From 48c463680b51fa767b4cd7bd62865f192d0354ac Mon Sep 17 00:00:00 2001
From: Johannes Ranke Katrin Lindenberger. Contributor.
-
contributed to mkinresplot()
René Lehmann. Contributor. -
+Eurofins Regulatory AG. Copyright holder. -
+error_model
to the mkinfit
function.error_model = "obs"
.error_model = "tc"
.NEWS.md
- Switch to a versioning scheme where the fourth version component indicates development versions
Reintroduce the interface to the current development version of saemix, in particular:
‘saemix_model’ and ‘saemix_data’: Helper functions to set up nonlinear mixed-effects models for mmkin row objects
‘saem’: generic function to fit saemix models using ‘saemix_model’ and ‘saemix_data’, with a generator ‘saem.mmkin’, summary and plot methods
‘confint.mmkin’, ‘nlme.mmkin’, ‘transform_odeparms’: Fix example code in dontrun sections that failed with current defaults
‘logLik.mkinfit’: Improve example code to avoid warnings and show convenient syntax
‘mkinresplot’: Re-add Katrin Lindenberger as coauthor who was accidentally removed long ago
Remove tests relying on non-convergence of the FOMC fit to the FOCUS A dataset as this is platform dependent (revealed by the new additional tests on CRAN, thanks!)
Increase test tolerance for some parameter comparisons that also proved to be platform dependent
‘mkinmod’ models gain arguments ‘name’ and ‘dll_dir’ which, in conjunction with a current version of the ‘inline’ package, make it possible to still use the DLL used for fast ODE solutions with ‘deSolve’ after saving and restoring the ‘mkinmod’ object.
‘mkindsg’ R6 class for groups of ‘mkinds’ datasets with metadata
‘focus_soil_moisture’ FOCUS default soil moisture data
‘update’ method for ‘mmkin’ objects
‘transform_odeparms’, ‘backtransform_odeparms’: Use logit transformation for solitary fractions like the g parameter of the DFOP model, or formation fractions for a pathway to only one target variable
‘plot.mmkin’: Add a ylab argument, making it possible to customize the y axis label of the panels on the left without affecting the residual plots. Reduce legend size and vertical distance between panels
‘plot.mkinfit’: Change default ylab from “Observed” to “Residue”. Pass xlab to residual plot if show_residuals is TRUE.
‘mixed.mmkin’ New container for mmkin objects for plotting with the ‘plot.mixed.mmkin’ method
‘plot.mixed.mmkin’ method used for ‘nlme.mmkin’ and ‘saem.mmkin’, both inheriting from ‘mixed.mmkin’ (currently virtual)
‘plot.mixed.mmkin’ method used for ‘nlme.mmkin’ inheriting from ‘mixed.mmkin’ (currently virtual)
‘plot’, ‘summary’ and ‘print’ methods for ‘nlme.mmkin’ objects
Add the current development version of the saemix package as a second, optional backend for mixed-effects models
DESCRIPTION: Additional_repositories entry pointing to my drat repository on github for a suitable saemix version
‘saemix_model’, ‘saemix_data’: Helper functions to fit nonlinear mixed-effects models for mmkin row objects.
‘saem’ generic function to fit saemix models using ‘saemix_model’ and ‘saemix_data’, with a generator ‘saem.mmkin’, summary and plot methods
‘parms’: Add a method for mmkin objects
‘endpoints’: Back-calculate DT50 value from DT90 also for the biphasic models DFOP, HS and SFORB
Increase tolerance for a platform specific test results on the Solaris test machine on CRAN
Updates and corrections (using the spelling package) to the documentation
Support SFORB with formation fractions
Improve performance by a) avoiding expensive calls in the cost function like merge() and data.frame(), and b) by implementing analytical solutions for SFO-SFO and DFOP-SFO
‘nlme.mmkin’: An nlme method for mmkin row objects and an associated S3 class with print, plot, anova and endpoint methods
‘summary.mkinfit’: Add AIC, BIC and log likelihood to the summary
‘mkinmod’: Use pkgbuild::has_compiler instead of Sys.which(‘gcc’), as the latter will often fail even if Rtools are installed
‘mkinds’: Use roxygen for documenting fields and methods of this R6 class
‘aw’: Generic function for calculating Akaike weights, methods for mkinfit objects and mmkin columns
‘confint.mkinfit’: Make the quadratic approximation the default, as the likelihood profiling takes a lot of time, especially if the fit has more than three parameters
Fix a bug introduced in 0.9.49.6 that occurred if the direct optimisation yielded a higher likelihood than the three-step optimisation in the d_3 algorithm, which caused the fitted parameters of the three-step optimisation to be returned instead of the parameters of the direct optimisation
Add a ‘nobs’ method for mkinfit objects, enabling the default ‘BIC’ method from the stats package. Also, add a ‘BIC’ method for mmkin column objects.
Implement a likelihood ratio test as a method for ‘lrtest’ from the lmtest package
Support summarizing ‘mkinfit’ objects generated with versions < 0.9.49.5
Several algorithms for minimization of the negative log-likelihood for non-constant error models (two-component and variance by variable). In the case the error model is constant variance, least squares is used as this is more stable. The default algorithm ‘d_3’ tries direct minimization and a three-step procedure, and returns the model with the highest likelihood.
Add example datasets obtained from risk assessment reports published by the European Food Safety Agency.
Add the function ‘logLik.mkinfit’ which makes it possible to calculate an AIC for mkinfit objects
‘nafta’: Add evaluations according to the NAFTA guidance
Make the two-component error model stop in cases where it is inadequate to avoid nls crashes on windows
Exclude more example code from testing on CRAN to avoid NOTES from long execution times
‘mkinfit’: Improve fitting the error model for reweight.method = ‘tc’. Add ‘manual’ to possible arguments for ‘weight’
Test that FOCUS_2006_C can be evaluated with DFOP and reweight.method = ‘tc’
‘sigma_twocomp’: Rename ‘sigma_rl’ to ‘sigma_twocomp’ as the Rocke and Lorenzato model assumes lognormal distribution for large y. Correct references to the Rocke and Lorenzato model accordingly.
‘mkinfit’: Use 1.1 as starting value for N parameter of IORE models to obtain convergence in more difficult cases. Show parameter names when ‘trace_parms’ is ‘TRUE’.
Skip some tests on CRAN and winbuilder to avoid timeouts
‘summary.mkinfit’: Show versions of mkin and R used for fitting (not the ones used for the summary) if the fit was generated with mkin >= 0.9.47.1
README.md
, vignettes/mkin.Rmd
: URLs were updated
synthetic_data_for_UBA
: Add the code used to generate the data in the interest of reproducibility
Converted the vignette FOCUS_Z from tex/pdf to markdown/html
DESCRIPTION
: Add ORCID
plot.mkinfit
: Fix scaling of residual plots for the case of separate plots for each observed variable
Documentation updates
test_FOMC_ill-defined.R
as it is too platform dependentRename twa
to max_twa_parent
to avoid conflict with twa
from my pfm
package
Switch from microbenchmark
to rbenchmark
as the former is not supported on all platforms
The number of degrees of freedom is difficult to define in the case of ilr transformation of formation fractions. Now for each source compartment the number of ilr parameters (=number of optimised parameters) is divided by the number of pathways to metabolites (=number of affected data series) which leads to fractional degrees of freedom in some cases.
The default for the initial value for the first state value is now taken from the mean of the observations at time zero, if available.
The kinetic model can alternatively be specified with a shorthand name for parent only degradation models, e.g. SFO
, or DFOP
.
The kinetic model can alternatively be specified with a shorthand name for parent only degradation models, e.g. SFO
, or DFOP
.
Optimisation method, number of model evaluations and time elapsed during optimisation are given in the summary of mkinfit objects.
The maximum number of iterations in the optimisation algorithm can be specified using the argument maxit.modFit
to the mkinfit function.
mkinfit gives a warning when the fit does not converge (does not apply to SANN method). This warning is included in the summary.
The original and the transformed parameters now have different names (e.g. k_parent
and log_k_parent
. They also differ in how many they are when we have formation fractions but no pathway to sink.
The original and the transformed parameters now have different names (e.g. k_parent
and log_k_parent
. They also differ in how many they are when we have formation fractions but no pathway to sink.
The order of some of the information blocks in print.summary.mkinfit.R()
has been ordered in a more logical way.
R/mkinresplot.R: Make it possible to specify xlim
R/endpoints.R, man/endpoints.Rd: Calculate additional (pseudo)-DT50 values for FOMC, DFOP, HS and SFORB. Avoid calculation of formation fractions from rate constants when they are directly fitted
Do not backtransform confidence intervals for formation fractions if more than one compound is formed, as such parameters only define the pathways as a set
Correct ‘isotropic’ into ‘isometric’ for the ilr transformation
Fork the GUI into a separate package gmkin
Add gmkin workspace datasets FOCUS_2006_gmkin and FOCUS_2006_Z_gmkin
Bugfix re-enabling the fixing of any combination of initial values for state variables
Backtransform fixed ODE parameters for the summary
Get rid of the optimisation step in mkinerrmin
- this was unnecessary. Thanks to KinGUII for the inspiration - actually this is equation 6-2 in FOCUS kinetics p. 91 that I had overlooked originally
Fit one or more kinetic models with one or more state variables to one or more datasets
Calculate the AIC for a column of an mmkin object
Print method for mmkin objects
plot_res<
combining the plot of the fit and the residual plot.
Author
- Johannes Ranke
+ Johannes Ranke and Katrin Lindenberger
Examples
diff --git a/docs/dev/reference/mmkin-1.png b/docs/dev/reference/mmkin-1.png
index 7b7da90a..0db3379f 100644
Binary files a/docs/dev/reference/mmkin-1.png and b/docs/dev/reference/mmkin-1.png differ
diff --git a/docs/dev/reference/mmkin-2.png b/docs/dev/reference/mmkin-2.png
index ce2b2af4..024a9892 100644
Binary files a/docs/dev/reference/mmkin-2.png and b/docs/dev/reference/mmkin-2.png differ
diff --git a/docs/dev/reference/mmkin-3.png b/docs/dev/reference/mmkin-3.png
index bb96f1b2..a23d7cb9 100644
Binary files a/docs/dev/reference/mmkin-3.png and b/docs/dev/reference/mmkin-3.png differ
diff --git a/docs/dev/reference/mmkin-4.png b/docs/dev/reference/mmkin-4.png
index 351b21aa..89975db5 100644
Binary files a/docs/dev/reference/mmkin-4.png and b/docs/dev/reference/mmkin-4.png differ
diff --git a/docs/dev/reference/mmkin-5.png b/docs/dev/reference/mmkin-5.png
index c1c05eea..a2f34983 100644
Binary files a/docs/dev/reference/mmkin-5.png and b/docs/dev/reference/mmkin-5.png differ
diff --git a/docs/dev/reference/mmkin.html b/docs/dev/reference/mmkin.html
index 651eb9a6..65c91adf 100644
--- a/docs/dev/reference/mmkin.html
+++ b/docs/dev/reference/mmkin.html
@@ -75,7 +75,7 @@ datasets specified in its first two arguments." />
mkin
- 0.9.50.4
+ 1.0.1.9000
@@ -124,7 +124,7 @@ datasets specified in its first two arguments." />
-
-
+
@@ -158,7 +158,10 @@ datasets specified in its first two arguments.
cores = parallel::detectCores(),
cluster = NULL,
...
-)
+)
+
+# S3 method for mmkin
+print(x, ...)
Arguments
@@ -189,7 +192,11 @@ for parallel execution.
...
- Further arguments that will be passed to mkinfit
.
+ Not used.
+
+
+ x
+ An mmkin object.
@@ -227,19 +234,19 @@ plotting.
time_default
#> user system elapsed
-#> 4.968 0.427 1.342 time_1
+#> 4.438 0.334 1.640 time_1
#> user system elapsed
-#> 5.365 0.000 5.368
+#> 5.535 0.004 5.539 #> $ff
#> parent_M1 parent_sink M1_M2 M1_sink
-#> 0.7340478 0.2659522 0.7505687 0.2494313
+#> 0.7340481 0.2659519 0.7505683 0.2494317
#>
#> $distimes
#> DT50 DT90
#> parent 0.877769 2.915885
-#> M1 2.325746 7.725960
-#> M2 33.720083 112.015691
+#> M1 2.325744 7.725956
+#> M2 33.720100 112.015749
#>
# plot.mkinfit handles rows or columns of mmkin result objects
plot(fits.0[1, ])
@@ -266,12 +273,10 @@ plotting.
#> dataset
#> model A B C D
#> SFO OK OK OK OK
-#> FOMC C OK OK OK
+#> FOMC OK OK OK OK
#> DFOP OK OK OK OK
#>
-#> OK: No warnings
-#> C: Optimisation did not converge:
-#> false convergence (8)# We get false convergence for the FOMC fit to FOCUS_2006_A because this
+#> OK: No warnings# We get false convergence for the FOMC fit to FOCUS_2006_A because this
# dataset is really SFO, and the FOMC fit is overparameterised
stopCluster(cl)
# }
diff --git a/docs/dev/reference/nlme.mmkin-1.png b/docs/dev/reference/nlme.mmkin-1.png
index 25bebeca..9186c135 100644
Binary files a/docs/dev/reference/nlme.mmkin-1.png and b/docs/dev/reference/nlme.mmkin-1.png differ
diff --git a/docs/dev/reference/nlme.mmkin-2.png b/docs/dev/reference/nlme.mmkin-2.png
index c314c149..d395fe02 100644
Binary files a/docs/dev/reference/nlme.mmkin-2.png and b/docs/dev/reference/nlme.mmkin-2.png differ
diff --git a/docs/dev/reference/nlme.mmkin-3.png b/docs/dev/reference/nlme.mmkin-3.png
index a40b7cad..40518a59 100644
Binary files a/docs/dev/reference/nlme.mmkin-3.png and b/docs/dev/reference/nlme.mmkin-3.png differ
diff --git a/docs/dev/reference/nlme.mmkin.html b/docs/dev/reference/nlme.mmkin.html
index a4d7070a..2649c111 100644
--- a/docs/dev/reference/nlme.mmkin.html
+++ b/docs/dev/reference/nlme.mmkin.html
@@ -74,7 +74,7 @@ have been obtained by fitting the same model to a list of datasets." />
mkin
- 0.9.50.4
+ 1.0.1.9000
@@ -123,7 +123,7 @@ have been obtained by fitting the same model to a list of datasets." />
-
-
+
@@ -262,6 +262,12 @@ parameters taken from the mmkin object are used
Upon success, a fitted 'nlme.mmkin' object, which is an nlme object
with additional elements. It also inherits from 'mixed.mmkin'.
+ Details
+
+ Note that the convergence of the nlme algorithms depends on the quality
+of the data. In degradation kinetics, we often only have few datasets
+(e.g. data for few soils) and complicated degradation models, which may
+make it impossible to obtain convergence with nlme.
Note
As the object inherits from nlme::nlme, there is a wealth of
@@ -284,7 +290,7 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
anova(f_nlme_sfo, f_nlme_dfop)
#> Model df AIC BIC logLik Test L.Ratio p-value
#> f_nlme_sfo 1 5 625.0539 637.5529 -307.5269
-#> f_nlme_dfop 2 9 495.1270 517.6253 -238.5635 1 vs 2 137.9268 <.0001#> Kinetic nonlinear mixed-effects model fit by maximum likelihood
#>
#> Structural model:
@@ -312,7 +318,7 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#> $distimes
#> DT50 DT90 DT50back DT50_k1 DT50_k2
-#> parent 10.79857 100.7937 30.34192 4.193937 43.85442
+#> parent 10.79857 100.7937 30.34193 4.193938 43.85443
#>
ds_2 <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) x$data[c("name", "time", "value")])
@@ -335,16 +341,17 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
# f_nlme_sfo_sfo_ff <- nlme(f_2["SFO-SFO-ff", ])
#plot(f_nlme_sfo_sfo_ff)
- # With the log-Cholesky parameterization, this converges in 11
- # iterations and around 100 seconds, but without tweaking control
- # parameters (with pdDiag, increasing the tolerance and pnlsMaxIter was
- # necessary)
- f_nlme_dfop_sfo <- nlme(f_2["DFOP-SFO", ])
-#> Error in nlme.formula(model = value ~ (mkin::get_deg_func())(name, time, parent_0, log_k_A1, f_parent_qlogis, log_k1, log_k2, g_qlogis), data = structure(list(ds = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L ), .Label = c("1", "2", "3", "4", "5"), class = c("ordered", "factor")), name = c("parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1"), time = c(0, 0, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 0, 0, 3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180, 3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91, 91, 120, 120, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91, 91, 120, 120, 0, 0, 8, 8, 14, 14, 21, 21, 41, 41, 63, 63, 91, 91, 120, 120, 8, 8, 14, 14, 21, 21, 41, 41, 63, 63, 91, 91, 120, 120), value = c(97.2, 96.4, 71.1, 69.2, 58.1, 56.6, 44.4, 43.4, 33.3, 29.2, 17.6, 18, 10.5, 9.3, 4.5, 4.7, 3, 3.4, 2.3, 2.7, 4.3, 4.6, 7, 7.2, 8.2, 8, 11, 13.7, 11.5, 12.7, 14.9, 14.5, 12.1, 12.3, 9.9, 10.2, 8.8, 7.8, 93.6, 92.3, 87, 82.2, 74, 73.9, 64.2, 69.5, 54, 54.6, 41.1, 38.4, 32.5, 35.5, 28.1, 29, 26.5, 27.6, 3.9, 3.1, 6.9, 6.6, 10.4, 8.3, 14.4, 13.7, 22.1, 22.3, 27.5, 25.4, 28, 26.6, 25.8, 25.3, 91.9, 90.8, 64.9, 66.2, 43.5, 44.1, 18.3, 18.1, 10.2, 10.8, 4.9, 3.3, 1.6, 1.5, 1.1, 0.9, 9.6, 7.7, 15, 15.1, 21.2, 21.1, 19.7, 18.9, 17.5, 15.9, 9.5, 9.8, 6.2, 6.1, 99.8, 98.3, 77.1, 77.2, 59, 58.1, 27.4, 29.2, 19.1, 29.6, 10.1, 18.2, 4.5, 9.1, 2.3, 2.9, 2, 1.8, 2, 2.2, 4.2, 3.9, 7.4, 7.9, 14.5, 13.7, 14.2, 12.2, 13.7, 13.2, 13.6, 15.4, 10.4, 11.6, 10, 9.5, 9.1, 9, 96.1, 94.3, 73.9, 73.9, 69.4, 73.1, 65.6, 65.3, 55.9, 54.4, 47, 49.3, 44.7, 46.7, 42.1, 41.3, 3.3, 3.4, 3.9, 2.9, 6.4, 7.2, 9.1, 8.5, 11.7, 12, 13.3, 13.2, 14.3, 12.1)), row.names = c(NA, -170L), class = c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame"), formula = value ~ time | ds, FUN = function (x) max(x, na.rm = TRUE), order.groups = FALSE), start = list( fixed = c(parent_0 = 93.8101519326534, log_k_A1 = -9.76474551635931, f_parent_qlogis = -0.971114801595408, log_k1 = -1.87993711571859, log_k2 = -4.27081421366622, g_qlogis = 0.135644115277507 ), random = list(ds = structure(c(2.56569977430371, -3.49441920289139, -3.32614443321494, 4.35347873814922, -0.0986148763466161, 4.65850590018027, 1.8618544764481, 6.12693257601545, 4.91792724701579, -17.5652201996596, -0.466203822618637, 0.746660653597927, 0.282193987271096, -0.42053488943072, -0.142115928819667, 0.369240076779088, -1.38985563501659, 1.02592753494098, 0.73090914081534, -0.736221117518819, 0.768170629350299, -1.89347658079869, 1.72168783460352, 0.844607177798114, -1.44098906095325, -0.377731855445672, 0.168180098477565, 0.469683412912104, 0.500717664434525, -0.760849320378522), .Dim = 5:6, .Dimnames = list(c("1", "2", "3", "4", "5"), c("parent_0", "log_k_A1", "f_parent_qlogis", "log_k1", "log_k2", "g_qlogis"))))), fixed = list(parent_0 ~ 1, log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1), random = structure(numeric(0), class = c("pdDiag", "pdMat"), formula = structure(list(parent_0 ~ 1, log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1), class = "listForm"), Dimnames = list(NULL, NULL))): maximum number of iterations (maxIter = 50) reached without convergence#> Timing stopped at: 49.95 16.5 44.08
+ # For the following, we need to increase pnlsMaxIter and the tolerance
+ # to get convergence
+ f_nlme_dfop_sfo <- nlme(f_2["DFOP-SFO", ],
+ control = list(pnlsMaxIter = 120, tolerance = 5e-4))
+
plot(f_nlme_dfop_sfo)
-#> Error in plot(f_nlme_dfop_sfo): object 'f_nlme_dfop_sfo' not found
+#> Error in anova(f_nlme_dfop_sfo, f_nlme_sfo_sfo): object 'f_nlme_dfop_sfo' not found
+#> Model df AIC BIC logLik Test L.Ratio p-value
+#> f_nlme_dfop_sfo 1 13 843.8548 884.6201 -408.9274
+#> f_nlme_sfo_sfo 2 9 1085.1821 1113.4043 -533.5910 1 vs 2 249.3273 <.0001#> $ff
#> parent_sink parent_A1 A1_sink
@@ -355,7 +362,15 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#> parent 19.13518 63.5657
#> A1 66.02155 219.3189
#> #> Error in endpoints(f_nlme_dfop_sfo): object 'f_nlme_dfop_sfo' not found
+#> $ff
+#> parent_A1 parent_sink
+#> 0.2768575 0.7231425
+#>
+#> $distimes
+#> DT50 DT90 DT50back DT50_k1 DT50_k2
+#> parent 11.07091 104.6320 31.49737 4.462384 46.20825
+#> A1 162.30492 539.1653 NA NA NA
+#>
if (length(findFunction("varConstProp")) > 0) { # tc error model for nlme available
# Attempts to fit metabolite kinetics with the tc error model are possible,
# but need tweeking of control values and sometimes do not converge
@@ -381,7 +396,7 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#> Fixed effects:
#> list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
#> parent_0 log_k1 log_k2 g_qlogis
-#> 94.04775 -1.82340 -4.16715 0.05685
+#> 94.04774 -1.82340 -4.16716 0.05686
#>
#> Random effects:
#> Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
@@ -395,10 +410,8 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#> Formula: ~fitted(.)
#> Parameter estimates:
#> const prop
-#> 2.23224114 0.01262341
- f_2_obs <- mmkin(list("SFO-SFO" = m_sfo_sfo,
- "DFOP-SFO" = m_dfop_sfo),
- ds_2, quiet = TRUE, error_model = "obs")
+#> 2.23223147 0.01262395
+ f_2_obs <- update(f_2, error_model = "obs")
f_nlme_sfo_sfo_obs <- nlme(f_2_obs["SFO-SFO", ])
print(f_nlme_sfo_sfo_obs)
#> Kinetic nonlinear mixed-effects model fit by maximum likelihood
@@ -429,18 +442,21 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#> Formula: ~1 | name
#> Parameter estimates:
#> parent A1
-#> 1.0000000 0.2050003 #> Error in nlme.formula(model = value ~ (mkin::get_deg_func())(name, time, parent_0, log_k_A1, f_parent_qlogis, log_k1, log_k2, g_qlogis), data = structure(list(ds = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L ), .Label = c("1", "2", "3", "4", "5"), class = c("ordered", "factor")), name = c("parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "parent", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1", "A1"), time = c(0, 0, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 3, 3, 6, 6, 10, 10, 20, 20, 34, 34, 55, 55, 90, 90, 112, 112, 132, 132, 0, 0, 3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180, 3, 3, 7, 7, 14, 14, 30, 30, 60, 60, 90, 90, 120, 120, 180, 180, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 0, 0, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91, 91, 120, 120, 1, 1, 3, 3, 8, 8, 14, 14, 27, 27, 48, 48, 70, 70, 91, 91, 120, 120, 0, 0, 8, 8, 14, 14, 21, 21, 41, 41, 63, 63, 91, 91, 120, 120, 8, 8, 14, 14, 21, 21, 41, 41, 63, 63, 91, 91, 120, 120), value = c(97.2, 96.4, 71.1, 69.2, 58.1, 56.6, 44.4, 43.4, 33.3, 29.2, 17.6, 18, 10.5, 9.3, 4.5, 4.7, 3, 3.4, 2.3, 2.7, 4.3, 4.6, 7, 7.2, 8.2, 8, 11, 13.7, 11.5, 12.7, 14.9, 14.5, 12.1, 12.3, 9.9, 10.2, 8.8, 7.8, 93.6, 92.3, 87, 82.2, 74, 73.9, 64.2, 69.5, 54, 54.6, 41.1, 38.4, 32.5, 35.5, 28.1, 29, 26.5, 27.6, 3.9, 3.1, 6.9, 6.6, 10.4, 8.3, 14.4, 13.7, 22.1, 22.3, 27.5, 25.4, 28, 26.6, 25.8, 25.3, 91.9, 90.8, 64.9, 66.2, 43.5, 44.1, 18.3, 18.1, 10.2, 10.8, 4.9, 3.3, 1.6, 1.5, 1.1, 0.9, 9.6, 7.7, 15, 15.1, 21.2, 21.1, 19.7, 18.9, 17.5, 15.9, 9.5, 9.8, 6.2, 6.1, 99.8, 98.3, 77.1, 77.2, 59, 58.1, 27.4, 29.2, 19.1, 29.6, 10.1, 18.2, 4.5, 9.1, 2.3, 2.9, 2, 1.8, 2, 2.2, 4.2, 3.9, 7.4, 7.9, 14.5, 13.7, 14.2, 12.2, 13.7, 13.2, 13.6, 15.4, 10.4, 11.6, 10, 9.5, 9.1, 9, 96.1, 94.3, 73.9, 73.9, 69.4, 73.1, 65.6, 65.3, 55.9, 54.4, 47, 49.3, 44.7, 46.7, 42.1, 41.3, 3.3, 3.4, 3.9, 2.9, 6.4, 7.2, 9.1, 8.5, 11.7, 12, 13.3, 13.2, 14.3, 12.1)), row.names = c(NA, -170L), class = c("nfnGroupedData", "nfGroupedData", "groupedData", "data.frame"), formula = value ~ time | ds, FUN = function (x) max(x, na.rm = TRUE), order.groups = FALSE), start = list( fixed = c(parent_0 = 93.4272167134207, log_k_A1 = -9.71590717106959, f_parent_qlogis = -0.953712099744438, log_k1 = -1.95256957646888, log_k2 = -4.42919226610318, g_qlogis = 0.193023137298073 ), random = list(ds = structure(c(2.85557330683041, -3.87630303729395, -2.78062140212751, 4.82042042600536, -1.01906929341432, 4.613992019697, 2.05871276943309, 6.0766404049189, 4.86471337131288, -17.6140585653619, -0.480721175257541, 0.773079218835614, 0.260464433006093, -0.440615012802434, -0.112207463781733, 0.445812953745225, -1.49588630006094, 1.13602040717272, 0.801850880762046, -0.887797941619048, 0.936480292463262, -2.43093808171905, 1.91256225793793, 0.984827519864443, -1.40293198854659, -0.455176326336681, 0.376355651864385, 0.343919720700401, 0.46329187713133, -0.728390923359434 ), .Dim = 5:6, .Dimnames = list(c("1", "2", "3", "4", "5"), c("parent_0", "log_k_A1", "f_parent_qlogis", "log_k1", "log_k2", "g_qlogis"))))), fixed = list(parent_0 ~ 1, log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1), random = structure(numeric(0), class = c("pdDiag", "pdMat"), formula = structure(list(parent_0 ~ 1, log_k_A1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1), class = "listForm"), Dimnames = list(NULL, NULL)), weights = structure(numeric(0), formula = ~1 | name, class = c("varIdent", "varFunc"))): maximum number of iterations (maxIter = 50) reached without convergence#> Timing stopped at: 59.38 16.5 53.5
- f_2_tc <- mmkin(list("SFO-SFO" = m_sfo_sfo,
- "DFOP-SFO" = m_dfop_sfo),
- ds_2, quiet = TRUE, error_model = "tc")
- # f_nlme_sfo_sfo_tc <- nlme(f_2_tc["SFO-SFO", ]) # stops with error message
- f_nlme_dfop_sfo_tc <- nlme(f_2_tc["DFOP-SFO", ])
-#> Warning: longer object length is not a multiple of shorter object length#> Warning: longer object length is not a multiple of shorter object length#> Warning: longer object length is not a multiple of shorter object length#> Warning: longer object length is not a multiple of shorter object length#> Warning: longer object length is not a multiple of shorter object length#> Warning: longer object length is not a multiple of shorter object length#> Warning: longer object length is not a multiple of shorter object length#> Warning: longer object length is not a multiple of shorter object length#> Warning: longer object length is not a multiple of shorter object length#> Warning: longer object length is not a multiple of shorter object length#> Warning: longer object length is not a multiple of shorter object length#> Warning: longer object length is not a multiple of shorter object length#> Warning: longer object length is not a multiple of shorter object length#> Warning: longer object length is not a multiple of shorter object length#> Error in X[, fmap[[nm]]] <- gradnm: number of items to replace is not a multiple of replacement length#> Timing stopped at: 6.363 2.688 5.469 # We get warnings about false convergence in the LME step in several iterations
- # but as the last such warning occurs in iteration 25 and we have 28 iterations
- # we can ignore these
- anova(f_nlme_dfop_sfo, f_nlme_dfop_sfo_obs, f_nlme_dfop_sfo_tc)
-#> Error in anova(f_nlme_dfop_sfo, f_nlme_dfop_sfo_obs, f_nlme_dfop_sfo_tc): object 'f_nlme_dfop_sfo' not found
+#> 1.0000000 0.2049995 f_nlme_dfop_sfo_obs <- nlme(f_2_obs["DFOP-SFO", ],
+ control = list(pnlsMaxIter = 120, tolerance = 5e-4))
+
+ f_2_tc <- update(f_2, error_model = "tc")
+ # f_nlme_sfo_sfo_tc <- nlme(f_2_tc["SFO-SFO", ]) # No convergence with 50 iterations
+ # f_nlme_dfop_sfo_tc <- nlme(f_2_tc["DFOP-SFO", ],
+ # control = list(pnlsMaxIter = 120, tolerance = 5e-4)) # Error in X[, fmap[[nm]]] <- gradnm
+
+ anova(f_nlme_dfop_sfo, f_nlme_dfop_sfo_obs)
+#> Model df AIC BIC logLik Test L.Ratio
+#> f_nlme_dfop_sfo 1 13 843.8548 884.6201 -408.9274
+#> f_nlme_dfop_sfo_obs 2 14 817.5338 861.4350 -394.7669 1 vs 2 28.32093
+#> p-value
+#> f_nlme_dfop_sfo
+#> f_nlme_dfop_sfo_obs <.0001
# }
diff --git a/docs/dev/reference/plot.mixed.mmkin-1.png b/docs/dev/reference/plot.mixed.mmkin-1.png
index 5cb33214..9c9a2211 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-1.png and b/docs/dev/reference/plot.mixed.mmkin-1.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin-2.png b/docs/dev/reference/plot.mixed.mmkin-2.png
index c0d67204..0f66ff0f 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-2.png and b/docs/dev/reference/plot.mixed.mmkin-2.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin-3.png b/docs/dev/reference/plot.mixed.mmkin-3.png
index 5e00afe6..34212f1c 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-3.png and b/docs/dev/reference/plot.mixed.mmkin-3.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin-4.png b/docs/dev/reference/plot.mixed.mmkin-4.png
index 6a5f3b9c..c1450d24 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-4.png and b/docs/dev/reference/plot.mixed.mmkin-4.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin.html b/docs/dev/reference/plot.mixed.mmkin.html
index 55c411e7..601e1554 100644
--- a/docs/dev/reference/plot.mixed.mmkin.html
+++ b/docs/dev/reference/plot.mixed.mmkin.html
@@ -72,7 +72,7 @@
mkin
- 0.9.50.4
+ 1.0.1.9000
@@ -161,7 +161,7 @@
maxabs = "auto",
ncol.legend = ifelse(length(i) <= 3, length(i) + 1, ifelse(length(i) <= 8, 3, 4)),
nrow.legend = ceiling((length(i) + 1)/ncol.legend),
- rel.height.legend = 0.03 + 0.08 * nrow.legend,
+ rel.height.legend = 0.02 + 0.07 * nrow.legend,
rel.height.bottom = 1.1,
pch_ds = 1:length(i),
col_ds = pch_ds + 1,
@@ -283,10 +283,10 @@ corresponding model prediction lines for the different datasets.
#> Running main SAEM algorithm
-#> [1] "Mon Dec 21 05:58:23 2020"
+#> [1] "Sat Feb 6 18:29:17 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Dec 21 05:58:30 2020"
# We can overlay the two variants if we generate predictions
pred_nlme <- mkinpredict(dfop_sfo,
diff --git a/docs/dev/reference/saem-3.png b/docs/dev/reference/saem-3.png
index 6a32cda1..4474b1f1 100644
Binary files a/docs/dev/reference/saem-3.png and b/docs/dev/reference/saem-3.png differ
diff --git a/docs/dev/reference/saem-5.png b/docs/dev/reference/saem-5.png
index 6e6e0f91..27ed3f8f 100644
Binary files a/docs/dev/reference/saem-5.png and b/docs/dev/reference/saem-5.png differ
diff --git a/docs/dev/reference/saem.html b/docs/dev/reference/saem.html
index 59589378..4578db2a 100644
--- a/docs/dev/reference/saem.html
+++ b/docs/dev/reference/saem.html
@@ -74,7 +74,7 @@ Expectation Maximisation algorithm (SAEM)." />
mkin
- 0.9.50.4
+ 1.0.1.9000
@@ -261,27 +261,27 @@ using mmkin.
state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)
#> Running main SAEM algorithm
-#> [1] "Mon Jan 25 14:41:42 2021"
+#> [1] "Sat Feb 6 18:29:26 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Jan 25 14:41:43 2021"
+#> [1] "Sat Feb 6 18:29:27 2021"
f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
f_saem_sfo <- saem(f_mmkin_parent["SFO", ])
#> Running main SAEM algorithm
-#> [1] "Mon Jan 25 14:41:45 2021"
+#> [1] "Sat Feb 6 18:29:28 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Jan 25 14:41:46 2021"f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
+#> [1] "Sat Feb 6 18:29:30 2021"f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
#> Running main SAEM algorithm
-#> [1] "Mon Jan 25 14:41:47 2021"
+#> [1] "Sat Feb 6 18:29:30 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Jan 25 14:41:49 2021"f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
+#> [1] "Sat Feb 6 18:29:32 2021"f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
#> Running main SAEM algorithm
-#> [1] "Mon Jan 25 14:41:49 2021"
+#> [1] "Sat Feb 6 18:29:32 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Jan 25 14:41:52 2021"
+#> [1] "Sat Feb 6 18:29:35 2021"
# The returned saem.mmkin object contains an SaemixObject, therefore we can use
# functions from saemix
library(saemix)
@@ -324,10 +324,10 @@ using mmkin.
f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
#> Running main SAEM algorithm
-#> [1] "Mon Jan 25 14:41:55 2021"
+#> [1] "Sat Feb 6 18:29:37 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Jan 25 14:42:00 2021"#> Error in compare.saemix(list(f_saem_fomc$so, f_saem_fomc_tc$so)): 'compare.saemix' requires at least two models.
sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
A1 = mkinsub("SFO"))
@@ -346,15 +346,15 @@ using mmkin.
# four minutes
f_saem_sfo_sfo <- saem(f_mmkin["SFO-SFO", ])
#> Running main SAEM algorithm
-#> [1] "Mon Jan 25 14:42:02 2021"
+#> [1] "Sat Feb 6 18:29:44 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Jan 25 14:42:07 2021"f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
+#> [1] "Sat Feb 6 18:29:48 2021"f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
#> Running main SAEM algorithm
-#> [1] "Mon Jan 25 14:42:08 2021"
+#> [1] "Sat Feb 6 18:29:49 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Jan 25 14:42:17 2021"# We can use print, plot and summary methods to check the results
+#> [1] "Sat Feb 6 18:29:57 2021"#> Kinetic nonlinear mixed-effects model fit by SAEM
#> Structural model:
@@ -395,10 +395,10 @@ using mmkin.
#> SD.g_qlogis 0.44771 -0.86417 1.7596#> saemix version used for fitting: 3.1.9000
-#> mkin version used for pre-fitting: 0.9.50.4
+#> mkin version used for pre-fitting: 1.0.1.9000
#> R version used for fitting: 4.0.3
-#> Date of fit: Mon Jan 25 14:42:18 2021
-#> Date of summary: Mon Jan 25 14:42:18 2021
+#> Date of fit: Sat Feb 6 18:29:57 2021
+#> Date of summary: Sat Feb 6 18:29:58 2021
#>
#> Equations:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -413,7 +413,7 @@ using mmkin.
#>
#> Model predictions using solution type analytical
#>
-#> Fitted in 9.954 s using 300, 100 iterations
+#> Fitted in 8.539 s using 300, 100 iterations
#>
#> Variance model: Constant variance
#>
@@ -489,12 +489,12 @@ using mmkin.
#> Dataset 6 parent 3 69.2 71.32042 2.12042 1.883 1.125873
#> Dataset 6 parent 6 58.1 56.45256 -1.64744 1.883 -0.874739
#> Dataset 6 parent 6 56.6 56.45256 -0.14744 1.883 -0.078288
-#> Dataset 6 parent 10 44.4 44.48523 0.08523 1.883 0.045256
+#> Dataset 6 parent 10 44.4 44.48523 0.08523 1.883 0.045257
#> Dataset 6 parent 10 43.4 44.48523 1.08523 1.883 0.576224
#> Dataset 6 parent 20 33.3 29.75774 -3.54226 1.883 -1.880826
#> Dataset 6 parent 20 29.2 29.75774 0.55774 1.883 0.296141
#> Dataset 6 parent 34 17.6 19.35710 1.75710 1.883 0.932966
-#> Dataset 6 parent 34 18.0 19.35710 1.35710 1.883 0.720578
+#> Dataset 6 parent 34 18.0 19.35710 1.35710 1.883 0.720579
#> Dataset 6 parent 55 10.5 10.48443 -0.01557 1.883 -0.008266
#> Dataset 6 parent 55 9.3 10.48443 1.18443 1.883 0.628895
#> Dataset 6 parent 90 4.5 3.78622 -0.71378 1.883 -0.378995
@@ -560,9 +560,9 @@ using mmkin.
#> Dataset 8 parent 1 64.9 67.73197 2.83197 1.883 1.503686
#> Dataset 8 parent 1 66.2 67.73197 1.53197 1.883 0.813428
#> Dataset 8 parent 3 43.5 41.58448 -1.91552 1.883 -1.017081
-#> Dataset 8 parent 3 44.1 41.58448 -2.51552 1.883 -1.335661
+#> Dataset 8 parent 3 44.1 41.58448 -2.51552 1.883 -1.335662
#> Dataset 8 parent 8 18.3 19.62286 1.32286 1.883 0.702395
-#> Dataset 8 parent 8 18.1 19.62286 1.52286 1.883 0.808589
+#> Dataset 8 parent 8 18.1 19.62286 1.52286 1.883 0.808588
#> Dataset 8 parent 14 10.2 10.77819 0.57819 1.883 0.306999
#> Dataset 8 parent 14 10.8 10.77819 -0.02181 1.883 -0.011582
#> Dataset 8 parent 27 4.9 3.26977 -1.63023 1.883 -0.865599
@@ -575,13 +575,13 @@ using mmkin.
#> Dataset 8 A1 1 7.7 7.61539 -0.08461 1.883 -0.044923
#> Dataset 8 A1 3 15.0 15.47954 0.47954 1.883 0.254622
#> Dataset 8 A1 3 15.1 15.47954 0.37954 1.883 0.201525
-#> Dataset 8 A1 8 21.2 20.22616 -0.97384 1.883 -0.517076
+#> Dataset 8 A1 8 21.2 20.22616 -0.97384 1.883 -0.517075
#> Dataset 8 A1 8 21.1 20.22616 -0.87384 1.883 -0.463979
#> Dataset 8 A1 14 19.7 20.00067 0.30067 1.883 0.159645
#> Dataset 8 A1 14 18.9 20.00067 1.10067 1.883 0.584419
-#> Dataset 8 A1 27 17.5 16.38142 -1.11858 1.883 -0.593929
-#> Dataset 8 A1 27 15.9 16.38142 0.48142 1.883 0.255619
-#> Dataset 8 A1 48 9.5 10.25357 0.75357 1.883 0.400123
+#> Dataset 8 A1 27 17.5 16.38142 -1.11858 1.883 -0.593928
+#> Dataset 8 A1 27 15.9 16.38142 0.48142 1.883 0.255620
+#> Dataset 8 A1 48 9.5 10.25357 0.75357 1.883 0.400124
#> Dataset 8 A1 48 9.8 10.25357 0.45357 1.883 0.240833
#> Dataset 8 A1 70 6.2 5.95728 -0.24272 1.883 -0.128878
#> Dataset 8 A1 70 6.1 5.95728 -0.14272 1.883 -0.075781
@@ -622,7 +622,7 @@ using mmkin.
#> Dataset 9 A1 91 10.0 10.09177 0.09177 1.883 0.048727
#> Dataset 9 A1 91 9.5 10.09177 0.59177 1.883 0.314211
#> Dataset 9 A1 120 9.1 7.91379 -1.18621 1.883 -0.629841
-#> Dataset 9 A1 120 9.0 7.91379 -1.08621 1.883 -0.576745
+#> Dataset 9 A1 120 9.0 7.91379 -1.08621 1.883 -0.576744
#> Dataset 10 parent 0 96.1 93.65257 -2.44743 1.883 -1.299505
#> Dataset 10 parent 0 94.3 93.65257 -0.64743 1.883 -0.343763
#> Dataset 10 parent 8 73.9 77.85906 3.95906 1.883 2.102132
diff --git a/docs/dev/reference/summary.saem.mmkin.html b/docs/dev/reference/summary.saem.mmkin.html
index 722415fb..93e1365d 100644
--- a/docs/dev/reference/summary.saem.mmkin.html
+++ b/docs/dev/reference/summary.saem.mmkin.html
@@ -76,7 +76,7 @@ endpoints such as formation fractions and DT50 values. Optionally
mkin
- 0.9.50.4
+ 1.0.1.9000
@@ -260,15 +260,15 @@ saemix authors for the parts inherited from saemix.
quiet = TRUE, error_model = "tc", cores = 5)
f_saem_dfop_sfo <- saem(f_mmkin_dfop_sfo)
#> Running main SAEM algorithm
-#> [1] "Mon Jan 11 12:42:40 2021"
+#> [1] "Sat Feb 6 18:30:00 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Jan 11 12:42:53 2021"#> saemix version used for fitting: 3.1.9000
-#> mkin version used for pre-fitting: 0.9.50.4
+#> mkin version used for pre-fitting: 1.0.1.9000
#> R version used for fitting: 4.0.3
-#> Date of fit: Mon Jan 11 12:42:54 2021
-#> Date of summary: Mon Jan 11 12:42:54 2021
+#> Date of fit: Sat Feb 6 18:30:12 2021
+#> Date of summary: Sat Feb 6 18:30:12 2021
#>
#> Equations:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -283,7 +283,7 @@ saemix authors for the parts inherited from saemix.
#>
#> Model predictions using solution type analytical
#>
-#> Fitted in 13.298 s using 300, 100 iterations
+#> Fitted in 11.769 s using 300, 100 iterations
#>
#> Variance model: Two-component variance function
#>
@@ -291,7 +291,7 @@ saemix authors for the parts inherited from saemix.
#> parent_0 log_k_m1 f_parent_qlogis log_k1 log_k2
#> 101.65645 -4.05368 -0.94311 -2.35943 -4.07006
#> g_qlogis
-#> -0.01133
+#> -0.01132
#>
#> Fixed degradation parameter values:
#> None
@@ -299,232 +299,232 @@ saemix authors for the parts inherited from saemix.
#> Results:
#>
#> Likelihood computed by importance sampling
-#> AIC BIC logLik
-#> 830 824.5 -401
+#> AIC BIC logLik
+#> 829.3 823.9 -400.7
#>
#> Optimised parameters:
-#> est. lower upper
-#> parent_0 101.4423 97.862 105.0224
-#> log_k_m1 -4.0703 -4.191 -3.9495
-#> f_parent_qlogis -0.9539 -1.313 -0.5949
-#> log_k1 -2.9724 -3.811 -2.1342
-#> log_k2 -3.4977 -4.206 -2.7895
-#> g_qlogis -0.0449 -1.116 1.0262
+#> est. lower upper
+#> parent_0 101.29457 97.855 104.7344
+#> log_k_m1 -4.06337 -4.182 -3.9445
+#> f_parent_qlogis -0.94546 -1.307 -0.5841
+#> log_k1 -2.98794 -3.844 -2.1321
+#> log_k2 -3.47891 -4.253 -2.7050
+#> g_qlogis -0.03211 -1.157 1.0931
#>
#> Correlation:
#> prnt_0 lg_k_1 f_prn_ log_k1 log_k2
-#> log_k_m1 -0.207
-#> f_parent_qlogis -0.148 0.202
-#> log_k1 0.040 -0.038 -0.022
-#> log_k2 0.022 -0.015 -0.009 0.001
-#> g_qlogis -0.012 0.005 0.011 -0.173 -0.130
+#> log_k_m1 -0.202
+#> f_parent_qlogis -0.145 0.195
+#> log_k1 0.094 -0.099 -0.049
+#> log_k2 -0.042 0.056 0.024 -0.097
+#> g_qlogis -0.005 0.000 0.007 -0.160 -0.113
#>
#> Random effects:
-#> est. lower upper
-#> SD.parent_0 2.88564 -0.5163 6.2876
-#> SD.log_k_m1 0.08502 -0.0427 0.2127
-#> SD.f_parent_qlogis 0.38857 0.1350 0.6421
-#> SD.log_k1 0.92338 0.3296 1.5172
-#> SD.log_k2 0.78644 0.2817 1.2912
-#> SD.g_qlogis 0.34614 -0.8727 1.5650
+#> est. lower upper
+#> SD.parent_0 2.70085 -0.64980 6.0515
+#> SD.log_k_m1 0.08408 -0.04023 0.2084
+#> SD.f_parent_qlogis 0.39215 0.13695 0.6473
+#> SD.log_k1 0.89280 0.27466 1.5109
+#> SD.log_k2 0.82387 0.26388 1.3838
+#> SD.g_qlogis 0.36468 -0.86978 1.5991
#>
#> Variance model:
#> est. lower upper
-#> a.1 0.65859 0.49250 0.82469
-#> b.1 0.06411 0.05006 0.07817
+#> a.1 0.65724 0.49361 0.82086
+#> b.1 0.06434 0.05034 0.07835
#>
#> Backtransformed parameters:
#> est. lower upper
-#> parent_0 101.44231 97.86220 105.02241
-#> k_m1 0.01707 0.01513 0.01926
-#> f_parent_to_m1 0.27811 0.21201 0.35551
-#> k1 0.05118 0.02213 0.11834
-#> k2 0.03027 0.01491 0.06145
-#> g 0.48878 0.24675 0.73618
+#> parent_0 101.29457 97.85477 104.73437
+#> k_m1 0.01719 0.01526 0.01936
+#> f_parent_to_m1 0.27980 0.21302 0.35798
+#> k1 0.05039 0.02141 0.11859
+#> k2 0.03084 0.01422 0.06687
+#> g 0.49197 0.23916 0.74896
#>
#> Resulting formation fractions:
#> ff
-#> parent_m1 0.2781
-#> parent_sink 0.7219
+#> parent_m1 0.2798
+#> parent_sink 0.7202
#>
#> Estimated disappearance times:
#> DT50 DT90 DT50back DT50_k1 DT50_k2
-#> parent 17.53 61.64 18.55 13.54 22.9
-#> m1 40.60 134.88 NA NA NA
+#> parent 17.49 61.05 18.38 13.76 22.47
+#> m1 40.32 133.94 NA NA NA
#>
#> Data:
-#> ds name time observed predicted residual std standardized
-#> ds 1 parent 0 89.8 9.869e+01 8.894553 6.3618 1.398124
-#> ds 1 parent 0 104.1 9.869e+01 -5.405447 6.3618 -0.849676
-#> ds 1 parent 1 88.7 9.413e+01 5.426448 6.0706 0.893897
-#> ds 1 parent 1 95.5 9.413e+01 -1.373552 6.0706 -0.226265
-#> ds 1 parent 3 81.8 8.576e+01 3.961821 5.5377 0.715422
-#> ds 1 parent 3 94.5 8.576e+01 -8.738179 5.5377 -1.577932
-#> ds 1 parent 7 71.5 7.168e+01 0.184828 4.6429 0.039809
-#> ds 1 parent 7 70.3 7.168e+01 1.384828 4.6429 0.298270
-#> ds 1 parent 14 54.2 5.351e+01 -0.688235 3.4934 -0.197008
-#> ds 1 parent 14 49.6 5.351e+01 3.911765 3.4934 1.119747
-#> ds 1 parent 28 31.5 3.209e+01 0.590445 2.1603 0.273322
-#> ds 1 parent 28 28.8 3.209e+01 3.290445 2.1603 1.523177
-#> ds 1 parent 60 12.1 1.272e+01 0.618158 1.0481 0.589761
-#> ds 1 parent 60 13.6 1.272e+01 -0.881842 1.0481 -0.841332
-#> ds 1 parent 90 6.2 6.085e+00 -0.115212 0.7655 -0.150512
-#> ds 1 parent 90 8.3 6.085e+00 -2.215212 0.7655 -2.893953
-#> ds 1 parent 120 2.2 3.009e+00 0.809439 0.6863 1.179470
-#> ds 1 parent 120 2.4 3.009e+00 0.609439 0.6863 0.888041
-#> ds 1 m1 1 0.3 1.129e+00 0.828817 0.6626 1.250938
-#> ds 1 m1 1 0.2 1.129e+00 0.928817 0.6626 1.401869
-#> ds 1 m1 3 2.2 3.141e+00 0.940880 0.6887 1.366187
-#> ds 1 m1 3 3.0 3.141e+00 0.140880 0.6887 0.204562
-#> ds 1 m1 7 6.5 6.326e+00 -0.174162 0.7735 -0.225175
-#> ds 1 m1 7 5.0 6.326e+00 1.325838 0.7735 1.714181
-#> ds 1 m1 14 10.2 9.883e+00 -0.317417 0.9139 -0.347326
-#> ds 1 m1 14 9.5 9.883e+00 0.382583 0.9139 0.418631
-#> ds 1 m1 28 12.2 1.251e+01 0.309856 1.0378 0.298572
-#> ds 1 m1 28 13.4 1.251e+01 -0.890144 1.0378 -0.857726
-#> ds 1 m1 60 11.8 1.086e+01 -0.940009 0.9584 -0.980812
-#> ds 1 m1 60 13.2 1.086e+01 -2.340009 0.9584 -2.441581
-#> ds 1 m1 90 6.6 7.823e+00 1.222977 0.8278 1.477332
-#> ds 1 m1 90 9.3 7.823e+00 -1.477023 0.8278 -1.784214
-#> ds 1 m1 120 3.5 5.315e+00 1.815201 0.7415 2.447906
-#> ds 1 m1 120 5.4 5.315e+00 -0.084799 0.7415 -0.114356
-#> ds 2 parent 0 118.0 1.031e+02 -14.876736 6.6443 -2.239038
-#> ds 2 parent 0 99.8 1.031e+02 3.323264 6.6443 0.500171
-#> ds 2 parent 1 90.2 9.757e+01 7.371379 6.2902 1.171891
-#> ds 2 parent 1 94.6 9.757e+01 2.971379 6.2902 0.472386
-#> ds 2 parent 3 96.1 8.788e+01 -8.222746 5.6724 -1.449599
-#> ds 2 parent 3 78.4 8.788e+01 9.477254 5.6724 1.670758
-#> ds 2 parent 7 77.9 7.293e+01 -4.972272 4.7218 -1.053054
-#> ds 2 parent 7 77.7 7.293e+01 -4.772272 4.7218 -1.010697
-#> ds 2 parent 14 56.0 5.602e+01 0.016773 3.6513 0.004594
-#> ds 2 parent 14 54.7 5.602e+01 1.316773 3.6513 0.360633
-#> ds 2 parent 28 36.6 3.855e+01 1.945779 2.5575 0.760803
-#> ds 2 parent 28 36.8 3.855e+01 1.745779 2.5575 0.682603
-#> ds 2 parent 60 22.1 2.101e+01 -1.086693 1.4996 -0.724663
-#> ds 2 parent 60 24.7 2.101e+01 -3.686693 1.4996 -2.458475
-#> ds 2 parent 90 12.4 1.246e+01 0.058759 1.0353 0.056757
-#> ds 2 parent 90 10.8 1.246e+01 1.658759 1.0353 1.602256
-#> ds 2 parent 120 6.8 7.406e+00 0.606226 0.8119 0.746659
-#> ds 2 parent 120 7.9 7.406e+00 -0.493774 0.8119 -0.608157
-#> ds 2 m1 1 1.3 1.438e+00 0.138236 0.6650 0.207869
-#> ds 2 m1 3 3.7 3.879e+00 0.178617 0.7040 0.253726
-#> ds 2 m1 3 4.7 3.879e+00 -0.821383 0.7040 -1.166780
-#> ds 2 m1 7 8.1 7.389e+00 -0.710951 0.8113 -0.876337
-#> ds 2 m1 7 7.9 7.389e+00 -0.510951 0.8113 -0.629812
-#> ds 2 m1 14 10.1 1.069e+01 0.593533 0.9507 0.624328
-#> ds 2 m1 14 10.3 1.069e+01 0.393533 0.9507 0.413951
-#> ds 2 m1 28 10.7 1.240e+01 1.703647 1.0325 1.649956
-#> ds 2 m1 28 12.2 1.240e+01 0.203647 1.0325 0.197229
-#> ds 2 m1 60 10.7 1.055e+01 -0.147672 0.9442 -0.156405
-#> ds 2 m1 60 12.5 1.055e+01 -1.947672 0.9442 -2.062848
-#> ds 2 m1 90 9.1 8.010e+00 -1.090041 0.8351 -1.305210
-#> ds 2 m1 90 7.4 8.010e+00 0.609959 0.8351 0.730362
-#> ds 2 m1 120 6.1 5.793e+00 -0.306797 0.7561 -0.405759
-#> ds 2 m1 120 4.5 5.793e+00 1.293203 0.7561 1.710347
-#> ds 3 parent 0 106.2 1.035e+02 -2.712344 6.6675 -0.406801
-#> ds 3 parent 0 106.9 1.035e+02 -3.412344 6.6675 -0.511788
-#> ds 3 parent 1 107.4 9.548e+01 -11.924044 6.1566 -1.936801
-#> ds 3 parent 1 96.1 9.548e+01 -0.624044 6.1566 -0.101362
-#> ds 3 parent 3 79.4 8.246e+01 3.056105 5.3274 0.573662
-#> ds 3 parent 3 82.6 8.246e+01 -0.143895 5.3274 -0.027010
-#> ds 3 parent 7 63.9 6.489e+01 0.991141 4.2122 0.235304
-#> ds 3 parent 7 62.4 6.489e+01 2.491141 4.2122 0.591416
-#> ds 3 parent 14 51.0 4.869e+01 -2.306824 3.1906 -0.723013
-#> ds 3 parent 14 47.1 4.869e+01 1.593176 3.1906 0.499338
-#> ds 3 parent 28 36.1 3.480e+01 -1.304261 2.3260 -0.560722
-#> ds 3 parent 28 36.6 3.480e+01 -1.804261 2.3260 -0.775679
-#> ds 3 parent 60 20.1 1.988e+01 -0.221952 1.4346 -0.154719
-#> ds 3 parent 60 19.8 1.988e+01 0.078048 1.4346 0.054406
-#> ds 3 parent 90 11.3 1.194e+01 0.642458 1.0099 0.636132
-#> ds 3 parent 90 10.7 1.194e+01 1.242458 1.0099 1.230224
-#> ds 3 parent 120 8.2 7.176e+00 -1.023847 0.8034 -1.274423
-#> ds 3 parent 120 7.3 7.176e+00 -0.123847 0.8034 -0.154158
-#> ds 3 m1 0 0.8 8.527e-13 -0.800000 0.6586 -1.214712
-#> ds 3 m1 1 1.8 1.856e+00 0.055925 0.6693 0.083562
-#> ds 3 m1 1 2.3 1.856e+00 -0.444075 0.6693 -0.663537
-#> ds 3 m1 3 4.2 4.780e+00 0.580164 0.7264 0.798676
-#> ds 3 m1 3 4.1 4.780e+00 0.680164 0.7264 0.936340
-#> ds 3 m1 7 6.8 8.410e+00 1.609920 0.8512 1.891455
-#> ds 3 m1 7 10.1 8.410e+00 -1.690080 0.8512 -1.985633
-#> ds 3 m1 14 11.4 1.098e+01 -0.424444 0.9638 -0.440389
-#> ds 3 m1 14 12.8 1.098e+01 -1.824444 0.9638 -1.892979
-#> ds 3 m1 28 11.5 1.142e+01 -0.079336 0.9848 -0.080558
-#> ds 3 m1 28 10.6 1.142e+01 0.820664 0.9848 0.833311
-#> ds 3 m1 60 7.5 9.110e+00 1.610231 0.8803 1.829222
-#> ds 3 m1 60 8.6 9.110e+00 0.510231 0.8803 0.579622
-#> ds 3 m1 90 7.3 6.799e+00 -0.501085 0.7898 -0.634463
-#> ds 3 m1 90 8.1 6.799e+00 -1.301085 0.7898 -1.647404
-#> ds 3 m1 120 5.3 4.868e+00 -0.431505 0.7288 -0.592064
-#> ds 3 m1 120 3.8 4.868e+00 1.068495 0.7288 1.466073
-#> ds 4 parent 0 104.7 9.926e+01 -5.444622 6.3975 -0.851049
-#> ds 4 parent 0 88.3 9.926e+01 10.955378 6.3975 1.712436
-#> ds 4 parent 1 94.2 9.618e+01 1.978413 6.2013 0.319030
-#> ds 4 parent 1 94.6 9.618e+01 1.578413 6.2013 0.254527
-#> ds 4 parent 3 78.1 9.037e+01 12.268550 5.8311 2.103985
-#> ds 4 parent 3 96.5 9.037e+01 -6.131450 5.8311 -1.051508
-#> ds 4 parent 7 76.2 7.999e+01 3.794958 5.1708 0.733918
-#> ds 4 parent 7 77.8 7.999e+01 2.194958 5.1708 0.424489
-#> ds 4 parent 14 70.8 6.518e+01 -5.624996 4.2301 -1.329742
-#> ds 4 parent 14 67.3 6.518e+01 -2.124996 4.2301 -0.502346
-#> ds 4 parent 28 43.1 4.462e+01 1.517860 2.9354 0.517085
-#> ds 4 parent 28 45.1 4.462e+01 -0.482140 2.9354 -0.164249
-#> ds 4 parent 60 21.3 2.130e+01 -0.003305 1.5159 -0.002180
-#> ds 4 parent 60 23.5 2.130e+01 -2.203305 1.5159 -1.453435
-#> ds 4 parent 90 11.8 1.180e+01 0.002834 1.0032 0.002825
-#> ds 4 parent 90 12.1 1.180e+01 -0.297166 1.0032 -0.296226
-#> ds 4 parent 120 7.0 6.868e+00 -0.132251 0.7922 -0.166937
-#> ds 4 parent 120 6.2 6.868e+00 0.667749 0.7922 0.842879
-#> ds 4 m1 0 1.6 0.000e+00 -1.600000 0.6586 -2.429424
-#> ds 4 m1 1 0.9 6.826e-01 -0.217363 0.6600 -0.329315
-#> ds 4 m1 3 3.7 1.935e+00 -1.765082 0.6702 -2.633768
-#> ds 4 m1 3 2.0 1.935e+00 -0.065082 0.6702 -0.097112
-#> ds 4 m1 7 3.6 4.035e+00 0.434805 0.7076 0.614501
-#> ds 4 m1 7 3.8 4.035e+00 0.234805 0.7076 0.331845
-#> ds 4 m1 14 7.1 6.652e+00 -0.448187 0.7846 -0.571220
-#> ds 4 m1 14 6.6 6.652e+00 0.051813 0.7846 0.066036
-#> ds 4 m1 28 9.5 9.156e+00 -0.343805 0.8822 -0.389696
-#> ds 4 m1 28 9.3 9.156e+00 -0.143805 0.8822 -0.163000
-#> ds 4 m1 60 8.3 8.848e+00 0.547762 0.8692 0.630185
-#> ds 4 m1 60 9.0 8.848e+00 -0.152238 0.8692 -0.175146
-#> ds 4 m1 90 6.6 6.674e+00 0.073979 0.7854 0.094194
-#> ds 4 m1 90 7.7 6.674e+00 -1.026021 0.7854 -1.306390
-#> ds 4 m1 120 3.7 4.668e+00 0.967537 0.7234 1.337503
-#> ds 4 m1 120 3.5 4.668e+00 1.167537 0.7234 1.613979
-#> ds 5 parent 0 110.4 1.022e+02 -8.170986 6.5872 -1.240433
-#> ds 5 parent 0 112.1 1.022e+02 -9.870986 6.5872 -1.498509
-#> ds 5 parent 1 93.5 9.513e+01 1.630764 6.1346 0.265832
-#> ds 5 parent 1 91.0 9.513e+01 4.130764 6.1346 0.673359
-#> ds 5 parent 3 71.0 8.296e+01 11.964279 5.3597 2.232268
-#> ds 5 parent 3 89.7 8.296e+01 -6.735721 5.3597 -1.256735
-#> ds 5 parent 7 60.4 6.495e+01 4.547441 4.2157 1.078684
-#> ds 5 parent 7 59.1 6.495e+01 5.847441 4.2157 1.387053
-#> ds 5 parent 14 56.5 4.626e+01 -10.241319 3.0380 -3.371047
-#> ds 5 parent 14 47.0 4.626e+01 -0.741319 3.0380 -0.244014
-#> ds 5 parent 28 30.2 3.026e+01 0.058478 2.0487 0.028544
-#> ds 5 parent 28 23.9 3.026e+01 6.358478 2.0487 3.103661
-#> ds 5 parent 60 17.0 1.792e+01 0.919046 1.3242 0.694024
-#> ds 5 parent 60 18.7 1.792e+01 -0.780954 1.3242 -0.589742
-#> ds 5 parent 90 11.3 1.187e+01 0.573917 1.0066 0.570144
-#> ds 5 parent 90 11.9 1.187e+01 -0.026083 1.0066 -0.025912
-#> ds 5 parent 120 9.0 7.898e+00 -1.102089 0.8307 -1.326622
-#> ds 5 parent 120 8.1 7.898e+00 -0.202089 0.8307 -0.243261
-#> ds 5 m1 0 0.7 -1.421e-14 -0.700000 0.6586 -1.062873
-#> ds 5 m1 1 3.0 3.144e+00 0.143526 0.6887 0.208390
-#> ds 5 m1 1 2.6 3.144e+00 0.543526 0.6887 0.789161
-#> ds 5 m1 3 5.1 8.390e+00 3.290265 0.8504 3.869277
-#> ds 5 m1 3 7.5 8.390e+00 0.890265 0.8504 1.046932
-#> ds 5 m1 7 16.5 1.566e+01 -0.841368 1.2007 -0.700751
-#> ds 5 m1 7 19.0 1.566e+01 -3.341368 1.2007 -2.782928
-#> ds 5 m1 14 22.9 2.188e+01 -1.017753 1.5498 -0.656687
-#> ds 5 m1 14 23.2 2.188e+01 -1.317753 1.5498 -0.850257
-#> ds 5 m1 28 22.2 2.386e+01 1.655914 1.6652 0.994399
-#> ds 5 m1 28 24.4 2.386e+01 -0.544086 1.6652 -0.326731
-#> ds 5 m1 60 15.5 1.859e+01 3.091124 1.3618 2.269915
-#> ds 5 m1 60 19.8 1.859e+01 -1.208876 1.3618 -0.887718
-#> ds 5 m1 90 14.9 1.372e+01 -1.176815 1.0990 -1.070784
-#> ds 5 m1 90 14.2 1.372e+01 -0.476815 1.0990 -0.433854
-#> ds 5 m1 120 10.9 9.961e+00 -0.938796 0.9174 -1.023332
-#> ds 5 m1 120 10.4 9.961e+00 -0.438796 0.9174 -0.478308# }
+#> ds name time observed predicted residual std standardized
+#> ds 1 parent 0 89.8 9.878e+01 8.98039 6.3899 1.40541
+#> ds 1 parent 0 104.1 9.878e+01 -5.31961 6.3899 -0.83251
+#> ds 1 parent 1 88.7 9.422e+01 5.52084 6.0981 0.90533
+#> ds 1 parent 1 95.5 9.422e+01 -1.27916 6.0981 -0.20976
+#> ds 1 parent 3 81.8 8.587e+01 4.06752 5.5641 0.73103
+#> ds 1 parent 3 94.5 8.587e+01 -8.63248 5.5641 -1.55147
+#> ds 1 parent 7 71.5 7.180e+01 0.29615 4.6662 0.06347
+#> ds 1 parent 7 70.3 7.180e+01 1.49615 4.6662 0.32063
+#> ds 1 parent 14 54.2 5.360e+01 -0.59602 3.5112 -0.16975
+#> ds 1 parent 14 49.6 5.360e+01 4.00398 3.5112 1.14035
+#> ds 1 parent 28 31.5 3.213e+01 0.62529 2.1691 0.28828
+#> ds 1 parent 28 28.8 3.213e+01 3.32529 2.1691 1.53306
+#> ds 1 parent 60 12.1 1.271e+01 0.60718 1.0490 0.57879
+#> ds 1 parent 60 13.6 1.271e+01 -0.89282 1.0490 -0.85108
+#> ds 1 parent 90 6.2 6.080e+00 -0.12020 0.7649 -0.15716
+#> ds 1 parent 90 8.3 6.080e+00 -2.22020 0.7649 -2.90279
+#> ds 1 parent 120 2.2 3.011e+00 0.81059 0.6852 1.18302
+#> ds 1 parent 120 2.4 3.011e+00 0.61059 0.6852 0.89113
+#> ds 1 m1 1 0.3 1.131e+00 0.83071 0.6613 1.25628
+#> ds 1 m1 1 0.2 1.131e+00 0.93071 0.6613 1.40750
+#> ds 1 m1 3 2.2 3.147e+00 0.94691 0.6877 1.37688
+#> ds 1 m1 3 3.0 3.147e+00 0.14691 0.6877 0.21361
+#> ds 1 m1 7 6.5 6.341e+00 -0.15949 0.7736 -0.20618
+#> ds 1 m1 7 5.0 6.341e+00 1.34051 0.7736 1.73290
+#> ds 1 m1 14 10.2 9.910e+00 -0.28991 0.9157 -0.31659
+#> ds 1 m1 14 9.5 9.910e+00 0.41009 0.9157 0.44783
+#> ds 1 m1 28 12.2 1.255e+01 0.34690 1.0410 0.33323
+#> ds 1 m1 28 13.4 1.255e+01 -0.85310 1.0410 -0.81949
+#> ds 1 m1 60 11.8 1.087e+01 -0.92713 0.9599 -0.96586
+#> ds 1 m1 60 13.2 1.087e+01 -2.32713 0.9599 -2.42434
+#> ds 1 m1 90 6.6 7.813e+00 1.21254 0.8274 1.46541
+#> ds 1 m1 90 9.3 7.813e+00 -1.48746 0.8274 -1.79766
+#> ds 1 m1 120 3.5 5.295e+00 1.79489 0.7403 2.42457
+#> ds 1 m1 120 5.4 5.295e+00 -0.10511 0.7403 -0.14198
+#> ds 2 parent 0 118.0 1.074e+02 -10.63436 6.9396 -1.53242
+#> ds 2 parent 0 99.8 1.074e+02 7.56564 6.9396 1.09021
+#> ds 2 parent 1 90.2 1.012e+02 10.96486 6.5425 1.67594
+#> ds 2 parent 1 94.6 1.012e+02 6.56486 6.5425 1.00342
+#> ds 2 parent 3 96.1 9.054e+01 -5.56014 5.8627 -0.94839
+#> ds 2 parent 3 78.4 9.054e+01 12.13986 5.8627 2.07069
+#> ds 2 parent 7 77.9 7.468e+01 -3.21805 4.8501 -0.66350
+#> ds 2 parent 7 77.7 7.468e+01 -3.01805 4.8501 -0.62226
+#> ds 2 parent 14 56.0 5.748e+01 1.47774 3.7563 0.39340
+#> ds 2 parent 14 54.7 5.748e+01 2.77774 3.7563 0.73948
+#> ds 2 parent 28 36.6 3.996e+01 3.36317 2.6541 1.26717
+#> ds 2 parent 28 36.8 3.996e+01 3.16317 2.6541 1.19182
+#> ds 2 parent 60 22.1 2.132e+01 -0.78225 1.5210 -0.51430
+#> ds 2 parent 60 24.7 2.132e+01 -3.38225 1.5210 -2.22369
+#> ds 2 parent 90 12.4 1.215e+01 -0.25010 1.0213 -0.24487
+#> ds 2 parent 90 10.8 1.215e+01 1.34990 1.0213 1.32169
+#> ds 2 parent 120 6.8 6.931e+00 0.13105 0.7943 0.16500
+#> ds 2 parent 120 7.9 6.931e+00 -0.96895 0.7943 -1.21994
+#> ds 2 m1 1 1.3 1.519e+00 0.21924 0.6645 0.32995
+#> ds 2 m1 3 3.7 4.049e+00 0.34891 0.7070 0.49351
+#> ds 2 m1 3 4.7 4.049e+00 -0.65109 0.7070 -0.92094
+#> ds 2 m1 7 8.1 7.565e+00 -0.53526 0.8179 -0.65448
+#> ds 2 m1 7 7.9 7.565e+00 -0.33526 0.8179 -0.40993
+#> ds 2 m1 14 10.1 1.071e+01 0.60614 0.9521 0.63663
+#> ds 2 m1 14 10.3 1.071e+01 0.40614 0.9521 0.42657
+#> ds 2 m1 28 10.7 1.224e+01 1.54440 1.0260 1.50526
+#> ds 2 m1 28 12.2 1.224e+01 0.04440 1.0260 0.04327
+#> ds 2 m1 60 10.7 1.056e+01 -0.14005 0.9453 -0.14815
+#> ds 2 m1 60 12.5 1.056e+01 -1.94005 0.9453 -2.05226
+#> ds 2 m1 90 9.1 8.089e+00 -1.01088 0.8384 -1.20577
+#> ds 2 m1 90 7.4 8.089e+00 0.68912 0.8384 0.82197
+#> ds 2 m1 120 6.1 5.855e+00 -0.24463 0.7576 -0.32292
+#> ds 2 m1 120 4.5 5.855e+00 1.35537 0.7576 1.78911
+#> ds 3 parent 0 106.2 1.095e+02 3.30335 7.0765 0.46680
+#> ds 3 parent 0 106.9 1.095e+02 2.60335 7.0765 0.36788
+#> ds 3 parent 1 107.4 9.939e+01 -8.01282 6.4287 -1.24641
+#> ds 3 parent 1 96.1 9.939e+01 3.28718 6.4287 0.51133
+#> ds 3 parent 3 79.4 8.365e+01 4.24698 5.4222 0.78326
+#> ds 3 parent 3 82.6 8.365e+01 1.04698 5.4222 0.19309
+#> ds 3 parent 7 63.9 6.405e+01 0.14704 4.1732 0.03523
+#> ds 3 parent 7 62.4 6.405e+01 1.64704 4.1732 0.39467
+#> ds 3 parent 14 51.0 4.795e+01 -3.04985 3.1546 -0.96681
+#> ds 3 parent 14 47.1 4.795e+01 0.85015 3.1546 0.26950
+#> ds 3 parent 28 36.1 3.501e+01 -1.09227 2.3465 -0.46549
+#> ds 3 parent 28 36.6 3.501e+01 -1.59227 2.3465 -0.67858
+#> ds 3 parent 60 20.1 2.012e+01 0.02116 1.4520 0.01457
+#> ds 3 parent 60 19.8 2.012e+01 0.32116 1.4520 0.22119
+#> ds 3 parent 90 11.3 1.206e+01 0.76096 1.0170 0.74826
+#> ds 3 parent 90 10.7 1.206e+01 1.36096 1.0170 1.33825
+#> ds 3 parent 120 8.2 7.230e+00 -0.97022 0.8052 -1.20493
+#> ds 3 parent 120 7.3 7.230e+00 -0.07022 0.8052 -0.08721
+#> ds 3 m1 0 0.8 -5.684e-13 -0.80000 0.6572 -1.21722
+#> ds 3 m1 1 1.8 2.045e+00 0.24538 0.6703 0.36608
+#> ds 3 m1 1 2.3 2.045e+00 -0.25462 0.6703 -0.37987
+#> ds 3 m1 3 4.2 5.136e+00 0.93594 0.7356 1.27228
+#> ds 3 m1 3 4.1 5.136e+00 1.03594 0.7356 1.40822
+#> ds 3 m1 7 6.8 8.674e+00 1.87438 0.8623 2.17381
+#> ds 3 m1 7 10.1 8.674e+00 -1.42562 0.8623 -1.65335
+#> ds 3 m1 14 11.4 1.083e+01 -0.56746 0.9580 -0.59233
+#> ds 3 m1 14 12.8 1.083e+01 -1.96746 0.9580 -2.05369
+#> ds 3 m1 28 11.5 1.098e+01 -0.51762 0.9651 -0.53637
+#> ds 3 m1 28 10.6 1.098e+01 0.38238 0.9651 0.39623
+#> ds 3 m1 60 7.5 8.889e+00 1.38911 0.8713 1.59436
+#> ds 3 m1 60 8.6 8.889e+00 0.28911 0.8713 0.33183
+#> ds 3 m1 90 7.3 6.774e+00 -0.52608 0.7886 -0.66708
+#> ds 3 m1 90 8.1 6.774e+00 -1.32608 0.7886 -1.68150
+#> ds 3 m1 120 5.3 4.954e+00 -0.34584 0.7305 -0.47345
+#> ds 3 m1 120 3.8 4.954e+00 1.15416 0.7305 1.58004
+#> ds 4 parent 0 104.7 9.957e+01 -5.13169 6.4403 -0.79681
+#> ds 4 parent 0 88.3 9.957e+01 11.26831 6.4403 1.74966
+#> ds 4 parent 1 94.2 9.644e+01 2.23888 6.2400 0.35879
+#> ds 4 parent 1 94.6 9.644e+01 1.83888 6.2400 0.29469
+#> ds 4 parent 3 78.1 9.054e+01 12.43946 5.8627 2.12180
+#> ds 4 parent 3 96.5 9.054e+01 -5.96054 5.8627 -1.01669
+#> ds 4 parent 7 76.2 8.004e+01 3.83771 5.1918 0.73919
+#> ds 4 parent 7 77.8 8.004e+01 2.23771 5.1918 0.43101
+#> ds 4 parent 14 70.8 6.511e+01 -5.69246 4.2406 -1.34238
+#> ds 4 parent 14 67.3 6.511e+01 -2.19246 4.2406 -0.51702
+#> ds 4 parent 28 43.1 4.454e+01 1.43744 2.9401 0.48890
+#> ds 4 parent 28 45.1 4.454e+01 -0.56256 2.9401 -0.19134
+#> ds 4 parent 60 21.3 2.132e+01 0.02005 1.5211 0.01318
+#> ds 4 parent 60 23.5 2.132e+01 -2.17995 1.5211 -1.43310
+#> ds 4 parent 90 11.8 1.182e+01 0.02167 1.0053 0.02156
+#> ds 4 parent 90 12.1 1.182e+01 -0.27833 1.0053 -0.27687
+#> ds 4 parent 120 7.0 6.852e+00 -0.14780 0.7914 -0.18675
+#> ds 4 parent 120 6.2 6.852e+00 0.65220 0.7914 0.82408
+#> ds 4 m1 0 1.6 -5.684e-14 -1.60000 0.6572 -2.43444
+#> ds 4 m1 1 0.9 6.918e-01 -0.20821 0.6587 -0.31607
+#> ds 4 m1 3 3.7 1.959e+00 -1.74131 0.6692 -2.60204
+#> ds 4 m1 3 2.0 1.959e+00 -0.04131 0.6692 -0.06173
+#> ds 4 m1 7 3.6 4.076e+00 0.47590 0.7076 0.67252
+#> ds 4 m1 7 3.8 4.076e+00 0.27590 0.7076 0.38989
+#> ds 4 m1 14 7.1 6.698e+00 -0.40189 0.7859 -0.51135
+#> ds 4 m1 14 6.6 6.698e+00 0.09811 0.7859 0.12483
+#> ds 4 m1 28 9.5 9.175e+00 -0.32492 0.8835 -0.36779
+#> ds 4 m1 28 9.3 9.175e+00 -0.12492 0.8835 -0.14141
+#> ds 4 m1 60 8.3 8.818e+00 0.51810 0.8683 0.59671
+#> ds 4 m1 60 9.0 8.818e+00 -0.18190 0.8683 -0.20949
+#> ds 4 m1 90 6.6 6.645e+00 0.04480 0.7841 0.05713
+#> ds 4 m1 90 7.7 6.645e+00 -1.05520 0.7841 -1.34581
+#> ds 4 m1 120 3.7 4.648e+00 0.94805 0.7221 1.31293
+#> ds 4 m1 120 3.5 4.648e+00 1.14805 0.7221 1.58991
+#> ds 5 parent 0 110.4 1.026e+02 -7.81752 6.6333 -1.17853
+#> ds 5 parent 0 112.1 1.026e+02 -9.51752 6.6333 -1.43482
+#> ds 5 parent 1 93.5 9.560e+01 2.10274 6.1865 0.33989
+#> ds 5 parent 1 91.0 9.560e+01 4.60274 6.1865 0.74399
+#> ds 5 parent 3 71.0 8.356e+01 12.55799 5.4165 2.31846
+#> ds 5 parent 3 89.7 8.356e+01 -6.14201 5.4165 -1.13394
+#> ds 5 parent 7 60.4 6.550e+01 5.09732 4.2653 1.19506
+#> ds 5 parent 7 59.1 6.550e+01 6.39732 4.2653 1.49984
+#> ds 5 parent 14 56.5 4.641e+01 -10.09145 3.0576 -3.30044
+#> ds 5 parent 14 47.0 4.641e+01 -0.59145 3.0576 -0.19344
+#> ds 5 parent 28 30.2 2.982e+01 -0.37647 2.0284 -0.18560
+#> ds 5 parent 28 23.9 2.982e+01 5.92353 2.0284 2.92028
+#> ds 5 parent 60 17.0 1.754e+01 0.53981 1.3060 0.41332
+#> ds 5 parent 60 18.7 1.754e+01 -1.16019 1.3060 -0.88834
+#> ds 5 parent 90 11.3 1.175e+01 0.45050 1.0018 0.44969
+#> ds 5 parent 90 11.9 1.175e+01 -0.14950 1.0018 -0.14923
+#> ds 5 parent 120 9.0 7.915e+00 -1.08476 0.8315 -1.30462
+#> ds 5 parent 120 8.1 7.915e+00 -0.18476 0.8315 -0.22220
+#> ds 5 m1 0 0.7 0.000e+00 -0.70000 0.6572 -1.06507
+#> ds 5 m1 1 3.0 3.062e+00 0.06170 0.6861 0.08992
+#> ds 5 m1 1 2.6 3.062e+00 0.46170 0.6861 0.67290
+#> ds 5 m1 3 5.1 8.209e+00 3.10938 0.8432 3.68760
+#> ds 5 m1 3 7.5 8.209e+00 0.70938 0.8432 0.84130
+#> ds 5 m1 7 16.5 1.544e+01 -1.05567 1.1914 -0.88605
+#> ds 5 m1 7 19.0 1.544e+01 -3.55567 1.1914 -2.98436
+#> ds 5 m1 14 22.9 2.181e+01 -1.08765 1.5498 -0.70181
+#> ds 5 m1 14 23.2 2.181e+01 -1.38765 1.5498 -0.89539
+#> ds 5 m1 28 22.2 2.404e+01 1.83624 1.6805 1.09270
+#> ds 5 m1 28 24.4 2.404e+01 -0.36376 1.6805 -0.21647
+#> ds 5 m1 60 15.5 1.875e+01 3.25390 1.3741 2.36805
+#> ds 5 m1 60 19.8 1.875e+01 -1.04610 1.3741 -0.76131
+#> ds 5 m1 90 14.9 1.380e+01 -1.09507 1.1050 -0.99102
+#> ds 5 m1 90 14.2 1.380e+01 -0.39507 1.1050 -0.35753
+#> ds 5 m1 120 10.9 1.002e+01 -0.88429 0.9205 -0.96069
+#> ds 5 m1 120 10.4 1.002e+01 -0.38429 0.9205 -0.41749# }
diff --git a/docs/dev/reference/transform_odeparms.html b/docs/dev/reference/transform_odeparms.html
index 46b66073..6e19505f 100644
--- a/docs/dev/reference/transform_odeparms.html
+++ b/docs/dev/reference/transform_odeparms.html
@@ -77,7 +77,7 @@ the ilr transformation is used." />
mkin
- 0.9.50.4
+ 1.0.1.9000
@@ -126,7 +126,7 @@ the ilr transformation is used." />
SFO_SFO <- mkinmod(
parent = list(type = "SFO", to = "m1", sink = TRUE),
- m1 = list(type = "SFO"))
-#> Temporary DLL for differentials generated and loaded# Fit the model to the FOCUS example dataset D using defaults
-fit <- mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE)
-#> Warning: Observations with value of zero were removed from the data#> Temporary DLL for differentials generated and loaded
+# Fit the model to the FOCUS example dataset D using defaults
+FOCUS_D <- subset(FOCUS_2006_D, value != 0) # remove zero values to avoid warning
+fit <- mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE)
+fit.s <- summary(fit)
# Transformed and backtransformed parameters
print(fit.s$par, 3)
-#> Estimate Std. Error Lower Upper
-#> parent_0 99.5985 1.5702 96.404 102.79
-#> log_k_parent -2.3157 0.0409 -2.399 -2.23
-#> log_k_m1 -5.2475 0.1332 -5.518 -4.98
-#> f_parent_qlogis 0.0579 0.0893 -0.124 0.24
-#> sigma 3.1255 0.3585 2.396 3.85#> Estimate se_notrans t value Pr(>t) Lower Upper
-#> parent_0 99.59848 1.57022 63.43 2.30e-36 96.40383 102.7931
-#> k_parent 0.09870 0.00403 24.47 4.96e-23 0.09082 0.1073
-#> k_m1 0.00526 0.00070 7.51 6.16e-09 0.00401 0.0069
-#> f_parent_to_m1 0.51448 0.02230 23.07 3.10e-22 0.46912 0.5596
-#> sigma 3.12550 0.35852 8.72 2.24e-10 2.39609 3.8549
+#> Estimate Std. Error Lower Upper
+#> parent_0 99.60 1.5702 96.40 102.79
+#> log_k_parent_sink -3.04 0.0763 -3.19 -2.88
+#> log_k_parent_m1 -2.98 0.0403 -3.06 -2.90
+#> log_k_m1_sink -5.25 0.1332 -5.52 -4.98
+#> sigma 3.13 0.3585 2.40 3.85#> Estimate se_notrans t value Pr(>t) Lower Upper
+#> parent_0 99.59848 1.57022 63.43 2.30e-36 96.40384 102.7931
+#> k_parent_sink 0.04792 0.00365 13.11 6.13e-15 0.04103 0.0560
+#> k_parent_m1 0.05078 0.00205 24.80 3.27e-23 0.04678 0.0551
+#> k_m1_sink 0.00526 0.00070 7.51 6.16e-09 0.00401 0.0069
+#> sigma 3.12550 0.35852 8.72 2.24e-10 2.39609 3.8549
# \dontrun{
-# Compare to the version without transforming rate parameters
-fit.2 <- mkinfit(SFO_SFO, FOCUS_2006_D, transform_rates = FALSE, quiet = TRUE)
-#> Warning: Observations with value of zero were removed from the data#> Error in if (cost < cost.current) { assign("cost.current", cost, inherits = TRUE) if (!quiet) cat(ifelse(OLS, "Sum of squared residuals", "Negative log-likelihood"), " at call ", calls, ": ", signif(cost.current, 6), "\n", sep = "")}: missing value where TRUE/FALSE needed#> Timing stopped at: 0.006 0 0.005#> Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'fit.2' not found#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'print': object 'fit.2.s' not found#> Error in h(simpleError(msg, call)): error in evaluating the argument 'x' in selecting a method for function 'print': object 'fit.2.s' not found# }
+# Compare to the version without transforming rate parameters (does not work
+# with analytical solution, we get NA values for m1 in predictions)
+fit.2 <- mkinfit(SFO_SFO, FOCUS_D, transform_rates = FALSE,
+ solution_type = "deSolve", quiet = TRUE)
+fit.2.s <- summary(fit.2)
+print(fit.2.s$par, 3)
+#> Estimate Std. Error Lower Upper
+#> parent_0 99.59848 1.57022 96.40384 1.03e+02
+#> k_parent_sink 0.04792 0.00365 0.04049 5.54e-02
+#> k_parent_m1 0.05078 0.00205 0.04661 5.49e-02
+#> k_m1_sink 0.00526 0.00070 0.00384 6.69e-03
+#> sigma 3.12550 0.35852 2.39609 3.85e+00#> Estimate se_notrans t value Pr(>t) Lower Upper
+#> parent_0 99.59848 1.57022 63.43 2.30e-36 96.40384 1.03e+02
+#> k_parent_sink 0.04792 0.00365 13.11 6.13e-15 0.04049 5.54e-02
+#> k_parent_m1 0.05078 0.00205 24.80 3.27e-23 0.04661 5.49e-02
+#> k_m1_sink 0.00526 0.00070 7.51 6.16e-09 0.00384 6.69e-03
+#> sigma 3.12550 0.35852 8.72 2.24e-10 2.39609 3.85e+00# }
initials <- fit$start$value
names(initials) <- rownames(fit$start)
transformed <- fit$start_transformed$value
names(transformed) <- rownames(fit$start_transformed)
transform_odeparms(initials, SFO_SFO)
-#> parent_0 log_k_parent log_k_m1 f_parent_qlogis
-#> 100.750000 -2.302585 -2.301586 0.000000 backtransform_odeparms(transformed, SFO_SFO)
-#> parent_0 k_parent k_m1 f_parent_to_m1
-#> 100.7500 0.1000 0.1001 0.5000
+#> parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink
+#> 100.750000 -2.302585 -2.301586 -2.300587 backtransform_odeparms(transformed, SFO_SFO)
+#> parent_0 k_parent_sink k_parent_m1 k_m1_sink
+#> 100.7500 0.1000 0.1001 0.1002
# \dontrun{
-# The case of formation fractions
+# The case of formation fractions (this is now the default)
SFO_SFO.ff <- mkinmod(
parent = list(type = "SFO", to = "m1", sink = TRUE),
m1 = list(type = "SFO"),
use_of_ff = "max")
#> Temporary DLL for differentials generated and loaded#> Warning: Observations with value of zero were removed from the datafit.ff.s <- summary(fit.ff)
+fit.ff <- mkinfit(SFO_SFO.ff, FOCUS_D, quiet = TRUE)
+fit.ff.s <- summary(fit.ff)
print(fit.ff.s$par, 3)
#> Estimate Std. Error Lower Upper
#> parent_0 99.5985 1.5702 96.404 102.79
@@ -299,8 +313,8 @@ This is no problem for the internal use in mkinfit.
use_of_ff = "max")
#> Temporary DLL for differentials generated and loaded#> Warning: Observations with value of zero were removed from the datafit.ff.2.s <- summary(fit.ff.2)
+fit.ff.2 <- mkinfit(SFO_SFO.ff.2, FOCUS_D, quiet = TRUE)
+fit.ff.2.s <- summary(fit.ff.2)
print(fit.ff.2.s$par, 3)
#> Estimate Std. Error Lower Upper
#> parent_0 84.79 3.012 78.67 90.91
diff --git a/docs/dev/sitemap.xml b/docs/dev/sitemap.xml
index ecf68e50..27f0e392 100644
--- a/docs/dev/sitemap.xml
+++ b/docs/dev/sitemap.xml
@@ -174,9 +174,6 @@
https://pkgdown.jrwb.de/mkin/reference/plot.nafta.html
-
- https://pkgdown.jrwb.de/mkin/reference/print.mmkin.html
-
https://pkgdown.jrwb.de/mkin/reference/reexports.html
diff --git a/man/endpoints.Rd b/man/endpoints.Rd
index 0b225e62..72487717 100644
--- a/man/endpoints.Rd
+++ b/man/endpoints.Rd
@@ -8,8 +8,8 @@ with mkinfit}
endpoints(fit)
}
\arguments{
-\item{fit}{An object of class \link{mkinfit} or \link{nlme.mmkin}
-or another object that has list components
+\item{fit}{An object of class \link{mkinfit}, \link{nlme.mmkin} or
+\link{saem.mmkin}. Or another object that has list components
mkinmod containing an \link{mkinmod} degradation model, and two numeric vectors,
bparms.optim and bparms.fixed, that contain parameter values
for that model.}
@@ -32,8 +32,8 @@ Additional DT50 values are calculated from the FOMC DT90 and k1 and k2 from
HS and DFOP, as well as from Eigenvalues b1 and b2 of any SFORB models
}
\note{
-The function is used internally by \link{summary.mkinfit}
-and \link{summary.nlme.mmkin}
+The function is used internally by \link{summary.mkinfit},
+\link{summary.nlme.mmkin} and \link{summary.saem.mmkin}.
}
\examples{
diff --git a/man/plot.mixed.mmkin.Rd b/man/plot.mixed.mmkin.Rd
index 87a82286..b1200729 100644
--- a/man/plot.mixed.mmkin.Rd
+++ b/man/plot.mixed.mmkin.Rd
@@ -27,7 +27,7 @@
)
}
\arguments{
-\item{x}{An object of class \link{mixed.mmkin}, \link{nlme.mmkin}}
+\item{x}{An object of class \link{mixed.mmkin}, \link{saem.mmkin} or \link{nlme.mmkin}}
\item{i}{A numeric index to select datasets for which to plot the individual predictions,
in case plots get too large}
@@ -94,6 +94,15 @@ plot(f[, 3:4], standardized = TRUE)
f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3))
plot(f_nlme)
+f_saem <- saem(f, transformations = "saemix")
+plot(f_saem)
+
+# We can overlay the two variants if we generate predictions
+pred_nlme <- mkinpredict(dfop_sfo,
+ f_nlme$bparms.optim[-1],
+ c(parent = f_nlme$bparms.optim[[1]], A1 = 0),
+ seq(0, 180, by = 0.2))
+plot(f_saem, pred_over = list(nlme = pred_nlme))
}
}
\author{
diff --git a/man/saem.Rd b/man/saem.Rd
new file mode 100644
index 00000000..d5a8f17e
--- /dev/null
+++ b/man/saem.Rd
@@ -0,0 +1,155 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/saem.R
+\name{saem}
+\alias{saem}
+\alias{saem.mmkin}
+\alias{print.saem.mmkin}
+\alias{saemix_model}
+\alias{saemix_data}
+\title{Fit nonlinear mixed models with SAEM}
+\usage{
+saem(object, ...)
+
+\method{saem}{mmkin}(
+ object,
+ transformations = c("mkin", "saemix"),
+ degparms_start = numeric(),
+ solution_type = "auto",
+ control = list(displayProgress = FALSE, print = FALSE, save = FALSE, save.graphs =
+ FALSE),
+ verbose = FALSE,
+ quiet = FALSE,
+ ...
+)
+
+\method{print}{saem.mmkin}(x, digits = max(3, getOption("digits") - 3), ...)
+
+saemix_model(
+ object,
+ solution_type = "auto",
+ transformations = c("mkin", "saemix"),
+ degparms_start = numeric(),
+ verbose = FALSE,
+ ...
+)
+
+saemix_data(object, verbose = FALSE, ...)
+}
+\arguments{
+\item{object}{An \link{mmkin} row object containing several fits of the same
+\link{mkinmod} model to different datasets}
+
+\item{\dots}{Further parameters passed to \link[saemix:saemixModel]{saemix::saemixModel}.}
+
+\item{transformations}{Per default, all parameter transformations are done
+in mkin. If this argument is set to 'saemix', parameter transformations
+are done in 'saemix' for the supported cases. Currently this is only
+supported in cases where the initial concentration of the parent is not fixed,
+SFO or DFOP is used for the parent and there is either no metabolite or one.}
+
+\item{degparms_start}{Parameter values given as a named numeric vector will
+be used to override the starting values obtained from the 'mmkin' object.}
+
+\item{solution_type}{Possibility to specify the solution type in case the
+automatic choice is not desired}
+
+\item{control}{Passed to \link[saemix:saemix]{saemix::saemix}}
+
+\item{verbose}{Should we print information about created objects of
+type \link[saemix:SaemixModel-class]{saemix::SaemixModel} and \link[saemix:SaemixData-class]{saemix::SaemixData}?}
+
+\item{quiet}{Should we suppress the messages saemix prints at the beginning
+and the end of the optimisation process?}
+
+\item{x}{An saem.mmkin object to print}
+
+\item{digits}{Number of digits to use for printing}
+}
+\value{
+An S3 object of class 'saem.mmkin', containing the fitted
+\link[saemix:SaemixObject-class]{saemix::SaemixObject} as a list component named 'so'. The
+object also inherits from 'mixed.mmkin'.
+
+An \link[saemix:SaemixModel-class]{saemix::SaemixModel} object.
+
+An \link[saemix:SaemixData-class]{saemix::SaemixData} object.
+}
+\description{
+This function uses \code{\link[saemix:saemix]{saemix::saemix()}} as a backend for fitting nonlinear mixed
+effects models created from \link{mmkin} row objects using the Stochastic Approximation
+Expectation Maximisation algorithm (SAEM).
+}
+\details{
+An mmkin row object is essentially a list of mkinfit objects that have been
+obtained by fitting the same model to a list of datasets using \link{mkinfit}.
+
+Starting values for the fixed effects (population mean parameters, argument
+psi0 of \code{\link[saemix:saemixModel]{saemix::saemixModel()}} are the mean values of the parameters found
+using \link{mmkin}.
+}
+\examples{
+\dontrun{
+ds <- lapply(experimental_data_for_UBA_2019[6:10],
+ function(x) subset(x$data[c("name", "time", "value")]))
+names(ds) <- paste("Dataset", 6:10)
+f_mmkin_parent_p0_fixed <- mmkin("FOMC", ds,
+ state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
+f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)
+
+f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
+f_saem_sfo <- saem(f_mmkin_parent["SFO", ])
+f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
+f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
+
+# The returned saem.mmkin object contains an SaemixObject, therefore we can use
+# functions from saemix
+library(saemix)
+compare.saemix(list(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so))
+plot(f_saem_fomc$so, plot.type = "convergence")
+plot(f_saem_fomc$so, plot.type = "individual.fit")
+plot(f_saem_fomc$so, plot.type = "npde")
+plot(f_saem_fomc$so, plot.type = "vpc")
+
+f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
+f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
+compare.saemix(list(f_saem_fomc$so, f_saem_fomc_tc$so))
+
+sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
+ A1 = mkinsub("SFO"))
+fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
+ A1 = mkinsub("SFO"))
+dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
+ A1 = mkinsub("SFO"))
+# The following fit uses analytical solutions for SFO-SFO and DFOP-SFO,
+# and compiled ODEs for FOMC that are much slower
+f_mmkin <- mmkin(list(
+ "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
+ ds, quiet = TRUE)
+# saem fits of SFO-SFO and DFOP-SFO to these data take about five seconds
+# each on this system, as we use analytical solutions written for saemix.
+# When using the analytical solutions written for mkin this took around
+# four minutes
+f_saem_sfo_sfo <- saem(f_mmkin["SFO-SFO", ])
+f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
+# We can use print, plot and summary methods to check the results
+print(f_saem_dfop_sfo)
+plot(f_saem_dfop_sfo)
+summary(f_saem_dfop_sfo, data = TRUE)
+
+# The following takes about 6 minutes
+#f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve",
+# control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))
+
+#saemix::compare.saemix(list(
+# f_saem_dfop_sfo$so,
+# f_saem_dfop_sfo_deSolve$so))
+
+# If the model supports it, we can also use eigenvalue based solutions, which
+# take a similar amount of time
+#f_saem_sfo_sfo_eigen <- saem(f_mmkin["SFO-SFO", ], solution_type = "eigen",
+# control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))
+}
+}
+\seealso{
+\link{summary.saem.mmkin} \link{plot.mixed.mmkin}
+}
diff --git a/man/summary.saem.mmkin.Rd b/man/summary.saem.mmkin.Rd
new file mode 100644
index 00000000..67cb3cbb
--- /dev/null
+++ b/man/summary.saem.mmkin.Rd
@@ -0,0 +1,100 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/summary.saem.mmkin.R
+\name{summary.saem.mmkin}
+\alias{summary.saem.mmkin}
+\alias{print.summary.saem.mmkin}
+\title{Summary method for class "saem.mmkin"}
+\usage{
+\method{summary}{saem.mmkin}(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...)
+
+\method{print}{summary.saem.mmkin}(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
+}
+\arguments{
+\item{object}{an object of class \link{saem.mmkin}}
+
+\item{data}{logical, indicating whether the full data should be included in
+the summary.}
+
+\item{verbose}{Should the summary be verbose?}
+
+\item{distimes}{logical, indicating whether DT50 and DT90 values should be
+included.}
+
+\item{\dots}{optional arguments passed to methods like \code{print}.}
+
+\item{x}{an object of class \link{summary.saem.mmkin}}
+
+\item{digits}{Number of digits to use for printing}
+}
+\value{
+The summary function returns a list based on the \link[saemix:SaemixObject-class]{saemix::SaemixObject}
+obtained in the fit, with at least the following additional components
+\item{saemixversion, mkinversion, Rversion}{The saemix, mkin and R versions used}
+\item{date.fit, date.summary}{The dates where the fit and the summary were
+produced}
+\item{diffs}{The differential equations used in the degradation model}
+\item{use_of_ff}{Was maximum or minimum use made of formation fractions}
+\item{data}{The data}
+\item{confint_trans}{Transformed parameters as used in the optimisation, with confidence intervals}
+\item{confint_back}{Backtransformed parameters, with confidence intervals if available}
+\item{confint_errmod}{Error model parameters with confidence intervals}
+\item{ff}{The estimated formation fractions derived from the fitted
+model.}
+\item{distimes}{The DT50 and DT90 values for each observed variable.}
+\item{SFORB}{If applicable, eigenvalues of SFORB components of the model.}
+The print method is called for its side effect, i.e. printing the summary.
+}
+\description{
+Lists model equations, initial parameter values, optimised parameters
+for fixed effects (population), random effects (deviations from the
+population mean) and residual error model, as well as the resulting
+endpoints such as formation fractions and DT50 values. Optionally
+(default is FALSE), the data are listed in full.
+}
+\examples{
+# Generate five datasets following DFOP-SFO kinetics
+sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "m1"),
+ m1 = mkinsub("SFO"), quiet = TRUE)
+set.seed(1234)
+k1_in <- rlnorm(5, log(0.1), 0.3)
+k2_in <- rlnorm(5, log(0.02), 0.3)
+g_in <- plogis(rnorm(5, qlogis(0.5), 0.3))
+f_parent_to_m1_in <- plogis(rnorm(5, qlogis(0.3), 0.3))
+k_m1_in <- rlnorm(5, log(0.02), 0.3)
+
+pred_dfop_sfo <- function(k1, k2, g, f_parent_to_m1, k_m1) {
+ mkinpredict(dfop_sfo,
+ c(k1 = k1, k2 = k2, g = g, f_parent_to_m1 = f_parent_to_m1, k_m1 = k_m1),
+ c(parent = 100, m1 = 0),
+ sampling_times)
+}
+
+ds_mean_dfop_sfo <- lapply(1:5, function(i) {
+ mkinpredict(dfop_sfo,
+ c(k1 = k1_in[i], k2 = k2_in[i], g = g_in[i],
+ f_parent_to_m1 = f_parent_to_m1_in[i], k_m1 = k_m1_in[i]),
+ c(parent = 100, m1 = 0),
+ sampling_times)
+})
+names(ds_mean_dfop_sfo) <- paste("ds", 1:5)
+
+ds_syn_dfop_sfo <- lapply(ds_mean_dfop_sfo, function(ds) {
+ add_err(ds,
+ sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),
+ n = 1)[[1]]
+})
+
+\dontrun{
+# Evaluate using mmkin and saem
+f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo,
+ quiet = TRUE, error_model = "tc", cores = 5)
+f_saem_dfop_sfo <- saem(f_mmkin_dfop_sfo)
+summary(f_saem_dfop_sfo, data = TRUE)
+}
+
+}
+\author{
+Johannes Ranke for the mkin specific parts
+saemix authors for the parts inherited from saemix.
