pdf | bin | 239558 -> 239558 bytes | |||
-rw-r--r-- | vignettes/compiled_models.html | 51 | ||||
-rw-r--r-- | vignettes/mkin.html | 10 |
4 files changed, 63 insertions, 62 deletions
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html index bcdee8df..0d96fd5f 100644 --- a/vignettes/FOCUS_L.html +++ b/vignettes/FOCUS_L.html @@ -244,15 +244,15 @@ FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)</code></pre> summary(m.L1.SFO)</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.2 -## Date of fit: Thu Nov 17 17:46:04 2016 -## Date of summary: Thu Nov 17 17:46:04 2016 +## Date of fit: Thu Nov 17 18:44:25 2016 +## Date of summary: Thu Nov 17 18:44:25 2016 ## ## Equations: -## d_parent = - k_parent_sink * parent +## d_parent/dt = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 37 model solutions performed in 0.093 s +## Fitted with method Port using 37 model solutions performed in 0.088 s ## ## Weighting: none ## @@ -337,8 +337,8 @@ summary(m.L1.SFO)</code></pre> <pre class="r"><code>summary(m.L1.FOMC, data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.2 -## Date of fit: Thu Nov 17 17:46:05 2016 -## Date of summary: Thu Nov 17 17:46:05 2016 +## Date of fit: Thu Nov 17 18:44:26 2016 +## Date of summary: Thu Nov 17 18:44:26 2016 ## ## ## Warning: Optimisation by method Port did not converge. @@ -346,11 +346,11 @@ summary(m.L1.SFO)</code></pre> ## ## ## Equations: -## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent +## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 188 model solutions performed in 0.456 s +## Fitted with method Port using 188 model solutions performed in 0.431 s ## ## Weighting: none ## @@ -434,15 +434,15 @@ plot(m.L2.FOMC, show_residuals = TRUE, <pre class="r"><code>summary(m.L2.FOMC, data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.2 -## Date of fit: Thu Nov 17 17:46:06 2016 -## Date of summary: Thu Nov 17 17:46:06 2016 +## Date of fit: Thu Nov 17 18:44:26 2016 +## Date of summary: Thu Nov 17 18:44:26 2016 ## ## Equations: -## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent +## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 81 model solutions performed in 0.227 s +## Fitted with method Port using 81 model solutions performed in 0.18 s ## ## Weighting: none ## @@ -504,17 +504,17 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE, <pre class="r"><code>summary(m.L2.DFOP, data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.2 -## Date of fit: Thu Nov 17 17:46:07 2016 -## Date of summary: Thu Nov 17 17:46:07 2016 +## Date of fit: Thu Nov 17 18:44:27 2016 +## Date of summary: Thu Nov 17 18:44:27 2016 ## ## Equations: -## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * -## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * -## time))) * parent +## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * +## exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +## exp(-k2 * time))) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 336 model solutions performed in 0.935 s +## Fitted with method Port using 336 model solutions performed in 0.768 s ## ## Weighting: none ## @@ -593,17 +593,17 @@ plot(mm.L3)</code></pre> <pre class="r"><code>summary(mm.L3[["DFOP", 1]])</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.2 -## Date of fit: Thu Nov 17 17:46:08 2016 -## Date of summary: Thu Nov 17 17:46:08 2016 +## Date of fit: Thu Nov 17 18:44:28 2016 +## Date of summary: Thu Nov 17 18:44:28 2016 ## ## Equations: -## d_parent = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * -## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * -## time))) * parent +## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * +## exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) * +## exp(-k2 * time))) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 137 model solutions performed in 0.332 s +## Fitted with method Port using 137 model solutions