Age | Commit message (Collapse) | Author | Files | Lines |
|
Static documentation rebuilt by pkgdown
|
|
Static documentation rebuilt by pkgdown
|
|
|
|
The new algorithm tries direct optimization of the likelihood, as well
as a three step procedure. In this way, we consistently get the
model with the highest likelihood for SFO, DFOP and HS for all 12
new test datasets.
|
|
by plotting squared residuals against predicted values, and
showing the variance function used in the fitted error model.
Rebuild docs
|
|
Static documentation rebuilt by pkgdown
|
|
- Fix the respective error in the code
- Static documentation rebuilt by pkgdown
|
|
Now we have a three stage fitting process for
nonconstant error models:
- Unweighted least squares
- Only optimize the error model
- Optimize both
Static documentation rebuilt by pkgdown
|
|
- Also make it possible to specify initial values for error model
parameters.
- Run tests
- Rebuild docs
|
|
- Write the NEWS
- Static documentation rebuilt by pkgdown
- Adapt mkinerrmin
- Fix (hopefully all) remaining problems in mkinfit
|
|
In order to avoid some unnecessary documentation rebuilds
|
|
Static documentation rebuilt by pkgdown
|
|
|
|
Also:
- Change rounding in print.nafta
- Add dots argument to nafta()
- Use cores=1 in examples
- Restrict N in IORE model to values > 0
|