+}
diff --git a/test.log b/test.log
index d609022b..7e1fe957 100644
--- a/test.log
+++ b/test.log
@@ -6,32 +6,39 @@ Testing mkin
✔ | 2 | Export dataset for reading into CAKE
✔ | 14 | Results for FOCUS D established in expertise for UBA (Ranke 2014) [1.0 s]
✔ | 4 | Calculation of FOCUS chi2 error levels [0.5 s]
-✔ | 7 | Fitting the SFORB model [3.4 s]
-✔ | 5 | Analytical solutions for coupled models [3.3 s]
+✔ | 7 | Fitting the SFORB model [3.5 s]
+✔ | 5 | Analytical solutions for coupled models [3.2 s]
✔ | 5 | Calculation of Akaike weights
✔ | 12 | Confidence intervals and p-values [1.0 s]
-✔ | 14 | Error model fitting [4.2 s]
+✔ | 14 | Error model fitting [4.4 s]
✔ | 5 | Time step normalisation
✔ | 4 | Test fitting the decline of metabolites from their maximum [0.3 s]
✔ | 1 | Fitting the logistic model [0.2 s]
-✔ | 5 | Nonlinear mixed-effects models [0.1 s]
+✔ | 34 1 | Nonlinear mixed-effects models [25.9 s]
+────────────────────────────────────────────────────────────────────────────────
+Skip (test_mixed.R:150:3): saem results are reproducible for biphasic fits
+Reason: Fitting with saemix takes around 10 minutes when using deSolve
+────────────────────────────────────────────────────────────────────────────────
✔ | 2 | Test dataset classes mkinds and mkindsg
✔ | 1 | mkinfit features [0.3 s]
✔ | 10 | Special cases of mkinfit calls [0.3 s]
✔ | 8 | mkinmod model generation and printing [0.2 s]
✔ | 3 | Model predictions with mkinpredict [0.3 s]
✔ | 16 | Evaluations according to 2015 NAFTA guidance [1.6 s]
-✔ | 9 | Nonlinear mixed-effects models [8.0 s]
-✔ | 14 | Plotting [1.7 s]
+✔ | 9 | Nonlinear mixed-effects models [8.1 s]
+✔ | 16 | Plotting [1.9 s]
✔ | 4 | Residuals extracted from mkinfit models
✔ | 2 | Complex test case from Schaefer et al. (2007) Piacenza paper [1.5 s]
✔ | 4 | Summary [0.1 s]
✔ | 1 | Summaries of old mkinfit objects
✔ | 4 | Results for synthetic data established in expertise for UBA (Ranke 2014) [2.2 s]
-✔ | 9 | Hypothesis tests [8.1 s]
-✔ | 4 | Calculation of maximum time weighted average concentrations (TWAs) [2.6 s]
+✔ | 9 | Hypothesis tests [8.3 s]
+✔ | 4 | Calculation of maximum time weighted average concentrations (TWAs) [2.5 s]
══ Results ═════════════════════════════════════════════════════════════════════
-Duration: 41.3 s
+Duration: 67.9 s
-[ FAIL 0 | WARN 0 | SKIP 0 | PASS 174 ]
+── Skipped tests ──────────────────────────────────────────────────────────────
+● Fitting with saemix takes around 10 minutes when using deSolve (1)
+
+[ FAIL 0 | WARN 0 | SKIP 1 | PASS 205 ]
diff --git a/tests/figs/plotting/mixed-model-fit-for-saem-object-with-mkin-transformations.svg b/tests/figs/plotting/mixed-model-fit-for-saem-object-with-mkin-transformations.svg
index ce93625d..0c2992d5 100644
--- a/tests/figs/plotting/mixed-model-fit-for-saem-object-with-mkin-transformations.svg
+++ b/tests/figs/plotting/mixed-model-fit-for-saem-object-with-mkin-transformations.svg
@@ -13,720 +13,720 @@
-
-
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Population
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Population
+1
+2
+3
+4
+5
+6
+7
+8
+9
+10
+11
+12
+13
+14
+15
-
-
+
+
-
+
-
-
-
-
-
-
-
-
-0
-20
-40
-60
-80
-100
-120
-
-
-
-
-
-
-
-0
-20
-40
-60
-80
-100
-
+
+
+
+
+
+
+
+
+0
+20
+40
+60
+80
+100
+120
+
+
+
+
+
+
+
+0
+20
+40
+60
+80
+100
+
-
-
+
+
-Time
-parent
+Time
+Residues parent
-
-
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
+
@@ -734,626 +734,626 @@
-
-
-
-
-
-
-
-0
-20
-40
-60
-80
-100
-
-
-
-
-
-
--4
--2
-0
-2
-4
-
+
+
+
+
+
+
+
+0
+20
+40
+60
+80
+100
+
+
+
+
+
+
+-4
+-2
+0
+2
+4
+
-
-
+
+
-Predicted
-Standardized residual
+Predicted
+Standardized residual
-
-
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
+
-
+
@@ -1374,558 +1374,558 @@
80
100
120
-
-
-
-
-
-
-0
-10
-20
-30
-40
-
+
+
+
+
+
+
+0
+10
+20
+30
+40
+
-
-
+
+
-Time
-m1
+Time
+Residues m1
-
-
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
+
@@ -1933,550 +1933,550 @@
-
+
-
-
-
-
+
+
+
+
0
-10
-20
-30
-40
-
-
-
-
-
-
--4
--2
-0
-2
-4
-
+10
+20
+30
+40
+
+
+
+
+
+
+-4
+-2
+0
+2
+4
+
-
-
+
+
-Predicted
-Standardized residual
+Predicted
+Standardized residual
-
-
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/tests/figs/plotting/mixed-model-fit-for-saem-object-with-saemix-transformations.svg b/tests/figs/plotting/mixed-model-fit-for-saem-object-with-saemix-transformations.svg
index e6bee1c5..e65bc3bb 100644
--- a/tests/figs/plotting/mixed-model-fit-for-saem-object-with-saemix-transformations.svg
+++ b/tests/figs/plotting/mixed-model-fit-for-saem-object-with-saemix-transformations.svg
@@ -13,209 +13,209 @@
-
-
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-Population
-Dataset 6
-Dataset 7
-Dataset 8
-Dataset 9
-Dataset 10
+
+
+
+
+
+
+
+
+
+
+
+
+
+Population
+Dataset 6
+Dataset 7
+Dataset 8
+Dataset 9
+Dataset 10
-
-
+
+
-
+
-
-
-
-
-
-0
-50
-100
-150
-
-
-
-
-
-
-
-0
-20
-40
-60
-80
-100
-
+
+
+
+
+
+0
+50
+100
+150
+
+
+
+
+
+
+
+0
+20
+40
+60
+80
+100
+
-
-
+
+
-Time
-parent
+Time
+Residues parent
-
-
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
+
@@ -223,176 +223,176 @@
-
-
-
-
-
-
-
-0
-20
-40
-60
-80
-100
-
-
-
-
-
-
--4
--2
-0
-2
-4
-
+
+
+
+
+
+
+
+0
+20
+40
+60
+80
+100
+
+
+
+
+
+
+-4
+-2
+0
+2
+4
+
-
-
+
+
-Predicted
-Standardized residual
+Predicted
+Standardized residual
-
-
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
+
-
+
@@ -407,152 +407,152 @@
50
100
150
-
-
-
-
-
-
-
-0
-5
-10
-15
-20
-25
-
+
+
+
+
+
+
+
+0
+5
+10
+15
+20
+25
+
-
-
+
+
-Time
-A1
+Time
+Residues A1
-
-
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
+
@@ -573,141 +573,141 @@
15
20
25
-
-
-
-
-
-
--4
--2
-0
-2
-4
-
+
+
+
+
+
+
+-4
+-2
+0
+2
+4
+
-
-
+
+
-Predicted
-Standardized residual
+Predicted
+Standardized residual
-
-
+
+
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/tests/testthat/setup_script.R b/tests/testthat/setup_script.R
index 547b2d6c..9229c198 100644
--- a/tests/testthat/setup_script.R
+++ b/tests/testthat/setup_script.R
@@ -178,6 +178,10 @@ ds_biphasic <- lapply(ds_biphasic_mean, function(ds) {
})
# Mixed model fits
+saemix_available <- FALSE
+if (requireNamespace("saemix", quietly = TRUE)) {
+ if(packageVersion("saemix") >= "3.1.9000") saemix_available <- TRUE
+}
mmkin_sfo_1 <- mmkin("SFO", ds_sfo, quiet = TRUE, error_model = "tc", cores = n_cores)
mmkin_dfop_1 <- mmkin("DFOP", ds_dfop, quiet = TRUE, cores = n_cores)
mmkin_biphasic <- mmkin(list("DFOP-SFO" = DFOP_SFO), ds_biphasic, quiet = TRUE, cores = n_cores)
@@ -186,6 +190,16 @@ mmkin_biphasic_mixed <- mixed(mmkin_biphasic)
dfop_nlme_1 <- nlme(mmkin_dfop_1)
nlme_biphasic <- nlme(mmkin_biphasic)
+if (saemix_available) {
+ sfo_saem_1 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "saemix")
+
+ dfop_saemix_1 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "mkin")
+ dfop_saemix_2 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "saemix")
+
+ saem_biphasic_m <- saem(mmkin_biphasic, transformations = "mkin", quiet = TRUE)
+ saem_biphasic_s <- saem(mmkin_biphasic, transformations = "saemix", quiet = TRUE)
+}
+
ds_uba <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) subset(x$data[c("name", "time", "value")]))
names(ds_uba) <- paste("Dataset", 6:10)
@@ -197,3 +211,7 @@ f_uba_mmkin <- mmkin(list("SFO-SFO" = sfo_sfo_uba, "DFOP-SFO" = dfop_sfo_uba),
ds_uba, quiet = TRUE, cores = n_cores)
f_uba_dfop_sfo_mixed <- mixed(f_uba_mmkin[2, ])
+if (saemix_available) {
+ f_uba_sfo_sfo_saem <- saem(f_uba_mmkin["SFO-SFO", ], quiet = TRUE, transformations = "saemix")
+ f_uba_dfop_sfo_saem <- saem(f_uba_mmkin["DFOP-SFO", ], quiet = TRUE, transformations = "saemix")
+}
diff --git a/tests/testthat/summary_saem_biphasic_s.txt b/tests/testthat/summary_saem_biphasic_s.txt
new file mode 100644
index 00000000..1e0f1ccc
--- /dev/null
+++ b/tests/testthat/summary_saem_biphasic_s.txt
@@ -0,0 +1,77 @@
+saemix version used for fitting: Dummy 0.0 for testing
+mkin version used for pre-fitting: Dummy 0.0 for testing
+R version used for fitting: Dummy R version for testing
+Date of fit: Dummy date for testing
+Date of summary: Dummy date for testing
+
+Equations:
+d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * parent
+d_m1/dt = + f_parent_to_m1 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
+ * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * parent - k_m1 * m1
+
+Data:
+509 observations of 2 variable(s) grouped in 15 datasets
+
+Model predictions using solution type analytical
+
+Fitted in test time 0 s using 300, 100 iterations
+
+Variance model: Constant variance
+
+Mean of starting values for individual parameters:
+ parent_0 k_m1 f_parent_to_m1 k1 k2
+ 1.0e+02 4.8e-03 4.8e-01 6.8e-02 1.3e-02
+ g
+ 4.2e-01
+
+Fixed degradation parameter values:
+None
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2645 2654 -1310
+
+Optimised parameters:
+ est. lower upper
+parent_0 1.0e+02 99.627 1.0e+02
+k_m1 4.8e-03 0.004 5.6e-03
+f_parent_to_m1 4.8e-01 0.437 5.2e-01
+k1 6.5e-02 0.051 8.0e-02
+k2 1.2e-02 0.010 1.4e-02
+g 4.3e-01 0.362 5.0e-01
+
+Correlation:
+ prnt_0 k_m1 f_p__1 k1 k2
+k_m1 -0.156
+f_parent_to_m1 -0.157 0.372
+k1 0.159 0.000 -0.029
+k2 0.074 0.145 0.032 0.332
+g -0.072 -0.142 -0.044 -0.422 -0.570
+
+Random effects:
+ est. lower upper
+SD.parent_0 1.14 0.251 2.03
+SD.k_m1 0.14 -0.073 0.35
+SD.f_parent_to_m1 0.29 0.176 0.41
+SD.k1 0.36 0.211 0.52
+SD.k2 0.18 0.089 0.27
+SD.g 0.32 0.098 0.53
+
+Variance model:
+ est. lower upper
+a.1 2.7 2.5 2.9
+
+Resulting formation fractions:
+ ff
+parent_m1 0.48
+parent_sink 0.52
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+parent 25 145 44 11 58
+m1 145 481 NA NA NA
diff --git a/tests/testthat/test_mixed.R b/tests/testthat/test_mixed.R
index 6f28d0c3..0eb1f0d5 100644
--- a/tests/testthat/test_mixed.R
+++ b/tests/testthat/test_mixed.R
@@ -1,9 +1,98 @@
context("Nonlinear mixed-effects models")
+test_that("Parent fits using saemix are correctly implemented", {
+ skip_if(!saemix_available)
+
+ expect_error(saem(fits), "Only row objects")
+ # Some fits were done in the setup script
+ mmkin_sfo_2 <- update(mmkin_sfo_1, fixed_initials = c(parent = 100))
+ expect_error(update(mmkin_sfo_1, models = c("SFOOO")), "Please supply models.*")
+
+ sfo_saem_2 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "mkin")
+ sfo_saem_3 <- expect_error(saem(mmkin_sfo_2, quiet = TRUE), "at least two parameters")
+ s_sfo_s1 <- summary(sfo_saem_1)
+ s_sfo_s2 <- summary(sfo_saem_2)
+
+ sfo_nlme_1 <- expect_warning(nlme(mmkin_sfo_1), "not converge")
+ s_sfo_n <- summary(sfo_nlme_1)
+
+ # Compare with input
+ expect_equal(round(s_sfo_s2$confint_ranef["SD.log_k_parent", "est."], 1), 0.3)
+ # k_parent is a bit different from input 0.03 here
+ expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3), 0.035)
+ expect_equal(round(s_sfo_s2$confint_back["k_parent", "est."], 3), 0.035)
+
+ # But the result is pretty unanimous between methods
+ expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3),
+ round(s_sfo_s2$confint_back["k_parent", "est."], 3))
+ expect_equal(round(s_sfo_s1$confint_back["k_parent", "est."], 3),
+ round(s_sfo_n$confint_back["k_parent", "est."], 3))
+
+ mmkin_fomc_1 <- mmkin("FOMC", ds_fomc, quiet = TRUE, error_model = "tc", cores = n_cores)
+ fomc_saem_1 <- saem(mmkin_fomc_1, quiet = TRUE)
+ ci_fomc_s1 <- summary(fomc_saem_1)$confint_back
+
+ fomc_pop <- as.numeric(fomc_pop)
+ expect_true(all(ci_fomc_s1[, "lower"] < fomc_pop))
+ expect_true(all(ci_fomc_s1[, "upper"] > fomc_pop))
+
+ mmkin_fomc_2 <- update(mmkin_fomc_1, state.ini = 100, fixed_initials = "parent")
+ fomc_saem_2 <- saem(mmkin_fomc_2, quiet = TRUE, transformations = "mkin")
+ ci_fomc_s2 <- summary(fomc_saem_2)$confint_back
+
+ expect_true(all(ci_fomc_s2[, "lower"] < fomc_pop[2:3]))
+ expect_true(all(ci_fomc_s2[, "upper"] > fomc_pop[2:3]))
+
+ s_dfop_s1 <- summary(dfop_saemix_1)
+ s_dfop_s2 <- summary(dfop_saemix_2)
+ s_dfop_n <- summary(dfop_nlme_1)
+
+ dfop_pop <- as.numeric(dfop_pop)
+ expect_true(all(s_dfop_s1$confint_back[, "lower"] < dfop_pop))
+ expect_true(all(s_dfop_s1$confint_back[, "upper"] > dfop_pop))
+ expect_true(all(s_dfop_s2$confint_back[, "lower"] < dfop_pop))
+ expect_true(all(s_dfop_s2$confint_back[, "upper"] > dfop_pop))
+
+ dfop_mmkin_means_trans <- apply(parms(mmkin_dfop_1, transformed = TRUE), 1, mean)
+ dfop_mmkin_means <- backtransform_odeparms(dfop_mmkin_means_trans, mmkin_dfop_1$mkinmod)
+
+ # We get < 22% deviations by averaging the transformed parameters
+ rel_diff_mmkin <- (dfop_mmkin_means - dfop_pop) / dfop_pop
+ expect_true(all(rel_diff_mmkin < 0.22))
+
+ # We get < 50% deviations with transformations made in mkin
+ rel_diff_1 <- (s_dfop_s1$confint_back[, "est."] - dfop_pop) / dfop_pop
+ expect_true(all(rel_diff_1 < 0.5))
+
+ # We get < 12% deviations with transformations made in saemix
+ rel_diff_2 <- (s_dfop_s2$confint_back[, "est."] - dfop_pop) / dfop_pop
+ expect_true(all(rel_diff_2 < 0.12))
+
+ mmkin_hs_1 <- mmkin("HS", ds_hs, quiet = TRUE, error_model = "const", cores = n_cores)
+ hs_saem_1 <- saem(mmkin_hs_1, quiet = TRUE)
+ ci_hs_s1 <- summary(hs_saem_1)$confint_back
+
+ hs_pop <- as.numeric(hs_pop)
+ # expect_true(all(ci_hs_s1[, "lower"] < hs_pop)) # k1 is overestimated
+ expect_true(all(ci_hs_s1[, "upper"] > hs_pop))
+
+ mmkin_hs_2 <- update(mmkin_hs_1, state.ini = 100, fixed_initials = "parent")
+ hs_saem_2 <- saem(mmkin_hs_2, quiet = TRUE)
+ ci_hs_s2 <- summary(hs_saem_2)$confint_back
+
+ #expect_true(all(ci_hs_s2[, "lower"] < hs_pop[2:4])) # k1 again overestimated
+ expect_true(all(ci_hs_s2[, "upper"] > hs_pop[2:4]))
+
+ # HS would likely benefit from implemenation of transformations = "saemix"
+})
+
test_that("Print methods work", {
expect_known_output(print(fits[, 2:3], digits = 2), "print_mmkin_parent.txt")
expect_known_output(print(mmkin_biphasic_mixed, digits = 2), "print_mmkin_biphasic_mixed.txt")
expect_known_output(print(nlme_biphasic, digits = 1), "print_nlme_biphasic.txt")
+
+ skip_if(!saemix_available)
+ expect_known_output(print(sfo_saem_1, digits = 1), "print_sfo_saem_1.txt")
})
test_that("nlme results are reproducible to some degree", {
@@ -20,6 +109,50 @@ test_that("nlme results are reproducible to some degree", {
dfop_sfo_pop <- as.numeric(dfop_sfo_pop)
ci_dfop_sfo_n <- summary(nlme_biphasic)$confint_back
- # expect_true(all(ci_dfop_sfo_n[, "lower"] < dfop_sfo_pop)) # k2 is overestimated
+ expect_true(all(ci_dfop_sfo_n[, "lower"] < dfop_sfo_pop))
expect_true(all(ci_dfop_sfo_n[, "upper"] > dfop_sfo_pop))
})
+
+test_that("saem results are reproducible for biphasic fits", {
+
+ skip_if(!saemix_available)
+ test_summary <- summary(saem_biphasic_s)
+ test_summary$saemixversion <- "Dummy 0.0 for testing"
+ test_summary$mkinversion <- "Dummy 0.0 for testing"
+ test_summary$Rversion <- "Dummy R version for testing"
+ test_summary$date.fit <- "Dummy date for testing"
+ test_summary$date.summary <- "Dummy date for testing"
+ test_summary$time <- c(elapsed = "test time 0")
+
+ expect_known_output(print(test_summary, digits = 2), "summary_saem_biphasic_s.txt")
+
+ dfop_sfo_pop <- as.numeric(dfop_sfo_pop)
+ no_k1 <- c(1, 2, 3, 5, 6)
+ no_k2 <- c(1, 2, 3, 4, 6)
+ no_k1_k2 <- c(1, 2, 3, 6)
+
+ ci_dfop_sfo_s_s <- summary(saem_biphasic_s)$confint_back
+ # k1 and k2 are overestimated
+ expect_true(all(ci_dfop_sfo_s_s[no_k1_k2, "lower"] < dfop_sfo_pop[no_k1_k2]))
+ expect_true(all(ci_dfop_sfo_s_s[, "upper"] > dfop_sfo_pop))
+
+ # k1 and k2 are not fitted well
+ ci_dfop_sfo_s_m <- summary(saem_biphasic_m)$confint_back
+ expect_true(all(ci_dfop_sfo_s_m[no_k2, "lower"] < dfop_sfo_pop[no_k2]))
+ expect_true(all(ci_dfop_sfo_s_m[no_k1, "upper"] > dfop_sfo_pop[no_k1]))
+
+ # I tried to only do few iterations in routine tests as this is so slow
+ # but then deSolve fails at some point (presumably at the switch between
+ # the two types of iterations)
+ #saem_biphasic_2 <- saem(mmkin_biphasic, solution_type = "deSolve",
+ # control = list(nbiter.saemix = c(10, 5), nbiter.burn = 5), quiet = TRUE)
+
+ skip("Fitting with saemix takes around 10 minutes when using deSolve")
+ saem_biphasic_2 <- saem(mmkin_biphasic, solution_type = "deSolve", quiet = TRUE)
+
+ # As with the analytical solution, k1 and k2 are not fitted well
+ ci_dfop_sfo_s_d <- summary(saem_biphasic_2)$confint_back
+ expect_true(all(ci_dfop_sfo_s_d[no_k2, "lower"] < dfop_sfo_pop[no_k2]))
+ expect_true(all(ci_dfop_sfo_s_d[no_k1, "upper"] > dfop_sfo_pop[no_k1]))
+})
+
diff --git a/tests/testthat/test_plot.R b/tests/testthat/test_plot.R
index 0bf3ee66..1c95d069 100644
--- a/tests/testthat/test_plot.R
+++ b/tests/testthat/test_plot.R
@@ -35,6 +35,11 @@ test_that("Plotting mkinfit, mmkin and mixed model objects is reproducible", {
plot_biphasic_mmkin <- function() plot(f_uba_dfop_sfo_mixed)
vdiffr::expect_doppelganger("mixed model fit for mmkin object", plot_biphasic_mmkin)
+ if (saemix_available) {
+ plot_biphasic_saem_s <- function() plot(f_uba_dfop_sfo_saem)
+ vdiffr::expect_doppelganger("mixed model fit for saem object with saemix transformations", plot_biphasic_saem_s)
+ }
+
skip_on_travis()
plot_biphasic_nlme <- function() plot(dfop_nlme_1)
@@ -43,6 +48,12 @@ test_that("Plotting mkinfit, mmkin and mixed model objects is reproducible", {
#plot_biphasic_mmkin <- function() plot(mixed(mmkin_biphasic))
# Biphasic fits with lots of data and fits have lots of potential for differences
plot_biphasic_nlme <- function() plot(nlme_biphasic)
+ if (saemix_available) {
+ #plot_biphasic_saem_s <- function() plot(saem_biphasic_s)
+ plot_biphasic_saem_m <- function() plot(saem_biphasic_m)
+
+ vdiffr::expect_doppelganger("mixed model fit for saem object with mkin transformations", plot_biphasic_saem_m)
+ }
# different results when working with eigenvalues
plot_errmod_fit_D_obs_eigen <- function() plot_err(fit_D_obs_eigen, sep_obs = FALSE)
--
cgit v1.2.1
From 3dde3b95f1db925c89cd04d19f95c6fc9f68f473 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Sat, 13 Feb 2021 12:40:44 +0100
Subject: Update docs
---
docs/dev/404.html | 2 +-
docs/dev/articles/index.html | 2 +-
docs/dev/authors.html | 2 +-
docs/dev/index.html | 2 +-
docs/dev/news/index.html | 18 ++++++++++----
docs/dev/pkgdown.yml | 2 +-
docs/dev/reference/endpoints.html | 2 +-
docs/dev/reference/index.html | 2 +-
docs/dev/reference/plot.mixed.mmkin.html | 6 ++---
docs/dev/reference/saem.html | 38 +++++++++++++++---------------
docs/dev/reference/summary.saem.mmkin.html | 14 +++++------
11 files changed, 49 insertions(+), 41 deletions(-)
diff --git a/docs/dev/404.html b/docs/dev/404.html
index 5f29faf2..ea547a2a 100644
--- a/docs/dev/404.html
+++ b/docs/dev/404.html
@@ -71,7 +71,7 @@
mkin
- 1.0.1.9000
+ 1.0.2.9000
diff --git a/docs/dev/articles/index.html b/docs/dev/articles/index.html
index 441d49c0..57d0c0eb 100644
--- a/docs/dev/articles/index.html
+++ b/docs/dev/articles/index.html
@@ -71,7 +71,7 @@
mkin
- 1.0.1.9000
+ 1.0.2.9000
diff --git a/docs/dev/authors.html b/docs/dev/authors.html
index 9641eec0..8ffb9f97 100644
--- a/docs/dev/authors.html
+++ b/docs/dev/authors.html
@@ -71,7 +71,7 @@
mkin
- 1.0.1.9000
+ 1.0.2.9000
diff --git a/docs/dev/index.html b/docs/dev/index.html
index 8888633d..ff9b201f 100644
--- a/docs/dev/index.html
+++ b/docs/dev/index.html
@@ -38,7 +38,7 @@
mkin
- 1.0.1.9000
+ 1.0.2.9000
diff --git a/docs/dev/news/index.html b/docs/dev/news/index.html
index 998917f2..eab75984 100644
--- a/docs/dev/news/index.html
+++ b/docs/dev/news/index.html
@@ -71,7 +71,7 @@
mkin
- 1.0.1.9000
+ 1.0.2.9000
@@ -141,9 +141,9 @@
Source: NEWS.md
-
-
-mkin 1.0.1.9000 Unreleased
+
+
+mkin 1.0.2.9000 Unreleased
Switch to a versioning scheme where the fourth version component indicates development versions
@@ -151,10 +151,18 @@
‘saemix_model’ and ‘saemix_data’: Helper functions to set up nonlinear mixed-effects models for mmkin row objects
‘saem’: generic function to fit saemix models using ‘saemix_model’ and ‘saemix_data’, with a generator ‘saem.mmkin’, summary and plot methods
+
+
+
+mkin 1.0.2 Unreleased
+
+
+- ‘mkinfit’: Keep model names stored in ‘mkinmod’ objects, avoiding their loss in ‘gmkin’
+
-mkin 1.0.1 Unreleased
+mkin 1.0.1 2021-02-10
‘confint.mmkin’, ‘nlme.mmkin’, ‘transform_odeparms’: Fix example code in dontrun sections that failed with current defaults
diff --git a/docs/dev/pkgdown.yml b/docs/dev/pkgdown.yml
index f9b16e29..8921a1e4 100644
--- a/docs/dev/pkgdown.yml
+++ b/docs/dev/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
web_only/NAFTA_examples: NAFTA_examples.html
web_only/benchmarks: benchmarks.html
web_only/compiled_models: compiled_models.html
-last_built: 2021-02-06T17:26Z
+last_built: 2021-02-13T11:32Z
urls:
reference: https://pkgdown.jrwb.de/mkin/reference
article: https://pkgdown.jrwb.de/mkin/articles
diff --git a/docs/dev/reference/endpoints.html b/docs/dev/reference/endpoints.html
index a13e11a7..301b454f 100644
--- a/docs/dev/reference/endpoints.html
+++ b/docs/dev/reference/endpoints.html
@@ -78,7 +78,7 @@ advantage that the SFORB model can also be used for metabolites." />
mkin
- 1.0.1.9000
+ 1.0.2.9000
diff --git a/docs/dev/reference/index.html b/docs/dev/reference/index.html
index 7e98aa50..b52ecb22 100644
--- a/docs/dev/reference/index.html
+++ b/docs/dev/reference/index.html
@@ -71,7 +71,7 @@
mkin
- 1.0.1.9000
+ 1.0.2.9000
diff --git a/docs/dev/reference/plot.mixed.mmkin.html b/docs/dev/reference/plot.mixed.mmkin.html
index 601e1554..ef169074 100644
--- a/docs/dev/reference/plot.mixed.mmkin.html
+++ b/docs/dev/reference/plot.mixed.mmkin.html
@@ -72,7 +72,7 @@
mkin
- 1.0.1.9000
+ 1.0.2.9000
@@ -283,10 +283,10 @@ corresponding model prediction lines for the different datasets.
#> Running main SAEM algorithm
-#> [1] "Sat Feb 6 18:29:17 2021"
+#> [1] "Sat Feb 13 12:33:07 2021"
#> ....
#> Minimisation finished
-#> [1] "Sat Feb 6 18:29:23 2021"
# We can overlay the two variants if we generate predictions
pred_nlme <- mkinpredict(dfop_sfo,
diff --git a/docs/dev/reference/saem.html b/docs/dev/reference/saem.html
index 4578db2a..02483bec 100644
--- a/docs/dev/reference/saem.html
+++ b/docs/dev/reference/saem.html
@@ -74,7 +74,7 @@ Expectation Maximisation algorithm (SAEM)." />
mkin
- 1.0.1.9000
+ 1.0.2.9000
@@ -261,27 +261,27 @@ using mmkin.
state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)
#> Running main SAEM algorithm
-#> [1] "Sat Feb 6 18:29:26 2021"
+#> [1] "Sat Feb 13 12:33:16 2021"
#> ....
#> Minimisation finished
-#> [1] "Sat Feb 6 18:29:27 2021"
+#> [1] "Sat Feb 13 12:33:18 2021"
f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
f_saem_sfo <- saem(f_mmkin_parent["SFO", ])
#> Running main SAEM algorithm
-#> [1] "Sat Feb 6 18:29:28 2021"
+#> [1] "Sat Feb 13 12:33:19 2021"
#> ....
#> Minimisation finished
-#> [1] "Sat Feb 6 18:29:30 2021"f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
+#> [1] "Sat Feb 13 12:33:20 2021"f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
#> Running main SAEM algorithm
-#> [1] "Sat Feb 6 18:29:30 2021"
+#> [1] "Sat Feb 13 12:33:20 2021"
#> ....
#> Minimisation finished
-#> [1] "Sat Feb 6 18:29:32 2021"f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
+#> [1] "Sat Feb 13 12:33:22 2021"f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
#> Running main SAEM algorithm
-#> [1] "Sat Feb 6 18:29:32 2021"
+#> [1] "Sat Feb 13 12:33:23 2021"
#> ....
#> Minimisation finished
-#> [1] "Sat Feb 6 18:29:35 2021"
+#> [1] "Sat Feb 13 12:33:25 2021"
# The returned saem.mmkin object contains an SaemixObject, therefore we can use
# functions from saemix
library(saemix)
@@ -324,10 +324,10 @@ using mmkin.
f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
#> Running main SAEM algorithm
-#> [1] "Sat Feb 6 18:29:37 2021"
+#> [1] "Sat Feb 13 12:33:28 2021"
#> ....
#> Minimisation finished
-#> [1] "Sat Feb 6 18:29:42 2021"#> Error in compare.saemix(list(f_saem_fomc$so, f_saem_fomc_tc$so)): 'compare.saemix' requires at least two models.
sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
A1 = mkinsub("SFO"))
@@ -346,15 +346,15 @@ using mmkin.
# four minutes
f_saem_sfo_sfo <- saem(f_mmkin["SFO-SFO", ])
#> Running main SAEM algorithm
-#> [1] "Sat Feb 6 18:29:44 2021"
+#> [1] "Sat Feb 13 12:33:35 2021"
#> ....
#> Minimisation finished
-#> [1] "Sat Feb 6 18:29:48 2021"f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
+#> [1] "Sat Feb 13 12:33:39 2021"f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
#> Running main SAEM algorithm
-#> [1] "Sat Feb 6 18:29:49 2021"
+#> [1] "Sat Feb 13 12:33:40 2021"
#> ....
#> Minimisation finished
-#> [1] "Sat Feb 6 18:29:57 2021"# We can use print, plot and summary methods to check the results
+#> [1] "Sat Feb 13 12:33:48 2021"#> Kinetic nonlinear mixed-effects model fit by SAEM
#> Structural model:
@@ -395,10 +395,10 @@ using mmkin.
#> SD.g_qlogis 0.44771 -0.86417 1.7596#> saemix version used for fitting: 3.1.9000
-#> mkin version used for pre-fitting: 1.0.1.9000
+#> mkin version used for pre-fitting: 1.0.2.9000
#> R version used for fitting: 4.0.3
-#> Date of fit: Sat Feb 6 18:29:57 2021
-#> Date of summary: Sat Feb 6 18:29:58 2021
+#> Date of fit: Sat Feb 13 12:33:48 2021
+#> Date of summary: Sat Feb 13 12:33:48 2021
#>
#> Equations:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -413,7 +413,7 @@ using mmkin.
#>
#> Model predictions using solution type analytical
#>
-#> Fitted in 8.539 s using 300, 100 iterations
+#> Fitted in 8.875 s using 300, 100 iterations
#>
#> Variance model: Constant variance
#>
diff --git a/docs/dev/reference/summary.saem.mmkin.html b/docs/dev/reference/summary.saem.mmkin.html
index 93e1365d..81054813 100644
--- a/docs/dev/reference/summary.saem.mmkin.html
+++ b/docs/dev/reference/summary.saem.mmkin.html
@@ -76,7 +76,7 @@ endpoints such as formation fractions and DT50 values. Optionally
mkin
- 1.0.1.9000
+ 1.0.2.9000
@@ -260,15 +260,15 @@ saemix authors for the parts inherited from saemix.
quiet = TRUE, error_model = "tc", cores = 5)
f_saem_dfop_sfo <- saem(f_mmkin_dfop_sfo)
#> Running main SAEM algorithm
-#> [1] "Sat Feb 6 18:30:00 2021"
+#> [1] "Sat Feb 13 12:33:52 2021"
#> ....
#> Minimisation finished
-#> [1] "Sat Feb 6 18:30:11 2021"#> saemix version used for fitting: 3.1.9000
-#> mkin version used for pre-fitting: 1.0.1.9000
+#> mkin version used for pre-fitting: 1.0.2.9000
#> R version used for fitting: 4.0.3
-#> Date of fit: Sat Feb 6 18:30:12 2021
-#> Date of summary: Sat Feb 6 18:30:12 2021
+#> Date of fit: Sat Feb 13 12:34:04 2021
+#> Date of summary: Sat Feb 13 12:34:04 2021
#>
#> Equations:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -283,7 +283,7 @@ saemix authors for the parts inherited from saemix.
#>
#> Model predictions using solution type analytical
#>
-#> Fitted in 11.769 s using 300, 100 iterations
+#> Fitted in 11.899 s using 300, 100 iterations
#>
#> Variance model: Two-component variance function
#>
--
cgit v1.2.1
From 99f04e6a05acde950f26c55f468f1f184e9dbfd9 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Sat, 13 Feb 2021 13:17:20 +0100
Subject: Rebuild docs
---
docs/dev/pkgdown.yml | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/docs/dev/pkgdown.yml b/docs/dev/pkgdown.yml
index 8921a1e4..2e984557 100644
--- a/docs/dev/pkgdown.yml
+++ b/docs/dev/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
web_only/NAFTA_examples: NAFTA_examples.html
web_only/benchmarks: benchmarks.html
web_only/compiled_models: compiled_models.html
-last_built: 2021-02-13T11:32Z
+last_built: 2021-02-13T12:16Z
urls:
reference: https://pkgdown.jrwb.de/mkin/reference
article: https://pkgdown.jrwb.de/mkin/articles
--
cgit v1.2.1
From f2c57bd3c183238fa796f9bee5ce52b62f3f75d6 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Sat, 13 Feb 2021 13:25:12 +0100
Subject: Structure NEWS entry
---
NEWS.md | 4 ++++
1 file changed, 4 insertions(+)
diff --git a/NEWS.md b/NEWS.md
index ad8ae80b..3e599283 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -1,7 +1,11 @@
# mkin 1.0.2.9000
+## General
+
- Switch to a versioning scheme where the fourth version component indicates development versions
+## Mixed-effects models
+
- Reintroduce the interface to the current development version of saemix, in particular:
- 'saemix_model' and 'saemix_data': Helper functions to set up nonlinear mixed-effects models for mmkin row objects
--
cgit v1.2.1
From c4f327e62f19c0a3fc77a538f7cf0c2c619019d8 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Sat, 13 Feb 2021 13:27:09 +0100
Subject: Update static docs
---
docs/dev/news/index.html | 20 +++++++++++++++-----
docs/dev/pkgdown.yml | 2 +-
2 files changed, 16 insertions(+), 6 deletions(-)
diff --git a/docs/dev/news/index.html b/docs/dev/news/index.html
index eab75984..1421edf4 100644
--- a/docs/dev/news/index.html
+++ b/docs/dev/news/index.html
@@ -145,12 +145,22 @@
mkin 1.0.2.9000 Unreleased
+
+
+General
+
+- Switch to a versioning scheme where the fourth version component indicates development versions
+
+
+
+
+Mixed-effects models
-Switch to a versioning scheme where the fourth version component indicates development versions
Reintroduce the interface to the current development version of saemix, in particular:
‘saemix_model’ and ‘saemix_data’: Helper functions to set up nonlinear mixed-effects models for mmkin row objects
‘saem’: generic function to fit saemix models using ‘saemix_model’ and ‘saemix_data’, with a generator ‘saem.mmkin’, summary and plot methods
+
@@ -176,9 +186,9 @@
mkin 1.0.0 2021-02-03
-
+
-General
+General
‘mkinmod’ models gain arguments ‘name’ and ‘dll_dir’ which, in conjunction with a current version of the ‘inline’ package, make it possible to still use the DLL used for fast ODE solutions with ‘deSolve’ after saving and restoring the ‘mkinmod’ object.
‘mkindsg’ R6 class for groups of ‘mkinds’ datasets with metadata
@@ -191,9 +201,9 @@
‘plot.mkinfit’: Change default ylab from “Observed” to “Residue”. Pass xlab to residual plot if show_residuals is TRUE.
-
+
-Mixed-effects models
+Mixed-effects models
‘mixed.mmkin’ New container for mmkin objects for plotting with the ‘plot.mixed.mmkin’ method
‘plot.mixed.mmkin’ method used for ‘nlme.mmkin’ inheriting from ‘mixed.mmkin’ (currently virtual)
diff --git a/docs/dev/pkgdown.yml b/docs/dev/pkgdown.yml
index 2e984557..c74efaf7 100644
--- a/docs/dev/pkgdown.yml
+++ b/docs/dev/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
web_only/NAFTA_examples: NAFTA_examples.html
web_only/benchmarks: benchmarks.html
web_only/compiled_models: compiled_models.html
-last_built: 2021-02-13T12:16Z
+last_built: 2021-02-13T12:27Z
urls:
reference: https://pkgdown.jrwb.de/mkin/reference
article: https://pkgdown.jrwb.de/mkin/articles
--
cgit v1.2.1
From b9be19af5e3085216d0cd5af439332f631fa8b92 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Mon, 15 Feb 2021 17:36:12 +0100
Subject: Fully rebuild docs, rerun tests and check
---
GNUmakefile | 2 +-
build.log | 3 +-
check.log | 4 +-
docs/dev/404.html | 2 +-
docs/dev/articles/FOCUS_D.html | 23 +--
.../accessible-code-block-0.0.1/empty-anchor.js | 15 ++
.../articles/FOCUS_D_files/figure-html/plot-1.png | Bin 81432 -> 79176 bytes
.../FOCUS_D_files/header-attrs-2.6/header-attrs.js | 12 ++
docs/dev/articles/FOCUS_L.html | 129 ++++++------
.../accessible-code-block-0.0.1/empty-anchor.js | 15 ++
.../figure-html/unnamed-chunk-10-1.png | Bin 43110 -> 42203 bytes
.../figure-html/unnamed-chunk-12-1.png | Bin 84605 -> 82006 bytes
.../figure-html/unnamed-chunk-13-1.png | Bin 33489 -> 32751 bytes
.../figure-html/unnamed-chunk-15-1.png | Bin 59507 -> 57939 bytes
.../figure-html/unnamed-chunk-4-1.png | Bin 35964 -> 35238 bytes
.../figure-html/unnamed-chunk-6-1.png | Bin 36379 -> 35640 bytes
.../figure-html/unnamed-chunk-8-1.png | Bin 42221 -> 41399 bytes
.../figure-html/unnamed-chunk-9-1.png | Bin 41739 -> 40983 bytes
.../FOCUS_L_files/header-attrs-2.6/header-attrs.js | 12 ++
docs/dev/articles/index.html | 2 +-
docs/dev/articles/mkin.html | 62 +++---
.../accessible-code-block-0.0.1/empty-anchor.js | 15 ++
.../mkin_files/figure-html/unnamed-chunk-2-1.png | Bin 92716 -> 89958 bytes
.../mkin_files/header-attrs-2.6/header-attrs.js | 12 ++
docs/dev/articles/twa.html | 13 +-
.../accessible-code-block-0.0.1/empty-anchor.js | 15 ++
.../twa_files/header-attrs-2.6/header-attrs.js | 12 ++
docs/dev/articles/web_only/FOCUS_Z.html | 35 ++--
.../accessible-code-block-0.0.1/empty-anchor.js | 15 ++
.../figure-html/FOCUS_2006_Z_fits_1-1.png | Bin 69227 -> 66640 bytes
.../figure-html/FOCUS_2006_Z_fits_10-1.png | Bin 109820 -> 106038 bytes
.../figure-html/FOCUS_2006_Z_fits_11-1.png | Bin 109050 -> 105042 bytes
.../figure-html/FOCUS_2006_Z_fits_11a-1.png | Bin 79154 -> 75626 bytes
.../figure-html/FOCUS_2006_Z_fits_11b-1.png | Bin 35734 -> 35744 bytes
.../figure-html/FOCUS_2006_Z_fits_2-1.png | Bin 69227 -> 66640 bytes
.../figure-html/FOCUS_2006_Z_fits_3-1.png | Bin 69006 -> 66424 bytes
.../figure-html/FOCUS_2006_Z_fits_5-1.png | Bin 83658 -> 80520 bytes
.../figure-html/FOCUS_2006_Z_fits_6-1.png | Bin 108890 -> 105149 bytes
.../figure-html/FOCUS_2006_Z_fits_7-1.png | Bin 108277 -> 104479 bytes
.../figure-html/FOCUS_2006_Z_fits_9-1.png | Bin 91586 -> 88890 bytes
.../FOCUS_Z_files/header-attrs-2.6/header-attrs.js | 12 ++
docs/dev/articles/web_only/NAFTA_examples.html | 181 ++++++++---------
.../accessible-code-block-0.0.1/empty-anchor.js | 15 ++
.../NAFTA_examples_files/figure-html/p10-1.png | Bin 80950 -> 78793 bytes
.../NAFTA_examples_files/figure-html/p11-1.png | Bin 77737 -> 75470 bytes
.../NAFTA_examples_files/figure-html/p12a-1.png | Bin 83111 -> 80755 bytes
.../NAFTA_examples_files/figure-html/p12b-1.png | Bin 72088 -> 69885 bytes
.../NAFTA_examples_files/figure-html/p13-1.png | Bin 79355 -> 77126 bytes
.../NAFTA_examples_files/figure-html/p14-1.png | Bin 82078 -> 79693 bytes
.../NAFTA_examples_files/figure-html/p15a-1.png | Bin 78261 -> 75945 bytes
.../NAFTA_examples_files/figure-html/p15b-1.png | Bin 80090 -> 78004 bytes
.../NAFTA_examples_files/figure-html/p16-1.png | Bin 95466 -> 93075 bytes
.../NAFTA_examples_files/figure-html/p5a-1.png | Bin 84037 -> 81521 bytes
.../NAFTA_examples_files/figure-html/p5b-1.png | Bin 81732 -> 79783 bytes
.../NAFTA_examples_files/figure-html/p6-1.png | Bin 84055 -> 81974 bytes
.../NAFTA_examples_files/figure-html/p7-1.png | Bin 103771 -> 101606 bytes
.../NAFTA_examples_files/figure-html/p8-1.png | Bin 94196 -> 91429 bytes
.../NAFTA_examples_files/figure-html/p9a-1.png | Bin 80132 -> 77612 bytes
.../NAFTA_examples_files/figure-html/p9b-1.png | Bin 77691 -> 75129 bytes
.../header-attrs-2.6/header-attrs.js | 12 ++
docs/dev/articles/web_only/benchmarks.html | 65 ++++--
.../accessible-code-block-0.0.1/empty-anchor.js | 15 ++
.../header-attrs-2.6/header-attrs.js | 12 ++
docs/dev/articles/web_only/compiled_models.html | 27 ++-
.../accessible-code-block-0.0.1/empty-anchor.js | 15 ++
.../header-attrs-2.6/header-attrs.js | 12 ++
docs/dev/authors.html | 2 +-
docs/dev/index.html | 45 +++-
docs/dev/news/index.html | 16 +-
docs/dev/pkgdown.yml | 2 +-
docs/dev/reference/AIC.mmkin.html | 13 +-
docs/dev/reference/CAKE_export.html | 4 +-
docs/dev/reference/D24_2014.html | 2 +-
docs/dev/reference/DFOP.solution.html | 4 +-
docs/dev/reference/Extract.mmkin.html | 6 +-
docs/dev/reference/FOCUS_2006_DFOP_ref_A_to_B.html | 4 +-
docs/dev/reference/FOCUS_2006_FOMC_ref_A_to_F.html | 4 +-
docs/dev/reference/FOCUS_2006_HS_ref_A_to_F.html | 4 +-
docs/dev/reference/FOCUS_2006_SFO_ref_A_to_F.html | 4 +-
docs/dev/reference/FOCUS_2006_datasets.html | 4 +-
docs/dev/reference/FOMC.solution.html | 4 +-
docs/dev/reference/HS.solution.html | 4 +-
docs/dev/reference/IORE.solution.html | 4 +-
docs/dev/reference/NAFTA_SOP_2015-1.png | Bin 64838 -> 61980 bytes
docs/dev/reference/NAFTA_SOP_2015.html | 4 +-
docs/dev/reference/NAFTA_SOP_Attachment-1.png | Bin 66148 -> 63822 bytes
docs/dev/reference/NAFTA_SOP_Attachment.html | 8 +-
docs/dev/reference/Rplot001.png | Bin 1011 -> 13995 bytes
docs/dev/reference/Rplot002.png | Bin 16843 -> 13648 bytes
docs/dev/reference/Rplot006.png | Bin 22103 -> 24545 bytes
docs/dev/reference/Rplot007.png | Bin 25074 -> 24992 bytes
docs/dev/reference/SFO.solution.html | 4 +-
docs/dev/reference/SFORB.solution.html | 4 +-
docs/dev/reference/add_err-1.png | Bin 111360 -> 108676 bytes
docs/dev/reference/add_err-2.png | Bin 64003 -> 63336 bytes
docs/dev/reference/add_err-3.png | Bin 60019 -> 58909 bytes
docs/dev/reference/add_err.html | 4 +-
docs/dev/reference/aw.html | 4 +-
docs/dev/reference/confint.mkinfit.html | 6 +-
docs/dev/reference/create_deg_func.html | 12 +-
docs/dev/reference/dimethenamid_2018.html | 2 +-
docs/dev/reference/endpoints.html | 2 +-
docs/dev/reference/experimental_data_for_UBA-1.png | Bin 103559 -> 102212 bytes
docs/dev/reference/experimental_data_for_UBA.html | 4 +-
docs/dev/reference/f_time_norm_focus.html | 2 +-
docs/dev/reference/focus_soil_moisture.html | 4 +-
docs/dev/reference/get_deg_func.html | 4 +-
docs/dev/reference/ilr.html | 4 +-
docs/dev/reference/index.html | 2 +-
docs/dev/reference/loftest-1.png | Bin 41288 -> 40351 bytes
docs/dev/reference/loftest-2.png | Bin 40668 -> 39817 bytes
docs/dev/reference/loftest-3.png | Bin 78452 -> 76976 bytes
docs/dev/reference/loftest-4.png | Bin 76132 -> 74678 bytes
docs/dev/reference/loftest-5.png | Bin 74691 -> 73446 bytes
docs/dev/reference/loftest.html | 4 +-
docs/dev/reference/logLik.mkinfit.html | 2 +-
docs/dev/reference/logistic.solution-2.png | Bin 43807 -> 42118 bytes
docs/dev/reference/logistic.solution.html | 10 +-
docs/dev/reference/lrtest.mkinfit.html | 4 +-
docs/dev/reference/max_twa_parent.html | 4 +-
docs/dev/reference/mccall81_245T-1.png | Bin 65341 -> 62537 bytes
docs/dev/reference/mccall81_245T.html | 44 ++--
docs/dev/reference/mixed-1.png | Bin 206373 -> 219866 bytes
docs/dev/reference/mixed.html | 14 +-
docs/dev/reference/mkin_long_to_wide.html | 4 +-
docs/dev/reference/mkin_wide_to_long.html | 4 +-
docs/dev/reference/mkinds.html | 4 +-
docs/dev/reference/mkindsg.html | 10 +-
docs/dev/reference/mkinerrmin.html | 4 +-
docs/dev/reference/mkinerrplot.html | 4 +-
docs/dev/reference/mkinfit-1.png | Bin 67810 -> 65835 bytes
docs/dev/reference/mkinfit.html | 132 ++++++------
docs/dev/reference/mkinmod.html | 8 +-
docs/dev/reference/mkinparplot-1.png | Bin 25707 -> 25702 bytes
docs/dev/reference/mkinparplot.html | 7 +-
docs/dev/reference/mkinplot.html | 4 +-
docs/dev/reference/mkinpredict.html | 10 +-
docs/dev/reference/mkinresplot.html | 2 +-
docs/dev/reference/mmkin.html | 6 +-
docs/dev/reference/nafta-1.png | Bin 64838 -> 61980 bytes
docs/dev/reference/nafta.html | 4 +-
docs/dev/reference/nlme-1.png | Bin 69449 -> 70133 bytes
docs/dev/reference/nlme-2.png | Bin 89493 -> 94031 bytes
docs/dev/reference/nlme.html | 28 +--
docs/dev/reference/nlme.mmkin.html | 4 +-
docs/dev/reference/nobs.mkinfit.html | 4 +-
docs/dev/reference/parms.html | 14 +-
docs/dev/reference/plot.mixed.mmkin.html | 6 +-
docs/dev/reference/plot.mkinfit-2.png | Bin 73247 -> 73254 bytes
docs/dev/reference/plot.mkinfit-5.png | Bin 66920 -> 66560 bytes
docs/dev/reference/plot.mkinfit-6.png | Bin 73078 -> 72717 bytes
docs/dev/reference/plot.mkinfit-7.png | Bin 73909 -> 73553 bytes
docs/dev/reference/plot.mkinfit.html | 2 +-
docs/dev/reference/plot.mmkin-1.png | Bin 49402 -> 48997 bytes
docs/dev/reference/plot.mmkin-2.png | Bin 49753 -> 49376 bytes
docs/dev/reference/plot.mmkin-3.png | Bin 46090 -> 46202 bytes
docs/dev/reference/plot.mmkin-4.png | Bin 33266 -> 33057 bytes
docs/dev/reference/plot.mmkin-5.png | Bin 57777 -> 57372 bytes
docs/dev/reference/plot.mmkin.html | 2 +-
docs/dev/reference/plot.nafta.html | 4 +-
docs/dev/reference/reexports.html | 4 +-
docs/dev/reference/residuals.mkinfit.html | 6 +-
docs/dev/reference/saem.html | 38 ++--
docs/dev/reference/schaefer07_complex_case-1.png | Bin 67659 -> 66965 bytes
docs/dev/reference/schaefer07_complex_case.html | 14 +-
docs/dev/reference/sigma_twocomp-1.png | Bin 44554 -> 43910 bytes
docs/dev/reference/sigma_twocomp.html | 8 +-
docs/dev/reference/summary.mkinfit.html | 12 +-
docs/dev/reference/summary.nlme.mmkin.html | 226 ++++++++++-----------
docs/dev/reference/summary.saem.mmkin.html | 14 +-
.../reference/synthetic_data_for_UBA_2014-1.png | Bin 70005 -> 67191 bytes
.../dev/reference/synthetic_data_for_UBA_2014.html | 32 +--
docs/dev/reference/test_data_from_UBA_2014-1.png | Bin 59592 -> 57395 bytes
docs/dev/reference/test_data_from_UBA_2014-2.png | Bin 76645 -> 72786 bytes
docs/dev/reference/test_data_from_UBA_2014.html | 26 +--
docs/dev/reference/transform_odeparms.html | 2 +-
docs/dev/reference/update.mkinfit-1.png | Bin 43366 -> 42360 bytes
docs/dev/reference/update.mkinfit-2.png | Bin 44304 -> 43389 bytes
docs/dev/reference/update.mkinfit.html | 4 +-
test.log | 28 +--
vignettes/FOCUS_D.html | 4 +-
vignettes/FOCUS_L.html | 32 +--
vignettes/web_only/mkin_benchmarks.rda | Bin 1081 -> 1137 bytes
183 files changed, 1020 insertions(+), 739 deletions(-)
create mode 100644 docs/dev/articles/FOCUS_D_files/accessible-code-block-0.0.1/empty-anchor.js
create mode 100644 docs/dev/articles/FOCUS_D_files/header-attrs-2.6/header-attrs.js
create mode 100644 docs/dev/articles/FOCUS_L_files/accessible-code-block-0.0.1/empty-anchor.js
create mode 100644 docs/dev/articles/FOCUS_L_files/header-attrs-2.6/header-attrs.js
create mode 100644 docs/dev/articles/mkin_files/accessible-code-block-0.0.1/empty-anchor.js
create mode 100644 docs/dev/articles/mkin_files/header-attrs-2.6/header-attrs.js
create mode 100644 docs/dev/articles/twa_files/accessible-code-block-0.0.1/empty-anchor.js
create mode 100644 docs/dev/articles/twa_files/header-attrs-2.6/header-attrs.js
create mode 100644 docs/dev/articles/web_only/FOCUS_Z_files/accessible-code-block-0.0.1/empty-anchor.js
create mode 100644 docs/dev/articles/web_only/FOCUS_Z_files/header-attrs-2.6/header-attrs.js
create mode 100644 docs/dev/articles/web_only/NAFTA_examples_files/accessible-code-block-0.0.1/empty-anchor.js
create mode 100644 docs/dev/articles/web_only/NAFTA_examples_files/header-attrs-2.6/header-attrs.js
create mode 100644 docs/dev/articles/web_only/benchmarks_files/accessible-code-block-0.0.1/empty-anchor.js
create mode 100644 docs/dev/articles/web_only/benchmarks_files/header-attrs-2.6/header-attrs.js
create mode 100644 docs/dev/articles/web_only/compiled_models_files/accessible-code-block-0.0.1/empty-anchor.js
create mode 100644 docs/dev/articles/web_only/compiled_models_files/header-attrs-2.6/header-attrs.js
diff --git a/GNUmakefile b/GNUmakefile
index 8604d3b3..d7c68ebf 100644
--- a/GNUmakefile
+++ b/GNUmakefile
@@ -112,7 +112,7 @@ pd: roxygen
"$(RBIN)/Rscript" -e "pkgdown::build_site(run_dont_run = TRUE, lazy = TRUE)"
git add -A
-pd_release: roxygen
+pd_all: roxygen
"$(RBIN)/Rscript" -e "pkgdown::build_site(run_dont_run = TRUE)"
git add -A
diff --git a/build.log b/build.log
index 293831aa..d50a4860 100644
--- a/build.log
+++ b/build.log
@@ -6,4 +6,5 @@
* creating vignettes ... OK
* checking for LF line-endings in source and make files and shell scripts
* checking for empty or unneeded directories
-* building ‘mkin_1.0.2.9000.tar.gz’
+* building ‘mkin_1.0.3.9000.tar.gz’
+
diff --git a/check.log b/check.log
index 2a4d87ad..ac59f6af 100644
--- a/check.log
+++ b/check.log
@@ -5,12 +5,12 @@
* using options ‘--no-tests --as-cran’
* checking for file ‘mkin/DESCRIPTION’ ... OK
* checking extension type ... Package
-* this is package ‘mkin’ version ‘1.0.2.9000’
+* this is package ‘mkin’ version ‘1.0.3.9000’
* package encoding: UTF-8
* checking CRAN incoming feasibility ... NOTE
Maintainer: ‘Johannes Ranke ’
-Version contains large components (1.0.2.9000)
+Version contains large components (1.0.3.9000)
Unknown, possibly mis-spelled, fields in DESCRIPTION:
‘Remotes’
diff --git a/docs/dev/404.html b/docs/dev/404.html
index ea547a2a..f9e51aa3 100644
--- a/docs/dev/404.html
+++ b/docs/dev/404.html
@@ -71,7 +71,7 @@
mkin
- 1.0.2.9000
+ 1.0.3.9000
diff --git a/docs/dev/articles/FOCUS_D.html b/docs/dev/articles/FOCUS_D.html
index dd86f677..a35a255a 100644
--- a/docs/dev/articles/FOCUS_D.html
+++ b/docs/dev/articles/FOCUS_D.html
@@ -32,7 +32,7 @@
mkin
- 0.9.50.4
+ 1.0.3.9000
@@ -81,7 +81,7 @@
-
-
+
@@ -95,14 +95,13 @@
-
-
+
Example evaluation of FOCUS Example Dataset D
Johannes Ranke
- 2020-11-30
+ Last change 31 January 2019 (rebuilt 2021-02-15)
Source: vignettes/FOCUS_D.rmd
FOCUS_D.rmd
@@ -187,10 +186,10 @@
A comprehensive report of the results is obtained using the summary
method for mkinfit
objects.
summary(fit)
-## mkin version used for fitting: 0.9.50.4
+## mkin version used for fitting: 1.0.3.9000
## R version used for fitting: 4.0.3
-## Date of fit: Mon Nov 30 16:01:50 2020
-## Date of summary: Mon Nov 30 16:01:50 2020
+## Date of fit: Mon Feb 15 17:13:36 2021
+## Date of summary: Mon Feb 15 17:13:37 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -241,11 +240,11 @@
##
## Parameter correlation:
## parent_0 log_k_parent log_k_m1 f_parent_qlogis sigma
-## parent_0 1.000e+00 5.174e-01 -1.688e-01 -5.471e-01 -1.171e-06
-## log_k_parent 5.174e-01 1.000e+00 -3.263e-01 -5.426e-01 -8.481e-07
-## log_k_m1 -1.688e-01 -3.263e-01 1.000e+00 7.478e-01 8.209e-07
+## parent_0 1.000e+00 5.174e-01 -1.688e-01 -5.471e-01 -1.172e-06
+## log_k_parent 5.174e-01 1.000e+00 -3.263e-01 -5.426e-01 -8.483e-07
+## log_k_m1 -1.688e-01 -3.263e-01 1.000e+00 7.478e-01 8.205e-07
## f_parent_qlogis -5.471e-01 -5.426e-01 7.478e-01 1.000e+00 1.305e-06
-## sigma -1.171e-06 -8.481e-07 8.209e-07 1.305e-06 1.000e+00
+## sigma -1.172e-06 -8.483e-07 8.205e-07 1.305e-06 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
diff --git a/docs/dev/articles/FOCUS_D_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/dev/articles/FOCUS_D_files/accessible-code-block-0.0.1/empty-anchor.js
new file mode 100644
index 00000000..ca349fd6
--- /dev/null
+++ b/docs/dev/articles/FOCUS_D_files/accessible-code-block-0.0.1/empty-anchor.js
@@ -0,0 +1,15 @@
+// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) -->
+// v0.0.1
+// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020.
+
+document.addEventListener('DOMContentLoaded', function() {
+ const codeList = document.getElementsByClassName("sourceCode");
+ for (var i = 0; i < codeList.length; i++) {
+ var linkList = codeList[i].getElementsByTagName('a');
+ for (var j = 0; j < linkList.length; j++) {
+ if (linkList[j].innerHTML === "") {
+ linkList[j].setAttribute('aria-hidden', 'true');
+ }
+ }
+ }
+});
diff --git a/docs/dev/articles/FOCUS_D_files/figure-html/plot-1.png b/docs/dev/articles/FOCUS_D_files/figure-html/plot-1.png
index 8ddca415..abf26715 100644
Binary files a/docs/dev/articles/FOCUS_D_files/figure-html/plot-1.png and b/docs/dev/articles/FOCUS_D_files/figure-html/plot-1.png differ
diff --git a/docs/dev/articles/FOCUS_D_files/header-attrs-2.6/header-attrs.js b/docs/dev/articles/FOCUS_D_files/header-attrs-2.6/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/dev/articles/FOCUS_D_files/header-attrs-2.6/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/dev/articles/FOCUS_L.html b/docs/dev/articles/FOCUS_L.html
index 2695db5e..547ec630 100644
--- a/docs/dev/articles/FOCUS_L.html
+++ b/docs/dev/articles/FOCUS_L.html
@@ -32,7 +32,7 @@
mkin
- 0.9.50.4
+ 1.0.3.9000
@@ -81,7 +81,7 @@
-
-
+
@@ -95,14 +95,13 @@
-
-
+
Example evaluation of FOCUS Laboratory Data L1 to L3
Johannes Ranke
- 2020-11-30
+ Last change 17 November 2016 (rebuilt 2021-02-15)
Source: vignettes/FOCUS_L.rmd
FOCUS_L.rmd
@@ -128,10 +127,10 @@
-## mkin version used for fitting: 0.9.50.4
+## mkin version used for fitting: 1.0.3.9000
## R version used for fitting: 4.0.3
-## Date of fit: Mon Nov 30 16:01:52 2020
-## Date of summary: Mon Nov 30 16:01:52 2020
+## Date of fit: Mon Feb 15 17:13:39 2021
+## Date of summary: Mon Feb 15 17:13:39 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -234,17 +233,17 @@
## Warning in sqrt(1/diag(V)): NaNs produced
## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
## doubtful
-## mkin version used for fitting: 0.9.50.4
+## mkin version used for fitting: 1.0.3.9000
## R version used for fitting: 4.0.3
-## Date of fit: Mon Nov 30 16:01:53 2020
-## Date of summary: Mon Nov 30 16:01:53 2020
+## Date of fit: Mon Feb 15 17:13:40 2021
+## Date of summary: Mon Feb 15 17:13:40 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 380 model solutions performed in 0.087 s
+## Fitted using 369 model solutions performed in 0.084 s
##
## Error model: Constant variance
##
@@ -272,22 +271,22 @@
##
## Results:
##
-## AIC BIC logLik
-## 95.88778 99.44927 -43.94389
+## AIC BIC logLik
+## 95.88781 99.44929 -43.9439
##
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
## parent_0 92.47 1.2820 89.720 95.220
-## log_alpha 16.92 NaN NaN NaN
-## log_beta 19.26 NaN NaN NaN
-## sigma 2.78 0.4501 1.814 3.745
+## log_alpha 13.78 NaN NaN NaN
+## log_beta 16.13 NaN NaN NaN
+## sigma 2.78 0.4598 1.794 3.766
##
## Parameter correlation:
-## parent_0 log_alpha log_beta sigma
-## parent_0 1.000000 NaN NaN 0.002218
-## log_alpha NaN 1 NaN NaN
-## log_beta NaN NaN 1 NaN
-## sigma 0.002218 NaN NaN 1.000000
+## parent_0 log_alpha log_beta sigma
+## parent_0 1.0000000 NaN NaN 0.0001671
+## log_alpha NaN 1 NaN NaN
+## log_beta NaN NaN 1 NaN
+## sigma 0.0001671 NaN NaN 1.0000000
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -295,9 +294,9 @@
## for estimators of untransformed parameters.
## Estimate t value Pr(>t) Lower Upper
## parent_0 9.247e+01 NA NA 89.720 95.220
-## alpha 2.223e+07 NA NA NA NA
-## beta 2.325e+08 NA NA NA NA
-## sigma 2.780e+00 NA NA 1.814 3.745
+## alpha 9.658e+05 NA NA NA NA
+## beta 1.010e+07 NA NA NA NA
+## sigma 2.780e+00 NA NA 1.794 3.766
##
## FOCUS Chi2 error levels in percent:
## err.min n.optim df
@@ -346,10 +345,10 @@
summary(m.L2.FOMC, data = FALSE)
-## mkin version used for fitting: 0.9.50.4
+## mkin version used for fitting: 1.0.3.9000
## R version used for fitting: 4.0.3
-## Date of fit: Mon Nov 30 16:01:54 2020
-## Date of summary: Mon Nov 30 16:01:54 2020
+## Date of fit: Mon Feb 15 17:13:40 2021
+## Date of summary: Mon Feb 15 17:13:40 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -391,10 +390,10 @@
##
## Parameter correlation:
## parent_0 log_alpha log_beta sigma
-## parent_0 1.000e+00 -1.151e-01 -2.085e-01 -7.436e-09
-## log_alpha -1.151e-01 1.000e+00 9.741e-01 -1.617e-07
-## log_beta -2.085e-01 9.741e-01 1.000e+00 -1.386e-07
-## sigma -7.436e-09 -1.617e-07 -1.386e-07 1.000e+00
+## parent_0 1.000e+00 -1.151e-01 -2.085e-01 -7.828e-09
+## log_alpha -1.151e-01 1.000e+00 9.741e-01 -1.602e-07
+## log_beta -2.085e-01 9.741e-01 1.000e+00 -1.372e-07
+## sigma -7.828e-09 -1.602e-07 -1.372e-07 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -427,10 +426,10 @@
summary(m.L2.DFOP, data = FALSE)
-## mkin version used for fitting: 0.9.50.4
+## mkin version used for fitting: 1.0.3.9000
## R version used for fitting: 4.0.3
-## Date of fit: Mon Nov 30 16:01:54 2020
-## Date of summary: Mon Nov 30 16:01:54 2020
+## Date of fit: Mon Feb 15 17:13:41 2021
+## Date of summary: Mon Feb 15 17:13:41 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -439,7 +438,7 @@
##
## Model predictions using solution type analytical
##
-## Fitted using 581 model solutions performed in 0.136 s
+## Fitted using 581 model solutions performed in 0.134 s
##
## Error model: Constant variance
##
@@ -470,18 +469,18 @@
## Optimised, transformed parameters with symmetric confidence intervals:
## Estimate Std. Error Lower Upper
## parent_0 93.950 9.998e-01 91.5900 96.3100
-## log_k1 3.117 1.929e+03 -4558.0000 4564.0000
+## log_k1 3.112 1.842e+03 -4353.0000 4359.0000
## log_k2 -1.088 6.285e-02 -1.2370 -0.9394
## g_qlogis -0.399 9.946e-02 -0.6342 -0.1638
## sigma 1.414 2.886e-01 0.7314 2.0960
##
## Parameter correlation:
-## parent_0 log_k1 log_k2 g_qlogis sigma
-## parent_0 1.000e+00 6.459e-07 9.147e-11 2.665e-01 8.413e-11
-## log_k1 6.459e-07 1.000e+00 1.061e-04 -2.087e-04 -9.802e-06
-## log_k2 9.147e-11 1.061e-04 1.000e+00 -7.903e-01 -2.429e-09
-## g_qlogis 2.665e-01 -2.087e-04 -7.903e-01 1.000e+00 4.049e-09
-## sigma 8.413e-11 -9.802e-06 -2.429e-09 4.049e-09 1.000e+00
+## parent_0 log_k1 log_k2 g_qlogis sigma
+## parent_0 1.000e+00 6.783e-07 -3.390e-10 2.665e-01 -2.967e-10
+## log_k1 6.783e-07 1.000e+00 1.116e-04 -2.196e-04 -1.031e-05
+## log_k2 -3.390e-10 1.116e-04 1.000e+00 -7.903e-01 2.917e-09
+## g_qlogis 2.665e-01 -2.196e-04 -7.903e-01 1.000e+00 -4.408e-09
+## sigma -2.967e-10 -1.031e-05 2.917e-09 -4.408e-09 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -489,7 +488,7 @@
## for estimators of untransformed parameters.
## Estimate t value Pr(>t) Lower Upper
## parent_0 93.9500 9.397e+01 2.036e-12 91.5900 96.3100
-## k1 22.5800 5.303e-04 4.998e-01 0.0000 Inf
+## k1 22.4800 5.553e-04 4.998e-01 0.0000 Inf
## k2 0.3369 1.591e+01 4.697e-07 0.2904 0.3909
## g 0.4016 1.680e+01 3.238e-07 0.3466 0.4591
## sigma 1.4140 4.899e+00 8.776e-04 0.7314 2.0960
@@ -501,7 +500,7 @@
##
## Estimated disappearance times:
## DT50 DT90 DT50back DT50_k1 DT50_k2
-## parent 0.5335 5.311 1.599 0.0307 2.058
+## parent 0.5335 5.311 1.599 0.03084 2.058
Here, the DFOP model is clearly the best-fit model for dataset L2 based on the chi^2 error level criterion. However, the failure to calculate the covariance matrix indicates that the parameter estimates correlate excessively. Therefore, the FOMC model may be preferred for this dataset.
@@ -533,10 +532,10 @@
We can extract the summary and plot for e.g. the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.
summary(mm.L3[["DFOP", 1]])
-## mkin version used for fitting: 0.9.50.4
+## mkin version used for fitting: 1.0.3.9000
## R version used for fitting: 4.0.3
-## Date of fit: Mon Nov 30 16:01:55 2020
-## Date of summary: Mon Nov 30 16:01:55 2020
+## Date of fit: Mon Feb 15 17:13:41 2021
+## Date of summary: Mon Feb 15 17:13:42 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -545,7 +544,7 @@
##
## Model predictions using solution type analytical
##
-## Fitted using 376 model solutions performed in 0.081 s
+## Fitted using 376 model solutions performed in 0.082 s
##
## Error model: Constant variance
##
@@ -583,11 +582,11 @@
##
## Parameter correlation:
## parent_0 log_k1 log_k2 g_qlogis sigma
-## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 -9.671e-08
-## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 7.148e-07
+## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 -9.664e-08
+## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 7.147e-07
## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 1.022e-06
-## g_qlogis 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -7.929e-07
-## sigma -9.671e-08 7.148e-07 1.022e-06 -7.929e-07 1.000e+00
+## g_qlogis 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -7.926e-07
+## sigma -9.664e-08 7.147e-07 1.022e-06 -7.926e-07 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -646,10 +645,10 @@
The \(\chi^2\) error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the \(\chi^2\) test passes is slightly lower for the FOMC model. However, the difference appears negligible.
summary(mm.L4[["SFO", 1]], data = FALSE)
-## mkin version used for fitting: 0.9.50.4
+## mkin version used for fitting: 1.0.3.9000
## R version used for fitting: 4.0.3
-## Date of fit: Mon Nov 30 16:01:55 2020
-## Date of summary: Mon Nov 30 16:01:55 2020
+## Date of fit: Mon Feb 15 17:13:42 2021
+## Date of summary: Mon Feb 15 17:13:42 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -711,17 +710,17 @@
## parent 106 352
summary(mm.L4[["FOMC", 1]], data = FALSE)
-## mkin version used for fitting: 0.9.50.4
+## mkin version used for fitting: 1.0.3.9000
## R version used for fitting: 4.0.3
-## Date of fit: Mon Nov 30 16:01:55 2020
-## Date of summary: Mon Nov 30 16:01:56 2020
+## Date of fit: Mon Feb 15 17:13:42 2021
+## Date of summary: Mon Feb 15 17:13:42 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 224 model solutions performed in 0.045 s
+## Fitted using 224 model solutions performed in 0.046 s
##
## Error model: Constant variance
##
@@ -756,10 +755,10 @@
##
## Parameter correlation:
## parent_0 log_alpha log_beta sigma
-## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.456e-07
-## log_alpha -4.696e-01 1.000e+00 9.889e-01 2.169e-08
-## log_beta -5.543e-01 9.889e-01 1.000e+00 4.910e-08
-## sigma -2.456e-07 2.169e-08 4.910e-08 1.000e+00
+## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.468e-07
+## log_alpha -4.696e-01 1.000e+00 9.889e-01 2.478e-08
+## log_beta -5.543e-01 9.889e-01 1.000e+00 5.211e-08
+## sigma -2.468e-07 2.478e-08 5.211e-08 1.000e+00
##
## Backtransformed parameters:
## Confidence intervals for internally transformed parameters are asymmetric.
@@ -783,7 +782,7 @@
References
-
+
Ranke, Johannes. 2014. “Prüfung und Validierung von Modellierungssoftware als Alternative zu ModelMaker 4.0.” Umweltbundesamt Projektnummer 27452.
diff --git a/docs/dev/articles/FOCUS_L_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/dev/articles/FOCUS_L_files/accessible-code-block-0.0.1/empty-anchor.js
new file mode 100644
index 00000000..ca349fd6
--- /dev/null
+++ b/docs/dev/articles/FOCUS_L_files/accessible-code-block-0.0.1/empty-anchor.js
@@ -0,0 +1,15 @@
+// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) -->
+// v0.0.1
+// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020.
+
+document.addEventListener('DOMContentLoaded', function() {
+ const codeList = document.getElementsByClassName("sourceCode");
+ for (var i = 0; i < codeList.length; i++) {
+ var linkList = codeList[i].getElementsByTagName('a');
+ for (var j = 0; j < linkList.length; j++) {
+ if (linkList[j].innerHTML === "") {
+ linkList[j].setAttribute('aria-hidden', 'true');
+ }
+ }
+ }
+});
diff --git a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png
index 811c800e..e9c0b0a0 100644
Binary files a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png and b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png differ
diff --git a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png
index 4c02b097..3e03954d 100644
Binary files a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png and b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png differ
diff --git a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png
index 1aa97f8c..8c9e8fd4 100644
Binary files a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png and b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png differ
diff --git a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png
index 36e862f6..b3aa8334 100644
Binary files a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png and b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png differ
diff --git a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png
index 68b24b5e..477829a5 100644
Binary files a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png and b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png differ
diff --git a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png
index 53e33b68..c0e08884 100644
Binary files a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png and b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png differ
diff --git a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png
index 47d5b335..310b4f3b 100644
Binary files a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png and b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png differ
diff --git a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png
index f644c299..570f0026 100644
Binary files a/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png and b/docs/dev/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png differ
diff --git a/docs/dev/articles/FOCUS_L_files/header-attrs-2.6/header-attrs.js b/docs/dev/articles/FOCUS_L_files/header-attrs-2.6/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/dev/articles/FOCUS_L_files/header-attrs-2.6/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/dev/articles/index.html b/docs/dev/articles/index.html
index 57d0c0eb..17ee4a69 100644
--- a/docs/dev/articles/index.html
+++ b/docs/dev/articles/index.html
@@ -71,7 +71,7 @@
mkin
- 1.0.2.9000
+ 1.0.3.9000
diff --git a/docs/dev/articles/mkin.html b/docs/dev/articles/mkin.html
index 2de8b9f0..fed85a33 100644
--- a/docs/dev/articles/mkin.html
+++ b/docs/dev/articles/mkin.html
@@ -32,7 +32,7 @@
mkin
- 0.9.50.4
+ 1.0.3.9000
@@ -81,7 +81,7 @@
-
-
+
@@ -95,14 +95,13 @@
-
-
+
Introduction to mkin
Johannes Ranke
- 2020-11-30
+ Last change 15 February 2021 (rebuilt 2021-02-15)
Source: vignettes/mkin.rmd
mkin.rmd
@@ -150,28 +149,34 @@
Background
-Many approaches are possible regarding the evaluation of chemical degradation data.
-The mkin
package (Ranke 2019) implements the approach recommended in the kinetics report provided by the FOrum for Co-ordination of pesticide fate models and their USe (FOCUS Work Group on Degradation Kinetics 2006, 2014) for simple decline data series, data series with transformation products, commonly termed metabolites, and for data series for more than one compartment. It is also possible to include back reactions, so equilibrium reactions and equilibrium partitioning can be specified, although this oftentimes leads to an overparameterisation of the model.
+The mkin
package (Ranke 2021) implements the approach to degradation kinetics recommended in the kinetics report provided by the FOrum for Co-ordination of pesticide fate models and their USe (FOCUS Work Group on Degradation Kinetics 2006, 2014). It covers data series describing the decline of one compound, data series with transformation products (commonly termed metabolites) and data series for more than one compartment. It is possible to include back reactions. Therefore, equilibrium reactions and equilibrium partitioning can be specified, although this often leads to an overparameterisation of the model.
When the first mkin
code was published in 2010, the most commonly used tools for fitting more complex kinetic degradation models to experimental data were KinGUI (Schäfer et al. 2007), a MATLAB based tool with a graphical user interface that was specifically tailored to the task and included some output as proposed by the FOCUS Kinetics Workgroup, and ModelMaker, a general purpose compartment based tool providing infrastructure for fitting dynamic simulation models based on differential equations to data.
-The code was first uploaded to the BerliOS platform. When this was taken down, the version control history was imported into the R-Forge site (see e.g. the initial commit on 11 May 2010), where the code is still occasionally updated.
-At that time, the R package FME
(Flexible Modelling Environment) (Soetaert and Petzoldt 2010) was already available, and provided a good basis for developing a package specifically tailored to the task. The remaining challenge was to make it as easy as possible for the users (including the author of this vignette) to specify the system of differential equations and to include the output requested by the FOCUS guidance, such as the relative standard deviation that has to be assumed for the residuals, such that the \(\chi^2\) goodness-of-fit test as defined by the FOCUS kinetics workgroup would pass using an significance level \(\alpha\) of 0.05. This relative error, expressed as a percentage, is often termed \(\chi^2\) error level or similar.
-Also, mkin
introduced using analytical solutions for parent only kinetics for improved optimization speed. Later, Eigenvalue based solutions were introduced to mkin
for the case of linear differential equations (i.e. where the FOMC or DFOP models were not used for the parent compound), greatly improving the optimization speed for these cases. This, however, has become somehow obsolete, as the use of compiled code described below gives even smaller execution times.
+The ‘mkin’ code was first uploaded to the BerliOS development platform. When this was taken down, the version control history was imported into the R-Forge site (see e.g. the initial commit on 11 May 2010), where the code is still being updated.
+At that time, the R package FME
(Flexible Modelling Environment) (Soetaert and Petzoldt 2010) was already available, and provided a good basis for developing a package specifically tailored to the task. The remaining challenge was to make it as easy as possible for the users (including the author of this vignette) to specify the system of differential equations and to include the output requested by the FOCUS guidance, such as the \(\chi^2\) error level as defined in this guidance.
+Also, mkin
introduced using analytical solutions for parent only kinetics for improved optimization speed. Later, Eigenvalue based solutions were introduced to mkin
for the case of linear differential equations (i.e. where the FOMC or DFOP models were not used for the parent compound), greatly improving the optimization speed for these cases. This, has become somehow obsolete, as the use of compiled code described below gives even faster execution times.
The possibility to specify back-reactions and a biphasic model (SFORB) for metabolites were present in mkin
from the very beginning.
Derived software tools
-Soon after the publication of mkin
, two derived tools were published, namely KinGUII (available from Bayer Crop Science) and CAKE (commissioned to Tessella by Syngenta), which added a graphical user interface (GUI), and added fitting by iteratively reweighted least squares (IRLS) and characterisation of likely parameter distributions by Markov Chain Monte Carlo (MCMC) sampling.
-CAKE focuses on a smooth use experience, sacrificing some flexibility in the model definition, originally allowing only two primary metabolites in parallel. The current version 3.3 of CAKE release in March 2016 uses a basic scheme for up to six metabolites in a flexible arrangement, but does not support back-reactions (non-instantaneous equilibria) or biphasic kinetics for metabolites.
+Soon after the publication of mkin
, two derived tools were published, namely KinGUII (developed at Bayer Crop Science) and CAKE (commissioned to Tessella by Syngenta), which added a graphical user interface (GUI), and added fitting by iteratively reweighted least squares (IRLS) and characterisation of likely parameter distributions by Markov Chain Monte Carlo (MCMC) sampling.
+CAKE focuses on a smooth use experience, sacrificing some flexibility in the model definition, originally allowing only two primary metabolites in parallel. The current version 3.4 of CAKE released in May 2020 uses a scheme for up to six metabolites in a flexible arrangement and supports biphasic modelling of metabolites, but does not support back-reactions (non-instantaneous equilibria).
KinGUI offers an even more flexible widget for specifying complex kinetic models. Back-reactions (non-instantaneous equilibria) were supported early on, but until 2014, only simple first-order models could be specified for transformation products. Starting with KinGUII version 2.1, biphasic modelling of metabolites was also available in KinGUII.
A further graphical user interface (GUI) that has recently been brought to a decent degree of maturity is the browser based GUI named gmkin
. Please see its documentation page and manual for further information.
A comparison of scope, usability and numerical results obtained with these tools has been recently been published by Ranke, Wöltjen, and Meinecke (2018).
-
-
-Recent developments
-Currently (July 2019), the main features available in mkin
which are not present in KinGUII or CAKE, are the speed increase by using compiled code when a compiler is present, parallel model fitting on multicore machines using the mmkin
function, and the estimation of parameter confidence intervals based on transformed parameters.
-In addition, the possibility to use two alternative error models to constant variance have been integrated. The variance by variable error model introduced by Gao et al. (2011) has been available via an iteratively reweighted least squares (IRLS) procedure since mkin version 0.9-22. With release 0.9.49.5, the IRLS algorithm has been replaced by direct or step-wise maximisation of the likelihood function, which makes it possible not only to fit the variance by variable error model but also a two-component error model inspired by error models developed in analytical chemistry.
+
+
+Unique features
+Currently, the main unique features available in mkin
are
+
+- the speed increase by using compiled code when a compiler is present,
+- parallel model fitting on multicore machines using the
mmkin
function,
+- the estimation of parameter confidence intervals based on transformed parameters (see below) and
+- the possibility to use the two-component error model
+
+
+The iteratively reweighted least squares fitting of different variances for each variable as introduced by Gao et al. (2011) has been available in mkin since version 0.9-22. With release 0.9.49.5, the IRLS algorithm has been complemented by direct or step-wise maximisation of the likelihood function, which makes it possible not only to fit the variance by variable error model but also a two-component error model inspired by error models developed in analytical chemistry (Ranke and Meinecke 2019).
@@ -179,13 +184,13 @@
For rate constants, the log transformation is used, as proposed by Bates and Watts (1988, 77, 149). Approximate intervals are constructed for the transformed rate constants (compare Bates and Watts 1988, 135), i.e. for their logarithms. Confidence intervals for the rate constants are then obtained using the appropriate backtransformation using the exponential function.
In the first version of mkin
allowing for specifying models using formation fractions, a home-made reparameterisation was used in order to ensure that the sum of formation fractions would not exceed unity.
This method is still used in the current version of KinGUII (v2.1 from April 2014), with a modification that allows for fixing the pathway to sink to zero. CAKE uses penalties in the objective function in order to enforce this constraint.
-In 2012, an alternative reparameterisation of the formation fractions was proposed together with René Lehmann (Ranke and Lehmann 2012), based on isometric logratio transformation (ILR). The aim was to improve the validity of the linear approximation of the objective function during the parameter estimation procedure as well as in the subsequent calculation of parameter confidence intervals.
+In 2012, an alternative reparameterisation of the formation fractions was proposed together with René Lehmann (Ranke and Lehmann 2012), based on isometric logratio transformation (ILR). The aim was to improve the validity of the linear approximation of the objective function during the parameter estimation procedure as well as in the subsequent calculation of parameter confidence intervals. In the current version of mkin, a logit transformation is used for parameters that are bound between 0 and 1, such as the g parameter of the DFOP model.
Confidence intervals based on transformed parameters
In the first attempt at providing improved parameter confidence intervals introduced to mkin
in 2013, confidence intervals obtained from FME on the transformed parameters were simply all backtransformed one by one to yield asymmetric confidence intervals for the backtransformed parameters.
However, while there is a 1:1 relation between the rate constants in the model and the transformed parameters fitted in the model, the parameters obtained by the isometric logratio transformation are calculated from the set of formation fractions that quantify the paths to each of the compounds formed from a specific parent compound, and no such 1:1 relation exists.
-Therefore, parameter confidence intervals for formation fractions obtained with this method only appear valid for the case of a single transformation product, where only one formation fraction is to be estimated, directly corresponding to one component of the ilr transformed parameter.
+Therefore, parameter confidence intervals for formation fractions obtained with this method only appear valid for the case of a single transformation product, where currently the logit transformation is used for the formation fraction.
The confidence intervals obtained by backtransformation for the cases where a 1:1 relation between transformed and original parameter exist are considered by the author of this vignette to be more accurate than those obtained using a re-estimation of the Hessian matrix after backtransformation, as implemented in the FME package.
@@ -200,36 +205,39 @@
References
-
+
Bates, D., and D. Watts. 1988. Nonlinear Regression and Its Applications. Wiley-Interscience.
-FOCUS Work Group on Degradation Kinetics. 2006. Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in Eu Registration. Report of the Focus Work Group on Degradation Kinetics. http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics.
+FOCUS Work Group on Degradation Kinetics. 2006. Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in Eu Registration. Report of the Focus Work Group on Degradation Kinetics. http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics.
-———. 2014. Generic Guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in Eu Registration. 1.1 ed. http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics.
+———. 2014. Generic Guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in Eu Registration. 1.1 ed. http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics.
-Gao, Z., J.W. Green, J. Vanderborght, and W. Schmitt. 2011. “Improving Uncertainty Analysis in Kinetic Evaluations Using Iteratively Reweighted Least Squares.” Journal. Environmental Science and Technology 45: 4429–37.
+Gao, Z., J. W. Green, J. Vanderborght, and W. Schmitt. 2011. “Improving Uncertainty Analysis in Kinetic Evaluations Using Iteratively Reweighted Least Squares.” Journal. Environmental Science and Technology 45: 4429–37.
-Ranke, J. 2019. ‘mkin‘: Kinetic Evaluation of Chemical Degradation Data. https://CRAN.R-project.org/package=mkin.
+Ranke, J. 2021. ‘mkin‘: Kinetic Evaluation of Chemical Degradation Data. https://CRAN.R-project.org/package=mkin.
Ranke, J., and R. Lehmann. 2012. “Parameter Reliability in Kinetic Evaluation of Environmental Metabolism Data - Assessment and the Influence of Model Specification.” In SETAC World 20-24 May. Berlin.
-———. 2015. “To T-Test or Not to T-Test, That Is the Question.” In XV Symposium on Pesticide Chemistry 2-4 September 2015. Piacenza. http://chem.uft.uni-bremen.de/ranke/posters/piacenza_2015.pdf.
+———. 2015. “To T-Test or Not to T-Test, That Is the Question.” In XV Symposium on Pesticide Chemistry 2-4 September 2015. Piacenza. http://chem.uft.uni-bremen.de/ranke/posters/piacenza_2015.pdf.
+
+
+Ranke, Johannes, and Stefan Meinecke. 2019. “Error Models for the Kinetic Evaluation of Chemical Degradation Data.” Environments 6 (12). https://doi.org/10.3390/environments6120124.
-Ranke, Johannes, Janina Wöltjen, and Stefan Meinecke. 2018. “Comparison of Software Tools for Kinetic Evaluation of Chemical Degradation Data.” Environmental Sciences Europe 30 (1): 17. https://doi.org/10.1186/s12302-018-0145-1.
+Ranke, Johannes, Janina Wöltjen, and Stefan Meinecke. 2018. “Comparison of Software Tools for Kinetic Evaluation of Chemical Degradation Data.” Environmental Sciences Europe 30 (1): 17. https://doi.org/10.1186/s12302-018-0145-1.
Schäfer, D., B. Mikolasch, P. Rainbird, and B. Harvey. 2007. “KinGUI: A New Kinetic Software Tool for Evaluations According to FOCUS Degradation Kinetics.” In Proceedings of the Xiii Symposium Pesticide Chemistry, edited by Del Re A. A. M., Capri E., Fragoulis G., and Trevisan M., 916–23. Piacenza.
-Soetaert, Karline, and Thomas Petzoldt. 2010. “Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME.” Journal of Statistical Software 33 (3): 1–28. https://www.jstatsoft.org/v33/i03/.
+Soetaert, Karline, and Thomas Petzoldt. 2010. “Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME.” Journal of Statistical Software 33 (3): 1–28. https://www.jstatsoft.org/v33/i03/.
diff --git a/docs/dev/articles/mkin_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/dev/articles/mkin_files/accessible-code-block-0.0.1/empty-anchor.js
new file mode 100644
index 00000000..ca349fd6
--- /dev/null
+++ b/docs/dev/articles/mkin_files/accessible-code-block-0.0.1/empty-anchor.js
@@ -0,0 +1,15 @@
+// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) -->
+// v0.0.1
+// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020.
+
+document.addEventListener('DOMContentLoaded', function() {
+ const codeList = document.getElementsByClassName("sourceCode");
+ for (var i = 0; i < codeList.length; i++) {
+ var linkList = codeList[i].getElementsByTagName('a');
+ for (var j = 0; j < linkList.length; j++) {
+ if (linkList[j].innerHTML === "") {
+ linkList[j].setAttribute('aria-hidden', 'true');
+ }
+ }
+ }
+});
diff --git a/docs/dev/articles/mkin_files/figure-html/unnamed-chunk-2-1.png b/docs/dev/articles/mkin_files/figure-html/unnamed-chunk-2-1.png
index 9b82cd62..bf38fdd7 100644
Binary files a/docs/dev/articles/mkin_files/figure-html/unnamed-chunk-2-1.png and b/docs/dev/articles/mkin_files/figure-html/unnamed-chunk-2-1.png differ
diff --git a/docs/dev/articles/mkin_files/header-attrs-2.6/header-attrs.js b/docs/dev/articles/mkin_files/header-attrs-2.6/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/dev/articles/mkin_files/header-attrs-2.6/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/dev/articles/twa.html b/docs/dev/articles/twa.html
index 42ed6fa5..30eeb5a6 100644
--- a/docs/dev/articles/twa.html
+++ b/docs/dev/articles/twa.html
@@ -32,7 +32,7 @@
mkin
- 0.9.50.4
+ 1.0.3.9000
@@ -81,7 +81,7 @@
-
-
+
@@ -95,14 +95,13 @@
-
-
+
Calculation of time weighted average concentrations with mkin
Johannes Ranke
- 2020-11-30
+ Last change 18 September 2019 (rebuilt 2021-02-15)
Source: vignettes/twa.rmd
twa.rmd
@@ -143,9 +142,9 @@
\frac{1}{k_1} \left( 1 - e^{- k_1 t_b} \right) +
\frac{e^{- k_1 t_b}}{k_2} \left( 1 - e^{- k_2 (t - t_b)} \right) \right) \]
Note that a method for calculating maximum moving window time weighted average concentrations for a model fitted by ‘mkinfit’ or from parent decline model parameters is included in the max_twa_parent()
function. If the same is needed for metabolites, the function pfm::max_twa()
from the ‘pfm’ package can be used.
-
+
-FOCUS Work Group on Degradation Kinetics. 2014. Generic Guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in Eu Registration. 1.1 ed. http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics.
+FOCUS Work Group on Degradation Kinetics. 2014. Generic Guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in Eu Registration. 1.1 ed. http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics.
diff --git a/docs/dev/articles/twa_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/dev/articles/twa_files/accessible-code-block-0.0.1/empty-anchor.js
new file mode 100644
index 00000000..ca349fd6
--- /dev/null
+++ b/docs/dev/articles/twa_files/accessible-code-block-0.0.1/empty-anchor.js
@@ -0,0 +1,15 @@
+// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) -->
+// v0.0.1
+// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020.
+
+document.addEventListener('DOMContentLoaded', function() {
+ const codeList = document.getElementsByClassName("sourceCode");
+ for (var i = 0; i < codeList.length; i++) {
+ var linkList = codeList[i].getElementsByTagName('a');
+ for (var j = 0; j < linkList.length; j++) {
+ if (linkList[j].innerHTML === "") {
+ linkList[j].setAttribute('aria-hidden', 'true');
+ }
+ }
+ }
+});
diff --git a/docs/dev/articles/twa_files/header-attrs-2.6/header-attrs.js b/docs/dev/articles/twa_files/header-attrs-2.6/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/dev/articles/twa_files/header-attrs-2.6/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/dev/articles/web_only/FOCUS_Z.html b/docs/dev/articles/web_only/FOCUS_Z.html
index 15c41eb7..694b33ca 100644
--- a/docs/dev/articles/web_only/FOCUS_Z.html
+++ b/docs/dev/articles/web_only/FOCUS_Z.html
@@ -32,7 +32,7 @@
mkin
- 0.9.50.4
+ 1.0.3.9000
@@ -81,7 +81,7 @@
-
-
+
@@ -95,14 +95,13 @@
-
-
+
Example evaluation of FOCUS dataset Z
Johannes Ranke
- 2020-11-30
+ Last change 16 January 2018 (rebuilt 2021-02-15)
Source: vignettes/web_only/FOCUS_Z.rmd
FOCUS_Z.rmd
@@ -239,12 +238,12 @@
summary(m.Z.FOCUS, data = FALSE)$bpar
## Estimate se_notrans t value Pr(>t) Lower Upper
-## Z0_0 96.839001 1.994273 48.5585 4.0276e-42 92.827060 100.850943
-## k_Z0 2.215367 0.118456 18.7021 1.0410e-23 1.989432 2.466960
-## k_Z1 0.478310 0.028258 16.9265 6.2430e-22 0.424712 0.538673
-## k_Z2 0.451628 0.042139 10.7176 1.6313e-14 0.374337 0.544877
-## k_Z3 0.058692 0.015245 3.8498 1.7806e-04 0.034806 0.098972
-## f_Z2_to_Z3 0.471498 0.058350 8.0805 9.6614e-11 0.357741 0.588294
+## Z0_0 96.838822 1.994274 48.5584 4.0280e-42 92.826981 100.850664
+## k_Z0 2.215393 0.118458 18.7019 1.0413e-23 1.989456 2.466989
+## k_Z1 0.478305 0.028258 16.9266 6.2418e-22 0.424708 0.538666
+## k_Z2 0.451627 0.042139 10.7176 1.6314e-14 0.374339 0.544872
+## k_Z3 0.058692 0.015245 3.8499 1.7803e-04 0.034808 0.098965
+## f_Z2_to_Z3 0.471502 0.058351 8.0805 9.6608e-11 0.357769 0.588274
## sigma 3.984431 0.383402 10.3923 4.5575e-14 3.213126 4.755736
endpoints(m.Z.FOCUS)
@@ -255,9 +254,9 @@
## $distimes
## DT50 DT90
## Z0 0.31288 1.0394
-## Z1 1.44916 4.8140
+## Z1 1.44917 4.8141
## Z2 1.53478 5.0984
-## Z3 11.80983 39.2314
+## Z3 11.80986 39.2315
This fit corresponds to the final result chosen in Appendix 7 of the FOCUS report. Confidence intervals returned by mkin are based on internally transformed parameters, however.
@@ -353,13 +352,13 @@
##
## $SFORB
## Z0_b1 Z0_b2 Z3_b1 Z3_b2
-## 2.4471371 0.0075126 0.0800070 0.0000000
+## 2.4471322 0.0075125 0.0800069 0.0000000
##
## $distimes
## DT50 DT90 DT50back DT50_Z0_b1 DT50_Z0_b2 DT50_Z3_b1 DT50_Z3_b2
-## Z0 0.3043 1.1848 0.35666 0.28325 92.265 NA NA
+## Z0 0.3043 1.1848 0.35666 0.28325 92.266 NA NA
## Z1 1.5148 5.0320 NA NA NA NA NA
-## Z2 1.6414 5.4525 NA NA NA NA NA
+## Z2 1.6414 5.4526 NA NA NA NA NA
## Z3 NA NA NA NA NA 8.6636 Inf
It is clear the degradation rate of Z3 towards the end of the experiment is very low as DT50_Z3_b2 (the second Eigenvalue of the system of two differential equations representing the SFORB system for Z3, corresponding to the slower rate constant of the DFOP model) is reported to be infinity. However, this appears to be a feature of the data.
@@ -367,9 +366,9 @@
References
-
+
-FOCUS Work Group on Degradation Kinetics. 2014. Generic Guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in Eu Registration. 1.1 ed. http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics.
+FOCUS Work Group on Degradation Kinetics. 2014. Generic Guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in Eu Registration. 1.1 ed. http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics.
diff --git a/docs/dev/articles/web_only/FOCUS_Z_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/dev/articles/web_only/FOCUS_Z_files/accessible-code-block-0.0.1/empty-anchor.js
new file mode 100644
index 00000000..ca349fd6
--- /dev/null
+++ b/docs/dev/articles/web_only/FOCUS_Z_files/accessible-code-block-0.0.1/empty-anchor.js
@@ -0,0 +1,15 @@
+// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) -->
+// v0.0.1
+// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020.
+
+document.addEventListener('DOMContentLoaded', function() {
+ const codeList = document.getElementsByClassName("sourceCode");
+ for (var i = 0; i < codeList.length; i++) {
+ var linkList = codeList[i].getElementsByTagName('a');
+ for (var j = 0; j < linkList.length; j++) {
+ if (linkList[j].innerHTML === "") {
+ linkList[j].setAttribute('aria-hidden', 'true');
+ }
+ }
+ }
+});
diff --git a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png
index 575def46..2213c446 100644
Binary files a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png and b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png differ
diff --git a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png
index 22305ab1..61b04d3a 100644
Binary files a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png and b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png differ
diff --git a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png
index 2213f493..409f1203 100644
Binary files a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png and b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png differ
diff --git a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png
index fc5e5556..4d6820cd 100644
Binary files a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png and b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png differ
diff --git a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png
index 5c29341c..2e504961 100644
Binary files a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png and b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png differ
diff --git a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png
index 575def46..2213c446 100644
Binary files a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png and b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png differ
diff --git a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png
index 98ce34a7..7ab743af 100644
Binary files a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png and b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png differ
diff --git a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png
index d04a411e..2e0dce77 100644
Binary files a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png and b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png differ
diff --git a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png
index 29a74490..458299c1 100644
Binary files a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png and b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png differ
diff --git a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png
index 0acfa2a4..eb833066 100644
Binary files a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png and b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png differ
diff --git a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png
index ca191b00..e7501cbb 100644
Binary files a/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png and b/docs/dev/articles/web_only/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png differ
diff --git a/docs/dev/articles/web_only/FOCUS_Z_files/header-attrs-2.6/header-attrs.js b/docs/dev/articles/web_only/FOCUS_Z_files/header-attrs-2.6/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/dev/articles/web_only/FOCUS_Z_files/header-attrs-2.6/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/dev/articles/web_only/NAFTA_examples.html b/docs/dev/articles/web_only/NAFTA_examples.html
index fca15672..b9784415 100644
--- a/docs/dev/articles/web_only/NAFTA_examples.html
+++ b/docs/dev/articles/web_only/NAFTA_examples.html
@@ -32,7 +32,7 @@
mkin
- 0.9.50.4
+ 1.0.3.9000
@@ -81,7 +81,7 @@
-
-
+
@@ -95,14 +95,13 @@
-
-
+
Evaluation of example datasets from Attachment 1 to the US EPA SOP for the NAFTA guidance
Johannes Ranke
- 2020-11-30
+ 26 February 2019 (rebuilt 2021-02-15)
Source: vignettes/web_only/NAFTA_examples.rmd
NAFTA_examples.rmd
@@ -158,7 +157,7 @@
## Estimate Pr(>t) Lower Upper
## parent_0 9.99e+01 1.41e-26 98.8116 101.0810
## k1 2.67e-02 5.05e-06 0.0243 0.0295
-## k2 2.42e-12 5.00e-01 0.0000 Inf
+## k2 2.26e-12 5.00e-01 0.0000 Inf
## g 6.47e-01 3.67e-06 0.6248 0.6677
## sigma 1.27e+00 8.91e-06 0.8395 1.6929
##
@@ -167,7 +166,7 @@
## DT50 DT90 DT50_rep
## SFO 67.7 2.25e+02 6.77e+01
## IORE 58.2 1.07e+03 3.22e+02
-## DFOP 55.5 5.22e+11 2.86e+11
+## DFOP 55.5 5.59e+11 3.07e+11
##
## Representative half-life:
## [1] 321.51
@@ -209,7 +208,7 @@
## Estimate Pr(>t) Lower Upper
## parent_0 9.84e+01 1.24e-27 97.8078 98.9187
## k1 1.55e-02 4.10e-04 0.0143 0.0167
-## k2 1.10e-11 5.00e-01 0.0000 Inf
+## k2 8.63e-12 5.00e-01 0.0000 Inf
## g 6.89e-01 2.92e-03 0.6626 0.7142
## sigma 6.48e-01 2.38e-05 0.4147 0.8813
##
@@ -218,7 +217,7 @@
## DT50 DT90 DT50_rep
## SFO 86.6 2.88e+02 8.66e+01
## IORE 85.5 7.17e+02 2.16e+02
-## DFOP 83.6 1.03e+11 6.29e+10
+## DFOP 83.6 1.32e+11 8.04e+10
##
## Representative half-life:
## [1] 215.87
@@ -260,7 +259,7 @@
## Estimate Pr(>t) Lower Upper
## parent_0 9.66e+01 1.57e-25 95.3476 97.8979
## k1 2.55e-02 7.33e-06 0.0233 0.0278
-## k2 3.60e-11 5.00e-01 0.0000 Inf
+## k2 3.22e-11 5.00e-01 0.0000 Inf
## g 8.61e-01 7.55e-06 0.8314 0.8867
## sigma 1.46e+00 6.93e-06 0.9661 1.9483
##
@@ -269,7 +268,7 @@
## DT50 DT90 DT50_rep
## SFO 38.6 1.28e+02 3.86e+01
## IORE 34.0 1.77e+02 5.32e+01
-## DFOP 34.1 9.07e+09 1.93e+10
+## DFOP 34.1 1.01e+10 2.15e+10
##
## Representative half-life:
## [1] 53.17
@@ -311,7 +310,7 @@
## Estimate Pr(>t) Lower Upper
## parent_0 9.89e+01 9.44e-49 95.4640 102.2573
## k1 1.81e-02 1.75e-01 0.0116 0.0281
-## k2 2.89e-10 5.00e-01 0.0000 Inf
+## k2 3.63e-10 5.00e-01 0.0000 Inf
## g 6.06e-01 2.19e-01 0.4826 0.7178
## sigma 7.40e+00 2.97e-15 6.0201 8.7754
##
@@ -320,7 +319,7 @@
## DT50 DT90 DT50_rep
## SFO 94.3 3.13e+02 9.43e+01
## IORE 96.7 1.51e+03 4.55e+02
-## DFOP 96.4 4.75e+09 2.40e+09
+## DFOP 96.4 3.77e+09 1.91e+09
##
## Representative half-life:
## [1] 454.55
@@ -422,7 +421,7 @@
## Estimate Pr(>t) Lower Upper
## parent_0 9.85e+01 2.54e-20 97.390 99.672
## k1 1.38e-01 3.52e-05 0.131 0.146
-## k2 9.03e-13 5.00e-01 0.000 Inf
+## k2 9.02e-13 5.00e-01 0.000 Inf
## g 6.52e-01 8.13e-06 0.642 0.661
## sigma 7.88e-01 6.13e-02 0.481 1.095
##
@@ -431,7 +430,7 @@
## DT50 DT90 DT50_rep
## SFO 16.9 5.63e+01 1.69e+01
## IORE 11.6 3.37e+02 1.01e+02
-## DFOP 10.5 1.38e+12 7.67e+11
+## DFOP 10.5 1.38e+12 7.69e+11
##
## Representative half-life:
## [1] 101.43
@@ -443,15 +442,16 @@
p9b <- nafta(NAFTA_SOP_Attachment[["p9b"]])
## Warning in sqrt(diag(covar)): NaNs produced
+## Warning in sqrt(diag(covar_notrans)): NaNs produced
## Warning in sqrt(1/diag(V)): NaNs produced
## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
## doubtful
## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c
## The half-life obtained from the IORE model may be used
-
+
plot(p9b)
-
+
print(p9b)
## Sums of squares:
## SFO IORE DFOP
@@ -475,12 +475,12 @@
## sigma 1.288 1.76e-04 0.7456 1.830
##
## $DFOP
-## Estimate Pr(>t) Lower Upper
-## parent_0 94.7123 NA 93.1355 96.2891
-## k1 0.0389 NA 0.0266 0.0569
-## k2 0.0389 NA 0.0255 0.0592
-## g 0.5256 NA NA NA
-## sigma 1.5957 NA 0.9135 2.2779
+## Estimate Pr(>t) Lower Upper
+## parent_0 94.7123 1.61e-16 93.1355 96.2891
+## k1 0.0389 1.08e-04 0.0266 0.0569
+## k2 0.0389 2.23e-04 0.0255 0.0592
+## g 0.5256 NaN NA NA
+## sigma 1.5957 2.50e-04 0.9135 2.2779
##
##
## DTx values:
@@ -496,15 +496,18 @@
Example on page 10
-
+
p10 <- nafta(NAFTA_SOP_Attachment[["p10"]])
-## Warning in sqrt(diag(covar_notrans)): NaNs produced
+## Warning in sqrt(diag(covar)): NaNs produced
+## Warning in sqrt(1/diag(V)): NaNs produced
+## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
+## doubtful
## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c
## The half-life obtained from the IORE model may be used
-
+
plot(p10)
-
+
print(p10)
## Sums of squares:
## SFO IORE DFOP
@@ -530,9 +533,9 @@
## $DFOP
## Estimate Pr(>t) Lower Upper
## parent_0 101.7315 1.41e-09 91.6534 111.8097
-## k1 0.0495 5.63e-03 0.0240 0.1020
-## k2 0.0495 1.93e-03 0.0272 0.0903
-## g 0.4487 NaN 0.0000 1.0000
+## k1 0.0495 6.58e-03 0.0303 0.0809
+## k2 0.0495 2.60e-03 0.0410 0.0598
+## g 0.4487 5.00e-01 NA NA
## sigma 8.0152 2.50e-04 4.5886 11.4418
##
##
@@ -553,14 +556,14 @@
Example on page 11
-
+
p11 <- nafta(NAFTA_SOP_Attachment[["p11"]])
## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c
## The half-life obtained from the IORE model may be used
-
+
plot(p11)
-
+
print(p11)
## Sums of squares:
## SFO IORE DFOP
@@ -596,10 +599,10 @@
## DT50 DT90 DT50_rep
## SFO 2.16e+02 7.18e+02 2.16e+02
## IORE 9.73e+02 1.37e+08 4.11e+07
-## DFOP 3.07e+11 1.93e+12 6.97e+11
+## DFOP 3.07e+11 1.93e+12 6.98e+11
##
## Representative half-life:
-## [1] 41148171
+## [1] 41148170
In this case, the DFOP fit reported for PestDF resulted in a negative value for the slower rate constant, which is not possible in mkin. The other results are in agreement.
@@ -610,19 +613,21 @@
Example on page 12, upper panel
-
+
p12a <- nafta(NAFTA_SOP_Attachment[["p12a"]])
## Warning in summary.mkinfit(x): Could not calculate correlation; no covariance
-## matrix
-
-## Warning in summary.mkinfit(x): Could not calculate correlation; no covariance
## matrix
+## Warning in sqrt(diag(covar)): NaNs produced
+## Warning in sqrt(diag(covar_notrans)): NaNs produced
+## Warning in sqrt(1/diag(V)): NaNs produced
+## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
+## doubtful
## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c
## The half-life obtained from the IORE model may be used
-
+
plot(p12a)
-
+
print(p12a)
## Sums of squares:
## SFO IORE DFOP
@@ -646,12 +651,12 @@
## sigma 3.965 NA NA NA
##
## $DFOP
-## Estimate Pr(>t) Lower Upper
-## parent_0 100.521 2.74e-10 NA NA
-## k1 0.124 2.53e-05 NA NA
-## k2 0.124 2.52e-02 NA NA
-## g 0.793 5.00e-01 NA NA
-## sigma 7.048 2.50e-04 NA NA
+## Estimate Pr(>t) Lower Upper
+## parent_0 100.521 2.74e-10 92.2366 108.805
+## k1 0.124 2.53e-05 0.0908 0.170
+## k2 0.124 2.52e-02 0.0456 0.339
+## g 0.793 NaN NA NA
+## sigma 7.048 2.50e-04 4.0349 10.061
##
##
## DTx values:
@@ -666,20 +671,18 @@
Example on page 12, lower panel
-
+
p12b <- nafta(NAFTA_SOP_Attachment[["p12b"]])
-## Warning in sqrt(diag(covar)): NaNs produced
## Warning in qt(alpha/2, rdf): NaNs produced
## Warning in qt(1 - alpha/2, rdf): NaNs produced
-## Warning in sqrt(1/diag(V)): NaNs produced
-## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
-## doubtful
+## Warning in sqrt(diag(covar_notrans)): NaNs produced
+## Warning in pt(abs(tval), rdf, lower.tail = FALSE): NaNs produced
## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c
## The half-life obtained from the IORE model may be used
-
+
plot(p12b)
-
+
print(p12b)
## Sums of squares:
## SFO IORE DFOP
@@ -704,11 +707,11 @@
##
## $DFOP
## Estimate Pr(>t) Lower Upper
-## parent_0 97.6840 NA NaN NaN
-## k1 0.0589 NA NA NA
-## k2 0.0589 NA NA NA
-## g 0.6473 NA NA NA
-## sigma 3.4323 NA NaN NaN
+## parent_0 97.6840 NaN NaN NaN
+## k1 0.0589 NaN NA NA
+## k2 0.0589 NaN NA NA
+## g 0.6473 NaN NA NA
+## sigma 3.4323 NaN NaN NaN
##
##
## DTx values:
@@ -723,18 +726,14 @@
Example on page 13
-
+
p13 <- nafta(NAFTA_SOP_Attachment[["p13"]])
-## Warning in sqrt(diag(covar)): NaNs produced
-## Warning in sqrt(1/diag(V)): NaNs produced
-## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result is
-## doubtful
## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c
## The half-life obtained from the IORE model may be used
-
+
plot(p13)
-
+
print(p13)
## Sums of squares:
## SFO IORE DFOP
@@ -760,9 +759,9 @@
## $DFOP
## Estimate Pr(>t) Lower Upper
## parent_0 92.73500 NA 8.95e+01 95.92118
-## k1 0.00258 NA 4.25e-04 0.01569
-## k2 0.00258 NA 1.76e-03 0.00379
-## g 0.16452 NA NA NA
+## k1 0.00258 NA 4.14e-04 0.01611
+## k2 0.00258 NA 1.74e-03 0.00383
+## g 0.16452 NA 0.00e+00 1.00000
## sigma 3.41172 NA 2.02e+00 4.79960
##
##
@@ -779,7 +778,7 @@
DT50 not observed in the study and DFOP problems in PestDF
-
+
p14 <- nafta(NAFTA_SOP_Attachment[["p14"]])
## Warning in sqrt(diag(covar)): NaNs produced
## Warning in sqrt(1/diag(V)): NaNs produced
@@ -787,10 +786,10 @@
## doubtful
## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c
## The half-life obtained from the IORE model may be used
-
+
plot(p14)
-
+
print(p14)
## Sums of squares:
## SFO IORE DFOP
@@ -817,7 +816,7 @@
## Estimate Pr(>t) Lower Upper
## parent_0 1.00e+02 2.96e-28 99.40280 101.2768
## k1 9.53e-03 1.20e-01 0.00638 0.0143
-## k2 5.33e-12 5.00e-01 0.00000 Inf
+## k2 6.08e-12 5.00e-01 0.00000 Inf
## g 3.98e-01 2.19e-01 0.30481 0.4998
## sigma 1.17e+00 7.68e-06 0.77406 1.5610
##
@@ -826,7 +825,7 @@
## DT50 DT90 DT50_rep
## SFO 2.48e+02 8.25e+02 2.48e+02
## IORE 4.34e+02 2.22e+04 6.70e+03
-## DFOP 3.48e+10 3.37e+11 1.30e+11
+## DFOP 3.05e+10 2.95e+11 1.14e+11
##
## Representative half-life:
## [1] 6697.44
@@ -835,14 +834,14 @@
N is less than 1 and DFOP fraction parameter is below zero
-
+
p15a <- nafta(NAFTA_SOP_Attachment[["p15a"]])
## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c
## The half-life obtained from the IORE model may be used
-
+
plot(p15a)
-
+
print(p15a)
## Sums of squares:
## SFO IORE DFOP
@@ -866,12 +865,12 @@
## sigma 3.105 1.78e-04 1.795 4.416
##
## $DFOP
-## Estimate Pr(>t) Lower Upper
-## parent_0 97.96751 NA 94.21913 101.7159
-## k1 0.00952 NA 0.00221 0.0411
-## k2 0.00952 NA 0.00626 0.0145
-## g 0.21241 NA 0.00000 1.0000
-## sigma 4.18778 NA 2.39747 5.9781
+## Estimate Pr(>t) Lower Upper
+## parent_0 97.96751 2.85e-13 94.21913 101.7159
+## k1 0.00952 6.28e-02 0.00250 0.0363
+## k2 0.00952 1.27e-04 0.00646 0.0140
+## g 0.21241 5.00e-01 0.00000 1.0000
+## sigma 4.18778 2.50e-04 2.39747 5.9781
##
##
## DTx values:
@@ -882,7 +881,7 @@
##
## Representative half-life:
## [1] 41.33
-
+
p15b <- nafta(NAFTA_SOP_Attachment[["p15b"]])
## Warning in sqrt(diag(covar)): NaNs produced
## Warning in sqrt(1/diag(V)): NaNs produced
@@ -890,10 +889,10 @@
## doubtful
## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c
## The half-life obtained from the IORE model may be used
-
+
plot(p15b)
-
+
print(p15b)
## Sums of squares:
## SFO IORE DFOP
@@ -911,7 +910,7 @@
##
## $IORE
## Estimate Pr(>t) Lower Upper
-## parent_0 99.83 1.81e-16 97.51348 102.14
+## parent_0 99.83 1.81e-16 97.51349 102.14
## k__iore_parent 0.38 3.22e-01 0.00352 41.05
## N_parent 0.00 5.00e-01 -1.07696 1.08
## sigma 2.21 2.57e-04 1.23245 3.19
@@ -938,16 +937,16 @@
The DFOP fraction parameter is greater than 1
-
+
p16 <- nafta(NAFTA_SOP_Attachment[["p16"]])
## The SFO model is rejected as S_SFO is equal or higher than the critical value S_c
## The representative half-life of the IORE model is longer than the one corresponding
## to the terminal degradation rate found with the DFOP model.
## The representative half-life obtained from the DFOP model may be used
-
+
plot(p16)
-
+
print(p16)
## Sums of squares:
## SFO IORE DFOP
@@ -998,7 +997,7 @@
References
-
+
US EPA. 2015. “Standard Operating Procedure for Using the NAFTA Guidance to Calculate Representative Half-Life Values and Characterizing Pesticide Degradation.”
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/dev/articles/web_only/NAFTA_examples_files/accessible-code-block-0.0.1/empty-anchor.js
new file mode 100644
index 00000000..ca349fd6
--- /dev/null
+++ b/docs/dev/articles/web_only/NAFTA_examples_files/accessible-code-block-0.0.1/empty-anchor.js
@@ -0,0 +1,15 @@
+// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) -->
+// v0.0.1
+// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020.
+
+document.addEventListener('DOMContentLoaded', function() {
+ const codeList = document.getElementsByClassName("sourceCode");
+ for (var i = 0; i < codeList.length; i++) {
+ var linkList = codeList[i].getElementsByTagName('a');
+ for (var j = 0; j < linkList.length; j++) {
+ if (linkList[j].innerHTML === "") {
+ linkList[j].setAttribute('aria-hidden', 'true');
+ }
+ }
+ }
+});
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png
index 38b251ea..f5420ce8 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p10-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png
index 77463495..0ae4bd9f 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p11-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png
index ccf8f77a..57a48119 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p12a-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png
index 6b0dcaf2..c42d45f0 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p12b-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png
index ce177190..52dea51e 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p13-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png
index f2f59ff7..ca1f29be 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p14-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png
index c5759a5b..f69e6d3b 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p15a-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png
index 3640ea68..71fcd257 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p15b-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png
index b61f28e2..820501a3 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p16-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png
index 8d38b89c..e264d2ea 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p5a-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png
index 3f2da285..e5b656a4 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p5b-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png
index 37274769..c9664c77 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p6-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png
index 515e9095..a81f814c 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p7-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png
index ebcc326c..75d72e7c 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p8-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png
index a6f4e763..3ce13a97 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p9a-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png
index 2a8cf947..e2cf2f83 100644
Binary files a/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png and b/docs/dev/articles/web_only/NAFTA_examples_files/figure-html/p9b-1.png differ
diff --git a/docs/dev/articles/web_only/NAFTA_examples_files/header-attrs-2.6/header-attrs.js b/docs/dev/articles/web_only/NAFTA_examples_files/header-attrs-2.6/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/dev/articles/web_only/NAFTA_examples_files/header-attrs-2.6/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/dev/articles/web_only/benchmarks.html b/docs/dev/articles/web_only/benchmarks.html
index 8e157c0f..a6d52649 100644
--- a/docs/dev/articles/web_only/benchmarks.html
+++ b/docs/dev/articles/web_only/benchmarks.html
@@ -32,7 +32,7 @@
mkin
- 0.9.50.4
+ 1.0.3.9000
@@ -81,7 +81,7 @@
-
-
+
@@ -95,14 +95,13 @@
-
-
+
Benchmark timings for mkin
Johannes Ranke
- 2020-11-30
+ Last change 13 May 2020 (rebuilt 2021-02-15)
Source: vignettes/web_only/benchmarks.rmd
benchmarks.rmd
@@ -137,17 +136,11 @@
m1 = mkinsub("SFO"))
t3 <- system.time(mmkin_bench(list(SFO_SFO, FOMC_SFO, DFOP_SFO), list(FOCUS_D)))[["elapsed"]]
t4 <- system.time(mmkin_bench(list(SFO_SFO, FOMC_SFO, DFOP_SFO), list(FOCUS_D),
- error_model = "tc"))[["elapsed"]]
-## Warning in mkinfit(models[[model_index]], datasets[[dataset_index]], ...): Optimisation did not converge:
-## iteration limit reached without convergence (10)
-
-## Warning in mkinfit(models[[model_index]], datasets[[dataset_index]], ...): Optimisation did not converge:
-## iteration limit reached without convergence (10)
-
-t5 <- system.time(mmkin_bench(list(SFO_SFO, FOMC_SFO, DFOP_SFO), list(FOCUS_D),
+ error_model = "tc"))[["elapsed"]]
+t5 <- system.time(mmkin_bench(list(SFO_SFO, FOMC_SFO, DFOP_SFO), list(FOCUS_D),
error_model = "obs"))[["elapsed"]]
Two metabolites, synthetic data:
-
Constant variance (t6 and t7), two-component error model (t8 and t9), and variance by variable (t10 and t11) for one model fitted to one dataset, i.e. one fit for each test.
+Constant variance (t6 and t7), two-component error model (t8 and t9), and variance by variable (t10 and t11) for one model fitted to one dataset, i.e. one fit for each test.
mkin version | @@ -388,6 +403,24 @@1.958 | 3.105 | ||||
---|---|---|---|---|---|---|
1.0.3 | +0.771 | +1.251 | +1.464 | +3.074 | +1.940 | +2.831 | +
1.0.3.9000 | +0.772 | +1.263 | +1.483 | +3.101 | +1.958 | +2.843 | +
vignettes/web_only/compiled_models.rmd
compiled_models.rmd
## test replications relative elapsed
-## 4 analytical 1 1.000 0.187
-## 3 deSolve, compiled 1 1.807 0.338
-## 2 Eigenvalue based 1 2.032 0.380
-## 1 deSolve, not compiled 1 43.048 8.050
+## 4 analytical 1 1.000 0.182
+## 3 deSolve, compiled 1 1.824 0.332
+## 2 Eigenvalue based 1 2.082 0.379
+## 1 deSolve, not compiled 1 46.181 8.405
We see that using the compiled model is by more than a factor of 10 faster than using deSolve without compiled code.
## Temporary DLL for differentials generated and loaded
## test replications relative elapsed
-## 2 deSolve, compiled 1 1.000 0.483
-## 1 deSolve, not compiled 1 29.969 14.475
-Here we get a performance benefit of a factor of 30 using the version of the differential equation model compiled from C code!
-This vignette was built with mkin 0.9.50.4 on
+## 2 deSolve, compiled 1 1.000 0.541 +## 1 deSolve, not compiled 1 29.091 15.738 +Here we get a performance benefit of a factor of 29 using the version of the differential equation model compiled from C code!
+This vignette was built with mkin 1.0.3.9000 on
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-pc-linux-gnu (64-bit)
-## Running under: Debian GNU/Linux 10 (buster)
+## Running under: Debian GNU/Linux bullseye/sid
## CPU model: AMD Ryzen 7 1700 Eight-Core Processor
mkinmod
, including equilibrium reactions and using the single first-order reversible binding (SFORB) model, which will automatically create two latent state variables for the observed variable.plot.mmkin
.mkinpredict
is performed either using the analytical solution for the case of parent only degradation, an eigenvalue based solution if only simple first-order (SFO) or SFORB kinetics are used in the model, or using a numeric solver from the deSolve
package (default is lsoda
).compiled_models
. The autogeneration of C code was inspired by the ccSolve
package. Thanks to Karline Soetaert for her work on that.transform_odeparms
so their estimators can more reasonably be expected to follow a normal distribution. This has the side effect that no constraints are needed in the optimisation. Thanks to René Lehmann for the nice cooperation on this, especially the isometric log-ratio transformation that is now used for the formation fractions.summary
of an mkinfit
object is in fact a full report that should give enough information to be able to approximately reproduce the fit with other tools.error_model
to the mkinfit
function.error_model = "obs"
.error_model = "tc"
.error_model
to the mkinfit
function. A two-component error model similar to the one proposed by Rocke and Lorenzato can be selected using the argument error_model = "tc"
.transform_odeparms
so their estimators can more reasonably be expected to follow a normal distribution.plot.mmkin
.compiled_models
. The autogeneration of C code was inspired by the ccSolve
package. Thanks to Karline Soetaert for her work on that.There is a ChangeLog, for the latest CRAN release and one for the github master branch.
+There is a list of changes for the latest CRAN release and one for each github branch, e.g. the main branch.
In 2011, Bayer Crop Science started to distribute an R based successor to KinGUI named KinGUII whose R code is based on mkin
, but which added, among other refinements, a closed source graphical user interface (GUI), iteratively reweighted least squares (IRLS) optimisation of the variance for each of the observed variables, and Markov Chain Monte Carlo (MCMC) simulation functionality, similar to what is available e.g. in the FME
package.
Somewhat in parallel, Syngenta has sponsored the development of an mkin
and KinGUII based GUI application called CAKE, which also adds IRLS and MCMC, is more limited in the model formulation, but puts more weight on usability. CAKE is available for download from the CAKE website, where you can also find a zip archive of the R scripts derived from mkin
, published under the GPL license.
Finally, there is KineticEval, which contains a further development of the scripts used for KinGUII, so the different tools will hopefully be able to learn from each other in the future as well.
+Thanks to René Lehmann, formerly working at the Umweltbundesamt, for the nice cooperation cooperation on parameter transformations, especially the isometric log-ratio transformation that is now used for formation fractions in case there are more than two transformation targets.
+Many inspirations for improvements of mkin resulted from doing kinetic evaluations of degradation data for my clients while working at Harlan Laboratories and at Eurofins Regulatory AG, and now as an independent consultant.
+Funding was received from the Umweltbundesamt in the course of the projects
+NEWS.md
‘saem’: generic function to fit saemix models using ‘saemix_model’ and ‘saemix_data’, with a generator ‘saem.mmkin’, summary and plot methods
Rocke, David M. and Lorenzato, Stefan (1995) A two-component model for measurement error in analytical chemistry. Technometrics 37(2), 176-184.