performed in 0.313 s ## ## Weighting: none ## @@ -693,15 +693,15 @@ plot(mm.L4)</code></pre> <pre class="r"><code>summary(mm.L4[["SFO", 1]], data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.2 -## Date of fit: Thu Nov 17 17:46:08 2016 -## Date of summary: Thu Nov 17 17:46:08 2016 +## Date of fit: Thu Nov 17 18:44:28 2016 +## Date of summary: Thu Nov 17 18:44:29 2016 ## ## Equations: -## d_parent = - k_parent_sink * parent +## d_parent/dt = - k_parent_sink * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 46 model solutions performed in 0.131 s +## Fitted with method Port using 46 model solutions performed in 0.1 s ## ## Weighting: none ## @@ -753,15 +753,15 @@ plot(mm.L4)</code></pre> <pre class="r"><code>summary(mm.L4[["FOMC", 1]], data = FALSE)</code></pre> <pre><code>## mkin version: 0.9.44.9000 ## R version: 3.3.2 -## Date of fit: Thu Nov 17 17:46:08 2016 -## Date of summary: Thu Nov 17 17:46:08 2016 +## Date of fit: Thu Nov 17 18:44:28 2016 +## Date of summary: Thu Nov 17 18:44:29 2016 ## ## Equations: -## d_parent = - (alpha/beta) * 1/((time/beta) + 1) * parent +## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent ## ## Model predictions using solution type analytical ## -## Fitted with method Port using 66 model solutions performed in 0.167 s +## Fitted with method Port using 66 model solutions performed in 0.152 s ## ## Weighting: none ## diff --git a/vignettes/FOCUS_Z.pdf b/vignettes/FOCUS_Z.pdf Binary files differindex 6f71d018..6f8929ea 100644 --- a/vignettes/FOCUS_Z.pdf +++ b/vignettes/FOCUS_Z.pdf diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html index dc2b2ca7..2cb73ac7 100644 --- a/vignettes/compiled_models.html +++ b/vignettes/compiled_models.html @@ -11,7 +11,7 @@ <meta name="author" content="Johannes Ranke" /> -<meta name="date" content="2016-11-04" /> +<meta name="date" content="2016-11-17" /> <title>Performance benefit by using compiled model definitions in mkin</title> @@ -216,7 +216,7 @@ div.tocify { <h1 class="title toc-ignore">Performance benefit by using compiled model definitions in mkin</h1> <h4 class="author"><em>Johannes Ranke</em></h4> -<h4 class="date"><em>2016-11-04</em></h4> +<h4 class="date"><em>2016-11-17</em></h4> </div> @@ -232,6 +232,7 @@ div.tocify { <pre><code>## Loading required package: minpack.lm</code></pre> <pre><code>## Loading required package: rootSolve</code></pre> <pre><code>## Loading required package: inline</code></pre> +<pre><code>## Loading required package: methods</code></pre> <pre><code>## Loading required package: parallel</code></pre> <pre class="r"><code>SFO_SFO <- mkinmod( parent = mkinsub("SFO", "m1"), @@ -241,12 +242,12 @@ div.tocify { <pre class="r"><code>library("microbenchmark") library("ggplot2") mb.1 <- microbenchmark( - "deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, - solution_type = "deSolve", + "deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, + solution_type = "deSolve", use_compiled = FALSE, quiet = TRUE), - "Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D, + "Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "eigen", quiet = TRUE), - "deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, + "deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "deSolve", quiet = TRUE), times = 3, control = list(warmup = 0))</code></pre> <pre><code>## Warning in microbenchmark(`deSolve, not compiled` = mkinfit(SFO_SFO, @@ -256,21 +257,21 @@ mb.1 <- microbenchmark( print(mb.1)</code></pre> <pre><code>## Unit: milliseconds ## expr min lq mean median uq -## deSolve, not compiled 4969.1274 5005.4703 5026.1990 5041.8132 5054.7348 -## Eigenvalue based 841.6273 843.3144 855.0880 845.0015 861.8183 -## deSolve, compiled 689.6154 698.2345 710.3162 706.8537 720.6666 +## deSolve, not compiled 4925.0009 4957.6694 4974.0652 4990.3379 4998.5974 +## Eigenvalue based 838.9741 839.6651 857.4679 840.3561 866.7149 +## deSolve, compiled 695.5858 709.3905 717.8062 723.1951 728.9163 ## max neval cld -## 5067.6564 3 c -## 878.6352 3 b -## 734.4795 3 a</code></pre> +## 5006.8569 3 c +## 893.0736 3 b +## 734.6375 3 a</code></pre> <pre class="r"><code>autoplot(mb.1)</code></pre> -<p><img src="" width="672" /></p> -<p>We see that using the compiled model is by a factor of 7.1 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> +<p><img src="" width="672" /></p> +<p>We see that using the compiled model is by a factor of 6.9 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> <pre class="r"><code>rownames(smb.1) <- smb.1$expr smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre> <pre><code>## median -## deSolve, not compiled 7.132754 -## Eigenvalue based 1.195441 +## deSolve, not compiled 6.900403 +## Eigenvalue based 1.162005 ## deSolve, compiled 1.000000</code></pre> </div> <div id="model-that-can-not-be-solved-with-eigenvalues" class="section level2"> @@ -281,7 +282,7 @@ smb.1["median"]/smb.1["deSolve, compiled", "median" m1 = mkinsub( "SFO"))</code></pre> <pre><code>## Successfully compiled differential equation model from auto-generated C code.</code></pre> <pre class="r"><code>mb.2 <- microbenchmark( - "deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, + "deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, use_compiled = FALSE, quiet = TRUE), "deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE), times = 3, control = list(warmup = 0))</code></pre> @@ -291,19 +292,19 @@ smb.1["median"]/smb.1["deSolve, compiled", "median" <pre class="r"><code>smb.2 <- summary(mb.2) print(mb.2)</code></pre> <pre><code>## Unit: seconds -## expr min lq mean median uq -## deSolve, not compiled 10.998190 11.039105 11.133751 11.080019 11.201531 -## deSolve, compiled 1.286159 1.286381 1.288394 1.286602 1.289511 -## max neval cld -## 11.32304 3 b -## 1.29242 3 a</code></pre> +## expr min lq mean median uq +## deSolve, not compiled 10.905262 11.007527 11.335389 11.109791 11.55045 +## deSolve, compiled 1.297428 1.304999 1.327356 1.312569 1.34232 +## max neval cld +## 11.991114 3 b +## 1.372071 3 a</code></pre> <pre class="r"><code>smb.2["median"]/smb.2["deSolve, compiled", "median"]</code></pre> <pre><code>## median ## 1 NA ## 2 NA</code></pre> <pre class="r"><code>autoplot(mb.2)</code></pre> -<p><img src="" width="672" /></p> -<p>Here we get a performance benefit of a factor of 8.6 using the version of the differential equation model compiled from C code!</p> +<p><img src="" width="672" /></p> +<p>Here we get a performance benefit of a factor of 8.5 using the version of the differential equation model compiled from C code!</p> <p>This vignette was built with mkin 0.9.44.9000 on</p> <pre><code>## R version 3.3.2 (2016-10-31) ## Platform: x86_64-pc-linux-gnu (64-bit) diff --git a/vignettes/mkin.html b/vignettes/mkin.html index 172712f5..a8f7f2ba 100644 --- a/vignettes/mkin.html +++ b/vignettes/mkin.html @@ -246,23 +246,23 @@ div.tocify { # Define the kinetic model m_SFO_SFO_SFO <- mkinmod(parent = mkinsub("SFO", "M1"), M1 = mkinsub("SFO", "M2"), - M2 = mkinsub("SFO"), + M2 = mkinsub("SFO"), use_of_ff = "max", quiet = TRUE) # Produce model predictions using some arbitrary parameters sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) d_SFO_SFO_SFO <- mkinpredict(m_SFO_SFO_SFO, - c(k_parent = 0.03, - f_parent_to_M1 = 0.5, k_M1 = log(2)/100, + c(k_parent = 0.03, + f_parent_to_M1 = 0.5, k_M1 = log(2)/100, f_M1_to_M2 = 0.9, k_M2 = log(2)/50), c(parent = 100, M1 = 0, M2 = 0), sampling_times) -# Generate a dataset by adding normally distributed errors with +# Generate a dataset by adding normally distributed errors with # standard deviation 3, for two replicates at each sampling time d_SFO_SFO_SFO_err <- add_err(d_SFO_SFO_SFO, reps = 2, - sdfunc = function(x) 3, + sdfunc = function(x) 3, n = 1, seed = 123456789 ) # Fit the model to the dataset |