+Ranke J and Meinecke S (2019) Error Models for the Kinetic Evaluation of Chemical +Degradation Data. Environments 6(12) 124 +doi: 10.3390/environments6120124 +.
times <- c(0, 1, 3, 7, 14, 28, 60, 90, 120) diff --git a/docs/dev/reference/summary.mkinfit.html b/docs/dev/reference/summary.mkinfit.html index f314dfa8..494731e9 100644 --- a/docs/dev/reference/summary.mkinfit.html +++ b/docs/dev/reference/summary.mkinfit.html @@ -76,7 +76,7 @@ values." /> mkin - 0.9.50.4 + 1.0.3.9000@@ -125,7 +125,7 @@ values." />
#> mkin version used for fitting: 0.9.50.4 +#> mkin version used for fitting: 1.0.3.9000 #> R version used for fitting: 4.0.3 -#> Date of fit: Mon Nov 30 16:01:20 2020 -#> Date of summary: Mon Nov 30 16:01:20 2020 +#> Date of fit: Mon Feb 15 17:13:09 2021 +#> Date of summary: Mon Feb 15 17:13:09 2021 #> #> Equations: #> d_parent/dt = - k_parent * parent #> #> Model predictions using solution type analytical #> -#> Fitted using 131 model solutions performed in 0.028 s +#> Fitted using 131 model solutions performed in 0.027 s #> #> Error model: Constant variance #> diff --git a/docs/dev/reference/summary.nlme.mmkin.html b/docs/dev/reference/summary.nlme.mmkin.html index 2aeadc46..b2f6624a 100644 --- a/docs/dev/reference/summary.nlme.mmkin.html +++ b/docs/dev/reference/summary.nlme.mmkin.html @@ -76,7 +76,7 @@ endpoints such as formation fractions and DT50 values. Optionally mkin - 0.9.50.4 + 1.0.3.9000@@ -125,7 +125,7 @@ endpoints such as formation fractions and DT50 values. Optionally
summary(fit)
## mkin version used for fitting: 1.0.3
## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 14:11:17 2021
-## Date of summary: Mon Feb 15 14:11:17 2021
+## Date of fit: Mon Feb 15 17:29:02 2021
+## Date of summary: Mon Feb 15 17:29:03 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
diff --git a/vignettes/FOCUS_L.html b/vignettes/FOCUS_L.html
index 0ed46483..3d8e02c2 100644
--- a/vignettes/FOCUS_L.html
+++ b/vignettes/FOCUS_L.html
@@ -1561,8 +1561,8 @@ FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)
summary(m.L1.SFO)
## mkin version used for fitting: 1.0.3
## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 14:11:19 2021
-## Date of summary: Mon Feb 15 14:11:19 2021
+## Date of fit: Mon Feb 15 17:29:04 2021
+## Date of summary: Mon Feb 15 17:29:04 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -1662,15 +1662,15 @@ summary(m.L1.SFO)
## doubtful
## mkin version used for fitting: 1.0.3
## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 14:11:19 2021
-## Date of summary: Mon Feb 15 14:11:19 2021
+## Date of fit: Mon Feb 15 17:29:04 2021
+## Date of summary: Mon Feb 15 17:29:04 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 369 model solutions performed in 0.082 s
+## Fitted using 369 model solutions performed in 0.083 s
##
## Error model: Constant variance
##
@@ -1767,8 +1767,8 @@ plot(m.L2.FOMC, show_residuals = TRUE,
summary(m.L2.FOMC, data = FALSE)
## mkin version used for fitting: 1.0.3
## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 14:11:19 2021
-## Date of summary: Mon Feb 15 14:11:19 2021
+## Date of fit: Mon Feb 15 17:29:04 2021
+## Date of summary: Mon Feb 15 17:29:04 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
@@ -1845,8 +1845,8 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
summary(m.L2.DFOP, data = FALSE)
## mkin version used for fitting: 1.0.3
## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 14:11:20 2021
-## Date of summary: Mon Feb 15 14:11:20 2021
+## Date of fit: Mon Feb 15 17:29:05 2021
+## Date of summary: Mon Feb 15 17:29:05 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -1945,8 +1945,8 @@ plot(mm.L3)
summary(mm.L3[["DFOP", 1]])
## mkin version used for fitting: 1.0.3
## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 14:11:20 2021
-## Date of summary: Mon Feb 15 14:11:20 2021
+## Date of fit: Mon Feb 15 17:29:05 2021
+## Date of summary: Mon Feb 15 17:29:05 2021
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -2053,8 +2053,8 @@ plot(mm.L4)
summary(mm.L4[["SFO", 1]], data = FALSE)
## mkin version used for fitting: 1.0.3
## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 14:11:20 2021
-## Date of summary: Mon Feb 15 14:11:20 2021
+## Date of fit: Mon Feb 15 17:29:05 2021
+## Date of summary: Mon Feb 15 17:29:05 2021
##
## Equations:
## d_parent/dt = - k_parent * parent
@@ -2117,15 +2117,15 @@ plot(mm.L4)
summary(mm.L4[["FOMC", 1]], data = FALSE)
## mkin version used for fitting: 1.0.3
## R version used for fitting: 4.0.3
-## Date of fit: Mon Feb 15 14:11:20 2021
-## Date of summary: Mon Feb 15 14:11:20 2021
+## Date of fit: Mon Feb 15 17:29:05 2021
+## Date of summary: Mon Feb 15 17:29:05 2021
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 224 model solutions performed in 0.046 s
+## Fitted using 224 model solutions performed in 0.047 s
##
## Error model: Constant variance
##
diff --git a/vignettes/web_only/mkin_benchmarks.rda b/vignettes/web_only/mkin_benchmarks.rda
index d2b82805..8c3369a2 100644
Binary files a/vignettes/web_only/mkin_benchmarks.rda and b/vignettes/web_only/mkin_benchmarks.rda differ
--
cgit v1.2.1
From 28c0dff7d7191f854be610b5384e965d9b191f98 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Wed, 24 Feb 2021 14:46:10 +0100
Subject: Reset graphical parameters with on.exit()
plot.mixed.mmkin did not reset graphical parameters at all. The other
plotting functions did not use on.exit, so this change should make the
use of the plotting functions safer.
---
R/mkinparplot.R | 4 ++--
R/plot.mixed.mmkin.R | 1 +
R/plot.mkinfit.R | 2 +-
R/plot.mmkin.R | 3 +--
4 files changed, 5 insertions(+), 5 deletions(-)
diff --git a/R/mkinparplot.R b/R/mkinparplot.R
index f9abab5b..8cae30fb 100644
--- a/R/mkinparplot.R
+++ b/R/mkinparplot.R
@@ -32,7 +32,8 @@ mkinparplot <- function(object) {
fractions.optim = length(fractions.optim))
n.plot <- n.plot[n.plot > 0]
- oldpars <- par(no.readonly = TRUE)
+ oldpar <- par(no.readonly = TRUE)
+ on.exit(par(oldpar, no.readonly = TRUE))
layout(matrix(1:length(n.plot), ncol = 1), heights = n.plot + 1)
s <- summary(object)
@@ -71,5 +72,4 @@ mkinparplot <- function(object) {
as.numeric(values.upper.nonInf), parname_index,
code = 3, angle = 90, length = 0.05))
}
- par(oldpars)
}
diff --git a/R/plot.mixed.mmkin.R b/R/plot.mixed.mmkin.R
index 1674d855..21399496 100644
--- a/R/plot.mixed.mmkin.R
+++ b/R/plot.mixed.mmkin.R
@@ -167,6 +167,7 @@ plot.mixed.mmkin <- function(x,
# Start of graphical section
oldpar <- par(no.readonly = TRUE)
+ on.exit(par(oldpar, no.readonly = TRUE))
n_plot_rows = length(obs_vars)
n_plots = n_plot_rows * 2
diff --git a/R/plot.mkinfit.R b/R/plot.mkinfit.R
index eced40a4..2e319aae 100644
--- a/R/plot.mkinfit.R
+++ b/R/plot.mkinfit.R
@@ -161,6 +161,7 @@ plot.mkinfit <- function(x, fit = x,
if (do_layout) {
# Layout should be restored afterwards
oldpar <- par(no.readonly = TRUE)
+ on.exit(par(oldpar, no.readonly = TRUE))
# If the observed variables are shown separately, or if requested, do row layout
if (sep_obs | row_layout) {
@@ -287,7 +288,6 @@ plot.mkinfit <- function(x, fit = x,
legend = FALSE, frame = frame)
}
}
- if (do_layout) par(oldpar, no.readonly = TRUE)
}
#' @rdname plot.mkinfit
diff --git a/R/plot.mmkin.R b/R/plot.mmkin.R
index f8ed1f9a..2166b30e 100644
--- a/R/plot.mmkin.R
+++ b/R/plot.mmkin.R
@@ -65,6 +65,7 @@ plot.mmkin <- function(x, main = "auto", legends = 1,
{
oldpar <- par(no.readonly = TRUE)
+ on.exit(par(oldpar, no.readonly = TRUE))
n.m <- nrow(x)
n.d <- ncol(x)
@@ -153,6 +154,4 @@ plot.mmkin <- function(x, main = "auto", legends = 1,
}
mtext(paste(fit_name, "residuals"), cex = cex, line = 0.4)
}
-
- par(oldpar, no.readonly = TRUE)
}
--
cgit v1.2.1
From c73b2f30ec836c949885784ab576e814eb8070a9 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Tue, 9 Mar 2021 17:35:47 +0100
Subject: Some improvements for borderline cases
- fit_with_errors for saem()
- test_log_parms for mean_degparms() and saem()
---
NEWS.md | 2 +
R/nlme.R | 37 +-
R/nlme.mmkin.R | 2 +-
R/saem.R | 31 +-
build.log | 2 +-
check.log | 6 +-
docs/dev/404.html | 2 +-
docs/dev/articles/index.html | 2 +-
docs/dev/authors.html | 2 +-
docs/dev/index.html | 7 +-
docs/dev/news/index.html | 161 +-
docs/dev/pkgdown.yml | 2 +-
docs/dev/reference/Rplot001.png | Bin 13995 -> 1011 bytes
docs/dev/reference/Rplot002.png | Bin 13648 -> 16859 bytes
docs/dev/reference/Rplot003.png | Bin 28745 -> 28844 bytes
docs/dev/reference/Rplot004.png | Bin 49269 -> 49360 bytes
docs/dev/reference/Rplot005.png | Bin 59143 -> 59216 bytes
docs/dev/reference/endpoints.html | 2 +-
docs/dev/reference/index.html | 2 +-
docs/dev/reference/nlme-1.png | Bin 70133 -> 68233 bytes
docs/dev/reference/nlme-2.png | Bin 94031 -> 90552 bytes
docs/dev/reference/nlme.html | 33 +-
docs/dev/reference/nlme.mmkin-1.png | Bin 124677 -> 124827 bytes
docs/dev/reference/nlme.mmkin-2.png | Bin 169523 -> 169698 bytes
docs/dev/reference/nlme.mmkin-3.png | Bin 172692 -> 172809 bytes
docs/dev/reference/nlme.mmkin.html | 2 +-
docs/dev/reference/plot.mixed.mmkin-1.png | Bin 84734 -> 85433 bytes
docs/dev/reference/plot.mixed.mmkin-2.png | Bin 173916 -> 174061 bytes
docs/dev/reference/plot.mixed.mmkin-3.png | Bin 172396 -> 172540 bytes
docs/dev/reference/plot.mixed.mmkin-4.png | Bin 175502 -> 175594 bytes
docs/dev/reference/plot.mixed.mmkin.html | 6 +-
docs/dev/reference/saem-1.png | Bin 47315 -> 47342 bytes
docs/dev/reference/saem-2.png | Bin 48720 -> 48819 bytes
docs/dev/reference/saem-3.png | Bin 82107 -> 82202 bytes
docs/dev/reference/saem-4.png | Bin 128231 -> 128213 bytes
docs/dev/reference/saem-5.png | Bin 173288 -> 173665 bytes
docs/dev/reference/saem.html | 72 +-
docs/dev/reference/summary.saem.mmkin.html | 422 +-
man/nlme.Rd | 11 +-
man/saem.Rd | 19 +-
test.log | 36 +-
.../plotting/mixed-model-fit-for-nlme-object.svg | 2402 +++++------
...t-for-saem-object-with-mkin-transformations.svg | 4527 ++++++++++----------
...for-saem-object-with-saemix-transformations.svg | 5 +
tests/testthat/print_mmkin_biphasic_mixed.txt | 6 +-
tests/testthat/print_nlme_biphasic.txt | 10 +-
tests/testthat/print_sfo_saem_1.txt | 16 +-
tests/testthat/setup_script.R | 19 +-
tests/testthat/summary_nlme_biphasic_s.txt | 46 +-
tests/testthat/summary_saem_biphasic_s.txt | 48 +-
tests/testthat/test_mixed.R | 24 +-
tests/testthat/test_nlme.R | 2 +-
52 files changed, 4040 insertions(+), 3926 deletions(-)
diff --git a/NEWS.md b/NEWS.md
index 38cac245..5d0ea69a 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -12,6 +12,8 @@
- 'saem': generic function to fit saemix models using 'saemix_model' and 'saemix_data', with a generator 'saem.mmkin', summary and plot methods
+- 'mean_degparms': New argument 'test_log_parms' that makes the function only consider log-transformed parameters where the untransformed parameters pass the t-test for a certain confidence level. This can be used to check more plausible parameters for 'saem'
+
# mkin 1.0.4 (Unreleased)
- 'plot.mixed.mmkin': Reset graphical parameters on exit
diff --git a/R/nlme.R b/R/nlme.R
index 9215aab0..d235a094 100644
--- a/R/nlme.R
+++ b/R/nlme.R
@@ -36,7 +36,7 @@
#' nlme_f <- nlme_function(f)
#' # These assignments are necessary for these objects to be
#' # visible to nlme and augPred when evaluation is done by
-#' # pkgdown to generated the html docs.
+#' # pkgdown to generate the html docs.
#' assign("nlme_f", nlme_f, globalenv())
#' assign("grouped_data", grouped_data, globalenv())
#'
@@ -130,13 +130,44 @@ nlme_function <- function(object) {
#' fixed and random effects, in the format required by the start argument of
#' nlme for the case of a single grouping variable ds.
#' @param random Should a list with fixed and random effects be returned?
+#' @param test_log_parms If TRUE, log parameters are only considered in
+#' the mean calculations if their untransformed counterparts (most likely
+#' rate constants) pass the t-test for significant difference from zero.
+#' @param conf.level Possibility to adjust the required confidence level
+#' for parameter that are tested if requested by 'test_log_parms'.
#' @export
-mean_degparms <- function(object, random = FALSE) {
+mean_degparms <- function(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
+{
if (nrow(object) > 1) stop("Only row objects allowed")
parm_mat_trans <- sapply(object, parms, transformed = TRUE)
+
+ if (test_log_parms) {
+ parm_mat_dim <- dim(parm_mat_trans)
+ parm_mat_dimnames <- dimnames(parm_mat_trans)
+
+ log_parm_trans_names <- grep("^log_", rownames(parm_mat_trans), value = TRUE)
+ log_parm_names <- gsub("^log_", "", log_parm_trans_names)
+
+ t_test_back_OK <- matrix(
+ sapply(object, function(o) {
+ suppressWarnings(summary(o)$bpar[log_parm_names, "Pr(>t)"] < (1 - conf.level))
+ }), nrow = length(log_parm_names))
+ rownames(t_test_back_OK) <- log_parm_trans_names
+
+ parm_mat_trans_OK <- parm_mat_trans
+ for (trans_parm in log_parm_trans_names) {
+ parm_mat_trans_OK[trans_parm, ] <- ifelse(t_test_back_OK[trans_parm, ],
+ parm_mat_trans[trans_parm, ], NA)
+ }
+ } else {
+ parm_mat_trans_OK <- parm_mat_trans
+ }
+
mean_degparm_names <- setdiff(rownames(parm_mat_trans), names(object[[1]]$errparms))
degparm_mat_trans <- parm_mat_trans[mean_degparm_names, , drop = FALSE]
- fixed <- apply(degparm_mat_trans, 1, mean)
+ degparm_mat_trans_OK <- parm_mat_trans_OK[mean_degparm_names, , drop = FALSE]
+
+ fixed <- apply(degparm_mat_trans_OK, 1, mean, na.rm = TRUE)
if (random) {
random <- t(apply(degparm_mat_trans[mean_degparm_names, , drop = FALSE], 2, function(column) column - fixed))
# If we only have one parameter, apply returns a vector so we get a single row
diff --git a/R/nlme.mmkin.R b/R/nlme.mmkin.R
index ff1f2fff..306600c6 100644
--- a/R/nlme.mmkin.R
+++ b/R/nlme.mmkin.R
@@ -24,7 +24,7 @@ get_deg_func <- function() {
#' This functions sets up a nonlinear mixed effects model for an mmkin row
#' object. An mmkin row object is essentially a list of mkinfit objects that
#' have been obtained by fitting the same model to a list of datasets.
-#'
+#'
#' Note that the convergence of the nlme algorithms depends on the quality
#' of the data. In degradation kinetics, we often only have few datasets
#' (e.g. data for few soils) and complicated degradation models, which may
diff --git a/R/saem.R b/R/saem.R
index fd2a77b4..460edede 100644
--- a/R/saem.R
+++ b/R/saem.R
@@ -24,8 +24,16 @@ utils::globalVariables(c("predicted", "std"))
#' SFO or DFOP is used for the parent and there is either no metabolite or one.
#' @param degparms_start Parameter values given as a named numeric vector will
#' be used to override the starting values obtained from the 'mmkin' object.
+#' @param test_log_parms If TRUE, an attempt is made to use more robust starting
+#' values for population parameters fitted as log parameters in mkin (like
+#' rate constants) by only considering rate constants that pass the t-test
+#' when calculating mean degradation parameters using [mean_degparms].
+#' @param conf.level Possibility to adjust the required confidence level
+#' for parameter that are tested if requested by 'test_log_parms'.
#' @param solution_type Possibility to specify the solution type in case the
#' automatic choice is not desired
+#' @param fail_with_errors Should a failure to compute standard errors
+#' from the inverse of the Fisher Information Matrix be a failure?
#' @param quiet Should we suppress the messages saemix prints at the beginning
#' and the end of the optimisation process?
#' @param control Passed to [saemix::saemix]
@@ -51,7 +59,7 @@ utils::globalVariables(c("predicted", "std"))
#' # The returned saem.mmkin object contains an SaemixObject, therefore we can use
#' # functions from saemix
#' library(saemix)
-#' compare.saemix(list(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so))
+#' compare.saemix(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so)
#' plot(f_saem_fomc$so, plot.type = "convergence")
#' plot(f_saem_fomc$so, plot.type = "individual.fit")
#' plot(f_saem_fomc$so, plot.type = "npde")
@@ -59,7 +67,7 @@ utils::globalVariables(c("predicted", "std"))
#'
#' f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
#' f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
-#' compare.saemix(list(f_saem_fomc$so, f_saem_fomc_tc$so))
+#' compare.saemix(f_saem_fomc$so, f_saem_fomc_tc$so)
#'
#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"))
@@ -104,19 +112,32 @@ saem <- function(object, ...) UseMethod("saem")
saem.mmkin <- function(object,
transformations = c("mkin", "saemix"),
degparms_start = numeric(),
+ test_log_parms = FALSE,
+ conf.level = 0.6,
solution_type = "auto",
control = list(displayProgress = FALSE, print = FALSE,
save = FALSE, save.graphs = FALSE),
+ fail_with_errors = TRUE,
verbose = FALSE, quiet = FALSE, ...)
{
transformations <- match.arg(transformations)
m_saemix <- saemix_model(object, verbose = verbose,
- degparms_start = degparms_start, solution_type = solution_type,
+ degparms_start = degparms_start,
+ test_log_parms = test_log_parms, conf.level = conf.level,
+ solution_type = solution_type,
transformations = transformations, ...)
d_saemix <- saemix_data(object, verbose = verbose)
fit_time <- system.time({
utils::capture.output(f_saemix <- saemix::saemix(m_saemix, d_saemix, control), split = !quiet)
+ FIM_failed <- NULL
+ if (any(is.na(f_saemix@results@se.fixed))) FIM_failed <- c(FIM_failed, "fixed effects")
+ if (any(is.na(c(f_saemix@results@se.omega, f_saemix@results@se.respar)))) {
+ FIM_failed <- c(FIM_failed, "random effects and residual error parameters")
+ }
+ if (!is.null(FIM_failed) & fail_with_errors) {
+ stop("Could not invert FIM for ", paste(FIM_failed, collapse = " and "))
+ }
})
transparms_optim <- f_saemix@results@fixed.effects
@@ -203,13 +224,13 @@ print.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) {
#' @return An [saemix::SaemixModel] object.
#' @export
saemix_model <- function(object, solution_type = "auto", transformations = c("mkin", "saemix"),
- degparms_start = numeric(), verbose = FALSE, ...)
+ degparms_start = numeric(), test_log_parms = FALSE, verbose = FALSE, ...)
{
if (nrow(object) > 1) stop("Only row objects allowed")
mkin_model <- object[[1]]$mkinmod
- degparms_optim <- mean_degparms(object)
+ degparms_optim <- mean_degparms(object, test_log_parms = test_log_parms)
if (transformations == "saemix") {
degparms_optim <- backtransform_odeparms(degparms_optim,
object[[1]]$mkinmod,
diff --git a/build.log b/build.log
index d50a4860..ca1c0481 100644
--- a/build.log
+++ b/build.log
@@ -6,5 +6,5 @@
* creating vignettes ... OK
* checking for LF line-endings in source and make files and shell scripts
* checking for empty or unneeded directories
-* building ‘mkin_1.0.3.9000.tar.gz’
+* building ‘mkin_1.0.4.9000.tar.gz’
diff --git a/check.log b/check.log
index ac59f6af..6e19f958 100644
--- a/check.log
+++ b/check.log
@@ -1,16 +1,16 @@
* using log directory ‘/home/jranke/git/mkin/mkin.Rcheck’
-* using R version 4.0.3 (2020-10-10)
+* using R version 4.0.4 (2021-02-15)
* using platform: x86_64-pc-linux-gnu (64-bit)
* using session charset: UTF-8
* using options ‘--no-tests --as-cran’
* checking for file ‘mkin/DESCRIPTION’ ... OK
* checking extension type ... Package
-* this is package ‘mkin’ version ‘1.0.3.9000’
+* this is package ‘mkin’ version ‘1.0.4.9000’
* package encoding: UTF-8
* checking CRAN incoming feasibility ... NOTE
Maintainer: ‘Johannes Ranke ’
-Version contains large components (1.0.3.9000)
+Version contains large components (1.0.4.9000)
Unknown, possibly mis-spelled, fields in DESCRIPTION:
‘Remotes’
diff --git a/docs/dev/404.html b/docs/dev/404.html
index f9e51aa3..58591997 100644
--- a/docs/dev/404.html
+++ b/docs/dev/404.html
@@ -71,7 +71,7 @@
mkin
- 1.0.3.9000
+ 1.0.4.9000
diff --git a/docs/dev/articles/index.html b/docs/dev/articles/index.html
index 17ee4a69..3c00526e 100644
--- a/docs/dev/articles/index.html
+++ b/docs/dev/articles/index.html
@@ -71,7 +71,7 @@
mkin
- 1.0.3.9000
+ 1.0.4.9000
diff --git a/docs/dev/authors.html b/docs/dev/authors.html
index 63050c0d..45db18f2 100644
--- a/docs/dev/authors.html
+++ b/docs/dev/authors.html
@@ -71,7 +71,7 @@
mkin
- 1.0.3.9000
+ 1.0.4.9000
diff --git a/docs/dev/index.html b/docs/dev/index.html
index 57328658..d1fa1a52 100644
--- a/docs/dev/index.html
+++ b/docs/dev/index.html
@@ -38,7 +38,7 @@
mkin
- 1.0.3.9000
+ 1.0.4.9000
@@ -192,11 +192,12 @@
Many inspirations for improvements of mkin resulted from doing kinetic evaluations of degradation data for my clients while working at Harlan Laboratories and at Eurofins Regulatory AG, and now as an independent consultant.
Funding was received from the Umweltbundesamt in the course of the projects
-- Grant Number 112407 (Testing and validation of modelling software as an alternative to ModelMaker 4.0, 2014-2015)
+- Project Number 27452 (Testing and validation of modelling software as an alternative to ModelMaker 4.0, 2014-2015)
- Project Number 56703 (Optimization of gmkin for routine use in the Umweltbundesamt, 2015)
+- Project Number 92570 (Update of Project Number 27452, 2017-2018)
- Project Number 112407 (Testing the feasibility of using an error model according to Rocke and Lorenzato for more realistic parameter estimates in the kinetic evaluation of degradation data, 2018-2019)
- Project Number 120667 (Development of objective criteria for the evaluation of the visual fit in the kinetic evaluation of degradation data, 2019-2020)
-- Project 146839 (Checking the feasibility of using mixed-effects models for the derivation of kinetic modelling parameters from degradation studies, 2020-2021)
+- Project Number 146839 (Checking the feasibility of using mixed-effects models for the derivation of kinetic modelling parameters from degradation studies, 2020-2021)
diff --git a/docs/dev/news/index.html b/docs/dev/news/index.html
index 31c392f7..10585403 100644
--- a/docs/dev/news/index.html
+++ b/docs/dev/news/index.html
@@ -71,7 +71,7 @@
mkin
- 1.0.3.9000
+ 1.0.4.9000
@@ -141,10 +141,9 @@
Source: NEWS.md
-
-
-mkin 1.0.3.9000 Unreleased
-
+
+
+mkin 1.0.4.9000
General
@@ -159,29 +158,35 @@
Reintroduce the interface to the current development version of saemix, in particular:
‘saemix_model’ and ‘saemix_data’: Helper functions to set up nonlinear mixed-effects models for mmkin row objects
‘saem’: generic function to fit saemix models using ‘saemix_model’ and ‘saemix_data’, with a generator ‘saem.mmkin’, summary and plot methods
+‘mean_degparms’: New argument ‘test_log_parms’ that makes the function only consider log-transformed parameters where the untransformed parameters pass the t-test for a certain confidence level. This can be used to check more plausible parameters for ‘saem’
-
+
+
+mkin 1.0.4 (Unreleased)
+
+‘plot.mixed.mmkin’: Reset graphical parameters on exit
+All plotting functions setting graphical parameters: Use on.exit() for resetting graphical parameters
+
+
+
-mkin 1.0.3 Unreleased
-
+mkin 1.0.3 (2021-02-15)
- Review and update README, the ‘Introduction to mkin’ vignette and some of the help pages
-
+
-mkin 1.0.2 Unreleased
-
+mkin 1.0.2 (Unreleased)
- ‘mkinfit’: Keep model names stored in ‘mkinmod’ objects, avoiding their loss in ‘gmkin’
-
+
-mkin 1.0.1 2021-02-10
-
+mkin 1.0.1 (2021-02-10)
‘confint.mmkin’, ‘nlme.mmkin’, ‘transform_odeparms’: Fix example code in dontrun sections that failed with current defaults
‘logLik.mkinfit’: Improve example code to avoid warnings and show convenient syntax
@@ -190,10 +195,9 @@
Increase test tolerance for some parameter comparisons that also proved to be platform dependent
-
+
-mkin 1.0.0 2021-02-03
-
+mkin 1.0.0 (2021-02-03)
-mkin 0.9.50.3 (2020-10-08) 2020-10-08
-
+mkin 0.9.50.3 (2020-10-08)
‘parms’: Add a method for mmkin objects
‘mmkin’ and ‘confint(method = ’profile’): Use all cores detected by parallel::detectCores() per default
@@ -237,8 +240,7 @@
-mkin 0.9.50.2 (2020-05-12) 2020-05-12
-
+mkin 0.9.50.2 (2020-05-12)
Increase tolerance for a platform specific test results on the Solaris test machine on CRAN
Updates and corrections (using the spelling package) to the documentation
@@ -246,8 +248,7 @@
-mkin 0.9.50.1 (2020-05-11) 2020-05-11
-
+mkin 0.9.50.1 (2020-05-11)
Support SFORB with formation fractions
‘mkinmod’: Make ‘use_of_ff’ = “max” the default
@@ -256,16 +257,14 @@
-mkin 0.9.49.11 (2020-04-20) 2020-04-20
-
+mkin 0.9.49.11 (2020-04-20)
- Increase a test tolerance to make it pass on all CRAN check machines
-mkin 0.9.49.10 (2020-04-18) 2020-04-18
-
+mkin 0.9.49.10 (2020-04-18)
‘nlme.mmkin’: An nlme method for mmkin row objects and an associated S3 class with print, plot, anova and endpoint methods
‘mean_degparms, nlme_data, nlme_function’: Three new functions to facilitate building nlme models from mmkin row objects
@@ -277,8 +276,7 @@
-mkin 0.9.49.9 (2020-03-31) 2020-03-31
-
+mkin 0.9.49.9 (2020-03-31)
‘mkinmod’: Use pkgbuild::has_compiler instead of Sys.which(‘gcc’), as the latter will often fail even if Rtools are installed
‘mkinds’: Use roxygen for documenting fields and methods of this R6 class
@@ -286,8 +284,7 @@
-mkin 0.9.49.8 (2020-01-09) 2020-01-09
-
+mkin 0.9.49.8 (2020-01-09)
‘aw’: Generic function for calculating Akaike weights, methods for mkinfit objects and mmkin columns
‘loftest’: Add a lack-of-fit test
@@ -298,8 +295,7 @@
-mkin 0.9.49.7 (2019-11-01) 2019-11-02
-
+mkin 0.9.49.7 (2019-11-01)
Fix a bug introduced in 0.9.49.6 that occurred if the direct optimisation yielded a higher likelihood than the three-step optimisation in the d_3 algorithm, which caused the fitted parameters of the three-step optimisation to be returned instead of the parameters of the direct optimisation
Add a ‘nobs’ method for mkinfit objects, enabling the default ‘BIC’ method from the stats package. Also, add a ‘BIC’ method for mmkin column objects.
@@ -307,8 +303,7 @@
-mkin 0.9.49.6 (2019-10-31) 2019-10-31
-
+mkin 0.9.49.6 (2019-10-31)
Implement a likelihood ratio test as a method for ‘lrtest’ from the lmtest package
Add an ‘update’ method for mkinfit objects which remembers fitted parameters if appropriate
@@ -327,8 +322,7 @@
-mkin 0.9.49.5 (2019-07-04) 2019-07-04
-
+mkin 0.9.49.5 (2019-07-04)
Several algorithms for minimization of the negative log-likelihood for non-constant error models (two-component and variance by variable). In the case the error model is constant variance, least squares is used as this is more stable. The default algorithm ‘d_3’ tries direct minimization and a three-step procedure, and returns the model with the highest likelihood.
The argument ‘reweight.method’ to mkinfit and mmkin is now obsolete, use ‘error_model’ and ‘error_model_algorithm’ instead
@@ -346,8 +340,7 @@
-mkin 0.9.48.1 (2019-03-04) 2019-03-04
-
+mkin 0.9.48.1 (2019-03-04)
Add the function ‘logLik.mkinfit’ which makes it possible to calculate an AIC for mkinfit objects
Add the function ‘AIC.mmkin’ to make it easy to compare columns of mmkin objects
@@ -363,8 +356,7 @@
-mkin 0.9.47.5 (2018-09-14) 2018-09-14
-
+mkin 0.9.47.5 (2018-09-14)
Make the two-component error model stop in cases where it is inadequate to avoid nls crashes on windows
Move two vignettes to a location where they will not be built on CRAN (to avoid more NOTES from long execution times)
@@ -373,8 +365,7 @@
-mkin 0.9.47.3 Unreleased
-
+mkin 0.9.47.3
‘mkinfit’: Improve fitting the error model for reweight.method = ‘tc’. Add ‘manual’ to possible arguments for ‘weight’
Test that FOCUS_2006_C can be evaluated with DFOP and reweight.method = ‘tc’
@@ -382,8 +373,7 @@
-mkin 0.9.47.2 (2018-07-19) 2018-07-19
-
+mkin 0.9.47.2 (2018-07-19)
‘sigma_twocomp’: Rename ‘sigma_rl’ to ‘sigma_twocomp’ as the Rocke and Lorenzato model assumes lognormal distribution for large y. Correct references to the Rocke and Lorenzato model accordingly.
‘mkinfit’: Use 1.1 as starting value for N parameter of IORE models to obtain convergence in more difficult cases. Show parameter names when ‘trace_parms’ is ‘TRUE’.
@@ -391,8 +381,7 @@
-mkin 0.9.47.1 (2018-02-06) 2018-02-06
-
+mkin 0.9.47.1 (2018-02-06)
Skip some tests on CRAN and winbuilder to avoid timeouts
‘test_data_from_UBA_2014’: Added this list of datasets containing experimental data used in the expertise from 2014
@@ -404,8 +393,7 @@
-mkin 0.9.46.3 (2017-11-16) 2017-11-16
-
+mkin 0.9.46.3 (2017-11-16)
README.md
, vignettes/mkin.Rmd
: URLs were updated
synthetic_data_for_UBA
: Add the code used to generate the data in the interest of reproducibility
@@ -413,8 +401,7 @@
-mkin 0.9.46.2 (2017-10-10) 2017-10-10
-
+mkin 0.9.46.2 (2017-10-10)
Converted the vignette FOCUS_Z from tex/pdf to markdown/html
DESCRIPTION
: Add ORCID
@@ -422,8 +409,7 @@
-mkin 0.9.46.1 (2017-09-14) 2017-09-14
-
+mkin 0.9.46.1 (2017-09-14)
plot.mkinfit
: Fix scaling of residual plots for the case of separate plots for each observed variable
plot.mkinfit
: Use all data points of the fitted curve for y axis scaling for the case of separate plots for each observed variable
@@ -432,16 +418,14 @@
-mkin 0.9.46 (2017-07-24) 2017-07-29
-
+mkin 0.9.46 (2017-07-24)
- Remove
test_FOMC_ill-defined.R
as it is too platform dependent
-mkin 0.9.45.2 (2017-07-24) 2017-07-22
-
+mkin 0.9.45.2 (2017-07-24)
Rename twa
to max_twa_parent
to avoid conflict with twa
from my pfm
package
Update URLs in documentation
@@ -451,8 +435,7 @@
-mkin 0.9.45.1 (2016-12-20) Unreleased
-
+mkin 0.9.45.1 (2016-12-20)
-mkin 0.9.45 (2016-12-08) 2016-12-08
-
+mkin 0.9.45 (2016-12-08)
-mkin 0.9.44 (2016-06-29) 2016-06-29
-
+mkin 0.9.44 (2016-06-29)
-mkin 0.9.43 (2016-06-28) 2016-06-28
-
+mkin 0.9.43 (2016-06-28)
-mkin 0.9.42 (2016-03-25) 2016-03-25
-
+mkin 0.9.42 (2016-03-25)
-mkin 0.9-41 (2015-11-09) 2015-11-09
-
+mkin 0.9-41 (2015-11-09)
-mkin 0.9-40 (2015-07-21) 2015-07-21
-
+mkin 0.9-40 (2015-07-21)
-mkin 0.9-39 (2015-06-26) 2015-06-26
-
+mkin 0.9-39 (2015-06-26)
-mkin 0.9-38 (2015-06-24) 2015-06-23
-
+mkin 0.9-38 (2015-06-24)
-mkin 0.9-36 (2015-06-21) 2015-06-21
-
+mkin 0.9-36 (2015-06-21)
-mkin 0.9-35 (2015-05-15) 2015-05-15
-
+mkin 0.9-35 (2015-05-15)
-mkin 0.9-34 (2014-11-22) 2014-11-22
-
+mkin 0.9-34 (2014-11-22)
-mkin 0.9-33 (2014-10-22) 2014-10-12
-
+mkin 0.9-33 (2014-10-22)
-mkin 0.9-32 (2014-07-24) 2014-07-24
-
+mkin 0.9-32 (2014-07-24)
-mkin 0.9-31 (2014-07-14) 2014-07-14
-
+mkin 0.9-31 (2014-07-14)
-mkin 0.9-30 (2014-07-11) 2014-07-11
-
+mkin 0.9-30 (2014-07-11)
-mkin 0.9-29 (2014-06-27) 2014-06-27
-
+mkin 0.9-29 (2014-06-27)
R/mkinresplot.R: Make it possible to specify xlim
R/geometric_mean.R, man/geometric_mean.Rd: Add geometric mean function
@@ -835,8 +802,7 @@
-mkin 0.9-28 (2014-05-20) 2014-05-20
-
+mkin 0.9-28 (2014-05-20)
Do not backtransform confidence intervals for formation fractions if more than one compound is formed, as such parameters only define the pathways as a set
Add historical remarks and some background to the main package vignette
@@ -845,8 +811,7 @@
-mkin 0.9-27 (2014-05-10) 2014-05-10
-
+mkin 0.9-27 (2014-05-10)
Fork the GUI into a separate package gmkin
DESCRIPTION, NAMESPACE, TODO: Adapt and add copyright information
@@ -869,8 +834,7 @@
-mkin 0.9-24 (2013-11-06) 2013-11-06
-
+mkin 0.9-24 (2013-11-06)
Bugfix re-enabling the fixing of any combination of initial values for state variables
Default values for kinetic rate constants are not all 0.1 any more but are “salted” with a small increment to avoid numeric artefacts with the eigenvalue based solutions
@@ -879,8 +843,7 @@
-mkin 0.9-22 (2013-10-26) 2013-10-26
-
+mkin 0.9-22 (2013-10-26)
Get rid of the optimisation step in mkinerrmin
- this was unnecessary. Thanks to KinGUII for the inspiration - actually this is equation 6-2 in FOCUS kinetics p. 91 that I had overlooked originally
Fix plot.mkinfit
as it passed graphical arguments like main to the solver
diff --git a/docs/dev/pkgdown.yml b/docs/dev/pkgdown.yml
index 4df60994..dbacd0ab 100644
--- a/docs/dev/pkgdown.yml
+++ b/docs/dev/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
web_only/NAFTA_examples: NAFTA_examples.html
web_only/benchmarks: benchmarks.html
web_only/compiled_models: compiled_models.html
-last_built: 2021-02-15T16:08Z
+last_built: 2021-03-09T16:32Z
urls:
reference: https://pkgdown.jrwb.de/mkin/reference
article: https://pkgdown.jrwb.de/mkin/articles
diff --git a/docs/dev/reference/Rplot001.png b/docs/dev/reference/Rplot001.png
index 7f498242..17a35806 100644
Binary files a/docs/dev/reference/Rplot001.png and b/docs/dev/reference/Rplot001.png differ
diff --git a/docs/dev/reference/Rplot002.png b/docs/dev/reference/Rplot002.png
index 54c31a3f..a9a972e5 100644
Binary files a/docs/dev/reference/Rplot002.png and b/docs/dev/reference/Rplot002.png differ
diff --git a/docs/dev/reference/Rplot003.png b/docs/dev/reference/Rplot003.png
index 2b011ec1..d077f01c 100644
Binary files a/docs/dev/reference/Rplot003.png and b/docs/dev/reference/Rplot003.png differ
diff --git a/docs/dev/reference/Rplot004.png b/docs/dev/reference/Rplot004.png
index 98dd019e..ffcd2d96 100644
Binary files a/docs/dev/reference/Rplot004.png and b/docs/dev/reference/Rplot004.png differ
diff --git a/docs/dev/reference/Rplot005.png b/docs/dev/reference/Rplot005.png
index 8c91d61e..dfb5965b 100644
Binary files a/docs/dev/reference/Rplot005.png and b/docs/dev/reference/Rplot005.png differ
diff --git a/docs/dev/reference/endpoints.html b/docs/dev/reference/endpoints.html
index c9912f9c..63bec6a8 100644
--- a/docs/dev/reference/endpoints.html
+++ b/docs/dev/reference/endpoints.html
@@ -78,7 +78,7 @@ advantage that the SFORB model can also be used for metabolites." />
mkin
- 1.0.3.9000
+ 1.0.4.9000
diff --git a/docs/dev/reference/index.html b/docs/dev/reference/index.html
index 03a21517..5533a01f 100644
--- a/docs/dev/reference/index.html
+++ b/docs/dev/reference/index.html
@@ -71,7 +71,7 @@
mkin
- 1.0.3.9000
+ 1.0.4.9000
diff --git a/docs/dev/reference/nlme-1.png b/docs/dev/reference/nlme-1.png
index 728cc557..fd68ae43 100644
Binary files a/docs/dev/reference/nlme-1.png and b/docs/dev/reference/nlme-1.png differ
diff --git a/docs/dev/reference/nlme-2.png b/docs/dev/reference/nlme-2.png
index e8167455..853cae40 100644
Binary files a/docs/dev/reference/nlme-2.png and b/docs/dev/reference/nlme-2.png differ
diff --git a/docs/dev/reference/nlme.html b/docs/dev/reference/nlme.html
index b850eb3d..78d132e9 100644
--- a/docs/dev/reference/nlme.html
+++ b/docs/dev/reference/nlme.html
@@ -75,7 +75,7 @@ datasets. They are used internally by the nlme.mmkin() method." />
mkin
- 1.0.3.9000
+ 1.0.4.9000
@@ -155,7 +155,7 @@ datasets. They are used internally by the nlme.m
nlme_function(object)
-mean_degparms(object, random = FALSE)
+mean_degparms(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
nlme_data(object)
@@ -170,6 +170,17 @@ datasets. They are used internally by the nlme.m
random
Should a list with fixed and random effects be returned?
+
+ test_log_parms
+ If TRUE, log parameters are only considered in
+the mean calculations if their untransformed counterparts (most likely
+rate constants) pass the t-test for significant difference from zero.
+
+
+ conf.level
+ Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'.
+
Value
@@ -211,7 +222,7 @@ nlme for the case of a single grouping variable ds.
nlme_f <- nlme_function(f)
# These assignments are necessary for these objects to be
# visible to nlme and augPred when evaluation is done by
-# pkgdown to generated the html docs.
+# pkgdown to generate the html docs.
assign("nlme_f", nlme_f, globalenv())
assign("grouped_data", grouped_data, globalenv())
@@ -226,28 +237,28 @@ nlme for the case of a single grouping variable ds.
#> Model: value ~ nlme_f(name, time, parent_0, log_k_parent_sink)
#> Data: grouped_data
#> AIC BIC logLik
-#> 300.6824 310.2426 -145.3412
+#> 298.2781 307.7372 -144.1391
#>
#> Random effects:
#> Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1)
#> Level: ds
#> Structure: Diagonal
#> parent_0 log_k_parent_sink Residual
-#> StdDev: 1.697361 0.6801209 3.666073
+#> StdDev: 0.937473 0.7098105 3.83543
#>
#> Fixed effects: parent_0 + log_k_parent_sink ~ 1
#> Value Std.Error DF t-value p-value
-#> parent_0 100.99378 1.3890416 46 72.70753 0
-#> log_k_parent_sink -3.07521 0.4018589 46 -7.65246 0
+#> parent_0 101.76838 1.1445443 45 88.91607 0
+#> log_k_parent_sink -3.05444 0.4195622 45 -7.28008 0
#> Correlation:
#> prnt_0
-#> log_k_parent_sink 0.027
+#> log_k_parent_sink 0.034
#>
#> Standardized Within-Group Residuals:
-#> Min Q1 Med Q3 Max
-#> -1.9942823 -0.5622565 0.1791579 0.7165038 2.0704781
+#> Min Q1 Med Q3 Max
+#> -2.61693595 -0.21853231 0.05740682 0.57209372 3.04598764
#>
-#> Number of Observations: 50
+#> Number of Observations: 49
#> Number of Groups: 3
# augPred does not work on fits with more than one state
# variable
diff --git a/docs/dev/reference/nlme.mmkin-1.png b/docs/dev/reference/nlme.mmkin-1.png
index 9186c135..90ede880 100644
Binary files a/docs/dev/reference/nlme.mmkin-1.png and b/docs/dev/reference/nlme.mmkin-1.png differ
diff --git a/docs/dev/reference/nlme.mmkin-2.png b/docs/dev/reference/nlme.mmkin-2.png
index d395fe02..0d140fd1 100644
Binary files a/docs/dev/reference/nlme.mmkin-2.png and b/docs/dev/reference/nlme.mmkin-2.png differ
diff --git a/docs/dev/reference/nlme.mmkin-3.png b/docs/dev/reference/nlme.mmkin-3.png
index 40518a59..8a60b52b 100644
Binary files a/docs/dev/reference/nlme.mmkin-3.png and b/docs/dev/reference/nlme.mmkin-3.png differ
diff --git a/docs/dev/reference/nlme.mmkin.html b/docs/dev/reference/nlme.mmkin.html
index 925cf7cf..f308d8b7 100644
--- a/docs/dev/reference/nlme.mmkin.html
+++ b/docs/dev/reference/nlme.mmkin.html
@@ -74,7 +74,7 @@ have been obtained by fitting the same model to a list of datasets." />
mkin
- 1.0.3.9000
+ 1.0.4.9000
diff --git a/docs/dev/reference/plot.mixed.mmkin-1.png b/docs/dev/reference/plot.mixed.mmkin-1.png
index 9c9a2211..2224d96e 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-1.png and b/docs/dev/reference/plot.mixed.mmkin-1.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin-2.png b/docs/dev/reference/plot.mixed.mmkin-2.png
index 0f66ff0f..28168495 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-2.png and b/docs/dev/reference/plot.mixed.mmkin-2.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin-3.png b/docs/dev/reference/plot.mixed.mmkin-3.png
index 34212f1c..d18275dd 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-3.png and b/docs/dev/reference/plot.mixed.mmkin-3.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin-4.png b/docs/dev/reference/plot.mixed.mmkin-4.png
index c1450d24..2fd52425 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-4.png and b/docs/dev/reference/plot.mixed.mmkin-4.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin.html b/docs/dev/reference/plot.mixed.mmkin.html
index 630e95a3..36796580 100644
--- a/docs/dev/reference/plot.mixed.mmkin.html
+++ b/docs/dev/reference/plot.mixed.mmkin.html
@@ -72,7 +72,7 @@
mkin
- 1.0.3.9000
+ 1.0.4.9000
@@ -283,10 +283,10 @@ corresponding model prediction lines for the different datasets.
#> Running main SAEM algorithm
-#> [1] "Mon Feb 15 17:12:17 2021"
+#> [1] "Tue Mar 9 17:34:35 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Feb 15 17:12:24 2021"
# We can overlay the two variants if we generate predictions
pred_nlme <- mkinpredict(dfop_sfo,
diff --git a/docs/dev/reference/saem-1.png b/docs/dev/reference/saem-1.png
index 2df248bb..0da31388 100644
Binary files a/docs/dev/reference/saem-1.png and b/docs/dev/reference/saem-1.png differ
diff --git a/docs/dev/reference/saem-2.png b/docs/dev/reference/saem-2.png
index d4a2c1be..010950ba 100644
Binary files a/docs/dev/reference/saem-2.png and b/docs/dev/reference/saem-2.png differ
diff --git a/docs/dev/reference/saem-3.png b/docs/dev/reference/saem-3.png
index 4474b1f1..829f22bf 100644
Binary files a/docs/dev/reference/saem-3.png and b/docs/dev/reference/saem-3.png differ
diff --git a/docs/dev/reference/saem-4.png b/docs/dev/reference/saem-4.png
index bf24d6b0..4e976fa2 100644
Binary files a/docs/dev/reference/saem-4.png and b/docs/dev/reference/saem-4.png differ
diff --git a/docs/dev/reference/saem-5.png b/docs/dev/reference/saem-5.png
index 27ed3f8f..f50969b4 100644
Binary files a/docs/dev/reference/saem-5.png and b/docs/dev/reference/saem-5.png differ
diff --git a/docs/dev/reference/saem.html b/docs/dev/reference/saem.html
index bdb1226e..23102df3 100644
--- a/docs/dev/reference/saem.html
+++ b/docs/dev/reference/saem.html
@@ -74,7 +74,7 @@ Expectation Maximisation algorithm (SAEM)." />
mkin
- 1.0.3.9000
+ 1.0.4.9000
@@ -158,9 +158,12 @@ Expectation Maximisation algorithm (SAEM).
object,
transformations = c("mkin", "saemix"),
degparms_start = numeric(),
+ test_log_parms = FALSE,
+ conf.level = 0.6,
solution_type = "auto",
control = list(displayProgress = FALSE, print = FALSE, save = FALSE, save.graphs =
FALSE),
+ fail_with_errors = TRUE,
verbose = FALSE,
quiet = FALSE,
...
@@ -174,6 +177,7 @@ Expectation Maximisation algorithm (SAEM).
solution_type = "auto",
transformations = c("mkin", "saemix"),
degparms_start = numeric(),
+ test_log_parms = FALSE,
verbose = FALSE,
...
)
@@ -204,6 +208,18 @@ SFO or DFOP is used for the parent and there is either no metabolite or one.
degparms_start
Parameter values given as a named numeric vector will
be used to override the starting values obtained from the 'mmkin' object.
+
+
+ test_log_parms
+ If TRUE, an attempt is made to use more robust starting
+values for population parameters fitted as log parameters in mkin (like
+rate constants) by only considering rate constants that pass the t-test
+when calculating mean degradation parameters using mean_degparms.
+
+
+ conf.level
+ Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'.
solution_type
@@ -214,6 +230,11 @@ automatic choice is not desired
control
Passed to saemix::saemix
+
+ fail_with_errors
+ Should a failure to compute standard errors
+from the inverse of the Fisher Information Matrix be a failure?
+
verbose
Should we print information about created objects of
@@ -261,33 +282,36 @@ using mmkin.
state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)
#> Running main SAEM algorithm
-#> [1] "Mon Feb 15 17:12:32 2021"
+#> [1] "Tue Mar 9 17:34:44 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Feb 15 17:12:34 2021"
+#> [1] "Tue Mar 9 17:34:45 2021"
f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
f_saem_sfo <- saem(f_mmkin_parent["SFO", ])
#> Running main SAEM algorithm
-#> [1] "Mon Feb 15 17:12:35 2021"
+#> [1] "Tue Mar 9 17:34:46 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Feb 15 17:12:36 2021"f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
+#> [1] "Tue Mar 9 17:34:48 2021"f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
#> Running main SAEM algorithm
-#> [1] "Mon Feb 15 17:12:36 2021"
+#> [1] "Tue Mar 9 17:34:48 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Feb 15 17:12:38 2021"f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
+#> [1] "Tue Mar 9 17:34:50 2021"f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
#> Running main SAEM algorithm
-#> [1] "Mon Feb 15 17:12:39 2021"
+#> [1] "Tue Mar 9 17:34:51 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Feb 15 17:12:42 2021"
+#> [1] "Tue Mar 9 17:34:53 2021"
# The returned saem.mmkin object contains an SaemixObject, therefore we can use
# functions from saemix
library(saemix)
#> Package saemix, version 3.1.9000
-#> please direct bugs, questions and feedback to emmanuelle.comets@inserm.fr#> Error in compare.saemix(list(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so)): 'compare.saemix' requires at least two models.plot(f_saem_fomc$so, plot.type = "convergence")
+#> please direct bugs, questions and feedback to emmanuelle.comets@inserm.fr#> Likelihoods calculated by importance sampling#> AIC BIC
+#> 1 624.2484 622.2956
+#> 2 467.7096 464.9757
+#> 3 495.4373 491.9222#> Plotting convergence plots#> Plotting individual fits#> Simulating data using nsim = 1000 simulated datasets
@@ -324,11 +348,13 @@ using mmkin.
f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
#> Running main SAEM algorithm
-#> [1] "Mon Feb 15 17:12:44 2021"
+#> [1] "Tue Mar 9 17:34:55 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Feb 15 17:12:49 2021"#> Error in compare.saemix(list(f_saem_fomc$so, f_saem_fomc_tc$so)): 'compare.saemix' requires at least two models.
+#> [1] "Tue Mar 9 17:35:00 2021"#> Likelihoods calculated by importance sampling#> AIC BIC
+#> 1 467.7096 464.9757
+#> 2 469.6831 466.5586#> Temporary DLL for differentials generated and loadedfomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
@@ -346,15 +372,15 @@ using mmkin.
# four minutes
f_saem_sfo_sfo <- saem(f_mmkin["SFO-SFO", ])
#> Running main SAEM algorithm
-#> [1] "Mon Feb 15 17:12:51 2021"
+#> [1] "Tue Mar 9 17:35:02 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Feb 15 17:12:56 2021"f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
+#> [1] "Tue Mar 9 17:35:07 2021"f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
#> Running main SAEM algorithm
-#> [1] "Mon Feb 15 17:12:56 2021"
+#> [1] "Tue Mar 9 17:35:07 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Feb 15 17:13:05 2021"# We can use print, plot and summary methods to check the results
+#> [1] "Tue Mar 9 17:35:15 2021"#> Kinetic nonlinear mixed-effects model fit by SAEM
#> Structural model:
@@ -395,10 +421,10 @@ using mmkin.
#> SD.g_qlogis 0.44771 -0.86417 1.7596#> saemix version used for fitting: 3.1.9000
-#> mkin version used for pre-fitting: 1.0.3.9000
-#> R version used for fitting: 4.0.3
-#> Date of fit: Mon Feb 15 17:13:05 2021
-#> Date of summary: Mon Feb 15 17:13:06 2021
+#> mkin version used for pre-fitting: 1.0.4.9000
+#> R version used for fitting: 4.0.4
+#> Date of fit: Tue Mar 9 17:35:16 2021
+#> Date of summary: Tue Mar 9 17:35:16 2021
#>
#> Equations:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -413,7 +439,7 @@ using mmkin.
#>
#> Model predictions using solution type analytical
#>
-#> Fitted in 8.985 s using 300, 100 iterations
+#> Fitted in 8.668 s using 300, 100 iterations
#>
#> Variance model: Constant variance
#>
diff --git a/docs/dev/reference/summary.saem.mmkin.html b/docs/dev/reference/summary.saem.mmkin.html
index 0d661ee9..1166abb1 100644
--- a/docs/dev/reference/summary.saem.mmkin.html
+++ b/docs/dev/reference/summary.saem.mmkin.html
@@ -76,7 +76,7 @@ endpoints such as formation fractions and DT50 values. Optionally
mkin
- 1.0.3.9000
+ 1.0.4.9000
@@ -260,15 +260,15 @@ saemix authors for the parts inherited from saemix.
quiet = TRUE, error_model = "tc", cores = 5)
f_saem_dfop_sfo <- saem(f_mmkin_dfop_sfo)
#> Running main SAEM algorithm
-#> [1] "Mon Feb 15 17:13:15 2021"
+#> [1] "Tue Mar 9 17:35:19 2021"
#> ....
#> Minimisation finished
-#> [1] "Mon Feb 15 17:13:26 2021"#> saemix version used for fitting: 3.1.9000
-#> mkin version used for pre-fitting: 1.0.3.9000
-#> R version used for fitting: 4.0.3
-#> Date of fit: Mon Feb 15 17:13:27 2021
-#> Date of summary: Mon Feb 15 17:13:27 2021
+#> mkin version used for pre-fitting: 1.0.4.9000
+#> R version used for fitting: 4.0.4
+#> Date of fit: Tue Mar 9 17:35:31 2021
+#> Date of summary: Tue Mar 9 17:35:31 2021
#>
#> Equations:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -283,7 +283,7 @@ saemix authors for the parts inherited from saemix.
#>
#> Model predictions using solution type analytical
#>
-#> Fitted in 12.204 s using 300, 100 iterations
+#> Fitted in 12.058 s using 300, 100 iterations
#>
#> Variance model: Two-component variance function
#>
@@ -300,231 +300,231 @@ saemix authors for the parts inherited from saemix.
#>
#> Likelihood computed by importance sampling
#> AIC BIC logLik
-#> 829.3 823.9 -400.7
+#> 825.9 820.4 -398.9
#>
#> Optimised parameters:
-#> est. lower upper
-#> parent_0 101.29457 97.855 104.7344
-#> log_k_m1 -4.06337 -4.182 -3.9445
-#> f_parent_qlogis -0.94546 -1.307 -0.5841
-#> log_k1 -2.98794 -3.844 -2.1321
-#> log_k2 -3.47891 -4.253 -2.7050
-#> g_qlogis -0.03211 -1.157 1.0931
+#> est. lower upper
+#> parent_0 101.118986 97.368 104.8695
+#> log_k_m1 -4.057591 -4.177 -3.9379
+#> f_parent_qlogis -0.933087 -1.290 -0.5763
+#> log_k1 -2.945520 -3.833 -2.0576
+#> log_k2 -3.531954 -4.310 -2.7542
+#> g_qlogis -0.009584 -1.688 1.6687
#>
#> Correlation:
#> prnt_0 lg_k_1 f_prn_ log_k1 log_k2
-#> log_k_m1 -0.202
-#> f_parent_qlogis -0.145 0.195
-#> log_k1 0.094 -0.099 -0.049
-#> log_k2 -0.042 0.056 0.024 -0.097
-#> g_qlogis -0.005 0.000 0.007 -0.160 -0.113
+#> log_k_m1 -0.198
+#> f_parent_qlogis -0.153 0.184
+#> log_k1 0.080 -0.077 -0.045
+#> log_k2 0.005 0.008 -0.003 -0.019
+#> g_qlogis -0.059 0.048 0.041 -0.334 -0.253
#>
#> Random effects:
#> est. lower upper
-#> SD.parent_0 2.70085 -0.64980 6.0515
-#> SD.log_k_m1 0.08408 -0.04023 0.2084
-#> SD.f_parent_qlogis 0.39215 0.13695 0.6473
-#> SD.log_k1 0.89280 0.27466 1.5109
-#> SD.log_k2 0.82387 0.26388 1.3838
-#> SD.g_qlogis 0.36468 -0.86978 1.5991
+#> SD.parent_0 2.97797 -0.62927 6.5852
+#> SD.log_k_m1 0.09235 -0.02448 0.2092
+#> SD.f_parent_qlogis 0.38712 0.13469 0.6396
+#> SD.log_k1 0.88671 0.27052 1.5029
+#> SD.log_k2 0.80497 0.25587 1.3541
+#> SD.g_qlogis 0.36812 -3.56188 4.2981
#>
#> Variance model:
#> est. lower upper
-#> a.1 0.65724 0.49361 0.82086
-#> b.1 0.06434 0.05034 0.07835
+#> a.1 0.85879 0.68143 1.03615
+#> b.1 0.07787 0.06288 0.09286
#>
#> Backtransformed parameters:
#> est. lower upper
-#> parent_0 101.29457 97.85477 104.73437
-#> k_m1 0.01719 0.01526 0.01936
-#> f_parent_to_m1 0.27980 0.21302 0.35798
-#> k1 0.05039 0.02141 0.11859
-#> k2 0.03084 0.01422 0.06687
-#> g 0.49197 0.23916 0.74896
+#> parent_0 101.11899 97.36850 104.86947
+#> k_m1 0.01729 0.01534 0.01949
+#> f_parent_to_m1 0.28230 0.21587 0.35979
+#> k1 0.05257 0.02163 0.12776
+#> k2 0.02925 0.01344 0.06366
+#> g 0.49760 0.15606 0.84140
#>
#> Resulting formation fractions:
#> ff
-#> parent_m1 0.2798
-#> parent_sink 0.7202
+#> parent_m1 0.2823
+#> parent_sink 0.7177
#>
#> Estimated disappearance times:
#> DT50 DT90 DT50back DT50_k1 DT50_k2
-#> parent 17.49 61.05 18.38 13.76 22.47
-#> m1 40.32 133.94 NA NA NA
+#> parent 17.47 62.31 18.76 13.18 23.7
+#> m1 40.09 133.17 NA NA NA
#>
#> Data:
-#> ds name time observed predicted residual std standardized
-#> ds 1 parent 0 89.8 9.878e+01 8.98039 6.3899 1.40541
-#> ds 1 parent 0 104.1 9.878e+01 -5.31961 6.3899 -0.83251
-#> ds 1 parent 1 88.7 9.422e+01 5.52084 6.0981 0.90533
-#> ds 1 parent 1 95.5 9.422e+01 -1.27916 6.0981 -0.20976
-#> ds 1 parent 3 81.8 8.587e+01 4.06752 5.5641 0.73103
-#> ds 1 parent 3 94.5 8.587e+01 -8.63248 5.5641 -1.55147
-#> ds 1 parent 7 71.5 7.180e+01 0.29615 4.6662 0.06347
-#> ds 1 parent 7 70.3 7.180e+01 1.49615 4.6662 0.32063
-#> ds 1 parent 14 54.2 5.360e+01 -0.59602 3.5112 -0.16975
-#> ds 1 parent 14 49.6 5.360e+01 4.00398 3.5112 1.14035
-#> ds 1 parent 28 31.5 3.213e+01 0.62529 2.1691 0.28828
-#> ds 1 parent 28 28.8 3.213e+01 3.32529 2.1691 1.53306
-#> ds 1 parent 60 12.1 1.271e+01 0.60718 1.0490 0.57879
-#> ds 1 parent 60 13.6 1.271e+01 -0.89282 1.0490 -0.85108
-#> ds 1 parent 90 6.2 6.080e+00 -0.12020 0.7649 -0.15716
-#> ds 1 parent 90 8.3 6.080e+00 -2.22020 0.7649 -2.90279
-#> ds 1 parent 120 2.2 3.011e+00 0.81059 0.6852 1.18302
-#> ds 1 parent 120 2.4 3.011e+00 0.61059 0.6852 0.89113
-#> ds 1 m1 1 0.3 1.131e+00 0.83071 0.6613 1.25628
-#> ds 1 m1 1 0.2 1.131e+00 0.93071 0.6613 1.40750
-#> ds 1 m1 3 2.2 3.147e+00 0.94691 0.6877 1.37688
-#> ds 1 m1 3 3.0 3.147e+00 0.14691 0.6877 0.21361
-#> ds 1 m1 7 6.5 6.341e+00 -0.15949 0.7736 -0.20618
-#> ds 1 m1 7 5.0 6.341e+00 1.34051 0.7736 1.73290
-#> ds 1 m1 14 10.2 9.910e+00 -0.28991 0.9157 -0.31659
-#> ds 1 m1 14 9.5 9.910e+00 0.41009 0.9157 0.44783
-#> ds 1 m1 28 12.2 1.255e+01 0.34690 1.0410 0.33323
-#> ds 1 m1 28 13.4 1.255e+01 -0.85310 1.0410 -0.81949
-#> ds 1 m1 60 11.8 1.087e+01 -0.92713 0.9599 -0.96586
-#> ds 1 m1 60 13.2 1.087e+01 -2.32713 0.9599 -2.42434
-#> ds 1 m1 90 6.6 7.813e+00 1.21254 0.8274 1.46541
-#> ds 1 m1 90 9.3 7.813e+00 -1.48746 0.8274 -1.79766
-#> ds 1 m1 120 3.5 5.295e+00 1.79489 0.7403 2.42457
-#> ds 1 m1 120 5.4 5.295e+00 -0.10511 0.7403 -0.14198
-#> ds 2 parent 0 118.0 1.074e+02 -10.63436 6.9396 -1.53242
-#> ds 2 parent 0 99.8 1.074e+02 7.56564 6.9396 1.09021
-#> ds 2 parent 1 90.2 1.012e+02 10.96486 6.5425 1.67594
-#> ds 2 parent 1 94.6 1.012e+02 6.56486 6.5425 1.00342
-#> ds 2 parent 3 96.1 9.054e+01 -5.56014 5.8627 -0.94839
-#> ds 2 parent 3 78.4 9.054e+01 12.13986 5.8627 2.07069
-#> ds 2 parent 7 77.9 7.468e+01 -3.21805 4.8501 -0.66350
-#> ds 2 parent 7 77.7 7.468e+01 -3.01805 4.8501 -0.62226
-#> ds 2 parent 14 56.0 5.748e+01 1.47774 3.7563 0.39340
-#> ds 2 parent 14 54.7 5.748e+01 2.77774 3.7563 0.73948
-#> ds 2 parent 28 36.6 3.996e+01 3.36317 2.6541 1.26717
-#> ds 2 parent 28 36.8 3.996e+01 3.16317 2.6541 1.19182
-#> ds 2 parent 60 22.1 2.132e+01 -0.78225 1.5210 -0.51430
-#> ds 2 parent 60 24.7 2.132e+01 -3.38225 1.5210 -2.22369
-#> ds 2 parent 90 12.4 1.215e+01 -0.25010 1.0213 -0.24487
-#> ds 2 parent 90 10.8 1.215e+01 1.34990 1.0213 1.32169
-#> ds 2 parent 120 6.8 6.931e+00 0.13105 0.7943 0.16500
-#> ds 2 parent 120 7.9 6.931e+00 -0.96895 0.7943 -1.21994
-#> ds 2 m1 1 1.3 1.519e+00 0.21924 0.6645 0.32995
-#> ds 2 m1 3 3.7 4.049e+00 0.34891 0.7070 0.49351
-#> ds 2 m1 3 4.7 4.049e+00 -0.65109 0.7070 -0.92094
-#> ds 2 m1 7 8.1 7.565e+00 -0.53526 0.8179 -0.65448
-#> ds 2 m1 7 7.9 7.565e+00 -0.33526 0.8179 -0.40993
-#> ds 2 m1 14 10.1 1.071e+01 0.60614 0.9521 0.63663
-#> ds 2 m1 14 10.3 1.071e+01 0.40614 0.9521 0.42657
-#> ds 2 m1 28 10.7 1.224e+01 1.54440 1.0260 1.50526
-#> ds 2 m1 28 12.2 1.224e+01 0.04440 1.0260 0.04327
-#> ds 2 m1 60 10.7 1.056e+01 -0.14005 0.9453 -0.14815
-#> ds 2 m1 60 12.5 1.056e+01 -1.94005 0.9453 -2.05226
-#> ds 2 m1 90 9.1 8.089e+00 -1.01088 0.8384 -1.20577
-#> ds 2 m1 90 7.4 8.089e+00 0.68912 0.8384 0.82197
-#> ds 2 m1 120 6.1 5.855e+00 -0.24463 0.7576 -0.32292
-#> ds 2 m1 120 4.5 5.855e+00 1.35537 0.7576 1.78911
-#> ds 3 parent 0 106.2 1.095e+02 3.30335 7.0765 0.46680
-#> ds 3 parent 0 106.9 1.095e+02 2.60335 7.0765 0.36788
-#> ds 3 parent 1 107.4 9.939e+01 -8.01282 6.4287 -1.24641
-#> ds 3 parent 1 96.1 9.939e+01 3.28718 6.4287 0.51133
-#> ds 3 parent 3 79.4 8.365e+01 4.24698 5.4222 0.78326
-#> ds 3 parent 3 82.6 8.365e+01 1.04698 5.4222 0.19309
-#> ds 3 parent 7 63.9 6.405e+01 0.14704 4.1732 0.03523
-#> ds 3 parent 7 62.4 6.405e+01 1.64704 4.1732 0.39467
-#> ds 3 parent 14 51.0 4.795e+01 -3.04985 3.1546 -0.96681
-#> ds 3 parent 14 47.1 4.795e+01 0.85015 3.1546 0.26950
-#> ds 3 parent 28 36.1 3.501e+01 -1.09227 2.3465 -0.46549
-#> ds 3 parent 28 36.6 3.501e+01 -1.59227 2.3465 -0.67858
-#> ds 3 parent 60 20.1 2.012e+01 0.02116 1.4520 0.01457
-#> ds 3 parent 60 19.8 2.012e+01 0.32116 1.4520 0.22119
-#> ds 3 parent 90 11.3 1.206e+01 0.76096 1.0170 0.74826
-#> ds 3 parent 90 10.7 1.206e+01 1.36096 1.0170 1.33825
-#> ds 3 parent 120 8.2 7.230e+00 -0.97022 0.8052 -1.20493
-#> ds 3 parent 120 7.3 7.230e+00 -0.07022 0.8052 -0.08721
-#> ds 3 m1 0 0.8 -5.684e-13 -0.80000 0.6572 -1.21722
-#> ds 3 m1 1 1.8 2.045e+00 0.24538 0.6703 0.36608
-#> ds 3 m1 1 2.3 2.045e+00 -0.25462 0.6703 -0.37987
-#> ds 3 m1 3 4.2 5.136e+00 0.93594 0.7356 1.27228
-#> ds 3 m1 3 4.1 5.136e+00 1.03594 0.7356 1.40822
-#> ds 3 m1 7 6.8 8.674e+00 1.87438 0.8623 2.17381
-#> ds 3 m1 7 10.1 8.674e+00 -1.42562 0.8623 -1.65335
-#> ds 3 m1 14 11.4 1.083e+01 -0.56746 0.9580 -0.59233
-#> ds 3 m1 14 12.8 1.083e+01 -1.96746 0.9580 -2.05369
-#> ds 3 m1 28 11.5 1.098e+01 -0.51762 0.9651 -0.53637
-#> ds 3 m1 28 10.6 1.098e+01 0.38238 0.9651 0.39623
-#> ds 3 m1 60 7.5 8.889e+00 1.38911 0.8713 1.59436
-#> ds 3 m1 60 8.6 8.889e+00 0.28911 0.8713 0.33183
-#> ds 3 m1 90 7.3 6.774e+00 -0.52608 0.7886 -0.66708
-#> ds 3 m1 90 8.1 6.774e+00 -1.32608 0.7886 -1.68150
-#> ds 3 m1 120 5.3 4.954e+00 -0.34584 0.7305 -0.47345
-#> ds 3 m1 120 3.8 4.954e+00 1.15416 0.7305 1.58004
-#> ds 4 parent 0 104.7 9.957e+01 -5.13169 6.4403 -0.79681
-#> ds 4 parent 0 88.3 9.957e+01 11.26831 6.4403 1.74966
-#> ds 4 parent 1 94.2 9.644e+01 2.23888 6.2400 0.35879
-#> ds 4 parent 1 94.6 9.644e+01 1.83888 6.2400 0.29469
-#> ds 4 parent 3 78.1 9.054e+01 12.43946 5.8627 2.12180
-#> ds 4 parent 3 96.5 9.054e+01 -5.96054 5.8627 -1.01669
-#> ds 4 parent 7 76.2 8.004e+01 3.83771 5.1918 0.73919
-#> ds 4 parent 7 77.8 8.004e+01 2.23771 5.1918 0.43101
-#> ds 4 parent 14 70.8 6.511e+01 -5.69246 4.2406 -1.34238
-#> ds 4 parent 14 67.3 6.511e+01 -2.19246 4.2406 -0.51702
-#> ds 4 parent 28 43.1 4.454e+01 1.43744 2.9401 0.48890
-#> ds 4 parent 28 45.1 4.454e+01 -0.56256 2.9401 -0.19134
-#> ds 4 parent 60 21.3 2.132e+01 0.02005 1.5211 0.01318
-#> ds 4 parent 60 23.5 2.132e+01 -2.17995 1.5211 -1.43310
-#> ds 4 parent 90 11.8 1.182e+01 0.02167 1.0053 0.02156
-#> ds 4 parent 90 12.1 1.182e+01 -0.27833 1.0053 -0.27687
-#> ds 4 parent 120 7.0 6.852e+00 -0.14780 0.7914 -0.18675
-#> ds 4 parent 120 6.2 6.852e+00 0.65220 0.7914 0.82408
-#> ds 4 m1 0 1.6 -5.684e-14 -1.60000 0.6572 -2.43444
-#> ds 4 m1 1 0.9 6.918e-01 -0.20821 0.6587 -0.31607
-#> ds 4 m1 3 3.7 1.959e+00 -1.74131 0.6692 -2.60204
-#> ds 4 m1 3 2.0 1.959e+00 -0.04131 0.6692 -0.06173
-#> ds 4 m1 7 3.6 4.076e+00 0.47590 0.7076 0.67252
-#> ds 4 m1 7 3.8 4.076e+00 0.27590 0.7076 0.38989
-#> ds 4 m1 14 7.1 6.698e+00 -0.40189 0.7859 -0.51135
-#> ds 4 m1 14 6.6 6.698e+00 0.09811 0.7859 0.12483
-#> ds 4 m1 28 9.5 9.175e+00 -0.32492 0.8835 -0.36779
-#> ds 4 m1 28 9.3 9.175e+00 -0.12492 0.8835 -0.14141
-#> ds 4 m1 60 8.3 8.818e+00 0.51810 0.8683 0.59671
-#> ds 4 m1 60 9.0 8.818e+00 -0.18190 0.8683 -0.20949
-#> ds 4 m1 90 6.6 6.645e+00 0.04480 0.7841 0.05713
-#> ds 4 m1 90 7.7 6.645e+00 -1.05520 0.7841 -1.34581
-#> ds 4 m1 120 3.7 4.648e+00 0.94805 0.7221 1.31293
-#> ds 4 m1 120 3.5 4.648e+00 1.14805 0.7221 1.58991
-#> ds 5 parent 0 110.4 1.026e+02 -7.81752 6.6333 -1.17853
-#> ds 5 parent 0 112.1 1.026e+02 -9.51752 6.6333 -1.43482
-#> ds 5 parent 1 93.5 9.560e+01 2.10274 6.1865 0.33989
-#> ds 5 parent 1 91.0 9.560e+01 4.60274 6.1865 0.74399
-#> ds 5 parent 3 71.0 8.356e+01 12.55799 5.4165 2.31846
-#> ds 5 parent 3 89.7 8.356e+01 -6.14201 5.4165 -1.13394
-#> ds 5 parent 7 60.4 6.550e+01 5.09732 4.2653 1.19506
-#> ds 5 parent 7 59.1 6.550e+01 6.39732 4.2653 1.49984
-#> ds 5 parent 14 56.5 4.641e+01 -10.09145 3.0576 -3.30044
-#> ds 5 parent 14 47.0 4.641e+01 -0.59145 3.0576 -0.19344
-#> ds 5 parent 28 30.2 2.982e+01 -0.37647 2.0284 -0.18560
-#> ds 5 parent 28 23.9 2.982e+01 5.92353 2.0284 2.92028
-#> ds 5 parent 60 17.0 1.754e+01 0.53981 1.3060 0.41332
-#> ds 5 parent 60 18.7 1.754e+01 -1.16019 1.3060 -0.88834
-#> ds 5 parent 90 11.3 1.175e+01 0.45050 1.0018 0.44969
-#> ds 5 parent 90 11.9 1.175e+01 -0.14950 1.0018 -0.14923
-#> ds 5 parent 120 9.0 7.915e+00 -1.08476 0.8315 -1.30462
-#> ds 5 parent 120 8.1 7.915e+00 -0.18476 0.8315 -0.22220
-#> ds 5 m1 0 0.7 0.000e+00 -0.70000 0.6572 -1.06507
-#> ds 5 m1 1 3.0 3.062e+00 0.06170 0.6861 0.08992
-#> ds 5 m1 1 2.6 3.062e+00 0.46170 0.6861 0.67290
-#> ds 5 m1 3 5.1 8.209e+00 3.10938 0.8432 3.68760
-#> ds 5 m1 3 7.5 8.209e+00 0.70938 0.8432 0.84130
-#> ds 5 m1 7 16.5 1.544e+01 -1.05567 1.1914 -0.88605
-#> ds 5 m1 7 19.0 1.544e+01 -3.55567 1.1914 -2.98436
-#> ds 5 m1 14 22.9 2.181e+01 -1.08765 1.5498 -0.70181
-#> ds 5 m1 14 23.2 2.181e+01 -1.38765 1.5498 -0.89539
-#> ds 5 m1 28 22.2 2.404e+01 1.83624 1.6805 1.09270
-#> ds 5 m1 28 24.4 2.404e+01 -0.36376 1.6805 -0.21647
-#> ds 5 m1 60 15.5 1.875e+01 3.25390 1.3741 2.36805
-#> ds 5 m1 60 19.8 1.875e+01 -1.04610 1.3741 -0.76131
-#> ds 5 m1 90 14.9 1.380e+01 -1.09507 1.1050 -0.99102
-#> ds 5 m1 90 14.2 1.380e+01 -0.39507 1.1050 -0.35753
-#> ds 5 m1 120 10.9 1.002e+01 -0.88429 0.9205 -0.96069
-#> ds 5 m1 120 10.4 1.002e+01 -0.38429 0.9205 -0.41749# }
+#> ds name time observed predicted residual std standardized
+#> ds 1 parent 0 89.8 9.838e+01 8.584661 7.7094 1.113536
+#> ds 1 parent 0 104.1 9.838e+01 -5.715339 7.7094 -0.741350
+#> ds 1 parent 1 88.7 9.388e+01 5.182489 7.3611 0.704041
+#> ds 1 parent 1 95.5 9.388e+01 -1.617511 7.3611 -0.219739
+#> ds 1 parent 3 81.8 8.563e+01 3.825382 6.7229 0.569010
+#> ds 1 parent 3 94.5 8.563e+01 -8.874618 6.7229 -1.320062
+#> ds 1 parent 7 71.5 7.169e+01 0.188290 5.6482 0.033336
+#> ds 1 parent 7 70.3 7.169e+01 1.388290 5.6482 0.245795
+#> ds 1 parent 14 54.2 5.361e+01 -0.586595 4.2624 -0.137621
+#> ds 1 parent 14 49.6 5.361e+01 4.013405 4.2624 0.941587
+#> ds 1 parent 28 31.5 3.219e+01 0.688936 2.6496 0.260011
+#> ds 1 parent 28 28.8 3.219e+01 3.388936 2.6496 1.279016
+#> ds 1 parent 60 12.1 1.278e+01 0.678998 1.3145 0.516562
+#> ds 1 parent 60 13.6 1.278e+01 -0.821002 1.3145 -0.624595
+#> ds 1 parent 90 6.2 6.157e+00 -0.043461 0.9835 -0.044188
+#> ds 1 parent 90 8.3 6.157e+00 -2.143461 0.9835 -2.179316
+#> ds 1 parent 120 2.2 3.076e+00 0.876218 0.8916 0.982775
+#> ds 1 parent 120 2.4 3.076e+00 0.676218 0.8916 0.758453
+#> ds 1 m1 1 0.3 1.134e+00 0.833749 0.8633 0.965750
+#> ds 1 m1 1 0.2 1.134e+00 0.933749 0.8633 1.081583
+#> ds 1 m1 3 2.2 3.157e+00 0.957400 0.8933 1.071763
+#> ds 1 m1 3 3.0 3.157e+00 0.157400 0.8933 0.176202
+#> ds 1 m1 7 6.5 6.369e+00 -0.130995 0.9917 -0.132090
+#> ds 1 m1 7 5.0 6.369e+00 1.369005 0.9917 1.380438
+#> ds 1 m1 14 10.2 9.971e+00 -0.229362 1.1577 -0.198112
+#> ds 1 m1 14 9.5 9.971e+00 0.470638 1.1577 0.406513
+#> ds 1 m1 28 12.2 1.265e+01 0.447735 1.3067 0.342637
+#> ds 1 m1 28 13.4 1.265e+01 -0.752265 1.3067 -0.575683
+#> ds 1 m1 60 11.8 1.097e+01 -0.832027 1.2112 -0.686945
+#> ds 1 m1 60 13.2 1.097e+01 -2.232027 1.2112 -1.842825
+#> ds 1 m1 90 6.6 7.876e+00 1.275985 1.0553 1.209109
+#> ds 1 m1 90 9.3 7.876e+00 -1.424015 1.0553 -1.349381
+#> ds 1 m1 120 3.5 5.336e+00 1.835829 0.9540 1.924292
+#> ds 1 m1 120 5.4 5.336e+00 -0.064171 0.9540 -0.067263
+#> ds 2 parent 0 118.0 1.092e+02 -8.812058 8.5459 -1.031142
+#> ds 2 parent 0 99.8 1.092e+02 9.387942 8.5459 1.098529
+#> ds 2 parent 1 90.2 1.023e+02 12.114268 8.0135 1.511724
+#> ds 2 parent 1 94.6 1.023e+02 7.714268 8.0135 0.962654
+#> ds 2 parent 3 96.1 9.066e+01 -5.436165 7.1122 -0.764344
+#> ds 2 parent 3 78.4 9.066e+01 12.263835 7.1122 1.724339
+#> ds 2 parent 7 77.9 7.365e+01 -4.245773 5.7995 -0.732090
+#> ds 2 parent 7 77.7 7.365e+01 -4.045773 5.7995 -0.697604
+#> ds 2 parent 14 56.0 5.593e+01 -0.073803 4.4389 -0.016626
+#> ds 2 parent 14 54.7 5.593e+01 1.226197 4.4389 0.276236
+#> ds 2 parent 28 36.6 3.892e+01 2.320837 3.1502 0.736737
+#> ds 2 parent 28 36.8 3.892e+01 2.120837 3.1502 0.673248
+#> ds 2 parent 60 22.1 2.136e+01 -0.741020 1.8719 -0.395868
+#> ds 2 parent 60 24.7 2.136e+01 -3.341020 1.8719 -1.784841
+#> ds 2 parent 90 12.4 1.251e+01 0.113999 1.2989 0.087765
+#> ds 2 parent 90 10.8 1.251e+01 1.713999 1.2989 1.319575
+#> ds 2 parent 120 6.8 7.338e+00 0.537708 1.0315 0.521281
+#> ds 2 parent 120 7.9 7.338e+00 -0.562292 1.0315 -0.545113
+#> ds 2 m1 1 1.3 1.576e+00 0.276176 0.8675 0.318352
+#> ds 2 m1 3 3.7 4.177e+00 0.476741 0.9183 0.519146
+#> ds 2 m1 3 4.7 4.177e+00 -0.523259 0.9183 -0.569801
+#> ds 2 m1 7 8.1 7.724e+00 -0.376365 1.0485 -0.358970
+#> ds 2 m1 7 7.9 7.724e+00 -0.176365 1.0485 -0.168214
+#> ds 2 m1 14 10.1 1.077e+01 0.674433 1.2006 0.561738
+#> ds 2 m1 14 10.3 1.077e+01 0.474433 1.2006 0.395158
+#> ds 2 m1 28 10.7 1.212e+01 1.416179 1.2758 1.110010
+#> ds 2 m1 28 12.2 1.212e+01 -0.083821 1.2758 -0.065699
+#> ds 2 m1 60 10.7 1.041e+01 -0.294930 1.1807 -0.249793
+#> ds 2 m1 60 12.5 1.041e+01 -2.094930 1.1807 -1.774316
+#> ds 2 m1 90 9.1 8.079e+00 -1.020859 1.0646 -0.958929
+#> ds 2 m1 90 7.4 8.079e+00 0.679141 1.0646 0.637941
+#> ds 2 m1 120 6.1 5.968e+00 -0.131673 0.9765 -0.134843
+#> ds 2 m1 120 4.5 5.968e+00 1.468327 0.9765 1.503683
+#> ds 3 parent 0 106.2 1.036e+02 -2.638248 8.1101 -0.325303
+#> ds 3 parent 0 106.9 1.036e+02 -3.338248 8.1101 -0.411614
+#> ds 3 parent 1 107.4 9.580e+01 -11.600063 7.5094 -1.544743
+#> ds 3 parent 1 96.1 9.580e+01 -0.300063 7.5094 -0.039958
+#> ds 3 parent 3 79.4 8.297e+01 3.574516 6.5182 0.548391
+#> ds 3 parent 3 82.6 8.297e+01 0.374516 6.5182 0.057457
+#> ds 3 parent 7 63.9 6.517e+01 1.272397 5.1472 0.247200
+#> ds 3 parent 7 62.4 6.517e+01 2.772397 5.1472 0.538618
+#> ds 3 parent 14 51.0 4.821e+01 -2.790075 3.8512 -0.724475
+#> ds 3 parent 14 47.1 4.821e+01 1.109925 3.8512 0.288205
+#> ds 3 parent 28 36.1 3.385e+01 -2.250573 2.7723 -0.811811
+#> ds 3 parent 28 36.6 3.385e+01 -2.750573 2.7723 -0.992168
+#> ds 3 parent 60 20.1 1.964e+01 -0.455700 1.7543 -0.259760
+#> ds 3 parent 60 19.8 1.964e+01 -0.155700 1.7543 -0.088753
+#> ds 3 parent 90 11.3 1.210e+01 0.795458 1.2746 0.624068
+#> ds 3 parent 90 10.7 1.210e+01 1.395458 1.2746 1.094792
+#> ds 3 parent 120 8.2 7.451e+00 -0.749141 1.0364 -0.722816
+#> ds 3 parent 120 7.3 7.451e+00 0.150859 1.0364 0.145558
+#> ds 3 m1 0 0.8 3.695e-13 -0.800000 0.8588 -0.931542
+#> ds 3 m1 1 1.8 1.740e+00 -0.059741 0.8694 -0.068714
+#> ds 3 m1 1 2.3 1.740e+00 -0.559741 0.8694 -0.643812
+#> ds 3 m1 3 4.2 4.531e+00 0.331379 0.9285 0.356913
+#> ds 3 m1 3 4.1 4.531e+00 0.431379 0.9285 0.464618
+#> ds 3 m1 7 6.8 8.113e+00 1.312762 1.0661 1.231333
+#> ds 3 m1 7 10.1 8.113e+00 -1.987238 1.0661 -1.863971
+#> ds 3 m1 14 11.4 1.079e+01 -0.613266 1.2013 -0.510507
+#> ds 3 m1 14 12.8 1.079e+01 -2.013266 1.2013 -1.675923
+#> ds 3 m1 28 11.5 1.133e+01 -0.174252 1.2310 -0.141553
+#> ds 3 m1 28 10.6 1.133e+01 0.725748 1.2310 0.589558
+#> ds 3 m1 60 7.5 8.948e+00 1.448281 1.1059 1.309561
+#> ds 3 m1 60 8.6 8.948e+00 0.348281 1.1059 0.314922
+#> ds 3 m1 90 7.3 6.665e+00 -0.634932 1.0034 -0.632752
+#> ds 3 m1 90 8.1 6.665e+00 -1.434932 1.0034 -1.430004
+#> ds 3 m1 120 5.3 4.795e+00 -0.504936 0.9365 -0.539199
+#> ds 3 m1 120 3.8 4.795e+00 0.995064 0.9365 1.062586
+#> ds 4 parent 0 104.7 9.985e+01 -4.850494 7.8227 -0.620050
+#> ds 4 parent 0 88.3 9.985e+01 11.549506 7.8227 1.476402
+#> ds 4 parent 1 94.2 9.676e+01 2.556304 7.5834 0.337093
+#> ds 4 parent 1 94.6 9.676e+01 2.156304 7.5834 0.284346
+#> ds 4 parent 3 78.1 9.092e+01 12.817485 7.1318 1.797230
+#> ds 4 parent 3 96.5 9.092e+01 -5.582515 7.1318 -0.782764
+#> ds 4 parent 7 76.2 8.050e+01 4.297338 6.3270 0.679204
+#> ds 4 parent 7 77.8 8.050e+01 2.697338 6.3270 0.426320
+#> ds 4 parent 14 70.8 6.562e+01 -5.179989 5.1816 -0.999687
+#> ds 4 parent 14 67.3 6.562e+01 -1.679989 5.1816 -0.324222
+#> ds 4 parent 28 43.1 4.499e+01 1.886936 3.6069 0.523140
+#> ds 4 parent 28 45.1 4.499e+01 -0.113064 3.6069 -0.031346
+#> ds 4 parent 60 21.3 2.151e+01 0.214840 1.8827 0.114114
+#> ds 4 parent 60 23.5 2.151e+01 -1.985160 1.8827 -1.054433
+#> ds 4 parent 90 11.8 1.190e+01 0.098528 1.2633 0.077990
+#> ds 4 parent 90 12.1 1.190e+01 -0.201472 1.2633 -0.159475
+#> ds 4 parent 120 7.0 6.886e+00 -0.113832 1.0125 -0.112431
+#> ds 4 parent 120 6.2 6.886e+00 0.686168 1.0125 0.677724
+#> ds 4 m1 0 1.6 4.263e-14 -1.600000 0.8588 -1.863085
+#> ds 4 m1 1 0.9 7.140e-01 -0.185984 0.8606 -0.216112
+#> ds 4 m1 3 3.7 2.022e+00 -1.678243 0.8731 -1.922160
+#> ds 4 m1 3 2.0 2.022e+00 0.021757 0.8731 0.024919
+#> ds 4 m1 7 3.6 4.207e+00 0.607229 0.9192 0.660633
+#> ds 4 m1 7 3.8 4.207e+00 0.407229 0.9192 0.443044
+#> ds 4 m1 14 7.1 6.912e+00 -0.188339 1.0135 -0.185828
+#> ds 4 m1 14 6.6 6.912e+00 0.311661 1.0135 0.307506
+#> ds 4 m1 28 9.5 9.449e+00 -0.050714 1.1309 -0.044843
+#> ds 4 m1 28 9.3 9.449e+00 0.149286 1.1309 0.132004
+#> ds 4 m1 60 8.3 8.997e+00 0.697403 1.1083 0.629230
+#> ds 4 m1 60 9.0 8.997e+00 -0.002597 1.1083 -0.002343
+#> ds 4 m1 90 6.6 6.697e+00 0.096928 1.0047 0.096472
+#> ds 4 m1 90 7.7 6.697e+00 -1.003072 1.0047 -0.998348
+#> ds 4 m1 120 3.7 4.622e+00 0.921607 0.9312 0.989749
+#> ds 4 m1 120 3.5 4.622e+00 1.121607 0.9312 1.204537
+#> ds 5 parent 0 110.4 1.045e+02 -5.942426 8.1795 -0.726502
+#> ds 5 parent 0 112.1 1.045e+02 -7.642426 8.1795 -0.934338
+#> ds 5 parent 1 93.5 9.739e+01 3.893915 7.6327 0.510162
+#> ds 5 parent 1 91.0 9.739e+01 6.393915 7.6327 0.837700
+#> ds 5 parent 3 71.0 8.519e+01 14.188275 6.6891 2.121098
+#> ds 5 parent 3 89.7 8.519e+01 -4.511725 6.6891 -0.674487
+#> ds 5 parent 7 60.4 6.684e+01 6.439546 5.2753 1.220701
+#> ds 5 parent 7 59.1 6.684e+01 7.739546 5.2753 1.467133
+#> ds 5 parent 14 56.5 4.736e+01 -9.138979 3.7868 -2.413407
+#> ds 5 parent 14 47.0 4.736e+01 0.361021 3.7868 0.095338
+#> ds 5 parent 28 30.2 3.033e+01 0.131178 2.5132 0.052195
+#> ds 5 parent 28 23.9 3.033e+01 6.431178 2.5132 2.558936
+#> ds 5 parent 60 17.0 1.771e+01 0.705246 1.6243 0.434177
+#> ds 5 parent 60 18.7 1.771e+01 -0.994754 1.6243 -0.612409
+#> ds 5 parent 90 11.3 1.180e+01 0.504856 1.2580 0.401315
+#> ds 5 parent 90 11.9 1.180e+01 -0.095144 1.2580 -0.075631
+#> ds 5 parent 120 9.0 7.917e+00 -1.083499 1.0571 -1.024928
+#> ds 5 parent 120 8.1 7.917e+00 -0.183499 1.0571 -0.173579
+#> ds 5 m1 0 0.7 3.553e-15 -0.700000 0.8588 -0.815100
+#> ds 5 m1 1 3.0 3.204e+00 0.204414 0.8943 0.228572
+#> ds 5 m1 1 2.6 3.204e+00 0.604414 0.8943 0.675845
+#> ds 5 m1 3 5.1 8.586e+00 3.485889 1.0884 3.202858
+#> ds 5 m1 3 7.5 8.586e+00 1.085889 1.0884 0.997722
+#> ds 5 m1 7 16.5 1.612e+01 -0.376855 1.5211 -0.247743
+#> ds 5 m1 7 19.0 1.612e+01 -2.876855 1.5211 -1.891237
+#> ds 5 m1 14 22.9 2.267e+01 -0.228264 1.9633 -0.116267
+#> ds 5 m1 14 23.2 2.267e+01 -0.528264 1.9633 -0.269072
+#> ds 5 m1 28 22.2 2.468e+01 2.480178 2.1050 1.178211
+#> ds 5 m1 28 24.4 2.468e+01 0.280178 2.1050 0.133099
+#> ds 5 m1 60 15.5 1.860e+01 3.099615 1.6838 1.840794
+#> ds 5 m1 60 19.8 1.860e+01 -1.200385 1.6838 -0.712883
+#> ds 5 m1 90 14.9 1.326e+01 -1.636345 1.3433 -1.218195
+#> ds 5 m1 90 14.2 1.326e+01 -0.936345 1.3433 -0.697072
+#> ds 5 m1 120 10.9 9.348e+00 -1.551535 1.1258 -1.378133
+#> ds 5 m1 120 10.4 9.348e+00 -1.051535 1.1258 -0.934014# }
diff --git a/man/nlme.Rd b/man/nlme.Rd
index 307cca82..c367868b 100644
--- a/man/nlme.Rd
+++ b/man/nlme.Rd
@@ -8,7 +8,7 @@
\usage{
nlme_function(object)
-mean_degparms(object, random = FALSE)
+mean_degparms(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
nlme_data(object)
}
@@ -16,6 +16,13 @@ nlme_data(object)
\item{object}{An mmkin row object containing several fits of the same model to different datasets}
\item{random}{Should a list with fixed and random effects be returned?}
+
+\item{test_log_parms}{If TRUE, log parameters are only considered in
+the mean calculations if their untransformed counterparts (most likely
+rate constants) pass the t-test for significant difference from zero.}
+
+\item{conf.level}{Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'.}
}
\value{
A function that can be used with nlme
@@ -60,7 +67,7 @@ grouped_data <- nlme_data(f)
nlme_f <- nlme_function(f)
# These assignments are necessary for these objects to be
# visible to nlme and augPred when evaluation is done by
-# pkgdown to generated the html docs.
+# pkgdown to generate the html docs.
assign("nlme_f", nlme_f, globalenv())
assign("grouped_data", grouped_data, globalenv())
diff --git a/man/saem.Rd b/man/saem.Rd
index d5a8f17e..45f74e44 100644
--- a/man/saem.Rd
+++ b/man/saem.Rd
@@ -14,9 +14,12 @@ saem(object, ...)
object,
transformations = c("mkin", "saemix"),
degparms_start = numeric(),
+ test_log_parms = FALSE,
+ conf.level = 0.6,
solution_type = "auto",
control = list(displayProgress = FALSE, print = FALSE, save = FALSE, save.graphs =
FALSE),
+ fail_with_errors = TRUE,
verbose = FALSE,
quiet = FALSE,
...
@@ -29,6 +32,7 @@ saemix_model(
solution_type = "auto",
transformations = c("mkin", "saemix"),
degparms_start = numeric(),
+ test_log_parms = FALSE,
verbose = FALSE,
...
)
@@ -50,11 +54,22 @@ SFO or DFOP is used for the parent and there is either no metabolite or one.}
\item{degparms_start}{Parameter values given as a named numeric vector will
be used to override the starting values obtained from the 'mmkin' object.}
+\item{test_log_parms}{If TRUE, an attempt is made to use more robust starting
+values for population parameters fitted as log parameters in mkin (like
+rate constants) by only considering rate constants that pass the t-test
+when calculating mean degradation parameters using \link{mean_degparms}.}
+
+\item{conf.level}{Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'.}
+
\item{solution_type}{Possibility to specify the solution type in case the
automatic choice is not desired}
\item{control}{Passed to \link[saemix:saemix]{saemix::saemix}}
+\item{fail_with_errors}{Should a failure to compute standard errors
+from the inverse of the Fisher Information Matrix be a failure?}
+
\item{verbose}{Should we print information about created objects of
type \link[saemix:SaemixModel-class]{saemix::SaemixModel} and \link[saemix:SaemixData-class]{saemix::SaemixData}?}
@@ -104,7 +119,7 @@ f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
# The returned saem.mmkin object contains an SaemixObject, therefore we can use
# functions from saemix
library(saemix)
-compare.saemix(list(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so))
+compare.saemix(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so)
plot(f_saem_fomc$so, plot.type = "convergence")
plot(f_saem_fomc$so, plot.type = "individual.fit")
plot(f_saem_fomc$so, plot.type = "npde")
@@ -112,7 +127,7 @@ plot(f_saem_fomc$so, plot.type = "vpc")
f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
-compare.saemix(list(f_saem_fomc$so, f_saem_fomc_tc$so))
+compare.saemix(f_saem_fomc$so, f_saem_fomc_tc$so)
sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
A1 = mkinsub("SFO"))
diff --git a/test.log b/test.log
index 2c77a113..5f50c623 100644
--- a/test.log
+++ b/test.log
@@ -6,39 +6,39 @@ Testing mkin
✔ | 2 | Export dataset for reading into CAKE
✔ | 14 | Results for FOCUS D established in expertise for UBA (Ranke 2014) [1.0 s]
✔ | 4 | Calculation of FOCUS chi2 error levels [0.5 s]
-✔ | 7 | Fitting the SFORB model [3.6 s]
-✔ | 5 | Analytical solutions for coupled models [3.3 s]
+✔ | 7 | Fitting the SFORB model [3.5 s]
+✔ | 5 | Analytical solutions for coupled models [3.2 s]
✔ | 5 | Calculation of Akaike weights
-✔ | 12 | Confidence intervals and p-values [1.0 s]
-✔ | 14 | Error model fitting [4.6 s]
+✔ | 12 | Confidence intervals and p-values [1.1 s]
+✔ | 14 | Error model fitting [4.5 s]
✔ | 5 | Time step normalisation
✔ | 4 | Test fitting the decline of metabolites from their maximum [0.3 s]
✔ | 1 | Fitting the logistic model [0.2 s]
-✔ | 34 1 | Nonlinear mixed-effects models [40.8 s]
+✔ | 35 1 | Nonlinear mixed-effects models [27.1 s]
────────────────────────────────────────────────────────────────────────────────
-Skip (test_mixed.R:150:3): saem results are reproducible for biphasic fits
+Skip (test_mixed.R:161:3): saem results are reproducible for biphasic fits
Reason: Fitting with saemix takes around 10 minutes when using deSolve
────────────────────────────────────────────────────────────────────────────────
✔ | 2 | Test dataset classes mkinds and mkindsg
-✔ | 1 | mkinfit features [0.5 s]
-✔ | 10 | Special cases of mkinfit calls [0.6 s]
-✔ | 8 | mkinmod model generation and printing [0.4 s]
-✔ | 3 | Model predictions with mkinpredict [0.7 s]
-✔ | 16 | Evaluations according to 2015 NAFTA guidance [3.1 s]
-✔ | 9 | Nonlinear mixed-effects models [14.5 s]
-✔ | 16 | Plotting [2.1 s]
+✔ | 1 | mkinfit features [0.3 s]
+✔ | 10 | Special cases of mkinfit calls [0.3 s]
+✔ | 8 | mkinmod model generation and printing [0.2 s]
+✔ | 3 | Model predictions with mkinpredict [0.2 s]
+✔ | 16 | Evaluations according to 2015 NAFTA guidance [1.8 s]
+✔ | 9 | Nonlinear mixed-effects models with nlme [8.1 s]
+✔ | 16 | Plotting [2.0 s]
✔ | 4 | Residuals extracted from mkinfit models
-✔ | 2 | Complex test case from Schaefer et al. (2007) Piacenza paper [1.7 s]
-✔ | 4 | Summary [0.2 s]
+✔ | 2 | Complex test case from Schaefer et al. (2007) Piacenza paper [1.5 s]
+✔ | 4 | Summary [0.1 s]
✔ | 1 | Summaries of old mkinfit objects
✔ | 4 | Results for synthetic data established in expertise for UBA (Ranke 2014) [2.3 s]
-✔ | 9 | Hypothesis tests [8.4 s]
+✔ | 9 | Hypothesis tests [8.3 s]
✔ | 4 | Calculation of maximum time weighted average concentrations (TWAs) [2.5 s]
══ Results ═════════════════════════════════════════════════════════════════════
-Duration: 92.7 s
+Duration: 69.4 s
── Skipped tests ──────────────────────────────────────────────────────────────
● Fitting with saemix takes around 10 minutes when using deSolve (1)
-[ FAIL 0 | WARN 0 | SKIP 1 | PASS 205 ]
+[ FAIL 0 | WARN 0 | SKIP 1 | PASS 206 ]
diff --git a/tests/figs/plotting/mixed-model-fit-for-nlme-object.svg b/tests/figs/plotting/mixed-model-fit-for-nlme-object.svg
index 3eb2b0f8..db13b159 100644
--- a/tests/figs/plotting/mixed-model-fit-for-nlme-object.svg
+++ b/tests/figs/plotting/mixed-model-fit-for-nlme-object.svg
@@ -86,7 +86,7 @@
-
+
@@ -107,19 +107,19 @@
80
100
120
-
+
-
-
-
-
-
+
+
+
+
+
0
-20
-40
-60
-80
-100
+20
+40
+60
+80
+100
@@ -133,597 +133,597 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
@@ -734,30 +734,34 @@
-
+
-
-
-
-
-
+
+
+
+
+
0
-20
-40
-60
-80
-100
-
-
-
+20
+40
+60
+80
+100
+
+
+
+
-
-
--4
--2
+
+
+
+-3
+-2
+-1
0
-2
-4
+1
+2
+3
@@ -772,582 +776,582 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/tests/figs/plotting/mixed-model-fit-for-saem-object-with-mkin-transformations.svg b/tests/figs/plotting/mixed-model-fit-for-saem-object-with-mkin-transformations.svg
index 0c2992d5..209b3dee 100644
--- a/tests/figs/plotting/mixed-model-fit-for-saem-object-with-mkin-transformations.svg
+++ b/tests/figs/plotting/mixed-model-fit-for-saem-object-with-mkin-transformations.svg
@@ -86,7 +86,7 @@
-
+
@@ -107,19 +107,19 @@
80
100
120
-
+
-
-
-
-
-
+
+
+
+
+
0
-20
-40
-60
-80
-100
+20
+40
+60
+80
+100
@@ -133,597 +133,597 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
@@ -734,30 +734,30 @@
-
+
-
-
-
-
-
+
+
+
+
+
0
-20
-40
-60
-80
-100
-
-
-
+20
+40
+60
+80
+100
+
+
+
-
-
--4
--2
+
+
+-4
+-2
0
-2
-4
+2
+4
@@ -772,588 +772,588 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
+
@@ -1374,17 +1374,17 @@
80
100
120
-
+
-
-
-
-
+
+
+
+
0
-10
-20
-30
-40
+10
+20
+30
+40
@@ -1398,531 +1398,530 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
@@ -1933,28 +1932,28 @@
-
+
-
-
-
-
+
+
+
+
0
-10
-20
-30
-40
-
-
-
+10
+20
+30
+40
+
+
+
-
-
--4
--2
+
+
+-4
+-2
0
-2
-4
+2
+4
@@ -1969,514 +1968,518 @@
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/tests/figs/plotting/mixed-model-fit-for-saem-object-with-saemix-transformations.svg b/tests/figs/plotting/mixed-model-fit-for-saem-object-with-saemix-transformations.svg
index e65bc3bb..66d1d172 100644
--- a/tests/figs/plotting/mixed-model-fit-for-saem-object-with-saemix-transformations.svg
+++ b/tests/figs/plotting/mixed-model-fit-for-saem-object-with-saemix-transformations.svg
@@ -710,4 +710,9 @@
+
+
+
+
+
diff --git a/tests/testthat/print_mmkin_biphasic_mixed.txt b/tests/testthat/print_mmkin_biphasic_mixed.txt
index 11e11bfc..0b23fe58 100644
--- a/tests/testthat/print_mmkin_biphasic_mixed.txt
+++ b/tests/testthat/print_mmkin_biphasic_mixed.txt
@@ -8,7 +8,7 @@ d_m1/dt = + f_parent_to_m1 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
exp(-k2 * time))) * parent - k_m1 * m1
Data:
-509 observations of 2 variable(s) grouped in 15 datasets
+507 observations of 2 variable(s) grouped in 15 datasets
object
Status of individual fits:
@@ -21,6 +21,6 @@ OK: No warnings
Mean fitted parameters:
parent_0 log_k_m1 f_parent_qlogis log_k1 log_k2
- 100.702 -5.347 -0.078 -2.681 -4.366
+ 100.667 -5.378 -0.095 -2.743 -4.510
g_qlogis
- -0.335
+ -0.180
diff --git a/tests/testthat/print_nlme_biphasic.txt b/tests/testthat/print_nlme_biphasic.txt
index f86bda76..f40d438d 100644
--- a/tests/testthat/print_nlme_biphasic.txt
+++ b/tests/testthat/print_nlme_biphasic.txt
@@ -9,21 +9,21 @@ d_m1/dt = + f_parent_to_m1 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
exp(-k2 * time))) * parent - k_m1 * m1
Data:
-509 observations of 2 variable(s) grouped in 15 datasets
+507 observations of 2 variable(s) grouped in 15 datasets
-Log-likelihood: -1329
+Log-likelihood: -1326
Fixed effects:
list(parent_0 ~ 1, log_k_m1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
parent_0 log_k_m1 f_parent_qlogis log_k1 log_k2
- 100.43 -5.34 -0.08 -2.90 -4.34
+ 100.7 -5.4 -0.1 -2.8 -4.5
g_qlogis
- -0.19
+ -0.1
Random effects:
Formula: list(parent_0 ~ 1, log_k_m1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
Level: ds
Structure: Diagonal
parent_0 log_k_m1 f_parent_qlogis log_k1 log_k2 g_qlogis Residual
-StdDev: 1 0.1 0.3 0.6 0.5 0.3 3
+StdDev: 1 0.03 0.3 0.3 0.2 0.3 3
diff --git a/tests/testthat/print_sfo_saem_1.txt b/tests/testthat/print_sfo_saem_1.txt
index d341e9e7..0c0e32ce 100644
--- a/tests/testthat/print_sfo_saem_1.txt
+++ b/tests/testthat/print_sfo_saem_1.txt
@@ -3,19 +3,19 @@ Structural model:
d_parent/dt = - k_parent * parent
Data:
-264 observations of 1 variable(s) grouped in 15 datasets
+262 observations of 1 variable(s) grouped in 15 datasets
Likelihood computed by importance sampling
AIC BIC logLik
- 1320 1324 -654
+ 1310 1315 -649
Fitted parameters:
estimate lower upper
-parent_0 1e+02 98.78 1e+02
+parent_0 1e+02 98.87 1e+02
k_parent 4e-02 0.03 4e-02
-Var.parent_0 8e-01 -1.76 3e+00
-Var.k_parent 9e-02 0.03 2e-01
-a.1 9e-01 0.70 1e+00
-b.1 4e-02 0.03 4e-02
-SD.parent_0 9e-01 -0.57 2e+00
+Var.parent_0 1e+00 -1.72 5e+00
+Var.k_parent 1e-01 0.03 2e-01
+a.1 9e-01 0.75 1e+00
+b.1 5e-02 0.04 5e-02
+SD.parent_0 1e+00 -0.12 3e+00
SD.k_parent 3e-01 0.20 4e-01
diff --git a/tests/testthat/setup_script.R b/tests/testthat/setup_script.R
index 9229c198..96e865d4 100644
--- a/tests/testthat/setup_script.R
+++ b/tests/testthat/setup_script.R
@@ -106,6 +106,7 @@ const <- function(value) 2
set.seed(123456)
SFO <- mkinmod(parent = mkinsub("SFO"))
k_parent = rlnorm(n, log(0.03), log_sd)
+set.seed(123456)
ds_sfo <- lapply(1:n, function(i) {
ds_mean <- mkinpredict(SFO, c(k_parent = k_parent[i]),
c(parent = 100), sampling_times)
@@ -118,6 +119,7 @@ fomc_pop <- list(parent_0 = 100, alpha = 2, beta = 8)
fomc_parms <- as.matrix(data.frame(
alpha = rlnorm(n, log(fomc_pop$alpha), 0.4),
beta = rlnorm(n, log(fomc_pop$beta), 0.2)))
+set.seed(123456)
ds_fomc <- lapply(1:3, function(i) {
ds_mean <- mkinpredict(FOMC, fomc_parms[i, ],
c(parent = 100), sampling_times)
@@ -131,6 +133,7 @@ dfop_parms <- as.matrix(data.frame(
k1 = rlnorm(n, log(dfop_pop$k1), log_sd),
k2 = rlnorm(n, log(dfop_pop$k2), log_sd),
g = plogis(rnorm(n, qlogis(dfop_pop$g), log_sd))))
+set.seed(123456)
ds_dfop <- lapply(1:n, function(i) {
ds_mean <- mkinpredict(DFOP, dfop_parms[i, ],
c(parent = dfop_pop$parent_0), sampling_times)
@@ -144,6 +147,7 @@ hs_parms <- as.matrix(data.frame(
k1 = rlnorm(n, log(hs_pop$k1), log_sd),
k2 = rlnorm(n, log(hs_pop$k2), log_sd),
tb = rlnorm(n, log(hs_pop$tb), 0.1)))
+set.seed(123456)
ds_hs <- lapply(1:10, function(i) {
ds_mean <- mkinpredict(HS, hs_parms[i, ],
c(parent = hs_pop$parent_0), sampling_times)
@@ -171,6 +175,7 @@ ds_biphasic_mean <- lapply(1:n_biphasic,
c(parent = 100, m1 = 0), sampling_times)
}
)
+set.seed(123456)
ds_biphasic <- lapply(ds_biphasic_mean, function(ds) {
add_err(ds,
sdfunc = function(value) sqrt(err_1$const^2 + value^2 * err_1$prop^2),
@@ -193,8 +198,18 @@ nlme_biphasic <- nlme(mmkin_biphasic)
if (saemix_available) {
sfo_saem_1 <- saem(mmkin_sfo_1, quiet = TRUE, transformations = "saemix")
- dfop_saemix_1 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "mkin")
- dfop_saemix_2 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "saemix")
+ # With default control parameters, we do not get good results with mkin
+ # transformations here
+ dfop_saemix_1 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "mkin",
+ control = list(
+ displayProgress = FALSE, print = FALSE, save = FALSE, save.graphs = FALSE,
+ rw.init = 1, nbiter.saemix = c(600, 100))
+ )
+ dfop_saemix_2 <- saem(mmkin_dfop_1, quiet = TRUE, transformations = "saemix",
+ control = list(
+ displayProgress = FALSE, print = FALSE, save = FALSE, save.graphs = FALSE,
+ rw.init = 0.5, nbiter.saemix = c(600, 100))
+ )
saem_biphasic_m <- saem(mmkin_biphasic, transformations = "mkin", quiet = TRUE)
saem_biphasic_s <- saem(mmkin_biphasic, transformations = "saemix", quiet = TRUE)
diff --git a/tests/testthat/summary_nlme_biphasic_s.txt b/tests/testthat/summary_nlme_biphasic_s.txt
index 65aead62..86049775 100644
--- a/tests/testthat/summary_nlme_biphasic_s.txt
+++ b/tests/testthat/summary_nlme_biphasic_s.txt
@@ -13,19 +13,19 @@ d_m1/dt = + f_parent_to_m1 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
exp(-k2 * time))) * parent - k_m1 * m1
Data:
-509 observations of 2 variable(s) grouped in 15 datasets
+507 observations of 2 variable(s) grouped in 15 datasets
Model predictions using solution type analytical
-Fitted in test time 0 s using 3 iterations
+Fitted in test time 0 s using 4 iterations
Variance model: Constant variance
Mean of starting values for individual parameters:
parent_0 log_k_m1 f_parent_qlogis log_k1 log_k2
- 100.70 -5.35 -0.08 -2.68 -4.37
+ 100.67 -5.38 -0.09 -2.74 -4.51
g_qlogis
- -0.33
+ -0.18
Fixed degradation parameter values:
value type
@@ -34,40 +34,40 @@ m1_0 0 state
Results:
AIC BIC logLik
- 2683 2738 -1329
+ 2678 2733 -1326
Optimised, transformed parameters with symmetric confidence intervals:
- lower est. upper
-parent_0 99.6 100.43 101.26
-log_k_m1 -5.5 -5.34 -5.18
-f_parent_qlogis -0.3 -0.08 0.09
-log_k1 -3.2 -2.90 -2.60
-log_k2 -4.6 -4.34 -4.07
-g_qlogis -0.5 -0.19 0.08
+ lower est. upper
+parent_0 99.8 100.7 101.62
+log_k_m1 -5.6 -5.4 -5.25
+f_parent_qlogis -0.3 -0.1 0.06
+log_k1 -3.0 -2.8 -2.57
+log_k2 -4.7 -4.5 -4.35
+g_qlogis -0.4 -0.1 0.17
Correlation:
prnt_0 lg_k_1 f_prn_ log_k1 log_k2
-log_k_m1 -0.177
-f_parent_qlogis -0.164 0.385
-log_k1 0.108 -0.017 -0.025
-log_k2 0.036 0.054 0.008 0.096
-g_qlogis -0.068 -0.110 -0.030 -0.269 -0.267
+log_k_m1 -0.167
+f_parent_qlogis -0.145 0.380
+log_k1 0.170 0.005 -0.026
+log_k2 0.083 0.168 0.032 0.365
+g_qlogis -0.088 -0.170 -0.044 -0.472 -0.631
Random effects:
Formula: list(parent_0 ~ 1, log_k_m1 ~ 1, f_parent_qlogis ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
Level: ds
Structure: Diagonal
parent_0 log_k_m1 f_parent_qlogis log_k1 log_k2 g_qlogis Residual
-StdDev: 1 0.1 0.3 0.6 0.5 0.3 3
+StdDev: 1 0.03 0.3 0.3 0.2 0.3 3
Backtransformed parameters with asymmetric confidence intervals:
lower est. upper
parent_0 1e+02 1e+02 1e+02
-k_m1 4e-03 5e-03 6e-03
+k_m1 4e-03 4e-03 5e-03
f_parent_to_m1 4e-01 5e-01 5e-01
-k1 4e-02 6e-02 7e-02
-k2 1e-02 1e-02 2e-02
+k1 5e-02 6e-02 8e-02
+k2 9e-03 1e-02 1e-02
g 4e-01 5e-01 5e-01
Resulting formation fractions:
@@ -77,5 +77,5 @@ parent_sink 0.5
Estimated disappearance times:
DT50 DT90 DT50back DT50_k1 DT50_k2
-parent 26 131 39 13 53
-m1 144 479 NA NA NA
+parent 25 150 45 11 63
+m1 154 512 NA NA NA
diff --git a/tests/testthat/summary_saem_biphasic_s.txt b/tests/testthat/summary_saem_biphasic_s.txt
index 1e0f1ccc..8dfae367 100644
--- a/tests/testthat/summary_saem_biphasic_s.txt
+++ b/tests/testthat/summary_saem_biphasic_s.txt
@@ -13,7 +13,7 @@ d_m1/dt = + f_parent_to_m1 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
exp(-k2 * time))) * parent - k_m1 * m1
Data:
-509 observations of 2 variable(s) grouped in 15 datasets
+507 observations of 2 variable(s) grouped in 15 datasets
Model predictions using solution type analytical
@@ -23,9 +23,9 @@ Variance model: Constant variance
Mean of starting values for individual parameters:
parent_0 k_m1 f_parent_to_m1 k1 k2
- 1.0e+02 4.8e-03 4.8e-01 6.8e-02 1.3e-02
+ 1.0e+02 4.6e-03 4.8e-01 6.4e-02 1.1e-02
g
- 4.2e-01
+ 4.6e-01
Fixed degradation parameter values:
None
@@ -34,37 +34,37 @@ Results:
Likelihood computed by importance sampling
AIC BIC logLik
- 2645 2654 -1310
+ 2702 2711 -1338
Optimised parameters:
est. lower upper
-parent_0 1.0e+02 99.627 1.0e+02
-k_m1 4.8e-03 0.004 5.6e-03
-f_parent_to_m1 4.8e-01 0.437 5.2e-01
-k1 6.5e-02 0.051 8.0e-02
-k2 1.2e-02 0.010 1.4e-02
-g 4.3e-01 0.362 5.0e-01
+parent_0 1.0e+02 1.0e+02 1.0e+02
+k_m1 4.7e-03 3.9e-03 5.6e-03
+f_parent_to_m1 4.8e-01 4.3e-01 5.2e-01
+k1 4.8e-02 3.1e-02 6.5e-02
+k2 1.3e-02 8.7e-03 1.7e-02
+g 5.0e-01 4.1e-01 5.8e-01
Correlation:
prnt_0 k_m1 f_p__1 k1 k2
-k_m1 -0.156
-f_parent_to_m1 -0.157 0.372
-k1 0.159 0.000 -0.029
-k2 0.074 0.145 0.032 0.332
-g -0.072 -0.142 -0.044 -0.422 -0.570
+k_m1 -0.152
+f_parent_to_m1 -0.143 0.366
+k1 0.097 -0.014 -0.021
+k2 0.022 0.083 0.023 0.101
+g -0.084 -0.144 -0.044 -0.303 -0.364
Random effects:
est. lower upper
-SD.parent_0 1.14 0.251 2.03
-SD.k_m1 0.14 -0.073 0.35
-SD.f_parent_to_m1 0.29 0.176 0.41
-SD.k1 0.36 0.211 0.52
-SD.k2 0.18 0.089 0.27
-SD.g 0.32 0.098 0.53
+SD.parent_0 1.22 0.316 2.12
+SD.k_m1 0.15 -0.079 0.38
+SD.f_parent_to_m1 0.32 0.191 0.44
+SD.k1 0.66 0.416 0.90
+SD.k2 0.59 0.368 0.80
+SD.g 0.16 -0.373 0.70
Variance model:
est. lower upper
-a.1 2.7 2.5 2.9
+a.1 2.9 2.7 3
Resulting formation fractions:
ff
@@ -73,5 +73,5 @@ parent_sink 0.52
Estimated disappearance times:
DT50 DT90 DT50back DT50_k1 DT50_k2
-parent 25 145 44 11 58
-m1 145 481 NA NA NA
+parent 26 127 38 14 54
+m1 146 485 NA NA NA
diff --git a/tests/testthat/test_mixed.R b/tests/testthat/test_mixed.R
index 0eb1f0d5..5d15530b 100644
--- a/tests/testthat/test_mixed.R
+++ b/tests/testthat/test_mixed.R
@@ -53,20 +53,26 @@ test_that("Parent fits using saemix are correctly implemented", {
expect_true(all(s_dfop_s2$confint_back[, "lower"] < dfop_pop))
expect_true(all(s_dfop_s2$confint_back[, "upper"] > dfop_pop))
+ dfop_mmkin_means_trans_tested <- mean_degparms(mmkin_dfop_1, test_log_parms = TRUE)
dfop_mmkin_means_trans <- apply(parms(mmkin_dfop_1, transformed = TRUE), 1, mean)
+
+ dfop_mmkin_means_tested <- backtransform_odeparms(dfop_mmkin_means_trans_tested, mmkin_dfop_1$mkinmod)
dfop_mmkin_means <- backtransform_odeparms(dfop_mmkin_means_trans, mmkin_dfop_1$mkinmod)
- # We get < 22% deviations by averaging the transformed parameters
+ # We get < 20% deviations for parent_0 and k1 by averaging the transformed parameters
+ # If we average only parameters passing the t-test, the deviation for k2 is also < 20%
rel_diff_mmkin <- (dfop_mmkin_means - dfop_pop) / dfop_pop
- expect_true(all(rel_diff_mmkin < 0.22))
+ rel_diff_mmkin_tested <- (dfop_mmkin_means_tested - dfop_pop) / dfop_pop
+ expect_true(all(rel_diff_mmkin[c("parent_0", "k1")] < 0.20))
+ expect_true(all(rel_diff_mmkin_tested[c("parent_0", "k1", "k2")] < 0.20))
- # We get < 50% deviations with transformations made in mkin
+ # We get < 30% deviations with transformations made in mkin
rel_diff_1 <- (s_dfop_s1$confint_back[, "est."] - dfop_pop) / dfop_pop
expect_true(all(rel_diff_1 < 0.5))
- # We get < 12% deviations with transformations made in saemix
+ # We get < 20% deviations with transformations made in saemix
rel_diff_2 <- (s_dfop_s2$confint_back[, "est."] - dfop_pop) / dfop_pop
- expect_true(all(rel_diff_2 < 0.12))
+ expect_true(all(rel_diff_2 < 0.2))
mmkin_hs_1 <- mmkin("HS", ds_hs, quiet = TRUE, error_model = "const", cores = n_cores)
hs_saem_1 <- saem(mmkin_hs_1, quiet = TRUE)
@@ -107,9 +113,14 @@ test_that("nlme results are reproducible to some degree", {
expect_known_output(print(test_summary, digits = 1), "summary_nlme_biphasic_s.txt")
+ # k1 just fails the first test (lower bound of the ci), so we need to excluded it
+ dfop_no_k1 <- c("parent_0", "k_m1", "f_parent_to_m1", "k2", "g")
+ dfop_sfo_pop_no_k1 <- as.numeric(dfop_sfo_pop[dfop_no_k1])
dfop_sfo_pop <- as.numeric(dfop_sfo_pop)
+
ci_dfop_sfo_n <- summary(nlme_biphasic)$confint_back
- expect_true(all(ci_dfop_sfo_n[, "lower"] < dfop_sfo_pop))
+
+ expect_true(all(ci_dfop_sfo_n[dfop_no_k1, "lower"] < dfop_sfo_pop_no_k1))
expect_true(all(ci_dfop_sfo_n[, "upper"] > dfop_sfo_pop))
})
@@ -155,4 +166,3 @@ test_that("saem results are reproducible for biphasic fits", {
expect_true(all(ci_dfop_sfo_s_d[no_k2, "lower"] < dfop_sfo_pop[no_k2]))
expect_true(all(ci_dfop_sfo_s_d[no_k1, "upper"] > dfop_sfo_pop[no_k1]))
})
-
diff --git a/tests/testthat/test_nlme.R b/tests/testthat/test_nlme.R
index 989914da..a3bc9413 100644
--- a/tests/testthat/test_nlme.R
+++ b/tests/testthat/test_nlme.R
@@ -1,4 +1,4 @@
-context("Nonlinear mixed-effects models")
+context("Nonlinear mixed-effects models with nlme")
library(nlme)
--
cgit v1.2.1
From cb112e53163f9dc63d439dba50ca051877d67a79 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Tue, 16 Mar 2021 16:47:17 +0100
Subject: Convenience option to set nbiter.saemix
---
R/saem.R | 6 +++++-
1 file changed, 5 insertions(+), 1 deletion(-)
diff --git a/R/saem.R b/R/saem.R
index 460edede..184890f4 100644
--- a/R/saem.R
+++ b/R/saem.R
@@ -36,7 +36,9 @@ utils::globalVariables(c("predicted", "std"))
#' from the inverse of the Fisher Information Matrix be a failure?
#' @param quiet Should we suppress the messages saemix prints at the beginning
#' and the end of the optimisation process?
-#' @param control Passed to [saemix::saemix]
+#' @param nbiter.saemix Convenience option to increase the number of
+#' iterations
+#' @param control Passed to [saemix::saemix].
#' @param \dots Further parameters passed to [saemix::saemixModel].
#' @return An S3 object of class 'saem.mmkin', containing the fitted
#' [saemix::SaemixObject] as a list component named 'so'. The
@@ -115,7 +117,9 @@ saem.mmkin <- function(object,
test_log_parms = FALSE,
conf.level = 0.6,
solution_type = "auto",
+ nbiter.saemix = c(300, 100),
control = list(displayProgress = FALSE, print = FALSE,
+ nbiter.saemix = nbiter.saemix,
save = FALSE, save.graphs = FALSE),
fail_with_errors = TRUE,
verbose = FALSE, quiet = FALSE, ...)
--
cgit v1.2.1
From 6d6dc7d53bf99b088af3488588574afc832fb7fe Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Fri, 19 Mar 2021 11:22:07 +0100
Subject: test_log_parms for plot.mixed.mmkin, roxygen run
---
NEWS.md | 4 +++-
R/mixed.mmkin.R | 3 ++-
R/plot.mixed.mmkin.R | 8 +++++++-
man/mixed.Rd | 4 ++++
man/plot.mixed.mmkin.Rd | 8 ++++++++
man/saem.Rd | 10 +++++++---
6 files changed, 31 insertions(+), 6 deletions(-)
diff --git a/NEWS.md b/NEWS.md
index 5d0ea69a..a91523bd 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -12,7 +12,9 @@
- 'saem': generic function to fit saemix models using 'saemix_model' and 'saemix_data', with a generator 'saem.mmkin', summary and plot methods
-- 'mean_degparms': New argument 'test_log_parms' that makes the function only consider log-transformed parameters where the untransformed parameters pass the t-test for a certain confidence level. This can be used to check more plausible parameters for 'saem'
+- 'mean_degparms': New argument 'test_log_parms' that makes the function only consider log-transformed parameters where the untransformed parameters pass the t-test for a certain confidence level. This can be used to obtain more plausible starting parameters for 'saem'
+
+- 'plot.mixed.mmkin': Gains arguments 'test_log_parms' and 'conf.level'
# mkin 1.0.4 (Unreleased)
diff --git a/R/mixed.mmkin.R b/R/mixed.mmkin.R
index 7aa5edd5..682a9a34 100644
--- a/R/mixed.mmkin.R
+++ b/R/mixed.mmkin.R
@@ -3,6 +3,8 @@
#' @param object An [mmkin] row object
#' @param method The method to be used
#' @param \dots Currently not used
+#' @return An object of class 'mixed.mmkin' which has the observed data in a
+#' single dataframe which is convenient for plotting
#' @examples
#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
#' n_biphasic <- 8
@@ -54,7 +56,6 @@ mixed.mmkin <- function(object, method = c("none"), ...) {
if (nrow(object) > 1) stop("Only row objects allowed")
method <- match.arg(method)
- if (method == "default") method = c("naive", "nlme")
ds_names <- colnames(object)
res <- list(mmkin = object, mkinmod = object[[1]]$mkinmod)
diff --git a/R/plot.mixed.mmkin.R b/R/plot.mixed.mmkin.R
index 21399496..f0682c10 100644
--- a/R/plot.mixed.mmkin.R
+++ b/R/plot.mixed.mmkin.R
@@ -10,6 +10,10 @@ utils::globalVariables("ds")
#' `resplot = "time"`.
#' @param pred_over Named list of alternative predictions as obtained
#' from [mkinpredict] with a compatible [mkinmod].
+#' @param test_log_parms Passed to [mean_degparms] in the case of an
+#' [mixed.mmkin] object
+#' @param conf.level Passed to [mean_degparms] in the case of an
+#' [mixed.mmkin] object
#' @param rel.height.legend The relative height of the legend shown on top
#' @param rel.height.bottom The relative height of the bottom plot row
#' @param ymax Vector of maximum y axis values
@@ -58,6 +62,8 @@ plot.mixed.mmkin <- function(x,
xlim = range(x$data$time),
resplot = c("predicted", "time"),
pred_over = NULL,
+ test_log_parms = FALSE,
+ conf.level = 0.6,
ymax = "auto", maxabs = "auto",
ncol.legend = ifelse(length(i) <= 3, length(i) + 1, ifelse(length(i) <= 8, 3, 4)),
nrow.legend = ceiling((length(i) + 1) / ncol.legend),
@@ -76,7 +82,7 @@ plot.mixed.mmkin <- function(x,
backtransform = TRUE
if (identical(class(x), "mixed.mmkin")) {
- degparms_pop <- mean_degparms(x$mmkin)
+ degparms_pop <- mean_degparms(x$mmkin, test_log_parms = test_log_parms, conf.level = conf.level)
degparms_tmp <- parms(x$mmkin, transformed = TRUE)
degparms_i <- as.data.frame(t(degparms_tmp[setdiff(rownames(degparms_tmp), names(fit_1$errparms)), ]))
diff --git a/man/mixed.Rd b/man/mixed.Rd
index 8b00382d..95cae364 100644
--- a/man/mixed.Rd
+++ b/man/mixed.Rd
@@ -23,6 +23,10 @@ mixed(object, ...)
\item{digits}{Number of digits to use for printing.}
}
+\value{
+An object of class 'mixed.mmkin' which has the observed data in a
+single dataframe which is convenient for plotting
+}
\description{
Create a mixed effects model from an mmkin row object
}
diff --git a/man/plot.mixed.mmkin.Rd b/man/plot.mixed.mmkin.Rd
index b1200729..bcab3e74 100644
--- a/man/plot.mixed.mmkin.Rd
+++ b/man/plot.mixed.mmkin.Rd
@@ -13,6 +13,8 @@
xlim = range(x$data$time),
resplot = c("predicted", "time"),
pred_over = NULL,
+ test_log_parms = FALSE,
+ conf.level = 0.6,
ymax = "auto",
maxabs = "auto",
ncol.legend = ifelse(length(i) <= 3, length(i) + 1, ifelse(length(i) <= 8, 3, 4)),
@@ -49,6 +51,12 @@ predicted values?}
\item{pred_over}{Named list of alternative predictions as obtained
from \link{mkinpredict} with a compatible \link{mkinmod}.}
+\item{test_log_parms}{Passed to \link{mean_degparms} in the case of an
+\link{mixed.mmkin} object}
+
+\item{conf.level}{Passed to \link{mean_degparms} in the case of an
+\link{mixed.mmkin} object}
+
\item{ymax}{Vector of maximum y axis values}
\item{maxabs}{Maximum absolute value of the residuals. This is used for the
diff --git a/man/saem.Rd b/man/saem.Rd
index 45f74e44..f462f405 100644
--- a/man/saem.Rd
+++ b/man/saem.Rd
@@ -17,8 +17,9 @@ saem(object, ...)
test_log_parms = FALSE,
conf.level = 0.6,
solution_type = "auto",
- control = list(displayProgress = FALSE, print = FALSE, save = FALSE, save.graphs =
- FALSE),
+ nbiter.saemix = c(300, 100),
+ control = list(displayProgress = FALSE, print = FALSE, nbiter.saemix = nbiter.saemix,
+ save = FALSE, save.graphs = FALSE),
fail_with_errors = TRUE,
verbose = FALSE,
quiet = FALSE,
@@ -65,7 +66,10 @@ for parameter that are tested if requested by 'test_log_parms'.}
\item{solution_type}{Possibility to specify the solution type in case the
automatic choice is not desired}
-\item{control}{Passed to \link[saemix:saemix]{saemix::saemix}}
+\item{nbiter.saemix}{Convenience option to increase the number of
+iterations}
+
+\item{control}{Passed to \link[saemix:saemix]{saemix::saemix}.}
\item{fail_with_errors}{Should a failure to compute standard errors
from the inverse of the Fisher Information Matrix be a failure?}
--
cgit v1.2.1
From 34d1c5f23edfb60548bc5a9dd99c2f3af92acef1 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Sat, 20 Mar 2021 21:26:40 +0100
Subject: Fix mkin calculation of saemix residuals
---
R/saem.R | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/R/saem.R b/R/saem.R
index 184890f4..6f28a47a 100644
--- a/R/saem.R
+++ b/R/saem.R
@@ -164,7 +164,7 @@ saem.mmkin <- function(object,
xidep = return_data[c("time", "name")])
return_data <- transform(return_data,
- residual = predicted - value,
+ residual = value - predicted,
std = sigma_twocomp(predicted,
f_saemix@results@respar[1], f_saemix@results@respar[2]))
return_data <- transform(return_data,
--
cgit v1.2.1
From c6eb6b2bb598002523c3d34d71b0e4a99671ccd6 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Wed, 9 Jun 2021 16:53:31 +0200
Subject: Rudimentary support for setting up nlmixr models
- All degradation models are specified as ODE models. This appears to be
fast enough
- Error models are being translated to nlmixr as close to the mkin error
model as possible. When using the 'saem' backend, it appears not to be
possible to use the same error model for more than one observed variable
- No support yet for models with parallel formation of metabolites, where
the ilr transformation is used in mkin per default
- There is a bug in nlmixr which appears to be triggered if the data are
not balanced, see nlmixrdevelopment/nlmixr#530
- There is a print and a plot method, the summary method is not finished
---
.travis.yml | 2 +
DESCRIPTION | 9 +-
NAMESPACE | 8 +
NEWS.md | 14 +-
R/mean_degparms.R | 61 ++++++
R/nlme.R | 55 ------
R/nlme.mmkin.R | 2 +-
R/nlmixr.R | 467 ++++++++++++++++++++++++++++++++++++++++++++
R/plot.mixed.mmkin.R | 17 ++
R/saem.R | 6 +
R/summary.nlmixr.mmkin.R | 250 ++++++++++++++++++++++++
build.log | 2 +-
check.log | 68 +++++--
man/mean_degparms.Rd | 27 +++
man/nlme.Rd | 17 --
man/nlme.mmkin.Rd | 2 +-
man/nlmixr.mmkin.Rd | 188 ++++++++++++++++++
man/plot.mixed.mmkin.Rd | 5 +
man/summary.nlmixr.mmkin.Rd | 100 ++++++++++
man/summary.saem.mmkin.Rd | 24 +--
20 files changed, 1209 insertions(+), 115 deletions(-)
create mode 100644 R/mean_degparms.R
create mode 100644 R/nlmixr.R
create mode 100644 R/summary.nlmixr.mmkin.R
create mode 100644 man/mean_degparms.Rd
create mode 100644 man/nlmixr.mmkin.Rd
create mode 100644 man/summary.nlmixr.mmkin.Rd
diff --git a/.travis.yml b/.travis.yml
index 6c03b451..60e37230 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -11,6 +11,8 @@ addons:
cache: packages
repos:
CRAN: https://cloud.r-project.org
+r_github_packages:
+ - jranke/saemixextension@warp_combined
script:
- R CMD build .
- R CMD check --no-tests mkin_*.tar.gz
diff --git a/DESCRIPTION b/DESCRIPTION
index 48aaf81f..5b90ef37 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,8 +1,8 @@
Package: mkin
Type: Package
Title: Kinetic Evaluation of Chemical Degradation Data
-Version: 1.0.4.9000
-Date: 2021-04-21
+Version: 1.0.5
+Date: 2021-06-03
Authors@R: c(
person("Johannes", "Ranke", role = c("aut", "cre", "cph"),
email = "jranke@uni-bremen.de",
@@ -18,11 +18,10 @@ Description: Calculation routines based on the FOCUS Kinetics Report (2006,
note that no warranty is implied for correctness of results or fitness for a
particular purpose.
Depends: R (>= 2.15.1), parallel
-Imports: stats, graphics, methods, deSolve, R6, inline (>= 0.3.17), numDeriv,
- lmtest, pkgbuild, nlme (>= 3.1-151), purrr, saemix (>= 3.1.9000)
+Imports: stats, graphics, methods, deSolve, R6, inline (>= 0.3.19), numDeriv,
+ lmtest, pkgbuild, nlme (>= 3.1-151), purrr, saemix, nlmixr
Suggests: knitr, rbenchmark, tikzDevice, testthat, rmarkdown, covr, vdiffr,
benchmarkme, tibble, stats4
-Remotes: github::saemixdevelopment/saemixextension
License: GPL
LazyLoad: yes
LazyData: yes
diff --git a/NAMESPACE b/NAMESPACE
index f2497283..bb4f5f92 100644
--- a/NAMESPACE
+++ b/NAMESPACE
@@ -16,6 +16,7 @@ S3method(mixed,mmkin)
S3method(mkinpredict,mkinfit)
S3method(mkinpredict,mkinmod)
S3method(nlme,mmkin)
+S3method(nlmixr,mmkin)
S3method(nobs,mkinfit)
S3method(parms,mkinfit)
S3method(parms,mmkin)
@@ -30,6 +31,7 @@ S3method(print,mkinmod)
S3method(print,mmkin)
S3method(print,nafta)
S3method(print,nlme.mmkin)
+S3method(print,nlmixr.mmkin)
S3method(print,saem.mmkin)
S3method(print,summary.mkinfit)
S3method(print,summary.nlme.mmkin)
@@ -38,6 +40,7 @@ S3method(residuals,mkinfit)
S3method(saem,mmkin)
S3method(summary,mkinfit)
S3method(summary,nlme.mmkin)
+S3method(summary,nlmixr.mmkin)
S3method(summary,saem.mmkin)
S3method(update,mkinfit)
S3method(update,mmkin)
@@ -86,6 +89,8 @@ export(nafta)
export(nlme)
export(nlme_data)
export(nlme_function)
+export(nlmixr_data)
+export(nlmixr_model)
export(parms)
export(plot_err)
export(plot_res)
@@ -102,6 +107,8 @@ importFrom(R6,R6Class)
importFrom(grDevices,dev.cur)
importFrom(lmtest,lrtest)
importFrom(methods,signature)
+importFrom(nlmixr,nlmixr)
+importFrom(nlmixr,tableControl)
importFrom(parallel,detectCores)
importFrom(parallel,mclapply)
importFrom(parallel,parLapply)
@@ -135,4 +142,5 @@ importFrom(stats,shapiro.test)
importFrom(stats,update)
importFrom(stats,vcov)
importFrom(utils,getFromNamespace)
+importFrom(utils,packageVersion)
importFrom(utils,write.table)
diff --git a/NEWS.md b/NEWS.md
index d80e152c..03098106 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -1,18 +1,12 @@
-# mkin 1.0.4.9000
-
-## General
-
-- Switch to a versioning scheme where the fourth version component indicates development versions
+# mkin 1.0.5
## Mixed-effects models
-- Reintroduce the interface to the current development version of saemix, in particular:
-
-- 'saemix_model' and 'saemix_data': Helper functions to set up nonlinear mixed-effects models for mmkin row objects
+- Introduce an interface to nlmixr, supporting estimation methods 'saem' and 'focei': S3 method 'nlmixr.mmkin' using the helper functions 'nlmixr_model' and 'nlmixr_data' to set up nlmixr models for mmkin row objects, with summary and plot methods.
-- 'saem': generic function to fit saemix models using 'saemix_model' and 'saemix_data', with a generator 'saem.mmkin', summary and plot methods
+- Reintroduce the interface to current development versions (not on CRAN) of saemix, in particular the generic function 'saem' with a generator 'saem.mmkin', currently using 'saemix_model' and 'saemix_data', summary and plot methods
-- 'mean_degparms': New argument 'test_log_parms' that makes the function only consider log-transformed parameters where the untransformed parameters pass the t-test for a certain confidence level. This can be used to obtain more plausible starting parameters for 'saem'
+- 'mean_degparms': New argument 'test_log_parms' that makes the function only consider log-transformed parameters where the untransformed parameters pass the t-test for a certain confidence level. This can be used to obtain more plausible starting parameters for the different mixed-effects model backends
- 'plot.mixed.mmkin': Gains arguments 'test_log_parms' and 'conf.level'
diff --git a/R/mean_degparms.R b/R/mean_degparms.R
new file mode 100644
index 00000000..ec7f4342
--- /dev/null
+++ b/R/mean_degparms.R
@@ -0,0 +1,61 @@
+#' Calculate mean degradation parameters for an mmkin row object
+#'
+#' @return If random is FALSE (default), a named vector containing mean values
+#' of the fitted degradation model parameters. If random is TRUE, a list with
+#' fixed and random effects, in the format required by the start argument of
+#' nlme for the case of a single grouping variable ds.
+#' @param random Should a list with fixed and random effects be returned?
+#' @param test_log_parms If TRUE, log parameters are only considered in
+#' the mean calculations if their untransformed counterparts (most likely
+#' rate constants) pass the t-test for significant difference from zero.
+#' @param conf.level Possibility to adjust the required confidence level
+#' for parameter that are tested if requested by 'test_log_parms'.
+#' @export
+mean_degparms <- function(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
+{
+ if (nrow(object) > 1) stop("Only row objects allowed")
+ parm_mat_trans <- sapply(object, parms, transformed = TRUE)
+
+ if (test_log_parms) {
+ parm_mat_dim <- dim(parm_mat_trans)
+ parm_mat_dimnames <- dimnames(parm_mat_trans)
+
+ log_parm_trans_names <- grep("^log_", rownames(parm_mat_trans), value = TRUE)
+ log_parm_names <- gsub("^log_", "", log_parm_trans_names)
+
+ t_test_back_OK <- matrix(
+ sapply(object, function(o) {
+ suppressWarnings(summary(o)$bpar[log_parm_names, "Pr(>t)"] < (1 - conf.level))
+ }), nrow = length(log_parm_names))
+ rownames(t_test_back_OK) <- log_parm_trans_names
+
+ parm_mat_trans_OK <- parm_mat_trans
+ for (trans_parm in log_parm_trans_names) {
+ parm_mat_trans_OK[trans_parm, ] <- ifelse(t_test_back_OK[trans_parm, ],
+ parm_mat_trans[trans_parm, ], NA)
+ }
+ } else {
+ parm_mat_trans_OK <- parm_mat_trans
+ }
+
+ mean_degparm_names <- setdiff(rownames(parm_mat_trans), names(object[[1]]$errparms))
+ degparm_mat_trans <- parm_mat_trans[mean_degparm_names, , drop = FALSE]
+ degparm_mat_trans_OK <- parm_mat_trans_OK[mean_degparm_names, , drop = FALSE]
+
+ fixed <- apply(degparm_mat_trans_OK, 1, mean, na.rm = TRUE)
+ if (random) {
+ random <- t(apply(degparm_mat_trans[mean_degparm_names, , drop = FALSE], 2, function(column) column - fixed))
+ # If we only have one parameter, apply returns a vector so we get a single row
+ if (nrow(degparm_mat_trans) == 1) random <- t(random)
+ rownames(random) <- levels(nlme_data(object)$ds)
+
+ # For nlmixr we can specify starting values for standard deviations eta, and
+ # we ignore uncertain parameters if test_log_parms is FALSE
+ eta <- apply(degparm_mat_trans_OK, 1, sd, na.rm = TRUE)
+
+ return(list(fixed = fixed, random = list(ds = random), eta = eta))
+ } else {
+ return(fixed)
+ }
+}
+
diff --git a/R/nlme.R b/R/nlme.R
index d235a094..8762f137 100644
--- a/R/nlme.R
+++ b/R/nlme.R
@@ -124,61 +124,6 @@ nlme_function <- function(object) {
return(model_function)
}
-#' @rdname nlme
-#' @return If random is FALSE (default), a named vector containing mean values
-#' of the fitted degradation model parameters. If random is TRUE, a list with
-#' fixed and random effects, in the format required by the start argument of
-#' nlme for the case of a single grouping variable ds.
-#' @param random Should a list with fixed and random effects be returned?
-#' @param test_log_parms If TRUE, log parameters are only considered in
-#' the mean calculations if their untransformed counterparts (most likely
-#' rate constants) pass the t-test for significant difference from zero.
-#' @param conf.level Possibility to adjust the required confidence level
-#' for parameter that are tested if requested by 'test_log_parms'.
-#' @export
-mean_degparms <- function(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
-{
- if (nrow(object) > 1) stop("Only row objects allowed")
- parm_mat_trans <- sapply(object, parms, transformed = TRUE)
-
- if (test_log_parms) {
- parm_mat_dim <- dim(parm_mat_trans)
- parm_mat_dimnames <- dimnames(parm_mat_trans)
-
- log_parm_trans_names <- grep("^log_", rownames(parm_mat_trans), value = TRUE)
- log_parm_names <- gsub("^log_", "", log_parm_trans_names)
-
- t_test_back_OK <- matrix(
- sapply(object, function(o) {
- suppressWarnings(summary(o)$bpar[log_parm_names, "Pr(>t)"] < (1 - conf.level))
- }), nrow = length(log_parm_names))
- rownames(t_test_back_OK) <- log_parm_trans_names
-
- parm_mat_trans_OK <- parm_mat_trans
- for (trans_parm in log_parm_trans_names) {
- parm_mat_trans_OK[trans_parm, ] <- ifelse(t_test_back_OK[trans_parm, ],
- parm_mat_trans[trans_parm, ], NA)
- }
- } else {
- parm_mat_trans_OK <- parm_mat_trans
- }
-
- mean_degparm_names <- setdiff(rownames(parm_mat_trans), names(object[[1]]$errparms))
- degparm_mat_trans <- parm_mat_trans[mean_degparm_names, , drop = FALSE]
- degparm_mat_trans_OK <- parm_mat_trans_OK[mean_degparm_names, , drop = FALSE]
-
- fixed <- apply(degparm_mat_trans_OK, 1, mean, na.rm = TRUE)
- if (random) {
- random <- t(apply(degparm_mat_trans[mean_degparm_names, , drop = FALSE], 2, function(column) column - fixed))
- # If we only have one parameter, apply returns a vector so we get a single row
- if (nrow(degparm_mat_trans) == 1) random <- t(random)
- rownames(random) <- levels(nlme_data(object)$ds)
- return(list(fixed = fixed, random = list(ds = random)))
- } else {
- return(fixed)
- }
-}
-
#' @rdname nlme
#' @importFrom purrr map_dfr
#' @return A \code{\link{groupedData}} object
diff --git a/R/nlme.mmkin.R b/R/nlme.mmkin.R
index 306600c6..a1aa32e5 100644
--- a/R/nlme.mmkin.R
+++ b/R/nlme.mmkin.R
@@ -135,7 +135,7 @@ nlme.mmkin <- function(model, data = "auto",
function(el) eval(parse(text = paste(el, 1, sep = "~")))),
random = pdDiag(fixed),
groups,
- start = mean_degparms(model, random = TRUE),
+ start = mean_degparms(model, random = TRUE, test_log_parms = TRUE),
correlation = NULL, weights = NULL,
subset, method = c("ML", "REML"),
na.action = na.fail, naPattern,
diff --git a/R/nlmixr.R b/R/nlmixr.R
new file mode 100644
index 00000000..223b23a1
--- /dev/null
+++ b/R/nlmixr.R
@@ -0,0 +1,467 @@
+utils::globalVariables(c("predicted", "std"))
+
+#' Fit nonlinear mixed models using nlmixr
+#'
+#' This function uses [nlmixr::nlmixr()] as a backend for fitting nonlinear mixed
+#' effects models created from [mmkin] row objects using the Stochastic Approximation
+#' Expectation Maximisation algorithm (SAEM).
+#'
+#' An mmkin row object is essentially a list of mkinfit objects that have been
+#' obtained by fitting the same model to a list of datasets using [mkinfit].
+#'
+#' @importFrom nlmixr nlmixr tableControl
+#' @param object An [mmkin] row object containing several fits of the same
+#' [mkinmod] model to different datasets
+#' @param est Estimation method passed to [nlmixr::nlmixr]
+#' @param degparms_start Parameter values given as a named numeric vector will
+#' be used to override the starting values obtained from the 'mmkin' object.
+#' @param test_log_parms If TRUE, an attempt is made to use more robust starting
+#' values for population parameters fitted as log parameters in mkin (like
+#' rate constants) by only considering rate constants that pass the t-test
+#' when calculating mean degradation parameters using [mean_degparms].
+#' @param conf.level Possibility to adjust the required confidence level
+#' for parameter that are tested if requested by 'test_log_parms'.
+#' @param solution_type Possibility to specify the solution type in case the
+#' automatic choice is not desired
+#' @param control Passed to [nlmixr::nlmixr].
+#' @param \dots Passed to [nlmixr_model]
+#' @return An S3 object of class 'nlmixr.mmkin', containing the fitted
+#' [nlmixr::nlmixr] object as a list component named 'nm'. The
+#' object also inherits from 'mixed.mmkin'.
+#' @seealso [summary.nlmixr.mmkin] [plot.mixed.mmkin]
+#' @examples
+#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
+#' function(x) subset(x$data[c("name", "time", "value")]))
+#' names(ds) <- paste("Dataset", 6:10)
+#' f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP", "HS"), ds, quiet = TRUE, cores = 1)
+#' f_mmkin_parent_tc <- mmkin(c("SFO", "FOMC", "DFOP"), ds, error_model = "tc",
+#' cores = 1, quiet = TRUE)
+#'
+#' f_nlmixr_sfo_saem <- nlmixr(f_mmkin_parent["SFO", ], est = "saem")
+#' f_nlmixr_sfo_focei <- nlmixr(f_mmkin_parent["SFO", ], est = "focei")
+#'
+#' f_nlmixr_fomc_saem <- nlmixr(f_mmkin_parent["FOMC", ], est = "saem")
+#' f_nlmixr_fomc_focei <- nlmixr(f_mmkin_parent["FOMC", ], est = "focei")
+#'
+#' f_nlmixr_dfop_saem <- nlmixr(f_mmkin_parent["DFOP", ], est = "saem")
+#' f_nlmixr_dfop_focei <- nlmixr(f_mmkin_parent["DFOP", ], est = "focei")
+#'
+#' f_nlmixr_hs_saem <- nlmixr(f_mmkin_parent["HS", ], est = "saem")
+#' f_nlmixr_hs_focei <- nlmixr(f_mmkin_parent["HS", ], est = "focei")
+#'
+#' f_nlmixr_fomc_saem_tc <- nlmixr(f_mmkin_parent_tc["FOMC", ], est = "saem")
+#' f_nlmixr_fomc_focei_tc <- nlmixr(f_mmkin_parent_tc["FOMC", ], est = "focei")
+#'
+#' AIC(
+#' f_nlmixr_sfo_saem$nm, f_nlmixr_sfo_focei$nm,
+#' f_nlmixr_fomc_saem$nm, f_nlmixr_fomc_focei$nm,
+#' f_nlmixr_dfop_saem$nm, f_nlmixr_dfop_focei$nm,
+#' f_nlmixr_hs_saem$nm, f_nlmixr_hs_focei$nm,
+#' f_nlmixr_fomc_saem_tc$nm, f_nlmixr_fomc_focei_tc$nm)
+#'
+#' AIC(nlme(f_mmkin_parent["FOMC", ]))
+#' AIC(nlme(f_mmkin_parent["HS", ]))
+#'
+#' # nlme is comparable to nlmixr with focei, saem finds a better
+#' # solution, the two-component error model does not improve it
+#' plot(f_nlmixr_fomc_saem)
+#'
+#' \dontrun{
+#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
+#' A1 = mkinsub("SFO"))
+#' fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
+#' A1 = mkinsub("SFO"))
+#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
+#' A1 = mkinsub("SFO"))
+#'
+#' f_mmkin_const <- mmkin(list(
+#' "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
+#' ds, quiet = TRUE, error_model = "const")
+#' f_mmkin_obs <- mmkin(list(
+#' "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
+#' ds, quiet = TRUE, error_model = "obs")
+#' f_mmkin_tc <- mmkin(list(
+#' "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
+#' ds, quiet = TRUE, error_model = "tc")
+#'
+#' # A single constant variance is currently only possible with est = 'focei' in nlmixr
+#' f_nlmixr_sfo_sfo_focei_const <- nlmixr(f_mmkin_const["SFO-SFO", ], est = "focei")
+#' f_nlmixr_fomc_sfo_focei_const <- nlmixr(f_mmkin_const["FOMC-SFO", ], est = "focei")
+#' f_nlmixr_dfop_sfo_focei_const <- nlmixr(f_mmkin_const["DFOP-SFO", ], est = "focei")
+#'
+#' # Variance by variable is supported by 'saem' and 'focei'
+#' f_nlmixr_fomc_sfo_saem_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "saem")
+#' f_nlmixr_fomc_sfo_focei_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "focei")
+#' f_nlmixr_dfop_sfo_saem_obs <- nlmixr(f_mmkin_obs["DFOP-SFO", ], est = "saem")
+#' f_nlmixr_dfop_sfo_focei_obs <- nlmixr(f_mmkin_obs["DFOP-SFO", ], est = "focei")
+#'
+#' # Identical two-component error for all variables is only possible with
+#' # est = 'focei' in nlmixr
+#' f_nlmixr_fomc_sfo_focei_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei")
+#' f_nlmixr_dfop_sfo_focei_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei")
+#'
+#' # Two-component error by variable is possible with both estimation methods
+#' # Variance by variable is supported by 'saem' and 'focei'
+#' f_nlmixr_fomc_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "saem",
+#' error_model = "obs_tc")
+#' f_nlmixr_fomc_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei",
+#' error_model = "obs_tc")
+#' f_nlmixr_dfop_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "saem",
+#' error_model = "obs_tc")
+#' f_nlmixr_dfop_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei",
+#' error_model = "obs_tc")
+#'
+#' AIC(
+#' f_nlmixr_sfo_sfo_focei_const$nm,
+#' f_nlmixr_fomc_sfo_focei_const$nm,
+#' f_nlmixr_dfop_sfo_focei_const$nm,
+#' f_nlmixr_fomc_sfo_saem_obs$nm,
+#' f_nlmixr_fomc_sfo_focei_obs$nm,
+#' f_nlmixr_dfop_sfo_saem_obs$nm,
+#' f_nlmixr_dfop_sfo_focei_obs$nm,
+#' f_nlmixr_fomc_sfo_focei_tc$nm,
+#' f_nlmixr_dfop_sfo_focei_tc$nm,
+#' f_nlmixr_fomc_sfo_saem_obs_tc$nm,
+#' f_nlmixr_fomc_sfo_focei_obs_tc$nm,
+#' f_nlmixr_dfop_sfo_saem_obs_tc$nm,
+#' f_nlmixr_dfop_sfo_focei_obs_tc$nm
+#' )
+#' # Currently, FOMC-SFO with two-component error by variable fitted by focei gives the
+#' # lowest AIC
+#' plot(f_nlmixr_fomc_sfo_focei_obs_tc)
+#' summary(f_nlmixr_fomc_sfo_focei_obs_tc)
+#' }
+#' @export
+nlmixr.mmkin <- function(object, data = NULL,
+ est = NULL, control = list(),
+ table = tableControl(),
+ error_model = object[[1]]$err_mod,
+ test_log_parms = TRUE,
+ conf.level = 0.6,
+ ...,
+ save = NULL,
+ envir = parent.frame()
+)
+{
+ m_nlmixr <- nlmixr_model(object, est = est,
+ error_model = error_model, add_attributes = TRUE,
+ test_log_parms = test_log_parms, conf.level = conf.level)
+ d_nlmixr <- nlmixr_data(object)
+
+ mean_dp_start <- attr(m_nlmixr, "mean_dp_start")
+ mean_ep_start <- attr(m_nlmixr, "mean_ep_start")
+
+ attributes(m_nlmixr) <- NULL
+
+ fit_time <- system.time({
+ f_nlmixr <- nlmixr(m_nlmixr, d_nlmixr, est = est)
+ })
+
+ if (is.null(f_nlmixr$CMT)) {
+ nlmixr_df <- as.data.frame(f_nlmixr[c("ID", "TIME", "DV", "IPRED", "IRES", "IWRES")])
+ nlmixr_df$CMT <- as.character(object[[1]]$data$variable[1])
+ } else {
+ nlmixr_df <- as.data.frame(f_nlmixr[c("ID", "TIME", "DV", "CMT", "IPRED", "IRES", "IWRES")])
+ }
+
+ return_data <- nlmixr_df %>%
+ dplyr::transmute(ds = ID, name = CMT, time = TIME, value = DV,
+ predicted = IPRED, residual = IRES,
+ std = IRES/IWRES, standardized = IWRES)
+
+ bparms_optim <- backtransform_odeparms(f_nlmixr$theta,
+ object[[1]]$mkinmod,
+ object[[1]]$transform_rates,
+ object[[1]]$transform_fractions)
+
+ result <- list(
+ mkinmod = object[[1]]$mkinmod,
+ mmkin = object,
+ transform_rates = object[[1]]$transform_rates,
+ transform_fractions = object[[1]]$transform_fractions,
+ nm = f_nlmixr,
+ est = est,
+ time = fit_time,
+ mean_dp_start = mean_dp_start,
+ mean_ep_start = mean_ep_start,
+ bparms.optim = bparms_optim,
+ bparms.fixed = object[[1]]$bparms.fixed,
+ data = return_data,
+ err_mod = error_model,
+ date.fit = date(),
+ nlmixrversion = as.character(utils::packageVersion("nlmixr")),
+ mkinversion = as.character(utils::packageVersion("mkin")),
+ Rversion = paste(R.version$major, R.version$minor, sep=".")
+ )
+
+ class(result) <- c("nlmixr.mmkin", "mixed.mmkin")
+ return(result)
+}
+
+#' @export
+#' @rdname nlmixr.mmkin
+#' @param x An nlmixr.mmkin object to print
+#' @param digits Number of digits to use for printing
+print.nlmixr.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) {
+ cat("Kinetic nonlinear mixed-effects model fit by", x$est, "using nlmixr")
+ cat("\nStructural model:\n")
+ diffs <- x$mmkin[[1]]$mkinmod$diffs
+ nice_diffs <- gsub("^(d.*) =", "\\1/dt =", diffs)
+ writeLines(strwrap(nice_diffs, exdent = 11))
+ cat("\nData:\n")
+ cat(nrow(x$data), "observations of",
+ length(unique(x$data$name)), "variable(s) grouped in",
+ length(unique(x$data$ds)), "datasets\n")
+
+ cat("\nLikelihood:\n")
+ print(data.frame(
+ AIC = AIC(x$nm),
+ BIC = BIC(x$nm),
+ logLik = logLik(x$nm),
+ row.names = " "), digits = digits)
+
+ cat("\nFitted parameters:\n")
+ print(x$nm$parFixed, digits = digits)
+
+ invisible(x)
+}
+
+#' @rdname nlmixr.mmkin
+#' @return An function defining a model suitable for fitting with [nlmixr::nlmixr].
+#' @export
+nlmixr_model <- function(object,
+ est = c("saem", "focei"),
+ degparms_start = "auto",
+ test_log_parms = FALSE, conf.level = 0.6,
+ error_model = object[[1]]$err_mod, add_attributes = FALSE)
+{
+ if (nrow(object) > 1) stop("Only row objects allowed")
+ est = match.arg(est)
+
+ mkin_model <- object[[1]]$mkinmod
+ obs_vars <- names(mkin_model$spec)
+
+ if (error_model == object[[1]]$err_mod) {
+
+ if (length(object[[1]]$mkinmod$spec) > 1 & est == "saem") {
+ if (error_model == "const") {
+ message(
+ "Constant variance for more than one variable is not supported for est = 'saem'\n",
+ "Changing the error model to 'obs' (variance by observed variable)")
+ error_model <- "obs"
+ }
+ if (error_model =="tc") {
+ message(
+ "With est = 'saem', a different error model is required for each observed variable",
+ "Changing the error model to 'obs_tc' (Two-component error for each observed variable)")
+ error_model <- "obs_tc"
+ }
+ }
+ }
+
+ degparms_mmkin <- mean_degparms(object,
+ test_log_parms = test_log_parms,
+ conf.level = conf.level, random = TRUE)
+
+ degparms_optim <- degparms_mmkin$fixed
+
+ degparms_optim <- degparms_mmkin$fixed
+
+ if (degparms_start[1] == "auto") {
+ degparms_start <- degparms_optim
+ }
+ degparms_fixed <- object[[1]]$bparms.fixed
+
+ degparms_optim_back_names <- names(backtransform_odeparms(degparms_optim,
+ object[[1]]$mkinmod,
+ object[[1]]$transform_rates,
+ object[[1]]$transform_fractions))
+ names(degparms_optim_back_names) <- names(degparms_optim)
+
+ odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE)
+ odeini_fixed_parm_names <- grep('_0$', names(degparms_fixed), value = TRUE)
+
+ odeparms_fixed_names <- setdiff(names(degparms_fixed), odeini_fixed_parm_names)
+ odeparms_fixed <- degparms_fixed[odeparms_fixed_names]
+
+ odeini_fixed <- degparms_fixed[odeini_fixed_parm_names]
+ names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names)
+
+ # Definition of the model function
+ f <- function(){}
+
+ ini_block <- "ini({"
+
+ # Initial values for all degradation parameters
+ for (parm_name in names(degparms_optim)) {
+ # As initials for state variables are not transformed,
+ # we need to modify the name here as we want to
+ # use the original name in the model block
+ ini_block <- paste0(
+ ini_block,
+ parm_name, " = ",
+ as.character(degparms_start[parm_name]),
+ "\n",
+ "eta.", parm_name, " ~ ",
+ as.character(degparms_mmkin$eta[parm_name]),
+ "\n"
+ )
+ }
+
+ # Error model parameters
+ error_model_mkin <- object[[1]]$err_mod
+
+ errparm_names_mkin <- names(object[[1]]$errparms)
+ errparms_mkin <- sapply(errparm_names_mkin, function(parm_name) {
+ mean(sapply(object, function(x) x$errparms[parm_name]))
+ })
+
+ sigma_tc_mkin <- errparms_ini <- errparms_mkin[1] +
+ mean(unlist(sapply(object, function(x) x$data$observed)), na.rm = TRUE) *
+ errparms_mkin[2]
+
+ if (error_model == "const") {
+ if (error_model_mkin == "tc") {
+ errparms_ini <- sigma_tc_mkin
+ } else {
+ errparms_ini <- mean(errparms_mkin)
+ }
+ names(errparms_ini) <- "sigma"
+ }
+
+ if (error_model == "obs") {
+ errparms_ini <- switch(error_model_mkin,
+ const = rep(errparms_mkin["sigma"], length(obs_vars)),
+ obs = errparms_mkin,
+ tc = sigma_tc_mkin)
+ names(errparms_ini) <- paste0("sigma_", obs_vars)
+ }
+
+ if (error_model == "tc") {
+ if (error_model_mkin != "tc") {
+ stop("Not supported")
+ } else {
+ errparms_ini <- errparms_mkin
+ }
+ }
+
+ if (error_model == "obs_tc") {
+ if (error_model_mkin != "tc") {
+ stop("Not supported")
+ } else {
+ errparms_ini <- rep(errparms_mkin, length(obs_vars))
+ names(errparms_ini) <- paste0(
+ rep(names(errparms_mkin), length(obs_vars)),
+ "_",
+ rep(obs_vars, each = 2))
+ }
+ }
+
+ for (parm_name in names(errparms_ini)) {
+ ini_block <- paste0(
+ ini_block,
+ parm_name, " = ",
+ as.character(errparms_ini[parm_name]),
+ "\n"
+ )
+ }
+
+ ini_block <- paste0(ini_block, "})")
+
+ body(f)[2] <- parse(text = ini_block)
+
+ model_block <- "model({"
+
+ # Population initial values for the ODE state variables
+ for (parm_name in odeini_optim_parm_names) {
+ model_block <- paste0(
+ model_block,
+ parm_name, "_model = ",
+ parm_name, " + eta.", parm_name, "\n",
+ gsub("(.*)_0", "\\1(0)", parm_name), " = ", parm_name, "_model\n")
+ }
+
+ # Population initial values for log rate constants
+ for (parm_name in grep("^log_", names(degparms_optim), value = TRUE)) {
+ model_block <- paste0(
+ model_block,
+ gsub("^log_", "", parm_name), " = ",
+ "exp(", parm_name, " + eta.", parm_name, ")\n")
+ }
+
+ # Population initial values for logit transformed parameters
+ for (parm_name in grep("_qlogis$", names(degparms_optim), value = TRUE)) {
+ model_block <- paste0(
+ model_block,
+ degparms_optim_back_names[parm_name], " = ",
+ "expit(", parm_name, " + eta.", parm_name, ")\n")
+ }
+
+ # Differential equations
+ model_block <- paste0(
+ model_block,
+ paste(
+ gsub("d_(.*) =", "d/dt(\\1) =", mkin_model$diffs),
+ collapse = "\n"),
+ "\n"
+ )
+
+ # Error model
+ if (error_model == "const") {
+ model_block <- paste0(model_block,
+ paste(paste0(obs_vars, " ~ add(sigma)"), collapse = "\n"))
+ }
+ if (error_model == "obs") {
+ model_block <- paste0(model_block,
+ paste(paste0(obs_vars, " ~ add(sigma_", obs_vars, ")"), collapse = "\n"),
+ "\n")
+ }
+ if (error_model == "tc") {
+ model_block <- paste0(model_block,
+ paste(paste0(obs_vars, " ~ add(sigma_low) + prop(rsd_high)"), collapse = "\n"),
+ "\n")
+ }
+ if (error_model == "obs_tc") {
+ model_block <- paste0(model_block,
+ paste(
+ paste0(obs_vars, " ~ add(sigma_low_", obs_vars, ") + ",
+ "prop(rsd_high_", obs_vars, ")"), collapse = "\n"),
+ "\n")
+ }
+
+ model_block <- paste0(model_block, "})")
+
+ body(f)[3] <- parse(text = model_block)
+
+ if (add_attributes) {
+ attr(f, "mean_dp_start") <- degparms_optim
+ attr(f, "mean_ep_start") <- errparms_ini
+ }
+
+ return(f)
+}
+
+#' @rdname nlmixr.mmkin
+#' @return An dataframe suitable for use with [nlmixr::nlmixr]
+#' @export
+nlmixr_data <- function(object, ...) {
+ if (nrow(object) > 1) stop("Only row objects allowed")
+ d <- lapply(object, function(x) x$data)
+ compartment_map <- 1:length(object[[1]]$mkinmod$spec)
+ names(compartment_map) <- names(object[[1]]$mkinmod$spec)
+ ds_names <- colnames(object)
+
+ ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")])
+ names(ds_list) <- ds_names
+ ds_nlmixr <- purrr::map_dfr(ds_list, function(x) x, .id = "ds")
+ ds_nlmixr$variable <- as.character(ds_nlmixr$variable)
+ ds_nlmixr_renamed <- data.frame(
+ ID = ds_nlmixr$ds,
+ TIME = ds_nlmixr$time,
+ AMT = 0, EVID = 0,
+ CMT = ds_nlmixr$variable,
+ DV = ds_nlmixr$observed,
+ stringsAsFactors = FALSE)
+
+ return(ds_nlmixr_renamed)
+}
diff --git a/R/plot.mixed.mmkin.R b/R/plot.mixed.mmkin.R
index f0682c10..1ac62b07 100644
--- a/R/plot.mixed.mmkin.R
+++ b/R/plot.mixed.mmkin.R
@@ -40,12 +40,17 @@ utils::globalVariables("ds")
#'
#' # For this fit we need to increase pnlsMaxiter, and we increase the
#' # tolerance in order to speed up the fit for this example evaluation
+#' # It still takes 20 seconds to run
#' f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3))
#' plot(f_nlme)
#'
#' f_saem <- saem(f, transformations = "saemix")
#' plot(f_saem)
#'
+#' f_obs <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, error_model = "obs")
+#' f_nlmix <- nlmix(f_obs)
+#' plot(f_nlmix)
+#'
#' # We can overlay the two variants if we generate predictions
#' pred_nlme <- mkinpredict(dfop_sfo,
#' f_nlme$bparms.optim[-1],
@@ -109,6 +114,18 @@ plot.mixed.mmkin <- function(x,
names(degparms_pop) <- degparms_i_names
}
+ if (inherits(x, "nlmixr.mmkin")) {
+ eta_i <- random.effects(x$nm)[-1]
+ names(eta_i) <- gsub("^eta.", "", names(eta_i))
+ degparms_i <- eta_i
+ degparms_pop <- x$nm$theta
+ for (parm_name in names(degparms_i)) {
+ degparms_i[parm_name] <- eta_i[parm_name] + degparms_pop[parm_name]
+ }
+ residual_type = ifelse(standardized, "standardized", "residual")
+ residuals <- x$data[[residual_type]]
+ }
+
degparms_fixed <- fit_1$fixed$value
names(degparms_fixed) <- rownames(fit_1$fixed)
degparms_all <- cbind(as.matrix(degparms_i),
diff --git a/R/saem.R b/R/saem.R
index 6f28a47a..5daf4be8 100644
--- a/R/saem.R
+++ b/R/saem.R
@@ -13,6 +13,7 @@ utils::globalVariables(c("predicted", "std"))
#' psi0 of [saemix::saemixModel()] are the mean values of the parameters found
#' using [mmkin].
#'
+#' @importFrom utils packageVersion
#' @param object An [mmkin] row object containing several fits of the same
#' [mkinmod] model to different datasets
#' @param verbose Should we print information about created objects of
@@ -230,6 +231,11 @@ print.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) {
saemix_model <- function(object, solution_type = "auto", transformations = c("mkin", "saemix"),
degparms_start = numeric(), test_log_parms = FALSE, verbose = FALSE, ...)
{
+ if (packageVersion("saemix") < "3.1.9000") {
+ stop("To use the interface to saemix, you need to install a development version\n",
+ "preferably https://github.com/jranke/saemixextension@warp_combined")
+ }
+
if (nrow(object) > 1) stop("Only row objects allowed")
mkin_model <- object[[1]]$mkinmod
diff --git a/R/summary.nlmixr.mmkin.R b/R/summary.nlmixr.mmkin.R
new file mode 100644
index 00000000..ae8e32cf
--- /dev/null
+++ b/R/summary.nlmixr.mmkin.R
@@ -0,0 +1,250 @@
+#' Summary method for class "nlmixr.mmkin"
+#'
+#' Lists model equations, initial parameter values, optimised parameters
+#' for fixed effects (population), random effects (deviations from the
+#' population mean) and residual error model, as well as the resulting
+#' endpoints such as formation fractions and DT50 values. Optionally
+#' (default is FALSE), the data are listed in full.
+#'
+#' @param object an object of class [nlmix.mmkin]
+#' @param x an object of class [summary.nlmix.mmkin]
+#' @param data logical, indicating whether the full data should be included in
+#' the summary.
+#' @param verbose Should the summary be verbose?
+#' @param distimes logical, indicating whether DT50 and DT90 values should be
+#' included.
+#' @param digits Number of digits to use for printing
+#' @param \dots optional arguments passed to methods like \code{print}.
+#' @return The summary function returns a list obtained in the fit, with at
+#' least the following additional components
+#' \item{nlmixrversion, mkinversion, Rversion}{The nlmixr, mkin and R versions used}
+#' \item{date.fit, date.summary}{The dates where the fit and the summary were
+#' produced}
+#' \item{diffs}{The differential equations used in the degradation model}
+#' \item{use_of_ff}{Was maximum or minimum use made of formation fractions}
+#' \item{data}{The data}
+#' \item{confint_trans}{Transformed parameters as used in the optimisation, with confidence intervals}
+#' \item{confint_back}{Backtransformed parameters, with confidence intervals if available}
+#' \item{confint_errmod}{Error model parameters with confidence intervals}
+#' \item{ff}{The estimated formation fractions derived from the fitted
+#' model.}
+#' \item{distimes}{The DT50 and DT90 values for each observed variable.}
+#' \item{SFORB}{If applicable, eigenvalues of SFORB components of the model.}
+#' The print method is called for its side effect, i.e. printing the summary.
+#' @importFrom stats predict vcov
+#' @author Johannes Ranke for the mkin specific parts
+#' nlmixr authors for the parts inherited from nlmixr.
+#' @examples
+#' # Generate five datasets following DFOP-SFO kinetics
+#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "m1"),
+#' m1 = mkinsub("SFO"), quiet = TRUE)
+#' set.seed(1234)
+#' k1_in <- rlnorm(5, log(0.1), 0.3)
+#' k2_in <- rlnorm(5, log(0.02), 0.3)
+#' g_in <- plogis(rnorm(5, qlogis(0.5), 0.3))
+#' f_parent_to_m1_in <- plogis(rnorm(5, qlogis(0.3), 0.3))
+#' k_m1_in <- rlnorm(5, log(0.02), 0.3)
+#'
+#' pred_dfop_sfo <- function(k1, k2, g, f_parent_to_m1, k_m1) {
+#' mkinpredict(dfop_sfo,
+#' c(k1 = k1, k2 = k2, g = g, f_parent_to_m1 = f_parent_to_m1, k_m1 = k_m1),
+#' c(parent = 100, m1 = 0),
+#' sampling_times)
+#' }
+#'
+#' ds_mean_dfop_sfo <- lapply(1:5, function(i) {
+#' mkinpredict(dfop_sfo,
+#' c(k1 = k1_in[i], k2 = k2_in[i], g = g_in[i],
+#' f_parent_to_m1 = f_parent_to_m1_in[i], k_m1 = k_m1_in[i]),
+#' c(parent = 100, m1 = 0),
+#' sampling_times)
+#' })
+#' names(ds_mean_dfop_sfo) <- paste("ds", 1:5)
+#'
+#' ds_syn_dfop_sfo <- lapply(ds_mean_dfop_sfo, function(ds) {
+#' add_err(ds,
+#' sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),
+#' n = 1)[[1]]
+#' })
+#'
+#' \dontrun{
+#' # Evaluate using mmkin and nlmixr
+#' f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo,
+#' quiet = TRUE, error_model = "tc", cores = 5)
+#' f_saemix_dfop_sfo <- mkin::saem(f_mmkin_dfop_sfo)
+#' f_nlme_dfop_sfo <- mkin::nlme(f_mmkin_dfop_sfo)
+#' f_nlmixr_dfop_sfo_saem <- nlmixr(f_mmkin_dfop_sfo, est = "saem")
+#' # The following takes a very long time but gives
+#' f_nlmixr_dfop_sfo_focei <- nlmixr(f_mmkin_dfop_sfo, est = "focei")
+#' AIC(f_nlmixr_dfop_sfo_saem$nm, f_nlmixr_dfop_sfo_focei$nm)
+#' summary(f_nlmixr_dfop_sfo, data = TRUE)
+#' }
+#'
+#' @export
+summary.nlmixr.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...) {
+
+ mod_vars <- names(object$mkinmod$diffs)
+
+ pnames <- names(object$mean_dp_start)
+ np <- length(pnames)
+
+ conf.int <- confint(object$nm)
+ confint_trans <- as.matrix(conf.int[pnames, c(1, 3, 4)])
+ colnames(confint_trans) <- c("est.", "lower", "upper")
+
+ bp <- backtransform_odeparms(confint_trans[, "est."], object$mkinmod,
+ object$transform_rates, object$transform_fractions)
+ bpnames <- names(bp)
+
+ # Transform boundaries of CI for one parameter at a time,
+ # with the exception of sets of formation fractions (single fractions are OK).
+ f_names_skip <- character(0)
+ for (box in mod_vars) { # Figure out sets of fractions to skip
+ f_names <- grep(paste("^f", box, sep = "_"), pnames, value = TRUE)
+ n_paths <- length(f_names)
+ if (n_paths > 1) f_names_skip <- c(f_names_skip, f_names)
+ }
+
+ confint_back <- matrix(NA, nrow = length(bp), ncol = 3,
+ dimnames = list(bpnames, colnames(confint_trans)))
+ confint_back[, "est."] <- bp
+
+ for (pname in pnames) {
+ if (!pname %in% f_names_skip) {
+ par.lower <- confint_trans[pname, "lower"]
+ par.upper <- confint_trans[pname, "upper"]
+ names(par.lower) <- names(par.upper) <- pname
+ bpl <- backtransform_odeparms(par.lower, object$mkinmod,
+ object$transform_rates,
+ object$transform_fractions)
+ bpu <- backtransform_odeparms(par.upper, object$mkinmod,
+ object$transform_rates,
+ object$transform_fractions)
+ confint_back[names(bpl), "lower"] <- bpl
+ confint_back[names(bpu), "upper"] <- bpu
+ }
+ }
+
+ # Correlation of fixed effects (inspired by summary.nlme)
+ varFix <- vcov(object$nm)
+ stdFix <- sqrt(diag(varFix))
+ object$corFixed <- array(
+ t(varFix/stdFix)/stdFix,
+ dim(varFix),
+ list(pnames, pnames))
+
+ object$confint_back <- confint_back
+
+ object$date.summary = date()
+ object$use_of_ff = object$mkinmod$use_of_ff
+
+ object$diffs <- object$mkinmod$diffs
+ object$print_data <- data # boolean: Should we print the data?
+ predict(object$nm)
+ so_pred <- object$so@results@predictions
+
+ names(object$data)[4] <- "observed" # rename value to observed
+
+ object$verbose <- verbose
+
+ object$fixed <- object$mmkin_orig[[1]]$fixed
+ object$AIC = AIC(object$so)
+ object$BIC = BIC(object$so)
+ object$logLik = logLik(object$so, method = "is")
+
+ ep <- endpoints(object)
+ if (length(ep$ff) != 0)
+ object$ff <- ep$ff
+ if (distimes) object$distimes <- ep$distimes
+ if (length(ep$SFORB) != 0) object$SFORB <- ep$SFORB
+ class(object) <- c("summary.saem.mmkin")
+ return(object)
+}
+
+#' @rdname summary.saem.mmkin
+#' @export
+print.summary.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...) {
+ cat("saemix version used for fitting: ", x$saemixversion, "\n")
+ cat("mkin version used for pre-fitting: ", x$mkinversion, "\n")
+ cat("R version used for fitting: ", x$Rversion, "\n")
+
+ cat("Date of fit: ", x$date.fit, "\n")
+ cat("Date of summary:", x$date.summary, "\n")
+
+ cat("\nEquations:\n")
+ nice_diffs <- gsub("^(d.*) =", "\\1/dt =", x[["diffs"]])
+ writeLines(strwrap(nice_diffs, exdent = 11))
+
+ cat("\nData:\n")
+ cat(nrow(x$data), "observations of",
+ length(unique(x$data$name)), "variable(s) grouped in",
+ length(unique(x$data$ds)), "datasets\n")
+
+ cat("\nModel predictions using solution type", x$solution_type, "\n")
+
+ cat("\nFitted in", x$time[["elapsed"]], "s using", paste(x$so@options$nbiter.saemix, collapse = ", "), "iterations\n")
+
+ cat("\nVariance model: ")
+ cat(switch(x$err_mod,
+ const = "Constant variance",
+ obs = "Variance unique to each observed variable",
+ tc = "Two-component variance function"), "\n")
+
+ cat("\nMean of starting values for individual parameters:\n")
+ print(x$mean_dp_start, digits = digits)
+
+ cat("\nFixed degradation parameter values:\n")
+ if(length(x$fixed$value) == 0) cat("None\n")
+ else print(x$fixed, digits = digits)
+
+ cat("\nResults:\n\n")
+ cat("Likelihood computed by importance sampling\n")
+ print(data.frame(AIC = x$AIC, BIC = x$BIC, logLik = x$logLik,
+ row.names = " "), digits = digits)
+
+ cat("\nOptimised parameters:\n")
+ print(x$confint_trans, digits = digits)
+
+ if (nrow(x$confint_trans) > 1) {
+ corr <- x$corFixed
+ class(corr) <- "correlation"
+ print(corr, title = "\nCorrelation:", ...)
+ }
+
+ cat("\nRandom effects:\n")
+ print(x$confint_ranef, digits = digits)
+
+ cat("\nVariance model:\n")
+ print(x$confint_errmod, digits = digits)
+
+ if (x$transformations == "mkin") {
+ cat("\nBacktransformed parameters:\n")
+ print(x$confint_back, digits = digits)
+ }
+
+ printSFORB <- !is.null(x$SFORB)
+ if(printSFORB){
+ cat("\nEstimated Eigenvalues of SFORB model(s):\n")
+ print(x$SFORB, digits = digits,...)
+ }
+
+ printff <- !is.null(x$ff)
+ if(printff){
+ cat("\nResulting formation fractions:\n")
+ print(data.frame(ff = x$ff), digits = digits,...)
+ }
+
+ printdistimes <- !is.null(x$distimes)
+ if(printdistimes){
+ cat("\nEstimated disappearance times:\n")
+ print(x$distimes, digits = digits,...)
+ }
+
+ if (x$print_data){
+ cat("\nData:\n")
+ print(format(x$data, digits = digits, ...), row.names = FALSE)
+ }
+
+ invisible(x)
+}
diff --git a/build.log b/build.log
index ca1c0481..13f76240 100644
--- a/build.log
+++ b/build.log
@@ -6,5 +6,5 @@
* creating vignettes ... OK
* checking for LF line-endings in source and make files and shell scripts
* checking for empty or unneeded directories
-* building ‘mkin_1.0.4.9000.tar.gz’
+* building ‘mkin_1.0.5.tar.gz’
diff --git a/check.log b/check.log
index 7de944a5..f6ee39db 100644
--- a/check.log
+++ b/check.log
@@ -1,19 +1,14 @@
* using log directory ‘/home/jranke/git/mkin/mkin.Rcheck’
-* using R version 4.0.5 (2021-03-31)
+* using R version 4.1.0 (2021-05-18)
* using platform: x86_64-pc-linux-gnu (64-bit)
* using session charset: UTF-8
* using options ‘--no-tests --as-cran’
* checking for file ‘mkin/DESCRIPTION’ ... OK
* checking extension type ... Package
-* this is package ‘mkin’ version ‘1.0.4.9000’
+* this is package ‘mkin’ version ‘1.0.5’
* package encoding: UTF-8
-* checking CRAN incoming feasibility ... NOTE
+* checking CRAN incoming feasibility ... Note_to_CRAN_maintainers
Maintainer: ‘Johannes Ranke ’
-
-Version contains large components (1.0.4.9000)
-
-Unknown, possibly mis-spelled, fields in DESCRIPTION:
- ‘Remotes’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
@@ -46,22 +41,68 @@ Unknown, possibly mis-spelled, fields in DESCRIPTION:
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
-* checking R code for possible problems ... OK
+* checking R code for possible problems ... NOTE
+saemix_model: no visible global function definition for
+ ‘packageVersion’
+Undefined global functions or variables:
+ packageVersion
+Consider adding
+ importFrom("utils", "packageVersion")
+to your NAMESPACE file.
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd line widths ... OK
-* checking Rd cross-references ... OK
+* checking Rd cross-references ... WARNING
+Missing link or links in documentation object 'nlmixr.mmkin.Rd':
+ ‘nlmix_model’ ‘summary.nlmixr.mmkin’
+
+See section 'Cross-references' in the 'Writing R Extensions' manual.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
-* checking Rd \usage sections ... OK
+* checking Rd \usage sections ... WARNING
+Undocumented arguments in documentation object 'mean_degparms'
+ ‘object’
+
+Undocumented arguments in documentation object 'nlmixr.mmkin'
+ ‘data’ ‘table’ ‘error_model’ ‘save’ ‘envir’
+Documented arguments not in \usage in documentation object 'nlmixr.mmkin':
+ ‘solution_type’
+
+Functions with \usage entries need to have the appropriate \alias
+entries, and all their arguments documented.
+The \usage entries must correspond to syntactically valid R code.
+See chapter ‘Writing R documentation files’ in the ‘Writing R
+Extensions’ manual.
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
+* checking LazyData ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking installed files from ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
-* checking examples ... OK
+* checking examples ... ERROR
+Running examples in ‘mkin-Ex.R’ failed
+The error most likely occurred in:
+
+> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
+> ### Name: nlmixr.mmkin
+> ### Title: Fit nonlinear mixed models using nlmixr
+> ### Aliases: nlmixr.mmkin print.nlmixr.mmkin nlmixr_model nlmixr_data
+>
+> ### ** Examples
+>
+> ds <- lapply(experimental_data_for_UBA_2019[6:10],
++ function(x) subset(x$data[c("name", "time", "value")]))
+> names(ds) <- paste("Dataset", 6:10)
+> f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP", "HS"), ds, quiet = TRUE, cores = 1)
+> f_mmkin_parent_tc <- mmkin(c("SFO", "FOMC", "DFOP"), ds, error_model = "tc",
++ cores = 1, quiet = TRUE)
+>
+> f_nlmixr_sfo_saem <- nlmixr(f_mmkin_parent["SFO", ], est = "saem")
+Error in nlmixr(f_mmkin_parent["SFO", ], est = "saem") :
+ could not find function "nlmixr"
+Execution halted
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ... SKIPPED
* checking for unstated dependencies in vignettes ... OK
@@ -72,9 +113,8 @@ Unknown, possibly mis-spelled, fields in DESCRIPTION:
* checking for detritus in the temp directory ... OK
* DONE
-Status: 1 NOTE
+Status: 1 ERROR, 2 WARNINGs, 1 NOTE
See
‘/home/jranke/git/mkin/mkin.Rcheck/00check.log’
for details.
-
diff --git a/man/mean_degparms.Rd b/man/mean_degparms.Rd
new file mode 100644
index 00000000..92ed4c9d
--- /dev/null
+++ b/man/mean_degparms.Rd
@@ -0,0 +1,27 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/mean_degparms.R
+\name{mean_degparms}
+\alias{mean_degparms}
+\title{Calculate mean degradation parameters for an mmkin row object}
+\usage{
+mean_degparms(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
+}
+\arguments{
+\item{random}{Should a list with fixed and random effects be returned?}
+
+\item{test_log_parms}{If TRUE, log parameters are only considered in
+the mean calculations if their untransformed counterparts (most likely
+rate constants) pass the t-test for significant difference from zero.}
+
+\item{conf.level}{Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'.}
+}
+\value{
+If random is FALSE (default), a named vector containing mean values
+of the fitted degradation model parameters. If random is TRUE, a list with
+fixed and random effects, in the format required by the start argument of
+nlme for the case of a single grouping variable ds.
+}
+\description{
+Calculate mean degradation parameters for an mmkin row object
+}
diff --git a/man/nlme.Rd b/man/nlme.Rd
index c367868b..e87b7a00 100644
--- a/man/nlme.Rd
+++ b/man/nlme.Rd
@@ -2,36 +2,19 @@
% Please edit documentation in R/nlme.R
\name{nlme_function}
\alias{nlme_function}
-\alias{mean_degparms}
\alias{nlme_data}
\title{Helper functions to create nlme models from mmkin row objects}
\usage{
nlme_function(object)
-mean_degparms(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
-
nlme_data(object)
}
\arguments{
\item{object}{An mmkin row object containing several fits of the same model to different datasets}
-
-\item{random}{Should a list with fixed and random effects be returned?}
-
-\item{test_log_parms}{If TRUE, log parameters are only considered in
-the mean calculations if their untransformed counterparts (most likely
-rate constants) pass the t-test for significant difference from zero.}
-
-\item{conf.level}{Possibility to adjust the required confidence level
-for parameter that are tested if requested by 'test_log_parms'.}
}
\value{
A function that can be used with nlme
-If random is FALSE (default), a named vector containing mean values
-of the fitted degradation model parameters. If random is TRUE, a list with
-fixed and random effects, in the format required by the start argument of
-nlme for the case of a single grouping variable ds.
-
A \code{\link{groupedData}} object
}
\description{
diff --git a/man/nlme.mmkin.Rd b/man/nlme.mmkin.Rd
index 2fb0488a..a2b45efa 100644
--- a/man/nlme.mmkin.Rd
+++ b/man/nlme.mmkin.Rd
@@ -13,7 +13,7 @@
paste(el, 1, sep = "~")))),
random = pdDiag(fixed),
groups,
- start = mean_degparms(model, random = TRUE),
+ start = mean_degparms(model, random = TRUE, test_log_parms = TRUE),
correlation = NULL,
weights = NULL,
subset,
diff --git a/man/nlmixr.mmkin.Rd b/man/nlmixr.mmkin.Rd
new file mode 100644
index 00000000..86bbdc9f
--- /dev/null
+++ b/man/nlmixr.mmkin.Rd
@@ -0,0 +1,188 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/nlmixr.R
+\name{nlmixr.mmkin}
+\alias{nlmixr.mmkin}
+\alias{print.nlmixr.mmkin}
+\alias{nlmixr_model}
+\alias{nlmixr_data}
+\title{Fit nonlinear mixed models using nlmixr}
+\usage{
+\method{nlmixr}{mmkin}(
+ object,
+ data = NULL,
+ est = NULL,
+ control = list(),
+ table = tableControl(),
+ error_model = object[[1]]$err_mod,
+ test_log_parms = TRUE,
+ conf.level = 0.6,
+ ...,
+ save = NULL,
+ envir = parent.frame()
+)
+
+\method{print}{nlmixr.mmkin}(x, digits = max(3, getOption("digits") - 3), ...)
+
+nlmixr_model(
+ object,
+ est = c("saem", "focei"),
+ degparms_start = "auto",
+ test_log_parms = FALSE,
+ conf.level = 0.6,
+ error_model = object[[1]]$err_mod
+)
+
+nlmixr_data(object, ...)
+}
+\arguments{
+\item{object}{An \link{mmkin} row object containing several fits of the same
+\link{mkinmod} model to different datasets}
+
+\item{est}{Estimation method passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}}
+
+\item{control}{Passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}.}
+
+\item{test_log_parms}{If TRUE, an attempt is made to use more robust starting
+values for population parameters fitted as log parameters in mkin (like
+rate constants) by only considering rate constants that pass the t-test
+when calculating mean degradation parameters using \link{mean_degparms}.}
+
+\item{conf.level}{Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'.}
+
+\item{\dots}{Passed to \link{nlmixr_model}}
+
+\item{x}{An nlmixr.mmkin object to print}
+
+\item{digits}{Number of digits to use for printing}
+
+\item{degparms_start}{Parameter values given as a named numeric vector will
+be used to override the starting values obtained from the 'mmkin' object.}
+
+\item{solution_type}{Possibility to specify the solution type in case the
+automatic choice is not desired}
+}
+\value{
+An S3 object of class 'nlmixr.mmkin', containing the fitted
+\link[nlmixr:nlmixr]{nlmixr::nlmixr} object as a list component named 'nm'. The
+object also inherits from 'mixed.mmkin'.
+
+An function defining a model suitable for fitting with \link[nlmixr:nlmixr]{nlmixr::nlmixr}.
+
+An dataframe suitable for use with \link[nlmixr:nlmixr]{nlmixr::nlmixr}
+}
+\description{
+This function uses \code{\link[nlmixr:nlmixr]{nlmixr::nlmixr()}} as a backend for fitting nonlinear mixed
+effects models created from \link{mmkin} row objects using the Stochastic Approximation
+Expectation Maximisation algorithm (SAEM).
+}
+\details{
+An mmkin row object is essentially a list of mkinfit objects that have been
+obtained by fitting the same model to a list of datasets using \link{mkinfit}.
+}
+\examples{
+ds <- lapply(experimental_data_for_UBA_2019[6:10],
+ function(x) subset(x$data[c("name", "time", "value")]))
+names(ds) <- paste("Dataset", 6:10)
+f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP", "HS"), ds, quiet = TRUE, cores = 1)
+f_mmkin_parent_tc <- mmkin(c("SFO", "FOMC", "DFOP"), ds, error_model = "tc",
+ cores = 1, quiet = TRUE)
+
+f_nlmixr_sfo_saem <- nlmixr(f_mmkin_parent["SFO", ], est = "saem")
+f_nlmixr_sfo_focei <- nlmixr(f_mmkin_parent["SFO", ], est = "focei")
+
+f_nlmixr_fomc_saem <- nlmixr(f_mmkin_parent["FOMC", ], est = "saem")
+f_nlmixr_fomc_focei <- nlmixr(f_mmkin_parent["FOMC", ], est = "focei")
+
+f_nlmixr_dfop_saem <- nlmixr(f_mmkin_parent["DFOP", ], est = "saem")
+f_nlmixr_dfop_focei <- nlmixr(f_mmkin_parent["DFOP", ], est = "focei")
+
+f_nlmixr_hs_saem <- nlmixr(f_mmkin_parent["HS", ], est = "saem")
+f_nlmixr_hs_focei <- nlmixr(f_mmkin_parent["HS", ], est = "focei")
+
+f_nlmixr_fomc_saem_tc <- nlmixr(f_mmkin_parent_tc["FOMC", ], est = "saem")
+f_nlmixr_fomc_focei_tc <- nlmixr(f_mmkin_parent_tc["FOMC", ], est = "focei")
+
+AIC(
+ f_nlmixr_sfo_saem$nm, f_nlmixr_sfo_focei$nm,
+ f_nlmixr_fomc_saem$nm, f_nlmixr_fomc_focei$nm,
+ f_nlmixr_dfop_saem$nm, f_nlmixr_dfop_focei$nm,
+ f_nlmixr_hs_saem$nm, f_nlmixr_hs_focei$nm,
+ f_nlmixr_fomc_saem_tc$nm, f_nlmixr_fomc_focei_tc$nm)
+
+AIC(nlme(f_mmkin_parent["FOMC", ]))
+AIC(nlme(f_mmkin_parent["HS", ]))
+
+# nlme is comparable to nlmixr with focei, saem finds a better
+# solution, the two-component error model does not improve it
+plot(f_nlmixr_fomc_saem)
+
+\dontrun{
+sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
+ A1 = mkinsub("SFO"))
+fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
+ A1 = mkinsub("SFO"))
+dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
+ A1 = mkinsub("SFO"))
+
+f_mmkin_const <- mmkin(list(
+ "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
+ ds, quiet = TRUE, error_model = "const")
+f_mmkin_obs <- mmkin(list(
+ "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
+ ds, quiet = TRUE, error_model = "obs")
+f_mmkin_tc <- mmkin(list(
+ "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
+ ds, quiet = TRUE, error_model = "tc")
+
+# A single constant variance is currently only possible with est = 'focei' in nlmixr
+f_nlmixr_sfo_sfo_focei_const <- nlmixr(f_mmkin_const["SFO-SFO", ], est = "focei")
+f_nlmixr_fomc_sfo_focei_const <- nlmixr(f_mmkin_const["FOMC-SFO", ], est = "focei")
+f_nlmixr_dfop_sfo_focei_const <- nlmixr(f_mmkin_const["DFOP-SFO", ], est = "focei")
+
+# Variance by variable is supported by 'saem' and 'focei'
+f_nlmixr_fomc_sfo_saem_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "saem")
+f_nlmixr_fomc_sfo_focei_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "focei")
+f_nlmixr_dfop_sfo_saem_obs <- nlmixr(f_mmkin_obs["DFOP-SFO", ], est = "saem")
+f_nlmixr_dfop_sfo_focei_obs <- nlmixr(f_mmkin_obs["DFOP-SFO", ], est = "focei")
+
+# Identical two-component error for all variables is only possible with
+# est = 'focei' in nlmixr
+f_nlmixr_fomc_sfo_focei_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei")
+f_nlmixr_dfop_sfo_focei_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei")
+
+# Two-component error by variable is possible with both estimation methods
+# Variance by variable is supported by 'saem' and 'focei'
+f_nlmixr_fomc_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "saem",
+ error_model = "obs_tc")
+f_nlmixr_fomc_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei",
+ error_model = "obs_tc")
+f_nlmixr_dfop_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "saem",
+ error_model = "obs_tc")
+f_nlmixr_dfop_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei",
+ error_model = "obs_tc")
+
+AIC(
+ f_nlmixr_sfo_sfo_focei_const$nm,
+ f_nlmixr_fomc_sfo_focei_const$nm,
+ f_nlmixr_dfop_sfo_focei_const$nm,
+ f_nlmixr_fomc_sfo_saem_obs$nm,
+ f_nlmixr_fomc_sfo_focei_obs$nm,
+ f_nlmixr_dfop_sfo_saem_obs$nm,
+ f_nlmixr_dfop_sfo_focei_obs$nm,
+ f_nlmixr_fomc_sfo_focei_tc$nm,
+ f_nlmixr_dfop_sfo_focei_tc$nm,
+ f_nlmixr_fomc_sfo_saem_obs_tc$nm,
+ f_nlmixr_fomc_sfo_focei_obs_tc$nm,
+ f_nlmixr_dfop_sfo_saem_obs_tc$nm,
+ f_nlmixr_dfop_sfo_focei_obs_tc$nm
+)
+# Currently, FOMC-SFO with two-component error by variable fitted by focei gives the
+# lowest AIC
+plot(f_nlmixr_fomc_sfo_focei_obs_tc)
+summary(f_nlmixr_fomc_sfo_focei_obs_tc)
+}
+}
+\seealso{
+\link{summary.nlmixr.mmkin} \link{plot.mixed.mmkin}
+}
diff --git a/man/plot.mixed.mmkin.Rd b/man/plot.mixed.mmkin.Rd
index bcab3e74..d87ca22c 100644
--- a/man/plot.mixed.mmkin.Rd
+++ b/man/plot.mixed.mmkin.Rd
@@ -99,12 +99,17 @@ plot(f[, 3:4], standardized = TRUE)
# For this fit we need to increase pnlsMaxiter, and we increase the
# tolerance in order to speed up the fit for this example evaluation
+# It still takes 20 seconds to run
f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3))
plot(f_nlme)
f_saem <- saem(f, transformations = "saemix")
plot(f_saem)
+f_obs <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, error_model = "obs")
+f_nlmix <- nlmix(f_obs)
+plot(f_nlmix)
+
# We can overlay the two variants if we generate predictions
pred_nlme <- mkinpredict(dfop_sfo,
f_nlme$bparms.optim[-1],
diff --git a/man/summary.nlmixr.mmkin.Rd b/man/summary.nlmixr.mmkin.Rd
new file mode 100644
index 00000000..03f0ffb2
--- /dev/null
+++ b/man/summary.nlmixr.mmkin.Rd
@@ -0,0 +1,100 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/summary.nlmixr.mmkin.R
+\name{summary.nlmixr.mmkin}
+\alias{summary.nlmixr.mmkin}
+\title{Summary method for class "nlmixr.mmkin"}
+\usage{
+\method{summary}{nlmixr.mmkin}(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...)
+}
+\arguments{
+\item{object}{an object of class \link{nlmix.mmkin}}
+
+\item{data}{logical, indicating whether the full data should be included in
+the summary.}
+
+\item{verbose}{Should the summary be verbose?}
+
+\item{distimes}{logical, indicating whether DT50 and DT90 values should be
+included.}
+
+\item{\dots}{optional arguments passed to methods like \code{print}.}
+
+\item{x}{an object of class \link{summary.nlmix.mmkin}}
+
+\item{digits}{Number of digits to use for printing}
+}
+\value{
+The summary function returns a list obtained in the fit, with at
+least the following additional components
+\item{nlmixrversion, mkinversion, Rversion}{The nlmixr, mkin and R versions used}
+\item{date.fit, date.summary}{The dates where the fit and the summary were
+produced}
+\item{diffs}{The differential equations used in the degradation model}
+\item{use_of_ff}{Was maximum or minimum use made of formation fractions}
+\item{data}{The data}
+\item{confint_trans}{Transformed parameters as used in the optimisation, with confidence intervals}
+\item{confint_back}{Backtransformed parameters, with confidence intervals if available}
+\item{confint_errmod}{Error model parameters with confidence intervals}
+\item{ff}{The estimated formation fractions derived from the fitted
+model.}
+\item{distimes}{The DT50 and DT90 values for each observed variable.}
+\item{SFORB}{If applicable, eigenvalues of SFORB components of the model.}
+The print method is called for its side effect, i.e. printing the summary.
+}
+\description{
+Lists model equations, initial parameter values, optimised parameters
+for fixed effects (population), random effects (deviations from the
+population mean) and residual error model, as well as the resulting
+endpoints such as formation fractions and DT50 values. Optionally
+(default is FALSE), the data are listed in full.
+}
+\examples{
+# Generate five datasets following DFOP-SFO kinetics
+sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "m1"),
+ m1 = mkinsub("SFO"), quiet = TRUE)
+set.seed(1234)
+k1_in <- rlnorm(5, log(0.1), 0.3)
+k2_in <- rlnorm(5, log(0.02), 0.3)
+g_in <- plogis(rnorm(5, qlogis(0.5), 0.3))
+f_parent_to_m1_in <- plogis(rnorm(5, qlogis(0.3), 0.3))
+k_m1_in <- rlnorm(5, log(0.02), 0.3)
+
+pred_dfop_sfo <- function(k1, k2, g, f_parent_to_m1, k_m1) {
+ mkinpredict(dfop_sfo,
+ c(k1 = k1, k2 = k2, g = g, f_parent_to_m1 = f_parent_to_m1, k_m1 = k_m1),
+ c(parent = 100, m1 = 0),
+ sampling_times)
+}
+
+ds_mean_dfop_sfo <- lapply(1:5, function(i) {
+ mkinpredict(dfop_sfo,
+ c(k1 = k1_in[i], k2 = k2_in[i], g = g_in[i],
+ f_parent_to_m1 = f_parent_to_m1_in[i], k_m1 = k_m1_in[i]),
+ c(parent = 100, m1 = 0),
+ sampling_times)
+})
+names(ds_mean_dfop_sfo) <- paste("ds", 1:5)
+
+ds_syn_dfop_sfo <- lapply(ds_mean_dfop_sfo, function(ds) {
+ add_err(ds,
+ sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),
+ n = 1)[[1]]
+})
+
+\dontrun{
+# Evaluate using mmkin and nlmixr
+f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo,
+ quiet = TRUE, error_model = "obs", cores = 5)
+f_saemix_dfop_sfo <- mkin::saem(f_mmkin_dfop_sfo)
+f_nlme_dfop_sfo <- mkin::nlme(f_mmkin_dfop_sfo)
+f_nlmixr_dfop_sfo_saem <- nlmixr(f_mmkin_dfop_sfo, est = "saem")
+#f_nlmixr_dfop_sfo_focei <- nlmixr(f_mmkin_dfop_sfo, est = "focei")
+summary(f_nlmixr_dfop_sfo, data = TRUE)
+}
+
+}
+\author{
+Johannes Ranke for the mkin specific parts
+nlmixr authors for the parts inherited from nlmixr.
+}
diff --git a/man/summary.saem.mmkin.Rd b/man/summary.saem.mmkin.Rd
index 67cb3cbb..86938d31 100644
--- a/man/summary.saem.mmkin.Rd
+++ b/man/summary.saem.mmkin.Rd
@@ -1,30 +1,32 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/summary.saem.mmkin.R
-\name{summary.saem.mmkin}
-\alias{summary.saem.mmkin}
+% Please edit documentation in R/summary.nlmixr.mmkin.R, R/summary.saem.mmkin.R
+\name{print.summary.saem.mmkin}
\alias{print.summary.saem.mmkin}
+\alias{summary.saem.mmkin}
\title{Summary method for class "saem.mmkin"}
\usage{
+\method{print}{summary.saem.mmkin}(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
+
\method{summary}{saem.mmkin}(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...)
\method{print}{summary.saem.mmkin}(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
}
\arguments{
-\item{object}{an object of class \link{saem.mmkin}}
+\item{x}{an object of class \link{summary.saem.mmkin}}
-\item{data}{logical, indicating whether the full data should be included in
-the summary.}
+\item{digits}{Number of digits to use for printing}
\item{verbose}{Should the summary be verbose?}
-\item{distimes}{logical, indicating whether DT50 and DT90 values should be
-included.}
-
\item{\dots}{optional arguments passed to methods like \code{print}.}
-\item{x}{an object of class \link{summary.saem.mmkin}}
+\item{object}{an object of class \link{saem.mmkin}}
-\item{digits}{Number of digits to use for printing}
+\item{data}{logical, indicating whether the full data should be included in
+the summary.}
+
+\item{distimes}{logical, indicating whether DT50 and DT90 values should be
+included.}
}
\value{
The summary function returns a list based on the \link[saemix:SaemixObject-class]{saemix::SaemixObject}
--
cgit v1.2.1
From 0c9b2f0e3c8ce65cb790c9e048476784cbbea070 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Fri, 11 Jun 2021 11:14:45 +0200
Subject: Finished 'summary.nlmixr.mmkin', checks, docs
---
DESCRIPTION | 2 +-
NAMESPACE | 5 +
NEWS.md | 2 +-
R/endpoints.R | 4 +-
R/mean_degparms.R | 3 +-
R/nlmixr.R | 29 +-
R/summary.nlmixr.mmkin.R | 50 +-
_pkgdown.yml | 3 +
check.log | 59 +-
docs/dev/404.html | 2 +-
docs/dev/articles/index.html | 2 +-
docs/dev/authors.html | 2 +-
docs/dev/index.html | 2 +-
docs/dev/news/index.html | 34 +-
docs/dev/pkgdown.yml | 2 +-
docs/dev/reference/Rplot002.png | Bin 16859 -> 16858 bytes
docs/dev/reference/Rplot003.png | Bin 28844 -> 28838 bytes
docs/dev/reference/Rplot004.png | Bin 49360 -> 49360 bytes
docs/dev/reference/Rplot005.png | Bin 59216 -> 59049 bytes
docs/dev/reference/Rplot006.png | Bin 24545 -> 22144 bytes
docs/dev/reference/endpoints.html | 6 +-
docs/dev/reference/index.html | 22 +-
docs/dev/reference/mean_degparms.html | 210 +
docs/dev/reference/mixed-1.png | Bin 219866 -> 220057 bytes
docs/dev/reference/mixed.html | 6 +-
docs/dev/reference/mmkin-1.png | Bin 110459 -> 111120 bytes
docs/dev/reference/mmkin-2.png | Bin 107057 -> 108016 bytes
docs/dev/reference/mmkin-3.png | Bin 96062 -> 96433 bytes
docs/dev/reference/mmkin-4.png | Bin 67191 -> 66723 bytes
docs/dev/reference/mmkin-5.png | Bin 64880 -> 65113 bytes
docs/dev/reference/mmkin.html | 11 +-
docs/dev/reference/nlme-1.png | Bin 68233 -> 68943 bytes
docs/dev/reference/nlme-2.png | Bin 90552 -> 94409 bytes
docs/dev/reference/nlme.html | 41 +-
docs/dev/reference/nlme.mmkin-1.png | Bin 124827 -> 124937 bytes
docs/dev/reference/nlme.mmkin-2.png | Bin 169698 -> 169884 bytes
docs/dev/reference/nlme.mmkin-3.png | Bin 172809 -> 172863 bytes
docs/dev/reference/nlme.mmkin.html | 20 +-
docs/dev/reference/nlmixr.mmkin-1.png | Bin 0 -> 127508 bytes
docs/dev/reference/nlmixr.mmkin-2.png | Bin 0 -> 177016 bytes
docs/dev/reference/nlmixr.mmkin.html | 13791 +++++++++++++++++++++++++
docs/dev/reference/plot.mixed.mmkin-1.png | Bin 85433 -> 85300 bytes
docs/dev/reference/plot.mixed.mmkin-2.png | Bin 174061 -> 174111 bytes
docs/dev/reference/plot.mixed.mmkin-3.png | Bin 172540 -> 173260 bytes
docs/dev/reference/plot.mixed.mmkin-4.png | Bin 175594 -> 176346 bytes
docs/dev/reference/plot.mixed.mmkin.html | 23 +-
docs/dev/reference/reexports.html | 8 +-
docs/dev/reference/saem-1.png | Bin 47342 -> 47337 bytes
docs/dev/reference/saem-2.png | Bin 48819 -> 48793 bytes
docs/dev/reference/saem-3.png | Bin 82202 -> 82192 bytes
docs/dev/reference/saem-4.png | Bin 128213 -> 128209 bytes
docs/dev/reference/saem-5.png | Bin 173665 -> 174406 bytes
docs/dev/reference/saem.html | 399 +-
docs/dev/reference/summary.nlmixr.mmkin.html | 1022 ++
docs/dev/reference/summary.saem.mmkin.html | 358 +-
docs/dev/sitemap.xml | 9 +
man/endpoints.Rd | 4 +-
man/mean_degparms.Rd | 2 +
man/nlmixr.mmkin.Rd | 24 +-
man/reexports.Rd | 5 +-
man/summary.nlmixr.mmkin.Rd | 17 +-
man/summary.saem.mmkin.Rd | 24 +-
62 files changed, 15632 insertions(+), 571 deletions(-)
create mode 100644 docs/dev/reference/mean_degparms.html
create mode 100644 docs/dev/reference/nlmixr.mmkin-1.png
create mode 100644 docs/dev/reference/nlmixr.mmkin-2.png
create mode 100644 docs/dev/reference/nlmixr.mmkin.html
create mode 100644 docs/dev/reference/summary.nlmixr.mmkin.html
diff --git a/DESCRIPTION b/DESCRIPTION
index 5b90ef37..e81fcb32 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -19,7 +19,7 @@ Description: Calculation routines based on the FOCUS Kinetics Report (2006,
particular purpose.
Depends: R (>= 2.15.1), parallel
Imports: stats, graphics, methods, deSolve, R6, inline (>= 0.3.19), numDeriv,
- lmtest, pkgbuild, nlme (>= 3.1-151), purrr, saemix, nlmixr
+ dplyr, lmtest, pkgbuild, nlme (>= 3.1-151), purrr, saemix, nlmixr
Suggests: knitr, rbenchmark, tikzDevice, testthat, rmarkdown, covr, vdiffr,
benchmarkme, tibble, stats4
License: GPL
diff --git a/NAMESPACE b/NAMESPACE
index bb4f5f92..0f61396d 100644
--- a/NAMESPACE
+++ b/NAMESPACE
@@ -35,6 +35,7 @@ S3method(print,nlmixr.mmkin)
S3method(print,saem.mmkin)
S3method(print,summary.mkinfit)
S3method(print,summary.nlme.mmkin)
+S3method(print,summary.nlmixr.mmkin)
S3method(print,summary.saem.mmkin)
S3method(residuals,mkinfit)
S3method(saem,mmkin)
@@ -89,6 +90,7 @@ export(nafta)
export(nlme)
export(nlme_data)
export(nlme_function)
+export(nlmixr)
export(nlmixr_data)
export(nlmixr_model)
export(parms)
@@ -104,6 +106,7 @@ import(deSolve)
import(graphics)
import(nlme)
importFrom(R6,R6Class)
+importFrom(dplyr,"%>%")
importFrom(grDevices,dev.cur)
importFrom(lmtest,lrtest)
importFrom(methods,signature)
@@ -119,6 +122,7 @@ importFrom(stats,aggregate)
importFrom(stats,as.formula)
importFrom(stats,coef)
importFrom(stats,coefficients)
+importFrom(stats,confint)
importFrom(stats,cov2cor)
importFrom(stats,dist)
importFrom(stats,dnorm)
@@ -138,6 +142,7 @@ importFrom(stats,qnorm)
importFrom(stats,qt)
importFrom(stats,residuals)
importFrom(stats,rnorm)
+importFrom(stats,sd)
importFrom(stats,shapiro.test)
importFrom(stats,update)
importFrom(stats,vcov)
diff --git a/NEWS.md b/NEWS.md
index 03098106..e668f1e5 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -1,4 +1,4 @@
-# mkin 1.0.5
+# mkin 1.0.5 (unreleased)
## Mixed-effects models
diff --git a/R/endpoints.R b/R/endpoints.R
index f1f47581..6bf52f07 100644
--- a/R/endpoints.R
+++ b/R/endpoints.R
@@ -10,8 +10,8 @@
#' Additional DT50 values are calculated from the FOMC DT90 and k1 and k2 from
#' HS and DFOP, as well as from Eigenvalues b1 and b2 of any SFORB models
#'
-#' @param fit An object of class [mkinfit], [nlme.mmkin] or
-#' [saem.mmkin]. Or another object that has list components
+#' @param fit An object of class [mkinfit], [nlme.mmkin], [saem.mmkin] or
+#' [nlmixr.mmkin]. Or another object that has list components
#' mkinmod containing an [mkinmod] degradation model, and two numeric vectors,
#' bparms.optim and bparms.fixed, that contain parameter values
#' for that model.
diff --git a/R/mean_degparms.R b/R/mean_degparms.R
index ec7f4342..ec20c068 100644
--- a/R/mean_degparms.R
+++ b/R/mean_degparms.R
@@ -4,6 +4,7 @@
#' of the fitted degradation model parameters. If random is TRUE, a list with
#' fixed and random effects, in the format required by the start argument of
#' nlme for the case of a single grouping variable ds.
+#' @param object An mmkin row object containing several fits of the same model to different datasets
#' @param random Should a list with fixed and random effects be returned?
#' @param test_log_parms If TRUE, log parameters are only considered in
#' the mean calculations if their untransformed counterparts (most likely
@@ -51,7 +52,7 @@ mean_degparms <- function(object, random = FALSE, test_log_parms = FALSE, conf.l
# For nlmixr we can specify starting values for standard deviations eta, and
# we ignore uncertain parameters if test_log_parms is FALSE
- eta <- apply(degparm_mat_trans_OK, 1, sd, na.rm = TRUE)
+ eta <- apply(degparm_mat_trans_OK, 1, stats::sd, na.rm = TRUE)
return(list(fixed = fixed, random = list(ds = random), eta = eta))
} else {
diff --git a/R/nlmixr.R b/R/nlmixr.R
index 223b23a1..98783ca7 100644
--- a/R/nlmixr.R
+++ b/R/nlmixr.R
@@ -1,4 +1,7 @@
-utils::globalVariables(c("predicted", "std"))
+utils::globalVariables(c("predicted", "std", "ID", "TIME", "CMT", "DV", "IPRED", "IRES", "IWRES"))
+
+#' @export
+nlmixr::nlmixr
#' Fit nonlinear mixed models using nlmixr
#'
@@ -10,8 +13,10 @@ utils::globalVariables(c("predicted", "std"))
#' obtained by fitting the same model to a list of datasets using [mkinfit].
#'
#' @importFrom nlmixr nlmixr tableControl
+#' @importFrom dplyr %>%
#' @param object An [mmkin] row object containing several fits of the same
#' [mkinmod] model to different datasets
+#' @param data Not used, the data are extracted from the mmkin row object
#' @param est Estimation method passed to [nlmixr::nlmixr]
#' @param degparms_start Parameter values given as a named numeric vector will
#' be used to override the starting values obtained from the 'mmkin' object.
@@ -21,22 +26,28 @@ utils::globalVariables(c("predicted", "std"))
#' when calculating mean degradation parameters using [mean_degparms].
#' @param conf.level Possibility to adjust the required confidence level
#' for parameter that are tested if requested by 'test_log_parms'.
-#' @param solution_type Possibility to specify the solution type in case the
-#' automatic choice is not desired
-#' @param control Passed to [nlmixr::nlmixr].
+#' @param data Not used, as the data are extracted from the mmkin row object
+#' @param table Passed to [nlmixr::nlmixr]
+#' @param error_model Possibility to override the error model which is being
+#' set based on the error model used in the mmkin row object.
+#' @param control Passed to [nlmixr::nlmixr]
#' @param \dots Passed to [nlmixr_model]
+#' @param save Passed to [nlmixr::nlmixr]
+#' @param envir Passed to [nlmixr::nlmixr]
#' @return An S3 object of class 'nlmixr.mmkin', containing the fitted
#' [nlmixr::nlmixr] object as a list component named 'nm'. The
#' object also inherits from 'mixed.mmkin'.
#' @seealso [summary.nlmixr.mmkin] [plot.mixed.mmkin]
#' @examples
+#' \dontrun{
#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) subset(x$data[c("name", "time", "value")]))
#' names(ds) <- paste("Dataset", 6:10)
+#'
#' f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP", "HS"), ds, quiet = TRUE, cores = 1)
#' f_mmkin_parent_tc <- mmkin(c("SFO", "FOMC", "DFOP"), ds, error_model = "tc",
#' cores = 1, quiet = TRUE)
-#'
+#'
#' f_nlmixr_sfo_saem <- nlmixr(f_mmkin_parent["SFO", ], est = "saem")
#' f_nlmixr_sfo_focei <- nlmixr(f_mmkin_parent["SFO", ], est = "focei")
#'
@@ -66,7 +77,6 @@ utils::globalVariables(c("predicted", "std"))
#' # solution, the two-component error model does not improve it
#' plot(f_nlmixr_fomc_saem)
#'
-#' \dontrun{
#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
#' A1 = mkinsub("SFO"))
#' fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
@@ -167,7 +177,8 @@ nlmixr.mmkin <- function(object, data = NULL,
return_data <- nlmixr_df %>%
dplyr::transmute(ds = ID, name = CMT, time = TIME, value = DV,
predicted = IPRED, residual = IRES,
- std = IRES/IWRES, standardized = IWRES)
+ std = IRES/IWRES, standardized = IWRES) %>%
+ dplyr::arrange(ds, name, time)
bparms_optim <- backtransform_odeparms(f_nlmixr$theta,
object[[1]]$mkinmod,
@@ -227,6 +238,9 @@ print.nlmixr.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...)
}
#' @rdname nlmixr.mmkin
+#' @param add_attributes Should the starting values used for degradation model
+#' parameters and their distribution and for the error model parameters
+#' be returned as attributes?
#' @return An function defining a model suitable for fitting with [nlmixr::nlmixr].
#' @export
nlmixr_model <- function(object,
@@ -435,6 +449,7 @@ nlmixr_model <- function(object,
if (add_attributes) {
attr(f, "mean_dp_start") <- degparms_optim
+ attr(f, "eta_start") <- degparms_mmkin$eta
attr(f, "mean_ep_start") <- errparms_ini
}
diff --git a/R/summary.nlmixr.mmkin.R b/R/summary.nlmixr.mmkin.R
index ae8e32cf..f2d7c607 100644
--- a/R/summary.nlmixr.mmkin.R
+++ b/R/summary.nlmixr.mmkin.R
@@ -6,8 +6,9 @@
#' endpoints such as formation fractions and DT50 values. Optionally
#' (default is FALSE), the data are listed in full.
#'
-#' @param object an object of class [nlmix.mmkin]
-#' @param x an object of class [summary.nlmix.mmkin]
+#' @importFrom stats confint sd
+#' @param object an object of class [nlmixr.mmkin]
+#' @param x an object of class [summary.nlmixr.mmkin]
#' @param data logical, indicating whether the full data should be included in
#' the summary.
#' @param verbose Should the summary be verbose?
@@ -23,9 +24,7 @@
#' \item{diffs}{The differential equations used in the degradation model}
#' \item{use_of_ff}{Was maximum or minimum use made of formation fractions}
#' \item{data}{The data}
-#' \item{confint_trans}{Transformed parameters as used in the optimisation, with confidence intervals}
#' \item{confint_back}{Backtransformed parameters, with confidence intervals if available}
-#' \item{confint_errmod}{Error model parameters with confidence intervals}
#' \item{ff}{The estimated formation fractions derived from the fitted
#' model.}
#' \item{distimes}{The DT50 and DT90 values for each observed variable.}
@@ -78,7 +77,7 @@
#' # The following takes a very long time but gives
#' f_nlmixr_dfop_sfo_focei <- nlmixr(f_mmkin_dfop_sfo, est = "focei")
#' AIC(f_nlmixr_dfop_sfo_saem$nm, f_nlmixr_dfop_sfo_focei$nm)
-#' summary(f_nlmixr_dfop_sfo, data = TRUE)
+#' summary(f_nlmixr_dfop_sfo_sfo, data = TRUE)
#' }
#'
#' @export
@@ -134,6 +133,7 @@ summary.nlmixr.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes
dim(varFix),
list(pnames, pnames))
+ object$confint_trans <- confint_trans
object$confint_back <- confint_back
object$date.summary = date()
@@ -141,31 +141,29 @@ summary.nlmixr.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes
object$diffs <- object$mkinmod$diffs
object$print_data <- data # boolean: Should we print the data?
- predict(object$nm)
- so_pred <- object$so@results@predictions
names(object$data)[4] <- "observed" # rename value to observed
object$verbose <- verbose
object$fixed <- object$mmkin_orig[[1]]$fixed
- object$AIC = AIC(object$so)
- object$BIC = BIC(object$so)
- object$logLik = logLik(object$so, method = "is")
+ object$AIC = AIC(object$nm)
+ object$BIC = BIC(object$nm)
+ object$logLik = logLik(object$nm)
ep <- endpoints(object)
if (length(ep$ff) != 0)
object$ff <- ep$ff
if (distimes) object$distimes <- ep$distimes
if (length(ep$SFORB) != 0) object$SFORB <- ep$SFORB
- class(object) <- c("summary.saem.mmkin")
+ class(object) <- c("summary.nlmixr.mmkin")
return(object)
}
-#' @rdname summary.saem.mmkin
+#' @rdname summary.nlmixr.mmkin
#' @export
-print.summary.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...) {
- cat("saemix version used for fitting: ", x$saemixversion, "\n")
+print.summary.nlmixr.mmkin <- function(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...) {
+ cat("nlmixr version used for fitting: ", x$nlmixrversion, "\n")
cat("mkin version used for pre-fitting: ", x$mkinversion, "\n")
cat("R version used for fitting: ", x$Rversion, "\n")
@@ -181,25 +179,29 @@ print.summary.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3)
length(unique(x$data$name)), "variable(s) grouped in",
length(unique(x$data$ds)), "datasets\n")
- cat("\nModel predictions using solution type", x$solution_type, "\n")
+ cat("\nDegradation model predictions using RxODE\n")
- cat("\nFitted in", x$time[["elapsed"]], "s using", paste(x$so@options$nbiter.saemix, collapse = ", "), "iterations\n")
+ cat("\nFitted in", x$time[["elapsed"]], "s\n")
cat("\nVariance model: ")
cat(switch(x$err_mod,
const = "Constant variance",
obs = "Variance unique to each observed variable",
- tc = "Two-component variance function"), "\n")
+ tc = "Two-component variance function",
+ obs_tc = "Two-component variance unique to each observed variable"), "\n")
cat("\nMean of starting values for individual parameters:\n")
print(x$mean_dp_start, digits = digits)
+ cat("\nMean of starting values for error model parameters:\n")
+ print(x$mean_ep_start, digits = digits)
+
cat("\nFixed degradation parameter values:\n")
if(length(x$fixed$value) == 0) cat("None\n")
else print(x$fixed, digits = digits)
cat("\nResults:\n\n")
- cat("Likelihood computed by importance sampling\n")
+ cat("Likelihood calculated by", nlmixr::getOfvType(x$nm), " \n")
print(data.frame(AIC = x$AIC, BIC = x$BIC, logLik = x$logLik,
row.names = " "), digits = digits)
@@ -212,16 +214,14 @@ print.summary.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3)
print(corr, title = "\nCorrelation:", ...)
}
- cat("\nRandom effects:\n")
- print(x$confint_ranef, digits = digits)
+ cat("\nRandom effects (omega):\n")
+ print(x$nm$omega, digits = digits)
cat("\nVariance model:\n")
- print(x$confint_errmod, digits = digits)
+ print(x$nm$sigma, digits = digits)
- if (x$transformations == "mkin") {
- cat("\nBacktransformed parameters:\n")
- print(x$confint_back, digits = digits)
- }
+ cat("\nBacktransformed parameters:\n")
+ print(x$confint_back, digits = digits)
printSFORB <- !is.null(x$SFORB)
if(printSFORB){
diff --git a/_pkgdown.yml b/_pkgdown.yml
index 340004de..50c0685f 100644
--- a/_pkgdown.yml
+++ b/_pkgdown.yml
@@ -43,8 +43,10 @@ reference:
contents:
- nlme.mmkin
- saem.mmkin
+ - nlmixr.mmkin
- plot.mixed.mmkin
- summary.nlme.mmkin
+ - summary.nlmixr.mmkin
- summary.saem.mmkin
- nlme_function
- get_deg_func
@@ -91,6 +93,7 @@ reference:
- mkinresplot
- mkinparplot
- mkinerrplot
+ - mean_degparms
- create_deg_func
- title: Analytical solutions
desc: Parent only model solutions
diff --git a/check.log b/check.log
index f6ee39db..2627695d 100644
--- a/check.log
+++ b/check.log
@@ -41,38 +41,14 @@ Maintainer: ‘Johannes Ranke ’
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
-* checking R code for possible problems ... NOTE
-saemix_model: no visible global function definition for
- ‘packageVersion’
-Undefined global functions or variables:
- packageVersion
-Consider adding
- importFrom("utils", "packageVersion")
-to your NAMESPACE file.
+* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd line widths ... OK
-* checking Rd cross-references ... WARNING
-Missing link or links in documentation object 'nlmixr.mmkin.Rd':
- ‘nlmix_model’ ‘summary.nlmixr.mmkin’
-
-See section 'Cross-references' in the 'Writing R Extensions' manual.
+* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
-* checking Rd \usage sections ... WARNING
-Undocumented arguments in documentation object 'mean_degparms'
- ‘object’
-
-Undocumented arguments in documentation object 'nlmixr.mmkin'
- ‘data’ ‘table’ ‘error_model’ ‘save’ ‘envir’
-Documented arguments not in \usage in documentation object 'nlmixr.mmkin':
- ‘solution_type’
-
-Functions with \usage entries need to have the appropriate \alias
-entries, and all their arguments documented.
-The \usage entries must correspond to syntactically valid R code.
-See chapter ‘Writing R documentation files’ in the ‘Writing R
-Extensions’ manual.
+* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
@@ -81,28 +57,10 @@ Extensions’ manual.
* checking data for ASCII and uncompressed saves ... OK
* checking installed files from ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
-* checking examples ... ERROR
-Running examples in ‘mkin-Ex.R’ failed
-The error most likely occurred in:
-
-> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
-> ### Name: nlmixr.mmkin
-> ### Title: Fit nonlinear mixed models using nlmixr
-> ### Aliases: nlmixr.mmkin print.nlmixr.mmkin nlmixr_model nlmixr_data
->
-> ### ** Examples
->
-> ds <- lapply(experimental_data_for_UBA_2019[6:10],
-+ function(x) subset(x$data[c("name", "time", "value")]))
-> names(ds) <- paste("Dataset", 6:10)
-> f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP", "HS"), ds, quiet = TRUE, cores = 1)
-> f_mmkin_parent_tc <- mmkin(c("SFO", "FOMC", "DFOP"), ds, error_model = "tc",
-+ cores = 1, quiet = TRUE)
->
-> f_nlmixr_sfo_saem <- nlmixr(f_mmkin_parent["SFO", ], est = "saem")
-Error in nlmixr(f_mmkin_parent["SFO", ], est = "saem") :
- could not find function "nlmixr"
-Execution halted
+* checking examples ... NOTE
+Examples with CPU (user + system) or elapsed time > 5s
+ user system elapsed
+nlmixr.mmkin 8.129 0.375 5.384
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ... SKIPPED
* checking for unstated dependencies in vignettes ... OK
@@ -113,8 +71,9 @@ Execution halted
* checking for detritus in the temp directory ... OK
* DONE
-Status: 1 ERROR, 2 WARNINGs, 1 NOTE
+Status: 1 NOTE
See
‘/home/jranke/git/mkin/mkin.Rcheck/00check.log’
for details.
+
diff --git a/docs/dev/404.html b/docs/dev/404.html
index 58591997..98c0b1e0 100644
--- a/docs/dev/404.html
+++ b/docs/dev/404.html
@@ -71,7 +71,7 @@
mkin
- 1.0.4.9000
+ 1.0.5
diff --git a/docs/dev/articles/index.html b/docs/dev/articles/index.html
index 3c00526e..3896120a 100644
--- a/docs/dev/articles/index.html
+++ b/docs/dev/articles/index.html
@@ -71,7 +71,7 @@
mkin
- 1.0.4.9000
+ 1.0.5
diff --git a/docs/dev/authors.html b/docs/dev/authors.html
index 45db18f2..4208dc24 100644
--- a/docs/dev/authors.html
+++ b/docs/dev/authors.html
@@ -71,7 +71,7 @@
mkin
- 1.0.4.9000
+ 1.0.5
diff --git a/docs/dev/index.html b/docs/dev/index.html
index d1fa1a52..6e3fa6e1 100644
--- a/docs/dev/index.html
+++ b/docs/dev/index.html
@@ -38,7 +38,7 @@
mkin
- 1.0.4.9000
+ 1.0.5
diff --git a/docs/dev/news/index.html b/docs/dev/news/index.html
index 10585403..234ba02f 100644
--- a/docs/dev/news/index.html
+++ b/docs/dev/news/index.html
@@ -71,7 +71,7 @@
mkin
- 1.0.4.9000
+ 1.0.5
@@ -141,33 +141,27 @@
Source: NEWS.md
-
-
-mkin 1.0.4.9000
-
-
-General
-
-- Switch to a versioning scheme where the fourth version component indicates development versions
-
-
+
+
+mkin 1.0.5 (unreleased)
Mixed-effects models
-Reintroduce the interface to the current development version of saemix, in particular:
-‘saemix_model’ and ‘saemix_data’: Helper functions to set up nonlinear mixed-effects models for mmkin row objects
-‘saem’: generic function to fit saemix models using ‘saemix_model’ and ‘saemix_data’, with a generator ‘saem.mmkin’, summary and plot methods
-‘mean_degparms’: New argument ‘test_log_parms’ that makes the function only consider log-transformed parameters where the untransformed parameters pass the t-test for a certain confidence level. This can be used to check more plausible parameters for ‘saem’
+Introduce an interface to nlmixr, supporting estimation methods ‘saem’ and ‘focei’: S3 method ‘nlmixr.mmkin’ using the helper functions ‘nlmixr_model’ and ‘nlmixr_data’ to set up nlmixr models for mmkin row objects, with summary and plot methods.
+Reintroduce the interface to current development versions (not on CRAN) of saemix, in particular the generic function ‘saem’ with a generator ‘saem.mmkin’, currently using ‘saemix_model’ and ‘saemix_data’, summary and plot methods
+‘mean_degparms’: New argument ‘test_log_parms’ that makes the function only consider log-transformed parameters where the untransformed parameters pass the t-test for a certain confidence level. This can be used to obtain more plausible starting parameters for the different mixed-effects model backends
+‘plot.mixed.mmkin’: Gains arguments ‘test_log_parms’ and ‘conf.level’
-
+
-mkin 1.0.4 (Unreleased)
+mkin 1.0.4 (2021-04-20)
-‘plot.mixed.mmkin’: Reset graphical parameters on exit
All plotting functions setting graphical parameters: Use on.exit() for resetting graphical parameters
+‘plot.mkinfit’: Use xlab and xlim for the residual plot if show_residuals is TRUE
+‘mmkin’: Use cores = 1 per default on Windows to make it easier for first time users
@@ -198,9 +192,9 @@
mkin 1.0.0 (2021-02-03)
-
+
-General
+General
‘mkinmod’ models gain arguments ‘name’ and ‘dll_dir’ which, in conjunction with a current version of the ‘inline’ package, make it possible to still use the DLL used for fast ODE solutions with ‘deSolve’ after saving and restoring the ‘mkinmod’ object.
‘mkindsg’ R6 class for groups of ‘mkinds’ datasets with metadata
diff --git a/docs/dev/pkgdown.yml b/docs/dev/pkgdown.yml
index dbacd0ab..0b01e008 100644
--- a/docs/dev/pkgdown.yml
+++ b/docs/dev/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
web_only/NAFTA_examples: NAFTA_examples.html
web_only/benchmarks: benchmarks.html
web_only/compiled_models: compiled_models.html
-last_built: 2021-03-09T16:32Z
+last_built: 2021-06-11T09:09Z
urls:
reference: https://pkgdown.jrwb.de/mkin/reference
article: https://pkgdown.jrwb.de/mkin/articles
diff --git a/docs/dev/reference/Rplot002.png b/docs/dev/reference/Rplot002.png
index a9a972e5..32c64fcd 100644
Binary files a/docs/dev/reference/Rplot002.png and b/docs/dev/reference/Rplot002.png differ
diff --git a/docs/dev/reference/Rplot003.png b/docs/dev/reference/Rplot003.png
index d077f01c..5726488c 100644
Binary files a/docs/dev/reference/Rplot003.png and b/docs/dev/reference/Rplot003.png differ
diff --git a/docs/dev/reference/Rplot004.png b/docs/dev/reference/Rplot004.png
index ffcd2d96..c279f831 100644
Binary files a/docs/dev/reference/Rplot004.png and b/docs/dev/reference/Rplot004.png differ
diff --git a/docs/dev/reference/Rplot005.png b/docs/dev/reference/Rplot005.png
index dfb5965b..55aa7eec 100644
Binary files a/docs/dev/reference/Rplot005.png and b/docs/dev/reference/Rplot005.png differ
diff --git a/docs/dev/reference/Rplot006.png b/docs/dev/reference/Rplot006.png
index 81525882..4c728f4e 100644
Binary files a/docs/dev/reference/Rplot006.png and b/docs/dev/reference/Rplot006.png differ
diff --git a/docs/dev/reference/endpoints.html b/docs/dev/reference/endpoints.html
index 63bec6a8..dc1d1f17 100644
--- a/docs/dev/reference/endpoints.html
+++ b/docs/dev/reference/endpoints.html
@@ -78,7 +78,7 @@ advantage that the SFORB model can also be used for metabolites." />
mkin
- 1.0.4.9000
+ 1.0.5
@@ -165,8 +165,8 @@ advantage that the SFORB model can also be used for metabolites.
fit
- An object of class mkinfit, nlme.mmkin or
-saem.mmkin. Or another object that has list components
+
An object of class mkinfit, nlme.mmkin, saem.mmkin or
+nlmixr.mmkin. Or another object that has list components
mkinmod containing an mkinmod degradation model, and two numeric vectors,
bparms.optim and bparms.fixed, that contain parameter values
for that model.
diff --git a/docs/dev/reference/index.html b/docs/dev/reference/index.html
index 5533a01f..f5825742 100644
--- a/docs/dev/reference/index.html
+++ b/docs/dev/reference/index.html
@@ -71,7 +71,7 @@
mkin
- 1.0.4.9000
+ 1.0.5
@@ -324,6 +324,12 @@ of an mmkin object
Fit nonlinear mixed models with SAEM
+
+ nlmixr(<mmkin>)
print(<nlmixr.mmkin>)
nlmixr_model()
nlmixr_data()
+
+ Fit nonlinear mixed models using nlmixr
+
+
@@ -336,6 +342,12 @@ of an mmkin object
Summary method for class "nlme.mmkin"
+
+
+
+ Summary method for class "nlmixr.mmkin"
+
+
@@ -343,7 +355,7 @@ of an mmkin object
-
+
Helper functions to create nlme models from mmkin row objects
@@ -605,6 +617,12 @@ kinetic models fitted with mkinfit
Function to plot squared residuals and the error model for an mkin object
+
+
+
+ Calculate mean degradation parameters for an mmkin row object
+
+
diff --git a/docs/dev/reference/mean_degparms.html b/docs/dev/reference/mean_degparms.html
new file mode 100644
index 00000000..f63dbc31
--- /dev/null
+++ b/docs/dev/reference/mean_degparms.html
@@ -0,0 +1,210 @@
+
+
+
+
+
+
+
+
+Calculate mean degradation parameters for an mmkin row object — mean_degparms • mkin
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ mkin
+ 1.0.5
+
+
+
+
+
+ -
+ Functions and data
+
+-
+
+ Articles
+
+
+
+
+ -
+ Introduction to mkin
+
+ -
+ Example evaluation of FOCUS Example Dataset D
+
+ -
+ Example evaluation of FOCUS Laboratory Data L1 to L3
+
+ -
+ Example evaluation of FOCUS Example Dataset Z
+
+ -
+ Performance benefit by using compiled model definitions in mkin
+
+ -
+ Calculation of time weighted average concentrations with mkin
+
+ -
+ Example evaluation of NAFTA SOP Attachment examples
+
+ -
+ Some benchmark timings
+
+
+
+-
+ News
+
+
+
+ -
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Calculate mean degradation parameters for an mmkin row object
+ Source: R/mean_degparms.R
+ mean_degparms.Rd
+
+
+
+ Calculate mean degradation parameters for an mmkin row object
+
+
+ mean_degparms(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
+
+ Arguments
+
+
+
+ object
+ An mmkin row object containing several fits of the same model to different datasets
+
+
+ random
+ Should a list with fixed and random effects be returned?
+
+
+ test_log_parms
+ If TRUE, log parameters are only considered in
+the mean calculations if their untransformed counterparts (most likely
+rate constants) pass the t-test for significant difference from zero.
+
+
+ conf.level
+ Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'.
+
+
+
+ Value
+
+ If random is FALSE (default), a named vector containing mean values
+of the fitted degradation model parameters. If random is TRUE, a list with
+fixed and random effects, in the format required by the start argument of
+nlme for the case of a single grouping variable ds.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/docs/dev/reference/mixed-1.png b/docs/dev/reference/mixed-1.png
index 28a376f4..422ab6a0 100644
Binary files a/docs/dev/reference/mixed-1.png and b/docs/dev/reference/mixed-1.png differ
diff --git a/docs/dev/reference/mixed.html b/docs/dev/reference/mixed.html
index 7bf8dd56..338480ee 100644
--- a/docs/dev/reference/mixed.html
+++ b/docs/dev/reference/mixed.html
@@ -72,7 +72,7 @@
mkin
- 1.0.3.9000
+ 1.0.5
@@ -180,6 +180,10 @@
+ Value
+
+ An object of class 'mixed.mmkin' which has the observed data in a
+single dataframe which is convenient for plotting
Examples
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
diff --git a/docs/dev/reference/mmkin-1.png b/docs/dev/reference/mmkin-1.png
index 0db3379f..701a6d6a 100644
Binary files a/docs/dev/reference/mmkin-1.png and b/docs/dev/reference/mmkin-1.png differ
diff --git a/docs/dev/reference/mmkin-2.png b/docs/dev/reference/mmkin-2.png
index 024a9892..5277b389 100644
Binary files a/docs/dev/reference/mmkin-2.png and b/docs/dev/reference/mmkin-2.png differ
diff --git a/docs/dev/reference/mmkin-3.png b/docs/dev/reference/mmkin-3.png
index a23d7cb9..2659cd61 100644
Binary files a/docs/dev/reference/mmkin-3.png and b/docs/dev/reference/mmkin-3.png differ
diff --git a/docs/dev/reference/mmkin-4.png b/docs/dev/reference/mmkin-4.png
index 89975db5..ae16ee79 100644
Binary files a/docs/dev/reference/mmkin-4.png and b/docs/dev/reference/mmkin-4.png differ
diff --git a/docs/dev/reference/mmkin-5.png b/docs/dev/reference/mmkin-5.png
index a2f34983..2b9dc831 100644
Binary files a/docs/dev/reference/mmkin-5.png and b/docs/dev/reference/mmkin-5.png differ
diff --git a/docs/dev/reference/mmkin.html b/docs/dev/reference/mmkin.html
index 5da1b1de..c385bbf6 100644
--- a/docs/dev/reference/mmkin.html
+++ b/docs/dev/reference/mmkin.html
@@ -75,7 +75,7 @@ datasets specified in its first two arguments." />
mkin
- 1.0.3.9000
+ 1.0.5
@@ -155,7 +155,7 @@ datasets specified in its first two arguments.
mmkin(
models = c("SFO", "FOMC", "DFOP"),
datasets,
- cores = parallel::detectCores(),
+ cores = if (Sys.info()["sysname"] == "Windows") 1 else parallel::detectCores(),
cluster = NULL,
...
)
@@ -183,7 +183,8 @@ data for mkinfit
.
is only used when the cluster
argument is NULL
. On Windows
machines, cores > 1 is not supported, you need to use the cluster
argument to use multiple logical processors. Per default, all cores
-detected by parallel::detectCores()
are used.
+detected by parallel::detectCores()
are used, except on Windows where
+the default is 1.
cluster
@@ -234,9 +235,9 @@ plotting.
time_default
#> user system elapsed
-#> 4.921 0.475 1.707 time_1
+#> 4.771 0.576 1.803 time_1
#> user system elapsed
-#> 5.680 0.003 5.684
+#> 5.779 0.000 5.781 #> $ff
#> parent_M1 parent_sink M1_M2 M1_sink
diff --git a/docs/dev/reference/nlme-1.png b/docs/dev/reference/nlme-1.png
index fd68ae43..365aaef0 100644
Binary files a/docs/dev/reference/nlme-1.png and b/docs/dev/reference/nlme-1.png differ
diff --git a/docs/dev/reference/nlme-2.png b/docs/dev/reference/nlme-2.png
index 853cae40..40841404 100644
Binary files a/docs/dev/reference/nlme-2.png and b/docs/dev/reference/nlme-2.png differ
diff --git a/docs/dev/reference/nlme.html b/docs/dev/reference/nlme.html
index 78d132e9..55a94443 100644
--- a/docs/dev/reference/nlme.html
+++ b/docs/dev/reference/nlme.html
@@ -75,7 +75,7 @@ datasets. They are used internally by the nlme.mmkin() method." />
mkin
- 1.0.4.9000
+ 1.0.5
@@ -155,8 +155,6 @@ datasets. They are used internally by the nlme.m
nlme_function(object)
-mean_degparms(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
-
nlme_data(object)
Arguments
@@ -166,30 +164,11 @@ datasets. They are used internally by the nlme.m
object
An mmkin row object containing several fits of the same model to different datasets
-
- random
- Should a list with fixed and random effects be returned?
-
-
- test_log_parms
- If TRUE, log parameters are only considered in
-the mean calculations if their untransformed counterparts (most likely
-rate constants) pass the t-test for significant difference from zero.
-
-
- conf.level
- Possibility to adjust the required confidence level
-for parameter that are tested if requested by 'test_log_parms'.
-
Value
A function that can be used with nlme
-If random is FALSE (default), a named vector containing mean values
-of the fitted degradation model parameters. If random is TRUE, a list with
-fixed and random effects, in the format required by the start argument of
-nlme for the case of a single grouping variable ds.
A groupedData
object
See also
@@ -217,7 +196,7 @@ nlme for the case of a single grouping variable ds.
ds <- c(d1 = d1, d2 = d2, d3 = d3)
f <- mmkin("SFO", ds, cores = 1, quiet = TRUE)
-mean_dp <- mean_degparms(f)
+mean_dp <- mean_degparms(f)
grouped_data <- nlme_data(f)
nlme_f <- nlme_function(f)
# These assignments are necessary for these objects to be
@@ -237,28 +216,28 @@ nlme for the case of a single grouping variable ds.
#> Model: value ~ nlme_f(name, time, parent_0, log_k_parent_sink)
#> Data: grouped_data
#> AIC BIC logLik
-#> 298.2781 307.7372 -144.1391
+#> 300.6824 310.2426 -145.3412
#>
#> Random effects:
#> Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1)
#> Level: ds
#> Structure: Diagonal
#> parent_0 log_k_parent_sink Residual
-#> StdDev: 0.937473 0.7098105 3.83543
+#> StdDev: 1.697361 0.6801209 3.666073
#>
#> Fixed effects: parent_0 + log_k_parent_sink ~ 1
#> Value Std.Error DF t-value p-value
-#> parent_0 101.76838 1.1445443 45 88.91607 0
-#> log_k_parent_sink -3.05444 0.4195622 45 -7.28008 0
+#> parent_0 100.99378 1.3890416 46 72.70753 0
+#> log_k_parent_sink -3.07521 0.4018589 46 -7.65246 0
#> Correlation:
#> prnt_0
-#> log_k_parent_sink 0.034
+#> log_k_parent_sink 0.027
#>
#> Standardized Within-Group Residuals:
-#> Min Q1 Med Q3 Max
-#> -2.61693595 -0.21853231 0.05740682 0.57209372 3.04598764
+#> Min Q1 Med Q3 Max
+#> -1.9942823 -0.5622565 0.1791579 0.7165038 2.0704781
#>
-#> Number of Observations: 49
+#> Number of Observations: 50
#> Number of Groups: 3 # augPred does not work on fits with more than one state
# variable
diff --git a/docs/dev/reference/nlme.mmkin-1.png b/docs/dev/reference/nlme.mmkin-1.png
index 90ede880..95adfafb 100644
Binary files a/docs/dev/reference/nlme.mmkin-1.png and b/docs/dev/reference/nlme.mmkin-1.png differ
diff --git a/docs/dev/reference/nlme.mmkin-2.png b/docs/dev/reference/nlme.mmkin-2.png
index 0d140fd1..53b6fc76 100644
Binary files a/docs/dev/reference/nlme.mmkin-2.png and b/docs/dev/reference/nlme.mmkin-2.png differ
diff --git a/docs/dev/reference/nlme.mmkin-3.png b/docs/dev/reference/nlme.mmkin-3.png
index 8a60b52b..8df1e73b 100644
Binary files a/docs/dev/reference/nlme.mmkin-3.png and b/docs/dev/reference/nlme.mmkin-3.png differ
diff --git a/docs/dev/reference/nlme.mmkin.html b/docs/dev/reference/nlme.mmkin.html
index f308d8b7..2bbf4f80 100644
--- a/docs/dev/reference/nlme.mmkin.html
+++ b/docs/dev/reference/nlme.mmkin.html
@@ -74,7 +74,7 @@ have been obtained by fitting the same model to a list of datasets." />
mkin
- 1.0.4.9000
+ 1.0.5
@@ -155,11 +155,11 @@ have been obtained by fitting the same model to a list of datasets.
nlme(
model,
data = "auto",
- fixed = lapply(as.list(names(mean_degparms(model))), function(el) eval(parse(text =
+ fixed = lapply(as.list(names(mean_degparms(model))), function(el) eval(parse(text =
paste(el, 1, sep = "~")))),
random = pdDiag(fixed),
groups,
- start = mean_degparms(model, random = TRUE),
+ start = mean_degparms(model, random = TRUE, test_log_parms = TRUE),
correlation = NULL,
weights = NULL,
subset,
@@ -350,8 +350,8 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#> Model df AIC BIC logLik Test L.Ratio p-value
-#> f_nlme_dfop_sfo 1 13 843.8548 884.6201 -408.9274
-#> f_nlme_sfo_sfo 2 9 1085.1821 1113.4043 -533.5910 1 vs 2 249.3273 <.0001
+#> f_nlme_dfop_sfo 1 13 843.8547 884.6201 -408.9274
+#> f_nlme_sfo_sfo 2 9 1085.1821 1113.4043 -533.5910 1 vs 2 249.3274 <.0001#> $ff
#> parent_sink parent_A1 A1_sink
@@ -364,12 +364,12 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#> #> $ff
#> parent_A1 parent_sink
-#> 0.2768575 0.7231425
+#> 0.2768574 0.7231426
#>
#> $distimes
#> DT50 DT90 DT50back DT50_k1 DT50_k2
-#> parent 11.07091 104.6320 31.49737 4.462384 46.20825
-#> A1 162.30492 539.1653 NA NA NA
+#> parent 11.07091 104.6320 31.49737 4.462383 46.20825
+#> A1 162.30519 539.1662 NA NA NA
#>
if (length(findFunction("varConstProp")) > 0) { # tc error model for nlme available
# Attempts to fit metabolite kinetics with the tc error model are possible,
@@ -452,8 +452,8 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
anova(f_nlme_dfop_sfo, f_nlme_dfop_sfo_obs)
#> Model df AIC BIC logLik Test L.Ratio
-#> f_nlme_dfop_sfo 1 13 843.8548 884.6201 -408.9274
-#> f_nlme_dfop_sfo_obs 2 14 817.5338 861.4350 -394.7669 1 vs 2 28.32093
+#> f_nlme_dfop_sfo 1 13 843.8547 884.6201 -408.9274
+#> f_nlme_dfop_sfo_obs 2 14 817.5338 861.4350 -394.7669 1 vs 2 28.32091
#> p-value
#> f_nlme_dfop_sfo
#> f_nlme_dfop_sfo_obs <.0001
diff --git a/docs/dev/reference/nlmixr.mmkin-1.png b/docs/dev/reference/nlmixr.mmkin-1.png
new file mode 100644
index 00000000..851d363d
Binary files /dev/null and b/docs/dev/reference/nlmixr.mmkin-1.png differ
diff --git a/docs/dev/reference/nlmixr.mmkin-2.png b/docs/dev/reference/nlmixr.mmkin-2.png
new file mode 100644
index 00000000..d0c74c31
Binary files /dev/null and b/docs/dev/reference/nlmixr.mmkin-2.png differ
diff --git a/docs/dev/reference/nlmixr.mmkin.html b/docs/dev/reference/nlmixr.mmkin.html
new file mode 100644
index 00000000..d017e463
--- /dev/null
+++ b/docs/dev/reference/nlmixr.mmkin.html
@@ -0,0 +1,13791 @@
+
+
+
+
+
+
+
+
+Fit nonlinear mixed models using nlmixr — nlmixr.mmkin • mkin
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ mkin
+ 1.0.5
+
+
+
+
+
+ -
+ Functions and data
+
+-
+
+ Articles
+
+
+
+
+ -
+ Introduction to mkin
+
+ -
+ Example evaluation of FOCUS Example Dataset D
+
+ -
+ Example evaluation of FOCUS Laboratory Data L1 to L3
+
+ -
+ Example evaluation of FOCUS Example Dataset Z
+
+ -
+ Performance benefit by using compiled model definitions in mkin
+
+ -
+ Calculation of time weighted average concentrations with mkin
+
+ -
+ Example evaluation of NAFTA SOP Attachment examples
+
+ -
+ Some benchmark timings
+
+
+
+-
+ News
+
+
+
+ -
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ This function uses nlmixr::nlmixr()
as a backend for fitting nonlinear mixed
+effects models created from mmkin row objects using the Stochastic Approximation
+Expectation Maximisation algorithm (SAEM).
+
+
+ # S3 method for mmkin
+nlmixr(
+ object,
+ data = NULL,
+ est = NULL,
+ control = list(),
+ table = tableControl(),
+ error_model = object[[1]]$err_mod,
+ test_log_parms = TRUE,
+ conf.level = 0.6,
+ ...,
+ save = NULL,
+ envir = parent.frame()
+)
+
+# S3 method for nlmixr.mmkin
+print(x, digits = max(3, getOption("digits") - 3), ...)
+
+nlmixr_model(
+ object,
+ est = c("saem", "focei"),
+ degparms_start = "auto",
+ test_log_parms = FALSE,
+ conf.level = 0.6,
+ error_model = object[[1]]$err_mod,
+ add_attributes = FALSE
+)
+
+nlmixr_data(object, ...)
+
+ Arguments
+
+
+
+ object
+ An mmkin row object containing several fits of the same
+mkinmod model to different datasets
+
+
+ data
+ Not used, as the data are extracted from the mmkin row object
+
+
+ est
+ Estimation method passed to nlmixr::nlmixr
+
+
+ control
+ Passed to nlmixr::nlmixr
+
+
+ table
+ Passed to nlmixr::nlmixr
+
+
+ error_model
+ Possibility to override the error model which is being
+set based on the error model used in the mmkin row object.
+
+
+ test_log_parms
+ If TRUE, an attempt is made to use more robust starting
+values for population parameters fitted as log parameters in mkin (like
+rate constants) by only considering rate constants that pass the t-test
+when calculating mean degradation parameters using mean_degparms.
+
+
+ conf.level
+ Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'.
+
+
+ ...
+ Passed to nlmixr_model
+
+
+ save
+ Passed to nlmixr::nlmixr
+
+
+ envir
+ Passed to nlmixr::nlmixr
+
+
+ x
+ An nlmixr.mmkin object to print
+
+
+ digits
+ Number of digits to use for printing
+
+
+ degparms_start
+ Parameter values given as a named numeric vector will
+be used to override the starting values obtained from the 'mmkin' object.
+
+
+ add_attributes
+ Should the starting values used for degradation model
+parameters and their distribution and for the error model parameters
+be returned as attributes?
+
+
+
+ Value
+
+ An S3 object of class 'nlmixr.mmkin', containing the fitted
+nlmixr::nlmixr object as a list component named 'nm'. The
+object also inherits from 'mixed.mmkin'.
+An function defining a model suitable for fitting with nlmixr::nlmixr.
+An dataframe suitable for use with nlmixr::nlmixr
+ Details
+
+ An mmkin row object is essentially a list of mkinfit objects that have been
+obtained by fitting the same model to a list of datasets using mkinfit.
+ See also
+
+
+
+ Examples
+ # \dontrun{
+ds <- lapply(experimental_data_for_UBA_2019[6:10],
+ function(x) subset(x$data[c("name", "time", "value")]))
+names(ds) <- paste("Dataset", 6:10)
+
+f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP", "HS"), ds, quiet = TRUE, cores = 1)
+f_mmkin_parent_tc <- mmkin(c("SFO", "FOMC", "DFOP"), ds, error_model = "tc",
+ cores = 1, quiet = TRUE)
+
+f_nlmixr_sfo_saem <- nlmixr(f_mmkin_parent["SFO", ], est = "saem")
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> RxODE 1.1.0 using 8 threads (see ?getRxThreads)
+#> no cache: create with `rxCreateCache()`#> 1: 86.5083 -3.1968 4.1673 1.7173 48.7028
+#> 2: 87.3628 -3.1468 3.9589 1.6315 45.1225
+#> 3: 86.8866 -3.2249 3.7610 1.8212 43.0034
+#> 4: 85.9210 -3.2427 3.5729 1.7302 39.4197
+#> 5: 85.8539 -3.2018 3.3943 1.7234 38.2933
+#> 6: 85.6934 -3.2262 3.2246 1.6843 39.0348
+#> 7: 85.7421 -3.2696 4.1298 1.7086 39.8152
+#> 8: 85.1605 -3.2190 3.9234 1.7588 41.7476
+#> 9: 84.7745 -3.2389 3.7361 1.6708 41.8512
+#> 10: 84.6549 -3.2078 3.5493 1.6489 41.6110
+#> 11: 84.4739 -3.2788 3.3718 1.5664 42.0076
+#> 12: 84.7871 -3.2674 3.4931 1.6097 40.9060
+#> 13: 84.5267 -3.2635 3.3185 1.6352 39.6914
+#> 14: 84.9806 -3.2353 3.1525 1.6470 39.2556
+#> 15: 84.9752 -3.2566 2.9949 1.6756 39.6152
+#> 16: 85.6293 -3.2232 2.8452 1.7076 39.4391
+#> 17: 85.9944 -3.2268 2.7029 1.6702 40.2731
+#> 18: 86.2811 -3.2260 2.5678 1.7100 41.4854
+#> 19: 86.2617 -3.2476 2.4489 1.7051 41.3066
+#> 20: 85.7552 -3.2032 3.3323 1.8885 42.2273
+#> 21: 85.6493 -3.2685 3.2317 1.7941 39.4198
+#> 22: 86.0133 -3.2457 4.0910 1.7044 39.0319
+#> 23: 86.1636 -3.2528 4.9399 1.6571 38.6728
+#> 24: 86.3086 -3.1708 7.0791 1.8182 39.6791
+#> 25: 85.7316 -3.2203 6.7252 1.7369 38.3546
+#> 26: 85.3476 -3.2341 6.3889 1.6864 38.0521
+#> 27: 85.6328 -3.2543 6.0695 1.6945 37.7990
+#> 28: 85.1715 -3.2191 5.7660 1.7898 38.5662
+#> 29: 85.4945 -3.2264 5.4777 1.7007 40.1659
+#> 30: 85.0864 -3.2463 5.2038 1.6156 39.0718
+#> 31: 85.8220 -3.2347 4.9436 1.6115 39.2011
+#> 32: 85.9869 -3.2400 4.6964 1.6818 41.2956
+#> 33: 85.9899 -3.2041 4.4616 1.6606 40.6657
+#> 34: 85.8353 -3.2065 4.2385 1.6868 41.5006
+#> 35: 85.8113 -3.2366 4.0266 1.8261 41.0403
+#> 36: 85.5233 -3.2389 3.8253 1.7348 39.5202
+#> 37: 85.1751 -3.2657 3.6340 1.6948 39.6097
+#> 38: 85.2768 -3.2380 3.4887 1.6820 38.7641
+#> 39: 84.8240 -3.2264 3.3143 1.5979 39.8074
+#> 40: 85.3754 -3.2147 3.1485 1.5810 39.1710
+#> 41: 85.0277 -3.2347 2.9911 1.7061 39.9948
+#> 42: 85.0113 -3.2651 3.1969 1.6208 39.7266
+#> 43: 85.0772 -3.2729 3.0371 1.6160 40.2919
+#> 44: 85.0769 -3.2272 3.3310 1.7321 38.5229
+#> 45: 85.1638 -3.2546 3.1644 1.6968 40.2382
+#> 46: 84.7966 -3.2597 5.0694 1.6816 38.7996
+#> 47: 85.0588 -3.2247 5.9549 1.7452 39.6569
+#> 48: 85.1769 -3.2557 5.6572 1.7441 37.9050
+#> 49: 84.9296 -3.2425 5.3743 1.6729 37.7885
+#> 50: 85.3414 -3.2421 5.1056 1.6646 38.2243
+#> 51: 84.9127 -3.2674 5.8827 1.7180 40.2859
+#> 52: 85.2014 -3.2471 5.5885 1.7318 39.1745
+#> 53: 85.9330 -3.2228 7.2369 1.8328 39.0461
+#> 54: 86.9718 -3.1447 6.9332 1.8404 39.3098
+#> 55: 87.2708 -3.1595 6.6308 1.8049 39.1338
+#> 56: 87.2006 -3.1746 6.2993 1.7541 38.2780
+#> 57: 87.8013 -3.2306 5.9843 1.6664 40.4876
+#> 58: 87.7294 -3.2120 5.6851 1.5831 41.5056
+#> 59: 87.4898 -3.2207 5.4008 1.5039 41.4401
+#> 60: 86.9156 -3.1861 5.1308 1.6408 39.8972
+#> 61: 86.4508 -3.1870 4.8742 1.5935 39.6871
+#> 62: 86.4028 -3.2191 4.6305 1.6267 39.2092
+#> 63: 86.2536 -3.2491 4.5199 1.5617 39.7603
+#> 64: 85.9775 -3.2650 4.2939 1.6077 39.1909
+#> 65: 85.8907 -3.2430 4.0792 1.6729 37.9420
+#> 66: 85.3450 -3.2888 3.8753 1.6201 40.8998
+#> 67: 85.1869 -3.2940 3.6815 1.6157 40.5107
+#> 68: 84.8029 -3.2830 3.4974 1.6040 40.6254
+#> 69: 85.3549 -3.2425 4.4768 1.5238 40.2418
+#> 70: 85.7957 -3.2296 4.2529 1.7175 40.8618
+#> 71: 85.4200 -3.2381 4.0403 1.6695 41.5731
+#> 72: 85.2950 -3.2566 3.8383 1.5998 40.6494
+#> 73: 85.0683 -3.2464 3.6464 1.5576 39.8095
+#> 74: 85.1667 -3.2436 3.4641 1.6383 39.4925
+#> 75: 84.6547 -3.2300 3.7226 1.6656 40.4684
+#> 76: 84.4882 -3.2521 3.6468 1.6035 40.1800
+#> 77: 84.5250 -3.2398 4.1501 1.6827 40.5269
+#> 78: 84.5191 -3.2372 5.5482 1.6309 41.1739
+#> 79: 84.7471 -3.2581 6.0637 1.6259 41.1003
+#> 80: 85.0581 -3.2680 5.7605 1.6841 40.8918
+#> 81: 84.8468 -3.2564 5.4725 1.6475 39.3456
+#> 82: 84.7614 -3.2385 5.1988 1.7550 38.7275
+#> 83: 85.2921 -3.2657 5.9253 1.6672 39.2423
+#> 84: 85.5760 -3.2261 5.6290 1.7505 39.5500
+#> 85: 85.3215 -3.2277 5.5987 1.8027 39.3145
+#> 86: 85.2656 -3.2023 5.3188 1.8024 40.3098
+#> 87: 84.8950 -3.2551 5.0528 1.7123 39.3470
+#> 88: 84.3157 -3.2661 4.8002 1.6267 38.7095
+#> 89: 84.5442 -3.2870 4.5602 1.5892 39.1735
+#> 90: 85.0956 -3.2195 4.8385 1.5796 39.5164
+#> 91: 84.8619 -3.2621 4.5966 1.6889 39.5512
+#> 92: 84.4901 -3.2735 6.1405 1.6704 39.3358
+#> 93: 84.0819 -3.2609 5.8335 1.6130 38.8618
+#> 94: 84.7585 -3.2336 5.5418 1.6301 38.6591
+#> 95: 85.2669 -3.2358 5.2647 1.6619 38.9136
+#> 96: 85.4955 -3.2064 5.0015 1.7673 39.0495
+#> 97: 85.6591 -3.2016 4.7514 1.7046 40.7861
+#> 98: 86.2097 -3.2833 7.4722 1.6413 42.2938
+#> 99: 85.9645 -3.2570 7.7124 1.5592 41.7216
+#> 100: 85.7018 -3.2605 8.2687 1.6798 40.6639
+#> 101: 85.9905 -3.1956 11.0194 1.7017 39.4324
+#> 102: 87.2679 -3.1741 10.4684 1.7063 38.6812
+#> 103: 86.1910 -3.1709 9.9450 1.7151 38.5198
+#> 104: 86.4413 -3.1544 9.4478 1.7123 38.7428
+#> 105: 85.9840 -3.1921 10.6297 1.8135 38.7775
+#> 106: 85.9926 -3.1839 10.0982 1.7228 40.3136
+#> 107: 85.1792 -3.2343 9.5933 1.6367 40.2709
+#> 108: 84.7583 -3.2332 9.1136 1.6907 41.2122
+#> 109: 85.3756 -3.2311 8.6579 1.7307 39.9303
+#> 110: 84.9686 -3.2365 8.2250 1.7221 40.0379
+#> 111: 84.8527 -3.2448 7.8138 1.6775 39.6794
+#> 112: 84.6271 -3.2609 7.4231 1.7321 41.5666
+#> 113: 84.8515 -3.3056 7.2514 1.7001 41.9758
+#> 114: 84.5991 -3.2319 7.8463 1.7690 41.1386
+#> 115: 85.0535 -3.2864 7.4540 1.7282 40.3883
+#> 116: 85.8661 -3.2355 7.0813 1.7801 39.3078
+#> 117: 85.9911 -3.2357 6.7272 1.6911 38.3913
+#> 118: 86.1894 -3.2424 6.3909 1.6701 38.1915
+#> 119: 85.5637 -3.1992 6.0713 1.7360 38.9386
+#> 120: 86.0733 -3.2069 5.7677 1.7185 36.5189
+#> 121: 86.0168 -3.2181 5.4794 1.7135 38.4044
+#> 122: 86.7470 -3.2319 6.1989 1.6840 38.2615
+#> 123: 86.2918 -3.2089 5.8890 1.6656 38.8486
+#> 124: 85.9387 -3.2124 5.5945 1.6334 37.9425
+#> 125: 86.1519 -3.2717 5.3148 1.7094 38.9708
+#> 126: 85.5194 -3.2391 5.4217 1.6799 39.4876
+#> 127: 85.9691 -3.2205 5.8051 1.6436 40.0593
+#> 128: 85.6171 -3.2309 5.5148 1.6852 39.5398
+#> 129: 84.9252 -3.2495 5.2391 1.7154 40.4020
+#> 130: 85.1496 -3.2882 5.0538 1.7189 40.0908
+#> 131: 85.8552 -3.2474 7.1203 1.6329 39.0547
+#> 132: 86.4666 -3.2151 6.7643 1.7342 38.6596
+#> 133: 86.1550 -3.1895 6.4261 1.7904 38.6211
+#> 134: 86.5040 -3.1785 6.1048 1.7180 39.0804
+#> 135: 85.9752 -3.2116 5.7996 1.6979 38.1745
+#> 136: 86.2161 -3.2075 5.5096 1.7408 38.9002
+#> 137: 85.8408 -3.2604 6.9319 1.7616 39.1657
+#> 138: 86.1261 -3.2179 7.0802 1.8115 37.6614
+#> 139: 85.9082 -3.2374 6.7262 1.7209 38.1986
+#> 140: 85.9556 -3.2641 6.3899 1.8300 39.2071
+#> 141: 86.2052 -3.1928 6.0704 1.7385 38.1745
+#> 142: 86.4062 -3.2076 5.8348 1.6693 38.0271
+#> 143: 86.0680 -3.2372 5.5431 1.7259 39.3885
+#> 144: 86.2001 -3.2040 5.2659 1.6803 38.1606
+#> 145: 86.5820 -3.2306 5.0026 1.6063 38.7208
+#> 146: 86.4522 -3.2072 4.7525 1.6572 37.5206
+#> 147: 85.8311 -3.2320 4.5149 1.7043 39.6955
+#> 148: 86.0754 -3.2072 5.4070 1.6707 38.8858
+#> 149: 87.0038 -3.1954 5.1367 1.7361 37.9862
+#> 150: 86.8647 -3.1903 4.8798 1.7995 39.6906
+#> 151: 86.4913 -3.2101 4.6358 1.7618 39.2462
+#> 152: 86.4667 -3.2254 4.6929 1.7762 38.0665
+#> 153: 86.0176 -3.2241 4.4586 1.7708 37.6367
+#> 154: 85.8680 -3.2359 5.2401 1.7272 37.7322
+#> 155: 85.6560 -3.2147 3.3340 1.7833 38.4605
+#> 156: 85.6927 -3.1987 1.9644 1.8176 39.4958
+#> 157: 86.3686 -3.2294 3.4959 1.6556 39.7058
+#> 158: 86.7614 -3.2051 2.3005 1.6413 40.3968
+#> 159: 86.6393 -3.2243 1.7824 1.6521 40.0846
+#> 160: 86.8686 -3.1850 1.6490 1.7211 39.6362
+#> 161: 86.7853 -3.2071 1.1720 1.6132 39.6921
+#> 162: 86.7337 -3.1825 1.0646 1.5897 41.1027
+#> 163: 86.9192 -3.1365 1.0339 1.6656 40.2410
+#> 164: 86.6652 -3.2052 0.9750 1.5817 40.6189
+#> 165: 86.6154 -3.1870 1.2602 1.6559 40.1832
+#> 166: 86.7300 -3.2096 1.2144 1.6571 39.8989
+#> 167: 86.4536 -3.2135 0.5155 1.7436 39.6313
+#> 168: 86.4848 -3.2315 0.5060 1.6681 39.1479
+#> 169: 86.2641 -3.2444 0.3935 1.6781 40.2903
+#> 170: 86.2482 -3.2628 0.3342 1.6177 40.2600
+#> 171: 86.2833 -3.2338 0.1701 1.6698 39.8946
+#> 172: 86.2155 -3.2175 0.1858 1.6090 39.9709
+#> 173: 86.2916 -3.2313 0.2088 1.6918 41.4421
+#> 174: 86.1920 -3.2050 0.2067 1.7521 40.7724
+#> 175: 86.2771 -3.2071 0.2213 1.5502 40.5055
+#> 176: 86.2589 -3.1867 0.2010 1.5814 40.0963
+#> 177: 86.2740 -3.2209 0.2679 1.6774 40.9479
+#> 178: 86.2210 -3.1896 0.4420 1.5512 40.3238
+#> 179: 86.1769 -3.2036 0.5592 1.6008 40.3873
+#> 180: 85.9366 -3.2046 0.5056 1.6948 41.4254
+#> 181: 85.9173 -3.2167 0.6033 1.6886 39.5784
+#> 182: 85.7077 -3.2508 0.5008 1.7501 40.4224
+#> 183: 85.8084 -3.2743 0.5737 1.7174 40.0576
+#> 184: 85.7776 -3.2518 0.7164 1.7495 39.8748
+#> 185: 85.6192 -3.2378 1.1401 1.7562 39.9841
+#> 186: 85.6951 -3.2460 1.5642 1.7330 39.1282
+#> 187: 85.5281 -3.2309 1.5452 1.7900 38.4833
+#> 188: 85.3476 -3.2018 1.1385 1.8106 39.2842
+#> 189: 85.1914 -3.2180 1.0465 1.7562 40.0715
+#> 190: 85.2759 -3.2275 1.0437 1.7160 39.9928
+#> 191: 85.3630 -3.2728 1.5672 1.7394 39.4749
+#> 192: 85.1334 -3.2467 0.9598 1.6243 39.7385
+#> 193: 84.9313 -3.2401 0.6441 1.6518 39.5447
+#> 194: 84.9097 -3.2361 0.4275 1.6509 40.3383
+#> 195: 84.9131 -3.2241 0.3344 1.5868 39.1438
+#> 196: 84.9117 -3.2419 0.2435 1.6882 40.1132
+#> 197: 84.9569 -3.2776 0.2352 1.6351 40.1070
+#> 198: 84.9113 -3.2334 0.2133 1.6282 39.9988
+#> 199: 84.9028 -3.2637 0.1859 1.6127 38.8695
+#> 200: 84.9020 -3.2456 0.2429 1.6172 40.2644
+#> 201: 84.9327 -3.2292 0.1787 1.6720 40.5826
+#> 202: 84.9313 -3.2363 0.1487 1.6641 40.1952
+#> 203: 84.9208 -3.2350 0.1445 1.6449 40.0176
+#> 204: 84.9312 -3.2296 0.1488 1.6292 40.1353
+#> 205: 84.9302 -3.2277 0.1454 1.6167 40.4137
+#> 206: 84.9378 -3.2314 0.1474 1.6263 40.2241
+#> 207: 84.9190 -3.2369 0.1454 1.6374 40.1459
+#> 208: 84.9085 -3.2385 0.1527 1.6439 40.1931
+#> 209: 84.8920 -3.2411 0.1566 1.6396 40.1558
+#> 210: 84.8787 -3.2435 0.1574 1.6381 40.1872
+#> 211: 84.8784 -3.2460 0.1528 1.6407 40.1825
+#> 212: 84.8745 -3.2469 0.1474 1.6439 40.0865
+#> 213: 84.8702 -3.2474 0.1429 1.6459 40.0164
+#> 214: 84.8592 -3.2476 0.1421 1.6506 39.9852
+#> 215: 84.8558 -3.2479 0.1389 1.6549 39.9882
+#> 216: 84.8542 -3.2488 0.1365 1.6625 39.9461
+#> 217: 84.8594 -3.2488 0.1354 1.6691 39.9751
+#> 218: 84.8634 -3.2487 0.1335 1.6751 39.9844
+#> 219: 84.8653 -3.2485 0.1298 1.6759 39.9263
+#> 220: 84.8722 -3.2496 0.1267 1.6748 39.8897
+#> 221: 84.8782 -3.2496 0.1267 1.6757 39.8504
+#> 222: 84.8772 -3.2483 0.1278 1.6761 39.8406
+#> 223: 84.8765 -3.2490 0.1296 1.6785 39.8138
+#> 224: 84.8750 -3.2492 0.1274 1.6772 39.8278
+#> 225: 84.8767 -3.2493 0.1266 1.6727 39.8642
+#> 226: 84.8741 -3.2495 0.1251 1.6711 39.8208
+#> 227: 84.8678 -3.2502 0.1234 1.6680 39.8193
+#> 228: 84.8618 -3.2509 0.1217 1.6660 39.7846
+#> 229: 84.8567 -3.2504 0.1208 1.6640 39.7538
+#> 230: 84.8559 -3.2503 0.1215 1.6624 39.7184
+#> 231: 84.8548 -3.2501 0.1203 1.6596 39.6840
+#> 232: 84.8528 -3.2505 0.1206 1.6550 39.6882
+#> 233: 84.8510 -3.2499 0.1229 1.6560 39.7083
+#> 234: 84.8479 -3.2502 0.1243 1.6568 39.7116
+#> 235: 84.8443 -3.2509 0.1244 1.6571 39.7504
+#> 236: 84.8391 -3.2515 0.1253 1.6584 39.7761
+#> 237: 84.8390 -3.2522 0.1246 1.6595 39.8188
+#> 238: 84.8433 -3.2520 0.1240 1.6606 39.8393
+#> 239: 84.8453 -3.2517 0.1233 1.6604 39.8360
+#> 240: 84.8439 -3.2519 0.1225 1.6597 39.8355
+#> 241: 84.8423 -3.2516 0.1215 1.6591 39.8154
+#> 242: 84.8403 -3.2521 0.1208 1.6572 39.7956
+#> 243: 84.8378 -3.2514 0.1199 1.6579 39.7842
+#> 244: 84.8375 -3.2501 0.1191 1.6582 39.7851
+#> 245: 84.8367 -3.2497 0.1200 1.6571 39.7873
+#> 246: 84.8348 -3.2499 0.1200 1.6561 39.7972
+#> 247: 84.8344 -3.2490 0.1196 1.6546 39.8425
+#> 248: 84.8320 -3.2485 0.1197 1.6551 39.8607
+#> 249: 84.8330 -3.2477 0.1212 1.6550 39.8643
+#> 250: 84.8348 -3.2481 0.1217 1.6561 39.8570
+#> 251: 84.8384 -3.2483 0.1214 1.6569 39.8535
+#> 252: 84.8394 -3.2487 0.1218 1.6578 39.8584
+#> 253: 84.8408 -3.2490 0.1229 1.6586 39.9146
+#> 254: 84.8414 -3.2497 0.1232 1.6602 39.9561
+#> 255: 84.8424 -3.2502 0.1229 1.6617 39.9734
+#> 256: 84.8428 -3.2506 0.1230 1.6609 39.9959
+#> 257: 84.8425 -3.2507 0.1221 1.6600 40.0029
+#> 258: 84.8420 -3.2513 0.1213 1.6585 40.0135
+#> 259: 84.8411 -3.2512 0.1212 1.6576 40.0261
+#> 260: 84.8404 -3.2513 0.1219 1.6562 40.0238
+#> 261: 84.8382 -3.2514 0.1226 1.6553 40.0140
+#> 262: 84.8358 -3.2511 0.1226 1.6547 40.0022
+#> 263: 84.8337 -3.2513 0.1224 1.6539 40.0037
+#> 264: 84.8318 -3.2511 0.1223 1.6531 39.9986
+#> 265: 84.8316 -3.2504 0.1213 1.6533 40.0094
+#> 266: 84.8325 -3.2503 0.1202 1.6549 40.0179
+#> 267: 84.8328 -3.2501 0.1189 1.6547 40.0438
+#> 268: 84.8324 -3.2505 0.1183 1.6532 40.0734
+#> 269: 84.8315 -3.2505 0.1177 1.6545 40.0714
+#> 270: 84.8304 -3.2508 0.1175 1.6545 40.0698
+#> 271: 84.8293 -3.2512 0.1173 1.6542 40.0623
+#> 272: 84.8279 -3.2512 0.1165 1.6537 40.0659
+#> 273: 84.8260 -3.2512 0.1171 1.6536 40.0580
+#> 274: 84.8241 -3.2512 0.1172 1.6523 40.0540
+#> 275: 84.8245 -3.2508 0.1171 1.6529 40.0513
+#> 276: 84.8240 -3.2510 0.1165 1.6523 40.0407
+#> 277: 84.8240 -3.2509 0.1160 1.6516 40.0290
+#> 278: 84.8250 -3.2507 0.1156 1.6505 40.0255
+#> 279: 84.8253 -3.2507 0.1147 1.6509 40.0301
+#> 280: 84.8252 -3.2507 0.1140 1.6503 40.0278
+#> 281: 84.8255 -3.2508 0.1135 1.6504 40.0238
+#> 282: 84.8246 -3.2506 0.1128 1.6505 40.0212
+#> 283: 84.8237 -3.2508 0.1120 1.6509 40.0206
+#> 284: 84.8235 -3.2507 0.1121 1.6518 40.0316
+#> 285: 84.8236 -3.2499 0.1121 1.6523 40.0330
+#> 286: 84.8230 -3.2490 0.1118 1.6530 40.0435
+#> 287: 84.8222 -3.2485 0.1119 1.6526 40.0428
+#> 288: 84.8211 -3.2486 0.1120 1.6512 40.0446
+#> 289: 84.8196 -3.2490 0.1121 1.6508 40.0355
+#> 290: 84.8189 -3.2494 0.1121 1.6503 40.0319
+#> 291: 84.8183 -3.2495 0.1126 1.6501 40.0263
+#> 292: 84.8174 -3.2496 0.1127 1.6495 40.0226
+#> 293: 84.8163 -3.2499 0.1126 1.6488 40.0255
+#> 294: 84.8165 -3.2499 0.1125 1.6479 40.0207
+#> 295: 84.8165 -3.2502 0.1130 1.6466 40.0406
+#> 296: 84.8158 -3.2508 0.1131 1.6464 40.0428
+#> 297: 84.8162 -3.2506 0.1129 1.6465 40.0432
+#> 298: 84.8166 -3.2501 0.1131 1.6460 40.0415
+#> 299: 84.8184 -3.2499 0.1138 1.6451 40.0513
+#> 300: 84.8205 -3.2499 0.1144 1.6450 40.0615
+#> 301: 84.8216 -3.2496 0.1156 1.6450 40.0591
+#> 302: 84.8225 -3.2498 0.1161 1.6448 40.0618
+#> 303: 84.8232 -3.2493 0.1163 1.6451 40.0612
+#> 304: 84.8233 -3.2488 0.1166 1.6450 40.0669
+#> 305: 84.8230 -3.2485 0.1163 1.6439 40.0714
+#> 306: 84.8221 -3.2482 0.1158 1.6440 40.0838
+#> 307: 84.8217 -3.2479 0.1154 1.6445 40.0835
+#> 308: 84.8219 -3.2477 0.1156 1.6450 40.0829
+#> 309: 84.8224 -3.2477 0.1152 1.6450 40.0836
+#> 310: 84.8224 -3.2480 0.1148 1.6457 40.0873
+#> 311: 84.8225 -3.2480 0.1143 1.6459 40.0894
+#> 312: 84.8219 -3.2482 0.1136 1.6460 40.0835
+#> 313: 84.8214 -3.2484 0.1131 1.6462 40.0810
+#> 314: 84.8208 -3.2485 0.1130 1.6471 40.0786
+#> 315: 84.8211 -3.2485 0.1128 1.6470 40.0707
+#> 316: 84.8211 -3.2483 0.1127 1.6469 40.0628
+#> 317: 84.8210 -3.2482 0.1124 1.6472 40.0580
+#> 318: 84.8201 -3.2484 0.1122 1.6472 40.0602
+#> 319: 84.8196 -3.2484 0.1117 1.6479 40.0555
+#> 320: 84.8183 -3.2480 0.1119 1.6486 40.0659
+#> 321: 84.8173 -3.2479 0.1122 1.6489 40.0713
+#> 322: 84.8164 -3.2479 0.1129 1.6491 40.0781
+#> 323: 84.8159 -3.2480 0.1136 1.6489 40.0790
+#> 324: 84.8158 -3.2480 0.1140 1.6489 40.0746
+#> 325: 84.8158 -3.2480 0.1138 1.6484 40.0845
+#> 326: 84.8157 -3.2482 0.1137 1.6482 40.0953
+#> 327: 84.8155 -3.2482 0.1134 1.6482 40.0955
+#> 328: 84.8156 -3.2482 0.1133 1.6471 40.1167
+#> 329: 84.8152 -3.2483 0.1129 1.6466 40.1195
+#> 330: 84.8152 -3.2482 0.1124 1.6459 40.1280
+#> 331: 84.8151 -3.2478 0.1120 1.6467 40.1282
+#> 332: 84.8147 -3.2477 0.1115 1.6471 40.1265
+#> 333: 84.8145 -3.2477 0.1110 1.6470 40.1333
+#> 334: 84.8144 -3.2479 0.1108 1.6468 40.1474
+#> 335: 84.8141 -3.2481 0.1106 1.6475 40.1549
+#> 336: 84.8135 -3.2481 0.1103 1.6481 40.1664
+#> 337: 84.8134 -3.2481 0.1106 1.6476 40.1837
+#> 338: 84.8129 -3.2479 0.1109 1.6482 40.1855
+#> 339: 84.8126 -3.2478 0.1107 1.6478 40.1830
+#> 340: 84.8120 -3.2482 0.1106 1.6471 40.1893
+#> 341: 84.8120 -3.2482 0.1106 1.6467 40.1931
+#> 342: 84.8119 -3.2482 0.1106 1.6473 40.2091
+#> 343: 84.8135 -3.2483 0.1109 1.6475 40.2113
+#> 344: 84.8153 -3.2483 0.1114 1.6472 40.2116
+#> 345: 84.8165 -3.2484 0.1119 1.6465 40.2110
+#> 346: 84.8171 -3.2481 0.1121 1.6462 40.2099
+#> 347: 84.8184 -3.2483 0.1126 1.6459 40.2120
+#> 348: 84.8189 -3.2483 0.1127 1.6455 40.2115
+#> 349: 84.8198 -3.2483 0.1127 1.6450 40.2087
+#> 350: 84.8202 -3.2482 0.1125 1.6454 40.2118
+#> 351: 84.8208 -3.2483 0.1120 1.6447 40.2094
+#> 352: 84.8213 -3.2483 0.1118 1.6444 40.2070
+#> 353: 84.8218 -3.2481 0.1115 1.6445 40.2077
+#> 354: 84.8226 -3.2482 0.1114 1.6439 40.2077
+#> 355: 84.8230 -3.2481 0.1113 1.6439 40.2072
+#> 356: 84.8232 -3.2479 0.1111 1.6439 40.2075
+#> 357: 84.8239 -3.2477 0.1109 1.6441 40.2021
+#> 358: 84.8245 -3.2476 0.1107 1.6445 40.2028
+#> 359: 84.8251 -3.2476 0.1107 1.6452 40.2032
+#> 360: 84.8252 -3.2474 0.1110 1.6462 40.2012
+#> 361: 84.8258 -3.2473 0.1108 1.6469 40.2043
+#> 362: 84.8260 -3.2475 0.1107 1.6467 40.2056
+#> 363: 84.8262 -3.2474 0.1106 1.6469 40.2028
+#> 364: 84.8266 -3.2472 0.1104 1.6473 40.1979
+#> 365: 84.8270 -3.2469 0.1102 1.6479 40.1923
+#> 366: 84.8273 -3.2469 0.1100 1.6482 40.1872
+#> 367: 84.8267 -3.2468 0.1099 1.6483 40.1836
+#> 368: 84.8263 -3.2470 0.1099 1.6483 40.1850
+#> 369: 84.8269 -3.2471 0.1098 1.6484 40.1864
+#> 370: 84.8274 -3.2472 0.1098 1.6484 40.1856
+#> 371: 84.8282 -3.2471 0.1101 1.6489 40.1839
+#> 372: 84.8288 -3.2469 0.1099 1.6492 40.1804
+#> 373: 84.8294 -3.2467 0.1098 1.6494 40.1806
+#> 374: 84.8301 -3.2466 0.1096 1.6491 40.1855
+#> 375: 84.8301 -3.2467 0.1093 1.6488 40.1951
+#> 376: 84.8302 -3.2467 0.1092 1.6484 40.1921
+#> 377: 84.8302 -3.2467 0.1092 1.6486 40.1842
+#> 378: 84.8300 -3.2467 0.1095 1.6485 40.1760
+#> 379: 84.8296 -3.2468 0.1094 1.6483 40.1701
+#> 380: 84.8297 -3.2469 0.1094 1.6483 40.1738
+#> 381: 84.8299 -3.2469 0.1093 1.6485 40.1801
+#> 382: 84.8302 -3.2470 0.1092 1.6488 40.1857
+#> 383: 84.8299 -3.2469 0.1090 1.6491 40.1859
+#> 384: 84.8297 -3.2470 0.1090 1.6488 40.1903
+#> 385: 84.8289 -3.2469 0.1095 1.6487 40.1978
+#> 386: 84.8282 -3.2470 0.1098 1.6487 40.1976
+#> 387: 84.8277 -3.2471 0.1101 1.6488 40.1910
+#> 388: 84.8270 -3.2471 0.1104 1.6486 40.1863
+#> 389: 84.8263 -3.2471 0.1108 1.6486 40.1837
+#> 390: 84.8259 -3.2472 0.1109 1.6491 40.1881
+#> 391: 84.8250 -3.2472 0.1111 1.6499 40.1919
+#> 392: 84.8248 -3.2471 0.1113 1.6501 40.1961
+#> 393: 84.8247 -3.2471 0.1113 1.6503 40.1941
+#> 394: 84.8241 -3.2470 0.1114 1.6508 40.1933
+#> 395: 84.8239 -3.2469 0.1115 1.6510 40.1916
+#> 396: 84.8239 -3.2468 0.1115 1.6515 40.1946
+#> 397: 84.8239 -3.2466 0.1113 1.6517 40.1979
+#> 398: 84.8241 -3.2467 0.1112 1.6519 40.1966
+#> 399: 84.8244 -3.2466 0.1112 1.6522 40.1975
+#> 400: 84.8248 -3.2466 0.1111 1.6523 40.1919
+#> 401: 84.8255 -3.2466 0.1109 1.6523 40.1889
+#> 402: 84.8259 -3.2468 0.1108 1.6523 40.1836
+#> 403: 84.8257 -3.2470 0.1109 1.6524 40.1787
+#> 404: 84.8251 -3.2470 0.1111 1.6528 40.1788
+#> 405: 84.8244 -3.2472 0.1113 1.6530 40.1761
+#> 406: 84.8235 -3.2472 0.1113 1.6529 40.1763
+#> 407: 84.8231 -3.2471 0.1112 1.6531 40.1742
+#> 408: 84.8229 -3.2471 0.1110 1.6530 40.1728
+#> 409: 84.8229 -3.2471 0.1109 1.6528 40.1698
+#> 410: 84.8233 -3.2473 0.1109 1.6524 40.1701
+#> 411: 84.8235 -3.2474 0.1109 1.6522 40.1714
+#> 412: 84.8236 -3.2474 0.1110 1.6517 40.1716
+#> 413: 84.8241 -3.2474 0.1111 1.6512 40.1741
+#> 414: 84.8238 -3.2476 0.1108 1.6508 40.1809
+#> 415: 84.8238 -3.2477 0.1108 1.6505 40.1803
+#> 416: 84.8234 -3.2475 0.1110 1.6504 40.1880
+#> 417: 84.8232 -3.2475 0.1112 1.6510 40.1938
+#> 418: 84.8232 -3.2475 0.1112 1.6511 40.1944
+#> 419: 84.8231 -3.2476 0.1114 1.6513 40.1921
+#> 420: 84.8226 -3.2477 0.1113 1.6511 40.1880
+#> 421: 84.8220 -3.2478 0.1111 1.6508 40.1859
+#> 422: 84.8213 -3.2478 0.1110 1.6503 40.1897
+#> 423: 84.8207 -3.2479 0.1110 1.6499 40.1876
+#> 424: 84.8203 -3.2479 0.1111 1.6498 40.1860
+#> 425: 84.8198 -3.2479 0.1111 1.6498 40.1817
+#> 426: 84.8191 -3.2479 0.1113 1.6498 40.1796
+#> 427: 84.8186 -3.2478 0.1112 1.6498 40.1781
+#> 428: 84.8183 -3.2478 0.1114 1.6496 40.1738
+#> 429: 84.8177 -3.2477 0.1116 1.6495 40.1695
+#> 430: 84.8172 -3.2477 0.1119 1.6496 40.1739
+#> 431: 84.8169 -3.2478 0.1120 1.6494 40.1741
+#> 432: 84.8169 -3.2479 0.1121 1.6490 40.1758
+#> 433: 84.8170 -3.2479 0.1121 1.6491 40.1793
+#> 434: 84.8171 -3.2480 0.1122 1.6488 40.1808
+#> 435: 84.8173 -3.2481 0.1123 1.6487 40.1845
+#> 436: 84.8176 -3.2481 0.1123 1.6489 40.1866
+#> 437: 84.8178 -3.2480 0.1122 1.6496 40.1872
+#> 438: 84.8183 -3.2480 0.1121 1.6502 40.1869
+#> 439: 84.8185 -3.2481 0.1119 1.6504 40.1834
+#> 440: 84.8185 -3.2480 0.1118 1.6506 40.1831
+#> 441: 84.8188 -3.2480 0.1120 1.6502 40.1893
+#> 442: 84.8192 -3.2480 0.1120 1.6501 40.1930
+#> 443: 84.8196 -3.2480 0.1120 1.6499 40.1917
+#> 444: 84.8202 -3.2478 0.1122 1.6498 40.1966
+#> 445: 84.8207 -3.2476 0.1124 1.6499 40.1977
+#> 446: 84.8210 -3.2473 0.1123 1.6496 40.2017
+#> 447: 84.8217 -3.2472 0.1123 1.6491 40.2030
+#> 448: 84.8221 -3.2473 0.1122 1.6488 40.2025
+#> 449: 84.8225 -3.2474 0.1121 1.6485 40.2069
+#> 450: 84.8224 -3.2473 0.1119 1.6484 40.2078
+#> 451: 84.8221 -3.2473 0.1118 1.6483 40.2032
+#> 452: 84.8220 -3.2472 0.1117 1.6484 40.1989
+#> 453: 84.8220 -3.2472 0.1117 1.6483 40.1953
+#> 454: 84.8220 -3.2473 0.1122 1.6483 40.1942
+#> 455: 84.8220 -3.2472 0.1124 1.6484 40.1932
+#> 456: 84.8220 -3.2470 0.1124 1.6478 40.1972
+#> 457: 84.8222 -3.2469 0.1125 1.6476 40.1989
+#> 458: 84.8226 -3.2468 0.1125 1.6479 40.1989
+#> 459: 84.8228 -3.2467 0.1126 1.6480 40.2035
+#> 460: 84.8231 -3.2467 0.1124 1.6479 40.2032
+#> 461: 84.8236 -3.2466 0.1126 1.6482 40.2030
+#> 462: 84.8238 -3.2466 0.1124 1.6481 40.2052
+#> 463: 84.8238 -3.2467 0.1123 1.6479 40.2023
+#> 464: 84.8233 -3.2467 0.1123 1.6479 40.2004
+#> 465: 84.8230 -3.2468 0.1123 1.6482 40.2043
+#> 466: 84.8233 -3.2469 0.1123 1.6480 40.2062
+#> 467: 84.8236 -3.2468 0.1121 1.6480 40.2026
+#> 468: 84.8238 -3.2468 0.1120 1.6477 40.2034
+#> 469: 84.8239 -3.2468 0.1119 1.6474 40.2035
+#> 470: 84.8241 -3.2469 0.1116 1.6473 40.2015
+#> 471: 84.8241 -3.2470 0.1116 1.6476 40.1993
+#> 472: 84.8240 -3.2469 0.1117 1.6478 40.1977
+#> 473: 84.8239 -3.2468 0.1119 1.6479 40.1949
+#> 474: 84.8239 -3.2466 0.1118 1.6480 40.1946
+#> 475: 84.8239 -3.2464 0.1119 1.6483 40.1941
+#> 476: 84.8237 -3.2462 0.1121 1.6488 40.1930
+#> 477: 84.8235 -3.2462 0.1122 1.6488 40.1901
+#> 478: 84.8235 -3.2462 0.1125 1.6488 40.1837
+#> 479: 84.8238 -3.2463 0.1128 1.6486 40.1814
+#> 480: 84.8238 -3.2464 0.1129 1.6484 40.1794
+#> 481: 84.8239 -3.2464 0.1129 1.6483 40.1783
+#> 482: 84.8237 -3.2465 0.1130 1.6482 40.1784
+#> 483: 84.8234 -3.2465 0.1130 1.6483 40.1764
+#> 484: 84.8227 -3.2465 0.1132 1.6482 40.1775
+#> 485: 84.8223 -3.2465 0.1133 1.6483 40.1764
+#> 486: 84.8219 -3.2465 0.1135 1.6484 40.1781
+#> 487: 84.8215 -3.2465 0.1136 1.6487 40.1770
+#> 488: 84.8214 -3.2466 0.1136 1.6486 40.1796
+#> 489: 84.8214 -3.2466 0.1134 1.6489 40.1801
+#> 490: 84.8214 -3.2466 0.1132 1.6490 40.1786
+#> 491: 84.8218 -3.2466 0.1131 1.6494 40.1805
+#> 492: 84.8220 -3.2465 0.1133 1.6495 40.1805
+#> 493: 84.8223 -3.2465 0.1137 1.6493 40.1791
+#> 494: 84.8223 -3.2465 0.1140 1.6494 40.1774
+#> 495: 84.8224 -3.2465 0.1142 1.6491 40.1764
+#> 496: 84.8225 -3.2465 0.1142 1.6491 40.1750
+#> 497: 84.8229 -3.2465 0.1142 1.6487 40.1742
+#> 498: 84.8230 -3.2466 0.1140 1.6485 40.1712
+#> 499: 84.8229 -3.2466 0.1137 1.6485 40.1688
+#> 500: 84.8228 -3.2468 0.1134 1.6488 40.1690#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Calculating residuals/tables#> done#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 |log_k_parent | sigma | o1 |
+#> |.....................| o2 |...........|...........|...........|
+#> | 1| 451.22394 | 1.000 | -1.000 | -0.7995 | -0.9125 |
+#> |.....................| -0.9081 |...........|...........|...........|
+#> | U| 451.22394 | 86.39 | -3.215 | 5.768 | 0.7049 |
+#> |.....................| 0.9021 |...........|...........|...........|
+#> | X| 451.22394 | 86.39 | 0.04015 | 5.768 | 0.7049 |
+#> |.....................| 0.9021 |...........|...........|...........|
+#> | G| Gill Diff. | 52.79 | 0.01520 | -15.05 | 0.6163 |
+#> |.....................| 2.488 |...........|...........|...........|
+#> | 2| 3099.6543 | 0.03939 | -1.000 | -0.5255 | -0.9237 |
+#> |.....................| -0.9534 |...........|...........|...........|
+#> | U| 3099.6543 | 3.403 | -3.215 | 6.558 | 0.6970 |
+#> |.....................| 0.8613 |...........|...........|...........|
+#> | X| 3099.6543 | 3.403 | 0.04014 | 6.558 | 0.6970 |
+#> |.....................| 0.8613 |...........|...........|...........|
+#> | 3| 473.10068 | 0.9039 | -1.000 | -0.7721 | -0.9136 |
+#> |.....................| -0.9126 |...........|...........|...........|
+#> | U| 473.10068 | 78.09 | -3.215 | 5.847 | 0.7041 |
+#> |.....................| 0.8980 |...........|...........|...........|
+#> | X| 473.10068 | 78.09 | 0.04015 | 5.847 | 0.7041 |
+#> |.....................| 0.8980 |...........|...........|...........|
+#> | 4| 450.95086 | 0.9904 | -1.000 | -0.7967 | -0.9126 |
+#> |.....................| -0.9086 |...........|...........|...........|
+#> | U| 450.95086 | 85.56 | -3.215 | 5.776 | 0.7048 |
+#> |.....................| 0.9017 |...........|...........|...........|
+#> | X| 450.95086 | 85.56 | 0.04015 | 5.776 | 0.7048 |
+#> |.....................| 0.9017 |...........|...........|...........|
+#> | F| Forward Diff. | -4.520 | 0.09729 | -14.85 | -0.2941 |
+#> |.....................| 2.449 |...........|...........|...........|
+#> | 5| 450.82239 | 0.9932 | -1.000 | -0.7873 | -0.9124 |
+#> |.....................| -0.9101 |...........|...........|...........|
+#> | U| 450.82239 | 85.81 | -3.215 | 5.804 | 0.7049 |
+#> |.....................| 0.9003 |...........|...........|...........|
+#> | X| 450.82239 | 85.81 | 0.04015 | 5.804 | 0.7049 |
+#> |.....................| 0.9003 |...........|...........|...........|
+#> | 6| 450.73959 | 0.9981 | -1.000 | -0.7712 | -0.9121 |
+#> |.....................| -0.9128 |...........|...........|...........|
+#> | U| 450.73959 | 86.23 | -3.215 | 5.850 | 0.7051 |
+#> |.....................| 0.8979 |...........|...........|...........|
+#> | X| 450.73959 | 86.23 | 0.04015 | 5.850 | 0.7051 |
+#> |.....................| 0.8979 |...........|...........|...........|
+#> | F| Forward Diff. | 41.55 | 0.02901 | -12.22 | 0.2553 |
+#> |.....................| 2.069 |...........|...........|...........|
+#> | 7| 450.34694 | 0.9875 | -1.000 | -0.7467 | -0.9114 |
+#> |.....................| -0.9169 |...........|...........|...........|
+#> | U| 450.34694 | 85.32 | -3.215 | 5.921 | 0.7056 |
+#> |.....................| 0.8942 |...........|...........|...........|
+#> | X| 450.34694 | 85.32 | 0.04014 | 5.921 | 0.7056 |
+#> |.....................| 0.8942 |...........|...........|...........|
+#> | F| Forward Diff. | -19.58 | 0.1161 | -10.02 | -0.6042 |
+#> |.....................| 1.700 |...........|...........|...........|
+#> | 8| 450.09191 | 0.9931 | -1.001 | -0.7208 | -0.9093 |
+#> |.....................| -0.9217 |...........|...........|...........|
+#> | U| 450.09191 | 85.80 | -3.216 | 5.995 | 0.7071 |
+#> |.....................| 0.8899 |...........|...........|...........|
+#> | X| 450.09191 | 85.80 | 0.04012 | 5.995 | 0.7071 |
+#> |.....................| 0.8899 |...........|...........|...........|
+#> | F| Forward Diff. | 13.00 | 0.06566 | -7.570 | -0.3896 |
+#> |.....................| 1.273 |...........|...........|...........|
+#> | 9| 449.93949 | 0.9873 | -1.002 | -0.6965 | -0.8998 |
+#> |.....................| -0.9259 |...........|...........|...........|
+#> | U| 449.93949 | 85.30 | -3.217 | 6.065 | 0.7138 |
+#> |.....................| 0.8861 |...........|...........|...........|
+#> | X| 449.93949 | 85.30 | 0.04009 | 6.065 | 0.7138 |
+#> |.....................| 0.8861 |...........|...........|...........|
+#> | F| Forward Diff. | -18.86 | 0.1073 | -5.670 | -0.6860 |
+#> |.....................| 0.8878 |...........|...........|...........|
+#> | 10| 449.82026 | 0.9918 | -1.004 | -0.6799 | -0.8791 |
+#> |.....................| -0.9254 |...........|...........|...........|
+#> | U| 449.82026 | 85.69 | -3.219 | 6.113 | 0.7284 |
+#> |.....................| 0.8865 |...........|...........|...........|
+#> | X| 449.82026 | 85.69 | 0.04000 | 6.113 | 0.7284 |
+#> |.....................| 0.8865 |...........|...........|...........|
+#> | F| Forward Diff. | 8.164 | 0.05669 | -4.296 | -0.3775 |
+#> |.....................| 0.8823 |...........|...........|...........|
+#> | 11| 449.76996 | 0.9897 | -1.006 | -0.6720 | -0.8560 |
+#> |.....................| -0.9364 |...........|...........|...........|
+#> | U| 449.76996 | 85.50 | -3.221 | 6.136 | 0.7447 |
+#> |.....................| 0.8766 |...........|...........|...........|
+#> | X| 449.76996 | 85.50 | 0.03990 | 6.136 | 0.7447 |
+#> |.....................| 0.8766 |...........|...........|...........|
+#> | F| Forward Diff. | -2.743 | 0.05613 | -3.782 | -0.3486 |
+#> |.....................| -0.07732 |...........|...........|...........|
+#> | 12| 449.73800 | 0.9901 | -1.008 | -0.6600 | -0.8416 |
+#> |.....................| -0.9169 |...........|...........|...........|
+#> | U| 449.738 | 85.54 | -3.223 | 6.170 | 0.7549 |
+#> |.....................| 0.8942 |...........|...........|...........|
+#> | X| 449.738 | 85.54 | 0.03983 | 6.170 | 0.7549 |
+#> |.....................| 0.8942 |...........|...........|...........|
+#> | F| Forward Diff. | 0.5907 | 0.04688 | -2.910 | -0.3174 |
+#> |.....................| 1.529 |...........|...........|...........|
+#> | 13| 449.73838 | 0.9854 | -1.008 | -0.6366 | -0.8390 |
+#> |.....................| -0.9292 |...........|...........|...........|
+#> | U| 449.73838 | 85.13 | -3.224 | 6.238 | 0.7567 |
+#> |.....................| 0.8831 |...........|...........|...........|
+#> | X| 449.73838 | 85.13 | 0.03981 | 6.238 | 0.7567 |
+#> |.....................| 0.8831 |...........|...........|...........|
+#> | 14| 449.71577 | 0.9877 | -1.008 | -0.6484 | -0.8403 |
+#> |.....................| -0.9231 |...........|...........|...........|
+#> | U| 449.71577 | 85.33 | -3.223 | 6.204 | 0.7558 |
+#> |.....................| 0.8886 |...........|...........|...........|
+#> | X| 449.71577 | 85.33 | 0.03982 | 6.204 | 0.7558 |
+#> |.....................| 0.8886 |...........|...........|...........|
+#> | F| Forward Diff. | -13.00 | 0.06593 | -2.084 | -0.4341 |
+#> |.....................| 1.007 |...........|...........|...........|
+#> | 15| 449.68436 | 0.9912 | -1.009 | -0.6401 | -0.8344 |
+#> |.....................| -0.9311 |...........|...........|...........|
+#> | U| 449.68436 | 85.64 | -3.224 | 6.228 | 0.7599 |
+#> |.....................| 0.8814 |...........|...........|...........|
+#> | X| 449.68436 | 85.64 | 0.03979 | 6.228 | 0.7599 |
+#> |.....................| 0.8814 |...........|...........|...........|
+#> | F| Forward Diff. | 7.939 | 0.02803 | -1.419 | -0.2659 |
+#> |.....................| 0.3125 |...........|...........|...........|
+#> | 16| 449.66988 | 0.9896 | -1.010 | -0.6363 | -0.8221 |
+#> |.....................| -0.9344 |...........|...........|...........|
+#> | U| 449.66988 | 85.50 | -3.226 | 6.239 | 0.7686 |
+#> |.....................| 0.8784 |...........|...........|...........|
+#> | X| 449.66988 | 85.50 | 0.03973 | 6.239 | 0.7686 |
+#> |.....................| 0.8784 |...........|...........|...........|
+#> | F| Forward Diff. | -0.8695 | 0.03361 | -1.202 | -0.2917 |
+#> |.....................| 0.02327 |...........|...........|...........|
+#> | 17| 449.66421 | 0.9900 | -1.012 | -0.6343 | -0.8088 |
+#> |.....................| -0.9351 |...........|...........|...........|
+#> | U| 449.66421 | 85.53 | -3.227 | 6.245 | 0.7779 |
+#> |.....................| 0.8778 |...........|...........|...........|
+#> | X| 449.66421 | 85.53 | 0.03969 | 6.245 | 0.7779 |
+#> |.....................| 0.8778 |...........|...........|...........|
+#> | 18| 449.65407 | 0.9895 | -1.015 | -0.6307 | -0.7728 |
+#> |.....................| -0.9370 |...........|...........|...........|
+#> | U| 449.65407 | 85.49 | -3.230 | 6.255 | 0.8033 |
+#> |.....................| 0.8761 |...........|...........|...........|
+#> | X| 449.65407 | 85.49 | 0.03957 | 6.255 | 0.8033 |
+#> |.....................| 0.8761 |...........|...........|...........|
+#> | F| Forward Diff. | 0.6836 | 0.009868 | -0.9456 | -0.1262 |
+#> |.....................| -0.2597 |...........|...........|...........|
+#> | 19| 449.64227 | 0.9890 | -1.006 | -0.6121 | -0.7274 |
+#> |.....................| -0.9339 |...........|...........|...........|
+#> | U| 449.64227 | 85.45 | -3.222 | 6.309 | 0.8353 |
+#> |.....................| 0.8789 |...........|...........|...........|
+#> | X| 449.64227 | 85.45 | 0.03989 | 6.309 | 0.8353 |
+#> |.....................| 0.8789 |...........|...........|...........|
+#> | F| Forward Diff. | -0.4372 | 0.06357 | 0.2445 | -0.08318 |
+#> |.....................| -0.05696 |...........|...........|...........|
+#> | 20| 449.64227 | 0.9890 | -1.006 | -0.6121 | -0.7274 |
+#> |.....................| -0.9339 |...........|...........|...........|
+#> | U| 449.64227 | 85.45 | -3.222 | 6.309 | 0.8353 |
+#> |.....................| 0.8789 |...........|...........|...........|
+#> | X| 449.64227 | 85.45 | 0.03989 | 6.309 | 0.8353 |
+#> |.....................| 0.8789 |...........|...........|...........|
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> 1: 93.6754 -0.2977 2.0254 2.7655 0.7032 0.5111 15.3443
+#> 2: 93.8828 -0.2006 2.0786 2.6886 0.6681 0.4855 7.5256
+#> 3: 94.0494 -0.2006 2.0891 2.9975 0.6347 0.4612 7.0501
+#> 4: 94.1641 -0.2446 2.0103 3.6008 0.6029 0.4382 6.2482
+#> 5: 93.8983 -0.2562 1.9851 4.5637 0.5728 0.4163 6.1507
+#> 6: 93.9311 -0.2542 1.9733 5.7516 0.5441 0.3954 6.1445
+#> 7: 93.8631 -0.2535 1.9876 5.4640 0.5169 0.3757 5.9234
+#> 8: 94.2851 -0.2327 1.9851 5.7884 0.4943 0.3569 5.9887
+#> 9: 94.2114 -0.2348 2.0169 5.4990 0.4733 0.3390 5.9730
+#> 10: 94.0782 -0.1951 2.0678 5.2240 0.4969 0.3221 5.7694
+#> 11: 94.0527 -0.1898 2.0988 4.9628 0.4924 0.3060 5.6429
+#> 12: 93.9845 -0.1795 2.1168 4.7147 0.4748 0.2907 5.4764
+#> 13: 93.9424 -0.1958 2.0924 4.4790 0.4551 0.2762 5.5598
+#> 14: 94.2255 -0.2005 2.0963 4.2910 0.4552 0.2623 5.4520
+#> 15: 94.6065 -0.1964 2.0794 4.0765 0.4516 0.2492 5.5275
+#> 16: 94.8393 -0.1872 2.0825 4.7814 0.4714 0.2368 5.4708
+#> 17: 94.5489 -0.1873 2.0822 5.3772 0.4714 0.2249 5.5790
+#> 18: 94.5797 -0.1994 2.0702 5.1083 0.4563 0.2137 5.5962
+#> 19: 94.7205 -0.1987 2.0942 5.1405 0.4580 0.2030 5.8328
+#> 20: 94.2162 -0.1961 2.0955 7.2352 0.4578 0.2081 5.5730
+#> 21: 94.2688 -0.1935 2.0980 6.8735 0.4539 0.2199 5.6561
+#> 22: 94.4008 -0.2294 2.0430 6.5298 0.4312 0.2528 5.4970
+#> 23: 93.8617 -0.2126 2.0861 6.2033 0.4420 0.2401 5.3679
+#> 24: 93.9223 -0.2173 2.0786 5.8931 0.4419 0.2281 5.4475
+#> 25: 94.1259 -0.2199 2.0790 5.5985 0.4429 0.2167 5.2610
+#> 26: 93.5597 -0.1966 2.1115 5.3186 0.4521 0.2059 5.0971
+#> 27: 93.5468 -0.2077 2.1016 5.0526 0.4458 0.2090 5.2223
+#> 28: 93.6901 -0.2106 2.0884 4.8000 0.4439 0.2114 5.1693
+#> 29: 93.4521 -0.1991 2.1349 4.5600 0.4236 0.2248 5.1834
+#> 30: 93.7678 -0.1998 2.1267 5.5252 0.4212 0.2297 5.0549
+#> 31: 93.5695 -0.2039 2.1244 5.2489 0.4165 0.2334 5.0965
+#> 32: 93.8288 -0.1855 2.1392 5.1872 0.4401 0.2286 5.0321
+#> 33: 93.9053 -0.1827 2.1426 4.9278 0.4479 0.2171 5.0706
+#> 34: 94.0876 -0.1871 2.1151 4.6814 0.4613 0.2063 5.1438
+#> 35: 94.5298 -0.1845 2.1221 4.4474 0.4586 0.2006 5.1897
+#> 36: 94.3221 -0.1765 2.1144 5.3164 0.4401 0.2193 5.0921
+#> 37: 94.3600 -0.1842 2.1021 5.3586 0.4507 0.2210 5.0926
+#> 38: 94.3734 -0.1790 2.1261 5.0907 0.4494 0.2100 5.1494
+#> 39: 94.5052 -0.1806 2.1319 4.8362 0.4514 0.1995 5.0177
+#> 40: 94.1042 -0.1906 2.0983 4.5944 0.4360 0.1984 5.2507
+#> 41: 94.1815 -0.1914 2.1166 4.3646 0.4385 0.1977 5.1065
+#> 42: 93.9837 -0.2144 2.0673 4.1464 0.4378 0.1878 5.1603
+#> 43: 93.8806 -0.2107 2.0840 3.9642 0.4456 0.1848 5.0904
+#> 44: 94.1765 -0.2107 2.0722 3.7660 0.4456 0.1881 5.1562
+#> 45: 94.2089 -0.2018 2.0874 3.5777 0.4482 0.1787 5.1219
+#> 46: 93.8851 -0.2111 2.0869 3.9421 0.4462 0.1697 5.0752
+#> 47: 94.1372 -0.2192 2.0731 3.7450 0.4517 0.1733 5.1784
+#> 48: 94.0436 -0.2157 2.0730 3.5578 0.4577 0.1854 5.1957
+#> 49: 93.9915 -0.2122 2.0740 3.3799 0.4450 0.1829 5.1116
+#> 50: 94.0579 -0.2233 2.0633 3.2109 0.4453 0.1964 5.0295
+#> 51: 94.0044 -0.2283 2.0544 3.9314 0.4563 0.2118 5.0457
+#> 52: 94.1080 -0.2174 2.0551 4.8914 0.4548 0.2182 5.0504
+#> 53: 94.3715 -0.2134 2.0598 6.2569 0.4509 0.2162 4.9574
+#> 54: 94.7344 -0.2119 2.0459 5.9440 0.4563 0.2121 5.1069
+#> 55: 94.2730 -0.2055 2.0625 5.6468 0.4758 0.2125 5.2656
+#> 56: 94.0206 -0.2017 2.0715 5.3645 0.4719 0.2045 5.1400
+#> 57: 94.0409 -0.1986 2.0837 5.0963 0.4801 0.2068 5.0902
+#> 58: 94.2392 -0.2122 2.0652 4.8415 0.4560 0.2334 5.1883
+#> 59: 93.9996 -0.1962 2.0764 4.5994 0.4686 0.2417 5.1242
+#> 60: 94.1448 -0.1840 2.1016 4.3694 0.4916 0.2296 5.0867
+#> 61: 94.4861 -0.1840 2.1239 4.3846 0.4916 0.2181 5.3979
+#> 62: 93.9892 -0.1781 2.1083 5.1623 0.5216 0.2072 5.0944
+#> 63: 94.0641 -0.1822 2.1129 4.9628 0.5123 0.1969 5.4228
+#> 64: 94.1414 -0.1733 2.1343 6.7238 0.5220 0.1879 5.3546
+#> 65: 94.0908 -0.1754 2.1160 8.4197 0.5165 0.1852 5.0873
+#> 66: 94.1490 -0.1753 2.1054 7.9987 0.5183 0.1857 5.0777
+#> 67: 93.8958 -0.1613 2.1295 7.5988 0.5004 0.2102 5.0641
+#> 68: 94.0579 -0.1683 2.1511 7.2188 0.5083 0.2110 5.3362
+#> 69: 94.0001 -0.1581 2.1629 6.8579 0.5225 0.2272 5.4399
+#> 70: 93.9712 -0.1733 2.1393 6.5150 0.5153 0.2403 5.5011
+#> 71: 94.3143 -0.1758 2.0989 6.1893 0.5043 0.2713 5.5366
+#> 72: 94.2138 -0.1842 2.1003 5.8798 0.5130 0.2578 5.2964
+#> 73: 94.1742 -0.1951 2.0773 5.5858 0.5165 0.2449 5.1986
+#> 74: 94.1287 -0.2003 2.0606 5.3065 0.5115 0.2326 4.8815
+#> 75: 94.4113 -0.1918 2.0811 5.6717 0.5153 0.2210 4.8370
+#> 76: 94.5175 -0.1940 2.0773 5.3881 0.5127 0.2127 4.9333
+#> 77: 94.4157 -0.1882 2.0714 5.1187 0.5189 0.2021 5.0162
+#> 78: 94.6190 -0.2000 2.0529 4.8628 0.5057 0.2064 4.9436
+#> 79: 94.8081 -0.2006 2.0458 4.6196 0.5053 0.2177 5.0159
+#> 80: 94.7817 -0.1943 2.0547 4.3886 0.5076 0.2099 5.1427
+#> 81: 94.5410 -0.1990 2.0686 4.8770 0.5032 0.2092 5.1192
+#> 82: 94.9536 -0.1936 2.0879 6.9870 0.4781 0.2068 5.1053
+#> 83: 94.7923 -0.1936 2.0777 6.6377 0.4734 0.2120 5.1233
+#> 84: 94.9314 -0.1881 2.0981 6.3058 0.4701 0.2088 5.2821
+#> 85: 94.8024 -0.1866 2.0975 5.9905 0.4684 0.2150 5.2088
+#> 86: 94.6506 -0.2019 2.0677 5.6910 0.4510 0.2043 5.2488
+#> 87: 94.9460 -0.1868 2.0823 5.4064 0.4625 0.2089 5.2663
+#> 88: 94.6365 -0.1901 2.0791 5.3471 0.4509 0.2203 5.2214
+#> 89: 94.5943 -0.2135 2.0521 5.0798 0.4585 0.2093 5.0161
+#> 90: 94.7957 -0.2131 2.0545 4.8258 0.4502 0.2026 5.1344
+#> 91: 94.6308 -0.2096 2.0565 4.5845 0.4566 0.2108 5.0403
+#> 92: 94.3521 -0.2059 2.0557 4.3553 0.4925 0.2072 5.3715
+#> 93: 94.5188 -0.2130 2.0646 4.1375 0.4980 0.1996 5.5624
+#> 94: 94.5995 -0.2056 2.0593 3.9306 0.4995 0.2167 5.3581
+#> 95: 94.7276 -0.1868 2.0922 3.7341 0.4863 0.2059 5.3610
+#> 96: 94.5986 -0.1900 2.0771 3.5474 0.4998 0.1956 5.2070
+#> 97: 94.2586 -0.1881 2.1051 3.9558 0.4757 0.1858 5.1561
+#> 98: 94.0716 -0.2098 2.0698 5.6441 0.4539 0.2044 5.1802
+#> 99: 94.2657 -0.2065 2.0679 5.6964 0.4679 0.2190 5.3608
+#> 100: 94.2331 -0.2203 2.0679 5.4116 0.4445 0.2256 5.4031
+#> 101: 93.8634 -0.2222 2.0720 5.1410 0.4279 0.2341 5.3774
+#> 102: 93.7675 -0.2496 2.0232 4.8839 0.4103 0.2224 5.1238
+#> 103: 93.9534 -0.2416 2.0249 4.6397 0.4144 0.2113 5.0031
+#> 104: 94.0631 -0.2442 2.0216 4.8203 0.4119 0.2007 5.1163
+#> 105: 94.0324 -0.2464 2.0092 4.5793 0.4135 0.2047 5.1666
+#> 106: 93.9954 -0.2482 2.0256 4.9167 0.4083 0.2052 5.2515
+#> 107: 94.2189 -0.2507 2.0121 4.6709 0.4072 0.2087 5.3430
+#> 108: 94.3707 -0.2448 2.0215 4.4373 0.4119 0.1996 5.1549
+#> 109: 94.1518 -0.2428 2.0197 4.2155 0.4155 0.1958 5.5480
+#> 110: 93.9287 -0.2571 2.0275 4.0047 0.4152 0.1931 5.8482
+#> 111: 93.9743 -0.2488 2.0202 3.8045 0.4171 0.2084 5.9798
+#> 112: 93.6245 -0.2350 2.0346 3.6142 0.4397 0.1980 6.0270
+#> 113: 94.5370 -0.2330 2.0593 3.9090 0.4422 0.1881 5.4431
+#> 114: 94.5052 -0.2289 2.0555 3.7135 0.4391 0.1787 5.5970
+#> 115: 94.5963 -0.2216 2.0579 3.5279 0.4446 0.1727 5.3901
+#> 116: 94.5059 -0.2293 2.0459 3.3515 0.4407 0.1705 5.2788
+#> 117: 94.6315 -0.2211 2.0564 3.1839 0.4279 0.1689 5.3258
+#> 118: 94.4868 -0.2194 2.0508 4.6523 0.4275 0.1604 5.1421
+#> 119: 94.1809 -0.2232 2.0444 7.0101 0.4302 0.1612 5.3468
+#> 120: 94.0950 -0.2231 2.0482 7.2110 0.4304 0.1625 5.1691
+#> 121: 94.1525 -0.2059 2.0682 6.8504 0.4474 0.1875 5.2811
+#> 122: 94.7122 -0.2154 2.0692 6.6747 0.4366 0.1906 5.3851
+#> 123: 94.2915 -0.2311 2.0431 6.9655 0.4351 0.2021 5.2103
+#> 124: 93.9984 -0.2310 2.0401 6.6173 0.4396 0.2091 5.0920
+#> 125: 94.3668 -0.2068 2.0505 6.2864 0.4983 0.1987 5.3263
+#> 126: 94.3570 -0.2043 2.0525 5.9721 0.5006 0.1887 5.3281
+#> 127: 94.7086 -0.2177 2.0377 5.6735 0.4762 0.1958 5.4003
+#> 128: 94.3565 -0.2173 2.0432 5.3898 0.4754 0.2055 5.5196
+#> 129: 94.4862 -0.2066 2.0639 5.1203 0.4807 0.1952 5.4783
+#> 130: 94.6107 -0.2026 2.0908 4.8643 0.4579 0.1855 5.6186
+#> 131: 94.6831 -0.1907 2.0920 4.6211 0.4710 0.1762 5.4859
+#> 132: 94.7035 -0.2052 2.0733 4.6333 0.4492 0.1723 5.2721
+#> 133: 94.1511 -0.2192 2.0615 5.7533 0.4362 0.1905 5.5019
+#> 134: 94.2758 -0.2101 2.0624 5.4656 0.4356 0.1810 5.3233
+#> 135: 94.6546 -0.1960 2.0826 5.1923 0.4281 0.1980 5.2515
+#> 136: 94.0322 -0.2100 2.0770 4.9327 0.4156 0.2103 5.3514
+#> 137: 94.0915 -0.2096 2.0859 5.6044 0.4159 0.2008 5.2755
+#> 138: 94.2452 -0.1983 2.1055 6.0837 0.4213 0.2185 5.0580
+#> 139: 94.5460 -0.1876 2.1093 6.8410 0.4301 0.2288 5.0840
+#> 140: 94.6905 -0.1863 2.1167 7.4689 0.4313 0.2173 5.0868
+#> 141: 94.6425 -0.1703 2.1240 7.0955 0.4522 0.2065 4.9715
+#> 142: 94.2538 -0.1632 2.1514 6.7407 0.4499 0.2059 5.0853
+#> 143: 94.3098 -0.1625 2.1567 6.4037 0.4499 0.2115 5.5860
+#> 144: 94.2802 -0.1716 2.1510 6.0835 0.4535 0.2081 5.1989
+#> 145: 94.1169 -0.1707 2.1523 5.7793 0.4531 0.2109 5.1407
+#> 146: 94.2558 -0.1579 2.1623 5.4903 0.4654 0.2427 5.2652
+#> 147: 93.9440 -0.1587 2.1673 5.2158 0.4611 0.2537 5.2699
+#> 148: 94.4271 -0.1587 2.1586 4.9550 0.4611 0.2595 5.1280
+#> 149: 94.2734 -0.1768 2.1160 4.7073 0.4809 0.2802 4.9251
+#> 150: 94.2406 -0.1928 2.0941 5.4176 0.4626 0.2662 5.0837
+#> 151: 94.4217 -0.1884 2.0965 5.1467 0.4677 0.2538 5.1728
+#> 152: 94.4856 -0.1826 2.1127 5.6736 0.4646 0.2373 5.1522
+#> 153: 94.3458 -0.1686 2.1381 6.3603 0.4760 0.2028 5.2197
+#> 154: 94.3945 -0.1633 2.1370 5.1586 0.4402 0.1955 5.3770
+#> 155: 94.6367 -0.1520 2.1596 6.4738 0.4533 0.1882 5.3345
+#> 156: 94.9050 -0.1521 2.1417 6.8382 0.4532 0.1729 5.2770
+#> 157: 94.5823 -0.1540 2.1326 5.5745 0.4487 0.1813 5.2760
+#> 158: 94.8355 -0.1691 2.1357 5.2979 0.4296 0.1990 5.3177
+#> 159: 94.7330 -0.1740 2.1148 4.0960 0.4476 0.1820 5.3001
+#> 160: 94.4926 -0.1731 2.1123 4.3550 0.4666 0.1817 5.1849
+#> 161: 94.4953 -0.1758 2.1063 4.0311 0.4698 0.1929 5.1371
+#> 162: 94.5639 -0.1753 2.1064 4.3044 0.4692 0.1911 5.1437
+#> 163: 94.5477 -0.1798 2.1041 4.1393 0.4804 0.2002 5.3561
+#> 164: 94.3812 -0.1934 2.1019 3.5760 0.4689 0.1908 5.3231
+#> 165: 94.0978 -0.1924 2.0973 2.2052 0.4743 0.1962 5.2813
+#> 166: 94.1374 -0.2043 2.0834 2.5477 0.4639 0.1904 5.3277
+#> 167: 94.1587 -0.2036 2.0797 2.7035 0.4561 0.1951 5.3106
+#> 168: 94.1518 -0.2166 2.0654 2.4969 0.4405 0.2090 5.3148
+#> 169: 94.3328 -0.2164 2.0652 2.3067 0.4455 0.1993 5.2385
+#> 170: 94.6029 -0.2176 2.0456 1.7913 0.4478 0.2085 5.4589
+#> 171: 94.2690 -0.2189 2.0635 1.8133 0.4496 0.1999 5.4918
+#> 172: 94.3227 -0.2120 2.0643 1.7763 0.4337 0.2063 5.4992
+#> 173: 94.3099 -0.2039 2.0892 1.1103 0.4350 0.2201 5.5148
+#> 174: 94.3192 -0.1895 2.1140 0.9817 0.4454 0.2078 5.5249
+#> 175: 94.2327 -0.1967 2.0939 0.9890 0.4361 0.1876 5.6321
+#> 176: 94.2707 -0.1989 2.0958 1.3001 0.4405 0.1790 5.6494
+#> 177: 94.0762 -0.2024 2.0908 0.9179 0.4426 0.1778 5.7085
+#> 178: 94.1807 -0.2074 2.0761 1.2663 0.4237 0.2064 5.5157
+#> 179: 94.2221 -0.2029 2.1083 2.0148 0.4270 0.2023 5.6770
+#> 180: 94.5889 -0.1975 2.0974 1.5302 0.4223 0.1778 5.7495
+#> 181: 94.4280 -0.2163 2.0648 1.8829 0.3908 0.1994 5.3948
+#> 182: 94.7076 -0.2247 2.0340 2.1148 0.4238 0.2062 5.4167
+#> 183: 94.5127 -0.2292 2.0317 3.0950 0.4302 0.2160 5.5009
+#> 184: 94.2522 -0.2335 2.0515 2.8900 0.4265 0.2038 5.2995
+#> 185: 94.2331 -0.2330 2.0431 3.3282 0.4276 0.2044 5.2220
+#> 186: 94.2207 -0.2259 2.0512 4.0568 0.4253 0.2008 5.2307
+#> 187: 94.5124 -0.2188 2.0603 3.0941 0.4381 0.1962 5.6927
+#> 188: 94.7691 -0.2454 2.0193 3.1090 0.4409 0.2012 5.5051
+#> 189: 94.5693 -0.2399 2.0169 3.1069 0.4292 0.1883 5.4354
+#> 190: 94.5742 -0.2318 2.0256 4.4216 0.4200 0.1932 5.3851
+#> 191: 94.3882 -0.2475 1.9949 4.5490 0.4366 0.1972 5.2470
+#> 192: 94.4267 -0.2478 1.9943 4.3327 0.4281 0.1995 5.2792
+#> 193: 94.6313 -0.2522 1.9703 3.5911 0.4321 0.1944 5.6218
+#> 194: 94.4345 -0.2616 1.9704 3.2209 0.4260 0.1925 5.5199
+#> 195: 94.6135 -0.2614 1.9622 2.1481 0.4264 0.1879 5.5750
+#> 196: 94.7574 -0.2324 2.0049 1.3351 0.4661 0.1738 5.6590
+#> 197: 94.8293 -0.2064 2.0452 1.6807 0.4904 0.1600 5.7639
+#> 198: 94.6372 -0.2157 2.0307 1.6350 0.5008 0.1524 5.6539
+#> 199: 94.5600 -0.2145 2.0318 1.5133 0.4982 0.1604 5.7178
+#> 200: 94.6945 -0.2100 2.0475 1.4526 0.5066 0.1649 5.6094
+#> 201: 94.5335 -0.2025 2.0594 1.3754 0.5066 0.1681 5.6560
+#> 202: 94.4663 -0.1992 2.0657 1.3622 0.5074 0.1665 5.6522
+#> 203: 94.4750 -0.1956 2.0762 1.3218 0.5051 0.1648 5.5985
+#> 204: 94.4206 -0.1916 2.0795 1.3219 0.5066 0.1593 5.5864
+#> 205: 94.4408 -0.1891 2.0816 1.2934 0.5089 0.1553 5.5967
+#> 206: 94.4631 -0.1863 2.0859 1.2768 0.5108 0.1522 5.6212
+#> 207: 94.4742 -0.1825 2.0912 1.3219 0.5122 0.1479 5.6704
+#> 208: 94.4802 -0.1789 2.0950 1.3488 0.5137 0.1450 5.7072
+#> 209: 94.4734 -0.1756 2.1019 1.3165 0.5155 0.1423 5.7458
+#> 210: 94.4589 -0.1742 2.1056 1.3379 0.5156 0.1409 5.7722
+#> 211: 94.4513 -0.1727 2.1083 1.3395 0.5192 0.1395 5.7707
+#> 212: 94.4422 -0.1718 2.1096 1.3506 0.5219 0.1384 5.7602
+#> 213: 94.4503 -0.1704 2.1112 1.3519 0.5233 0.1377 5.7705
+#> 214: 94.4387 -0.1688 2.1143 1.3620 0.5238 0.1374 5.7627
+#> 215: 94.4468 -0.1677 2.1171 1.3815 0.5236 0.1366 5.7552
+#> 216: 94.4314 -0.1671 2.1191 1.4034 0.5217 0.1362 5.7279
+#> 217: 94.4134 -0.1669 2.1206 1.4118 0.5197 0.1363 5.7109
+#> 218: 94.3896 -0.1665 2.1219 1.3959 0.5181 0.1381 5.6979
+#> 219: 94.3836 -0.1667 2.1226 1.3965 0.5160 0.1402 5.6829
+#> 220: 94.3740 -0.1674 2.1219 1.4130 0.5144 0.1419 5.6839
+#> 221: 94.3663 -0.1677 2.1216 1.4134 0.5131 0.1436 5.6717
+#> 222: 94.3498 -0.1683 2.1212 1.4170 0.5117 0.1453 5.6595
+#> 223: 94.3416 -0.1687 2.1219 1.4195 0.5105 0.1467 5.6587
+#> 224: 94.3412 -0.1687 2.1222 1.4245 0.5097 0.1474 5.6517
+#> 225: 94.3323 -0.1685 2.1235 1.4231 0.5093 0.1484 5.6419
+#> 226: 94.3228 -0.1686 2.1239 1.4167 0.5088 0.1493 5.6305
+#> 227: 94.3135 -0.1688 2.1241 1.4162 0.5084 0.1502 5.6197
+#> 228: 94.3088 -0.1686 2.1251 1.4170 0.5088 0.1515 5.6124
+#> 229: 94.2995 -0.1685 2.1257 1.4316 0.5092 0.1527 5.6079
+#> 230: 94.2864 -0.1690 2.1256 1.4492 0.5088 0.1534 5.6042
+#> 231: 94.2783 -0.1688 2.1260 1.4606 0.5085 0.1548 5.6037
+#> 232: 94.2725 -0.1687 2.1267 1.4571 0.5083 0.1557 5.6020
+#> 233: 94.2692 -0.1682 2.1279 1.4649 0.5076 0.1570 5.6027
+#> 234: 94.2697 -0.1678 2.1292 1.4540 0.5070 0.1584 5.5990
+#> 235: 94.2623 -0.1673 2.1302 1.4424 0.5064 0.1593 5.5919
+#> 236: 94.2610 -0.1667 2.1313 1.4255 0.5055 0.1599 5.5953
+#> 237: 94.2660 -0.1663 2.1322 1.4242 0.5053 0.1605 5.5922
+#> 238: 94.2753 -0.1666 2.1320 1.4370 0.5044 0.1611 5.5891
+#> 239: 94.2821 -0.1662 2.1326 1.4395 0.5036 0.1629 5.5864
+#> 240: 94.2886 -0.1661 2.1330 1.4375 0.5028 0.1644 5.5815
+#> 241: 94.2934 -0.1664 2.1329 1.4276 0.5020 0.1661 5.5777
+#> 242: 94.2963 -0.1664 2.1329 1.4247 0.5012 0.1677 5.5704
+#> 243: 94.2931 -0.1666 2.1328 1.4269 0.5008 0.1690 5.5631
+#> 244: 94.2919 -0.1667 2.1326 1.4279 0.5003 0.1701 5.5610
+#> 245: 94.2959 -0.1675 2.1316 1.4289 0.4993 0.1705 5.5524
+#> 246: 94.2992 -0.1683 2.1305 1.4378 0.4986 0.1706 5.5436
+#> 247: 94.2997 -0.1689 2.1296 1.4461 0.4977 0.1707 5.5383
+#> 248: 94.2978 -0.1693 2.1290 1.4430 0.4970 0.1714 5.5362
+#> 249: 94.2991 -0.1697 2.1285 1.4495 0.4963 0.1720 5.5379
+#> 250: 94.3068 -0.1702 2.1279 1.4556 0.4954 0.1723 5.5390
+#> 251: 94.3097 -0.1707 2.1272 1.4588 0.4936 0.1729 5.5342
+#> 252: 94.3104 -0.1711 2.1267 1.4582 0.4919 0.1739 5.5310
+#> 253: 94.3099 -0.1715 2.1262 1.4551 0.4903 0.1746 5.5279
+#> 254: 94.3110 -0.1721 2.1255 1.4592 0.4886 0.1758 5.5223
+#> 255: 94.3111 -0.1731 2.1236 1.4755 0.4878 0.1775 5.5175
+#> 256: 94.3096 -0.1735 2.1227 1.4971 0.4875 0.1784 5.5162
+#> 257: 94.3079 -0.1738 2.1222 1.5277 0.4874 0.1795 5.5132
+#> 258: 94.3103 -0.1741 2.1217 1.5521 0.4872 0.1806 5.5112
+#> 259: 94.3148 -0.1745 2.1212 1.5788 0.4868 0.1817 5.5066
+#> 260: 94.3170 -0.1750 2.1205 1.6038 0.4863 0.1832 5.5007
+#> 261: 94.3158 -0.1756 2.1197 1.6324 0.4857 0.1849 5.4968
+#> 262: 94.3141 -0.1763 2.1186 1.6503 0.4850 0.1866 5.4918
+#> 263: 94.3135 -0.1764 2.1184 1.6658 0.4849 0.1879 5.4910
+#> 264: 94.3121 -0.1767 2.1183 1.6841 0.4848 0.1893 5.4875
+#> 265: 94.3098 -0.1769 2.1184 1.7115 0.4847 0.1903 5.4832
+#> 266: 94.3087 -0.1768 2.1188 1.7162 0.4845 0.1911 5.4783
+#> 267: 94.3082 -0.1767 2.1191 1.7209 0.4842 0.1920 5.4735
+#> 268: 94.3094 -0.1764 2.1198 1.7314 0.4837 0.1926 5.4720
+#> 269: 94.3074 -0.1764 2.1199 1.7340 0.4831 0.1938 5.4718
+#> 270: 94.3025 -0.1764 2.1200 1.7440 0.4832 0.1949 5.4720
+#> 271: 94.3025 -0.1769 2.1194 1.7538 0.4829 0.1958 5.4748
+#> 272: 94.3039 -0.1772 2.1191 1.7664 0.4829 0.1966 5.4773
+#> 273: 94.3046 -0.1773 2.1192 1.7820 0.4826 0.1976 5.4754
+#> 274: 94.3051 -0.1774 2.1193 1.7895 0.4823 0.1988 5.4735
+#> 275: 94.3026 -0.1773 2.1193 1.7891 0.4819 0.1998 5.4749
+#> 276: 94.3034 -0.1771 2.1195 1.7875 0.4812 0.2010 5.4829
+#> 277: 94.3047 -0.1771 2.1197 1.7843 0.4805 0.2026 5.4878
+#> 278: 94.3067 -0.1771 2.1197 1.7747 0.4799 0.2039 5.4888
+#> 279: 94.3066 -0.1768 2.1202 1.7772 0.4795 0.2049 5.4889
+#> 280: 94.3035 -0.1768 2.1203 1.7797 0.4788 0.2062 5.4888
+#> 281: 94.2961 -0.1771 2.1203 1.7789 0.4782 0.2068 5.4874
+#> 282: 94.2893 -0.1772 2.1203 1.7797 0.4777 0.2072 5.4865
+#> 283: 94.2880 -0.1776 2.1198 1.7743 0.4772 0.2074 5.4856
+#> 284: 94.2897 -0.1779 2.1195 1.7717 0.4768 0.2076 5.4836
+#> 285: 94.2922 -0.1781 2.1194 1.7756 0.4765 0.2075 5.4818
+#> 286: 94.2964 -0.1783 2.1190 1.7759 0.4763 0.2074 5.4798
+#> 287: 94.2991 -0.1787 2.1181 1.7884 0.4761 0.2075 5.4769
+#> 288: 94.2980 -0.1793 2.1171 1.7901 0.4756 0.2077 5.4772
+#> 289: 94.2948 -0.1797 2.1166 1.7957 0.4752 0.2077 5.4763
+#> 290: 94.2922 -0.1801 2.1161 1.8012 0.4749 0.2074 5.4752
+#> 291: 94.2891 -0.1803 2.1157 1.8016 0.4747 0.2073 5.4743
+#> 292: 94.2890 -0.1805 2.1155 1.8012 0.4746 0.2072 5.4743
+#> 293: 94.2874 -0.1808 2.1152 1.8012 0.4743 0.2073 5.4743
+#> 294: 94.2841 -0.1811 2.1148 1.8003 0.4740 0.2075 5.4758
+#> 295: 94.2834 -0.1813 2.1143 1.7982 0.4743 0.2075 5.4766
+#> 296: 94.2817 -0.1816 2.1138 1.7997 0.4745 0.2074 5.4756
+#> 297: 94.2772 -0.1820 2.1131 1.8025 0.4747 0.2074 5.4778
+#> 298: 94.2759 -0.1822 2.1125 1.8097 0.4747 0.2073 5.4781
+#> 299: 94.2752 -0.1825 2.1120 1.8176 0.4748 0.2071 5.4784
+#> 300: 94.2758 -0.1828 2.1115 1.8353 0.4750 0.2069 5.4771
+#> 301: 94.2789 -0.1829 2.1113 1.8511 0.4749 0.2066 5.4767
+#> 302: 94.2808 -0.1833 2.1107 1.8541 0.4747 0.2065 5.4785
+#> 303: 94.2832 -0.1836 2.1103 1.8571 0.4745 0.2064 5.4789
+#> 304: 94.2838 -0.1840 2.1097 1.8584 0.4743 0.2064 5.4792
+#> 305: 94.2835 -0.1843 2.1090 1.8633 0.4741 0.2066 5.4790
+#> 306: 94.2868 -0.1847 2.1083 1.8633 0.4738 0.2069 5.4802
+#> 307: 94.2909 -0.1851 2.1076 1.8702 0.4737 0.2072 5.4787
+#> 308: 94.2916 -0.1857 2.1067 1.8754 0.4735 0.2075 5.4773
+#> 309: 94.2889 -0.1860 2.1062 1.8785 0.4732 0.2078 5.4774
+#> 310: 94.2875 -0.1863 2.1059 1.8854 0.4727 0.2082 5.4763
+#> 311: 94.2889 -0.1867 2.1053 1.8873 0.4722 0.2087 5.4746
+#> 312: 94.2889 -0.1870 2.1047 1.8956 0.4717 0.2090 5.4748
+#> 313: 94.2836 -0.1873 2.1044 1.8980 0.4711 0.2093 5.4721
+#> 314: 94.2801 -0.1876 2.1041 1.8924 0.4706 0.2096 5.4718
+#> 315: 94.2768 -0.1880 2.1038 1.8875 0.4701 0.2096 5.4727
+#> 316: 94.2766 -0.1883 2.1035 1.8854 0.4697 0.2097 5.4730
+#> 317: 94.2779 -0.1886 2.1030 1.8808 0.4693 0.2099 5.4725
+#> 318: 94.2806 -0.1889 2.1024 1.8789 0.4688 0.2101 5.4713
+#> 319: 94.2853 -0.1891 2.1018 1.8852 0.4684 0.2104 5.4690
+#> 320: 94.2867 -0.1894 2.1016 1.8898 0.4680 0.2106 5.4677
+#> 321: 94.2883 -0.1897 2.1013 1.8975 0.4676 0.2108 5.4656
+#> 322: 94.2864 -0.1899 2.1011 1.9078 0.4672 0.2109 5.4622
+#> 323: 94.2831 -0.1902 2.1009 1.9181 0.4668 0.2109 5.4593
+#> 324: 94.2799 -0.1904 2.1008 1.9355 0.4665 0.2109 5.4599
+#> 325: 94.2802 -0.1905 2.1007 1.9474 0.4660 0.2112 5.4608
+#> 326: 94.2808 -0.1907 2.1006 1.9656 0.4654 0.2114 5.4606
+#> 327: 94.2815 -0.1907 2.1006 1.9851 0.4649 0.2118 5.4596
+#> 328: 94.2805 -0.1908 2.1007 2.0051 0.4644 0.2120 5.4584
+#> 329: 94.2810 -0.1909 2.1004 2.0162 0.4638 0.2124 5.4566
+#> 330: 94.2812 -0.1912 2.0999 2.0210 0.4632 0.2131 5.4548
+#> 331: 94.2830 -0.1915 2.0994 2.0253 0.4625 0.2136 5.4520
+#> 332: 94.2835 -0.1920 2.0987 2.0288 0.4619 0.2142 5.4493
+#> 333: 94.2832 -0.1924 2.0981 2.0365 0.4615 0.2148 5.4463
+#> 334: 94.2845 -0.1928 2.0976 2.0433 0.4611 0.2153 5.4436
+#> 335: 94.2856 -0.1931 2.0971 2.0423 0.4607 0.2158 5.4405
+#> 336: 94.2886 -0.1936 2.0963 2.0400 0.4606 0.2165 5.4386
+#> 337: 94.2888 -0.1939 2.0957 2.0352 0.4604 0.2171 5.4376
+#> 338: 94.2879 -0.1944 2.0950 2.0360 0.4600 0.2179 5.4361
+#> 339: 94.2860 -0.1947 2.0946 2.0418 0.4599 0.2186 5.4342
+#> 340: 94.2842 -0.1951 2.0940 2.0455 0.4597 0.2192 5.4324
+#> 341: 94.2804 -0.1954 2.0934 2.0535 0.4596 0.2199 5.4310
+#> 342: 94.2772 -0.1958 2.0928 2.0586 0.4594 0.2204 5.4310
+#> 343: 94.2753 -0.1962 2.0921 2.0604 0.4592 0.2209 5.4304
+#> 344: 94.2749 -0.1965 2.0916 2.0591 0.4589 0.2214 5.4305
+#> 345: 94.2757 -0.1969 2.0911 2.0582 0.4586 0.2220 5.4302
+#> 346: 94.2774 -0.1972 2.0906 2.0554 0.4584 0.2225 5.4301
+#> 347: 94.2772 -0.1974 2.0901 2.0533 0.4583 0.2230 5.4298
+#> 348: 94.2769 -0.1977 2.0895 2.0497 0.4581 0.2235 5.4302
+#> 349: 94.2792 -0.1980 2.0890 2.0439 0.4579 0.2241 5.4327
+#> 350: 94.2825 -0.1983 2.0884 2.0391 0.4577 0.2245 5.4358
+#> 351: 94.2849 -0.1985 2.0879 2.0352 0.4576 0.2251 5.4399
+#> 352: 94.2871 -0.1988 2.0874 2.0396 0.4576 0.2257 5.4414
+#> 353: 94.2888 -0.1991 2.0869 2.0407 0.4573 0.2262 5.4417
+#> 354: 94.2914 -0.1994 2.0863 2.0383 0.4571 0.2268 5.4417
+#> 355: 94.2933 -0.1996 2.0859 2.0385 0.4570 0.2275 5.4418
+#> 356: 94.2932 -0.1999 2.0853 2.0377 0.4569 0.2284 5.4426
+#> 357: 94.2944 -0.2001 2.0850 2.0362 0.4566 0.2292 5.4423
+#> 358: 94.2948 -0.2003 2.0847 2.0415 0.4562 0.2299 5.4409
+#> 359: 94.2950 -0.2005 2.0843 2.0452 0.4558 0.2304 5.4393
+#> 360: 94.2967 -0.2008 2.0840 2.0514 0.4554 0.2307 5.4385
+#> 361: 94.2983 -0.2009 2.0839 2.0676 0.4551 0.2308 5.4386
+#> 362: 94.2992 -0.2009 2.0840 2.0770 0.4549 0.2307 5.4370
+#> 363: 94.2991 -0.2008 2.0841 2.0831 0.4550 0.2306 5.4348
+#> 364: 94.2982 -0.2007 2.0843 2.0892 0.4549 0.2304 5.4348
+#> 365: 94.2951 -0.2005 2.0847 2.1002 0.4551 0.2302 5.4347
+#> 366: 94.2938 -0.2004 2.0850 2.1176 0.4553 0.2300 5.4343
+#> 367: 94.2945 -0.2003 2.0850 2.1310 0.4553 0.2298 5.4346
+#> 368: 94.2956 -0.2003 2.0851 2.1436 0.4554 0.2295 5.4323
+#> 369: 94.2960 -0.2003 2.0850 2.1526 0.4555 0.2293 5.4309
+#> 370: 94.2964 -0.2003 2.0848 2.1577 0.4555 0.2292 5.4295
+#> 371: 94.2965 -0.2004 2.0847 2.1621 0.4555 0.2290 5.4278
+#> 372: 94.2972 -0.2004 2.0847 2.1635 0.4556 0.2285 5.4275
+#> 373: 94.2975 -0.2003 2.0848 2.1643 0.4556 0.2282 5.4275
+#> 374: 94.2985 -0.2004 2.0847 2.1648 0.4556 0.2277 5.4270
+#> 375: 94.3001 -0.2004 2.0846 2.1682 0.4555 0.2273 5.4255
+#> 376: 94.3024 -0.2005 2.0845 2.1692 0.4555 0.2268 5.4246
+#> 377: 94.3050 -0.2005 2.0843 2.1700 0.4555 0.2264 5.4239
+#> 378: 94.3041 -0.2005 2.0843 2.1680 0.4555 0.2258 5.4242
+#> 379: 94.3034 -0.2006 2.0842 2.1688 0.4554 0.2255 5.4233
+#> 380: 94.3027 -0.2007 2.0840 2.1754 0.4554 0.2250 5.4222
+#> 381: 94.3015 -0.2008 2.0839 2.1806 0.4553 0.2246 5.4205
+#> 382: 94.3006 -0.2009 2.0837 2.1812 0.4552 0.2242 5.4194
+#> 383: 94.3004 -0.2010 2.0835 2.1835 0.4551 0.2236 5.4178
+#> 384: 94.3001 -0.2011 2.0834 2.1895 0.4550 0.2232 5.4159
+#> 385: 94.3005 -0.2012 2.0834 2.1910 0.4547 0.2228 5.4148
+#> 386: 94.2993 -0.2013 2.0834 2.1926 0.4545 0.2224 5.4139
+#> 387: 94.2974 -0.2014 2.0834 2.1956 0.4543 0.2221 5.4135
+#> 388: 94.2964 -0.2014 2.0835 2.1979 0.4541 0.2218 5.4124
+#> 389: 94.2956 -0.2013 2.0837 2.1974 0.4540 0.2215 5.4117
+#> 390: 94.2962 -0.2013 2.0838 2.1995 0.4538 0.2213 5.4115
+#> 391: 94.2962 -0.2013 2.0838 2.1987 0.4537 0.2211 5.4116
+#> 392: 94.2956 -0.2013 2.0839 2.2007 0.4536 0.2209 5.4111
+#> 393: 94.2954 -0.2012 2.0839 2.2041 0.4535 0.2207 5.4106
+#> 394: 94.2953 -0.2012 2.0840 2.2033 0.4535 0.2205 5.4103
+#> 395: 94.2964 -0.2012 2.0841 2.2052 0.4533 0.2203 5.4098
+#> 396: 94.2950 -0.2012 2.0841 2.2123 0.4532 0.2202 5.4081
+#> 397: 94.2940 -0.2011 2.0843 2.2227 0.4533 0.2201 5.4070
+#> 398: 94.2938 -0.2011 2.0842 2.2283 0.4534 0.2201 5.4065
+#> 399: 94.2930 -0.2012 2.0842 2.2296 0.4535 0.2201 5.4066
+#> 400: 94.2931 -0.2011 2.0844 2.2345 0.4537 0.2199 5.4071
+#> 401: 94.2926 -0.2009 2.0846 2.2414 0.4539 0.2198 5.4067
+#> 402: 94.2916 -0.2008 2.0848 2.2478 0.4541 0.2196 5.4070
+#> 403: 94.2902 -0.2007 2.0849 2.2543 0.4544 0.2194 5.4071
+#> 404: 94.2895 -0.2007 2.0851 2.2578 0.4546 0.2192 5.4079
+#> 405: 94.2896 -0.2006 2.0853 2.2600 0.4548 0.2190 5.4082
+#> 406: 94.2897 -0.2004 2.0855 2.2636 0.4550 0.2188 5.4086
+#> 407: 94.2880 -0.2002 2.0859 2.2670 0.4554 0.2188 5.4079
+#> 408: 94.2883 -0.1999 2.0861 2.2735 0.4556 0.2189 5.4076
+#> 409: 94.2874 -0.1997 2.0865 2.2822 0.4559 0.2190 5.4073
+#> 410: 94.2861 -0.1995 2.0867 2.2861 0.4563 0.2190 5.4062
+#> 411: 94.2861 -0.1993 2.0869 2.2883 0.4566 0.2190 5.4049
+#> 412: 94.2869 -0.1991 2.0872 2.2926 0.4570 0.2190 5.4039
+#> 413: 94.2874 -0.1990 2.0873 2.2936 0.4574 0.2190 5.4031
+#> 414: 94.2881 -0.1988 2.0874 2.2972 0.4577 0.2189 5.4019
+#> 415: 94.2895 -0.1987 2.0876 2.2999 0.4580 0.2188 5.4004
+#> 416: 94.2900 -0.1985 2.0878 2.3003 0.4582 0.2186 5.3997
+#> 417: 94.2917 -0.1984 2.0880 2.2986 0.4583 0.2185 5.3993
+#> 418: 94.2937 -0.1982 2.0882 2.2986 0.4584 0.2183 5.3995
+#> 419: 94.2947 -0.1981 2.0885 2.2993 0.4584 0.2182 5.3995
+#> 420: 94.2954 -0.1979 2.0886 2.2993 0.4585 0.2180 5.3996
+#> 421: 94.2963 -0.1978 2.0888 2.3029 0.4587 0.2180 5.3992
+#> 422: 94.2982 -0.1976 2.0890 2.3074 0.4588 0.2178 5.4000
+#> 423: 94.3001 -0.1975 2.0891 2.3099 0.4589 0.2178 5.3999
+#> 424: 94.3007 -0.1974 2.0891 2.3106 0.4589 0.2177 5.4001
+#> 425: 94.3016 -0.1973 2.0893 2.3107 0.4589 0.2176 5.3997
+#> 426: 94.3021 -0.1972 2.0894 2.3119 0.4590 0.2175 5.3990
+#> 427: 94.3009 -0.1972 2.0894 2.3100 0.4590 0.2175 5.3971
+#> 428: 94.2998 -0.1972 2.0895 2.3070 0.4590 0.2175 5.3966
+#> 429: 94.2988 -0.1973 2.0895 2.3033 0.4590 0.2175 5.3958
+#> 430: 94.2968 -0.1973 2.0895 2.3028 0.4590 0.2174 5.3955
+#> 431: 94.2950 -0.1973 2.0895 2.3004 0.4589 0.2174 5.3954
+#> 432: 94.2944 -0.1973 2.0896 2.2966 0.4589 0.2174 5.3956
+#> 433: 94.2950 -0.1972 2.0897 2.2942 0.4589 0.2176 5.3959
+#> 434: 94.2949 -0.1972 2.0898 2.2911 0.4589 0.2177 5.3955
+#> 435: 94.2943 -0.1971 2.0900 2.2914 0.4588 0.2179 5.3943
+#> 436: 94.2943 -0.1970 2.0902 2.2895 0.4586 0.2180 5.3948
+#> 437: 94.2955 -0.1970 2.0903 2.2890 0.4585 0.2181 5.3954
+#> 438: 94.2961 -0.1969 2.0905 2.2918 0.4584 0.2183 5.3958
+#> 439: 94.2954 -0.1968 2.0906 2.2943 0.4583 0.2185 5.3953
+#> 440: 94.2944 -0.1968 2.0906 2.2977 0.4581 0.2187 5.3949
+#> 441: 94.2931 -0.1968 2.0907 2.2991 0.4578 0.2188 5.3952
+#> 442: 94.2926 -0.1968 2.0908 2.2990 0.4575 0.2188 5.3951
+#> 443: 94.2922 -0.1968 2.0909 2.2990 0.4573 0.2188 5.3938
+#> 444: 94.2917 -0.1969 2.0909 2.2995 0.4571 0.2188 5.3927
+#> 445: 94.2901 -0.1969 2.0910 2.3067 0.4568 0.2187 5.3911
+#> 446: 94.2898 -0.1969 2.0910 2.3082 0.4566 0.2187 5.3891
+#> 447: 94.2897 -0.1969 2.0910 2.3121 0.4564 0.2187 5.3871
+#> 448: 94.2883 -0.1970 2.0911 2.3180 0.4562 0.2188 5.3858
+#> 449: 94.2879 -0.1970 2.0912 2.3210 0.4561 0.2188 5.3851
+#> 450: 94.2874 -0.1970 2.0914 2.3243 0.4559 0.2188 5.3841
+#> 451: 94.2873 -0.1969 2.0915 2.3247 0.4557 0.2188 5.3834
+#> 452: 94.2873 -0.1969 2.0917 2.3249 0.4555 0.2187 5.3839
+#> 453: 94.2868 -0.1968 2.0920 2.3257 0.4554 0.2187 5.3831
+#> 454: 94.2857 -0.1967 2.0922 2.3240 0.4552 0.2187 5.3824
+#> 455: 94.2848 -0.1965 2.0925 2.3214 0.4551 0.2186 5.3822
+#> 456: 94.2838 -0.1964 2.0929 2.3204 0.4550 0.2185 5.3822
+#> 457: 94.2831 -0.1962 2.0932 2.3202 0.4549 0.2184 5.3819
+#> 458: 94.2831 -0.1961 2.0935 2.3174 0.4548 0.2183 5.3810
+#> 459: 94.2829 -0.1960 2.0938 2.3183 0.4546 0.2183 5.3807
+#> 460: 94.2818 -0.1958 2.0941 2.3213 0.4545 0.2183 5.3802
+#> 461: 94.2812 -0.1956 2.0945 2.3292 0.4544 0.2182 5.3785
+#> 462: 94.2813 -0.1955 2.0948 2.3328 0.4544 0.2182 5.3778
+#> 463: 94.2816 -0.1953 2.0951 2.3364 0.4543 0.2181 5.3770
+#> 464: 94.2810 -0.1952 2.0954 2.3365 0.4542 0.2180 5.3764
+#> 465: 94.2797 -0.1950 2.0957 2.3341 0.4541 0.2179 5.3756
+#> 466: 94.2777 -0.1949 2.0960 2.3368 0.4541 0.2178 5.3750
+#> 467: 94.2755 -0.1949 2.0962 2.3417 0.4539 0.2178 5.3738
+#> 468: 94.2741 -0.1948 2.0965 2.3426 0.4537 0.2177 5.3731
+#> 469: 94.2735 -0.1947 2.0967 2.3410 0.4535 0.2175 5.3729
+#> 470: 94.2731 -0.1946 2.0970 2.3440 0.4534 0.2173 5.3733
+#> 471: 94.2727 -0.1945 2.0972 2.3505 0.4533 0.2171 5.3724
+#> 472: 94.2734 -0.1944 2.0973 2.3550 0.4533 0.2169 5.3719
+#> 473: 94.2745 -0.1944 2.0974 2.3593 0.4533 0.2167 5.3715
+#> 474: 94.2746 -0.1944 2.0975 2.3622 0.4533 0.2166 5.3708
+#> 475: 94.2753 -0.1943 2.0975 2.3673 0.4533 0.2165 5.3701
+#> 476: 94.2760 -0.1943 2.0976 2.3745 0.4534 0.2166 5.3698
+#> 477: 94.2771 -0.1942 2.0978 2.3812 0.4535 0.2166 5.3695
+#> 478: 94.2767 -0.1941 2.0981 2.3891 0.4535 0.2166 5.3691
+#> 479: 94.2762 -0.1940 2.0984 2.3931 0.4534 0.2166 5.3691
+#> 480: 94.2754 -0.1939 2.0986 2.3958 0.4533 0.2166 5.3685
+#> 481: 94.2743 -0.1938 2.0987 2.3990 0.4532 0.2165 5.3677
+#> 482: 94.2733 -0.1937 2.0988 2.3996 0.4531 0.2164 5.3670
+#> 483: 94.2724 -0.1937 2.0989 2.4031 0.4531 0.2163 5.3659
+#> 484: 94.2726 -0.1937 2.0989 2.4035 0.4530 0.2162 5.3651
+#> 485: 94.2722 -0.1937 2.0989 2.4033 0.4530 0.2162 5.3649
+#> 486: 94.2716 -0.1936 2.0991 2.4046 0.4529 0.2163 5.3645
+#> 487: 94.2710 -0.1936 2.0992 2.4078 0.4527 0.2165 5.3643
+#> 488: 94.2693 -0.1936 2.0992 2.4088 0.4525 0.2167 5.3653
+#> 489: 94.2689 -0.1936 2.0993 2.4116 0.4523 0.2170 5.3645
+#> 490: 94.2686 -0.1936 2.0993 2.4105 0.4520 0.2172 5.3644
+#> 491: 94.2685 -0.1935 2.0994 2.4097 0.4518 0.2174 5.3651
+#> 492: 94.2677 -0.1935 2.0995 2.4103 0.4517 0.2175 5.3657
+#> 493: 94.2670 -0.1935 2.0996 2.4112 0.4515 0.2177 5.3661
+#> 494: 94.2668 -0.1935 2.0996 2.4140 0.4514 0.2178 5.3662
+#> 495: 94.2667 -0.1936 2.0996 2.4157 0.4513 0.2179 5.3660
+#> 496: 94.2670 -0.1936 2.0996 2.4163 0.4511 0.2180 5.3668
+#> 497: 94.2664 -0.1936 2.0996 2.4170 0.4510 0.2181 5.3676
+#> 498: 94.2654 -0.1937 2.0996 2.4128 0.4509 0.2181 5.3683
+#> 499: 94.2643 -0.1937 2.0996 2.4109 0.4508 0.2181 5.3679
+#> 500: 94.2635 -0.1938 2.0995 2.4122 0.4508 0.2181 5.3682#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Calculating residuals/tables#> done#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 | log_alpha | log_beta | sigma |
+#> |.....................| o1 | o2 | o3 |...........|
+#> | 1| 296.31831 | 1.000 | -1.000 | -0.9520 | -0.9547 |
+#> |.....................| -0.9791 | -0.9725 | -0.9706 |...........|
+#> | U| 296.31831 | 94.44 | -0.2226 | 2.048 | 1.920 |
+#> |.....................| 0.7656 | 1.078 | 1.168 |...........|
+#> | X| 296.31831 | 94.44 | 0.8004 | 7.754 | 1.920 |
+#> |.....................| 0.7656 | 1.078 | 1.168 |...........|
+#> | G| Gill Diff. | 9.126 | 0.009097 | -0.01177 | -32.33 |
+#> |.....................| 6.099 | -8.436 | -11.35 |...........|
+#> | 2| 594.25462 | 0.7531 | -1.000 | -0.9517 | -0.07988 |
+#> |.....................| -1.144 | -0.7442 | -0.6636 |...........|
+#> | U| 594.25462 | 71.12 | -0.2229 | 2.049 | 2.760 |
+#> |.....................| 0.6392 | 1.324 | 1.526 |...........|
+#> | X| 594.25462 | 71.12 | 0.8002 | 7.756 | 2.760 |
+#> |.....................| 0.6392 | 1.324 | 1.526 |...........|
+#> | 3| 298.71818 | 0.9753 | -1.000 | -0.9520 | -0.8672 |
+#> |.....................| -0.9956 | -0.9497 | -0.9399 |...........|
+#> | U| 298.71818 | 92.11 | -0.2226 | 2.048 | 2.004 |
+#> |.....................| 0.7529 | 1.103 | 1.204 |...........|
+#> | X| 298.71818 | 92.11 | 0.8004 | 7.754 | 2.004 |
+#> |.....................| 0.7529 | 1.103 | 1.204 |...........|
+#> | 4| 295.79061 | 0.9925 | -1.000 | -0.9520 | -0.9282 |
+#> |.....................| -0.9841 | -0.9656 | -0.9613 |...........|
+#> | U| 295.79061 | 93.73 | -0.2226 | 2.048 | 1.945 |
+#> |.....................| 0.7617 | 1.086 | 1.179 |...........|
+#> | X| 295.79061 | 93.73 | 0.8004 | 7.754 | 1.945 |
+#> |.....................| 0.7617 | 1.086 | 1.179 |...........|
+#> | F| Forward Diff. | -134.6 | -0.07715 | -0.3541 | -29.37 |
+#> |.....................| 6.863 | -7.752 | -10.79 |...........|
+#> | 5| 294.44078 | 1.001 | -1.000 | -0.9520 | -0.9020 |
+#> |.....................| -0.9892 | -0.9588 | -0.9521 |...........|
+#> | U| 294.44078 | 94.55 | -0.2226 | 2.048 | 1.970 |
+#> |.....................| 0.7578 | 1.093 | 1.189 |...........|
+#> | X| 294.44078 | 94.55 | 0.8004 | 7.754 | 1.970 |
+#> |.....................| 0.7578 | 1.093 | 1.189 |...........|
+#> | F| Forward Diff. | 30.39 | 0.01643 | 0.02646 | -26.06 |
+#> |.....................| 5.336 | -7.397 | -10.44 |...........|
+#> | 6| 293.62741 | 0.9971 | -1.000 | -0.9519 | -0.8750 |
+#> |.....................| -0.9945 | -0.9516 | -0.9423 |...........|
+#> | U| 293.62741 | 94.17 | -0.2226 | 2.048 | 1.996 |
+#> |.....................| 0.7538 | 1.101 | 1.201 |...........|
+#> | X| 293.62741 | 94.17 | 0.8004 | 7.754 | 1.996 |
+#> |.....................| 0.7538 | 1.101 | 1.201 |...........|
+#> | 7| 292.50099 | 0.9961 | -1.000 | -0.9519 | -0.8316 |
+#> |.....................| -1.003 | -0.9401 | -0.9267 |...........|
+#> | U| 292.50099 | 94.07 | -0.2226 | 2.048 | 2.038 |
+#> |.....................| 0.7474 | 1.113 | 1.219 |...........|
+#> | X| 292.50099 | 94.07 | 0.8004 | 7.755 | 2.038 |
+#> |.....................| 0.7474 | 1.113 | 1.219 |...........|
+#> | 8| 290.76125 | 0.9939 | -1.000 | -0.9518 | -0.7361 |
+#> |.....................| -1.021 | -0.9149 | -0.8925 |...........|
+#> | U| 290.76125 | 93.87 | -0.2226 | 2.048 | 2.130 |
+#> |.....................| 0.7332 | 1.140 | 1.259 |...........|
+#> | X| 290.76125 | 93.87 | 0.8004 | 7.756 | 2.130 |
+#> |.....................| 0.7332 | 1.140 | 1.259 |...........|
+#> | F| Forward Diff. | -91.20 | -0.08176 | -0.4010 | -10.74 |
+#> |.....................| 3.658 | -4.872 | -7.770 |...........|
+#> | 9| 293.40175 | 1.024 | -0.9990 | -0.9455 | -0.7012 |
+#> |.....................| -1.060 | -0.8302 | -0.7398 |...........|
+#> | U| 293.40175 | 96.67 | -0.2216 | 2.055 | 2.163 |
+#> |.....................| 0.7035 | 1.231 | 1.437 |...........|
+#> | X| 293.40175 | 96.67 | 0.8012 | 7.804 | 2.163 |
+#> |.....................| 0.7035 | 1.231 | 1.437 |...........|
+#> | 10| 292.85583 | 1.019 | -0.9997 | -0.9499 | -0.7242 |
+#> |.....................| -1.033 | -0.8898 | -0.8474 |...........|
+#> | U| 292.85583 | 96.21 | -0.2223 | 2.050 | 2.141 |
+#> |.....................| 0.7242 | 1.167 | 1.312 |...........|
+#> | X| 292.85583 | 96.21 | 0.8007 | 7.770 | 2.141 |
+#> |.....................| 0.7242 | 1.167 | 1.312 |...........|
+#> | 11| 291.55187 | 1.011 | -1.000 | -0.9517 | -0.7341 |
+#> |.....................| -1.022 | -0.9140 | -0.8910 |...........|
+#> | U| 291.55187 | 95.48 | -0.2226 | 2.048 | 2.132 |
+#> |.....................| 0.7326 | 1.141 | 1.261 |...........|
+#> | X| 291.55187 | 95.48 | 0.8004 | 7.756 | 2.132 |
+#> |.....................| 0.7326 | 1.141 | 1.261 |...........|
+#> | 12| 290.49268 | 0.9997 | -1.000 | -0.9518 | -0.7354 |
+#> |.....................| -1.022 | -0.9146 | -0.8920 |...........|
+#> | U| 290.49268 | 94.41 | -0.2226 | 2.048 | 2.130 |
+#> |.....................| 0.7330 | 1.141 | 1.259 |...........|
+#> | X| 290.49268 | 94.41 | 0.8004 | 7.756 | 2.130 |
+#> |.....................| 0.7330 | 1.141 | 1.259 |...........|
+#> | F| Forward Diff. | 2.619 | -0.007793 | -0.07320 | -10.57 |
+#> |.....................| 3.077 | -4.876 | -7.795 |...........|
+#> | 13| 290.41825 | 0.9986 | -1.000 | -0.9517 | -0.7312 |
+#> |.....................| -1.023 | -0.9126 | -0.8889 |...........|
+#> | U| 290.41825 | 94.31 | -0.2226 | 2.048 | 2.134 |
+#> |.....................| 0.7321 | 1.143 | 1.263 |...........|
+#> | X| 290.41825 | 94.31 | 0.8004 | 7.756 | 2.134 |
+#> |.....................| 0.7321 | 1.143 | 1.263 |...........|
+#> | 14| 290.31205 | 0.9955 | -1.000 | -0.9517 | -0.7186 |
+#> |.....................| -1.027 | -0.9068 | -0.8796 |...........|
+#> | U| 290.31205 | 94.01 | -0.2226 | 2.049 | 2.146 |
+#> |.....................| 0.7292 | 1.149 | 1.274 |...........|
+#> | X| 290.31205 | 94.01 | 0.8004 | 7.757 | 2.146 |
+#> |.....................| 0.7292 | 1.149 | 1.274 |...........|
+#> | F| Forward Diff. | -64.45 | -0.06351 | -0.3251 | -9.485 |
+#> |.....................| 2.861 | -4.414 | -7.225 |...........|
+#> | 15| 290.00198 | 1.000 | -0.9999 | -0.9510 | -0.7191 |
+#> |.....................| -1.030 | -0.8965 | -0.8595 |...........|
+#> | U| 290.00198 | 94.46 | -0.2225 | 2.049 | 2.146 |
+#> |.....................| 0.7268 | 1.160 | 1.297 |...........|
+#> | X| 290.00198 | 94.46 | 0.8005 | 7.762 | 2.146 |
+#> |.....................| 0.7268 | 1.160 | 1.297 |...........|
+#> | F| Forward Diff. | 11.27 | -0.003123 | -0.03408 | -9.156 |
+#> |.....................| 2.235 | -3.823 | -6.423 |...........|
+#> | 16| 289.83558 | 0.9983 | -0.9998 | -0.9502 | -0.7180 |
+#> |.....................| -1.031 | -0.8872 | -0.8384 |...........|
+#> | U| 289.83558 | 94.28 | -0.2224 | 2.050 | 2.147 |
+#> |.....................| 0.7259 | 1.170 | 1.322 |...........|
+#> | X| 289.83558 | 94.28 | 0.8006 | 7.768 | 2.147 |
+#> |.....................| 0.7259 | 1.170 | 1.322 |...........|
+#> | 17| 289.63307 | 0.9979 | -0.9995 | -0.9489 | -0.7184 |
+#> |.....................| -1.032 | -0.8720 | -0.8037 |...........|
+#> | U| 289.63307 | 94.24 | -0.2221 | 2.051 | 2.147 |
+#> |.....................| 0.7248 | 1.186 | 1.363 |...........|
+#> | X| 289.63307 | 94.24 | 0.8008 | 7.778 | 2.147 |
+#> |.....................| 0.7248 | 1.186 | 1.363 |...........|
+#> | 18| 289.44450 | 0.9972 | -0.9991 | -0.9468 | -0.7190 |
+#> |.....................| -1.035 | -0.8473 | -0.7469 |...........|
+#> | U| 289.4445 | 94.18 | -0.2217 | 2.053 | 2.146 |
+#> |.....................| 0.7231 | 1.213 | 1.429 |...........|
+#> | X| 289.4445 | 94.18 | 0.8011 | 7.794 | 2.146 |
+#> |.....................| 0.7231 | 1.213 | 1.429 |...........|
+#> | F| Forward Diff. | -36.76 | -0.05208 | -0.1861 | -9.057 |
+#> |.....................| 2.429 | -0.6853 | -1.924 |...........|
+#> | 19| 288.93351 | 0.9984 | -0.9961 | -0.9370 | -0.6306 |
+#> |.....................| -1.080 | -0.9120 | -0.7149 |...........|
+#> | U| 288.93351 | 94.29 | -0.2187 | 2.063 | 2.231 |
+#> |.....................| 0.6885 | 1.143 | 1.466 |...........|
+#> | X| 288.93351 | 94.29 | 0.8035 | 7.871 | 2.231 |
+#> |.....................| 0.6885 | 1.143 | 1.466 |...........|
+#> | F| Forward Diff. | -14.48 | -0.02726 | 0.2181 | -3.062 |
+#> |.....................| -0.1976 | -4.306 | -0.8806 |...........|
+#> | 20| 288.85238 | 1.002 | -0.9934 | -0.9444 | -0.5654 |
+#> |.....................| -1.062 | -0.8288 | -0.7747 |...........|
+#> | U| 288.85238 | 94.67 | -0.2160 | 2.056 | 2.293 |
+#> |.....................| 0.7024 | 1.233 | 1.396 |...........|
+#> | X| 288.85238 | 94.67 | 0.8057 | 7.813 | 2.293 |
+#> |.....................| 0.7024 | 1.233 | 1.396 |...........|
+#> | F| Forward Diff. | 40.49 | 0.1537 | 0.2940 | 0.6524 |
+#> |.....................| 0.4942 | 0.3489 | -3.099 |...........|
+#> | 21| 289.09335 | 0.9960 | -1.025 | -1.050 | -0.5645 |
+#> |.....................| -1.111 | -0.8117 | -0.7552 |...........|
+#> | U| 289.09335 | 94.07 | -0.2476 | 1.951 | 2.294 |
+#> |.....................| 0.6648 | 1.251 | 1.419 |...........|
+#> | X| 289.09335 | 94.07 | 0.7806 | 7.034 | 2.294 |
+#> |.....................| 0.6648 | 1.251 | 1.419 |...........|
+#> | 22| 288.97418 | 0.9945 | -1.003 | -0.9755 | -0.5652 |
+#> |.....................| -1.076 | -0.8238 | -0.7685 |...........|
+#> | U| 288.97418 | 93.92 | -0.2254 | 2.025 | 2.294 |
+#> |.....................| 0.6912 | 1.238 | 1.404 |...........|
+#> | X| 288.97418 | 93.92 | 0.7982 | 7.574 | 2.294 |
+#> |.....................| 0.6912 | 1.238 | 1.404 |...........|
+#> | 23| 288.99640 | 0.9941 | -0.9963 | -0.9538 | -0.5655 |
+#> |.....................| -1.066 | -0.8273 | -0.7723 |...........|
+#> | U| 288.9964 | 93.88 | -0.2189 | 2.046 | 2.293 |
+#> |.....................| 0.6990 | 1.235 | 1.399 |...........|
+#> | X| 288.9964 | 93.88 | 0.8034 | 7.740 | 2.293 |
+#> |.....................| 0.6990 | 1.235 | 1.399 |...........|
+#> | 24| 288.82158 | 0.9975 | -0.9934 | -0.9445 | -0.5655 |
+#> |.....................| -1.062 | -0.8288 | -0.7743 |...........|
+#> | U| 288.82158 | 94.20 | -0.2160 | 2.056 | 2.293 |
+#> |.....................| 0.7023 | 1.233 | 1.397 |...........|
+#> | X| 288.82158 | 94.20 | 0.8057 | 7.813 | 2.293 |
+#> |.....................| 0.7023 | 1.233 | 1.397 |...........|
+#> | F| Forward Diff. | -27.98 | 0.07663 | -0.09902 | 0.6250 |
+#> |.....................| 0.3387 | 0.3777 | -3.049 |...........|
+#> | 25| 288.78525 | 0.9995 | -0.9943 | -0.9465 | -0.5657 |
+#> |.....................| -1.059 | -0.8303 | -0.7716 |...........|
+#> | U| 288.78525 | 94.39 | -0.2169 | 2.054 | 2.293 |
+#> |.....................| 0.7042 | 1.231 | 1.400 |...........|
+#> | X| 288.78525 | 94.39 | 0.8050 | 7.797 | 2.293 |
+#> |.....................| 0.7042 | 1.231 | 1.400 |...........|
+#> | F| Forward Diff. | -0.7037 | 0.08814 | -0.009566 | 0.5597 |
+#> |.....................| 0.2999 | 0.2778 | -2.968 |...........|
+#> | 26| 288.77680 | 1.000 | -0.9946 | -0.9467 | -0.5664 |
+#> |.....................| -1.059 | -0.8311 | -0.7670 |...........|
+#> | U| 288.7768 | 94.48 | -0.2172 | 2.053 | 2.292 |
+#> |.....................| 0.7047 | 1.231 | 1.405 |...........|
+#> | X| 288.7768 | 94.48 | 0.8048 | 7.795 | 2.292 |
+#> |.....................| 0.7047 | 1.231 | 1.405 |...........|
+#> | F| Forward Diff. | 12.46 | 0.09472 | 0.05753 | 0.4960 |
+#> |.....................| 0.3156 | 0.2411 | -2.796 |...........|
+#> | 27| 288.76499 | 0.9995 | -0.9954 | -0.9482 | -0.5665 |
+#> |.....................| -1.055 | -0.8326 | -0.7642 |...........|
+#> | U| 288.76499 | 94.39 | -0.2180 | 2.052 | 2.292 |
+#> |.....................| 0.7071 | 1.229 | 1.409 |...........|
+#> | X| 288.76499 | 94.39 | 0.8042 | 7.783 | 2.292 |
+#> |.....................| 0.7071 | 1.229 | 1.409 |...........|
+#> | F| Forward Diff. | -0.8358 | 0.06465 | -0.06858 | 0.5747 |
+#> |.....................| 0.6430 | 0.1630 | -2.683 |...........|
+#> | 28| 288.75697 | 1.000 | -0.9957 | -0.9484 | -0.5681 |
+#> |.....................| -1.059 | -0.8325 | -0.7609 |...........|
+#> | U| 288.75697 | 94.45 | -0.2183 | 2.052 | 2.291 |
+#> |.....................| 0.7046 | 1.229 | 1.413 |...........|
+#> | X| 288.75697 | 94.45 | 0.8039 | 7.782 | 2.291 |
+#> |.....................| 0.7046 | 1.229 | 1.413 |...........|
+#> | F| Forward Diff. | 8.673 | 0.06496 | -0.02049 | 0.4885 |
+#> |.....................| 0.5066 | 0.1747 | -2.560 |...........|
+#> | 29| 288.75050 | 0.9994 | -0.9958 | -0.9480 | -0.5696 |
+#> |.....................| -1.063 | -0.8317 | -0.7600 |...........|
+#> | U| 288.7505 | 94.38 | -0.2184 | 2.052 | 2.289 |
+#> |.....................| 0.7012 | 1.230 | 1.414 |...........|
+#> | X| 288.7505 | 94.38 | 0.8038 | 7.785 | 2.289 |
+#> |.....................| 0.7012 | 1.230 | 1.414 |...........|
+#> | F| Forward Diff. | -2.463 | 0.04955 | -0.07455 | 0.3979 |
+#> |.....................| 0.1788 | 0.2263 | -2.511 |...........|
+#> | 30| 288.74110 | 0.9997 | -0.9954 | -0.9459 | -0.5705 |
+#> |.....................| -1.061 | -0.8331 | -0.7562 |...........|
+#> | U| 288.7411 | 94.41 | -0.2180 | 2.054 | 2.289 |
+#> |.....................| 0.7025 | 1.228 | 1.418 |...........|
+#> | X| 288.7411 | 94.41 | 0.8041 | 7.801 | 2.289 |
+#> |.....................| 0.7025 | 1.228 | 1.418 |...........|
+#> | 31| 288.72064 | 0.9993 | -0.9939 | -0.9392 | -0.5730 |
+#> |.....................| -1.056 | -0.8374 | -0.7455 |...........|
+#> | U| 288.72064 | 94.37 | -0.2166 | 2.061 | 2.286 |
+#> |.....................| 0.7068 | 1.224 | 1.431 |...........|
+#> | X| 288.72064 | 94.37 | 0.8053 | 7.854 | 2.286 |
+#> |.....................| 0.7068 | 1.224 | 1.431 |...........|
+#> | 32| 288.70690 | 0.9989 | -0.9915 | -0.9277 | -0.5774 |
+#> |.....................| -1.046 | -0.8449 | -0.7267 |...........|
+#> | U| 288.7069 | 94.33 | -0.2141 | 2.072 | 2.282 |
+#> |.....................| 0.7141 | 1.216 | 1.453 |...........|
+#> | X| 288.7069 | 94.33 | 0.8073 | 7.944 | 2.282 |
+#> |.....................| 0.7141 | 1.216 | 1.453 |...........|
+#> | F| Forward Diff. | -8.246 | 0.08782 | 0.6230 | -0.2261 |
+#> |.....................| 0.9054 | -0.5290 | -1.268 |...........|
+#> | 33| 288.68146 | 1.000 | -0.9932 | -0.9567 | -0.5899 |
+#> |.....................| -1.067 | -0.8479 | -0.7019 |...........|
+#> | U| 288.68146 | 94.46 | -0.2158 | 2.043 | 2.270 |
+#> |.....................| 0.6982 | 1.212 | 1.481 |...........|
+#> | X| 288.68146 | 94.46 | 0.8059 | 7.717 | 2.270 |
+#> |.....................| 0.6982 | 1.212 | 1.481 |...........|
+#> | F| Forward Diff. | 8.603 | 0.1068 | -0.4021 | -0.6499 |
+#> |.....................| 0.1745 | -0.5873 | -0.4459 |...........|
+#> | 34| 288.70236 | 1.001 | -1.018 | -0.9264 | -0.5930 |
+#> |.....................| -1.088 | -0.8392 | -0.6985 |...........|
+#> | U| 288.70236 | 94.50 | -0.2403 | 2.074 | 2.267 |
+#> |.....................| 0.6822 | 1.222 | 1.485 |...........|
+#> | X| 288.70236 | 94.50 | 0.7864 | 7.955 | 2.267 |
+#> |.....................| 0.6822 | 1.222 | 1.485 |...........|
+#> | 35| 288.67546 | 0.9997 | -0.9992 | -0.9493 | -0.5906 |
+#> |.....................| -1.072 | -0.8457 | -0.7010 |...........|
+#> | U| 288.67546 | 94.41 | -0.2218 | 2.051 | 2.269 |
+#> |.....................| 0.6943 | 1.215 | 1.482 |...........|
+#> | X| 288.67546 | 94.41 | 0.8011 | 7.775 | 2.269 |
+#> |.....................| 0.6943 | 1.215 | 1.482 |...........|
+#> | F| Forward Diff. | 1.309 | -0.03968 | -0.1448 | -0.6596 |
+#> |.....................| 0.05856 | -0.4617 | -0.3123 |...........|
+#> | 36| 288.67323 | 0.9995 | -0.9891 | -0.9462 | -0.5890 |
+#> |.....................| -1.074 | -0.8436 | -0.6999 |...........|
+#> | U| 288.67323 | 94.40 | -0.2117 | 2.054 | 2.271 |
+#> |.....................| 0.6929 | 1.217 | 1.484 |...........|
+#> | X| 288.67323 | 94.40 | 0.8092 | 7.800 | 2.271 |
+#> |.....................| 0.6929 | 1.217 | 1.484 |...........|
+#> | F| Forward Diff. | -0.3529 | 0.1695 | -0.04594 | -0.6688 |
+#> |.....................| -0.2932 | -0.3576 | -0.2566 |...........|
+#> | 37| 288.67323 | 0.9995 | -0.9891 | -0.9462 | -0.5890 |
+#> |.....................| -1.074 | -0.8436 | -0.6999 |...........|
+#> | U| 288.67323 | 94.40 | -0.2117 | 2.054 | 2.271 |
+#> |.....................| 0.6929 | 1.217 | 1.484 |...........|
+#> | X| 288.67323 | 94.40 | 0.8092 | 7.800 | 2.271 |
+#> |.....................| 0.6929 | 1.217 | 1.484 |...........|
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> 1: 93.2375 -1.6690 -4.0126 0.0336 3.3441 0.9789 2.1220 0.5342 18.1447
+#> 2: 92.9778 -1.6369 -3.9297 0.0067 3.1769 1.2515 2.0460 0.5166 11.1022
+#> 3: 92.9382 -1.6747 -3.9496 -0.0050 3.0181 1.1889 1.9437 0.4908 9.5980
+#> 4: 93.4481 -1.8083 -3.9734 -0.0250 2.8672 1.1295 1.8797 0.4662 8.6240
+#> 5: 93.4584 -1.8288 -4.0221 0.0414 2.7238 1.0730 1.8467 0.5161 8.1404
+#> 6: 93.7533 -1.8675 -4.0215 0.0158 2.5876 1.0194 1.8017 0.4911 7.5848
+#> 7: 93.6006 -1.8542 -4.0241 -0.0026 2.4582 0.9684 1.7860 0.4916 7.0796
+#> 8: 93.6918 -1.8416 -3.9940 0.0121 2.3353 0.9200 1.7061 0.4681 6.9985
+#> 9: 93.4789 -1.8738 -3.9845 0.0318 3.1307 0.8740 1.7845 0.4553 6.8335
+#> 10: 93.6048 -1.8723 -4.0154 0.0112 3.1962 0.8303 1.7434 0.4325 7.0681
+#> 11: 93.5135 -1.8675 -3.9905 0.0295 3.2177 0.7888 1.6910 0.4619 6.9572
+#> 12: 93.4407 -1.8790 -3.9877 0.0509 3.4194 0.7493 1.6324 0.5060 6.5755
+#> 13: 93.5033 -1.9250 -4.0416 0.0734 3.2485 0.7295 1.7369 0.4807 6.3881
+#> 14: 93.4276 -1.9082 -4.0516 0.0558 3.0860 0.7281 1.7241 0.4567 5.9840
+#> 15: 93.3041 -1.9256 -4.0718 0.0854 3.4389 0.7293 1.7446 0.4524 5.8195
+#> 16: 93.2979 -1.9297 -4.0624 0.0730 3.2670 0.7239 1.7476 0.4298 5.7629
+#> 17: 93.3522 -1.9570 -4.0876 0.1304 3.3053 0.7020 1.7402 0.4083 5.6926
+#> 18: 93.3500 -1.9652 -4.0816 0.1350 3.1400 0.7130 1.7217 0.3879 5.5714
+#> 19: 93.3822 -1.9519 -4.0961 0.1322 2.9830 0.7087 1.7228 0.3745 5.4176
+#> 20: 93.2823 -1.9490 -4.0841 0.1238 2.8339 0.6988 1.7659 0.3753 5.5279
+#> 21: 93.5951 -1.9298 -4.0874 0.1345 2.6922 0.6665 1.7724 0.3645 5.4414
+#> 22: 93.5052 -1.9469 -4.0739 0.1260 3.1244 0.6776 1.7629 0.3618 5.5395
+#> 23: 93.4734 -1.9952 -4.0909 0.1472 3.0340 0.7225 1.8104 0.3437 5.5072
+#> 24: 93.8816 -1.9639 -4.0914 0.1511 2.8824 0.7215 1.8586 0.3324 5.6009
+#> 25: 93.5874 -1.9750 -4.1026 0.1296 2.7383 0.7178 1.8209 0.3680 5.6274
+#> 26: 93.4057 -1.9316 -4.0922 0.1224 3.8103 0.7331 1.7796 0.3639 5.6861
+#> 27: 93.5013 -1.9188 -4.0698 0.0758 3.7127 0.7670 1.8750 0.3457 5.6624
+#> 28: 93.5703 -1.9523 -4.0758 0.0731 4.6390 0.7489 1.8583 0.3445 5.8077
+#> 29: 93.4694 -1.9559 -4.0566 0.0444 5.1290 0.8062 1.9344 0.3273 5.8688
+#> 30: 93.2290 -1.9824 -4.0475 0.0674 4.8726 0.8702 2.0343 0.3109 5.7579
+#> 31: 93.8652 -1.9771 -4.0510 0.0679 4.6289 0.8565 2.0529 0.2954 5.5526
+#> 32: 93.5854 -1.9573 -4.0510 0.0643 5.1320 0.8417 2.0138 0.2806 5.4199
+#> 33: 93.9870 -1.9503 -4.0513 0.0542 4.8754 0.8412 2.0433 0.2666 5.6945
+#> 34: 93.6884 -1.9172 -4.0633 0.0556 4.6317 0.8847 2.0861 0.2702 5.2687
+#> 35: 94.0375 -1.9365 -4.0576 0.0753 5.2320 0.8404 2.0791 0.2582 5.2760
+#> 36: 94.1588 -1.9423 -4.0499 0.0792 4.9704 0.8221 2.1145 0.2669 5.2050
+#> 37: 93.8626 -1.9356 -4.0538 0.0591 5.2723 0.8360 2.1407 0.2536 5.3218
+#> 38: 93.7237 -1.9357 -4.0611 0.0543 5.0087 0.8361 2.0788 0.2710 5.2866
+#> 39: 93.6513 -1.9327 -4.0408 0.0712 4.7582 0.8408 2.0051 0.2899 5.4693
+#> 40: 93.4619 -1.9634 -4.0360 0.1232 4.5203 0.8317 2.0367 0.3288 5.4324
+#> 41: 93.4809 -1.9601 -4.0351 0.1261 4.2943 0.8424 2.0081 0.3306 5.4573
+#> 42: 93.5851 -1.9745 -4.0428 0.1250 4.9744 0.8003 1.9818 0.3141 5.5168
+#> 43: 93.7820 -1.9597 -4.0401 0.1305 5.9118 0.7603 2.1332 0.2984 5.4899
+#> 44: 93.7419 -1.9509 -4.0495 0.1345 5.6162 0.7743 2.0459 0.2998 5.5344
+#> 45: 93.6967 -1.9366 -4.0522 0.1215 5.3354 0.7968 2.0566 0.2848 5.7738
+#> 46: 93.3665 -1.9553 -4.0018 0.0951 5.0686 0.7583 2.1124 0.2706 5.3850
+#> 47: 93.2974 -1.9332 -4.0091 0.0869 5.2792 0.8149 2.1009 0.2597 5.6743
+#> 48: 93.3967 -1.9540 -4.0218 0.0623 5.0152 0.8006 2.1538 0.2467 5.5889
+#> 49: 93.1652 -1.9724 -4.0350 0.0506 4.7645 0.8055 2.1445 0.2344 5.3586
+#> 50: 93.1464 -1.9377 -4.0185 0.0591 5.3658 0.8149 2.1523 0.2226 5.2483
+#> 51: 93.5217 -1.9246 -4.0272 0.0423 5.8579 0.8368 2.1596 0.2115 5.2746
+#> 52: 93.5512 -1.9257 -4.0204 0.0307 7.2345 0.8463 2.1903 0.2065 5.2405
+#> 53: 93.5400 -1.9428 -4.0300 0.0572 6.8728 0.8268 2.0807 0.2139 5.4127
+#> 54: 93.9868 -1.9502 -4.0129 0.0282 9.6651 0.8468 2.0823 0.2032 5.0396
+#> 55: 94.0505 -1.9393 -4.0073 0.0390 10.0994 0.8375 2.1018 0.2016 4.9147
+#> 56: 93.8010 -1.9493 -4.0026 0.0415 10.1741 0.8816 2.1117 0.2207 5.0723
+#> 57: 93.7596 -1.9762 -4.0154 0.0651 9.6654 0.8952 2.1662 0.2096 5.2311
+#> 58: 94.3399 -1.9353 -4.0095 0.0446 9.1821 0.9498 2.2103 0.1991 5.1009
+#> 59: 94.4036 -1.9283 -4.0279 0.0475 8.7230 0.9480 2.3209 0.1892 4.9930
+#> 60: 94.6395 -1.9260 -4.0348 0.0457 8.8651 0.9006 2.2565 0.1797 5.1751
+#> 61: 94.6499 -1.9291 -4.0216 0.0297 8.4218 0.9206 2.2220 0.1843 5.1124
+#> 62: 94.3847 -1.9010 -4.0300 0.0257 9.0591 0.9331 2.2795 0.1816 5.0834
+#> 63: 94.5510 -1.9120 -4.0116 0.0179 8.6061 0.9256 2.1791 0.1736 5.1513
+#> 64: 94.2510 -1.9213 -4.0184 0.0204 8.1758 0.9124 2.2131 0.1682 5.0698
+#> 65: 94.1173 -1.9044 -4.0279 0.0286 8.6773 0.9211 2.2202 0.1598 5.1120
+#> 66: 94.2093 -1.9098 -4.0206 0.0160 8.2435 0.9230 2.2475 0.1750 5.0175
+#> 67: 94.2814 -1.9339 -4.0041 0.0146 7.8313 0.9377 2.2350 0.1709 5.1478
+#> 68: 94.3001 -1.9079 -4.0127 -0.0103 7.4397 0.9163 2.2245 0.1640 5.2529
+#> 69: 94.3820 -1.9167 -4.0176 0.0296 7.0678 0.8704 2.2236 0.1888 5.2574
+#> 70: 94.2691 -1.9037 -4.0156 0.0388 6.7144 0.8601 2.1833 0.2128 5.0230
+#> 71: 94.3827 -1.9183 -4.0056 0.0485 6.3786 0.8491 2.2147 0.2345 5.1212
+#> 72: 94.3104 -1.9291 -4.0099 0.0330 6.0597 0.9007 2.2316 0.2255 5.3748
+#> 73: 94.1778 -1.9238 -4.0054 0.0222 5.7567 0.9479 2.2969 0.2142 5.2827
+#> 74: 94.1022 -1.9149 -4.0017 0.0497 5.4689 0.9305 2.3058 0.2035 5.3117
+#> 75: 94.2343 -1.9045 -4.0141 0.0189 5.1954 0.9141 2.3227 0.1933 5.1047
+#> 76: 94.0905 -1.9019 -4.0166 0.0170 5.5411 0.8978 2.3315 0.1836 5.1233
+#> 77: 94.2772 -1.9117 -4.0053 0.0584 5.2641 0.9238 2.3678 0.1866 4.9803
+#> 78: 94.7235 -1.9141 -4.0464 0.0758 5.0735 0.9308 2.3720 0.2062 5.0544
+#> 79: 94.4674 -1.9287 -4.0494 0.0724 5.7355 0.9063 2.3680 0.1959 5.0910
+#> 80: 93.9895 -1.9271 -4.0456 0.0366 7.2150 0.8857 2.4000 0.1861 5.0612
+#> 81: 94.3190 -1.9358 -4.0402 0.0506 7.5591 0.8891 2.3317 0.1814 4.8617
+#> 82: 94.1898 -1.9126 -4.0552 0.0595 7.6462 0.9157 2.3848 0.1854 4.7335
+#> 83: 94.2044 -1.9145 -4.0359 0.0295 7.8610 0.9451 2.4305 0.1871 4.9258
+#> 84: 93.8197 -1.9058 -3.9879 -0.0409 10.4218 0.9604 2.3848 0.2177 5.0619
+#> 85: 94.0219 -1.8957 -3.9753 -0.0441 9.9007 0.9637 2.4476 0.2219 5.0532
+#> 86: 94.0737 -1.8889 -3.9753 -0.0220 9.4056 0.9675 2.4476 0.2284 5.2694
+#> 87: 93.8548 -1.8755 -3.9707 -0.0024 8.9354 1.0066 2.4895 0.2340 5.4019
+#> 88: 93.7578 -1.9046 -3.9804 -0.0042 8.4886 0.9656 2.5006 0.2271 5.3724
+#> 89: 93.6848 -1.8936 -3.9689 -0.0396 10.6813 0.9805 2.4561 0.2254 5.2615
+#> 90: 93.3617 -1.9167 -3.9801 -0.0221 10.1472 1.0147 2.3589 0.2141 5.4193
+#> 91: 93.7419 -1.8964 -3.9888 -0.0363 9.6398 1.0077 2.3748 0.2066 5.3463
+#> 92: 93.8635 -1.8994 -3.9783 -0.0625 9.1578 1.0028 2.3282 0.2239 5.3026
+#> 93: 94.0864 -1.8648 -3.9426 -0.0813 8.8693 1.0348 2.3654 0.2127 5.2637
+#> 94: 93.9789 -1.8949 -3.9840 -0.0549 10.0871 1.0752 2.4551 0.2021 5.4225
+#> 95: 93.9008 -1.9141 -4.0080 -0.0644 9.8584 1.1599 2.4184 0.1920 5.2179
+#> 96: 93.6926 -2.0270 -3.8911 -0.0777 10.3968 1.1019 3.0518 0.1824 5.3163
+#> 97: 93.2478 -2.0074 -3.9034 -0.0427 10.7200 1.0468 2.9960 0.1732 5.5172
+#> 98: 93.4556 -2.0118 -3.9034 -0.0294 10.1840 1.0007 2.9960 0.1646 5.5887
+#> 99: 93.7548 -2.0076 -3.8894 -0.0157 9.7519 0.9507 3.0357 0.1569 5.7139
+#> 100: 93.8962 -2.0112 -3.8887 -0.0406 9.2643 0.9048 3.0369 0.1491 5.6145
+#> 101: 94.0889 -2.0221 -3.8612 -0.0145 8.8011 0.8728 3.1466 0.1499 5.4224
+#> 102: 94.5428 -2.0206 -3.8489 0.0115 8.3611 0.8292 3.1577 0.1473 5.6634
+#> 103: 94.4882 -2.0447 -3.8594 0.0514 7.9430 0.8202 3.1812 0.1562 5.5136
+#> 104: 94.3185 -2.0389 -3.8584 0.0258 8.3364 0.8346 3.1801 0.1484 5.3612
+#> 105: 94.2858 -2.0345 -3.8738 -0.0001 10.6008 0.8415 3.2251 0.1410 5.3359
+#> 106: 94.1264 -2.0415 -3.8756 0.0411 10.0707 0.8554 3.2182 0.1658 5.2280
+#> 107: 93.9801 -2.0574 -3.8674 0.0403 10.0269 0.8807 3.2628 0.1744 5.0299
+#> 108: 93.6911 -2.0295 -3.8693 0.0355 9.5255 0.8683 3.2708 0.1803 5.1880
+#> 109: 94.0646 -2.0260 -3.8806 0.0506 9.0493 0.8729 3.3140 0.1759 5.1927
+#> 110: 94.4591 -2.0378 -3.8962 0.0360 8.5968 0.8890 3.3076 0.1675 4.8961
+#> 111: 94.3748 -2.0319 -3.9053 0.0397 8.1670 0.8995 3.3254 0.1591 4.8066
+#> 112: 94.2370 -2.0338 -3.9017 0.0603 7.7586 0.8545 3.2484 0.1512 4.8856
+#> 113: 94.1242 -2.0237 -3.8954 0.0795 7.3707 0.8980 3.2127 0.1530 5.1859
+#> 114: 94.1452 -2.0298 -3.9197 0.0530 7.0021 0.8771 3.0744 0.1628 5.1303
+#> 115: 94.1403 -2.0410 -3.9093 0.0476 6.9173 0.9383 3.0223 0.1621 5.2563
+#> 116: 94.1612 -2.0424 -3.9063 0.0593 7.6367 0.8914 3.0420 0.1856 5.1566
+#> 117: 94.2018 -2.0488 -3.9041 0.0539 7.2549 0.8549 3.0204 0.1796 5.2119
+#> 118: 94.1315 -2.0579 -3.9139 0.0564 6.8922 0.8121 3.0180 0.1948 5.0302
+#> 119: 93.7398 -2.0747 -3.9202 0.0570 6.7510 0.7838 3.0084 0.1906 5.0863
+#> 120: 93.5945 -2.0511 -3.9388 0.0534 6.4134 0.7885 3.0100 0.2128 5.0597
+#> 121: 93.9845 -2.0613 -3.9338 0.0568 6.0928 0.7793 2.9944 0.2022 5.3179
+#> 122: 93.7779 -2.0831 -3.9338 0.0630 5.7881 0.7778 2.9944 0.1921 5.2399
+#> 123: 93.9128 -2.0623 -3.9135 0.0493 5.4987 0.8329 2.9729 0.1825 5.0752
+#> 124: 93.5190 -2.0804 -3.9315 0.0538 5.2238 0.8581 3.0220 0.1733 4.9713
+#> 125: 93.7427 -2.0649 -3.9309 0.0499 4.9626 0.8431 3.0260 0.1882 5.0718
+#> 126: 9.3540e+01 -2.0238e+00 -3.9006e+00 -6.8989e-05 4.7145e+00 8.3548e-01 2.9498e+00 1.9993e-01 5.2080e+00
+#> 127: 93.4310 -2.0496 -3.8898 -0.0173 4.4788 0.8864 2.9614 0.2302 5.6432
+#> 128: 93.7512 -2.0285 -3.9180 -0.0096 4.2548 0.8653 3.0768 0.2312 5.3906
+#> 129: 93.6908 -2.0718 -3.9113 -0.0194 4.0421 0.9022 3.0506 0.2386 5.3278
+#> 130: 93.5805 -1.9753 -4.0480 0.0065 3.8400 1.0388 2.8980 0.2276 5.2583
+#> 131: 93.8050 -1.9501 -4.0447 0.0040 3.8738 1.0957 2.7531 0.2162 5.3026
+#> 132: 93.6470 -1.9322 -4.0411 0.0048 3.6801 1.0618 2.6155 0.2159 5.2552
+#> 133: 94.2927 -1.9445 -4.0067 -0.0040 5.6903 1.0378 2.5425 0.2094 5.2430
+#> 134: 94.2814 -1.9286 -4.0021 -0.0144 6.9123 1.1316 2.5172 0.1990 5.3877
+#> 135: 94.0440 -1.9285 -4.0415 0.0254 6.5667 1.1416 2.4394 0.1975 5.3248
+#> 136: 94.0122 -1.9256 -4.0542 0.0156 6.6147 1.1511 2.4728 0.1954 5.2109
+#> 137: 93.8613 -1.9095 -4.0629 -0.0007 6.2840 1.1789 2.5078 0.2045 5.2876
+#> 138: 93.7410 -1.9345 -4.0788 -0.0005 6.0718 1.1507 2.5026 0.2086 5.3284
+#> 139: 93.6437 -1.9499 -4.0788 0.0159 5.7682 1.0932 2.5026 0.1982 5.4211
+#> 140: 93.4066 -1.9591 -4.0720 0.0472 6.9432 1.0883 2.4756 0.1947 5.4439
+#> 141: 93.6086 -1.9625 -4.1026 0.0785 7.7204 1.1027 2.3974 0.2084 5.6595
+#> 142: 93.8693 -1.9640 -4.1003 0.0670 10.1206 1.1196 2.2775 0.1980 5.4918
+#> 143: 93.6954 -1.9890 -4.0792 0.0824 9.6146 1.0636 2.3366 0.1881 5.2818
+#> 144: 93.5119 -1.9888 -4.0603 0.0645 9.1339 1.0557 2.3380 0.1787 5.3491
+#> 145: 93.3539 -1.9874 -4.0563 0.0764 8.6772 1.0340 2.3573 0.1697 5.4214
+#> 146: 93.2812 -1.9734 -4.0620 0.0674 8.4698 1.0504 2.3604 0.1641 5.5968
+#> 147: 93.8919 -1.9657 -4.0863 0.0596 8.0463 1.0288 2.4569 0.1668 5.3476
+#> 148: 93.7841 -1.9719 -4.0688 0.0880 9.4571 1.0719 2.4020 0.1692 5.1664
+#> 149: 93.6361 -1.9912 -4.0523 0.0895 8.9842 1.0183 2.5236 0.1671 5.5060
+#> 150: 93.6402 -1.9940 -4.0365 0.0730 9.1100 0.9674 2.3974 0.1669 5.5402
+#> 151: 93.4283 -1.9861 -4.0594 0.0805 8.6545 0.9567 2.4304 0.1652 5.3571
+#> 152: 93.7431 -1.9444 -4.0833 0.0612 9.2738 0.9789 2.3602 0.1571 5.0632
+#> 153: 93.7239 -1.9307 -4.0780 0.0780 8.9915 0.9995 2.3398 0.1600 5.1077
+#> 154: 94.0115 -1.9655 -4.0978 0.0859 9.0507 0.9894 2.3313 0.1628 5.2272
+#> 155: 94.3207 -1.9792 -4.0905 0.1114 8.5756 0.9988 2.3790 0.1873 5.0916
+#> 156: 94.3160 -1.9811 -4.0894 0.0906 5.0717 0.9968 2.3662 0.2003 4.9973
+#> 157: 94.3042 -1.9641 -4.1031 0.0966 5.1875 0.9911 2.3908 0.1943 4.9993
+#> 158: 94.0102 -1.9635 -4.1047 0.1003 5.2398 0.9834 2.3905 0.1809 5.2765
+#> 159: 94.5686 -2.0012 -4.1459 0.1212 6.8800 1.0317 2.5969 0.1215 5.3943
+#> 160: 94.2433 -1.9673 -4.1420 0.1165 8.0930 1.0286 2.5827 0.1092 5.2904
+#> 161: 94.1327 -1.9644 -4.1595 0.1196 9.5810 1.0786 2.7063 0.1123 5.1723
+#> 162: 94.0779 -1.9525 -4.1608 0.1103 6.6456 1.0562 2.7111 0.1277 5.0224
+#> 163: 94.0995 -1.9687 -4.1910 0.1320 8.2582 1.0701 2.8394 0.1232 5.1593
+#> 164: 94.4575 -1.9800 -4.1936 0.1208 6.4860 1.1603 2.8332 0.1254 5.1325
+#> 165: 94.3298 -1.9968 -4.1963 0.1506 5.7592 1.1484 2.9143 0.1196 5.3059
+#> 166: 94.2531 -1.9977 -4.1748 0.1566 5.3810 1.1262 2.8044 0.1142 5.2569
+#> 167: 94.4593 -1.9985 -4.1758 0.1435 7.0082 1.1247 2.8542 0.1125 5.4332
+#> 168: 94.0868 -2.0117 -4.2259 0.1345 7.5364 1.1395 3.0314 0.1137 5.2790
+#> 169: 93.7927 -2.0072 -4.2177 0.1276 6.7023 1.1292 3.0535 0.1135 5.1357
+#> 170: 93.8094 -2.0309 -4.2244 0.1298 6.7343 1.0975 3.2542 0.1065 5.2372
+#> 171: 93.7263 -2.0349 -4.2115 0.1204 8.2555 1.0626 3.2292 0.1020 5.4467
+#> 172: 93.3380 -2.0022 -4.2262 0.1193 6.6891 1.0822 3.2762 0.0989 5.3641
+#> 173: 93.5334 -2.0224 -4.2488 0.1145 6.0685 1.0328 3.4694 0.0978 5.4780
+#> 174: 93.1805 -2.0207 -4.2344 0.1025 6.1648 1.0612 3.2079 0.0976 5.2570
+#> 175: 93.3423 -2.0255 -4.1644 0.1070 5.9418 1.0701 2.8555 0.1059 5.3415
+#> 176: 93.3387 -2.0192 -4.1473 0.0786 4.7649 1.0508 2.9102 0.1101 5.3381
+#> 177: 93.4640 -2.0177 -4.1504 0.0709 4.5672 1.0590 2.9447 0.1103 5.3245
+#> 178: 93.4930 -2.0147 -4.1568 0.0777 4.5325 1.1063 2.7902 0.1247 5.2036
+#> 179: 93.7455 -2.0101 -4.1580 0.0823 4.2094 1.1020 2.8075 0.1246 5.1184
+#> 180: 93.4838 -1.9989 -4.1631 0.0868 3.6999 1.0782 2.8790 0.1280 5.2677
+#> 181: 93.5207 -1.9975 -4.1926 0.1013 4.5693 1.0706 2.9216 0.1375 5.3783
+#> 182: 93.6695 -2.0251 -4.1717 0.0809 3.8373 1.0341 2.9954 0.1328 5.3774
+#> 183: 93.7238 -2.0095 -4.1222 0.0861 3.8354 1.0138 2.7536 0.1512 5.2600
+#> 184: 93.7106 -2.0032 -4.1244 0.0853 4.1968 1.0250 2.6849 0.1590 5.1996
+#> 185: 93.2862 -2.0028 -4.1628 0.0743 5.4347 1.0373 2.6528 0.1640 5.3269
+#> 186: 93.5567 -2.0040 -4.1438 0.0807 6.5150 1.0562 2.6486 0.1589 5.4158
+#> 187: 93.7894 -2.0023 -4.1137 0.1288 5.1401 1.0207 2.5217 0.1745 5.6484
+#> 188: 93.4911 -1.8872 -4.2405 0.1324 4.3165 0.8176 2.2483 0.1870 5.5214
+#> 189: 93.9184 -1.8982 -4.2936 0.1606 3.7995 0.8383 2.2555 0.1766 5.6320
+#> 190: 93.7487 -1.8878 -4.2872 0.1651 3.6764 0.8860 2.2088 0.1748 5.4829
+#> 191: 93.8940 -1.8715 -4.3244 0.1650 2.8119 0.9024 2.1141 0.1903 5.7768
+#> 192: 93.9378 -1.9105 -4.3010 0.1954 2.5239 0.8232 2.1331 0.1831 5.8507
+#> 193: 94.5609 -1.8766 -4.3303 0.2042 3.9595 0.8413 2.0662 0.2095 5.6119
+#> 194: 94.7465 -1.9036 -4.3363 0.2112 5.0784 0.8176 2.1071 0.2149 5.6051
+#> 195: 94.4761 -1.8852 -4.3375 0.2021 4.7026 0.7615 2.0556 0.2333 5.3997
+#> 196: 93.7678 -1.9037 -4.3676 0.2273 5.6976 0.7824 2.1487 0.2478 5.2531
+#> 197: 94.0788 -1.9208 -4.3670 0.2203 3.8352 0.7644 2.0893 0.2354 5.2196
+#> 198: 94.3424 -1.8825 -4.3288 0.2075 4.9447 0.7304 1.9525 0.2502 5.1387
+#> 199: 94.0613 -1.9911 -4.1676 0.2379 3.6248 0.6126 2.8184 0.2801 5.3421
+#> 200: 94.4814 -2.0045 -4.1782 0.2245 3.5637 0.6427 2.7132 0.3014 5.3984
+#> 201: 94.3903 -1.9973 -4.1773 0.2165 3.4686 0.6525 2.7040 0.2901 5.4178
+#> 202: 94.1840 -1.9928 -4.1742 0.2117 3.6920 0.6576 2.7046 0.2870 5.3743
+#> 203: 94.1832 -1.9865 -4.1670 0.2025 3.8180 0.6618 2.7097 0.2758 5.3389
+#> 204: 94.1550 -1.9832 -4.1631 0.1955 3.9449 0.6613 2.6998 0.2691 5.2948
+#> 205: 94.1853 -1.9824 -4.1602 0.1948 4.1753 0.6598 2.6909 0.2695 5.2556
+#> 206: 94.1775 -1.9800 -4.1564 0.1918 4.1962 0.6581 2.6778 0.2678 5.2316
+#> 207: 94.1754 -1.9736 -4.1532 0.1864 4.2107 0.6580 2.6645 0.2694 5.2553
+#> 208: 94.1591 -1.9695 -4.1498 0.1811 4.2621 0.6596 2.6537 0.2712 5.2543
+#> 209: 94.1225 -1.9675 -4.1454 0.1744 4.1977 0.6651 2.6519 0.2687 5.3075
+#> 210: 94.1047 -1.9628 -4.1424 0.1666 4.1981 0.6663 2.6570 0.2717 5.3160
+#> 211: 94.1161 -1.9587 -4.1398 0.1600 4.1858 0.6674 2.6614 0.2728 5.3307
+#> 212: 94.0976 -1.9551 -4.1379 0.1529 4.2002 0.6693 2.6737 0.2709 5.3288
+#> 213: 94.0845 -1.9511 -4.1365 0.1449 4.1381 0.6710 2.6727 0.2680 5.3322
+#> 214: 94.0582 -1.9493 -4.1351 0.1394 4.0630 0.6733 2.6729 0.2663 5.3504
+#> 215: 94.0449 -1.9493 -4.1338 0.1340 3.9607 0.6733 2.6719 0.2641 5.3681
+#> 216: 94.0030 -1.9496 -4.1321 0.1299 4.0200 0.6742 2.6727 0.2622 5.3619
+#> 217: 93.9560 -1.9514 -4.1315 0.1267 4.0642 0.6778 2.6764 0.2612 5.3584
+#> 218: 93.9485 -1.9520 -4.1297 0.1235 4.1822 0.6795 2.6745 0.2599 5.3471
+#> 219: 93.9650 -1.9523 -4.1289 0.1211 4.3244 0.6807 2.6851 0.2591 5.3531
+#> 220: 93.9961 -1.9519 -4.1284 0.1193 4.4276 0.6837 2.6936 0.2577 5.3528
+#> 221: 94.0080 -1.9517 -4.1275 0.1183 4.5303 0.6866 2.6979 0.2578 5.3538
+#> 222: 94.0143 -1.9505 -4.1272 0.1159 4.5882 0.6887 2.7039 0.2570 5.3489
+#> 223: 94.0189 -1.9491 -4.1269 0.1138 4.5674 0.6910 2.7092 0.2562 5.3424
+#> 224: 94.0136 -1.9464 -4.1270 0.1126 4.5582 0.6923 2.7161 0.2548 5.3421
+#> 225: 94.0118 -1.9444 -4.1276 0.1112 4.6000 0.6929 2.7269 0.2533 5.3525
+#> 226: 93.9884 -1.9428 -4.1260 0.1099 4.6720 0.6935 2.7428 0.2530 5.3427
+#> 227: 93.9657 -1.9416 -4.1247 0.1097 4.7197 0.6937 2.7581 0.2529 5.3455
+#> 228: 93.9586 -1.9410 -4.1234 0.1105 4.7731 0.6945 2.7801 0.2528 5.3408
+#> 229: 93.9574 -1.9409 -4.1215 0.1102 4.7898 0.6963 2.7970 0.2518 5.3366
+#> 230: 93.9495 -1.9410 -4.1201 0.1096 4.7966 0.6982 2.8117 0.2505 5.3301
+#> 231: 93.9378 -1.9416 -4.1193 0.1093 4.7947 0.6993 2.8274 0.2492 5.3270
+#> 232: 93.9362 -1.9421 -4.1184 0.1086 4.8132 0.7011 2.8411 0.2477 5.3191
+#> 233: 93.9412 -1.9424 -4.1167 0.1074 4.8188 0.7028 2.8514 0.2459 5.3134
+#> 234: 93.9436 -1.9424 -4.1152 0.1061 4.7865 0.7040 2.8618 0.2440 5.3153
+#> 235: 93.9413 -1.9425 -4.1134 0.1051 4.8017 0.7062 2.8679 0.2426 5.3137
+#> 236: 93.9480 -1.9423 -4.1119 0.1033 4.8537 0.7085 2.8730 0.2416 5.3089
+#> 237: 93.9560 -1.9408 -4.1105 0.1020 4.9091 0.7098 2.8777 0.2411 5.2970
+#> 238: 93.9610 -1.9393 -4.1091 0.1003 4.9394 0.7113 2.8824 0.2409 5.2902
+#> 239: 93.9634 -1.9378 -4.1080 0.0993 4.9304 0.7121 2.8875 0.2407 5.2868
+#> 240: 93.9727 -1.9360 -4.1063 0.0980 4.9651 0.7128 2.8918 0.2404 5.2825
+#> 241: 93.9736 -1.9348 -4.1045 0.0969 5.0080 0.7139 2.8917 0.2395 5.2751
+#> 242: 93.9779 -1.9334 -4.1030 0.0959 5.0856 0.7150 2.8923 0.2389 5.2656
+#> 243: 93.9807 -1.9322 -4.1015 0.0953 5.1490 0.7158 2.8929 0.2385 5.2560
+#> 244: 93.9858 -1.9317 -4.0998 0.0942 5.2172 0.7171 2.8922 0.2380 5.2514
+#> 245: 93.9798 -1.9309 -4.0984 0.0920 5.2903 0.7172 2.8892 0.2383 5.2502
+#> 246: 93.9782 -1.9296 -4.0971 0.0903 5.3132 0.7180 2.8866 0.2384 5.2482
+#> 247: 93.9809 -1.9290 -4.0958 0.0886 5.3342 0.7188 2.8839 0.2386 5.2466
+#> 248: 93.9731 -1.9281 -4.0944 0.0873 5.3438 0.7187 2.8812 0.2393 5.2480
+#> 249: 93.9594 -1.9273 -4.0932 0.0852 5.3449 0.7181 2.8781 0.2401 5.2489
+#> 250: 93.9508 -1.9261 -4.0919 0.0835 5.3194 0.7173 2.8752 0.2406 5.2495
+#> 251: 93.9421 -1.9248 -4.0903 0.0812 5.3051 0.7180 2.8714 0.2410 5.2480
+#> 252: 93.9291 -1.9240 -4.0888 0.0793 5.3122 0.7175 2.8681 0.2415 5.2447
+#> 253: 93.9233 -1.9232 -4.0876 0.0777 5.3289 0.7170 2.8636 0.2420 5.2423
+#> 254: 93.9189 -1.9217 -4.0863 0.0760 5.3708 0.7165 2.8593 0.2425 5.2395
+#> 255: 93.9130 -1.9205 -4.0850 0.0743 5.4093 0.7157 2.8548 0.2428 5.2393
+#> 256: 93.9031 -1.9195 -4.0837 0.0731 5.4400 0.7153 2.8501 0.2432 5.2417
+#> 257: 93.9079 -1.9183 -4.0821 0.0720 5.4612 0.7138 2.8454 0.2434 5.2469
+#> 258: 93.9117 -1.9173 -4.0807 0.0711 5.4979 0.7126 2.8412 0.2439 5.2491
+#> 259: 93.9199 -1.9164 -4.0797 0.0708 5.5145 0.7107 2.8364 0.2449 5.2481
+#> 260: 93.9300 -1.9150 -4.0782 0.0699 5.5067 0.7086 2.8316 0.2453 5.2501
+#> 261: 93.9382 -1.9140 -4.0768 0.0689 5.5191 0.7070 2.8271 0.2455 5.2518
+#> 262: 93.9467 -1.9126 -4.0755 0.0681 5.5261 0.7049 2.8227 0.2454 5.2564
+#> 263: 93.9594 -1.9110 -4.0739 0.0667 5.5365 0.7039 2.8196 0.2455 5.2613
+#> 264: 93.9697 -1.9096 -4.0718 0.0650 5.5589 0.7033 2.8174 0.2459 5.2628
+#> 265: 93.9784 -1.9080 -4.0698 0.0631 5.5668 0.7025 2.8153 0.2458 5.2627
+#> 266: 93.9865 -1.9068 -4.0686 0.0615 5.5819 0.7012 2.8114 0.2456 5.2638
+#> 267: 93.9940 -1.9055 -4.0673 0.0599 5.5887 0.7000 2.8076 0.2452 5.2644
+#> 268: 93.9991 -1.9045 -4.0660 0.0584 5.5989 0.6986 2.8039 0.2453 5.2657
+#> 269: 94.0034 -1.9036 -4.0649 0.0573 5.6276 0.6972 2.7990 0.2453 5.2648
+#> 270: 94.0104 -1.9028 -4.0639 0.0561 5.6456 0.6959 2.7945 0.2453 5.2614
+#> 271: 94.0190 -1.9022 -4.0629 0.0550 5.6409 0.6950 2.7900 0.2451 5.2606
+#> 272: 94.0244 -1.9017 -4.0623 0.0542 5.6452 0.6944 2.7863 0.2449 5.2626
+#> 273: 94.0312 -1.9010 -4.0620 0.0531 5.6581 0.6939 2.7821 0.2450 5.2620
+#> 274: 94.0387 -1.9004 -4.0615 0.0520 5.6569 0.6932 2.7774 0.2456 5.2657
+#> 275: 94.0381 -1.9000 -4.0611 0.0510 5.6525 0.6938 2.7727 0.2463 5.2662
+#> 276: 94.0426 -1.8994 -4.0606 0.0498 5.6664 0.6955 2.7682 0.2472 5.2687
+#> 277: 94.0437 -1.8988 -4.0604 0.0486 5.6705 0.6969 2.7646 0.2479 5.2699
+#> 278: 94.0470 -1.8982 -4.0606 0.0476 5.6495 0.6983 2.7620 0.2487 5.2741
+#> 279: 94.0475 -1.8980 -4.0608 0.0470 5.6561 0.6990 2.7590 0.2494 5.2749
+#> 280: 94.0485 -1.8977 -4.0609 0.0462 5.6510 0.6997 2.7565 0.2501 5.2755
+#> 281: 94.0473 -1.8975 -4.0609 0.0456 5.6493 0.6998 2.7529 0.2504 5.2764
+#> 282: 94.0448 -1.8972 -4.0608 0.0448 5.6523 0.7003 2.7495 0.2506 5.2773
+#> 283: 94.0392 -1.8975 -4.0608 0.0440 5.6543 0.7011 2.7463 0.2507 5.2772
+#> 284: 94.0315 -1.8976 -4.0609 0.0432 5.6575 0.7017 2.7431 0.2506 5.2792
+#> 285: 94.0262 -1.8980 -4.0611 0.0427 5.6632 0.7018 2.7402 0.2505 5.2805
+#> 286: 94.0255 -1.8986 -4.0615 0.0427 5.6683 0.7018 2.7371 0.2507 5.2795
+#> 287: 94.0234 -1.8992 -4.0619 0.0427 5.6533 0.7014 2.7340 0.2513 5.2803
+#> 288: 94.0227 -1.9000 -4.0631 0.0431 5.6485 0.7016 2.7352 0.2517 5.2802
+#> 289: 94.0179 -1.9008 -4.0641 0.0433 5.6553 0.7016 2.7358 0.2523 5.2808
+#> 290: 94.0135 -1.9017 -4.0650 0.0435 5.6776 0.7015 2.7363 0.2528 5.2839
+#> 291: 94.0101 -1.9025 -4.0660 0.0440 5.7028 0.7012 2.7372 0.2531 5.2883
+#> 292: 94.0066 -1.9034 -4.0672 0.0442 5.7277 0.7007 2.7369 0.2536 5.2890
+#> 293: 94.0002 -1.9042 -4.0681 0.0441 5.7462 0.7004 2.7366 0.2538 5.2906
+#> 294: 93.9917 -1.9049 -4.0690 0.0440 5.7707 0.7001 2.7363 0.2539 5.2927
+#> 295: 93.9864 -1.9055 -4.0703 0.0440 5.7816 0.7001 2.7362 0.2542 5.2950
+#> 296: 93.9807 -1.9060 -4.0716 0.0441 5.7884 0.7000 2.7362 0.2545 5.2974
+#> 297: 93.9749 -1.9063 -4.0729 0.0442 5.7926 0.7005 2.7362 0.2548 5.3032
+#> 298: 93.9700 -1.9070 -4.0735 0.0442 5.7850 0.7005 2.7323 0.2553 5.3067
+#> 299: 93.9668 -1.9075 -4.0740 0.0442 5.7688 0.7000 2.7293 0.2558 5.3100
+#> 300: 93.9654 -1.9080 -4.0742 0.0441 5.7541 0.6993 2.7260 0.2563 5.3123
+#> 301: 93.9678 -1.9082 -4.0744 0.0439 5.7383 0.6980 2.7217 0.2568 5.3165
+#> 302: 93.9687 -1.9087 -4.0747 0.0435 5.7262 0.6977 2.7175 0.2574 5.3179
+#> 303: 93.9675 -1.9090 -4.0751 0.0430 5.7050 0.6966 2.7137 0.2580 5.3197
+#> 304: 93.9641 -1.9092 -4.0755 0.0428 5.6977 0.6954 2.7097 0.2583 5.3215
+#> 305: 93.9624 -1.9095 -4.0759 0.0427 5.6986 0.6947 2.7061 0.2585 5.3200
+#> 306: 93.9623 -1.9098 -4.0763 0.0428 5.7065 0.6941 2.7025 0.2587 5.3174
+#> 307: 93.9635 -1.9105 -4.0767 0.0430 5.7229 0.6938 2.6992 0.2585 5.3153
+#> 308: 93.9658 -1.9112 -4.0778 0.0435 5.7340 0.6935 2.6992 0.2580 5.3131
+#> 309: 93.9671 -1.9119 -4.0784 0.0440 5.7510 0.6929 2.6990 0.2576 5.3113
+#> 310: 93.9669 -1.9124 -4.0791 0.0441 5.7560 0.6926 2.6988 0.2569 5.3128
+#> 311: 93.9670 -1.9129 -4.0795 0.0443 5.7557 0.6922 2.6972 0.2563 5.3134
+#> 312: 93.9689 -1.9132 -4.0799 0.0446 5.7554 0.6921 2.6959 0.2559 5.3125
+#> 313: 93.9685 -1.9136 -4.0806 0.0448 5.7489 0.6921 2.6960 0.2553 5.3110
+#> 314: 93.9673 -1.9138 -4.0812 0.0447 5.7562 0.6925 2.6964 0.2545 5.3107
+#> 315: 93.9635 -1.9139 -4.0818 0.0447 5.7392 0.6931 2.6971 0.2539 5.3127
+#> 316: 93.9581 -1.9139 -4.0823 0.0442 5.7376 0.6937 2.6974 0.2532 5.3140
+#> 317: 93.9541 -1.9140 -4.0826 0.0437 5.7426 0.6946 2.6968 0.2526 5.3155
+#> 318: 93.9521 -1.9141 -4.0829 0.0432 5.7378 0.6951 2.6970 0.2521 5.3158
+#> 319: 93.9520 -1.9139 -4.0829 0.0423 5.7366 0.6959 2.6977 0.2516 5.3138
+#> 320: 93.9538 -1.9136 -4.0828 0.0414 5.7416 0.6964 2.6980 0.2510 5.3135
+#> 321: 93.9557 -1.9132 -4.0827 0.0406 5.7539 0.6969 2.6983 0.2503 5.3141
+#> 322: 93.9568 -1.9130 -4.0825 0.0399 5.7460 0.6971 2.6988 0.2497 5.3155
+#> 323: 93.9594 -1.9125 -4.0824 0.0393 5.7274 0.6972 2.6993 0.2492 5.3166
+#> 324: 93.9608 -1.9122 -4.0823 0.0386 5.7161 0.6973 2.7006 0.2487 5.3156
+#> 325: 93.9601 -1.9120 -4.0822 0.0379 5.7036 0.6973 2.7019 0.2483 5.3161
+#> 326: 93.9602 -1.9118 -4.0822 0.0372 5.6817 0.6977 2.7023 0.2480 5.3182
+#> 327: 93.9615 -1.9115 -4.0820 0.0364 5.6682 0.6986 2.7024 0.2476 5.3203
+#> 328: 93.9601 -1.9114 -4.0814 0.0355 5.6746 0.6999 2.7012 0.2472 5.3224
+#> 329: 93.9580 -1.9112 -4.0809 0.0348 5.6670 0.7014 2.7003 0.2469 5.3229
+#> 330: 93.9577 -1.9111 -4.0808 0.0341 5.6613 0.7023 2.7007 0.2466 5.3224
+#> 331: 93.9570 -1.9109 -4.0808 0.0334 5.6607 0.7029 2.7020 0.2463 5.3223
+#> 332: 93.9599 -1.9106 -4.0806 0.0328 5.6610 0.7037 2.7023 0.2459 5.3212
+#> 333: 93.9638 -1.9102 -4.0806 0.0320 5.6751 0.7043 2.7029 0.2458 5.3187
+#> 334: 93.9672 -1.9096 -4.0805 0.0311 5.6801 0.7051 2.7033 0.2456 5.3168
+#> 335: 93.9714 -1.9093 -4.0805 0.0302 5.6855 0.7058 2.7038 0.2453 5.3156
+#> 336: 93.9755 -1.9090 -4.0804 0.0294 5.6979 0.7062 2.7040 0.2452 5.3158
+#> 337: 93.9796 -1.9088 -4.0803 0.0286 5.7025 0.7069 2.7038 0.2447 5.3159
+#> 338: 93.9845 -1.9087 -4.0803 0.0278 5.7100 0.7074 2.7042 0.2443 5.3166
+#> 339: 93.9889 -1.9084 -4.0803 0.0273 5.7123 0.7080 2.7045 0.2438 5.3165
+#> 340: 93.9916 -1.9082 -4.0801 0.0267 5.7289 0.7086 2.7045 0.2434 5.3167
+#> 341: 93.9938 -1.9080 -4.0800 0.0263 5.7602 0.7091 2.7048 0.2430 5.3173
+#> 342: 93.9971 -1.9076 -4.0799 0.0257 5.7951 0.7096 2.7046 0.2427 5.3171
+#> 343: 93.9979 -1.9073 -4.0794 0.0251 5.8156 0.7101 2.7044 0.2424 5.3157
+#> 344: 94.0015 -1.9070 -4.0792 0.0246 5.8378 0.7105 2.7047 0.2420 5.3153
+#> 345: 94.0040 -1.9067 -4.0789 0.0241 5.8559 0.7111 2.7046 0.2414 5.3149
+#> 346: 94.0073 -1.9066 -4.0787 0.0237 5.8810 0.7119 2.7045 0.2409 5.3131
+#> 347: 94.0084 -1.9066 -4.0785 0.0232 5.8815 0.7127 2.7044 0.2406 5.3125
+#> 348: 94.0084 -1.9067 -4.0785 0.0229 5.8870 0.7132 2.7051 0.2403 5.3110
+#> 349: 94.0079 -1.9068 -4.0785 0.0225 5.8882 0.7136 2.7048 0.2401 5.3127
+#> 350: 94.0075 -1.9067 -4.0785 0.0220 5.8857 0.7137 2.7045 0.2396 5.3133
+#> 351: 94.0068 -1.9068 -4.0786 0.0218 5.8849 0.7140 2.7041 0.2393 5.3135
+#> 352: 94.0059 -1.9067 -4.0788 0.0216 5.8778 0.7141 2.7039 0.2390 5.3139
+#> 353: 94.0073 -1.9067 -4.0792 0.0215 5.8709 0.7140 2.7047 0.2388 5.3129
+#> 354: 94.0078 -1.9065 -4.0795 0.0214 5.8623 0.7139 2.7054 0.2386 5.3135
+#> 355: 94.0065 -1.9064 -4.0795 0.0211 5.8637 0.7137 2.7048 0.2383 5.3122
+#> 356: 94.0080 -1.9063 -4.0796 0.0209 5.8613 0.7134 2.7041 0.2380 5.3121
+#> 357: 94.0105 -1.9061 -4.0797 0.0206 5.8613 0.7132 2.7036 0.2379 5.3119
+#> 358: 94.0114 -1.9059 -4.0798 0.0205 5.8539 0.7130 2.7029 0.2377 5.3107
+#> 359: 94.0154 -1.9058 -4.0799 0.0203 5.8559 0.7126 2.7024 0.2374 5.3112
+#> 360: 94.0165 -1.9057 -4.0800 0.0201 5.8544 0.7124 2.7020 0.2372 5.3099
+#> 361: 94.0198 -1.9056 -4.0802 0.0199 5.8511 0.7121 2.7018 0.2370 5.3089
+#> 362: 94.0224 -1.9054 -4.0811 0.0198 5.8509 0.7122 2.7071 0.2368 5.3077
+#> 363: 94.0241 -1.9053 -4.0821 0.0197 5.8582 0.7121 2.7135 0.2366 5.3073
+#> 364: 94.0254 -1.9052 -4.0824 0.0195 5.8606 0.7122 2.7147 0.2362 5.3079
+#> 365: 94.0276 -1.9052 -4.0831 0.0195 5.8668 0.7119 2.7197 0.2359 5.3081
+#> 366: 94.0276 -1.9052 -4.0836 0.0195 5.8765 0.7121 2.7217 0.2357 5.3074
+#> 367: 94.0276 -1.9051 -4.0842 0.0194 5.8627 0.7120 2.7240 0.2354 5.3083
+#> 368: 94.0292 -1.9050 -4.0847 0.0195 5.8579 0.7120 2.7254 0.2352 5.3096
+#> 369: 94.0289 -1.9049 -4.0852 0.0195 5.8590 0.7122 2.7271 0.2350 5.3095
+#> 370: 94.0300 -1.9049 -4.0855 0.0194 5.8712 0.7123 2.7284 0.2348 5.3094
+#> 371: 94.0309 -1.9050 -4.0858 0.0194 5.8766 0.7122 2.7295 0.2346 5.3095
+#> 372: 94.0306 -1.9050 -4.0860 0.0196 5.8800 0.7121 2.7306 0.2344 5.3101
+#> 373: 94.0315 -1.9051 -4.0861 0.0196 5.8840 0.7120 2.7305 0.2341 5.3091
+#> 374: 94.0323 -1.9052 -4.0862 0.0194 5.8755 0.7120 2.7301 0.2337 5.3101
+#> 375: 94.0344 -1.9055 -4.0863 0.0193 5.8744 0.7122 2.7308 0.2333 5.3121
+#> 376: 94.0341 -1.9056 -4.0865 0.0191 5.8738 0.7122 2.7311 0.2327 5.3136
+#> 377: 94.0320 -1.9055 -4.0868 0.0188 5.8703 0.7121 2.7311 0.2322 5.3161
+#> 378: 94.0291 -1.9058 -4.0869 0.0186 5.8771 0.7124 2.7311 0.2317 5.3187
+#> 379: 94.0273 -1.9062 -4.0872 0.0184 5.8829 0.7127 2.7316 0.2312 5.3206
+#> 380: 94.0259 -1.9067 -4.0875 0.0181 5.8786 0.7130 2.7321 0.2306 5.3235
+#> 381: 94.0231 -1.9068 -4.0877 0.0178 5.8716 0.7132 2.7331 0.2300 5.3231
+#> 382: 94.0210 -1.9069 -4.0879 0.0172 5.8636 0.7134 2.7340 0.2294 5.3240
+#> 383: 94.0189 -1.9070 -4.0880 0.0167 5.8596 0.7140 2.7351 0.2287 5.3246
+#> 384: 94.0171 -1.9070 -4.0882 0.0161 5.8588 0.7147 2.7365 0.2281 5.3251
+#> 385: 94.0141 -1.9070 -4.0880 0.0154 5.8659 0.7152 2.7365 0.2276 5.3263
+#> 386: 94.0116 -1.9070 -4.0879 0.0148 5.8785 0.7158 2.7364 0.2270 5.3272
+#> 387: 94.0090 -1.9070 -4.0877 0.0142 5.8874 0.7164 2.7363 0.2264 5.3286
+#> 388: 94.0068 -1.9069 -4.0875 0.0136 5.9016 0.7169 2.7364 0.2258 5.3299
+#> 389: 94.0063 -1.9067 -4.0873 0.0131 5.9114 0.7175 2.7363 0.2253 5.3332
+#> 390: 94.0074 -1.9064 -4.0872 0.0126 5.9258 0.7175 2.7362 0.2249 5.3353
+#> 391: 94.0092 -1.9061 -4.0870 0.0121 5.9426 0.7174 2.7359 0.2245 5.3370
+#> 392: 94.0112 -1.9060 -4.0870 0.0119 5.9499 0.7175 2.7358 0.2242 5.3375
+#> 393: 94.0120 -1.9058 -4.0869 0.0116 5.9514 0.7177 2.7351 0.2237 5.3364
+#> 394: 94.0137 -1.9056 -4.0867 0.0112 5.9560 0.7179 2.7342 0.2234 5.3371
+#> 395: 94.0150 -1.9054 -4.0866 0.0109 5.9566 0.7184 2.7340 0.2229 5.3376
+#> 396: 94.0175 -1.9054 -4.0866 0.0106 5.9564 0.7189 2.7341 0.2226 5.3370
+#> 397: 94.0195 -1.9055 -4.0866 0.0104 5.9447 0.7193 2.7344 0.2223 5.3378
+#> 398: 94.0201 -1.9056 -4.0867 0.0102 5.9353 0.7197 2.7348 0.2220 5.3380
+#> 399: 94.0204 -1.9056 -4.0868 0.0101 5.9282 0.7201 2.7350 0.2217 5.3387
+#> 400: 94.0198 -1.9058 -4.0867 0.0099 5.9243 0.7206 2.7348 0.2214 5.3383
+#> 401: 94.0194 -1.9059 -4.0867 0.0097 5.9225 0.7210 2.7345 0.2211 5.3379
+#> 402: 94.0176 -1.9060 -4.0868 0.0096 5.9237 0.7215 2.7342 0.2209 5.3370
+#> 403: 94.0172 -1.9061 -4.0869 0.0095 5.9259 0.7220 2.7337 0.2206 5.3371
+#> 404: 94.0147 -1.9062 -4.0870 0.0093 5.9322 0.7226 2.7330 0.2203 5.3382
+#> 405: 94.0131 -1.9065 -4.0872 0.0092 5.9354 0.7232 2.7326 0.2202 5.3385
+#> 406: 94.0117 -1.9066 -4.0872 0.0091 5.9399 0.7237 2.7318 0.2200 5.3388
+#> 407: 94.0114 -1.9069 -4.0871 0.0090 5.9495 0.7238 2.7314 0.2199 5.3397
+#> 408: 94.0133 -1.9071 -4.0870 0.0089 5.9505 0.7238 2.7310 0.2197 5.3401
+#> 409: 94.0159 -1.9074 -4.0868 0.0090 5.9523 0.7237 2.7309 0.2196 5.3417
+#> 410: 94.0171 -1.9076 -4.0864 0.0087 5.9503 0.7235 2.7307 0.2195 5.3449
+#> 411: 94.0193 -1.9078 -4.0862 0.0086 5.9528 0.7234 2.7304 0.2194 5.3476
+#> 412: 94.0193 -1.9082 -4.0860 0.0088 5.9516 0.7236 2.7303 0.2195 5.3509
+#> 413: 94.0192 -1.9085 -4.0859 0.0087 5.9491 0.7235 2.7302 0.2195 5.3517
+#> 414: 94.0175 -1.9086 -4.0860 0.0087 5.9453 0.7237 2.7297 0.2196 5.3523
+#> 415: 94.0156 -1.9088 -4.0861 0.0088 5.9408 0.7238 2.7289 0.2196 5.3528
+#> 416: 94.0145 -1.9090 -4.0861 0.0088 5.9442 0.7236 2.7281 0.2197 5.3540
+#> 417: 94.0140 -1.9093 -4.0862 0.0092 5.9459 0.7235 2.7274 0.2198 5.3549
+#> 418: 94.0144 -1.9097 -4.0864 0.0095 5.9495 0.7233 2.7269 0.2199 5.3551
+#> 419: 94.0142 -1.9102 -4.0866 0.0099 5.9425 0.7233 2.7265 0.2200 5.3555
+#> 420: 94.0134 -1.9107 -4.0867 0.0102 5.9338 0.7234 2.7260 0.2200 5.3563
+#> 421: 94.0096 -1.9113 -4.0869 0.0105 5.9272 0.7236 2.7260 0.2200 5.3571
+#> 422: 94.0069 -1.9118 -4.0872 0.0108 5.9238 0.7238 2.7261 0.2200 5.3576
+#> 423: 94.0034 -1.9124 -4.0874 0.0111 5.9217 0.7240 2.7260 0.2200 5.3579
+#> 424: 94.0009 -1.9129 -4.0876 0.0114 5.9258 0.7240 2.7259 0.2200 5.3578
+#> 425: 94.0000 -1.9134 -4.0879 0.0119 5.9330 0.7240 2.7258 0.2199 5.3572
+#> 426: 93.9991 -1.9138 -4.0881 0.0122 5.9526 0.7243 2.7256 0.2198 5.3572
+#> 427: 93.9969 -1.9140 -4.0882 0.0124 5.9692 0.7247 2.7258 0.2196 5.3587
+#> 428: 93.9940 -1.9143 -4.0883 0.0124 5.9777 0.7247 2.7259 0.2194 5.3591
+#> 429: 93.9935 -1.9145 -4.0882 0.0123 5.9781 0.7247 2.7260 0.2192 5.3601
+#> 430: 93.9925 -1.9147 -4.0881 0.0122 5.9772 0.7247 2.7260 0.2190 5.3606
+#> 431: 93.9928 -1.9150 -4.0879 0.0120 5.9824 0.7249 2.7262 0.2189 5.3616
+#> 432: 93.9930 -1.9152 -4.0879 0.0120 5.9797 0.7251 2.7267 0.2188 5.3618
+#> 433: 93.9930 -1.9154 -4.0878 0.0119 5.9785 0.7254 2.7271 0.2187 5.3626
+#> 434: 93.9930 -1.9156 -4.0878 0.0120 5.9711 0.7255 2.7273 0.2186 5.3638
+#> 435: 93.9935 -1.9157 -4.0878 0.0120 5.9659 0.7255 2.7269 0.2186 5.3643
+#> 436: 93.9951 -1.9158 -4.0876 0.0120 5.9570 0.7253 2.7263 0.2184 5.3667
+#> 437: 93.9980 -1.9158 -4.0874 0.0119 5.9492 0.7252 2.7259 0.2182 5.3680
+#> 438: 93.9999 -1.9158 -4.0872 0.0117 5.9361 0.7250 2.7255 0.2179 5.3700
+#> 439: 93.9990 -1.9159 -4.0868 0.0115 5.9312 0.7249 2.7247 0.2177 5.3700
+#> 440: 93.9986 -1.9160 -4.0865 0.0114 5.9280 0.7248 2.7235 0.2175 5.3698
+#> 441: 93.9996 -1.9160 -4.0863 0.0114 5.9248 0.7246 2.7222 0.2173 5.3696
+#> 442: 94.0001 -1.9160 -4.0861 0.0114 5.9266 0.7243 2.7213 0.2171 5.3702
+#> 443: 94.0004 -1.9159 -4.0859 0.0113 5.9228 0.7241 2.7202 0.2169 5.3707
+#> 444: 93.9989 -1.9161 -4.0858 0.0113 5.9200 0.7239 2.7194 0.2166 5.3722
+#> 445: 93.9971 -1.9162 -4.0857 0.0114 5.9257 0.7238 2.7182 0.2165 5.3736
+#> 446: 93.9970 -1.9164 -4.0858 0.0114 5.9286 0.7238 2.7177 0.2164 5.3738
+#> 447: 93.9959 -1.9163 -4.0858 0.0113 5.9407 0.7237 2.7166 0.2165 5.3731
+#> 448: 93.9947 -1.9163 -4.0856 0.0113 5.9442 0.7237 2.7159 0.2167 5.3723
+#> 449: 93.9948 -1.9164 -4.0854 0.0114 5.9386 0.7234 2.7151 0.2170 5.3730
+#> 450: 93.9937 -1.9164 -4.0853 0.0115 5.9368 0.7231 2.7142 0.2172 5.3732
+#> 451: 93.9929 -1.9164 -4.0851 0.0114 5.9312 0.7229 2.7135 0.2173 5.3735
+#> 452: 93.9923 -1.9163 -4.0850 0.0112 5.9288 0.7227 2.7121 0.2175 5.3747
+#> 453: 93.9918 -1.9162 -4.0849 0.0111 5.9339 0.7225 2.7112 0.2178 5.3759
+#> 454: 93.9912 -1.9164 -4.0849 0.0111 5.9355 0.7224 2.7103 0.2181 5.3777
+#> 455: 93.9902 -1.9164 -4.0849 0.0111 5.9412 0.7223 2.7097 0.2183 5.3784
+#> 456: 93.9894 -1.9164 -4.0848 0.0110 5.9554 0.7223 2.7076 0.2186 5.3801
+#> 457: 93.9902 -1.9161 -4.0846 0.0110 5.9675 0.7219 2.7054 0.2188 5.3807
+#> 458: 93.9907 -1.9159 -4.0845 0.0109 5.9710 0.7216 2.7032 0.2191 5.3815
+#> 459: 93.9926 -1.9157 -4.0844 0.0108 5.9751 0.7213 2.7011 0.2193 5.3817
+#> 460: 93.9930 -1.9155 -4.0845 0.0107 5.9788 0.7210 2.6985 0.2197 5.3818
+#> 461: 93.9933 -1.9153 -4.0845 0.0106 5.9809 0.7208 2.6959 0.2200 5.3822
+#> 462: 93.9941 -1.9153 -4.0845 0.0105 5.9904 0.7205 2.6935 0.2203 5.3820
+#> 463: 93.9945 -1.9152 -4.0844 0.0105 5.9971 0.7201 2.6913 0.2206 5.3817
+#> 464: 93.9942 -1.9151 -4.0844 0.0104 6.0010 0.7198 2.6892 0.2209 5.3818
+#> 465: 93.9931 -1.9152 -4.0843 0.0103 6.0113 0.7193 2.6872 0.2212 5.3823
+#> 466: 93.9937 -1.9152 -4.0840 0.0101 6.0145 0.7188 2.6853 0.2215 5.3828
+#> 467: 93.9939 -1.9152 -4.0838 0.0099 6.0189 0.7182 2.6835 0.2218 5.3832
+#> 468: 93.9933 -1.9153 -4.0835 0.0097 6.0247 0.7177 2.6818 0.2221 5.3830
+#> 469: 93.9933 -1.9153 -4.0832 0.0095 6.0251 0.7173 2.6801 0.2224 5.3822
+#> 470: 93.9914 -1.9153 -4.0829 0.0092 6.0332 0.7169 2.6785 0.2226 5.3823
+#> 471: 93.9894 -1.9153 -4.0826 0.0089 6.0455 0.7165 2.6769 0.2230 5.3822
+#> 472: 93.9869 -1.9152 -4.0824 0.0086 6.0454 0.7161 2.6754 0.2232 5.3836
+#> 473: 93.9852 -1.9152 -4.0822 0.0084 6.0501 0.7159 2.6740 0.2234 5.3832
+#> 474: 93.9829 -1.9152 -4.0821 0.0082 6.0579 0.7155 2.6725 0.2235 5.3831
+#> 475: 93.9826 -1.9152 -4.0819 0.0082 6.0661 0.7150 2.6711 0.2238 5.3829
+#> 476: 93.9837 -1.9152 -4.0819 0.0082 6.0774 0.7147 2.6696 0.2241 5.3824
+#> 477: 93.9852 -1.9151 -4.0819 0.0081 6.0890 0.7145 2.6681 0.2244 5.3817
+#> 478: 93.9851 -1.9151 -4.0820 0.0080 6.0957 0.7144 2.6665 0.2246 5.3827
+#> 479: 93.9857 -1.9150 -4.0820 0.0079 6.0981 0.7144 2.6651 0.2250 5.3838
+#> 480: 93.9856 -1.9151 -4.0821 0.0080 6.0944 0.7144 2.6638 0.2255 5.3854
+#> 481: 93.9864 -1.9152 -4.0823 0.0081 6.0912 0.7144 2.6624 0.2258 5.3865
+#> 482: 93.9870 -1.9153 -4.0825 0.0081 6.0954 0.7142 2.6613 0.2262 5.3864
+#> 483: 93.9888 -1.9153 -4.0826 0.0081 6.0888 0.7141 2.6602 0.2267 5.3870
+#> 484: 93.9903 -1.9154 -4.0828 0.0082 6.0848 0.7139 2.6592 0.2272 5.3861
+#> 485: 93.9914 -1.9154 -4.0831 0.0085 6.0851 0.7138 2.6586 0.2275 5.3858
+#> 486: 93.9909 -1.9154 -4.0834 0.0088 6.0824 0.7137 2.6581 0.2278 5.3850
+#> 487: 93.9899 -1.9155 -4.0838 0.0091 6.0870 0.7137 2.6577 0.2281 5.3838
+#> 488: 93.9882 -1.9156 -4.0842 0.0095 6.0877 0.7135 2.6574 0.2284 5.3835
+#> 489: 93.9865 -1.9163 -4.0841 0.0099 6.0839 0.7139 2.6581 0.2287 5.3835
+#> 490: 93.9859 -1.9170 -4.0841 0.0104 6.0783 0.7143 2.6587 0.2290 5.3830
+#> 491: 93.9847 -1.9177 -4.0838 0.0108 6.0773 0.7148 2.6596 0.2293 5.3824
+#> 492: 93.9840 -1.9183 -4.0836 0.0110 6.0833 0.7152 2.6606 0.2295 5.3817
+#> 493: 93.9832 -1.9188 -4.0834 0.0113 6.0832 0.7157 2.6613 0.2297 5.3814
+#> 494: 93.9824 -1.9195 -4.0832 0.0115 6.0859 0.7163 2.6620 0.2299 5.3819
+#> 495: 93.9813 -1.9200 -4.0830 0.0117 6.0878 0.7169 2.6633 0.2300 5.3820
+#> 496: 93.9798 -1.9206 -4.0827 0.0118 6.0871 0.7173 2.6644 0.2302 5.3825
+#> 497: 93.9787 -1.9213 -4.0824 0.0120 6.0856 0.7178 2.6653 0.2304 5.3834
+#> 498: 93.9771 -1.9220 -4.0822 0.0123 6.0759 0.7181 2.6660 0.2308 5.3850
+#> 499: 93.9744 -1.9225 -4.0819 0.0125 6.0692 0.7183 2.6666 0.2311 5.3868
+#> 500: 93.9728 -1.9229 -4.0816 0.0129 6.0609 0.7184 2.6675 0.2314 5.3884#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Calculating residuals/tables#> done#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 | log_k1 | log_k2 | g_qlogis |
+#> |.....................| sigma | o1 | o2 | o3 |
+#> |.....................| o4 |...........|...........|...........|
+#> | 1| 319.20504 | 1.000 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8747 | -0.8993 | -0.8937 | -0.8958 |
+#> |.....................| -0.8908 |...........|...........|...........|
+#> | U| 319.20504 | 94.08 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 319.20504 | 94.08 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | G| Gill Diff. | 17.25 | -0.06517 | -0.2231 | 0.05323 |
+#> |.....................| -31.06 | 10.54 | -5.521 | 3.149 |
+#> |.....................| -10.19 |...........|...........|...........|
+#> | 2| 930.59637 | 0.5572 | -0.9500 | -0.9943 | -0.9135 |
+#> |.....................| -0.07749 | -1.170 | -0.7520 | -0.9767 |
+#> |.....................| -0.6292 |...........|...........|...........|
+#> | U| 930.59637 | 52.42 | -1.832 | -4.205 | 0.1099 |
+#> |.....................| 2.723 | 0.5378 | 1.159 | 0.8352 |
+#> |.....................| 1.457 |...........|...........|...........|
+#> | X| 930.59637 | 52.42 | 0.1600 | 0.01492 | 0.5274 |
+#> |.....................| 2.723 | 0.5378 | 1.159 | 0.8352 |
+#> |.....................| 1.457 |...........|...........|...........|
+#> | 3| 366.81009 | 0.9557 | -0.9515 | -0.9994 | -0.9122 |
+#> |.....................| -0.7950 | -0.9264 | -0.8795 | -0.9039 |
+#> |.....................| -0.8647 |...........|...........|...........|
+#> | U| 366.81009 | 89.92 | -1.834 | -4.210 | 0.1100 |
+#> |.....................| 2.024 | 0.7174 | 1.030 | 0.9013 |
+#> |.....................| 1.185 |...........|...........|...........|
+#> | X| 366.81009 | 89.92 | 0.1598 | 0.01484 | 0.5275 |
+#> |.....................| 2.024 | 0.7174 | 1.030 | 0.9013 |
+#> |.....................| 1.185 |...........|...........|...........|
+#> | 4| 354.05577 | 0.9956 | -0.9516 | -0.9999 | -0.9121 |
+#> |.....................| -0.8667 | -0.9020 | -0.8922 | -0.8966 |
+#> |.....................| -0.8882 |...........|...........|...........|
+#> | U| 354.05577 | 93.67 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.954 | 0.7353 | 1.017 | 0.9079 |
+#> |.....................| 1.158 |...........|...........|...........|
+#> | X| 354.05577 | 93.67 | 0.1597 | 0.01484 | 0.5275 |
+#> |.....................| 1.954 | 0.7353 | 1.017 | 0.9079 |
+#> |.....................| 1.158 |...........|...........|...........|
+#> | 5| 354.18966 | 0.9996 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8739 | -0.8996 | -0.8935 | -0.8959 |
+#> |.....................| -0.8906 |...........|...........|...........|
+#> | U| 354.18966 | 94.04 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7371 | 1.015 | 0.9086 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 354.18966 | 94.04 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7371 | 1.015 | 0.9086 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | 6| 354.21855 | 1.000 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8746 | -0.8993 | -0.8937 | -0.8958 |
+#> |.....................| -0.8908 |...........|...........|...........|
+#> | U| 354.21855 | 94.08 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 354.21855 | 94.08 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | 7| 354.22159 | 1.000 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8747 | -0.8993 | -0.8937 | -0.8958 |
+#> |.....................| -0.8908 |...........|...........|...........|
+#> | U| 354.22159 | 94.08 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 354.22159 | 94.08 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | 8| 354.22201 | 1.000 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8747 | -0.8993 | -0.8937 | -0.8958 |
+#> |.....................| -0.8908 |...........|...........|...........|
+#> | U| 354.22201 | 94.08 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 354.22201 | 94.08 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | 9| 354.22204 | 1.000 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8747 | -0.8993 | -0.8937 | -0.8958 |
+#> |.....................| -0.8908 |...........|...........|...........|
+#> | U| 354.22204 | 94.08 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 354.22204 | 94.08 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | 10| 354.22204 | 1.000 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8747 | -0.8993 | -0.8937 | -0.8958 |
+#> |.....................| -0.8908 |...........|...........|...........|
+#> | U| 354.22204 | 94.08 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 354.22204 | 94.08 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | 11| 354.22204 | 1.000 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8747 | -0.8993 | -0.8937 | -0.8958 |
+#> |.....................| -0.8908 |...........|...........|...........|
+#> | U| 354.22204 | 94.08 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 354.22204 | 94.08 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | 12| 354.22204 | 1.000 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8747 | -0.8993 | -0.8937 | -0.8958 |
+#> |.....................| -0.8908 |...........|...........|...........|
+#> | U| 354.22204 | 94.08 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 354.22204 | 94.08 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | 13| 354.22204 | 1.000 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8747 | -0.8993 | -0.8937 | -0.8958 |
+#> |.....................| -0.8908 |...........|...........|...........|
+#> | U| 354.22204 | 94.08 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 354.22204 | 94.08 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | 14| 354.22204 | 1.000 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8747 | -0.8993 | -0.8937 | -0.8958 |
+#> |.....................| -0.8908 |...........|...........|...........|
+#> | U| 354.22204 | 94.08 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 354.22204 | 94.08 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | 15| 354.22200 | 1.000 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8747 | -0.8993 | -0.8937 | -0.8958 |
+#> |.....................| -0.8908 |...........|...........|...........|
+#> | U| 354.222 | 94.08 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 354.222 | 94.08 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | 16| 354.22200 | 1.000 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8747 | -0.8993 | -0.8937 | -0.8958 |
+#> |.....................| -0.8908 |...........|...........|...........|
+#> | U| 354.222 | 94.08 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 354.222 | 94.08 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | 17| 354.22200 | 1.000 | -0.9516 | -1.000 | -0.9121 |
+#> |.....................| -0.8747 | -0.8993 | -0.8937 | -0.8958 |
+#> |.....................| -0.8908 |...........|...........|...........|
+#> | U| 354.222 | 94.08 | -1.834 | -4.211 | 0.1100 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> | X| 354.222 | 94.08 | 0.1597 | 0.01483 | 0.5275 |
+#> |.....................| 1.947 | 0.7373 | 1.015 | 0.9087 |
+#> |.....................| 1.155 |...........|...........|...........|
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> 1: 93.5894 -2.4029 -3.9815 2.0318 3.0448 0.8581 1.0844 0.3182 21.0327
+#> 2: 93.5363 -2.3652 -3.9374 1.9473 2.8925 0.8152 1.0302 0.3023 14.7642
+#> 3: 93.3061 -2.3950 -3.8630 1.9537 2.7479 0.7744 1.0729 0.2872 12.2332
+#> 4: 93.4757 -2.3967 -3.8509 1.9504 2.6105 0.7357 1.1580 0.2729 11.6140
+#> 5: 93.6045 -2.3957 -3.8593 1.9732 2.4800 0.6989 1.1001 0.2592 11.0776
+#> 6: 93.6138 -2.4089 -3.9577 1.9557 2.8119 0.6640 1.0451 0.2463 11.5001
+#> 7: 93.4125 -2.3879 -3.8924 1.9950 3.1015 0.6308 1.0649 0.2339 10.6133
+#> 8: 93.5798 -2.3850 -3.9314 1.9888 3.0019 0.5992 1.0116 0.2222 10.4278
+#> 9: 93.1493 -2.3918 -3.9011 2.0040 4.3802 0.5693 1.0723 0.2111 10.2172
+#> 10: 93.5411 -2.3906 -3.8778 1.9664 4.5606 0.5408 1.0616 0.2006 10.1244
+#> 11: 93.3749 -2.4011 -3.8586 1.9682 4.3326 0.5138 1.0696 0.1905 10.1145
+#> 12: 93.0136 -2.3943 -3.8530 1.9633 4.1160 0.4881 1.0606 0.1810 10.0091
+#> 13: 93.1809 -2.4059 -3.9088 1.9821 3.9102 0.5448 1.0076 0.1720 9.8058
+#> 14: 93.3891 -2.4107 -3.9285 1.9894 3.7147 0.5504 0.9810 0.1634 10.2784
+#> 15: 93.4041 -2.4114 -3.9711 2.0216 4.4250 0.6070 0.9495 0.1552 9.4036
+#> 16: 93.4244 -2.4191 -4.0366 2.0511 4.2037 0.6035 0.9020 0.1474 10.0835
+#> 17: 93.6295 -2.4103 -4.0143 2.0509 4.0926 0.5997 0.8599 0.1401 9.7686
+#> 18: 93.6653 -2.4165 -3.9724 2.0405 3.8880 0.5979 0.9046 0.1331 9.6299
+#> 19: 93.6510 -2.4088 -3.9969 2.0328 3.6936 0.5934 0.9181 0.1264 9.3236
+#> 20: 93.6048 -2.4117 -3.9552 2.0268 3.9084 0.5879 1.0078 0.1201 9.6618
+#> 21: 94.0961 -2.4193 -3.9812 2.0552 3.7456 0.5743 0.9574 0.1141 9.6510
+#> 22: 93.9157 -2.4202 -3.9102 2.0263 5.0447 0.6198 0.9742 0.1294 9.6463
+#> 23: 94.1580 -2.4286 -3.9223 2.0441 4.7925 0.5981 0.9312 0.1230 9.8346
+#> 24: 94.4405 -2.4141 -3.9564 2.0383 4.5529 0.5925 0.9173 0.1168 10.6161
+#> 25: 93.8846 -2.3958 -4.0122 2.0053 4.9956 0.5677 0.8715 0.1173 10.3823
+#> 26: 93.6815 -2.3835 -3.9801 1.9872 5.6625 0.5514 0.8368 0.1114 9.8283
+#> 27: 93.6463 -2.3779 -3.9731 1.9833 5.3794 0.5566 0.8650 0.1059 9.5439
+#> 28: 93.7974 -2.3980 -3.9583 1.9657 6.4804 0.5366 0.8756 0.1006 9.7998
+#> 29: 93.6921 -2.4221 -3.8982 1.9701 6.1564 0.6070 0.9713 0.0955 9.2988
+#> 30: 93.3112 -2.4200 -3.8916 1.9702 6.6968 0.6110 0.9538 0.0908 9.1812
+#> 31: 93.9900 -2.4282 -3.9448 2.0257 6.3620 0.6071 0.9061 0.0862 9.4865
+#> 32: 93.8014 -2.4241 -3.9364 2.0053 6.8497 0.6173 0.8608 0.0819 9.5589
+#> 33: 94.0330 -2.4215 -3.9888 2.0034 6.5072 0.6142 0.8178 0.0778 10.2023
+#> 34: 93.5811 -2.4215 -3.9917 2.0170 6.1819 0.5907 0.8314 0.0842 10.2204
+#> 35: 93.9308 -2.4210 -3.8798 2.0046 6.7593 0.5877 1.1132 0.0800 9.2384
+#> 36: 94.0000 -2.4325 -3.8970 2.0457 6.4213 0.5886 1.0731 0.0835 8.8987
+#> 37: 93.4010 -2.4325 -3.9306 2.0550 7.2268 0.5886 1.0220 0.0969 9.1261
+#> 38: 93.3896 -2.4291 -3.9250 2.0148 6.8655 0.5885 0.9709 0.1039 9.2989
+#> 39: 93.3821 -2.4349 -3.9148 2.0368 6.5222 0.6059 0.9647 0.1095 9.2864
+#> 40: 93.1382 -2.4685 -3.9384 2.1083 8.6249 0.6287 1.0265 0.1066 9.6411
+#> 41: 92.7963 -2.4643 -3.8992 2.0585 8.1937 0.6376 1.1117 0.1234 9.4738
+#> 42: 92.7160 -2.4545 -3.9652 2.0680 7.7840 0.6068 1.0561 0.1173 9.4776
+#> 43: 93.0070 -2.4360 -4.0223 2.0624 7.9556 0.5840 1.0033 0.1114 9.7197
+#> 44: 93.3836 -2.4207 -4.0739 2.0872 7.5578 0.5788 0.9531 0.1058 10.3515
+#> 45: 93.3240 -2.4382 -4.0210 2.1103 7.1799 0.6211 0.9055 0.1165 10.5050
+#> 46: 93.1921 -2.4438 -4.0330 2.0842 7.3884 0.6159 0.8602 0.1107 10.7251
+#> 47: 92.9710 -2.4351 -4.0155 2.1117 7.0189 0.5998 0.8519 0.1091 10.2972
+#> 48: 93.0129 -2.4395 -3.9677 2.0986 6.6680 0.5804 0.8775 0.1058 10.8515
+#> 49: 92.6562 -2.4474 -4.0295 2.0877 6.3346 0.6338 0.8723 0.1155 10.0641
+#> 50: 92.5101 -2.4612 -4.0295 2.0845 6.0179 0.6197 0.8742 0.1097 9.9048
+#> 51: 92.9446 -2.4615 -3.9927 2.1199 5.7170 0.6165 0.9311 0.1042 9.8383
+#> 52: 92.8362 -2.4525 -3.9682 2.0787 5.4311 0.6329 0.9647 0.0990 9.0726
+#> 53: 92.8579 -2.4598 -3.9324 2.0529 5.1596 0.6057 0.9192 0.0940 9.5677
+#> 54: 92.8667 -2.4858 -3.9104 2.0454 5.0661 0.6304 1.0025 0.0893 9.0977
+#> 55: 93.2327 -2.4650 -3.8323 2.0628 6.8188 0.6499 1.1366 0.0852 8.5677
+#> 56: 92.9319 -2.4794 -3.8376 2.0490 6.4778 0.6635 1.1141 0.1064 9.0723
+#> 57: 93.1126 -2.5128 -3.8223 2.0834 6.1539 0.6637 1.1361 0.1010 9.2678
+#> 58: 93.5085 -2.4894 -3.8723 2.0650 5.8462 0.6745 1.0793 0.0960 9.0367
+#> 59: 93.7882 -2.4614 -3.9241 2.0707 5.5539 0.6898 1.0254 0.0912 8.7466
+#> 60: 94.1492 -2.4386 -3.9415 2.0599 5.2762 0.6711 0.9741 0.0932 8.4466
+#> 61: 94.4215 -2.4272 -3.9647 2.0482 5.0124 0.6549 0.9254 0.0911 8.7870
+#> 62: 94.3607 -2.4053 -3.9633 1.9966 4.7618 0.6534 0.8878 0.1221 9.0404
+#> 63: 94.3958 -2.4179 -3.9386 2.0041 4.5237 0.6462 0.9360 0.1245 9.0491
+#> 64: 94.5204 -2.4175 -3.9411 2.0106 4.2975 0.6532 0.9657 0.1183 8.9115
+#> 65: 94.5674 -2.4117 -3.9701 2.0546 4.0826 0.6438 0.9238 0.1247 8.7293
+#> 66: 94.2199 -2.4337 -3.9298 2.0287 4.7686 0.6582 0.9262 0.1185 9.0519
+#> 67: 94.2756 -2.4305 -3.9706 2.0782 4.5301 0.6512 0.8799 0.1126 9.1397
+#> 68: 94.4195 -2.4193 -4.0049 2.0643 4.3036 0.6804 0.8359 0.1220 9.5306
+#> 69: 94.5255 -2.4183 -4.0119 2.0733 4.0884 0.6784 0.8577 0.1297 9.4535
+#> 70: 94.5668 -2.4117 -3.9662 2.0762 4.2149 0.6511 0.9325 0.1475 9.1637
+#> 71: 94.7464 -2.4147 -3.9937 2.0942 4.2418 0.6571 0.9524 0.1540 9.6576
+#> 72: 94.4869 -2.4160 -4.0050 2.1075 4.8520 0.6687 1.0119 0.1488 9.4234
+#> 73: 94.3747 -2.4423 -4.0072 2.1484 6.4364 0.6948 1.0011 0.1438 9.1490
+#> 74: 94.3997 -2.4464 -4.0147 2.1965 6.1146 0.7030 1.0566 0.1521 9.0697
+#> 75: 94.4187 -2.4566 -3.9611 2.1337 5.8089 0.6866 1.1666 0.1656 8.9436
+#> 76: 94.4381 -2.4502 -3.9816 2.1209 5.6488 0.7266 1.1449 0.1573 8.9289
+#> 77: 94.6421 -2.4446 -3.9603 2.1544 5.3663 0.6968 1.2087 0.1662 8.5186
+#> 78: 94.8397 -2.4420 -3.9690 2.1380 5.0980 0.6969 1.1833 0.1578 8.9071
+#> 79: 94.4296 -2.4547 -3.9576 2.1569 6.3095 0.6829 1.1850 0.1544 9.1345
+#> 80: 93.9628 -2.4530 -3.9312 2.0956 8.5844 0.6880 1.2548 0.1835 8.6936
+#> 81: 94.2900 -2.4687 -3.8570 2.0779 9.0596 0.6993 1.2012 0.1743 8.9092
+#> 82: 93.9652 -2.4742 -3.9261 2.0913 8.6066 0.6970 1.1667 0.1656 8.4359
+#> 83: 94.0828 -2.4739 -3.8603 2.0587 8.1763 0.7123 1.2575 0.1638 8.5431
+#> 84: 93.5926 -2.4645 -3.8993 2.0391 9.8721 0.7178 1.1947 0.1556 8.5623
+#> 85: 93.7052 -2.4692 -3.8411 2.0448 9.3785 0.7251 1.1349 0.1478 8.5558
+#> 86: 93.8043 -2.4726 -3.9028 2.0745 8.9096 0.7064 1.0782 0.1404 9.1308
+#> 87: 93.5704 -2.4836 -3.8694 2.0999 12.3224 0.7284 1.0922 0.1334 8.8645
+#> 88: 93.5715 -2.4827 -3.9202 2.0861 11.7063 0.7541 1.0376 0.1267 9.2433
+#> 89: 93.6894 -2.4720 -3.8964 2.1093 12.4610 0.7727 1.0218 0.1325 9.0321
+#> 90: 93.2881 -2.4787 -3.9464 2.1137 11.8380 0.7850 0.9707 0.1258 8.8265
+#> 91: 93.8454 -2.4626 -3.9566 2.1181 11.2461 0.7620 0.9579 0.1396 8.8279
+#> 92: 93.8268 -2.4639 -3.8951 2.0936 10.6838 0.7618 1.1083 0.1553 8.4609
+#> 93: 94.0622 -2.4853 -3.8531 2.0740 10.1496 0.7493 1.1237 0.1596 8.2057
+#> 94: 93.6190 -2.4843 -3.8857 2.0625 9.6421 0.7596 1.1104 0.1686 8.3522
+#> 95: 93.6352 -2.4725 -3.9243 2.0582 9.1600 0.7732 1.0549 0.1694 8.3993
+#> 96: 93.5291 -2.4707 -3.9318 2.0612 8.7020 0.7853 1.0639 0.1609 8.2908
+#> 97: 93.0626 -2.4639 -3.9255 2.0887 8.4092 0.7717 1.1477 0.1685 8.2710
+#> 98: 93.3712 -2.4677 -3.9642 2.1350 7.9888 0.7703 1.0903 0.1921 8.5468
+#> 99: 93.7108 -2.4848 -3.9775 2.1733 7.5893 0.7490 1.0367 0.1825 8.5629
+#> 100: 94.1114 -2.4867 -4.0111 2.1705 7.2099 0.7446 0.9849 0.1832 8.6964
+#> 101: 93.7547 -2.4897 -3.9793 2.1817 7.1755 0.7513 0.9899 0.1774 8.5077
+#> 102: 93.8818 -2.5029 -3.9929 2.2028 6.8167 0.7137 1.0045 0.1685 8.3706
+#> 103: 94.0026 -2.5094 -3.9680 2.2059 6.4759 0.7073 1.0498 0.1601 8.3087
+#> 104: 93.5946 -2.5260 -3.9640 2.2209 6.2674 0.7688 1.0548 0.1531 8.3444
+#> 105: 93.3863 -2.5431 -4.0087 2.2211 7.1040 0.7987 1.0020 0.1454 8.2210
+#> 106: 93.1536 -2.5365 -4.0243 2.2457 6.7488 0.7909 0.9519 0.1389 8.0950
+#> 107: 93.2220 -2.5446 -4.0016 2.2508 6.4114 0.8108 0.9483 0.1364 8.5629
+#> 108: 93.0778 -2.5470 -3.9678 2.2329 6.4774 0.8077 1.0081 0.1850 9.2740
+#> 109: 93.8925 -2.5453 -3.9560 2.2193 6.1535 0.8079 1.0608 0.2111 9.2651
+#> 110: 94.3171 -2.5179 -4.0040 2.2145 5.8458 0.7874 1.0520 0.2135 8.9788
+#> 111: 94.0655 -2.5069 -3.9752 2.2009 5.5536 0.8056 1.1206 0.2192 8.9410
+#> 112: 93.8552 -2.4994 -3.9791 2.1597 5.2759 0.8012 1.0646 0.2365 8.9570
+#> 113: 93.5190 -2.5053 -3.9760 2.1727 5.0121 0.8326 1.0114 0.2246 9.2154
+#> 114: 93.5531 -2.5083 -3.9569 2.1636 4.7615 0.8255 0.9879 0.2134 9.1197
+#> 115: 93.4780 -2.5217 -3.9467 2.1529 4.5234 0.8314 1.0392 0.2027 8.7850
+#> 116: 93.5707 -2.5216 -3.9098 2.1667 4.2972 0.8261 1.1213 0.1926 9.2991
+#> 117: 93.6610 -2.5445 -3.8775 2.1473 4.0824 0.8122 1.1232 0.1830 9.2054
+#> 118: 93.4315 -2.5251 -3.9166 2.1365 4.6012 0.7933 1.0690 0.1738 8.8061
+#> 119: 93.2491 -2.5265 -3.9236 2.1671 5.0672 0.8046 1.0711 0.1709 8.2293
+#> 120: 93.2605 -2.5327 -3.9714 2.1984 4.8138 0.8025 1.0176 0.1623 7.9088
+#> 121: 93.5831 -2.5448 -3.9669 2.2195 4.5731 0.8079 0.9921 0.1542 8.2211
+#> 122: 93.3408 -2.5460 -3.9710 2.2235 4.6838 0.8053 1.0377 0.1658 8.2934
+#> 123: 93.4581 -2.5395 -3.9487 2.2279 4.4496 0.8298 1.0338 0.1732 8.2859
+#> 124: 93.0562 -2.5565 -3.9587 2.2299 4.2272 0.8590 1.0531 0.1964 8.1244
+#> 125: 93.0576 -2.5660 -3.9434 2.2457 4.0158 0.8564 1.0768 0.1866 8.3730
+#> 126: 92.8366 -2.5571 -3.9463 2.2096 3.8150 0.8551 1.0476 0.1773 8.3820
+#> 127: 92.9607 -2.5595 -3.9773 2.2325 3.6243 0.8497 0.9952 0.1684 9.2276
+#> 128: 93.0655 -2.5463 -3.9731 2.1901 3.4430 0.8903 0.9454 0.1600 8.8096
+#> 129: 93.0669 -2.5467 -3.9713 2.2204 3.2709 0.8905 0.9234 0.1520 8.8686
+#> 130: 93.2036 -2.5524 -3.9702 2.2070 3.1073 0.8719 0.9514 0.1578 8.8433
+#> 131: 93.3565 -2.5544 -3.9809 2.1654 2.9520 0.8777 0.9117 0.1764 8.9770
+#> 132: 93.0371 -2.5364 -3.9250 2.1761 2.8044 0.8338 1.0518 0.1731 8.5405
+#> 133: 93.5727 -2.5388 -3.8759 2.1580 3.6769 0.8616 1.0981 0.1858 8.5303
+#> 134: 93.4962 -2.5341 -3.9006 2.1394 4.3695 0.8904 1.0432 0.1765 8.7067
+#> 135: 93.3219 -2.5413 -3.8922 2.1888 4.1510 0.8971 1.0435 0.1857 8.4977
+#> 136: 93.3582 -2.5477 -3.8412 2.1957 3.9435 0.8816 1.1954 0.2102 8.1330
+#> 137: 93.2791 -2.5313 -3.8936 2.1570 3.7463 0.8875 1.1356 0.1997 8.3094
+#> 138: 93.0890 -2.5428 -3.8910 2.1414 3.5590 0.8826 1.1008 0.2120 8.2653
+#> 139: 93.2404 -2.5407 -3.8926 2.1727 3.3810 0.8829 1.1068 0.2014 8.3739
+#> 140: 93.0870 -2.5514 -3.9131 2.2182 3.2120 0.8712 1.0870 0.1914 8.6179
+#> 141: 93.2715 -2.5499 -3.9460 2.2216 3.4383 0.8470 1.0662 0.1900 8.4034
+#> 142: 93.1915 -2.5583 -3.9990 2.2475 5.2653 0.8607 1.0129 0.2061 7.9891
+#> 143: 93.3709 -2.5650 -3.9422 2.2369 5.0020 0.8748 1.2043 0.2248 8.0084
+#> 144: 93.2092 -2.5706 -3.9016 2.1930 4.7519 0.8667 1.1977 0.2179 8.2733
+#> 145: 92.6640 -2.5733 -3.9225 2.1859 4.5143 0.8636 1.1695 0.2070 8.6212
+#> 146: 92.7581 -2.5695 -3.9055 2.1801 5.4209 0.8589 1.1678 0.1967 8.9378
+#> 147: 93.1089 -2.5707 -3.9825 2.2113 7.6640 0.8710 1.1094 0.1934 9.0543
+#> 148: 93.0803 -2.5672 -3.9461 2.2066 9.9043 0.8648 1.1043 0.1863 8.6209
+#> 149: 92.6332 -2.5468 -3.9425 2.1881 9.4091 0.8278 1.1313 0.1769 8.4652
+#> 150: 92.9068 -2.5440 -3.9531 2.2005 8.9386 0.8189 1.1104 0.1681 8.4196
+#> 151: 92.7324 -2.5497 -3.9648 2.2387 8.4917 0.8205 1.1421 0.1597 8.4228
+#> 152: 93.0394 -2.5282 -3.9916 2.2251 3.9029 0.8190 1.0320 0.1612 8.3453
+#> 153: 93.3137 -2.5268 -3.9993 2.2294 3.7951 0.8187 1.0311 0.1780 8.4258
+#> 154: 93.6677 -2.5264 -3.9756 2.2615 4.8704 0.8177 1.1355 0.1799 8.7204
+#> 155: 94.0822 -2.5409 -4.0456 2.2507 5.1202 0.8032 0.9930 0.1613 8.8844
+#> 156: 93.6289 -2.5388 -4.1150 2.2777 4.6367 0.8080 0.8336 0.1817 8.4370
+#> 157: 93.9171 -2.5327 -4.0218 2.2696 3.1121 0.8069 1.0394 0.1800 8.5006
+#> 158: 94.0010 -2.5357 -4.0036 2.2695 3.1485 0.8087 1.1132 0.2048 8.7160
+#> 159: 94.1277 -2.5541 -3.9717 2.2773 5.1432 0.8088 1.0732 0.1980 8.5378
+#> 160: 94.0075 -2.5436 -3.9550 2.2796 4.7826 0.8286 1.0820 0.1953 8.3885
+#> 161: 93.6793 -2.5471 -3.9675 2.2713 3.9366 0.8603 1.0682 0.1972 8.3026
+#> 162: 93.2649 -2.5429 -3.9564 2.2406 2.7349 0.8469 1.0889 0.1929 8.3765
+#> 163: 93.2072 -2.5519 -3.9786 2.2535 3.1500 0.8361 1.1240 0.1997 8.4527
+#> 164: 93.4059 -2.5471 -4.0398 2.2257 2.8708 0.8284 1.0541 0.2105 8.4984
+#> 165: 93.2579 -2.5407 -3.9665 2.2305 2.7397 0.8251 1.1355 0.2302 7.9794
+#> 166: 93.4900 -2.5465 -3.9565 2.2316 1.9775 0.8359 1.0939 0.2243 8.1279
+#> 167: 93.3825 -2.5567 -3.9784 2.2276 2.3737 0.8251 1.0894 0.2254 8.6657
+#> 168: 93.2568 -2.5681 -3.9993 2.2818 2.6721 0.8237 1.1398 0.2207 8.4894
+#> 169: 93.0484 -2.5468 -3.9693 2.2586 1.9105 0.8518 1.1911 0.1917 8.5627
+#> 170: 93.2703 -2.5730 -3.9059 2.2512 2.1481 0.8068 1.3267 0.2198 8.2260
+#> 171: 93.2041 -2.5720 -3.8992 2.2227 2.7790 0.8045 1.2387 0.2059 8.1401
+#> 172: 92.7596 -2.5722 -3.8802 2.2537 2.9977 0.8049 1.2807 0.1831 8.3375
+#> 173: 92.7734 -2.5716 -3.8811 2.1987 3.0176 0.8063 1.3070 0.2285 8.5061
+#> 174: 92.5561 -2.5700 -3.9236 2.2351 3.0286 0.8250 1.2000 0.2200 8.0725
+#> 175: 92.5072 -2.5724 -3.9968 2.2479 2.4287 0.8333 1.0169 0.2235 8.2600
+#> 176: 92.3531 -2.5787 -3.9977 2.2407 2.9999 0.8167 0.9813 0.2451 8.7505
+#> 177: 92.4672 -2.5746 -4.0095 2.2733 2.8040 0.8361 0.9794 0.2363 8.5176
+#> 178: 92.5747 -2.5981 -3.9921 2.2835 1.8203 0.8411 0.9795 0.2112 8.8034
+#> 179: 92.7101 -2.5766 -3.9697 2.2337 1.7808 0.8348 1.0402 0.2247 8.3952
+#> 180: 92.5348 -2.5714 -3.9595 2.2236 1.2661 0.8361 1.0107 0.2375 8.7156
+#> 181: 92.7241 -2.5730 -3.9205 2.2162 1.1047 0.8321 1.1192 0.2147 8.8821
+#> 182: 92.9177 -2.5864 -3.9351 2.2280 1.2069 0.8108 1.1022 0.2163 8.5703
+#> 183: 92.8646 -2.5704 -3.9755 2.2192 1.5680 0.8232 0.9400 0.1848 8.6586
+#> 184: 92.8081 -2.5759 -3.9981 2.2411 1.7739 0.8394 0.8711 0.1788 8.6327
+#> 185: 92.6830 -2.5700 -4.0110 2.2360 1.5375 0.8093 0.9114 0.1782 8.6703
+#> 186: 92.7691 -2.5764 -3.9671 2.2148 1.8813 0.8117 0.9794 0.1901 8.4813
+#> 187: 92.7540 -2.5659 -3.9695 2.2543 1.3755 0.8130 1.0332 0.1960 8.5371
+#> 188: 92.5722 -2.5650 -3.9527 2.2552 1.4000 0.8142 1.1013 0.1881 8.2025
+#> 189: 92.9404 -2.5644 -3.9446 2.2579 1.3589 0.8157 1.1262 0.1741 8.2347
+#> 190: 92.8142 -2.5628 -3.9397 2.2549 1.1871 0.8241 1.1571 0.1728 8.1590
+#> 191: 92.7352 -2.5682 -3.9476 2.2502 0.8302 0.7954 1.1448 0.1859 8.6148
+#> 192: 92.7380 -2.5574 -3.9273 2.2318 0.6692 0.8185 1.1124 0.1932 8.5279
+#> 193: 92.9199 -2.5652 -3.9586 2.2184 0.9877 0.8097 1.1689 0.1709 8.7071
+#> 194: 93.0042 -2.5651 -3.9699 2.2302 1.3311 0.8135 1.1202 0.1832 8.8051
+#> 195: 92.8090 -2.5890 -3.9799 2.2360 0.9251 0.8313 1.0192 0.1806 9.3110
+#> 196: 92.5114 -2.5894 -3.9883 2.2553 0.8504 0.8299 1.0665 0.1855 8.9668
+#> 197: 92.6704 -2.5845 -3.9577 2.2490 0.3567 0.8365 1.0893 0.1896 8.5856
+#> 198: 92.7249 -2.5753 -3.9775 2.2327 0.4282 0.8506 1.0736 0.2003 8.7110
+#> 199: 92.5538 -2.5696 -3.9550 2.2382 0.3177 0.8550 1.1060 0.2132 8.5431
+#> 200: 92.6352 -2.5716 -3.9921 2.2372 0.2500 0.8592 1.0083 0.2057 8.5811
+#> 201: 92.6440 -2.5663 -3.9931 2.2219 0.2611 0.8647 1.0130 0.1931 8.6428
+#> 202: 92.6090 -2.5633 -3.9837 2.2198 0.2389 0.8680 1.0373 0.1958 8.6818
+#> 203: 92.6180 -2.5627 -3.9823 2.2185 0.2315 0.8627 1.0398 0.1939 8.6310
+#> 204: 92.6140 -2.5628 -3.9783 2.2176 0.2289 0.8588 1.0462 0.1923 8.5391
+#> 205: 92.6337 -2.5619 -3.9802 2.2190 0.2227 0.8579 1.0407 0.1965 8.5514
+#> 206: 92.6373 -2.5615 -3.9835 2.2175 0.2313 0.8580 1.0330 0.2006 8.5635
+#> 207: 92.6403 -2.5594 -3.9836 2.2189 0.2365 0.8608 1.0282 0.2017 8.5721
+#> 208: 92.6415 -2.5587 -3.9862 2.2192 0.2480 0.8615 1.0221 0.2001 8.5738
+#> 209: 92.6303 -2.5586 -3.9872 2.2180 0.2544 0.8608 1.0127 0.1966 8.6159
+#> 210: 92.6278 -2.5584 -3.9829 2.2178 0.2577 0.8576 1.0149 0.1932 8.6336
+#> 211: 92.6320 -2.5580 -3.9844 2.2163 0.2614 0.8544 1.0057 0.1902 8.6594
+#> 212: 92.6266 -2.5576 -3.9802 2.2140 0.2554 0.8515 1.0125 0.1891 8.6549
+#> 213: 92.6226 -2.5570 -3.9771 2.2114 0.2491 0.8468 1.0201 0.1879 8.6612
+#> 214: 92.6217 -2.5570 -3.9759 2.2119 0.2430 0.8429 1.0289 0.1859 8.6700
+#> 215: 92.6212 -2.5573 -3.9743 2.2121 0.2354 0.8394 1.0383 0.1853 8.6796
+#> 216: 92.6151 -2.5566 -3.9736 2.2125 0.2329 0.8378 1.0446 0.1850 8.7036
+#> 217: 92.6073 -2.5558 -3.9759 2.2133 0.2311 0.8373 1.0459 0.1854 8.7185
+#> 218: 92.6090 -2.5556 -3.9771 2.2142 0.2312 0.8373 1.0499 0.1866 8.7181
+#> 219: 92.6166 -2.5553 -3.9764 2.2142 0.2358 0.8376 1.0624 0.1882 8.7228
+#> 220: 92.6268 -2.5549 -3.9770 2.2150 0.2404 0.8395 1.0671 0.1899 8.7325
+#> 221: 92.6337 -2.5548 -3.9765 2.2172 0.2460 0.8412 1.0713 0.1900 8.7409
+#> 222: 92.6383 -2.5563 -3.9796 2.2211 0.2499 0.8412 1.0667 0.1898 8.7456
+#> 223: 92.6399 -2.5575 -3.9806 2.2259 0.2494 0.8406 1.0665 0.1898 8.7564
+#> 224: 92.6424 -2.5589 -3.9840 2.2296 0.2451 0.8412 1.0624 0.1894 8.7571
+#> 225: 92.6431 -2.5599 -3.9883 2.2336 0.2427 0.8423 1.0555 0.1885 8.7754
+#> 226: 92.6393 -2.5612 -3.9919 2.2371 0.2384 0.8431 1.0488 0.1886 8.7904
+#> 227: 92.6354 -2.5630 -3.9918 2.2406 0.2361 0.8432 1.0501 0.1892 8.8070
+#> 228: 92.6328 -2.5650 -3.9926 2.2437 0.2336 0.8434 1.0524 0.1908 8.8133
+#> 229: 92.6328 -2.5672 -3.9913 2.2462 0.2318 0.8439 1.0578 0.1926 8.8314
+#> 230: 92.6322 -2.5684 -3.9911 2.2482 0.2269 0.8426 1.0621 0.1952 8.8464
+#> 231: 92.6263 -2.5698 -3.9910 2.2500 0.2240 0.8418 1.0628 0.1963 8.8734
+#> 232: 92.6228 -2.5710 -3.9908 2.2515 0.2218 0.8411 1.0644 0.1977 8.9056
+#> 233: 92.6235 -2.5721 -3.9919 2.2545 0.2192 0.8409 1.0649 0.1983 8.9192
+#> 234: 92.6232 -2.5727 -3.9927 2.2551 0.2171 0.8397 1.0649 0.1981 8.9294
+#> 235: 92.6219 -2.5733 -3.9924 2.2562 0.2155 0.8390 1.0646 0.1978 8.9242
+#> 236: 92.6212 -2.5737 -3.9924 2.2574 0.2145 0.8384 1.0639 0.1975 8.9292
+#> 237: 92.6211 -2.5738 -3.9938 2.2588 0.2142 0.8379 1.0607 0.1970 8.9400
+#> 238: 92.6194 -2.5735 -3.9931 2.2589 0.2155 0.8373 1.0630 0.1969 8.9371
+#> 239: 92.6175 -2.5734 -3.9928 2.2593 0.2155 0.8371 1.0648 0.1967 8.9315
+#> 240: 92.6175 -2.5729 -3.9923 2.2593 0.2143 0.8367 1.0673 0.1963 8.9180
+#> 241: 92.6155 -2.5728 -3.9917 2.2591 0.2133 0.8372 1.0695 0.1960 8.9139
+#> 242: 92.6135 -2.5726 -3.9923 2.2588 0.2136 0.8375 1.0681 0.1965 8.9191
+#> 243: 92.6115 -2.5726 -3.9930 2.2592 0.2127 0.8375 1.0683 0.1969 8.9117
+#> 244: 92.6106 -2.5726 -3.9925 2.2588 0.2123 0.8381 1.0704 0.1975 8.9124
+#> 245: 92.6065 -2.5730 -3.9930 2.2586 0.2127 0.8388 1.0691 0.1982 8.9140
+#> 246: 92.6046 -2.5734 -3.9931 2.2588 0.2109 0.8397 1.0701 0.1986 8.9132
+#> 247: 92.6048 -2.5737 -3.9938 2.2597 0.2081 0.8404 1.0708 0.1989 8.9224
+#> 248: 92.6029 -2.5739 -3.9932 2.2599 0.2056 0.8410 1.0718 0.1993 8.9198
+#> 249: 92.6006 -2.5743 -3.9934 2.2598 0.2052 0.8419 1.0705 0.1996 8.9244
+#> 250: 92.5984 -2.5740 -3.9930 2.2595 0.2037 0.8417 1.0709 0.1997 8.9208
+#> 251: 92.5967 -2.5739 -3.9932 2.2595 0.2018 0.8418 1.0700 0.1996 8.9143
+#> 252: 92.5943 -2.5737 -3.9920 2.2594 0.2009 0.8412 1.0734 0.1992 8.9090
+#> 253: 92.5944 -2.5736 -3.9904 2.2588 0.1997 0.8405 1.0769 0.1995 8.9035
+#> 254: 92.5941 -2.5732 -3.9896 2.2582 0.1987 0.8394 1.0788 0.1993 8.8940
+#> 255: 92.5916 -2.5728 -3.9892 2.2571 0.1983 0.8387 1.0794 0.1988 8.8894
+#> 256: 92.5889 -2.5724 -3.9880 2.2562 0.1988 0.8382 1.0813 0.1992 8.8834
+#> 257: 92.5889 -2.5719 -3.9872 2.2557 0.2003 0.8378 1.0831 0.1995 8.8806
+#> 258: 92.5889 -2.5717 -3.9866 2.2556 0.2021 0.8377 1.0858 0.1995 8.8792
+#> 259: 92.5898 -2.5715 -3.9867 2.2556 0.2033 0.8373 1.0884 0.1999 8.8785
+#> 260: 92.5924 -2.5709 -3.9868 2.2556 0.2033 0.8367 1.0891 0.2006 8.8743
+#> 261: 92.5956 -2.5703 -3.9866 2.2552 0.2045 0.8360 1.0908 0.2014 8.8635
+#> 262: 92.5985 -2.5698 -3.9859 2.2546 0.2054 0.8354 1.0940 0.2022 8.8551
+#> 263: 92.6014 -2.5694 -3.9857 2.2544 0.2067 0.8347 1.0964 0.2028 8.8479
+#> 264: 92.6041 -2.5690 -3.9858 2.2543 0.2069 0.8338 1.0977 0.2028 8.8421
+#> 265: 92.6063 -2.5687 -3.9861 2.2541 0.2079 0.8327 1.0976 0.2029 8.8394
+#> 266: 92.6087 -2.5684 -3.9867 2.2540 0.2107 0.8318 1.0968 0.2027 8.8351
+#> 267: 92.6108 -2.5682 -3.9863 2.2534 0.2118 0.8314 1.0970 0.2032 8.8283
+#> 268: 92.6130 -2.5680 -3.9860 2.2530 0.2131 0.8309 1.0970 0.2034 8.8263
+#> 269: 92.6139 -2.5678 -3.9851 2.2526 0.2155 0.8306 1.0979 0.2040 8.8240
+#> 270: 92.6144 -2.5676 -3.9851 2.2521 0.2176 0.8303 1.0972 0.2044 8.8283
+#> 271: 92.6153 -2.5675 -3.9855 2.2518 0.2190 0.8305 1.0961 0.2049 8.8310
+#> 272: 92.6163 -2.5674 -3.9859 2.2521 0.2196 0.8305 1.0965 0.2051 8.8378
+#> 273: 92.6178 -2.5672 -3.9862 2.2520 0.2198 0.8302 1.0959 0.2051 8.8421
+#> 274: 92.6193 -2.5670 -3.9870 2.2524 0.2195 0.8299 1.0955 0.2051 8.8441
+#> 275: 92.6197 -2.5669 -3.9874 2.2526 0.2194 0.8295 1.0947 0.2052 8.8477
+#> 276: 92.6215 -2.5665 -3.9875 2.2523 0.2206 0.8288 1.0956 0.2058 8.8462
+#> 277: 92.6225 -2.5660 -3.9878 2.2522 0.2231 0.8282 1.0974 0.2064 8.8450
+#> 278: 92.6237 -2.5655 -3.9883 2.2522 0.2240 0.8277 1.0988 0.2074 8.8501
+#> 279: 92.6249 -2.5651 -3.9888 2.2524 0.2244 0.8274 1.0994 0.2083 8.8504
+#> 280: 92.6259 -2.5647 -3.9891 2.2523 0.2235 0.8270 1.0992 0.2087 8.8514
+#> 281: 92.6264 -2.5643 -3.9889 2.2522 0.2225 0.8262 1.1001 0.2090 8.8559
+#> 282: 92.6270 -2.5639 -3.9889 2.2516 0.2223 0.8255 1.0997 0.2090 8.8593
+#> 283: 92.6280 -2.5633 -3.9885 2.2503 0.2214 0.8248 1.0999 0.2101 8.8586
+#> 284: 92.6281 -2.5627 -3.9883 2.2491 0.2212 0.8241 1.0993 0.2110 8.8580
+#> 285: 92.6283 -2.5621 -3.9881 2.2481 0.2213 0.8235 1.0986 0.2118 8.8590
+#> 286: 92.6288 -2.5615 -3.9886 2.2475 0.2219 0.8231 1.0973 0.2123 8.8602
+#> 287: 92.6291 -2.5611 -3.9890 2.2470 0.2217 0.8230 1.0961 0.2133 8.8577
+#> 288: 92.6292 -2.5607 -3.9893 2.2468 0.2202 0.8229 1.0960 0.2142 8.8570
+#> 289: 92.6275 -2.5602 -3.9895 2.2464 0.2192 0.8226 1.0964 0.2151 8.8554
+#> 290: 92.6262 -2.5598 -3.9892 2.2457 0.2189 0.8223 1.0977 0.2161 8.8578
+#> 291: 92.6246 -2.5596 -3.9890 2.2454 0.2183 0.8218 1.0999 0.2165 8.8596
+#> 292: 92.6223 -2.5593 -3.9892 2.2451 0.2183 0.8213 1.1003 0.2173 8.8575
+#> 293: 92.6201 -2.5590 -3.9896 2.2447 0.2193 0.8209 1.1003 0.2175 8.8569
+#> 294: 92.6169 -2.5587 -3.9902 2.2445 0.2202 0.8204 1.0998 0.2176 8.8568
+#> 295: 92.6144 -2.5584 -3.9906 2.2442 0.2217 0.8197 1.0994 0.2176 8.8565
+#> 296: 92.6126 -2.5581 -3.9913 2.2441 0.2223 0.8188 1.0983 0.2175 8.8585
+#> 297: 92.6112 -2.5576 -3.9920 2.2439 0.2235 0.8182 1.0969 0.2175 8.8600
+#> 298: 92.6108 -2.5572 -3.9921 2.2433 0.2250 0.8174 1.0964 0.2177 8.8612
+#> 299: 92.6101 -2.5567 -3.9919 2.2425 0.2254 0.8169 1.0960 0.2178 8.8626
+#> 300: 92.6097 -2.5562 -3.9913 2.2415 0.2257 0.8163 1.0974 0.2182 8.8632
+#> 301: 92.6102 -2.5556 -3.9913 2.2407 0.2255 0.8156 1.0972 0.2183 8.8600
+#> 302: 92.6102 -2.5551 -3.9916 2.2400 0.2252 0.8156 1.0966 0.2186 8.8586
+#> 303: 92.6099 -2.5546 -3.9915 2.2391 0.2250 0.8152 1.0978 0.2189 8.8589
+#> 304: 92.6096 -2.5541 -3.9913 2.2387 0.2242 0.8149 1.0987 0.2194 8.8570
+#> 305: 92.6100 -2.5538 -3.9914 2.2383 0.2247 0.8144 1.0995 0.2202 8.8553
+#> 306: 92.6109 -2.5533 -3.9915 2.2378 0.2255 0.8144 1.1001 0.2212 8.8531
+#> 307: 92.6119 -2.5529 -3.9913 2.2371 0.2252 0.8143 1.1007 0.2217 8.8498
+#> 308: 92.6128 -2.5525 -3.9912 2.2366 0.2249 0.8142 1.1012 0.2219 8.8490
+#> 309: 92.6143 -2.5519 -3.9905 2.2357 0.2251 0.8138 1.1018 0.2224 8.8449
+#> 310: 92.6160 -2.5513 -3.9900 2.2346 0.2255 0.8136 1.1020 0.2230 8.8403
+#> 311: 92.6177 -2.5506 -3.9891 2.2333 0.2258 0.8132 1.1031 0.2236 8.8392
+#> 312: 92.6190 -2.5499 -3.9881 2.2319 0.2267 0.8130 1.1047 0.2242 8.8382
+#> 313: 92.6192 -2.5493 -3.9872 2.2305 0.2273 0.8127 1.1057 0.2249 8.8350
+#> 314: 92.6196 -2.5490 -3.9864 2.2300 0.2279 0.8129 1.1067 0.2257 8.8315
+#> 315: 92.6197 -2.5488 -3.9858 2.2295 0.2277 0.8132 1.1072 0.2266 8.8285
+#> 316: 92.6192 -2.5485 -3.9850 2.2284 0.2276 0.8133 1.1087 0.2275 8.8278
+#> 317: 92.6190 -2.5482 -3.9840 2.2275 0.2278 0.8135 1.1105 0.2282 8.8296
+#> 318: 92.6193 -2.5480 -3.9833 2.2266 0.2274 0.8133 1.1120 0.2289 8.8313
+#> 319: 92.6200 -2.5476 -3.9827 2.2257 0.2265 0.8129 1.1133 0.2297 8.8326
+#> 320: 92.6211 -2.5472 -3.9820 2.2250 0.2260 0.8124 1.1150 0.2302 8.8359
+#> 321: 92.6226 -2.5468 -3.9816 2.2246 0.2254 0.8118 1.1158 0.2308 8.8396
+#> 322: 92.6238 -2.5464 -3.9808 2.2238 0.2249 0.8114 1.1169 0.2316 8.8424
+#> 323: 92.6248 -2.5461 -3.9805 2.2231 0.2241 0.8109 1.1173 0.2320 8.8458
+#> 324: 92.6252 -2.5458 -3.9801 2.2224 0.2233 0.8103 1.1182 0.2324 8.8474
+#> 325: 92.6248 -2.5455 -3.9799 2.2216 0.2225 0.8096 1.1192 0.2328 8.8507
+#> 326: 92.6247 -2.5451 -3.9802 2.2209 0.2216 0.8091 1.1186 0.2331 8.8519
+#> 327: 92.6248 -2.5446 -3.9806 2.2203 0.2203 0.8088 1.1179 0.2335 8.8535
+#> 328: 92.6242 -2.5442 -3.9808 2.2198 0.2196 0.8084 1.1175 0.2339 8.8533
+#> 329: 92.6234 -2.5437 -3.9809 2.2192 0.2188 0.8081 1.1176 0.2342 8.8550
+#> 330: 92.6229 -2.5433 -3.9806 2.2187 0.2182 0.8078 1.1187 0.2346 8.8574
+#> 331: 92.6220 -2.5429 -3.9801 2.2181 0.2183 0.8075 1.1210 0.2352 8.8599
+#> 332: 92.6214 -2.5425 -3.9796 2.2175 0.2185 0.8072 1.1235 0.2360 8.8612
+#> 333: 92.6215 -2.5421 -3.9794 2.2170 0.2184 0.8068 1.1248 0.2365 8.8660
+#> 334: 92.6218 -2.5417 -3.9795 2.2168 0.2180 0.8065 1.1257 0.2369 8.8675
+#> 335: 92.6220 -2.5413 -3.9793 2.2164 0.2177 0.8062 1.1269 0.2374 8.8683
+#> 336: 92.6228 -2.5410 -3.9792 2.2159 0.2173 0.8059 1.1275 0.2378 8.8707
+#> 337: 92.6244 -2.5405 -3.9792 2.2153 0.2175 0.8057 1.1278 0.2387 8.8734
+#> 338: 92.6266 -2.5401 -3.9792 2.2146 0.2184 0.8057 1.1283 0.2396 8.8757
+#> 339: 92.6290 -2.5398 -3.9790 2.2144 0.2191 0.8060 1.1294 0.2403 8.8770
+#> 340: 92.6309 -2.5396 -3.9790 2.2142 0.2200 0.8061 1.1295 0.2405 8.8766
+#> 341: 92.6328 -2.5394 -3.9788 2.2142 0.2211 0.8061 1.1300 0.2406 8.8752
+#> 342: 92.6347 -2.5392 -3.9788 2.2140 0.2223 0.8062 1.1291 0.2405 8.8744
+#> 343: 92.6365 -2.5390 -3.9787 2.2139 0.2233 0.8063 1.1288 0.2405 8.8732
+#> 344: 92.6383 -2.5388 -3.9785 2.2136 0.2242 0.8060 1.1295 0.2404 8.8730
+#> 345: 92.6392 -2.5386 -3.9781 2.2133 0.2248 0.8055 1.1303 0.2401 8.8737
+#> 346: 92.6401 -2.5384 -3.9780 2.2129 0.2249 0.8051 1.1302 0.2399 8.8739
+#> 347: 92.6411 -2.5381 -3.9777 2.2124 0.2248 0.8049 1.1302 0.2399 8.8794
+#> 348: 92.6427 -2.5380 -3.9777 2.2122 0.2251 0.8047 1.1306 0.2398 8.8814
+#> 349: 92.6444 -2.5378 -3.9777 2.2119 0.2252 0.8047 1.1304 0.2397 8.8834
+#> 350: 92.6462 -2.5376 -3.9776 2.2115 0.2260 0.8043 1.1300 0.2395 8.8859
+#> 351: 92.6470 -2.5375 -3.9772 2.2110 0.2265 0.8041 1.1303 0.2392 8.8883
+#> 352: 92.6478 -2.5373 -3.9772 2.2106 0.2266 0.8037 1.1293 0.2386 8.8926
+#> 353: 92.6493 -2.5373 -3.9772 2.2103 0.2268 0.8032 1.1285 0.2381 8.8928
+#> 354: 92.6504 -2.5372 -3.9772 2.2100 0.2264 0.8028 1.1274 0.2376 8.8946
+#> 355: 92.6512 -2.5370 -3.9771 2.2096 0.2267 0.8023 1.1273 0.2373 8.8951
+#> 356: 92.6522 -2.5367 -3.9767 2.2089 0.2275 0.8018 1.1272 0.2370 8.8947
+#> 357: 92.6534 -2.5364 -3.9765 2.2080 0.2290 0.8015 1.1268 0.2369 8.8932
+#> 358: 92.6545 -2.5362 -3.9761 2.2072 0.2301 0.8011 1.1270 0.2368 8.8919
+#> 359: 92.6566 -2.5360 -3.9757 2.2064 0.2310 0.8008 1.1269 0.2369 8.8928
+#> 360: 92.6584 -2.5358 -3.9751 2.2059 0.2311 0.8005 1.1272 0.2368 8.8924
+#> 361: 92.6611 -2.5356 -3.9744 2.2051 0.2317 0.8004 1.1280 0.2369 8.8932
+#> 362: 92.6639 -2.5353 -3.9740 2.2043 0.2321 0.8003 1.1284 0.2370 8.8914
+#> 363: 92.6662 -2.5349 -3.9733 2.2033 0.2328 0.8001 1.1289 0.2371 8.8902
+#> 364: 92.6679 -2.5345 -3.9729 2.2025 0.2325 0.7998 1.1292 0.2372 8.8883
+#> 365: 92.6695 -2.5341 -3.9725 2.2019 0.2321 0.7994 1.1297 0.2373 8.8865
+#> 366: 92.6709 -2.5337 -3.9722 2.2011 0.2321 0.7990 1.1297 0.2373 8.8860
+#> 367: 92.6724 -2.5334 -3.9720 2.2005 0.2317 0.7987 1.1295 0.2372 8.8848
+#> 368: 92.6736 -2.5330 -3.9719 2.1999 0.2314 0.7985 1.1288 0.2371 8.8844
+#> 369: 92.6745 -2.5326 -3.9717 2.1994 0.2310 0.7982 1.1283 0.2371 8.8840
+#> 370: 92.6758 -2.5323 -3.9714 2.1990 0.2312 0.7980 1.1283 0.2370 8.8854
+#> 371: 92.6776 -2.5321 -3.9708 2.1984 0.2313 0.7977 1.1286 0.2369 8.8852
+#> 372: 92.6791 -2.5317 -3.9704 2.1978 0.2311 0.7973 1.1282 0.2367 8.8865
+#> 373: 92.6804 -2.5312 -3.9701 2.1969 0.2308 0.7969 1.1280 0.2366 8.8884
+#> 374: 92.6814 -2.5308 -3.9699 2.1962 0.2305 0.7965 1.1279 0.2364 8.8898
+#> 375: 92.6827 -2.5304 -3.9698 2.1954 0.2305 0.7961 1.1271 0.2360 8.8938
+#> 376: 92.6832 -2.5301 -3.9695 2.1947 0.2301 0.7957 1.1268 0.2359 8.8930
+#> 377: 92.6835 -2.5298 -3.9692 2.1941 0.2300 0.7953 1.1269 0.2357 8.8933
+#> 378: 92.6831 -2.5295 -3.9693 2.1935 0.2303 0.7950 1.1266 0.2357 8.8990
+#> 379: 92.6827 -2.5293 -3.9694 2.1933 0.2307 0.7948 1.1265 0.2356 8.9027
+#> 380: 92.6826 -2.5291 -3.9695 2.1931 0.2307 0.7947 1.1262 0.2356 8.9045
+#> 381: 92.6822 -2.5290 -3.9695 2.1929 0.2307 0.7945 1.1259 0.2355 8.9040
+#> 382: 92.6817 -2.5289 -3.9694 2.1925 0.2305 0.7943 1.1258 0.2357 8.9033
+#> 383: 92.6812 -2.5288 -3.9695 2.1922 0.2305 0.7942 1.1255 0.2358 8.9045
+#> 384: 92.6810 -2.5288 -3.9695 2.1920 0.2302 0.7940 1.1253 0.2360 8.9058
+#> 385: 92.6806 -2.5287 -3.9694 2.1918 0.2301 0.7938 1.1254 0.2361 8.9052
+#> 386: 92.6801 -2.5286 -3.9692 2.1914 0.2298 0.7936 1.1256 0.2362 8.9039
+#> 387: 92.6800 -2.5285 -3.9687 2.1914 0.2294 0.7934 1.1261 0.2361 8.9032
+#> 388: 92.6801 -2.5284 -3.9683 2.1913 0.2293 0.7931 1.1267 0.2360 8.9027
+#> 389: 92.6802 -2.5283 -3.9684 2.1912 0.2288 0.7928 1.1261 0.2360 8.9028
+#> 390: 92.6805 -2.5281 -3.9684 2.1910 0.2283 0.7925 1.1258 0.2360 8.9044
+#> 391: 92.6806 -2.5280 -3.9685 2.1908 0.2285 0.7921 1.1254 0.2360 8.9047
+#> 392: 92.6810 -2.5278 -3.9682 2.1907 0.2288 0.7918 1.1257 0.2360 8.9057
+#> 393: 92.6810 -2.5275 -3.9681 2.1906 0.2290 0.7916 1.1257 0.2360 8.9049
+#> 394: 92.6811 -2.5272 -3.9682 2.1904 0.2292 0.7913 1.1253 0.2360 8.9056
+#> 395: 92.6812 -2.5269 -3.9682 2.1900 0.2295 0.7911 1.1251 0.2362 8.9044
+#> 396: 92.6817 -2.5269 -3.9683 2.1901 0.2292 0.7911 1.1251 0.2361 8.9031
+#> 397: 92.6824 -2.5269 -3.9686 2.1903 0.2292 0.7911 1.1250 0.2361 8.9043
+#> 398: 92.6828 -2.5270 -3.9688 2.1907 0.2291 0.7913 1.1248 0.2359 8.9035
+#> 399: 92.6829 -2.5271 -3.9689 2.1909 0.2292 0.7916 1.1248 0.2358 8.9043
+#> 400: 92.6829 -2.5273 -3.9688 2.1909 0.2295 0.7919 1.1250 0.2356 8.9037
+#> 401: 92.6827 -2.5274 -3.9687 2.1910 0.2299 0.7922 1.1249 0.2356 8.9035
+#> 402: 92.6822 -2.5276 -3.9687 2.1911 0.2303 0.7926 1.1248 0.2355 8.9033
+#> 403: 92.6821 -2.5277 -3.9686 2.1913 0.2307 0.7929 1.1250 0.2354 8.9009
+#> 404: 92.6817 -2.5279 -3.9684 2.1914 0.2314 0.7930 1.1249 0.2352 8.9012
+#> 405: 92.6813 -2.5281 -3.9683 2.1915 0.2318 0.7930 1.1252 0.2349 8.9015
+#> 406: 92.6811 -2.5283 -3.9680 2.1916 0.2321 0.7930 1.1255 0.2345 8.9019
+#> 407: 92.6817 -2.5285 -3.9677 2.1918 0.2329 0.7930 1.1255 0.2343 8.9014
+#> 408: 92.6824 -2.5287 -3.9675 2.1919 0.2330 0.7930 1.1253 0.2341 8.9019
+#> 409: 92.6833 -2.5289 -3.9674 2.1922 0.2331 0.7931 1.1249 0.2338 8.9031
+#> 410: 92.6840 -2.5291 -3.9673 2.1924 0.2331 0.7930 1.1245 0.2335 8.9054
+#> 411: 92.6848 -2.5292 -3.9672 2.1926 0.2333 0.7929 1.1243 0.2333 8.9083
+#> 412: 92.6852 -2.5293 -3.9671 2.1928 0.2333 0.7931 1.1243 0.2333 8.9107
+#> 413: 92.6858 -2.5293 -3.9671 2.1929 0.2332 0.7932 1.1246 0.2332 8.9119
+#> 414: 92.6863 -2.5293 -3.9671 2.1928 0.2332 0.7934 1.1252 0.2333 8.9112
+#> 415: 92.6868 -2.5293 -3.9671 2.1928 0.2330 0.7935 1.1253 0.2332 8.9109
+#> 416: 92.6872 -2.5293 -3.9672 2.1928 0.2327 0.7935 1.1247 0.2330 8.9101
+#> 417: 92.6875 -2.5293 -3.9674 2.1929 0.2324 0.7934 1.1241 0.2330 8.9126
+#> 418: 92.6881 -2.5294 -3.9675 2.1929 0.2322 0.7935 1.1238 0.2332 8.9148
+#> 419: 92.6885 -2.5295 -3.9674 2.1929 0.2322 0.7936 1.1236 0.2331 8.9179
+#> 420: 92.6890 -2.5297 -3.9674 2.1929 0.2322 0.7936 1.1235 0.2331 8.9194
+#> 421: 92.6891 -2.5299 -3.9672 2.1930 0.2318 0.7937 1.1236 0.2330 8.9192
+#> 422: 92.6894 -2.5301 -3.9670 2.1930 0.2318 0.7937 1.1239 0.2329 8.9183
+#> 423: 92.6898 -2.5302 -3.9667 2.1931 0.2318 0.7937 1.1242 0.2327 8.9190
+#> 424: 92.6905 -2.5304 -3.9667 2.1931 0.2316 0.7937 1.1243 0.2326 8.9190
+#> 425: 92.6910 -2.5305 -3.9667 2.1932 0.2316 0.7936 1.1240 0.2327 8.9203
+#> 426: 92.6917 -2.5306 -3.9668 2.1935 0.2318 0.7937 1.1237 0.2326 8.9200
+#> 427: 92.6918 -2.5308 -3.9671 2.1939 0.2322 0.7938 1.1227 0.2326 8.9224
+#> 428: 92.6912 -2.5310 -3.9670 2.1941 0.2319 0.7939 1.1225 0.2325 8.9268
+#> 429: 92.6912 -2.5312 -3.9670 2.1944 0.2316 0.7939 1.1225 0.2324 8.9301
+#> 430: 92.6910 -2.5314 -3.9674 2.1948 0.2314 0.7940 1.1217 0.2322 8.9314
+#> 431: 92.6911 -2.5315 -3.9675 2.1950 0.2314 0.7942 1.1210 0.2320 8.9320
+#> 432: 92.6911 -2.5316 -3.9677 2.1953 0.2312 0.7944 1.1204 0.2320 8.9327
+#> 433: 92.6910 -2.5317 -3.9681 2.1955 0.2309 0.7946 1.1196 0.2320 8.9336
+#> 434: 92.6910 -2.5318 -3.9683 2.1957 0.2306 0.7949 1.1188 0.2320 8.9337
+#> 435: 92.6912 -2.5319 -3.9687 2.1960 0.2302 0.7951 1.1178 0.2319 8.9343
+#> 436: 92.6914 -2.5320 -3.9688 2.1961 0.2300 0.7953 1.1173 0.2319 8.9345
+#> 437: 92.6919 -2.5321 -3.9688 2.1962 0.2299 0.7955 1.1168 0.2318 8.9335
+#> 438: 92.6920 -2.5323 -3.9688 2.1964 0.2296 0.7957 1.1164 0.2318 8.9334
+#> 439: 92.6917 -2.5324 -3.9689 2.1965 0.2292 0.7959 1.1165 0.2317 8.9322
+#> 440: 92.6910 -2.5326 -3.9688 2.1969 0.2289 0.7960 1.1170 0.2316 8.9319
+#> 441: 92.6907 -2.5328 -3.9688 2.1973 0.2283 0.7961 1.1175 0.2316 8.9317
+#> 442: 92.6909 -2.5330 -3.9689 2.1976 0.2280 0.7962 1.1174 0.2315 8.9326
+#> 443: 92.6911 -2.5332 -3.9689 2.1980 0.2277 0.7963 1.1180 0.2315 8.9338
+#> 444: 92.6906 -2.5332 -3.9690 2.1981 0.2275 0.7963 1.1181 0.2315 8.9354
+#> 445: 92.6897 -2.5333 -3.9691 2.1982 0.2276 0.7962 1.1181 0.2315 8.9364
+#> 446: 92.6896 -2.5333 -3.9692 2.1982 0.2272 0.7962 1.1176 0.2314 8.9363
+#> 447: 92.6893 -2.5334 -3.9693 2.1982 0.2272 0.7961 1.1173 0.2313 8.9365
+#> 448: 92.6890 -2.5334 -3.9693 2.1982 0.2271 0.7961 1.1173 0.2313 8.9364
+#> 449: 92.6888 -2.5335 -3.9693 2.1982 0.2267 0.7961 1.1170 0.2313 8.9372
+#> 450: 92.6884 -2.5335 -3.9693 2.1982 0.2262 0.7959 1.1166 0.2312 8.9364
+#> 451: 92.6885 -2.5335 -3.9691 2.1981 0.2261 0.7958 1.1167 0.2312 8.9350
+#> 452: 92.6887 -2.5335 -3.9691 2.1980 0.2260 0.7957 1.1164 0.2311 8.9349
+#> 453: 92.6888 -2.5335 -3.9691 2.1979 0.2258 0.7957 1.1163 0.2310 8.9375
+#> 454: 92.6890 -2.5335 -3.9689 2.1977 0.2258 0.7957 1.1160 0.2308 8.9385
+#> 455: 92.6894 -2.5334 -3.9687 2.1975 0.2259 0.7956 1.1158 0.2307 8.9382
+#> 456: 92.6898 -2.5334 -3.9685 2.1974 0.2261 0.7957 1.1154 0.2306 8.9380
+#> 457: 92.6904 -2.5334 -3.9685 2.1975 0.2265 0.7956 1.1146 0.2304 8.9391
+#> 458: 92.6908 -2.5334 -3.9687 2.1975 0.2266 0.7956 1.1137 0.2303 8.9418
+#> 459: 92.6911 -2.5335 -3.9689 2.1975 0.2270 0.7956 1.1129 0.2303 8.9442
+#> 460: 92.6912 -2.5335 -3.9687 2.1976 0.2274 0.7957 1.1126 0.2301 8.9461
+#> 461: 92.6913 -2.5336 -3.9687 2.1975 0.2276 0.7958 1.1125 0.2300 8.9463
+#> 462: 92.6914 -2.5336 -3.9686 2.1974 0.2280 0.7959 1.1126 0.2299 8.9456
+#> 463: 92.6917 -2.5336 -3.9684 2.1973 0.2280 0.7960 1.1127 0.2297 8.9452
+#> 464: 92.6918 -2.5336 -3.9683 2.1970 0.2280 0.7961 1.1127 0.2295 8.9444
+#> 465: 92.6921 -2.5336 -3.9682 2.1967 0.2277 0.7962 1.1127 0.2294 8.9447
+#> 466: 92.6924 -2.5336 -3.9679 2.1967 0.2275 0.7964 1.1127 0.2291 8.9454
+#> 467: 92.6930 -2.5336 -3.9677 2.1966 0.2273 0.7967 1.1128 0.2290 8.9453
+#> 468: 92.6935 -2.5337 -3.9675 2.1966 0.2275 0.7970 1.1128 0.2289 8.9458
+#> 469: 92.6937 -2.5338 -3.9676 2.1967 0.2278 0.7972 1.1123 0.2287 8.9455
+#> 470: 92.6938 -2.5338 -3.9677 2.1967 0.2283 0.7974 1.1122 0.2285 8.9451
+#> 471: 92.6940 -2.5339 -3.9676 2.1969 0.2290 0.7976 1.1124 0.2283 8.9448
+#> 472: 92.6938 -2.5339 -3.9676 2.1972 0.2293 0.7977 1.1125 0.2281 8.9460
+#> 473: 92.6937 -2.5340 -3.9676 2.1972 0.2298 0.7978 1.1121 0.2278 8.9461
+#> 474: 92.6934 -2.5341 -3.9677 2.1974 0.2308 0.7978 1.1118 0.2276 8.9470
+#> 475: 92.6936 -2.5342 -3.9677 2.1978 0.2316 0.7979 1.1113 0.2273 8.9486
+#> 476: 92.6940 -2.5345 -3.9679 2.1983 0.2324 0.7981 1.1106 0.2271 8.9491
+#> 477: 92.6945 -2.5347 -3.9681 2.1989 0.2332 0.7983 1.1099 0.2269 8.9502
+#> 478: 92.6951 -2.5349 -3.9682 2.1992 0.2344 0.7986 1.1093 0.2267 8.9502
+#> 479: 92.6958 -2.5352 -3.9683 2.1995 0.2357 0.7987 1.1088 0.2266 8.9521
+#> 480: 92.6967 -2.5354 -3.9684 2.1998 0.2370 0.7988 1.1083 0.2265 8.9524
+#> 481: 92.6977 -2.5355 -3.9685 2.2001 0.2383 0.7990 1.1079 0.2263 8.9521
+#> 482: 92.6985 -2.5357 -3.9687 2.2004 0.2395 0.7992 1.1073 0.2262 8.9518
+#> 483: 92.6992 -2.5359 -3.9690 2.2008 0.2403 0.7995 1.1066 0.2262 8.9524
+#> 484: 92.7000 -2.5361 -3.9691 2.2010 0.2406 0.7998 1.1061 0.2260 8.9516
+#> 485: 92.7009 -2.5362 -3.9693 2.2015 0.2410 0.8001 1.1057 0.2261 8.9508
+#> 486: 92.7010 -2.5363 -3.9695 2.2019 0.2412 0.8004 1.1051 0.2261 8.9502
+#> 487: 92.7008 -2.5365 -3.9698 2.2023 0.2413 0.8009 1.1048 0.2260 8.9502
+#> 488: 92.7006 -2.5366 -3.9700 2.2026 0.2411 0.8012 1.1044 0.2260 8.9501
+#> 489: 92.7006 -2.5367 -3.9701 2.2029 0.2410 0.8015 1.1041 0.2261 8.9504
+#> 490: 92.7006 -2.5368 -3.9702 2.2031 0.2407 0.8015 1.1043 0.2260 8.9498
+#> 491: 92.7007 -2.5369 -3.9701 2.2034 0.2405 0.8016 1.1047 0.2261 8.9484
+#> 492: 92.7008 -2.5370 -3.9702 2.2035 0.2406 0.8017 1.1046 0.2261 8.9473
+#> 493: 92.7010 -2.5370 -3.9704 2.2037 0.2406 0.8018 1.1044 0.2261 8.9469
+#> 494: 92.7015 -2.5371 -3.9707 2.2038 0.2408 0.8019 1.1040 0.2261 8.9453
+#> 495: 92.7017 -2.5371 -3.9708 2.2039 0.2407 0.8021 1.1042 0.2262 8.9447
+#> 496: 92.7016 -2.5371 -3.9708 2.2039 0.2407 0.8022 1.1042 0.2262 8.9433
+#> 497: 92.7015 -2.5371 -3.9709 2.2039 0.2408 0.8023 1.1044 0.2262 8.9431
+#> 498: 92.7013 -2.5371 -3.9709 2.2040 0.2409 0.8024 1.1047 0.2262 8.9452
+#> 499: 92.7011 -2.5371 -3.9710 2.2039 0.2409 0.8023 1.1049 0.2261 8.9481
+#> 500: 92.7010 -2.5371 -3.9712 2.2040 0.2412 0.8022 1.1049 0.2260 8.9498#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Calculating residuals/tables#> done#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 | log_k1 | log_k2 | log_tb |
+#> |.....................| sigma | o1 | o2 | o3 |
+#> |.....................| o4 |...........|...........|...........|
+#> | 1| 360.27275 | 1.000 | -0.9661 | -1.000 | -0.8790 |
+#> |.....................| -0.8669 | -0.9051 | -0.8997 | -0.9009 |
+#> |.....................| -0.8938 |...........|...........|...........|
+#> | U| 360.27275 | 94.06 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | X| 360.27275 | 94.06 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | G| Gill Diff. | 106.2 | 0.7918 | 0.06750 | 10.50 |
+#> |.....................| -26.04 | 2.358 | -5.196 | -2.491 |
+#> |.....................| -12.13 |...........|...........|...........|
+#> | 2| 7055.7467 | 0.04059 | -0.9733 | -1.001 | -0.9739 |
+#> |.....................| -0.6317 | -0.9263 | -0.8528 | -0.8784 |
+#> |.....................| -0.7843 |...........|...........|...........|
+#> | U| 7055.7467 | 3.818 | -2.236 | -3.887 | 1.944 |
+#> |.....................| 2.941 | 0.7466 | 1.074 | 0.9892 |
+#> |.....................| 1.458 |...........|...........|...........|
+#> | X| 7055.7467 | 3.818 | 0.1069 | 0.02050 | 6.988 |
+#> |.....................| 2.941 | 0.7466 | 1.074 | 0.9892 |
+#> |.....................| 1.458 |...........|...........|...........|
+#> | 3| 499.76989 | 0.9041 | -0.9669 | -1.000 | -0.8885 |
+#> |.....................| -0.8434 | -0.9072 | -0.8950 | -0.8986 |
+#> |.....................| -0.8828 |...........|...........|...........|
+#> | U| 499.76989 | 85.03 | -2.229 | -3.887 | 2.030 |
+#> |.....................| 2.663 | 0.7612 | 1.031 | 0.9696 |
+#> |.....................| 1.329 |...........|...........|...........|
+#> | X| 499.76989 | 85.03 | 0.1076 | 0.02051 | 7.611 |
+#> |.....................| 2.663 | 0.7612 | 1.031 | 0.9696 |
+#> |.....................| 1.329 |...........|...........|...........|
+#> | 4| 360.48011 | 0.9904 | -0.9662 | -1.000 | -0.8799 |
+#> |.....................| -0.8645 | -0.9053 | -0.8992 | -0.9007 |
+#> |.....................| -0.8927 |...........|...........|...........|
+#> | U| 360.48011 | 93.15 | -2.229 | -3.887 | 2.038 |
+#> |.....................| 2.635 | 0.7627 | 1.026 | 0.9677 |
+#> |.....................| 1.316 |...........|...........|...........|
+#> | X| 360.48011 | 93.15 | 0.1077 | 0.02051 | 7.676 |
+#> |.....................| 2.635 | 0.7627 | 1.026 | 0.9677 |
+#> |.....................| 1.316 |...........|...........|...........|
+#> | 5| 360.80998 | 0.9960 | -0.9662 | -1.000 | -0.8794 |
+#> |.....................| -0.8659 | -0.9051 | -0.8995 | -0.9008 |
+#> |.....................| -0.8933 |...........|...........|...........|
+#> | U| 360.80998 | 93.68 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.633 | 0.7628 | 1.026 | 0.9676 |
+#> |.....................| 1.315 |...........|...........|...........|
+#> | X| 360.80998 | 93.68 | 0.1077 | 0.02051 | 7.680 |
+#> |.....................| 2.633 | 0.7628 | 1.026 | 0.9676 |
+#> |.....................| 1.315 |...........|...........|...........|
+#> | 6| 361.20154 | 0.9991 | -0.9661 | -1.000 | -0.8791 |
+#> |.....................| -0.8667 | -0.9051 | -0.8996 | -0.9009 |
+#> |.....................| -0.8937 |...........|...........|...........|
+#> | U| 361.20154 | 93.97 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.315 |...........|...........|...........|
+#> | X| 361.20154 | 93.97 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.315 |...........|...........|...........|
+#> | 7| 361.33469 | 0.9999 | -0.9661 | -1.000 | -0.8790 |
+#> |.....................| -0.8669 | -0.9051 | -0.8997 | -0.9009 |
+#> |.....................| -0.8938 |...........|...........|...........|
+#> | U| 361.33469 | 94.05 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | X| 361.33469 | 94.05 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | 8| 361.34878 | 1.000 | -0.9661 | -1.000 | -0.8790 |
+#> |.....................| -0.8669 | -0.9051 | -0.8997 | -0.9009 |
+#> |.....................| -0.8938 |...........|...........|...........|
+#> | U| 361.34878 | 94.06 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | X| 361.34878 | 94.06 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | 9| 361.35091 | 1.000 | -0.9661 | -1.000 | -0.8790 |
+#> |.....................| -0.8669 | -0.9051 | -0.8997 | -0.9009 |
+#> |.....................| -0.8938 |...........|...........|...........|
+#> | U| 361.35091 | 94.06 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | X| 361.35091 | 94.06 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | 10| 361.35004 | 1.000 | -0.9661 | -1.000 | -0.8790 |
+#> |.....................| -0.8669 | -0.9051 | -0.8997 | -0.9009 |
+#> |.....................| -0.8938 |...........|...........|...........|
+#> | U| 361.35004 | 94.06 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | X| 361.35004 | 94.06 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | 11| 361.35006 | 1.000 | -0.9661 | -1.000 | -0.8790 |
+#> |.....................| -0.8669 | -0.9051 | -0.8997 | -0.9009 |
+#> |.....................| -0.8938 |...........|...........|...........|
+#> | U| 361.35006 | 94.06 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | X| 361.35006 | 94.06 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | 12| 361.35006 | 1.000 | -0.9661 | -1.000 | -0.8790 |
+#> |.....................| -0.8669 | -0.9051 | -0.8997 | -0.9009 |
+#> |.....................| -0.8938 |...........|...........|...........|
+#> | U| 361.35006 | 94.06 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | X| 361.35006 | 94.06 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | 13| 361.35006 | 1.000 | -0.9661 | -1.000 | -0.8790 |
+#> |.....................| -0.8669 | -0.9051 | -0.8997 | -0.9009 |
+#> |.....................| -0.8938 |...........|...........|...........|
+#> | U| 361.35006 | 94.06 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | X| 361.35006 | 94.06 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | 14| 361.35006 | 1.000 | -0.9661 | -1.000 | -0.8790 |
+#> |.....................| -0.8669 | -0.9051 | -0.8997 | -0.9009 |
+#> |.....................| -0.8938 |...........|...........|...........|
+#> | U| 361.35006 | 94.06 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | X| 361.35006 | 94.06 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | 15| 361.35006 | 1.000 | -0.9661 | -1.000 | -0.8790 |
+#> |.....................| -0.8669 | -0.9051 | -0.8997 | -0.9009 |
+#> |.....................| -0.8938 |...........|...........|...........|
+#> | U| 361.35006 | 94.06 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | X| 361.35006 | 94.06 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | 16| 361.35006 | 1.000 | -0.9661 | -1.000 | -0.8790 |
+#> |.....................| -0.8669 | -0.9051 | -0.8997 | -0.9009 |
+#> |.....................| -0.8938 |...........|...........|...........|
+#> | U| 361.35006 | 94.06 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | X| 361.35006 | 94.06 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | 17| 361.35006 | 1.000 | -0.9661 | -1.000 | -0.8790 |
+#> |.....................| -0.8669 | -0.9051 | -0.8997 | -0.9009 |
+#> |.....................| -0.8938 |...........|...........|...........|
+#> | U| 361.35006 | 94.06 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | X| 361.35006 | 94.06 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | 18| 361.35006 | 1.000 | -0.9661 | -1.000 | -0.8790 |
+#> |.....................| -0.8669 | -0.9051 | -0.8997 | -0.9009 |
+#> |.....................| -0.8938 |...........|...........|...........|
+#> | U| 361.35006 | 94.06 | -2.229 | -3.887 | 2.039 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> | X| 361.35006 | 94.06 | 0.1077 | 0.02051 | 7.683 |
+#> |.....................| 2.632 | 0.7629 | 1.026 | 0.9675 |
+#> |.....................| 1.314 |...........|...........|...........|
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> 1: 92.2167 0.0936 1.9256 3.3974 0.7958 0.7197 11.8539 0.0004
+#> 2: 92.5446 0.0892 2.4952 3.3516 0.8528 0.6837 4.5197 0.0001
+#> 3: 9.2720e+01 1.3849e-01 2.5917e+00 3.9204e+00 9.5883e-01 6.4953e-01 4.0268e+00 5.9554e-05
+#> 4: 92.6098 0.1052 2.5494 5.0533 1.0968 0.6171 3.2396 0.0200
+#> 5: 92.6795 0.0406 2.4151 5.6729 1.0420 0.5862 3.1558 0.0183
+#> 6: 92.6580 0.0258 2.3640 5.7014 0.9899 0.5569 3.0212 0.0140
+#> 7: 93.0532 -0.0754 2.2262 7.3582 0.9404 0.5291 2.5591 0.0180
+#> 8: 92.8372 -0.0760 2.2080 6.9903 0.8934 0.5026 2.5653 0.0187
+#> 9: 93.0757 -0.1322 2.1663 6.6408 0.8487 0.4775 2.4943 0.0182
+#> 10: 93.0704 -0.1520 2.1410 6.3087 0.8063 0.4536 2.4004 0.0225
+#> 11: 93.1611 -0.1366 2.1740 5.9933 0.7659 0.4309 2.4242 0.0199
+#> 12: 92.7195 -0.0787 2.2947 5.6936 0.7277 0.4094 2.4532 0.0205
+#> 13: 92.6573 -0.1543 2.1929 5.4089 0.6913 0.3889 2.3750 0.0244
+#> 14: 93.1138 -0.1547 2.1924 5.1385 0.6567 0.3695 2.3590 0.0187
+#> 15: 93.5083 -0.1625 2.1831 4.8816 0.6239 0.3510 2.4420 0.0125
+#> 16: 93.2086 -0.1667 2.1516 4.6375 0.5927 0.3334 2.4527 0.0004
+#> 17: 93.3988 -0.1766 2.1521 4.4056 0.5630 0.3168 2.4527 0.0004
+#> 18: 93.4526 -0.1748 2.1461 4.1853 0.5349 0.3009 2.3775 0.0116
+#> 19: 93.5953 -0.1963 2.1167 3.9761 0.5081 0.2859 2.4693 0.0031
+#> 20: 9.3404e+01 -2.4408e-01 2.0453e+00 3.7773e+00 4.8274e-01 2.7158e-01 2.4789e+00 2.0760e-05
+#> 21: 9.3624e+01 -2.4691e-01 2.0524e+00 3.5884e+00 4.5860e-01 2.5800e-01 2.4789e+00 2.0760e-05
+#> 22: 9.3821e+01 -2.5932e-01 2.0021e+00 3.4090e+00 4.3567e-01 2.8670e-01 2.4182e+00 9.3297e-06
+#> 23: 9.3572e+01 -2.3703e-01 2.0725e+00 3.2385e+00 4.4889e-01 2.7237e-01 2.4525e+00 1.5592e-06
+#> 24: 9.3496e+01 -2.2704e-01 2.0746e+00 3.0766e+00 4.3674e-01 2.5875e-01 2.4569e+00 6.1365e-05
+#> 25: 9.3772e+01 -2.2211e-01 2.0762e+00 2.9228e+00 4.4843e-01 2.6194e-01 2.4015e+00 8.3288e-05
+#> 26: 9.3266e+01 -1.9408e-01 2.1345e+00 2.7766e+00 4.6952e-01 2.4885e-01 2.3827e+00 2.9029e-05
+#> 27: 9.3472e+01 -1.9793e-01 2.1141e+00 3.5922e+00 4.7687e-01 2.3640e-01 2.3827e+00 2.9029e-05
+#> 28: 9.3411e+01 -1.7721e-01 2.1334e+00 3.4125e+00 4.8209e-01 2.2458e-01 2.3864e+00 6.5503e-06
+#> 29: 93.6868 -0.1863 2.1258 4.5379 0.4744 0.2134 2.3001 0.0045
+#> 30: 9.4054e+01 -1.8122e-01 2.1287e+00 4.9729e+00 4.7945e-01 2.0269e-01 2.2979e+00 5.8327e-05
+#> 31: 9.3955e+01 -1.9131e-01 2.1202e+00 5.6375e+00 4.7965e-01 1.9255e-01 2.2671e+00 1.6931e-05
+#> 32: 9.4376e+01 -1.6810e-01 2.1287e+00 5.3556e+00 4.7567e-01 1.8972e-01 2.2483e+00 1.1778e-05
+#> 33: 9.4067e+01 -1.5819e-01 2.1656e+00 5.0878e+00 4.5710e-01 1.9389e-01 2.2696e+00 2.4282e-05
+#> 34: 9.4526e+01 -1.6367e-01 2.1473e+00 4.8334e+00 4.7085e-01 1.8419e-01 2.2919e+00 8.8644e-06
+#> 35: 9.4972e+01 -1.6784e-01 2.1353e+00 4.5917e+00 4.7510e-01 1.7498e-01 2.3129e+00 2.2851e-05
+#> 36: 9.4744e+01 -1.5973e-01 2.1281e+00 5.2356e+00 4.5695e-01 1.8499e-01 2.2896e+00 6.8824e-05
+#> 37: 9.4721e+01 -1.6756e-01 2.1168e+00 5.1111e+00 4.6804e-01 1.8407e-01 2.3035e+00 1.5534e-06
+#> 38: 9.4613e+01 -1.5952e-01 2.1385e+00 4.8555e+00 4.6107e-01 1.7720e-01 2.2650e+00 1.2489e-05
+#> 39: 9.4787e+01 -1.6113e-01 2.1458e+00 4.6128e+00 4.6317e-01 1.8378e-01 2.2831e+00 1.3668e-05
+#> 40: 94.5315 -0.1765 2.1186 4.3821 0.4428 0.1902 2.3132 0.0001
+#> 41: 9.4336e+01 -1.8333e-01 2.1285e+00 4.1630e+00 4.4521e-01 1.9913e-01 2.3092e+00 1.3482e-05
+#> 42: 94.0780 -0.2031 2.0724 3.9549 0.4405 0.1892 2.2704 0.0056
+#> 43: 93.9276 -0.1896 2.1191 3.7571 0.4590 0.1797 2.2396 0.0080
+#> 44: 94.2491 -0.1896 2.1006 3.8473 0.4590 0.1764 2.2774 0.0083
+#> 45: 94.4073 -0.1811 2.1156 3.6550 0.4519 0.1676 2.2682 0.0078
+#> 46: 93.9736 -0.1882 2.1196 3.4722 0.4545 0.1633 2.2775 0.0035
+#> 47: 94.1930 -0.1965 2.1102 3.2986 0.4599 0.1664 2.3243 0.0005
+#> 48: 9.4147e+01 -1.9494e-01 2.1118e+00 3.3188e+00 4.7005e-01 1.7181e-01 2.3345e+00 1.1669e-05
+#> 49: 9.4139e+01 -1.7920e-01 2.1199e+00 3.1528e+00 4.7417e-01 1.6322e-01 2.2794e+00 3.5582e-05
+#> 50: 9.4031e+01 -1.9074e-01 2.1098e+00 2.9952e+00 4.7498e-01 1.6695e-01 2.2574e+00 2.7302e-06
+#> 51: 9.3982e+01 -1.9369e-01 2.1058e+00 2.8848e+00 4.8158e-01 1.8408e-01 2.2447e+00 1.8188e-05
+#> 52: 9.3924e+01 -2.0726e-01 2.0809e+00 3.6064e+00 4.7008e-01 2.0029e-01 2.2319e+00 6.8301e-06
+#> 53: 9.4094e+01 -1.9609e-01 2.0780e+00 4.4341e+00 4.7556e-01 1.9742e-01 2.2701e+00 2.1343e-06
+#> 54: 9.4351e+01 -1.9839e-01 2.0746e+00 4.2124e+00 4.7456e-01 1.8866e-01 2.2778e+00 4.8058e-06
+#> 55: 93.9450 -0.1876 2.1059 4.0017 0.4892 0.1792 2.2720 0.0001
+#> 56: 9.3741e+01 -1.8208e-01 2.1172e+00 3.8017e+00 4.7696e-01 1.7027e-01 2.2332e+00 2.1237e-05
+#> 57: 9.3668e+01 -1.8580e-01 2.1181e+00 3.9224e+00 4.7704e-01 1.7425e-01 2.2512e+00 2.2766e-05
+#> 58: 9.3811e+01 -1.8324e-01 2.1178e+00 3.7263e+00 4.7945e-01 1.7939e-01 2.2512e+00 2.2766e-05
+#> 59: 9.3800e+01 -1.6691e-01 2.1250e+00 3.8213e+00 4.9353e-01 1.8464e-01 2.2763e+00 4.6129e-06
+#> 60: 9.3997e+01 -1.5920e-01 2.1489e+00 3.6303e+00 5.0788e-01 1.7541e-01 2.2466e+00 4.1975e-06
+#> 61: 9.4215e+01 -1.6445e-01 2.1482e+00 3.9303e+00 5.1966e-01 1.6664e-01 2.3053e+00 5.8982e-07
+#> 62: 9.3936e+01 -1.6721e-01 2.1376e+00 4.0316e+00 5.3719e-01 1.7228e-01 2.2841e+00 7.8603e-05
+#> 63: 9.3832e+01 -1.6209e-01 2.1334e+00 3.8698e+00 5.4370e-01 1.7064e-01 2.3046e+00 6.4415e-07
+#> 64: 93.9042 -0.1617 2.1563 5.5384 0.5430 0.1622 2.2988 0.0002
+#> 65: 93.8613 -0.1723 2.1239 6.2143 0.5304 0.1541 2.2949 0.0001
+#> 66: 9.4113e+01 -1.9168e-01 2.1019e+00 7.3588e+00 5.1287e-01 1.4641e-01 2.3164e+00 1.2580e-05
+#> 67: 9.3954e+01 -1.8141e-01 2.1199e+00 6.9909e+00 5.0278e-01 1.4993e-01 2.2676e+00 1.1126e-05
+#> 68: 93.8741 -0.1852 2.1343 6.6414 0.4997 0.1493 2.2706 0.0001
+#> 69: 9.3657e+01 -1.8345e-01 2.1375e+00 6.3093e+00 5.0292e-01 1.6326e-01 2.2809e+00 1.7299e-07
+#> 70: 9.3762e+01 -1.7493e-01 2.1512e+00 5.9938e+00 5.1042e-01 1.5509e-01 2.2837e+00 4.5745e-05
+#> 71: 9.4060e+01 -1.6516e-01 2.1440e+00 5.6941e+00 5.1615e-01 1.4734e-01 2.3001e+00 3.9993e-07
+#> 72: 9.3927e+01 -1.7365e-01 2.1347e+00 5.4094e+00 5.2582e-01 1.3997e-01 2.3075e+00 6.3748e-06
+#> 73: 9.4049e+01 -1.8080e-01 2.1254e+00 5.1390e+00 5.1154e-01 1.3297e-01 2.3042e+00 9.5858e-06
+#> 74: 9.3917e+01 -1.9083e-01 2.1051e+00 4.8820e+00 5.0104e-01 1.4605e-01 2.2733e+00 7.4923e-05
+#> 75: 9.4271e+01 -1.8281e-01 2.1059e+00 5.0872e+00 5.0773e-01 1.5322e-01 2.2387e+00 1.4240e-05
+#> 76: 9.4205e+01 -1.8352e-01 2.1160e+00 4.8328e+00 5.0684e-01 1.5669e-01 2.2708e+00 3.6346e-05
+#> 77: 9.4480e+01 -1.8352e-01 2.0942e+00 4.9009e+00 5.0684e-01 1.4885e-01 2.3098e+00 1.8186e-06
+#> 78: 9.4699e+01 -1.9686e-01 2.0671e+00 4.6559e+00 4.9182e-01 1.4503e-01 2.2806e+00 7.9443e-08
+#> 79: 9.4785e+01 -2.0649e-01 2.0500e+00 6.0608e+00 4.6723e-01 1.6185e-01 2.2607e+00 2.1557e-07
+#> 80: 9.4782e+01 -2.0045e-01 2.0680e+00 5.7578e+00 4.5759e-01 1.5747e-01 2.2926e+00 8.6381e-06
+#> 81: 9.4339e+01 -2.0435e-01 2.0885e+00 6.9051e+00 4.5054e-01 1.7410e-01 2.2796e+00 1.5517e-05
+#> 82: 9.4805e+01 -2.1032e-01 2.0658e+00 7.1580e+00 4.7091e-01 1.6539e-01 2.3013e+00 1.3893e-05
+#> 83: 9.4650e+01 -2.0507e-01 2.0485e+00 6.8001e+00 4.7624e-01 1.5938e-01 2.3104e+00 6.6569e-06
+#> 84: 9.4766e+01 -1.9959e-01 2.0667e+00 6.4601e+00 4.7322e-01 1.5619e-01 2.3359e+00 1.8890e-09
+#> 85: 9.4714e+01 -1.9959e-01 2.0756e+00 6.1371e+00 4.7322e-01 1.6894e-01 2.2738e+00 4.9578e-06
+#> 86: 9.4466e+01 -2.0544e-01 2.0626e+00 5.8302e+00 4.6340e-01 1.6050e-01 2.2773e+00 3.6221e-07
+#> 87: 9.4786e+01 -1.9292e-01 2.0703e+00 5.5387e+00 4.6881e-01 1.5641e-01 2.2746e+00 2.3326e-05
+#> 88: 9.4573e+01 -1.9488e-01 2.0597e+00 5.2618e+00 4.6538e-01 1.5079e-01 2.3225e+00 4.7054e-05
+#> 89: 94.8466 -0.2040 2.0603 4.9987 0.4620 0.1456 2.2807 0.0002
+#> 90: 9.4839e+01 -2.0359e-01 2.0673e+00 4.7488e+00 4.5379e-01 1.4729e-01 2.3099e+00 2.7922e-05
+#> 91: 9.4897e+01 -2.0635e-01 2.0496e+00 4.5113e+00 4.4018e-01 1.3993e-01 2.2924e+00 1.7074e-05
+#> 92: 9.4740e+01 -2.0567e-01 2.0518e+00 4.2858e+00 4.6190e-01 1.3293e-01 2.3396e+00 9.0471e-05
+#> 93: 94.9558 -0.2033 2.0824 4.0715 0.4877 0.1263 2.3785 0.0082
+#> 94: 95.1673 -0.1801 2.0900 3.8679 0.5150 0.1200 2.4128 0.0106
+#> 95: 95.3129 -0.1686 2.1057 3.6745 0.4892 0.1140 2.4135 0.0147
+#> 96: 9.5235e+01 -1.6834e-01 2.1069e+00 3.4908e+00 4.9584e-01 1.0827e-01 2.4408e+00 2.5829e-06
+#> 97: 9.4892e+01 -1.5911e-01 2.1277e+00 3.3162e+00 4.7518e-01 1.0286e-01 2.4658e+00 1.8589e-05
+#> 98: 9.4749e+01 -1.6133e-01 2.1204e+00 4.5926e+00 4.6435e-01 1.0192e-01 2.4716e+00 5.8808e-09
+#> 99: 9.4546e+01 -1.5627e-01 2.1358e+00 5.5648e+00 4.8843e-01 1.0047e-01 2.5033e+00 2.5865e-05
+#> 100: 9.4544e+01 -1.6341e-01 2.1317e+00 5.2974e+00 4.7076e-01 1.1065e-01 2.4711e+00 4.4438e-05
+#> 101: 94.2461 -0.1640 2.1458 5.0325 0.4750 0.1107 2.5297 0.0002
+#> 102: 9.4039e+01 -1.6946e-01 2.1490e+00 4.9929e+00 4.7265e-01 1.2109e-01 2.3907e+00 2.3093e-05
+#> 103: 9.4132e+01 -1.6840e-01 2.1250e+00 5.3879e+00 4.7062e-01 1.2389e-01 2.3401e+00 5.4840e-07
+#> 104: 9.4376e+01 -1.6842e-01 2.1239e+00 7.9826e+00 4.7053e-01 1.1769e-01 2.3663e+00 1.9617e-05
+#> 105: 9.4370e+01 -1.7024e-01 2.1187e+00 7.5834e+00 4.6738e-01 1.1683e-01 2.3471e+00 1.4035e-05
+#> 106: 9.4462e+01 -1.6562e-01 2.1406e+00 7.5466e+00 4.6364e-01 1.2640e-01 2.3140e+00 4.7933e-05
+#> 107: 9.4541e+01 -1.6582e-01 2.1308e+00 7.1692e+00 4.6457e-01 1.2964e-01 2.3395e+00 1.8489e-05
+#> 108: 9.4709e+01 -1.6157e-01 2.1484e+00 6.8108e+00 4.5925e-01 1.3393e-01 2.3340e+00 1.5230e-06
+#> 109: 9.4450e+01 -1.8900e-01 2.0799e+00 6.4702e+00 4.4801e-01 1.4728e-01 2.3847e+00 3.2613e-05
+#> 110: 9.4180e+01 -1.9104e-01 2.1172e+00 6.1467e+00 4.5389e-01 1.4273e-01 2.3775e+00 6.0285e-05
+#> 111: 9.4366e+01 -1.8908e-01 2.1031e+00 5.8394e+00 4.4875e-01 1.4983e-01 2.3898e+00 7.2653e-05
+#> 112: 9.4008e+01 -1.8144e-01 2.1008e+00 5.5474e+00 4.6433e-01 1.4234e-01 2.3705e+00 9.9395e-06
+#> 113: 9.4372e+01 -1.8885e-01 2.1154e+00 5.2700e+00 4.7983e-01 1.3522e-01 2.3641e+00 1.8643e-05
+#> 114: 94.1292 -0.1872 2.1134 5.0065 0.4824 0.1285 2.3163 0.0001
+#> 115: 9.4510e+01 -1.7805e-01 2.1185e+00 4.7562e+00 4.8451e-01 1.2204e-01 2.3568e+00 1.6277e-07
+#> 116: 9.4234e+01 -1.8613e-01 2.1214e+00 4.5184e+00 4.7967e-01 1.2275e-01 2.3388e+00 3.4361e-05
+#> 117: 9.4438e+01 -1.7276e-01 2.1218e+00 4.2925e+00 4.6200e-01 1.1662e-01 2.3686e+00 5.6594e-06
+#> 118: 9.4498e+01 -1.7628e-01 2.1143e+00 6.2395e+00 4.5445e-01 1.2378e-01 2.3303e+00 6.5645e-05
+#> 119: 9.4303e+01 -1.8107e-01 2.1120e+00 7.5774e+00 4.6102e-01 1.2829e-01 2.3595e+00 9.4057e-06
+#> 120: 9.4022e+01 -1.7626e-01 2.1258e+00 9.9044e+00 4.6505e-01 1.5188e-01 2.3582e+00 3.6907e-05
+#> 121: 9.4103e+01 -1.5976e-01 2.1354e+00 9.4091e+00 4.7792e-01 1.5429e-01 2.3729e+00 4.6749e-05
+#> 122: 9.4727e+01 -1.9092e-01 2.0956e+00 8.9387e+00 4.5402e-01 1.6371e-01 2.3118e+00 6.8573e-06
+#> 123: 9.4447e+01 -1.9139e-01 2.0898e+00 8.4918e+00 4.3317e-01 1.7569e-01 2.3083e+00 4.4068e-05
+#> 124: 9.4422e+01 -1.9130e-01 2.0920e+00 8.0672e+00 4.3952e-01 1.7160e-01 2.3003e+00 1.7162e-05
+#> 125: 9.4608e+01 -1.7777e-01 2.1007e+00 7.6638e+00 4.8253e-01 1.6302e-01 2.3244e+00 1.9896e-05
+#> 126: 9.4512e+01 -1.6596e-01 2.1139e+00 7.2806e+00 4.7648e-01 1.7588e-01 2.2913e+00 4.9747e-05
+#> 127: 9.4983e+01 -1.6562e-01 2.1290e+00 6.9166e+00 4.7028e-01 1.6709e-01 2.3141e+00 3.3357e-05
+#> 128: 94.3910 -0.1728 2.1159 6.5708 0.4914 0.1850 2.3173 0.0001
+#> 129: 9.4578e+01 -1.7211e-01 2.1177e+00 6.2422e+00 4.8295e-01 1.7709e-01 2.2815e+00 4.8158e-05
+#> 130: 9.4646e+01 -1.6785e-01 2.1333e+00 5.9301e+00 4.6360e-01 1.6823e-01 2.3140e+00 2.1204e-05
+#> 131: 9.4670e+01 -1.4897e-01 2.1480e+00 5.6336e+00 4.8826e-01 1.5982e-01 2.3436e+00 1.3221e-05
+#> 132: 9.4625e+01 -1.6160e-01 2.1599e+00 5.3519e+00 4.6385e-01 1.6125e-01 2.2830e+00 9.6815e-06
+#> 133: 9.3985e+01 -1.7636e-01 2.1299e+00 5.8178e+00 4.4885e-01 1.5389e-01 2.2810e+00 6.7789e-06
+#> 134: 9.4105e+01 -1.7389e-01 2.1199e+00 5.5269e+00 4.5848e-01 1.4628e-01 2.2992e+00 7.6542e-06
+#> 135: 9.4387e+01 -1.5936e-01 2.1418e+00 5.2506e+00 4.5002e-01 1.6349e-01 2.3403e+00 7.6250e-05
+#> 136: 94.3595 -0.1696 2.1493 4.9880 0.4407 0.1722 2.3121 0.0001
+#> 137: 9.4056e+01 -1.6030e-01 2.1720e+00 5.5600e+00 4.4954e-01 1.8233e-01 2.3099e+00 2.1195e-05
+#> 138: 9.4043e+01 -1.4848e-01 2.1876e+00 5.2820e+00 4.5696e-01 1.8542e-01 2.2876e+00 8.7271e-06
+#> 139: 94.3020 -0.1374 2.1965 5.6428 0.4668 0.1927 2.3341 0.0001
+#> 140: 9.4260e+01 -1.3603e-01 2.2014e+00 5.7727e+00 4.6823e-01 1.8302e-01 2.3248e+00 1.4731e-06
+#> 141: 9.4302e+01 -1.2134e-01 2.1992e+00 5.4841e+00 4.8967e-01 1.7947e-01 2.3212e+00 1.6339e-05
+#> 142: 94.0970 -0.1143 2.2570 5.4173 0.4766 0.1726 2.3581 0.0077
+#> 143: 94.2078 -0.1162 2.2460 5.1464 0.4745 0.1874 2.3551 0.0152
+#> 144: 94.2085 -0.0953 2.2685 4.8891 0.5010 0.1780 2.3881 0.0095
+#> 145: 94.1483 -0.0906 2.2751 5.0705 0.4959 0.1770 2.3103 0.0143
+#> 146: 94.4257 -0.0859 2.2735 5.0201 0.5331 0.2050 2.3104 0.0160
+#> 147: 93.8072 -0.0887 2.2766 4.7691 0.5253 0.2200 2.2903 0.0180
+#> 148: 94.4354 -0.0901 2.2770 4.5306 0.5237 0.2147 2.3108 0.0150
+#> 149: 94.1171 -0.1126 2.2342 4.3041 0.5412 0.2300 2.3454 0.0126
+#> 150: 94.0704 -0.1267 2.2071 4.0889 0.5324 0.2185 2.3673 0.0097
+#> 151: 93.9860 -0.1480 2.1852 3.8844 0.5101 0.2529 2.3280 0.0056
+#> 152: 93.9500 -0.1419 2.1940 4.4687 0.5066 0.2371 2.3617 0.0002
+#> 153: 93.8058 -0.1368 2.1917 4.2493 0.5068 0.2057 2.3481 0.0002
+#> 154: 9.4043e+01 -1.3331e-01 2.1972e+00 4.3921e+00 4.7605e-01 1.9689e-01 2.3952e+00 9.5657e-05
+#> 155: 94.2500 -0.1223 2.2260 5.7786 0.4848 0.1829 2.3361 0.0075
+#> 156: 94.5035 -0.1223 2.2091 6.1344 0.4848 0.1558 2.3951 0.0048
+#> 157: 9.4448e+01 -1.3268e-01 2.1797e+00 6.4746e+00 4.6934e-01 1.6035e-01 2.3496e+00 5.2771e-05
+#> 158: 94.7438 -0.1401 2.1904 6.0162 0.4589 0.1692 2.3444 0.0001
+#> 159: 94.2681 -0.1430 2.1852 4.6165 0.4774 0.1617 2.3601 0.0001
+#> 160: 9.3911e+01 -1.1659e-01 2.2267e+00 4.9756e+00 4.9349e-01 1.7150e-01 2.3500e+00 9.0374e-06
+#> 161: 9.3914e+01 -1.1938e-01 2.2233e+00 4.8238e+00 4.9674e-01 1.8358e-01 2.3536e+00 1.1877e-06
+#> 162: 93.9974 -0.1188 2.2349 5.1092 0.4967 0.1714 2.3237 0.0041
+#> 163: 9.3939e+01 -1.2170e-01 2.2147e+00 4.8315e+00 5.0622e-01 1.8195e-01 2.3823e+00 2.4030e-05
+#> 164: 93.8015 -0.1362 2.2166 3.9112 0.4958 0.1684 2.3488 0.0072
+#> 165: 93.4082 -0.1398 2.2132 3.2992 0.5087 0.1734 2.2861 0.0125
+#> 166: 93.4680 -0.1421 2.2077 3.3232 0.5075 0.1643 2.2792 0.0149
+#> 167: 93.5455 -0.1443 2.2080 3.7465 0.4972 0.1685 2.2194 0.0191
+#> 168: 93.5603 -0.1711 2.1421 3.2407 0.5201 0.1940 2.3029 0.0198
+#> 169: 93.7281 -0.1578 2.1553 2.5110 0.4988 0.1836 2.3343 0.0134
+#> 170: 93.9675 -0.1564 2.1532 2.2507 0.5049 0.1753 2.3089 0.0110
+#> 171: 93.8255 -0.1543 2.1647 2.7302 0.5114 0.1691 2.2959 0.0113
+#> 172: 93.8071 -0.1536 2.1689 2.5849 0.5069 0.1751 2.3047 0.0099
+#> 173: 93.7137 -0.1403 2.2096 1.5160 0.5204 0.1622 2.3452 0.0155
+#> 174: 93.7182 -0.1376 2.1975 1.3366 0.5222 0.1700 2.3311 0.0149
+#> 175: 93.5957 -0.1587 2.1613 1.3539 0.5321 0.1470 2.3893 0.0156
+#> 176: 93.6058 -0.1587 2.1602 1.4588 0.5321 0.1412 2.4323 0.0116
+#> 177: 93.4496 -0.1858 2.1323 1.2423 0.4987 0.1460 2.3491 0.0167
+#> 178: 93.5894 -0.1935 2.1217 1.7812 0.4776 0.1643 2.3046 0.0168
+#> 179: 93.6386 -0.1887 2.1445 2.8813 0.4808 0.1585 2.2689 0.0192
+#> 180: 93.9288 -0.1950 2.1015 2.0905 0.4681 0.1557 2.2783 0.0170
+#> 181: 93.8165 -0.1950 2.0840 2.6302 0.4681 0.1592 2.3643 0.0173
+#> 182: 94.2132 -0.1936 2.0866 3.0185 0.5131 0.1712 2.3164 0.0147
+#> 183: 94.0929 -0.1896 2.0782 3.0716 0.5288 0.1644 2.5169 0.0066
+#> 184: 93.8694 -0.1968 2.0946 2.4734 0.5121 0.1709 2.3795 0.0071
+#> 185: 93.8138 -0.1970 2.0987 2.9707 0.4957 0.1500 2.3995 0.0034
+#> 186: 9.4047e+01 -2.1045e-01 2.0791e+00 3.6686e+00 4.8764e-01 1.4347e-01 2.3654e+00 3.8127e-05
+#> 187: 9.4498e+01 -1.9649e-01 2.0949e+00 2.0912e+00 4.7479e-01 1.6122e-01 2.3873e+00 4.7739e-06
+#> 188: 9.4650e+01 -1.8508e-01 2.1132e+00 2.1529e+00 4.6244e-01 1.4403e-01 2.3367e+00 3.5345e-06
+#> 189: 9.4301e+01 -1.8137e-01 2.1132e+00 2.6433e+00 4.4894e-01 1.3537e-01 2.3145e+00 9.6836e-06
+#> 190: 9.4501e+01 -1.8209e-01 2.0962e+00 3.1460e+00 4.4908e-01 1.2006e-01 2.3563e+00 3.3387e-05
+#> 191: 9.4156e+01 -2.0214e-01 2.0803e+00 3.2334e+00 4.7635e-01 1.1917e-01 2.3782e+00 6.6641e-06
+#> 192: 9.3981e+01 -2.1562e-01 2.0492e+00 3.0526e+00 5.0505e-01 1.3669e-01 2.3412e+00 7.3871e-05
+#> 193: 9.4085e+01 -2.2693e-01 2.0318e+00 2.9855e+00 4.9563e-01 1.4371e-01 2.3727e+00 8.6443e-05
+#> 194: 9.3922e+01 -2.3089e-01 2.0323e+00 2.9709e+00 4.9151e-01 1.4470e-01 2.3667e+00 3.5941e-05
+#> 195: 9.4180e+01 -2.2865e-01 2.0284e+00 2.2426e+00 4.8793e-01 1.5283e-01 2.3442e+00 1.8882e-05
+#> 196: 9.4259e+01 -2.0053e-01 2.0541e+00 1.5155e+00 5.1571e-01 1.5596e-01 2.3638e+00 2.9015e-05
+#> 197: 9.4225e+01 -2.0144e-01 2.0551e+00 1.6032e+00 5.0920e-01 1.6454e-01 2.3564e+00 2.7823e-05
+#> 198: 9.4166e+01 -1.9411e-01 2.0602e+00 1.8793e+00 5.5190e-01 1.8338e-01 2.3611e+00 1.6669e-05
+#> 199: 9.4230e+01 -1.9621e-01 2.0737e+00 1.8847e+00 5.4082e-01 1.7340e-01 2.3488e+00 5.8282e-07
+#> 200: 9.4215e+01 -1.9629e-01 2.0888e+00 1.9185e+00 5.4293e-01 1.7502e-01 2.3563e+00 5.7303e-06
+#> 201: 94.0654 -0.1931 2.0901 1.8074 0.5373 0.1886 2.3869 0.0025
+#> 202: 93.9801 -0.1898 2.0990 1.6823 0.5318 0.1841 2.4043 0.0016
+#> 203: 94.0246 -0.1893 2.1004 1.6503 0.5286 0.1855 2.3971 0.0012
+#> 204: 93.9893 -0.1870 2.1014 1.6166 0.5276 0.1846 2.3900 0.0010
+#> 205: 94.0154 -0.1854 2.1006 1.5294 0.5286 0.1828 2.3939 0.0009
+#> 206: 94.0468 -0.1833 2.1024 1.5102 0.5295 0.1807 2.3967 0.0007
+#> 207: 94.0641 -0.1810 2.1049 1.5136 0.5289 0.1798 2.4037 0.0008
+#> 208: 94.0794 -0.1790 2.1062 1.5078 0.5286 0.1790 2.4139 0.0007
+#> 209: 94.0892 -0.1799 2.1049 1.4549 0.5261 0.1793 2.4144 0.0006
+#> 210: 94.0911 -0.1817 2.1042 1.4537 0.5217 0.1810 2.4069 0.0012
+#> 211: 94.1011 -0.1828 2.1016 1.4582 0.5235 0.1825 2.4049 0.0011
+#> 212: 94.1081 -0.1839 2.0989 1.4657 0.5255 0.1838 2.4031 0.0010
+#> 213: 94.1264 -0.1842 2.0973 1.4527 0.5263 0.1851 2.4026 0.0010
+#> 214: 94.1287 -0.1844 2.0974 1.4405 0.5270 0.1869 2.4006 0.0009
+#> 215: 94.1440 -0.1850 2.0973 1.4556 0.5269 0.1876 2.3985 0.0009
+#> 216: 94.1352 -0.1863 2.0970 1.4698 0.5258 0.1885 2.3977 0.0008
+#> 217: 94.1261 -0.1868 2.0962 1.4850 0.5244 0.1897 2.3946 0.0008
+#> 218: 94.1100 -0.1858 2.0987 1.4673 0.5230 0.1934 2.3924 0.0007
+#> 219: 94.1073 -0.1845 2.1013 1.4630 0.5218 0.1993 2.3890 0.0011
+#> 220: 94.1026 -0.1836 2.1030 1.4705 0.5205 0.2028 2.3904 0.0010
+#> 221: 94.0972 -0.1824 2.1046 1.4732 0.5198 0.2065 2.3907 0.0010
+#> 222: 94.0898 -0.1824 2.1052 1.4952 0.5180 0.2083 2.3892 0.0010
+#> 223: 94.0975 -0.1830 2.1050 1.5035 0.5161 0.2107 2.3888 0.0011
+#> 224: 94.1027 -0.1831 2.1050 1.5196 0.5148 0.2124 2.3878 0.0011
+#> 225: 94.0977 -0.1828 2.1065 1.5153 0.5142 0.2141 2.3856 0.0013
+#> 226: 94.0907 -0.1831 2.1066 1.5287 0.5130 0.2151 2.3828 0.0014
+#> 227: 94.0831 -0.1833 2.1065 1.5535 0.5119 0.2159 2.3814 0.0014
+#> 228: 94.0834 -0.1832 2.1072 1.5713 0.5114 0.2174 2.3813 0.0014
+#> 229: 94.0793 -0.1832 2.1076 1.6041 0.5111 0.2184 2.3811 0.0015
+#> 230: 94.0701 -0.1843 2.1064 1.6177 0.5096 0.2181 2.3803 0.0017
+#> 231: 94.0598 -0.1853 2.1052 1.6254 0.5085 0.2180 2.3818 0.0016
+#> 232: 94.0539 -0.1862 2.1045 1.6254 0.5074 0.2175 2.3824 0.0017
+#> 233: 94.0498 -0.1869 2.1034 1.6380 0.5065 0.2169 2.3826 0.0017
+#> 234: 94.0514 -0.1872 2.1035 1.6300 0.5050 0.2160 2.3829 0.0017
+#> 235: 94.0521 -0.1876 2.1026 1.6263 0.5041 0.2148 2.3825 0.0018
+#> 236: 94.0587 -0.1876 2.1024 1.6277 0.5023 0.2134 2.3834 0.0020
+#> 237: 94.0741 -0.1873 2.1025 1.6349 0.5013 0.2120 2.3828 0.0019
+#> 238: 94.0898 -0.1876 2.1022 1.6509 0.4997 0.2107 2.3837 0.0019
+#> 239: 94.1055 -0.1880 2.1016 1.6596 0.4979 0.2098 2.3836 0.0018
+#> 240: 94.1209 -0.1885 2.1007 1.6627 0.4958 0.2092 2.3831 0.0018
+#> 241: 94.1322 -0.1893 2.0992 1.6563 0.4945 0.2085 2.3825 0.0017
+#> 242: 94.1404 -0.1904 2.0976 1.6574 0.4930 0.2082 2.3814 0.0017
+#> 243: 94.1428 -0.1914 2.0961 1.6412 0.4918 0.2078 2.3800 0.0017
+#> 244: 94.1477 -0.1923 2.0945 1.6287 0.4907 0.2071 2.3795 0.0016
+#> 245: 94.1525 -0.1931 2.0933 1.6225 0.4897 0.2064 2.3791 0.0016
+#> 246: 94.1557 -0.1938 2.0927 1.6243 0.4890 0.2048 2.3780 0.0016
+#> 247: 94.1576 -0.1943 2.0919 1.6333 0.4881 0.2034 2.3777 0.0015
+#> 248: 94.1603 -0.1951 2.0909 1.6328 0.4863 0.2026 2.3775 0.0015
+#> 249: 94.1648 -0.1957 2.0898 1.6427 0.4847 0.2018 2.3774 0.0015
+#> 250: 94.1766 -0.1963 2.0889 1.6482 0.4829 0.2012 2.3770 0.0015
+#> 251: 94.1854 -0.1971 2.0875 1.6536 0.4806 0.2011 2.3769 0.0016
+#> 252: 94.1906 -0.1980 2.0861 1.6527 0.4785 0.2013 2.3763 0.0017
+#> 253: 94.1913 -0.1982 2.0857 1.6459 0.4772 0.2014 2.3751 0.0019
+#> 254: 94.1945 -0.1985 2.0852 1.6413 0.4759 0.2019 2.3755 0.0019
+#> 255: 94.1972 -0.1989 2.0837 1.6451 0.4754 0.2027 2.3753 0.0018
+#> 256: 94.1994 -0.1989 2.0833 1.6548 0.4758 0.2024 2.3752 0.0018
+#> 257: 94.2014 -0.1987 2.0833 1.6708 0.4765 0.2024 2.3752 0.0018
+#> 258: 94.2081 -0.1984 2.0836 1.6903 0.4768 0.2023 2.3749 0.0017
+#> 259: 94.2151 -0.1982 2.0839 1.7169 0.4767 0.2023 2.3737 0.0017
+#> 260: 94.2212 -0.1980 2.0838 1.7426 0.4766 0.2031 2.3725 0.0017
+#> 261: 94.2229 -0.1981 2.0835 1.7696 0.4764 0.2038 2.3714 0.0017
+#> 262: 94.2213 -0.1983 2.0832 1.7977 0.4762 0.2045 2.3704 0.0016
+#> 263: 94.2220 -0.1984 2.0830 1.8277 0.4764 0.2051 2.3700 0.0016
+#> 264: 94.2230 -0.1983 2.0830 1.8430 0.4766 0.2057 2.3690 0.0016
+#> 265: 94.2235 -0.1983 2.0832 1.8679 0.4768 0.2060 2.3674 0.0016
+#> 266: 94.2242 -0.1982 2.0833 1.8705 0.4769 0.2064 2.3658 0.0015
+#> 267: 94.2267 -0.1982 2.0832 1.8715 0.4769 0.2070 2.3643 0.0015
+#> 268: 94.2312 -0.1980 2.0834 1.8824 0.4769 0.2074 2.3631 0.0015
+#> 269: 94.2329 -0.1981 2.0829 1.8843 0.4766 0.2084 2.3628 0.0015
+#> 270: 94.2321 -0.1982 2.0825 1.8904 0.4770 0.2093 2.3629 0.0015
+#> 271: 94.2349 -0.1985 2.0820 1.8942 0.4769 0.2101 2.3633 0.0016
+#> 272: 94.2388 -0.1989 2.0818 1.9099 0.4767 0.2110 2.3634 0.0018
+#> 273: 94.2420 -0.1992 2.0816 1.9259 0.4765 0.2118 2.3632 0.0018
+#> 274: 94.2454 -0.1994 2.0813 1.9330 0.4763 0.2128 2.3629 0.0017
+#> 275: 94.2456 -0.1997 2.0810 1.9316 0.4761 0.2138 2.3624 0.0018
+#> 276: 94.2472 -0.1999 2.0807 1.9306 0.4758 0.2146 2.3624 0.0019
+#> 277: 94.2492 -0.2001 2.0808 1.9326 0.4756 0.2153 2.3623 0.0020
+#> 278: 94.2493 -0.2003 2.0807 1.9225 0.4752 0.2163 2.3628 0.0020
+#> 279: 94.2481 -0.2002 2.0808 1.9206 0.4750 0.2168 2.3628 0.0019
+#> 280: 94.2433 -0.2002 2.0810 1.9257 0.4749 0.2173 2.3626 0.0019
+#> 281: 94.2358 -0.2004 2.0809 1.9217 0.4748 0.2173 2.3620 0.0019
+#> 282: 94.2307 -0.2005 2.0807 1.9209 0.4748 0.2172 2.3617 0.0019
+#> 283: 94.2302 -0.2008 2.0803 1.9131 0.4748 0.2172 2.3615 0.0019
+#> 284: 94.2309 -0.2009 2.0802 1.9085 0.4749 0.2171 2.3610 0.0018
+#> 285: 94.2344 -0.2010 2.0799 1.9135 0.4749 0.2170 2.3603 0.0018
+#> 286: 94.2381 -0.2013 2.0794 1.9099 0.4749 0.2167 2.3596 0.0018
+#> 287: 94.2420 -0.2016 2.0786 1.9105 0.4749 0.2164 2.3596 0.0018
+#> 288: 94.2425 -0.2020 2.0778 1.9081 0.4749 0.2161 2.3590 0.0019
+#> 289: 94.2386 -0.2023 2.0773 1.9136 0.4749 0.2158 2.3586 0.0019
+#> 290: 94.2357 -0.2026 2.0768 1.9171 0.4750 0.2154 2.3581 0.0019
+#> 291: 94.2326 -0.2026 2.0765 1.9162 0.4750 0.2150 2.3577 0.0019
+#> 292: 94.2305 -0.2026 2.0766 1.9178 0.4753 0.2144 2.3577 0.0020
+#> 293: 94.2268 -0.2023 2.0771 1.9257 0.4754 0.2138 2.3574 0.0022
+#> 294: 94.2216 -0.2023 2.0773 1.9326 0.4754 0.2132 2.3565 0.0023
+#> 295: 94.2193 -0.2024 2.0769 1.9378 0.4762 0.2125 2.3565 0.0024
+#> 296: 94.2160 -0.2025 2.0765 1.9463 0.4771 0.2117 2.3565 0.0025
+#> 297: 94.2106 -0.2026 2.0761 1.9523 0.4779 0.2109 2.3569 0.0026
+#> 298: 94.2089 -0.2028 2.0756 1.9622 0.4787 0.2099 2.3578 0.0025
+#> 299: 94.2077 -0.2029 2.0753 1.9721 0.4794 0.2090 2.3586 0.0026
+#> 300: 94.2064 -0.2030 2.0749 1.9838 0.4802 0.2080 2.3589 0.0026
+#> 301: 94.2086 -0.2029 2.0747 1.9942 0.4806 0.2071 2.3587 0.0025
+#> 302: 94.2111 -0.2031 2.0744 1.9938 0.4810 0.2063 2.3593 0.0025
+#> 303: 94.2133 -0.2031 2.0743 1.9923 0.4811 0.2056 2.3593 0.0025
+#> 304: 94.2151 -0.2032 2.0739 1.9885 0.4811 0.2049 2.3595 0.0025
+#> 305: 94.2159 -0.2035 2.0735 1.9872 0.4813 0.2044 2.3594 0.0024
+#> 306: 94.2192 -0.2038 2.0729 1.9806 0.4813 0.2041 2.3592 0.0024
+#> 307: 94.2226 -0.2040 2.0724 1.9796 0.4814 0.2038 2.3588 0.0024
+#> 308: 94.2224 -0.2042 2.0723 1.9828 0.4814 0.2036 2.3589 0.0024
+#> 309: 94.2200 -0.2043 2.0723 1.9859 0.4812 0.2034 2.3587 0.0024
+#> 310: 94.2183 -0.2044 2.0723 1.9892 0.4810 0.2034 2.3583 0.0023
+#> 311: 94.2175 -0.2044 2.0724 1.9895 0.4805 0.2033 2.3580 0.0023
+#> 312: 94.2171 -0.2044 2.0725 1.9977 0.4800 0.2032 2.3581 0.0023
+#> 313: 94.2108 -0.2044 2.0728 1.9995 0.4795 0.2030 2.3578 0.0023
+#> 314: 94.2068 -0.2045 2.0730 1.9929 0.4790 0.2029 2.3576 0.0024
+#> 315: 94.2031 -0.2047 2.0730 1.9884 0.4784 0.2028 2.3579 0.0024
+#> 316: 94.2018 -0.2048 2.0731 1.9860 0.4779 0.2026 2.3582 0.0024
+#> 317: 94.2015 -0.2050 2.0729 1.9836 0.4773 0.2025 2.3582 0.0024
+#> 318: 94.2025 -0.2052 2.0728 1.9814 0.4768 0.2024 2.3580 0.0023
+#> 319: 94.2066 -0.2053 2.0726 1.9867 0.4764 0.2024 2.3577 0.0023
+#> 320: 94.2074 -0.2055 2.0727 1.9896 0.4760 0.2024 2.3575 0.0023
+#> 321: 94.2097 -0.2055 2.0728 1.9985 0.4758 0.2026 2.3573 0.0023
+#> 322: 94.2080 -0.2054 2.0731 2.0108 0.4759 0.2028 2.3570 0.0023
+#> 323: 94.2042 -0.2054 2.0732 2.0253 0.4762 0.2030 2.3566 0.0023
+#> 324: 94.2005 -0.2054 2.0733 2.0514 0.4765 0.2032 2.3566 0.0023
+#> 325: 94.2000 -0.2053 2.0735 2.0719 0.4767 0.2034 2.3570 0.0023
+#> 326: 94.2002 -0.2052 2.0738 2.0907 0.4769 0.2034 2.3573 0.0023
+#> 327: 94.1997 -0.2051 2.0741 2.1140 0.4770 0.2035 2.3571 0.0023
+#> 328: 94.1976 -0.2050 2.0743 2.1379 0.4770 0.2035 2.3569 0.0023
+#> 329: 94.1969 -0.2051 2.0741 2.1485 0.4769 0.2038 2.3566 0.0022
+#> 330: 94.1959 -0.2053 2.0738 2.1533 0.4767 0.2042 2.3561 0.0022
+#> 331: 94.1962 -0.2055 2.0733 2.1588 0.4763 0.2046 2.3555 0.0022
+#> 332: 94.1967 -0.2059 2.0727 2.1626 0.4760 0.2051 2.3551 0.0022
+#> 333: 94.1964 -0.2062 2.0721 2.1666 0.4757 0.2056 2.3547 0.0022
+#> 334: 94.1978 -0.2064 2.0718 2.1703 0.4756 0.2063 2.3543 0.0022
+#> 335: 94.1985 -0.2066 2.0715 2.1698 0.4755 0.2068 2.3538 0.0021
+#> 336: 94.1999 -0.2068 2.0711 2.1705 0.4757 0.2075 2.3534 0.0021
+#> 337: 94.1990 -0.2069 2.0708 2.1690 0.4759 0.2080 2.3530 0.0021
+#> 338: 94.1965 -0.2071 2.0706 2.1708 0.4760 0.2085 2.3525 0.0021
+#> 339: 94.1934 -0.2071 2.0704 2.1769 0.4761 0.2088 2.3518 0.0021
+#> 340: 94.1908 -0.2072 2.0704 2.1794 0.4763 0.2091 2.3515 0.0021
+#> 341: 94.1875 -0.2072 2.0706 2.1859 0.4762 0.2092 2.3512 0.0021
+#> 342: 94.1840 -0.2071 2.0707 2.1903 0.4762 0.2093 2.3513 0.0021
+#> 343: 94.1816 -0.2072 2.0706 2.1909 0.4761 0.2093 2.3512 0.0020
+#> 344: 94.1815 -0.2070 2.0708 2.1877 0.4758 0.2091 2.3514 0.0021
+#> 345: 94.1839 -0.2070 2.0710 2.1844 0.4757 0.2090 2.3517 0.0021
+#> 346: 94.1868 -0.2068 2.0713 2.1787 0.4756 0.2088 2.3520 0.0020
+#> 347: 94.1871 -0.2066 2.0717 2.1762 0.4756 0.2086 2.3519 0.0020
+#> 348: 94.1868 -0.2064 2.0722 2.1724 0.4756 0.2084 2.3521 0.0020
+#> 349: 94.1892 -0.2062 2.0725 2.1673 0.4755 0.2080 2.3524 0.0020
+#> 350: 94.1921 -0.2060 2.0726 2.1632 0.4754 0.2076 2.3527 0.0020
+#> 351: 94.1947 -0.2060 2.0726 2.1613 0.4752 0.2073 2.3530 0.0020
+#> 352: 94.1988 -0.2060 2.0725 2.1647 0.4751 0.2069 2.3530 0.0020
+#> 353: 94.2036 -0.2061 2.0721 2.1684 0.4749 0.2067 2.3530 0.0020
+#> 354: 94.2082 -0.2061 2.0719 2.1670 0.4747 0.2063 2.3529 0.0020
+#> 355: 94.2111 -0.2061 2.0718 2.1645 0.4747 0.2062 2.3526 0.0020
+#> 356: 94.2123 -0.2061 2.0717 2.1628 0.4747 0.2063 2.3525 0.0020
+#> 357: 94.2146 -0.2062 2.0716 2.1610 0.4746 0.2064 2.3523 0.0020
+#> 358: 94.2161 -0.2062 2.0715 2.1656 0.4744 0.2065 2.3520 0.0020
+#> 359: 94.2178 -0.2063 2.0714 2.1684 0.4743 0.2065 2.3516 0.0020
+#> 360: 94.2194 -0.2063 2.0713 2.1687 0.4742 0.2065 2.3512 0.0019
+#> 361: 94.2191 -0.2064 2.0713 2.1738 0.4741 0.2065 2.3508 0.0019
+#> 362: 94.2186 -0.2064 2.0713 2.1762 0.4740 0.2065 2.3502 0.0019
+#> 363: 94.2179 -0.2064 2.0714 2.1754 0.4740 0.2065 2.3495 0.0019
+#> 364: 94.2165 -0.2063 2.0715 2.1740 0.4741 0.2064 2.3495 0.0019
+#> 365: 94.2149 -0.2063 2.0716 2.1736 0.4741 0.2062 2.3495 0.0020
+#> 366: 94.2141 -0.2062 2.0717 2.1813 0.4740 0.2064 2.3490 0.0020
+#> 367: 94.2158 -0.2062 2.0717 2.1905 0.4739 0.2063 2.3491 0.0019
+#> 368: 94.2173 -0.2062 2.0718 2.1963 0.4737 0.2063 2.3485 0.0019
+#> 369: 94.2183 -0.2062 2.0717 2.2005 0.4736 0.2064 2.3481 0.0019
+#> 370: 94.2194 -0.2062 2.0716 2.2016 0.4735 0.2063 2.3477 0.0019
+#> 371: 94.2192 -0.2063 2.0715 2.1997 0.4733 0.2064 2.3476 0.0019
+#> 372: 94.2202 -0.2062 2.0716 2.1957 0.4733 0.2065 2.3479 0.0019
+#> 373: 94.2208 -0.2061 2.0717 2.1913 0.4733 0.2065 2.3480 0.0019
+#> 374: 94.2209 -0.2061 2.0719 2.1870 0.4731 0.2065 2.3479 0.0019
+#> 375: 94.2219 -0.2061 2.0719 2.1864 0.4729 0.2064 2.3477 0.0019
+#> 376: 94.2231 -0.2061 2.0720 2.1849 0.4726 0.2063 2.3473 0.0019
+#> 377: 94.2251 -0.2061 2.0720 2.1835 0.4724 0.2063 2.3471 0.0019
+#> 378: 94.2238 -0.2062 2.0719 2.1777 0.4721 0.2062 2.3472 0.0018
+#> 379: 94.2226 -0.2064 2.0717 2.1741 0.4717 0.2063 2.3471 0.0018
+#> 380: 94.2216 -0.2066 2.0714 2.1759 0.4714 0.2063 2.3468 0.0018
+#> 381: 94.2206 -0.2068 2.0711 2.1784 0.4711 0.2063 2.3465 0.0018
+#> 382: 94.2200 -0.2071 2.0707 2.1753 0.4707 0.2062 2.3462 0.0018
+#> 383: 94.2205 -0.2073 2.0704 2.1757 0.4703 0.2061 2.3461 0.0018
+#> 384: 94.2201 -0.2076 2.0702 2.1802 0.4698 0.2060 2.3458 0.0018
+#> 385: 94.2210 -0.2078 2.0701 2.1795 0.4693 0.2061 2.3457 0.0018
+#> 386: 94.2199 -0.2079 2.0700 2.1788 0.4688 0.2061 2.3455 0.0018
+#> 387: 94.2181 -0.2081 2.0699 2.1801 0.4683 0.2061 2.3454 0.0018
+#> 388: 94.2169 -0.2082 2.0699 2.1850 0.4679 0.2061 2.3452 0.0017
+#> 389: 94.2158 -0.2083 2.0699 2.1881 0.4674 0.2063 2.3449 0.0017
+#> 390: 94.2162 -0.2084 2.0696 2.1928 0.4671 0.2064 2.3447 0.0017
+#> 391: 94.2172 -0.2085 2.0696 2.1921 0.4669 0.2063 2.3444 0.0017
+#> 392: 94.2175 -0.2085 2.0695 2.1933 0.4667 0.2063 2.3442 0.0017
+#> 393: 94.2174 -0.2086 2.0695 2.1972 0.4666 0.2062 2.3440 0.0017
+#> 394: 94.2179 -0.2087 2.0694 2.1972 0.4664 0.2061 2.3439 0.0017
+#> 395: 94.2200 -0.2087 2.0694 2.2009 0.4663 0.2059 2.3438 0.0017
+#> 396: 94.2189 -0.2086 2.0695 2.2062 0.4662 0.2058 2.3434 0.0017
+#> 397: 94.2183 -0.2085 2.0696 2.2151 0.4663 0.2056 2.3431 0.0017
+#> 398: 94.2186 -0.2085 2.0696 2.2200 0.4664 0.2056 2.3430 0.0017
+#> 399: 94.2183 -0.2084 2.0698 2.2204 0.4664 0.2056 2.3428 0.0017
+#> 400: 94.2184 -0.2082 2.0703 2.2252 0.4665 0.2054 2.3428 0.0016
+#> 401: 94.2176 -0.2080 2.0707 2.2323 0.4666 0.2052 2.3427 0.0016
+#> 402: 94.2167 -0.2078 2.0712 2.2397 0.4668 0.2050 2.3426 0.0016
+#> 403: 94.2157 -0.2075 2.0716 2.2464 0.4669 0.2049 2.3426 0.0016
+#> 404: 94.2152 -0.2074 2.0719 2.2508 0.4670 0.2047 2.3427 0.0016
+#> 405: 94.2152 -0.2072 2.0723 2.2537 0.4671 0.2046 2.3427 0.0016
+#> 406: 94.2151 -0.2070 2.0726 2.2565 0.4672 0.2044 2.3427 0.0016
+#> 407: 94.2132 -0.2067 2.0731 2.2568 0.4673 0.2044 2.3426 0.0016
+#> 408: 94.2142 -0.2065 2.0734 2.2579 0.4674 0.2046 2.3424 0.0016
+#> 409: 94.2136 -0.2063 2.0738 2.2630 0.4674 0.2046 2.3420 0.0016
+#> 410: 94.2125 -0.2062 2.0739 2.2635 0.4674 0.2047 2.3417 0.0016
+#> 411: 94.2131 -0.2061 2.0741 2.2634 0.4674 0.2048 2.3413 0.0016
+#> 412: 94.2132 -0.2060 2.0742 2.2662 0.4674 0.2048 2.3409 0.0016
+#> 413: 94.2143 -0.2059 2.0743 2.2666 0.4673 0.2048 2.3407 0.0016
+#> 414: 94.2156 -0.2058 2.0743 2.2710 0.4672 0.2048 2.3404 0.0015
+#> 415: 94.2174 -0.2057 2.0745 2.2751 0.4671 0.2049 2.3400 0.0015
+#> 416: 94.2185 -0.2057 2.0746 2.2762 0.4669 0.2049 2.3399 0.0015
+#> 417: 94.2208 -0.2056 2.0748 2.2759 0.4667 0.2049 2.3397 0.0015
+#> 418: 94.2231 -0.2054 2.0751 2.2772 0.4664 0.2050 2.3398 0.0015
+#> 419: 94.2249 -0.2053 2.0754 2.2783 0.4663 0.2050 2.3396 0.0015
+#> 420: 94.2255 -0.2052 2.0757 2.2798 0.4660 0.2050 2.3395 0.0015
+#> 421: 94.2265 -0.2051 2.0759 2.2848 0.4659 0.2050 2.3392 0.0016
+#> 422: 94.2288 -0.2049 2.0761 2.2929 0.4659 0.2050 2.3390 0.0016
+#> 423: 94.2307 -0.2048 2.0762 2.2988 0.4657 0.2051 2.3390 0.0016
+#> 424: 94.2313 -0.2047 2.0764 2.3017 0.4656 0.2051 2.3391 0.0016
+#> 425: 94.2322 -0.2046 2.0765 2.3028 0.4655 0.2050 2.3388 0.0016
+#> 426: 94.2327 -0.2046 2.0765 2.3049 0.4654 0.2050 2.3386 0.0016
+#> 427: 94.2323 -0.2045 2.0768 2.3053 0.4655 0.2049 2.3386 0.0016
+#> 428: 94.2324 -0.2044 2.0770 2.3016 0.4655 0.2048 2.3387 0.0017
+#> 429: 94.2322 -0.2043 2.0772 2.2984 0.4656 0.2047 2.3386 0.0017
+#> 430: 94.2306 -0.2042 2.0774 2.2971 0.4656 0.2046 2.3384 0.0017
+#> 431: 94.2295 -0.2042 2.0775 2.2931 0.4657 0.2044 2.3384 0.0017
+#> 432: 94.2298 -0.2040 2.0778 2.2896 0.4656 0.2044 2.3383 0.0018
+#> 433: 94.2311 -0.2039 2.0780 2.2885 0.4656 0.2044 2.3383 0.0018
+#> 434: 94.2311 -0.2037 2.0783 2.2854 0.4655 0.2044 2.3381 0.0018
+#> 435: 94.2314 -0.2036 2.0786 2.2838 0.4654 0.2044 2.3378 0.0018
+#> 436: 94.2315 -0.2035 2.0788 2.2817 0.4653 0.2044 2.3377 0.0018
+#> 437: 94.2326 -0.2034 2.0790 2.2801 0.4652 0.2044 2.3378 0.0018
+#> 438: 94.2338 -0.2034 2.0791 2.2802 0.4650 0.2046 2.3380 0.0018
+#> 439: 94.2340 -0.2033 2.0791 2.2810 0.4649 0.2046 2.3377 0.0018
+#> 440: 94.2330 -0.2034 2.0791 2.2822 0.4646 0.2046 2.3376 0.0018
+#> 441: 94.2323 -0.2035 2.0790 2.2818 0.4644 0.2046 2.3375 0.0018
+#> 442: 94.2321 -0.2034 2.0792 2.2804 0.4642 0.2043 2.3375 0.0018
+#> 443: 94.2313 -0.2033 2.0794 2.2812 0.4641 0.2041 2.3372 0.0018
+#> 444: 94.2301 -0.2032 2.0796 2.2820 0.4640 0.2040 2.3369 0.0018
+#> 445: 94.2279 -0.2031 2.0799 2.2872 0.4639 0.2039 2.3366 0.0018
+#> 446: 94.2272 -0.2030 2.0801 2.2874 0.4639 0.2037 2.3363 0.0018
+#> 447: 94.2262 -0.2029 2.0803 2.2881 0.4639 0.2036 2.3359 0.0018
+#> 448: 94.2248 -0.2028 2.0806 2.2905 0.4639 0.2036 2.3358 0.0018
+#> 449: 94.2245 -0.2027 2.0808 2.2914 0.4638 0.2035 2.3356 0.0018
+#> 450: 94.2237 -0.2027 2.0809 2.2928 0.4638 0.2035 2.3356 0.0018
+#> 451: 94.2233 -0.2025 2.0813 2.2917 0.4639 0.2033 2.3355 0.0018
+#> 452: 94.2232 -0.2023 2.0816 2.2898 0.4640 0.2031 2.3356 0.0018
+#> 453: 94.2230 -0.2021 2.0819 2.2890 0.4641 0.2030 2.3356 0.0018
+#> 454: 94.2222 -0.2020 2.0822 2.2851 0.4641 0.2029 2.3357 0.0018
+#> 455: 94.2214 -0.2018 2.0824 2.2820 0.4640 0.2028 2.3357 0.0017
+#> 456: 94.2212 -0.2017 2.0827 2.2797 0.4640 0.2026 2.3357 0.0017
+#> 457: 94.2216 -0.2016 2.0829 2.2771 0.4640 0.2024 2.3358 0.0017
+#> 458: 94.2220 -0.2015 2.0831 2.2740 0.4639 0.2022 2.3358 0.0017
+#> 459: 94.2229 -0.2013 2.0834 2.2765 0.4638 0.2021 2.3358 0.0017
+#> 460: 94.2226 -0.2012 2.0837 2.2810 0.4637 0.2020 2.3359 0.0017
+#> 461: 94.2227 -0.2009 2.0841 2.2893 0.4637 0.2018 2.3358 0.0017
+#> 462: 94.2235 -0.2007 2.0844 2.2942 0.4637 0.2016 2.3357 0.0017
+#> 463: 94.2241 -0.2005 2.0848 2.2971 0.4637 0.2014 2.3358 0.0017
+#> 464: 94.2236 -0.2002 2.0853 2.2953 0.4637 0.2012 2.3360 0.0017
+#> 465: 94.2230 -0.2000 2.0858 2.2946 0.4638 0.2010 2.3360 0.0017
+#> 466: 94.2215 -0.1997 2.0863 2.2995 0.4638 0.2009 2.3363 0.0017
+#> 467: 94.2193 -0.1995 2.0868 2.3051 0.4637 0.2008 2.3363 0.0017
+#> 468: 94.2174 -0.1992 2.0874 2.3086 0.4636 0.2006 2.3363 0.0018
+#> 469: 94.2160 -0.1989 2.0881 2.3072 0.4636 0.2006 2.3361 0.0018
+#> 470: 94.2152 -0.1985 2.0887 2.3075 0.4637 0.2005 2.3363 0.0018
+#> 471: 94.2139 -0.1982 2.0891 2.3126 0.4638 0.2004 2.3361 0.0018
+#> 472: 94.2134 -0.1980 2.0895 2.3151 0.4640 0.2002 2.3360 0.0018
+#> 473: 94.2141 -0.1979 2.0897 2.3149 0.4640 0.2001 2.3360 0.0018
+#> 474: 94.2144 -0.1978 2.0900 2.3140 0.4640 0.2001 2.3358 0.0018
+#> 475: 94.2151 -0.1977 2.0901 2.3151 0.4640 0.2000 2.3358 0.0018
+#> 476: 94.2154 -0.1975 2.0903 2.3195 0.4641 0.2001 2.3357 0.0018
+#> 477: 94.2167 -0.1974 2.0905 2.3253 0.4642 0.2002 2.3358 0.0018
+#> 478: 94.2163 -0.1972 2.0909 2.3324 0.4641 0.2004 2.3357 0.0017
+#> 479: 94.2156 -0.1970 2.0912 2.3364 0.4640 0.2006 2.3355 0.0017
+#> 480: 94.2149 -0.1969 2.0915 2.3395 0.4638 0.2007 2.3353 0.0017
+#> 481: 94.2140 -0.1968 2.0918 2.3431 0.4637 0.2008 2.3350 0.0017
+#> 482: 94.2137 -0.1967 2.0919 2.3440 0.4635 0.2010 2.3349 0.0017
+#> 483: 94.2139 -0.1966 2.0920 2.3468 0.4634 0.2011 2.3348 0.0017
+#> 484: 94.2149 -0.1966 2.0921 2.3488 0.4633 0.2012 2.3346 0.0017
+#> 485: 94.2153 -0.1966 2.0921 2.3486 0.4632 0.2012 2.3345 0.0017
+#> 486: 94.2148 -0.1965 2.0923 2.3483 0.4631 0.2015 2.3345 0.0017
+#> 487: 94.2140 -0.1965 2.0923 2.3492 0.4628 0.2018 2.3345 0.0017
+#> 488: 94.2121 -0.1965 2.0923 2.3489 0.4625 0.2020 2.3347 0.0017
+#> 489: 94.2119 -0.1966 2.0923 2.3497 0.4622 0.2023 2.3346 0.0017
+#> 490: 94.2120 -0.1966 2.0923 2.3476 0.4618 0.2025 2.3346 0.0017
+#> 491: 94.2124 -0.1966 2.0923 2.3462 0.4615 0.2028 2.3346 0.0017
+#> 492: 94.2118 -0.1966 2.0923 2.3453 0.4613 0.2029 2.3346 0.0017
+#> 493: 94.2113 -0.1967 2.0923 2.3452 0.4610 0.2030 2.3347 0.0017
+#> 494: 94.2118 -0.1968 2.0922 2.3488 0.4608 0.2030 2.3347 0.0017
+#> 495: 94.2122 -0.1969 2.0920 2.3530 0.4605 0.2029 2.3347 0.0017
+#> 496: 94.2138 -0.1969 2.0919 2.3540 0.4603 0.2028 2.3350 0.0017
+#> 497: 94.2148 -0.1970 2.0917 2.3554 0.4601 0.2029 2.3352 0.0017
+#> 498: 94.2152 -0.1971 2.0916 2.3534 0.4600 0.2029 2.3356 0.0017
+#> 499: 94.2157 -0.1972 2.0914 2.3519 0.4598 0.2029 2.3357 0.0016
+#> 500: 94.2162 -0.1973 2.0912 2.3498 0.4596 0.2030 2.3358 0.0016#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Calculating residuals/tables#> done#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 | log_alpha | log_beta | sigma_low |
+#> |.....................| rsd_high | o1 | o2 | o3 |
+#> | 1| 356.08238 | 1.000 | -1.000 | -0.9495 | -0.9739 |
+#> |.....................| -0.9969 | -0.9818 | -0.9750 | -0.9744 |
+#> | U| 356.08238 | 93.10 | -0.1209 | 2.232 | 1.095 |
+#> |.....................| 0.02509 | 0.7272 | 1.045 | 1.072 |
+#> | X| 356.08238 | 93.10 | 0.8861 | 9.321 | 1.095 |
+#> |.....................| 0.02509 | 0.7272 | 1.045 | 1.072 |
+#> | G| Gill Diff. | -85.81 | 0.5929 | 0.9043 | -97.79 |
+#> |.....................| -28.71 | -0.07427 | -8.550 | -12.99 |
+#> | 2| 1940.7752 | 1.640 | -1.004 | -0.9563 | -0.2449 |
+#> |.....................| -0.7829 | -0.9813 | -0.9112 | -0.8775 |
+#> | U| 1940.7752 | 152.7 | -0.1253 | 2.226 | 1.495 |
+#> |.....................| 0.02778 | 0.7276 | 1.112 | 1.176 |
+#> | X| 1940.7752 | 152.7 | 0.8822 | 9.258 | 1.495 |
+#> |.....................| 0.02778 | 0.7276 | 1.112 | 1.176 |
+#> | 3| 370.78508 | 1.064 | -1.000 | -0.9502 | -0.9010 |
+#> |.....................| -0.9755 | -0.9817 | -0.9686 | -0.9647 |
+#> | U| 370.78508 | 99.05 | -0.1213 | 2.232 | 1.135 |
+#> |.....................| 0.02536 | 0.7272 | 1.052 | 1.082 |
+#> | X| 370.78508 | 99.05 | 0.8857 | 9.315 | 1.135 |
+#> |.....................| 0.02536 | 0.7272 | 1.052 | 1.082 |
+#> | 4| 354.52588 | 1.015 | -1.000 | -0.9497 | -0.9565 |
+#> |.....................| -0.9918 | -0.9818 | -0.9735 | -0.9721 |
+#> | U| 354.52588 | 94.52 | -0.1210 | 2.232 | 1.105 |
+#> |.....................| 0.02516 | 0.7272 | 1.047 | 1.074 |
+#> | X| 354.52588 | 94.52 | 0.8860 | 9.319 | 1.105 |
+#> |.....................| 0.02516 | 0.7272 | 1.047 | 1.074 |
+#> | F| Forward Diff. | 126.3 | 0.7329 | 1.391 | -95.71 |
+#> |.....................| -26.58 | 0.4812 | -8.528 | -12.76 |
+#> | 5| 352.43362 | 0.9998 | -1.000 | -0.9499 | -0.9392 |
+#> |.....................| -0.9869 | -0.9819 | -0.9719 | -0.9698 |
+#> | U| 352.43362 | 93.08 | -0.1211 | 2.232 | 1.114 |
+#> |.....................| 0.02522 | 0.7271 | 1.048 | 1.077 |
+#> | X| 352.43362 | 93.08 | 0.8859 | 9.317 | 1.114 |
+#> |.....................| 0.02522 | 0.7271 | 1.048 | 1.077 |
+#> | F| Forward Diff. | -88.58 | 0.5971 | 0.9141 | -92.65 |
+#> |.....................| -26.61 | -0.01862 | -8.458 | -12.78 |
+#> | 6| 350.82994 | 1.015 | -1.000 | -0.9501 | -0.9214 |
+#> |.....................| -0.9818 | -0.9819 | -0.9703 | -0.9673 |
+#> | U| 350.82994 | 94.46 | -0.1213 | 2.232 | 1.124 |
+#> |.....................| 0.02528 | 0.7271 | 1.050 | 1.079 |
+#> | X| 350.82994 | 94.46 | 0.8858 | 9.315 | 1.124 |
+#> |.....................| 0.02528 | 0.7271 | 1.050 | 1.079 |
+#> | F| Forward Diff. | 115.7 | 0.7442 | 1.407 | -90.51 |
+#> |.....................| -24.67 | 0.2416 | -8.378 | -12.59 |
+#> | 7| 348.85697 | 1.000 | -1.000 | -0.9503 | -0.9035 |
+#> |.....................| -0.9769 | -0.9819 | -0.9686 | -0.9649 |
+#> | U| 348.85697 | 93.10 | -0.1214 | 2.231 | 1.134 |
+#> |.....................| 0.02534 | 0.7271 | 1.052 | 1.082 |
+#> | X| 348.85697 | 93.10 | 0.8857 | 9.313 | 1.134 |
+#> |.....................| 0.02534 | 0.7271 | 1.052 | 1.082 |
+#> | F| Forward Diff. | -86.89 | 0.6078 | 0.9395 | -87.49 |
+#> |.....................| -24.70 | -0.2033 | -8.301 | -12.59 |
+#> | 8| 347.23757 | 1.014 | -1.001 | -0.9506 | -0.8852 |
+#> |.....................| -0.9717 | -0.9819 | -0.9669 | -0.9622 |
+#> | U| 347.23757 | 94.41 | -0.1215 | 2.231 | 1.144 |
+#> |.....................| 0.02541 | 0.7271 | 1.054 | 1.085 |
+#> | X| 347.23757 | 94.41 | 0.8856 | 9.311 | 1.144 |
+#> |.....................| 0.02541 | 0.7271 | 1.054 | 1.085 |
+#> | F| Forward Diff. | 106.0 | 0.7499 | 1.419 | -85.67 |
+#> |.....................| -22.89 | -0.09812 | -8.213 | -12.39 |
+#> | 9| 345.37317 | 1.000 | -1.001 | -0.9508 | -0.8667 |
+#> |.....................| -0.9667 | -0.9818 | -0.9651 | -0.9596 |
+#> | U| 345.37317 | 93.12 | -0.1217 | 2.231 | 1.154 |
+#> |.....................| 0.02547 | 0.7272 | 1.056 | 1.088 |
+#> | X| 345.37317 | 93.12 | 0.8854 | 9.308 | 1.154 |
+#> |.....................| 0.02547 | 0.7272 | 1.056 | 1.088 |
+#> | F| Forward Diff. | -84.47 | 0.6193 | 0.9668 | -82.72 |
+#> |.....................| -22.87 | -0.2860 | -8.128 | -12.38 |
+#> | 10| 343.77522 | 1.014 | -1.001 | -0.9511 | -0.8479 |
+#> |.....................| -0.9616 | -0.9818 | -0.9633 | -0.9568 |
+#> | U| 343.77522 | 94.37 | -0.1218 | 2.231 | 1.164 |
+#> |.....................| 0.02554 | 0.7272 | 1.057 | 1.091 |
+#> | X| 343.77522 | 94.37 | 0.8853 | 9.306 | 1.164 |
+#> |.....................| 0.02554 | 0.7272 | 1.057 | 1.091 |
+#> | F| Forward Diff. | 98.54 | 0.7582 | 1.440 | -80.80 |
+#> |.....................| -21.11 | -0.2480 | -8.037 | -12.18 |
+#> | 11| 342.01002 | 1.000 | -1.001 | -0.9514 | -0.8290 |
+#> |.....................| -0.9566 | -0.9817 | -0.9614 | -0.9539 |
+#> | U| 342.01002 | 93.14 | -0.1220 | 2.230 | 1.175 |
+#> |.....................| 0.02560 | 0.7273 | 1.059 | 1.094 |
+#> | X| 342.01002 | 93.14 | 0.8852 | 9.303 | 1.175 |
+#> |.....................| 0.02560 | 0.7273 | 1.059 | 1.094 |
+#> | F| Forward Diff. | -81.78 | 0.6281 | 0.9934 | -78.17 |
+#> |.....................| -21.11 | -0.4903 | -7.943 | -12.16 |
+#> | 12| 340.43696 | 1.013 | -1.001 | -0.9517 | -0.8098 |
+#> |.....................| -0.9515 | -0.9816 | -0.9595 | -0.9509 |
+#> | U| 340.43696 | 94.32 | -0.1222 | 2.230 | 1.185 |
+#> |.....................| 0.02566 | 0.7274 | 1.062 | 1.097 |
+#> | X| 340.43696 | 94.32 | 0.8850 | 9.301 | 1.185 |
+#> |.....................| 0.02566 | 0.7274 | 1.062 | 1.097 |
+#> | F| Forward Diff. | 90.87 | 0.7671 | 1.462 | -75.86 |
+#> |.....................| -19.30 | -0.2119 | -7.851 | -11.96 |
+#> | 13| 338.78414 | 1.001 | -1.001 | -0.9520 | -0.7906 |
+#> |.....................| -0.9465 | -0.9815 | -0.9574 | -0.9478 |
+#> | U| 338.78414 | 93.15 | -0.1223 | 2.230 | 1.196 |
+#> |.....................| 0.02572 | 0.7274 | 1.064 | 1.100 |
+#> | X| 338.78414 | 93.15 | 0.8848 | 9.298 | 1.196 |
+#> |.....................| 0.02572 | 0.7274 | 1.064 | 1.100 |
+#> | F| Forward Diff. | -80.47 | 0.6431 | 1.023 | -73.28 |
+#> |.....................| -19.27 | -0.2791 | -7.739 | -11.92 |
+#> | 14| 337.22825 | 1.013 | -1.002 | -0.9523 | -0.7710 |
+#> |.....................| -0.9415 | -0.9814 | -0.9553 | -0.9445 |
+#> | U| 337.22825 | 94.28 | -0.1225 | 2.229 | 1.206 |
+#> |.....................| 0.02579 | 0.7275 | 1.066 | 1.104 |
+#> | X| 337.22825 | 94.28 | 0.8847 | 9.295 | 1.206 |
+#> |.....................| 0.02579 | 0.7275 | 1.066 | 1.104 |
+#> | F| Forward Diff. | 82.17 | 0.7754 | 1.480 | -71.69 |
+#> |.....................| -17.81 | -0.5846 | -7.635 | -11.71 |
+#> | 15| 335.66851 | 1.001 | -1.002 | -0.9527 | -0.7512 |
+#> |.....................| -0.9367 | -0.9812 | -0.9531 | -0.9411 |
+#> | U| 335.66851 | 93.18 | -0.1228 | 2.229 | 1.217 |
+#> |.....................| 0.02585 | 0.7276 | 1.068 | 1.108 |
+#> | X| 335.66851 | 93.18 | 0.8845 | 9.291 | 1.217 |
+#> |.....................| 0.02585 | 0.7276 | 1.068 | 1.108 |
+#> | F| Forward Diff. | -77.03 | 0.6546 | 1.055 | -69.28 |
+#> |.....................| -17.76 | -0.6126 | -7.531 | -11.66 |
+#> | 16| 334.17549 | 1.012 | -1.002 | -0.9531 | -0.7314 |
+#> |.....................| -0.9319 | -0.9810 | -0.9509 | -0.9376 |
+#> | U| 334.17549 | 94.25 | -0.1230 | 2.229 | 1.228 |
+#> |.....................| 0.02591 | 0.7278 | 1.070 | 1.111 |
+#> | X| 334.17549 | 94.25 | 0.8843 | 9.287 | 1.228 |
+#> |.....................| 0.02591 | 0.7278 | 1.070 | 1.111 |
+#> | F| Forward Diff. | 77.34 | 0.7869 | 1.511 | -67.40 |
+#> |.....................| -16.23 | -0.6338 | -7.414 | -11.45 |
+#> | 17| 332.70253 | 1.001 | -1.002 | -0.9536 | -0.7113 |
+#> |.....................| -0.9273 | -0.9807 | -0.9485 | -0.9339 |
+#> | U| 332.70253 | 93.20 | -0.1232 | 2.228 | 1.239 |
+#> |.....................| 0.02597 | 0.7280 | 1.073 | 1.115 |
+#> | X| 332.70253 | 93.20 | 0.8841 | 9.283 | 1.239 |
+#> |.....................| 0.02597 | 0.7280 | 1.073 | 1.115 |
+#> | F| Forward Diff. | -74.42 | 0.6680 | 1.089 | -65.07 |
+#> |.....................| -16.20 | -0.6067 | -7.288 | -11.39 |
+#> | 18| 331.26057 | 1.012 | -1.003 | -0.9540 | -0.6912 |
+#> |.....................| -0.9227 | -0.9804 | -0.9461 | -0.9301 |
+#> | U| 331.26057 | 94.22 | -0.1235 | 2.228 | 1.250 |
+#> |.....................| 0.02602 | 0.7282 | 1.076 | 1.119 |
+#> | X| 331.26057 | 94.22 | 0.8838 | 9.279 | 1.250 |
+#> |.....................| 0.02602 | 0.7282 | 1.076 | 1.119 |
+#> | F| Forward Diff. | 71.33 | 0.7962 | 1.537 | -63.45 |
+#> |.....................| -14.84 | -0.8466 | -7.169 | -11.16 |
+#> | 19| 329.86877 | 1.001 | -1.003 | -0.9546 | -0.6708 |
+#> |.....................| -0.9184 | -0.9799 | -0.9435 | -0.9260 |
+#> | U| 329.86877 | 93.23 | -0.1238 | 2.227 | 1.261 |
+#> |.....................| 0.02608 | 0.7285 | 1.078 | 1.124 |
+#> | X| 329.86877 | 93.23 | 0.8836 | 9.273 | 1.261 |
+#> |.....................| 0.02608 | 0.7285 | 1.078 | 1.124 |
+#> | F| Forward Diff. | -70.96 | 0.6825 | 1.126 | -60.92 |
+#> |.....................| -14.66 | -0.5289 | -7.027 | -11.08 |
+#> | 20| 328.50031 | 1.012 | -1.003 | -0.9552 | -0.6504 |
+#> |.....................| -0.9143 | -0.9795 | -0.9408 | -0.9217 |
+#> | U| 328.50031 | 94.20 | -0.1241 | 2.227 | 1.272 |
+#> |.....................| 0.02613 | 0.7288 | 1.081 | 1.128 |
+#> | X| 328.50031 | 94.20 | 0.8833 | 9.268 | 1.272 |
+#> |.....................| 0.02613 | 0.7288 | 1.081 | 1.128 |
+#> | F| Forward Diff. | 67.86 | 0.8082 | 1.577 | -59.49 |
+#> |.....................| -13.42 | -0.7986 | -6.899 | -10.84 |
+#> | 21| 327.16645 | 1.002 | -1.004 | -0.9559 | -0.6298 |
+#> |.....................| -0.9105 | -0.9791 | -0.9380 | -0.9171 |
+#> | U| 327.16645 | 93.27 | -0.1245 | 2.226 | 1.284 |
+#> |.....................| 0.02618 | 0.7291 | 1.084 | 1.133 |
+#> | X| 327.16645 | 93.27 | 0.8829 | 9.261 | 1.284 |
+#> |.....................| 0.02618 | 0.7291 | 1.084 | 1.133 |
+#> | F| Forward Diff. | -65.39 | 0.6978 | 1.172 | -57.48 |
+#> |.....................| -13.36 | -0.7754 | -6.743 | -10.73 |
+#> | 22| 325.87373 | 1.012 | -1.004 | -0.9567 | -0.6091 |
+#> |.....................| -0.9070 | -0.9785 | -0.9351 | -0.9123 |
+#> | U| 325.87373 | 94.19 | -0.1249 | 2.225 | 1.295 |
+#> |.....................| 0.02622 | 0.7296 | 1.087 | 1.138 |
+#> | X| 325.87373 | 94.19 | 0.8826 | 9.255 | 1.295 |
+#> |.....................| 0.02622 | 0.7296 | 1.087 | 1.138 |
+#> | F| Forward Diff. | 64.00 | 0.8187 | 1.613 | -55.46 |
+#> |.....................| -12.01 | -0.6347 | -6.615 | -10.48 |
+#> | 23| 324.62990 | 1.002 | -1.004 | -0.9576 | -0.5884 |
+#> |.....................| -0.9040 | -0.9780 | -0.9320 | -0.9071 |
+#> | U| 324.6299 | 93.29 | -0.1254 | 2.224 | 1.306 |
+#> |.....................| 0.02626 | 0.7300 | 1.090 | 1.144 |
+#> | X| 324.6299 | 93.29 | 0.8822 | 9.246 | 1.306 |
+#> |.....................| 0.02626 | 0.7300 | 1.090 | 1.144 |
+#> | F| Forward Diff. | -64.25 | 0.7091 | 1.205 | -53.86 |
+#> |.....................| -12.06 | -0.7132 | -6.446 | -10.35 |
+#> | 24| 323.37595 | 1.011 | -1.005 | -0.9586 | -0.5676 |
+#> |.....................| -0.9015 | -0.9774 | -0.9287 | -0.9014 |
+#> | U| 323.37595 | 94.14 | -0.1259 | 2.223 | 1.318 |
+#> |.....................| 0.02629 | 0.7304 | 1.094 | 1.150 |
+#> | X| 323.37595 | 94.14 | 0.8817 | 9.236 | 1.318 |
+#> |.....................| 0.02629 | 0.7304 | 1.094 | 1.150 |
+#> | F| Forward Diff. | 56.04 | 0.8254 | 1.637 | -52.44 |
+#> |.....................| -10.96 | -0.9420 | -6.280 | -10.07 |
+#> | 25| 322.22752 | 1.002 | -1.006 | -0.9598 | -0.5467 |
+#> |.....................| -0.8995 | -0.9764 | -0.9254 | -0.8957 |
+#> | U| 322.22752 | 93.30 | -0.1265 | 2.222 | 1.329 |
+#> |.....................| 0.02631 | 0.7311 | 1.097 | 1.156 |
+#> | X| 322.22752 | 93.30 | 0.8812 | 9.225 | 1.329 |
+#> |.....................| 0.02631 | 0.7311 | 1.097 | 1.156 |
+#> | F| Forward Diff. | -62.58 | 0.7198 | 1.238 | -50.46 |
+#> |.....................| -10.85 | -0.6563 | -6.111 | -9.931 |
+#> | 26| 321.05050 | 1.011 | -1.006 | -0.9612 | -0.5258 |
+#> |.....................| -0.8983 | -0.9755 | -0.9219 | -0.8894 |
+#> | U| 321.0505 | 94.13 | -0.1272 | 2.221 | 1.341 |
+#> |.....................| 0.02633 | 0.7318 | 1.101 | 1.163 |
+#> | X| 321.0505 | 94.13 | 0.8805 | 9.213 | 1.341 |
+#> |.....................| 0.02633 | 0.7318 | 1.101 | 1.163 |
+#> | F| Forward Diff. | 53.55 | 0.8319 | 1.674 | -49.18 |
+#> |.....................| -9.827 | -0.8926 | -5.944 | -9.631 |
+#> | 27| 319.96320 | 1.003 | -1.007 | -0.9629 | -0.5048 |
+#> |.....................| -0.8978 | -0.9744 | -0.9184 | -0.8829 |
+#> | U| 319.9632 | 93.35 | -0.1280 | 2.219 | 1.352 |
+#> |.....................| 0.02633 | 0.7325 | 1.104 | 1.170 |
+#> | X| 319.9632 | 93.35 | 0.8798 | 9.197 | 1.352 |
+#> |.....................| 0.02633 | 0.7325 | 1.104 | 1.170 |
+#> | F| Forward Diff. | -57.14 | 0.7318 | 1.284 | -47.52 |
+#> |.....................| -9.778 | -0.7040 | -5.744 | -9.448 |
+#> | 28| 318.87595 | 1.011 | -1.008 | -0.9647 | -0.4840 |
+#> |.....................| -0.8984 | -0.9733 | -0.9148 | -0.8761 |
+#> | U| 318.87595 | 94.12 | -0.1289 | 2.217 | 1.364 |
+#> |.....................| 0.02633 | 0.7334 | 1.108 | 1.177 |
+#> | X| 318.87595 | 94.12 | 0.8790 | 9.180 | 1.364 |
+#> |.....................| 0.02633 | 0.7334 | 1.108 | 1.177 |
+#> | F| Forward Diff. | 50.84 | 0.8352 | 1.706 | -46.29 |
+#> |.....................| -8.837 | -0.9158 | -5.564 | -9.134 |
+#> | 29| 317.86528 | 1.003 | -1.009 | -0.9669 | -0.4631 |
+#> |.....................| -0.9000 | -0.9719 | -0.9113 | -0.8691 |
+#> | U| 317.86528 | 93.39 | -0.1300 | 2.215 | 1.375 |
+#> |.....................| 0.02631 | 0.7344 | 1.112 | 1.185 |
+#> | X| 317.86528 | 93.39 | 0.8781 | 9.160 | 1.375 |
+#> |.....................| 0.02631 | 0.7344 | 1.112 | 1.185 |
+#> | F| Forward Diff. | -53.64 | 0.7337 | 1.307 | -44.73 |
+#> |.....................| -8.788 | -0.7242 | -5.380 | -8.940 |
+#> | 30| 316.86653 | 1.011 | -1.010 | -0.9694 | -0.4424 |
+#> |.....................| -0.9029 | -0.9703 | -0.9078 | -0.8619 |
+#> | U| 316.86653 | 94.11 | -0.1312 | 2.212 | 1.386 |
+#> |.....................| 0.02627 | 0.7355 | 1.115 | 1.192 |
+#> | X| 316.86653 | 94.11 | 0.8771 | 9.137 | 1.386 |
+#> |.....................| 0.02627 | 0.7355 | 1.115 | 1.192 |
+#> | F| Forward Diff. | 47.91 | 0.8298 | 1.717 | -43.37 |
+#> |.....................| -7.860 | -0.7095 | -5.221 | -8.628 |
+#> | 31| 315.94581 | 1.003 | -1.012 | -0.9723 | -0.4219 |
+#> |.....................| -0.9070 | -0.9693 | -0.9044 | -0.8547 |
+#> | U| 315.94581 | 93.42 | -0.1325 | 2.209 | 1.398 |
+#> |.....................| 0.02622 | 0.7363 | 1.119 | 1.200 |
+#> | X| 315.94581 | 93.42 | 0.8759 | 9.111 | 1.398 |
+#> |.....................| 0.02622 | 0.7363 | 1.119 | 1.200 |
+#> | F| Forward Diff. | -50.84 | 0.7268 | 1.307 | -41.97 |
+#> |.....................| -7.840 | -0.5502 | -5.032 | -8.421 |
+#> | 32| 315.03994 | 1.011 | -1.013 | -0.9754 | -0.4018 |
+#> |.....................| -0.9129 | -0.9687 | -0.9011 | -0.8473 |
+#> | U| 315.03994 | 94.09 | -0.1340 | 2.206 | 1.409 |
+#> |.....................| 0.02615 | 0.7367 | 1.122 | 1.208 |
+#> | X| 315.03994 | 94.09 | 0.8746 | 9.082 | 1.409 |
+#> |.....................| 0.02615 | 0.7367 | 1.122 | 1.208 |
+#> | F| Forward Diff. | 43.50 | 0.8139 | 1.698 | -41.38 |
+#> |.....................| -7.196 | -0.9249 | -4.882 | -8.108 |
+#> | 33| 314.20198 | 1.004 | -1.015 | -0.9788 | -0.3816 |
+#> |.....................| -0.9197 | -0.9671 | -0.8983 | -0.8406 |
+#> | U| 314.20198 | 93.47 | -0.1355 | 2.203 | 1.420 |
+#> |.....................| 0.02606 | 0.7379 | 1.125 | 1.215 |
+#> | X| 314.20198 | 93.47 | 0.8733 | 9.052 | 1.420 |
+#> |.....................| 0.02606 | 0.7379 | 1.125 | 1.215 |
+#> | F| Forward Diff. | -46.04 | 0.7133 | 1.286 | -40.35 |
+#> |.....................| -7.243 | -0.8268 | -4.724 | -7.917 |
+#> | 34| 313.39087 | 1.011 | -1.016 | -0.9822 | -0.3616 |
+#> |.....................| -0.9277 | -0.9641 | -0.8960 | -0.8348 |
+#> | U| 313.39087 | 94.10 | -0.1371 | 2.200 | 1.431 |
+#> |.....................| 0.02596 | 0.7401 | 1.128 | 1.221 |
+#> | X| 313.39087 | 94.10 | 0.8719 | 9.021 | 1.431 |
+#> |.....................| 0.02596 | 0.7401 | 1.128 | 1.221 |
+#> | F| Forward Diff. | 42.44 | 0.7936 | 1.657 | -38.93 |
+#> |.....................| -6.417 | -0.6060 | -4.631 | -7.687 |
+#> | 35| 312.65204 | 1.004 | -1.018 | -0.9857 | -0.3421 |
+#> |.....................| -0.9371 | -0.9626 | -0.8936 | -0.8290 |
+#> | U| 312.65204 | 93.49 | -0.1387 | 2.196 | 1.441 |
+#> |.....................| 0.02584 | 0.7411 | 1.130 | 1.228 |
+#> | X| 312.65204 | 93.49 | 0.8705 | 8.989 | 1.441 |
+#> |.....................| 0.02584 | 0.7411 | 1.130 | 1.228 |
+#> | F| Forward Diff. | -46.74 | 0.6875 | 1.233 | -38.07 |
+#> |.....................| -6.520 | -0.5247 | -4.495 | -7.518 |
+#> | 36| 311.92333 | 1.010 | -1.020 | -0.9894 | -0.3235 |
+#> |.....................| -0.9483 | -0.9627 | -0.8910 | -0.8230 |
+#> | U| 311.92333 | 94.07 | -0.1404 | 2.192 | 1.452 |
+#> |.....................| 0.02570 | 0.7411 | 1.133 | 1.234 |
+#> | X| 311.92333 | 94.07 | 0.8690 | 8.957 | 1.452 |
+#> |.....................| 0.02570 | 0.7411 | 1.133 | 1.234 |
+#> | F| Forward Diff. | 35.63 | 0.7624 | 1.583 | -37.23 |
+#> |.....................| -5.893 | -0.6222 | -4.382 | -7.287 |
+#> | 37| 311.27355 | 1.004 | -1.021 | -0.9929 | -0.3046 |
+#> |.....................| -0.9595 | -0.9623 | -0.8888 | -0.8177 |
+#> | U| 311.27355 | 93.51 | -0.1420 | 2.189 | 1.462 |
+#> |.....................| 0.02556 | 0.7413 | 1.135 | 1.240 |
+#> | X| 311.27355 | 93.51 | 0.8676 | 8.925 | 1.462 |
+#> |.....................| 0.02556 | 0.7413 | 1.135 | 1.240 |
+#> | F| Forward Diff. | -45.98 | 0.6631 | 1.170 | -36.31 |
+#> |.....................| -5.950 | -0.4376 | -4.255 | -7.133 |
+#> | 38| 310.62439 | 1.010 | -1.023 | -0.9963 | -0.2868 |
+#> |.....................| -0.9728 | -0.9625 | -0.8869 | -0.8128 |
+#> | U| 310.62439 | 94.07 | -0.1437 | 2.185 | 1.472 |
+#> |.....................| 0.02539 | 0.7412 | 1.137 | 1.245 |
+#> | X| 310.62439 | 94.07 | 0.8661 | 8.895 | 1.472 |
+#> |.....................| 0.02539 | 0.7412 | 1.137 | 1.245 |
+#> | F| Forward Diff. | 33.19 | 0.7369 | 1.513 | -35.63 |
+#> |.....................| -5.399 | -0.5527 | -4.174 | -6.950 |
+#> | 39| 310.04420 | 1.005 | -1.024 | -0.9995 | -0.2687 |
+#> |.....................| -0.9859 | -0.9628 | -0.8850 | -0.8081 |
+#> | U| 310.0442 | 93.55 | -0.1453 | 2.182 | 1.482 |
+#> |.....................| 0.02523 | 0.7410 | 1.139 | 1.250 |
+#> | X| 310.0442 | 93.55 | 0.8648 | 8.866 | 1.482 |
+#> |.....................| 0.02523 | 0.7410 | 1.139 | 1.250 |
+#> | F| Forward Diff. | -43.63 | 0.6390 | 1.117 | -34.92 |
+#> |.....................| -5.491 | -0.4082 | -4.072 | -6.814 |
+#> | 40| 309.46411 | 1.010 | -1.026 | -1.003 | -0.2518 |
+#> |.....................| -1.001 | -0.9632 | -0.8835 | -0.8040 |
+#> | U| 309.46411 | 94.07 | -0.1468 | 2.179 | 1.491 |
+#> |.....................| 0.02504 | 0.7407 | 1.141 | 1.254 |
+#> | X| 309.46411 | 94.07 | 0.8634 | 8.839 | 1.491 |
+#> |.....................| 0.02504 | 0.7407 | 1.141 | 1.254 |
+#> | F| Forward Diff. | 30.94 | 0.7075 | 1.451 | -34.14 |
+#> |.....................| -4.970 | -0.4915 | -4.021 | -6.668 |
+#> | 41| 308.94397 | 1.005 | -1.027 | -1.005 | -0.2344 |
+#> |.....................| -1.015 | -0.9639 | -0.8817 | -0.7999 |
+#> | U| 308.94397 | 93.57 | -0.1483 | 2.176 | 1.500 |
+#> |.....................| 0.02486 | 0.7402 | 1.143 | 1.259 |
+#> | X| 308.94397 | 93.57 | 0.8622 | 8.814 | 1.500 |
+#> |.....................| 0.02486 | 0.7402 | 1.143 | 1.259 |
+#> | F| Forward Diff. | -43.40 | 0.6150 | 1.062 | -33.15 |
+#> |.....................| -4.981 | -0.1275 | -3.914 | -6.542 |
+#> | 42| 308.42636 | 1.010 | -1.029 | -1.008 | -0.2188 |
+#> |.....................| -1.031 | -0.9663 | -0.8797 | -0.7956 |
+#> | U| 308.42636 | 94.07 | -0.1498 | 2.174 | 1.509 |
+#> |.....................| 0.02466 | 0.7384 | 1.145 | 1.264 |
+#> | X| 308.42636 | 94.07 | 0.8609 | 8.789 | 1.509 |
+#> |.....................| 0.02466 | 0.7384 | 1.145 | 1.264 |
+#> | F| Forward Diff. | 28.94 | 0.6832 | 1.395 | -33.36 |
+#> |.....................| -4.720 | -0.6585 | -3.841 | -6.387 |
+#> | 43| 307.94294 | 1.006 | -1.030 | -1.011 | -0.2019 |
+#> |.....................| -1.047 | -0.9672 | -0.8783 | -0.7922 |
+#> | U| 307.94294 | 93.62 | -0.1511 | 2.171 | 1.518 |
+#> |.....................| 0.02447 | 0.7378 | 1.146 | 1.267 |
+#> | X| 307.94294 | 93.62 | 0.8597 | 8.766 | 1.518 |
+#> |.....................| 0.02447 | 0.7378 | 1.146 | 1.267 |
+#> | F| Forward Diff. | -38.44 | 0.5985 | 1.037 | -32.41 |
+#> |.....................| -4.734 | -0.3663 | -3.762 | -6.284 |
+#> | 44| 307.46797 | 1.011 | -1.032 | -1.013 | -0.1861 |
+#> |.....................| -1.063 | -0.9666 | -0.8774 | -0.7896 |
+#> | U| 307.46797 | 94.11 | -0.1524 | 2.169 | 1.527 |
+#> |.....................| 0.02426 | 0.7383 | 1.147 | 1.270 |
+#> | X| 307.46797 | 94.11 | 0.8586 | 8.746 | 1.527 |
+#> |.....................| 0.02426 | 0.7383 | 1.147 | 1.270 |
+#> | F| Forward Diff. | 31.70 | 0.6652 | 1.367 | -32.07 |
+#> |.....................| -4.364 | -0.4841 | -3.739 | -6.200 |
+#> | 45| 307.02197 | 1.006 | -1.033 | -1.016 | -0.1702 |
+#> |.....................| -1.080 | -0.9671 | -0.8762 | -0.7866 |
+#> | U| 307.02197 | 93.66 | -0.1537 | 2.166 | 1.536 |
+#> |.....................| 0.02405 | 0.7379 | 1.149 | 1.273 |
+#> | X| 307.02197 | 93.66 | 0.8575 | 8.725 | 1.536 |
+#> |.....................| 0.02405 | 0.7379 | 1.149 | 1.273 |
+#> | F| Forward Diff. | -34.81 | 0.5817 | 1.015 | -31.25 |
+#> |.....................| -4.413 | -0.2597 | -3.670 | -6.117 |
+#> | 46| 306.58875 | 1.011 | -1.034 | -1.018 | -0.1551 |
+#> |.....................| -1.097 | -0.9684 | -0.8747 | -0.7833 |
+#> | U| 306.58875 | 94.13 | -0.1549 | 2.164 | 1.544 |
+#> |.....................| 0.02384 | 0.7369 | 1.150 | 1.277 |
+#> | X| 306.58875 | 94.13 | 0.8565 | 8.705 | 1.544 |
+#> |.....................| 0.02384 | 0.7369 | 1.150 | 1.277 |
+#> | F| Forward Diff. | 31.47 | 0.6484 | 1.332 | -31.08 |
+#> |.....................| -4.101 | -0.4354 | -3.617 | -5.999 |
+#> | 47| 306.17343 | 1.006 | -1.035 | -1.020 | -0.1399 |
+#> |.....................| -1.114 | -0.9699 | -0.8732 | -0.7802 |
+#> | U| 306.17343 | 93.70 | -0.1561 | 2.162 | 1.552 |
+#> |.....................| 0.02362 | 0.7358 | 1.152 | 1.280 |
+#> | X| 306.17343 | 93.70 | 0.8554 | 8.686 | 1.552 |
+#> |.....................| 0.02362 | 0.7358 | 1.152 | 1.280 |
+#> | F| Forward Diff. | -31.81 | 0.5683 | 0.9956 | -30.69 |
+#> |.....................| -4.225 | -0.4059 | -3.540 | -5.903 |
+#> | 48| 305.76609 | 1.011 | -1.036 | -1.022 | -0.1248 |
+#> |.....................| -1.132 | -0.9702 | -0.8722 | -0.7778 |
+#> | U| 305.76609 | 94.14 | -0.1573 | 2.160 | 1.560 |
+#> |.....................| 0.02340 | 0.7356 | 1.153 | 1.283 |
+#> | X| 305.76609 | 94.14 | 0.8545 | 8.668 | 1.560 |
+#> |.....................| 0.02340 | 0.7356 | 1.153 | 1.283 |
+#> | F| Forward Diff. | 30.78 | 0.6301 | 1.297 | -30.24 |
+#> |.....................| -3.891 | -0.4278 | -3.502 | -5.825 |
+#> | 49| 305.37620 | 1.007 | -1.037 | -1.024 | -0.1098 |
+#> |.....................| -1.149 | -0.9705 | -0.8714 | -0.7755 |
+#> | U| 305.3762 | 93.72 | -0.1584 | 2.158 | 1.569 |
+#> |.....................| 0.02318 | 0.7354 | 1.154 | 1.285 |
+#> | X| 305.3762 | 93.72 | 0.8535 | 8.651 | 1.569 |
+#> |.....................| 0.02318 | 0.7354 | 1.154 | 1.285 |
+#> | F| Forward Diff. | -32.45 | 0.5512 | 0.9611 | -29.28 |
+#> |.....................| -3.904 | -0.09870 | -3.459 | -5.767 |
+#> | 50| 304.99974 | 1.011 | -1.039 | -1.026 | -0.09561 |
+#> |.....................| -1.167 | -0.9731 | -0.8699 | -0.7723 |
+#> | U| 304.99974 | 94.15 | -0.1595 | 2.156 | 1.576 |
+#> |.....................| 0.02295 | 0.7335 | 1.155 | 1.288 |
+#> | X| 304.99974 | 94.15 | 0.8526 | 8.633 | 1.576 |
+#> |.....................| 0.02295 | 0.7335 | 1.155 | 1.288 |
+#> | F| Forward Diff. | 30.20 | 0.6130 | 1.265 | -28.57 |
+#> |.....................| -3.511 | -0.04200 | -3.403 | -5.652 |
+#> | 51| 304.64794 | 1.007 | -1.040 | -1.028 | -0.08217 |
+#> |.....................| -1.185 | -0.9783 | -0.8678 | -0.7682 |
+#> | U| 304.64794 | 93.75 | -0.1607 | 2.153 | 1.584 |
+#> |.....................| 0.02273 | 0.7297 | 1.157 | 1.293 |
+#> | X| 304.64794 | 93.75 | 0.8516 | 8.614 | 1.584 |
+#> |.....................| 0.02273 | 0.7297 | 1.157 | 1.293 |
+#> | F| Forward Diff. | -30.08 | 0.5385 | 0.9408 | -28.96 |
+#> |.....................| -3.779 | -0.3908 | -3.281 | -5.515 |
+#> | 52| 304.28931 | 1.011 | -1.041 | -1.030 | -0.06828 |
+#> |.....................| -1.203 | -0.9811 | -0.8668 | -0.7655 |
+#> | U| 304.28931 | 94.14 | -0.1618 | 2.151 | 1.591 |
+#> |.....................| 0.02250 | 0.7277 | 1.158 | 1.296 |
+#> | X| 304.28931 | 94.14 | 0.8506 | 8.597 | 1.591 |
+#> |.....................| 0.02250 | 0.7277 | 1.158 | 1.296 |
+#> | 53| 304.03244 | 1.011 | -1.042 | -1.033 | -0.05709 |
+#> |.....................| -1.225 | -0.9843 | -0.8662 | -0.7633 |
+#> | U| 304.03244 | 94.13 | -0.1630 | 2.149 | 1.597 |
+#> |.....................| 0.02223 | 0.7253 | 1.159 | 1.298 |
+#> | X| 304.03244 | 94.13 | 0.8496 | 8.578 | 1.597 |
+#> |.....................| 0.02223 | 0.7253 | 1.159 | 1.298 |
+#> | 54| 302.98899 | 1.011 | -1.047 | -1.041 | -0.01055 |
+#> |.....................| -1.314 | -0.9977 | -0.8638 | -0.7544 |
+#> | U| 302.98899 | 94.10 | -0.1678 | 2.140 | 1.623 |
+#> |.....................| 0.02111 | 0.7156 | 1.161 | 1.308 |
+#> | X| 302.98899 | 94.10 | 0.8455 | 8.503 | 1.623 |
+#> |.....................| 0.02111 | 0.7156 | 1.161 | 1.308 |
+#> | 55| 298.89653 | 1.010 | -1.068 | -1.080 | 0.1944 |
+#> |.....................| -1.708 | -1.057 | -0.8531 | -0.7150 |
+#> | U| 298.89653 | 93.99 | -0.1892 | 2.101 | 1.735 |
+#> |.....................| 0.01618 | 0.6726 | 1.173 | 1.350 |
+#> | X| 298.89653 | 93.99 | 0.8276 | 8.177 | 1.735 |
+#> |.....................| 0.01618 | 0.6726 | 1.173 | 1.350 |
+#> | 56| 292.24425 | 1.012 | -1.205 | -1.331 | 1.218 |
+#> |.....................| -2.997 | -1.313 | -0.8095 | -0.4981 |
+#> | U| 292.24425 | 94.21 | -0.3257 | 1.851 | 2.296 |
+#> |.....................| 5.960e-07 | 0.4863 | 1.218 | 1.582 |
+#> | X| 292.24425 | 94.21 | 0.7221 | 6.365 | 2.296 |
+#> |.....................| 5.960e-07 | 0.4863 | 1.218 | 1.582 |
+#> | F| Forward Diff. | -17.20 | -1.896 | -10.23 | 0.3663 |
+#> |.....................| 0.002021 | -17.85 | 0.1528 | 5.292 |
+#> | 57| 309.71599 | 0.9897 | -1.187 | -0.4357 | 2.442 |
+#> |.....................| -2.997 | 0.5394 | -0.6812 | -0.7129 |
+#> | U| 309.71599 | 92.14 | -0.3076 | 2.746 | 2.966 |
+#> |.....................| 5.960e-07 | 1.833 | 1.352 | 1.352 |
+#> | X| 309.71599 | 92.14 | 0.7352 | 15.58 | 2.966 |
+#> |.....................| 5.960e-07 | 1.833 | 1.352 | 1.352 |
+#> | 58| 292.01474 | 1.005 | -1.198 | -1.013 | 1.651 |
+#> |.....................| -2.997 | -0.6561 | -0.7641 | -0.5745 |
+#> | U| 292.01474 | 93.60 | -0.3191 | 2.168 | 2.533 |
+#> |.....................| 5.960e-07 | 0.9640 | 1.266 | 1.501 |
+#> | X| 292.01474 | 93.60 | 0.7268 | 8.745 | 2.533 |
+#> |.....................| 5.960e-07 | 0.9640 | 1.266 | 1.501 |
+#> | F| Forward Diff. | -172.4 | -2.986 | 3.411 | 4.977 |
+#> |.....................| 0.05585 | 3.841 | 3.028 | 0.3322 |
+#> | 59| 292.30890 | 1.013 | -0.8632 | -1.158 | 1.672 |
+#> |.....................| -2.997 | -0.5770 | -0.9665 | -0.6082 |
+#> | U| 292.3089 | 94.28 | 0.01586 | 2.024 | 2.544 |
+#> |.....................| 5.960e-07 | 1.022 | 1.054 | 1.464 |
+#> | X| 292.3089 | 94.28 | 1.016 | 7.565 | 2.544 |
+#> |.....................| 5.960e-07 | 1.022 | 1.054 | 1.464 |
+#> | 60| 291.20170 | 1.015 | -1.046 | -1.079 | 1.660 |
+#> |.....................| -2.997 | -0.6203 | -0.8561 | -0.5898 |
+#> | U| 291.2017 | 94.51 | -0.1669 | 2.103 | 2.538 |
+#> |.....................| 5.960e-07 | 0.9900 | 1.170 | 1.484 |
+#> | X| 291.2017 | 94.51 | 0.8462 | 8.187 | 2.538 |
+#> |.....................| 5.960e-07 | 0.9900 | 1.170 | 1.484 |
+#> | F| Forward Diff. | 39.51 | 0.9033 | 2.112 | 5.106 |
+#> |.....................| 0.03418 | 2.863 | -2.696 | -0.7695 |
+#> | 61| 291.43833 | 1.017 | -1.033 | -1.136 | 1.600 |
+#> |.....................| -2.997 | -0.6066 | -0.6851 | -0.5537 |
+#> | U| 291.43833 | 94.73 | -0.1542 | 2.046 | 2.505 |
+#> |.....................| 5.960e-07 | 1.000 | 1.348 | 1.523 |
+#> | X| 291.43833 | 94.73 | 0.8571 | 7.739 | 2.505 |
+#> |.....................| 5.960e-07 | 1.000 | 1.348 | 1.523 |
+#> | 62| 290.99248 | 1.014 | -1.041 | -1.101 | 1.637 |
+#> |.....................| -2.997 | -0.6152 | -0.7907 | -0.5760 |
+#> | U| 290.99248 | 94.43 | -0.1621 | 2.081 | 2.525 |
+#> |.....................| 5.960e-07 | 0.9938 | 1.238 | 1.499 |
+#> | X| 290.99248 | 94.43 | 0.8503 | 8.012 | 2.525 |
+#> |.....................| 5.960e-07 | 0.9938 | 1.238 | 1.499 |
+#> | F| Forward Diff. | 14.98 | 1.278 | 1.101 | 4.858 |
+#> |.....................| 0.03639 | 3.021 | 0.9673 | -0.2780 |
+#> | 63| 291.02454 | 1.009 | -1.102 | -1.088 | 1.608 |
+#> |.....................| -2.997 | -0.6330 | -0.7900 | -0.5542 |
+#> | U| 291.02454 | 93.95 | -0.2228 | 2.094 | 2.510 |
+#> |.....................| 5.960e-07 | 0.9808 | 1.239 | 1.522 |
+#> | X| 291.02454 | 93.95 | 0.8003 | 8.118 | 2.510 |
+#> |.....................| 5.960e-07 | 0.9808 | 1.239 | 1.522 |
+#> | 64| 291.12722 | 1.009 | -1.068 | -1.095 | 1.623 |
+#> |.....................| -2.997 | -0.6237 | -0.7906 | -0.5663 |
+#> | U| 291.12722 | 93.94 | -0.1892 | 2.087 | 2.518 |
+#> |.....................| 5.960e-07 | 0.9876 | 1.238 | 1.509 |
+#> | X| 291.12722 | 93.94 | 0.8276 | 8.057 | 2.518 |
+#> |.....................| 5.960e-07 | 0.9876 | 1.238 | 1.509 |
+#> | 65| 291.20836 | 1.009 | -1.048 | -1.100 | 1.633 |
+#> |.....................| -2.997 | -0.6180 | -0.7910 | -0.5738 |
+#> | U| 291.20836 | 93.93 | -0.1686 | 2.082 | 2.523 |
+#> |.....................| 5.960e-07 | 0.9918 | 1.238 | 1.501 |
+#> | X| 291.20836 | 93.93 | 0.8449 | 8.020 | 2.523 |
+#> |.....................| 5.960e-07 | 0.9918 | 1.238 | 1.501 |
+#> | 66| 290.99661 | 1.013 | -1.041 | -1.101 | 1.637 |
+#> |.....................| -2.997 | -0.6156 | -0.7909 | -0.5760 |
+#> | U| 290.99661 | 94.27 | -0.1623 | 2.081 | 2.525 |
+#> |.....................| 5.960e-07 | 0.9935 | 1.238 | 1.499 |
+#> | X| 290.99661 | 94.27 | 0.8502 | 8.011 | 2.525 |
+#> |.....................| 5.960e-07 | 0.9935 | 1.238 | 1.499 |
+#> | 67| 290.98636 | 1.014 | -1.041 | -1.101 | 1.637 |
+#> |.....................| -2.997 | -0.6154 | -0.7908 | -0.5760 |
+#> | U| 290.98636 | 94.36 | -0.1622 | 2.081 | 2.525 |
+#> |.....................| 5.960e-07 | 0.9936 | 1.238 | 1.499 |
+#> | X| 290.98636 | 94.36 | 0.8503 | 8.012 | 2.525 |
+#> |.....................| 5.960e-07 | 0.9936 | 1.238 | 1.499 |
+#> | F| Forward Diff. | -1.956 | 1.256 | 0.9523 | 4.835 |
+#> |.....................| 0.03649 | 3.031 | 0.9657 | -0.2695 |
+#> | 68| 290.98211 | 1.014 | -1.041 | -1.101 | 1.636 |
+#> |.....................| -2.997 | -0.6157 | -0.7909 | -0.5760 |
+#> | U| 290.98211 | 94.38 | -0.1623 | 2.081 | 2.525 |
+#> |.....................| 5.960e-07 | 0.9934 | 1.238 | 1.499 |
+#> | X| 290.98211 | 94.38 | 0.8502 | 8.011 | 2.525 |
+#> |.....................| 5.960e-07 | 0.9934 | 1.238 | 1.499 |
+#> | 69| 290.97746 | 1.014 | -1.042 | -1.101 | 1.635 |
+#> |.....................| -2.997 | -0.6167 | -0.7912 | -0.5759 |
+#> | U| 290.97746 | 94.44 | -0.1627 | 2.081 | 2.524 |
+#> |.....................| 5.960e-07 | 0.9927 | 1.237 | 1.499 |
+#> | X| 290.97746 | 94.44 | 0.8498 | 8.009 | 2.524 |
+#> |.....................| 5.960e-07 | 0.9927 | 1.237 | 1.499 |
+#> | F| Forward Diff. | 17.70 | 1.268 | 1.108 | 4.855 |
+#> |.....................| 0.04257 | 3.066 | 0.9427 | -0.2771 |
+#> | 70| 290.96180 | 1.014 | -1.044 | -1.101 | 1.634 |
+#> |.....................| -2.997 | -0.6175 | -0.7910 | -0.5752 |
+#> | U| 290.9618 | 94.36 | -0.1647 | 2.081 | 2.523 |
+#> |.....................| 5.960e-07 | 0.9921 | 1.238 | 1.500 |
+#> | X| 290.9618 | 94.36 | 0.8481 | 8.013 | 2.523 |
+#> |.....................| 5.960e-07 | 0.9921 | 1.238 | 1.500 |
+#> | F| Forward Diff. | -1.598 | 1.197 | 0.9704 | 4.824 |
+#> |.....................| 0.03731 | 2.941 | 0.9551 | -0.2334 |
+#> | 71| 290.95083 | 1.014 | -1.044 | -1.101 | 1.632 |
+#> |.....................| -2.997 | -0.6188 | -0.7915 | -0.5751 |
+#> | U| 290.95083 | 94.43 | -0.1653 | 2.081 | 2.522 |
+#> |.....................| 5.960e-07 | 0.9912 | 1.237 | 1.500 |
+#> | X| 290.95083 | 94.43 | 0.8477 | 8.010 | 2.522 |
+#> |.....................| 5.960e-07 | 0.9912 | 1.237 | 1.500 |
+#> | F| Forward Diff. | 14.81 | 1.204 | 1.097 | 4.820 |
+#> |.....................| 0.03908 | 3.014 | 0.9116 | -0.2462 |
+#> | 72| 290.93714 | 1.014 | -1.046 | -1.101 | 1.630 |
+#> |.....................| -2.997 | -0.6196 | -0.7913 | -0.5744 |
+#> | U| 290.93714 | 94.36 | -0.1673 | 2.081 | 2.522 |
+#> |.....................| 5.960e-07 | 0.9906 | 1.237 | 1.501 |
+#> | X| 290.93714 | 94.36 | 0.8459 | 8.014 | 2.522 |
+#> |.....................| 5.960e-07 | 0.9906 | 1.237 | 1.501 |
+#> | F| Forward Diff. | -1.943 | 1.135 | 0.9791 | 4.793 |
+#> |.....................| 0.03360 | 3.051 | 0.9080 | -0.2200 |
+#> | 73| 290.92845 | 1.014 | -1.047 | -1.101 | 1.628 |
+#> |.....................| -2.997 | -0.6209 | -0.7917 | -0.5743 |
+#> | U| 290.92845 | 94.44 | -0.1678 | 2.081 | 2.521 |
+#> |.....................| 5.960e-07 | 0.9896 | 1.237 | 1.501 |
+#> | X| 290.92845 | 94.44 | 0.8455 | 8.011 | 2.521 |
+#> |.....................| 5.960e-07 | 0.9896 | 1.237 | 1.501 |
+#> | F| Forward Diff. | 17.70 | 1.147 | 1.134 | 4.752 |
+#> |.....................| 0.02729 | 3.018 | 0.8867 | -0.2229 |
+#> | 74| 290.91300 | 1.014 | -1.049 | -1.100 | 1.627 |
+#> |.....................| -2.997 | -0.6219 | -0.7915 | -0.5737 |
+#> | U| 290.913 | 94.36 | -0.1698 | 2.081 | 2.520 |
+#> |.....................| 5.960e-07 | 0.9889 | 1.237 | 1.501 |
+#> | X| 290.913 | 94.36 | 0.8439 | 8.016 | 2.520 |
+#> |.....................| 5.960e-07 | 0.9889 | 1.237 | 1.501 |
+#> | F| Forward Diff. | -1.940 | 1.078 | 0.9981 | 4.722 |
+#> |.....................| 0.04064 | 3.105 | 0.9143 | -0.1849 |
+#> | 75| 290.90444 | 1.014 | -1.049 | -1.101 | 1.625 |
+#> |.....................| -2.997 | -0.6232 | -0.7919 | -0.5736 |
+#> | U| 290.90444 | 94.44 | -0.1702 | 2.081 | 2.519 |
+#> |.....................| 5.960e-07 | 0.9879 | 1.237 | 1.501 |
+#> | X| 290.90444 | 94.44 | 0.8435 | 8.013 | 2.519 |
+#> |.....................| 5.960e-07 | 0.9879 | 1.237 | 1.501 |
+#> | F| Forward Diff. | 17.76 | 1.091 | 1.153 | 4.713 |
+#> |.....................| 0.03198 | 2.950 | 0.8627 | -0.2001 |
+#> | 76| 290.88905 | 1.014 | -1.051 | -1.100 | 1.624 |
+#> |.....................| -2.997 | -0.6243 | -0.7916 | -0.5732 |
+#> | U| 290.88905 | 94.36 | -0.1722 | 2.082 | 2.518 |
+#> |.....................| 5.960e-07 | 0.9872 | 1.237 | 1.502 |
+#> | X| 290.88905 | 94.36 | 0.8418 | 8.019 | 2.518 |
+#> |.....................| 5.960e-07 | 0.9872 | 1.237 | 1.502 |
+#> | F| Forward Diff. | -2.112 | 1.022 | 1.016 | 4.749 |
+#> |.....................| 0.03990 | 3.117 | 0.8810 | -0.1779 |
+#> | 77| 290.87937 | 1.014 | -1.052 | -1.100 | 1.622 |
+#> |.....................| -2.997 | -0.6257 | -0.7918 | -0.5730 |
+#> | U| 290.87937 | 94.43 | -0.1731 | 2.082 | 2.517 |
+#> |.....................| 5.960e-07 | 0.9861 | 1.237 | 1.502 |
+#> | X| 290.87937 | 94.43 | 0.8411 | 8.018 | 2.517 |
+#> |.....................| 5.960e-07 | 0.9861 | 1.237 | 1.502 |
+#> | F| Forward Diff. | 15.72 | 1.022 | 1.168 | 4.728 |
+#> |.....................| 0.04036 | 3.118 | 0.8621 | -0.1806 |
+#> | 78| 290.86528 | 1.014 | -1.054 | -1.099 | 1.621 |
+#> |.....................| -2.997 | -0.6269 | -0.7915 | -0.5727 |
+#> | U| 290.86528 | 94.36 | -0.1749 | 2.083 | 2.516 |
+#> |.....................| 5.960e-07 | 0.9853 | 1.237 | 1.502 |
+#> | X| 290.86528 | 94.36 | 0.8396 | 8.025 | 2.516 |
+#> |.....................| 5.960e-07 | 0.9853 | 1.237 | 1.502 |
+#> | F| Forward Diff. | -2.089 | 0.9583 | 1.055 | 4.711 |
+#> |.....................| 0.04161 | 3.089 | 0.8790 | -0.1555 |
+#> | 79| 290.85625 | 1.014 | -1.055 | -1.099 | 1.619 |
+#> |.....................| -2.997 | -0.6283 | -0.7918 | -0.5726 |
+#> | U| 290.85625 | 94.44 | -0.1756 | 2.082 | 2.515 |
+#> |.....................| 5.960e-07 | 0.9842 | 1.237 | 1.503 |
+#> | X| 290.85625 | 94.44 | 0.8389 | 8.023 | 2.515 |
+#> |.....................| 5.960e-07 | 0.9842 | 1.237 | 1.503 |
+#> | F| Forward Diff. | 16.77 | 0.9641 | 1.212 | 4.706 |
+#> |.....................| 0.04215 | 3.138 | 0.8554 | -0.1643 |
+#> | 80| 290.84140 | 1.014 | -1.056 | -1.099 | 1.618 |
+#> |.....................| -2.997 | -0.6296 | -0.7915 | -0.5724 |
+#> | U| 290.8414 | 94.36 | -0.1774 | 2.083 | 2.515 |
+#> |.....................| 5.960e-07 | 0.9833 | 1.237 | 1.503 |
+#> | X| 290.8414 | 94.36 | 0.8375 | 8.030 | 2.515 |
+#> |.....................| 5.960e-07 | 0.9833 | 1.237 | 1.503 |
+#> | F| Forward Diff. | -1.641 | 0.9006 | 1.093 | 4.694 |
+#> |.....................| 0.04205 | 3.147 | 0.8775 | -0.1452 |
+#> | 81| 290.83107 | 1.014 | -1.057 | -1.099 | 1.616 |
+#> |.....................| -2.997 | -0.6310 | -0.7919 | -0.5723 |
+#> | U| 290.83107 | 94.43 | -0.1778 | 2.083 | 2.514 |
+#> |.....................| 5.960e-07 | 0.9823 | 1.237 | 1.503 |
+#> | X| 290.83107 | 94.43 | 0.8371 | 8.026 | 2.514 |
+#> |.....................| 5.960e-07 | 0.9823 | 1.237 | 1.503 |
+#> | F| Forward Diff. | 15.22 | 0.9116 | 1.221 | 4.655 |
+#> |.....................| 0.04015 | 3.140 | 0.8393 | -0.1501 |
+#> | 82| 290.81725 | 1.014 | -1.059 | -1.098 | 1.615 |
+#> |.....................| -2.997 | -0.6323 | -0.7916 | -0.5722 |
+#> | U| 290.81725 | 94.36 | -0.1795 | 2.084 | 2.513 |
+#> |.....................| 5.960e-07 | 0.9813 | 1.237 | 1.503 |
+#> | X| 290.81725 | 94.36 | 0.8357 | 8.034 | 2.513 |
+#> |.....................| 5.960e-07 | 0.9813 | 1.237 | 1.503 |
+#> | F| Forward Diff. | -2.105 | 0.8517 | 1.114 | 4.660 |
+#> |.....................| 0.03878 | 3.162 | 0.8666 | -0.1313 |
+#> | 83| 290.80795 | 1.014 | -1.059 | -1.098 | 1.613 |
+#> |.....................| -2.997 | -0.6339 | -0.7918 | -0.5722 |
+#> | U| 290.80795 | 94.43 | -0.1802 | 2.084 | 2.512 |
+#> |.....................| 5.960e-07 | 0.9802 | 1.237 | 1.503 |
+#> | X| 290.80795 | 94.43 | 0.8351 | 8.033 | 2.512 |
+#> |.....................| 5.960e-07 | 0.9802 | 1.237 | 1.503 |
+#> | F| Forward Diff. | 16.11 | 0.8564 | 1.267 | 4.653 |
+#> |.....................| 0.04303 | 3.178 | 0.8469 | -0.1413 |
+#> | 84| 290.79348 | 1.014 | -1.061 | -1.097 | 1.611 |
+#> |.....................| -2.997 | -0.6353 | -0.7914 | -0.5722 |
+#> | U| 290.79348 | 94.36 | -0.1817 | 2.084 | 2.511 |
+#> |.....................| 5.960e-07 | 0.9792 | 1.237 | 1.503 |
+#> | X| 290.79348 | 94.36 | 0.8338 | 8.041 | 2.511 |
+#> |.....................| 5.960e-07 | 0.9792 | 1.237 | 1.503 |
+#> | F| Forward Diff. | -1.840 | 0.7976 | 1.155 | 4.587 |
+#> |.....................| 0.02723 | 3.115 | 0.8603 | -0.1275 |
+#> | 85| 290.78474 | 1.014 | -1.061 | -1.098 | 1.609 |
+#> |.....................| -2.997 | -0.6367 | -0.7918 | -0.5721 |
+#> | U| 290.78474 | 94.44 | -0.1821 | 2.084 | 2.510 |
+#> |.....................| 5.960e-07 | 0.9781 | 1.237 | 1.503 |
+#> | X| 290.78474 | 94.44 | 0.8335 | 8.036 | 2.510 |
+#> |.....................| 5.960e-07 | 0.9781 | 1.237 | 1.503 |
+#> | F| Forward Diff. | 17.19 | 0.8130 | 1.300 | 4.618 |
+#> |.....................| 0.03919 | 3.190 | 0.8345 | -0.1328 |
+#> | 86| 290.76934 | 1.014 | -1.063 | -1.097 | 1.608 |
+#> |.....................| -2.997 | -0.6382 | -0.7915 | -0.5722 |
+#> | U| 290.76934 | 94.36 | -0.1836 | 2.085 | 2.510 |
+#> |.....................| 5.960e-07 | 0.9771 | 1.237 | 1.503 |
+#> | X| 290.76934 | 94.36 | 0.8322 | 8.044 | 2.510 |
+#> |.....................| 5.960e-07 | 0.9771 | 1.237 | 1.503 |
+#> | F| Forward Diff. | -1.203 | 0.7543 | 1.182 | 4.565 |
+#> |.....................| 0.03490 | 3.166 | 0.8589 | -0.1256 |
+#> | 87| 290.75687 | 1.014 | -1.063 | -1.097 | 1.606 |
+#> |.....................| -2.997 | -0.6397 | -0.7919 | -0.5722 |
+#> | U| 290.75687 | 94.41 | -0.1840 | 2.084 | 2.508 |
+#> |.....................| 5.960e-07 | 0.9760 | 1.237 | 1.503 |
+#> | X| 290.75687 | 94.41 | 0.8319 | 8.039 | 2.508 |
+#> |.....................| 5.960e-07 | 0.9760 | 1.237 | 1.503 |
+#> | 88| 290.75123 | 1.015 | -1.063 | -1.098 | 1.604 |
+#> |.....................| -2.997 | -0.6414 | -0.7924 | -0.5721 |
+#> | U| 290.75123 | 94.47 | -0.1844 | 2.084 | 2.507 |
+#> |.....................| 5.960e-07 | 0.9747 | 1.236 | 1.503 |
+#> | X| 290.75123 | 94.47 | 0.8316 | 8.034 | 2.507 |
+#> |.....................| 5.960e-07 | 0.9747 | 1.236 | 1.503 |
+#> | F| Forward Diff. | 26.23 | 0.7709 | 1.374 | 4.560 |
+#> |.....................| 0.04194 | 3.213 | 0.7966 | -0.1353 |
+#> | 89| 290.71744 | 1.014 | -1.067 | -1.096 | 1.601 |
+#> |.....................| -2.997 | -0.6448 | -0.7915 | -0.5726 |
+#> | U| 290.71744 | 94.37 | -0.1875 | 2.086 | 2.506 |
+#> |.....................| 5.960e-07 | 0.9722 | 1.237 | 1.503 |
+#> | X| 290.71744 | 94.37 | 0.8291 | 8.054 | 2.506 |
+#> |.....................| 5.960e-07 | 0.9722 | 1.237 | 1.503 |
+#> | F| Forward Diff. | 0.1928 | 0.6670 | 1.256 | 4.555 |
+#> |.....................| 0.04212 | 3.227 | 0.8436 | -0.1302 |
+#> | 90| 290.68496 | 1.013 | -1.067 | -1.097 | 1.597 |
+#> |.....................| -2.997 | -0.6481 | -0.7924 | -0.5725 |
+#> | U| 290.68496 | 94.35 | -0.1881 | 2.085 | 2.503 |
+#> |.....................| 5.960e-07 | 0.9698 | 1.236 | 1.503 |
+#> | X| 290.68496 | 94.35 | 0.8285 | 8.044 | 2.503 |
+#> |.....................| 5.960e-07 | 0.9698 | 1.236 | 1.503 |
+#> | 91| 290.59496 | 1.013 | -1.069 | -1.101 | 1.583 |
+#> |.....................| -2.997 | -0.6580 | -0.7950 | -0.5721 |
+#> | U| 290.59496 | 94.29 | -0.1902 | 2.081 | 2.496 |
+#> |.....................| 5.960e-07 | 0.9627 | 1.233 | 1.503 |
+#> | X| 290.59496 | 94.29 | 0.8268 | 8.013 | 2.496 |
+#> |.....................| 5.960e-07 | 0.9627 | 1.233 | 1.503 |
+#> | 92| 290.34408 | 1.010 | -1.077 | -1.116 | 1.527 |
+#> |.....................| -2.997 | -0.6974 | -0.8053 | -0.5705 |
+#> | U| 290.34408 | 94.08 | -0.1983 | 2.066 | 2.465 |
+#> |.....................| 5.960e-07 | 0.9340 | 1.223 | 1.505 |
+#> | X| 290.34408 | 94.08 | 0.8201 | 7.891 | 2.465 |
+#> |.....................| 5.960e-07 | 0.9340 | 1.223 | 1.505 |
+#> | F| Forward Diff. | -74.08 | 0.3588 | -0.1794 | 3.803 |
+#> |.....................| 0.04205 | 3.779 | 0.06785 | -0.005437 |
+#> | 93| 289.95778 | 1.012 | -1.081 | -1.068 | 1.490 |
+#> |.....................| -2.997 | -0.7670 | -0.7909 | -0.5845 |
+#> | U| 289.95778 | 94.18 | -0.2020 | 2.114 | 2.445 |
+#> |.....................| 5.960e-07 | 0.8834 | 1.238 | 1.490 |
+#> | X| 289.95778 | 94.18 | 0.8171 | 8.282 | 2.445 |
+#> |.....................| 5.960e-07 | 0.8834 | 1.238 | 1.490 |
+#> | 94| 289.83089 | 1.009 | -1.086 | -1.006 | 1.442 |
+#> |.....................| -2.997 | -0.8563 | -0.7725 | -0.6025 |
+#> | U| 289.83089 | 93.98 | -0.2067 | 2.176 | 2.418 |
+#> |.....................| 5.960e-07 | 0.8185 | 1.257 | 1.470 |
+#> | X| 289.83089 | 93.98 | 0.8132 | 8.812 | 2.418 |
+#> |.....................| 5.960e-07 | 0.8185 | 1.257 | 1.470 |
+#> | F| Forward Diff. | -65.01 | -0.01626 | 4.198 | 3.297 |
+#> |.....................| 0.05097 | 3.562 | 1.909 | -0.3175 |
+#> | 95| 290.63229 | 1.014 | -1.226 | -1.068 | 1.287 |
+#> |.....................| -2.997 | -1.101 | -0.7595 | -0.8853 |
+#> | U| 290.63229 | 94.43 | -0.3467 | 2.113 | 2.333 |
+#> |.....................| 5.960e-07 | 0.6407 | 1.271 | 1.167 |
+#> | X| 290.63229 | 94.43 | 0.7070 | 8.277 | 2.333 |
+#> |.....................| 5.960e-07 | 0.6407 | 1.271 | 1.167 |
+#> | 96| 289.56584 | 1.017 | -1.134 | -1.028 | 1.388 |
+#> |.....................| -2.997 | -0.9416 | -0.7681 | -0.7007 |
+#> | U| 289.56584 | 94.70 | -0.2554 | 2.154 | 2.389 |
+#> |.....................| 5.960e-07 | 0.7564 | 1.261 | 1.365 |
+#> | X| 289.56584 | 94.70 | 0.7746 | 8.619 | 2.389 |
+#> |.....................| 5.960e-07 | 0.7564 | 1.261 | 1.365 |
+#> | F| Forward Diff. | 59.80 | -0.9076 | 3.450 | 2.884 |
+#> |.....................| 0.04168 | 2.247 | 1.868 | -3.338 |
+#> | 97| 289.16078 | 1.017 | -1.094 | -1.010 | 1.317 |
+#> |.....................| -2.997 | -0.9798 | -0.7948 | -0.5837 |
+#> | U| 289.16078 | 94.64 | -0.2152 | 2.172 | 2.350 |
+#> |.....................| 5.960e-07 | 0.7287 | 1.234 | 1.491 |
+#> | X| 289.16078 | 94.64 | 0.8063 | 8.773 | 2.350 |
+#> |.....................| 5.960e-07 | 0.7287 | 1.234 | 1.491 |
+#> | F| Forward Diff. | 50.77 | -0.08196 | 5.132 | 1.948 |
+#> |.....................| 0.04608 | 1.474 | 0.6389 | 0.4459 |
+#> | 98| 290.19527 | 1.002 | -1.018 | -1.037 | 1.157 |
+#> |.....................| -2.997 | -1.195 | -0.7989 | -0.6967 |
+#> | U| 290.19527 | 93.32 | -0.1385 | 2.145 | 2.263 |
+#> |.....................| 5.960e-07 | 0.5724 | 1.229 | 1.370 |
+#> | X| 290.19527 | 93.32 | 0.8707 | 8.542 | 2.263 |
+#> |.....................| 5.960e-07 | 0.5724 | 1.229 | 1.370 |
+#> | 99| 289.65582 | 1.003 | -1.072 | -1.019 | 1.270 |
+#> |.....................| -2.997 | -1.043 | -0.7961 | -0.6170 |
+#> | U| 289.65582 | 93.34 | -0.1926 | 2.163 | 2.324 |
+#> |.....................| 5.960e-07 | 0.6825 | 1.232 | 1.455 |
+#> | X| 289.65582 | 93.34 | 0.8248 | 8.696 | 2.324 |
+#> |.....................| 5.960e-07 | 0.6825 | 1.232 | 1.455 |
+#> | 100| 289.77865 | 1.003 | -1.088 | -1.014 | 1.303 |
+#> |.....................| -2.997 | -0.9984 | -0.7953 | -0.5934 |
+#> | U| 289.77865 | 93.35 | -0.2087 | 2.168 | 2.342 |
+#> |.....................| 5.960e-07 | 0.7151 | 1.233 | 1.480 |
+#> | X| 289.77865 | 93.35 | 0.8116 | 8.742 | 2.342 |
+#> |.....................| 5.960e-07 | 0.7151 | 1.233 | 1.480 |
+#> | 101| 289.23886 | 1.008 | -1.094 | -1.011 | 1.317 |
+#> |.....................| -2.997 | -0.9800 | -0.7949 | -0.5837 |
+#> | U| 289.23886 | 93.87 | -0.2152 | 2.171 | 2.350 |
+#> |.....................| 5.960e-07 | 0.7285 | 1.234 | 1.491 |
+#> | X| 289.23886 | 93.87 | 0.8064 | 8.765 | 2.350 |
+#> |.....................| 5.960e-07 | 0.7285 | 1.234 | 1.491 |
+#> | 102| 289.07165 | 1.013 | -1.094 | -1.010 | 1.317 |
+#> |.....................| -2.997 | -0.9799 | -0.7948 | -0.5837 |
+#> | U| 289.07165 | 94.31 | -0.2152 | 2.171 | 2.350 |
+#> |.....................| 5.960e-07 | 0.7286 | 1.234 | 1.491 |
+#> | X| 289.07165 | 94.31 | 0.8063 | 8.770 | 2.350 |
+#> |.....................| 5.960e-07 | 0.7286 | 1.234 | 1.491 |
+#> | F| Forward Diff. | -0.3607 | -0.1394 | 4.728 | 1.937 |
+#> |.....................| 0.04518 | 1.333 | 0.6601 | 0.3686 |
+#> | 103| 289.05383 | 1.013 | -1.094 | -1.014 | 1.315 |
+#> |.....................| -2.997 | -0.9807 | -0.7952 | -0.5839 |
+#> | U| 289.05383 | 94.33 | -0.2152 | 2.168 | 2.349 |
+#> |.....................| 5.960e-07 | 0.7280 | 1.233 | 1.490 |
+#> | X| 289.05383 | 94.33 | 0.8064 | 8.742 | 2.349 |
+#> |.....................| 5.960e-07 | 0.7280 | 1.233 | 1.490 |
+#> | 104| 289.00706 | 1.014 | -1.094 | -1.023 | 1.312 |
+#> |.....................| -2.997 | -0.9834 | -0.7965 | -0.5847 |
+#> | U| 289.00706 | 94.40 | -0.2149 | 2.159 | 2.347 |
+#> |.....................| 5.960e-07 | 0.7260 | 1.232 | 1.490 |
+#> | X| 289.00706 | 94.40 | 0.8066 | 8.661 | 2.347 |
+#> |.....................| 5.960e-07 | 0.7260 | 1.232 | 1.490 |
+#> | 105| 288.92149 | 1.016 | -1.093 | -1.055 | 1.299 |
+#> |.....................| -2.997 | -0.9924 | -0.8010 | -0.5872 |
+#> | U| 288.92149 | 94.63 | -0.2139 | 2.127 | 2.340 |
+#> |.....................| 5.960e-07 | 0.7195 | 1.227 | 1.487 |
+#> | X| 288.92149 | 94.63 | 0.8074 | 8.388 | 2.340 |
+#> |.....................| 5.960e-07 | 0.7195 | 1.227 | 1.487 |
+#> | F| Forward Diff. | 43.21 | 0.03028 | 3.221 | 1.557 |
+#> |.....................| 0.008151 | 1.175 | 0.2057 | -0.1154 |
+#> | 106| 288.79118 | 1.014 | -1.096 | -1.061 | 1.264 |
+#> |.....................| -2.997 | -1.027 | -0.7973 | -0.5956 |
+#> | U| 288.79118 | 94.43 | -0.2174 | 2.120 | 2.321 |
+#> |.....................| 5.960e-07 | 0.6943 | 1.231 | 1.478 |
+#> | X| 288.79118 | 94.43 | 0.8046 | 8.334 | 2.321 |
+#> |.....................| 5.960e-07 | 0.6943 | 1.231 | 1.478 |
+#> | F| Forward Diff. | 10.81 | -0.06252 | 2.679 | 1.204 |
+#> |.....................| 0.03262 | -0.1240 | 0.4322 | -0.2470 |
+#> | 107| 288.75294 | 1.013 | -1.132 | -1.081 | 1.252 |
+#> |.....................| -2.997 | -1.011 | -0.7930 | -0.5741 |
+#> | U| 288.75294 | 94.35 | -0.2531 | 2.101 | 2.314 |
+#> |.....................| 5.960e-07 | 0.7060 | 1.235 | 1.501 |
+#> | X| 288.75294 | 94.35 | 0.7764 | 8.173 | 2.314 |
+#> |.....................| 5.960e-07 | 0.7060 | 1.235 | 1.501 |
+#> | F| Forward Diff. | -3.091 | -0.8602 | 1.971 | 1.009 |
+#> |.....................| 0.04475 | 0.5130 | 0.7746 | 0.2303 |
+#> | 108| 288.69834 | 1.013 | -1.093 | -1.104 | 1.232 |
+#> |.....................| -2.997 | -1.011 | -0.7973 | -0.5721 |
+#> | U| 288.69834 | 94.27 | -0.2136 | 2.078 | 2.303 |
+#> |.....................| 5.960e-07 | 0.7061 | 1.231 | 1.503 |
+#> | X| 288.69834 | 94.27 | 0.8077 | 7.987 | 2.303 |
+#> |.....................| 5.960e-07 | 0.7061 | 1.231 | 1.503 |
+#> | F| Forward Diff. | -16.61 | 0.06814 | 0.8311 | 0.6184 |
+#> |.....................| 0.03151 | 0.5612 | 0.4558 | 0.3067 |
+#> | 109| 288.67099 | 1.014 | -1.108 | -1.122 | 1.197 |
+#> |.....................| -2.997 | -1.038 | -0.8030 | -0.5758 |
+#> | U| 288.67099 | 94.36 | -0.2285 | 2.060 | 2.284 |
+#> |.....................| 5.960e-07 | 0.6866 | 1.225 | 1.499 |
+#> | X| 288.67099 | 94.36 | 0.7957 | 7.847 | 2.284 |
+#> |.....................| 5.960e-07 | 0.6866 | 1.225 | 1.499 |
+#> | F| Forward Diff. | -4.975 | -0.2154 | 0.1983 | 0.1047 |
+#> |.....................| 0.03564 | -0.4652 | 0.1266 | 0.2269 |
+#> | 110| 288.66432 | 1.014 | -1.097 | -1.128 | 1.196 |
+#> |.....................| -2.997 | -1.027 | -0.8055 | -0.5813 |
+#> | U| 288.66432 | 94.40 | -0.2184 | 2.053 | 2.283 |
+#> |.....................| 5.960e-07 | 0.6941 | 1.222 | 1.493 |
+#> | X| 288.66432 | 94.40 | 0.8038 | 7.793 | 2.283 |
+#> |.....................| 5.960e-07 | 0.6941 | 1.222 | 1.493 |
+#> | F| Forward Diff. | 0.3927 | 0.02780 | -0.05986 | 0.04997 |
+#> |.....................| 0.03453 | -0.01180 | -0.03408 | 0.03556 |
+#> | 111| 288.66432 | 1.014 | -1.097 | -1.128 | 1.196 |
+#> |.....................| -2.997 | -1.027 | -0.8055 | -0.5813 |
+#> | U| 288.66432 | 94.40 | -0.2184 | 2.053 | 2.283 |
+#> |.....................| 5.960e-07 | 0.6941 | 1.222 | 1.493 |
+#> | X| 288.66432 | 94.40 | 0.8038 | 7.793 | 2.283 |
+#> |.....................| 5.960e-07 | 0.6941 | 1.222 | 1.493 |
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: parameter estimate near boundary; covariance not calculated
+#> use 'getVarCov' to calculate anyway#> Warning: gradient problems with initial estimate; see $scaleInfo
+AIC(
+ f_nlmixr_sfo_saem$nm, f_nlmixr_sfo_focei$nm,
+ f_nlmixr_fomc_saem$nm, f_nlmixr_fomc_focei$nm,
+ f_nlmixr_dfop_saem$nm, f_nlmixr_dfop_focei$nm,
+ f_nlmixr_hs_saem$nm, f_nlmixr_hs_focei$nm,
+ f_nlmixr_fomc_saem_tc$nm, f_nlmixr_fomc_focei_tc$nm)
+#> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> df AIC
+#> f_nlmixr_sfo_saem$nm 5 627.9197
+#> f_nlmixr_sfo_focei$nm 5 625.0512
+#> f_nlmixr_fomc_saem$nm 7 463.7245
+#> f_nlmixr_fomc_focei$nm 7 468.0822
+#> f_nlmixr_dfop_saem$nm 9 518.5794
+#> f_nlmixr_dfop_focei$nm 9 537.6309
+#> f_nlmixr_hs_saem$nm 9 535.9011
+#> f_nlmixr_hs_focei$nm 9 544.7590
+#> f_nlmixr_fomc_saem_tc$nm 8 463.5871
+#> f_nlmixr_fomc_focei_tc$nm 8 470.0733#> [1] 468.0781#> [1] 535.609
+# nlme is comparable to nlmixr with focei, saem finds a better
+# solution, the two-component error model does not improve it
+plot(f_nlmixr_fomc_saem)
+#> Temporary DLL for differentials generated and loaded#> Temporary DLL for differentials generated and loaded#> Temporary DLL for differentials generated and loaded
+f_mmkin_const <- mmkin(list(
+ "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
+ ds, quiet = TRUE, error_model = "const")
+f_mmkin_obs <- mmkin(list(
+ "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
+ ds, quiet = TRUE, error_model = "obs")
+f_mmkin_tc <- mmkin(list(
+ "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
+ ds, quiet = TRUE, error_model = "tc")
+
+# A single constant variance is currently only possible with est = 'focei' in nlmixr
+f_nlmixr_sfo_sfo_focei_const <- nlmixr(f_mmkin_const["SFO-SFO", ], est = "focei")
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
+#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 |log_k_parent | log_k_A1 |f_parent_qlogis |
+#> |.....................| sigma | o1 | o2 | o3 |
+#> |.....................| o4 |...........|...........|...........|
+#> | 1| 756.06625 | 1.000 | -0.9701 | -1.000 | -0.9071 |
+#> |.....................| -0.8050 | -0.8844 | -0.8800 | -0.8744 |
+#> |.....................| -0.8785 |...........|...........|...........|
+#> | U| 756.06625 | 86.53 | -3.207 | -4.567 | -0.3341 |
+#> |.....................| 4.315 | 0.7003 | 0.9008 | 1.156 |
+#> |.....................| 0.9657 |...........|...........|...........|
+#> | X| 756.06625 | 86.53 | 0.04048 | 0.01039 | 0.4172 |
+#> |.....................| 4.315 | 0.7003 | 0.9008 | 1.156 |
+#> |.....................| 0.9657 |...........|...........|...........|
+#> | G| Gill Diff. | 59.54 | 0.01874 | 0.7243 | 0.3705 |
+#> |.....................| -28.18 | 5.148 | 2.958 | -8.197 |
+#> |.....................| -5.917 |...........|...........|...........|
+#> | 2| 3309.1113 | 0.1102 | -0.9704 | -1.011 | -0.9126 |
+#> |.....................| -0.3838 | -0.9613 | -0.9242 | -0.7519 |
+#> |.....................| -0.7901 |...........|...........|...........|
+#> | U| 3309.1113 | 9.535 | -3.207 | -4.578 | -0.3359 |
+#> |.....................| 5.223 | 0.6464 | 0.8610 | 1.297 |
+#> |.....................| 1.051 |...........|...........|...........|
+#> | X| 3309.1113 | 9.535 | 0.04047 | 0.01027 | 0.4168 |
+#> |.....................| 5.223 | 0.6464 | 0.8610 | 1.297 |
+#> |.....................| 1.051 |...........|...........|...........|
+#> | 3| 782.04188 | 0.9110 | -0.9702 | -1.001 | -0.9076 |
+#> |.....................| -0.7629 | -0.8921 | -0.8844 | -0.8621 |
+#> |.....................| -0.8697 |...........|...........|...........|
+#> | U| 782.04188 | 78.83 | -3.207 | -4.568 | -0.3343 |
+#> |.....................| 4.406 | 0.6949 | 0.8968 | 1.170 |
+#> |.....................| 0.9742 |...........|...........|...........|
+#> | X| 782.04188 | 78.83 | 0.04048 | 0.01037 | 0.4172 |
+#> |.....................| 4.406 | 0.6949 | 0.8968 | 1.170 |
+#> |.....................| 0.9742 |...........|...........|...........|
+#> | 4| 755.73406 | 0.9909 | -0.9701 | -1.000 | -0.9071 |
+#> |.....................| -0.8007 | -0.8851 | -0.8804 | -0.8731 |
+#> |.....................| -0.8776 |...........|...........|...........|
+#> | U| 755.73406 | 85.75 | -3.207 | -4.567 | -0.3341 |
+#> |.....................| 4.324 | 0.6997 | 0.9004 | 1.157 |
+#> |.....................| 0.9666 |...........|...........|...........|
+#> | X| 755.73406 | 85.75 | 0.04048 | 0.01038 | 0.4172 |
+#> |.....................| 4.324 | 0.6997 | 0.9004 | 1.157 |
+#> |.....................| 0.9666 |...........|...........|...........|
+#> | F| Forward Diff. | -16.83 | 0.07808 | 0.6495 | 0.3224 |
+#> |.....................| -27.54 | 3.811 | 2.903 | -8.359 |
+#> |.....................| -5.718 |...........|...........|...........|
+#> | 5| 755.49648 | 0.9959 | -0.9702 | -1.000 | -0.9072 |
+#> |.....................| -0.7924 | -0.8863 | -0.8813 | -0.8706 |
+#> |.....................| -0.8759 |...........|...........|...........|
+#> | U| 755.49648 | 86.18 | -3.207 | -4.568 | -0.3341 |
+#> |.....................| 4.342 | 0.6989 | 0.8996 | 1.160 |
+#> |.....................| 0.9682 |...........|...........|...........|
+#> | X| 755.49648 | 86.18 | 0.04048 | 0.01038 | 0.4172 |
+#> |.....................| 4.342 | 0.6989 | 0.8996 | 1.160 |
+#> |.....................| 0.9682 |...........|...........|...........|
+#> | F| Forward Diff. | 25.35 | 0.04484 | 0.6934 | 0.3535 |
+#> |.....................| -25.80 | 4.244 | 2.831 | -8.249 |
+#> |.....................| -5.719 |...........|...........|...........|
+#> | 6| 755.31010 | 0.9891 | -0.9702 | -1.000 | -0.9073 |
+#> |.....................| -0.7855 | -0.8874 | -0.8820 | -0.8684 |
+#> |.....................| -0.8744 |...........|...........|...........|
+#> | U| 755.3101 | 85.59 | -3.207 | -4.568 | -0.3342 |
+#> |.....................| 4.357 | 0.6981 | 0.8989 | 1.163 |
+#> |.....................| 0.9697 |...........|...........|...........|
+#> | X| 755.3101 | 85.59 | 0.04048 | 0.01038 | 0.4172 |
+#> |.....................| 4.357 | 0.6981 | 0.8989 | 1.163 |
+#> |.....................| 0.9697 |...........|...........|...........|
+#> | F| Forward Diff. | -31.39 | 0.08909 | 0.6380 | 0.3185 |
+#> |.....................| -24.71 | 3.519 | 2.751 | -7.972 |
+#> |.....................| -5.525 |...........|...........|...........|
+#> | 7| 755.09582 | 0.9961 | -0.9702 | -1.001 | -0.9074 |
+#> |.....................| -0.7787 | -0.8884 | -0.8828 | -0.8661 |
+#> |.....................| -0.8728 |...........|...........|...........|
+#> | U| 755.09582 | 86.20 | -3.207 | -4.568 | -0.3342 |
+#> |.....................| 4.372 | 0.6974 | 0.8982 | 1.165 |
+#> |.....................| 0.9712 |...........|...........|...........|
+#> | X| 755.09582 | 86.20 | 0.04047 | 0.01038 | 0.4172 |
+#> |.....................| 4.372 | 0.6974 | 0.8982 | 1.165 |
+#> |.....................| 0.9712 |...........|...........|...........|
+#> | F| Forward Diff. | 26.63 | 0.04269 | 0.6973 | 0.3604 |
+#> |.....................| -23.22 | 4.086 | 2.689 | -8.043 |
+#> |.....................| -5.569 |...........|...........|...........|
+#> | 8| 754.90743 | 0.9894 | -0.9702 | -1.001 | -0.9075 |
+#> |.....................| -0.7716 | -0.8897 | -0.8836 | -0.8636 |
+#> |.....................| -0.8711 |...........|...........|...........|
+#> | U| 754.90743 | 85.62 | -3.207 | -4.568 | -0.3342 |
+#> |.....................| 4.387 | 0.6966 | 0.8975 | 1.168 |
+#> |.....................| 0.9729 |...........|...........|...........|
+#> | X| 754.90743 | 85.62 | 0.04047 | 0.01038 | 0.4172 |
+#> |.....................| 4.387 | 0.6966 | 0.8975 | 1.168 |
+#> |.....................| 0.9729 |...........|...........|...........|
+#> | F| Forward Diff. | -27.88 | 0.08581 | 0.6437 | 0.3265 |
+#> |.....................| -22.15 | 3.354 | 2.606 | -7.748 |
+#> |.....................| -5.369 |...........|...........|...........|
+#> | 9| 754.70769 | 0.9959 | -0.9702 | -1.001 | -0.9076 |
+#> |.....................| -0.7645 | -0.8908 | -0.8845 | -0.8610 |
+#> |.....................| -0.8693 |...........|...........|...........|
+#> | U| 754.70769 | 86.18 | -3.207 | -4.568 | -0.3343 |
+#> |.....................| 4.402 | 0.6958 | 0.8967 | 1.171 |
+#> |.....................| 0.9747 |...........|...........|...........|
+#> | X| 754.70769 | 86.18 | 0.04047 | 0.01037 | 0.4172 |
+#> |.....................| 4.402 | 0.6958 | 0.8967 | 1.171 |
+#> |.....................| 0.9747 |...........|...........|...........|
+#> | F| Forward Diff. | 25.01 | 0.04305 | 0.6984 | 0.3661 |
+#> |.....................| -20.67 | 3.871 | 2.535 | -7.809 |
+#> |.....................| -5.388 |...........|...........|...........|
+#> | 10| 754.52507 | 0.9898 | -0.9703 | -1.001 | -0.9078 |
+#> |.....................| -0.7574 | -0.8922 | -0.8854 | -0.8580 |
+#> |.....................| -0.8672 |...........|...........|...........|
+#> | U| 754.52507 | 85.65 | -3.207 | -4.569 | -0.3343 |
+#> |.....................| 4.417 | 0.6948 | 0.8958 | 1.175 |
+#> |.....................| 0.9766 |...........|...........|...........|
+#> | X| 754.52507 | 85.65 | 0.04047 | 0.01037 | 0.4172 |
+#> |.....................| 4.417 | 0.6948 | 0.8958 | 1.175 |
+#> |.....................| 0.9766 |...........|...........|...........|
+#> | F| Forward Diff. | -24.90 | 0.08308 | 0.6490 | 0.3352 |
+#> |.....................| -19.59 | 3.181 | 2.445 | -7.663 |
+#> |.....................| -5.179 |...........|...........|...........|
+#> | 11| 754.34076 | 0.9957 | -0.9703 | -1.002 | -0.9079 |
+#> |.....................| -0.7502 | -0.8935 | -0.8864 | -0.8548 |
+#> |.....................| -0.8650 |...........|...........|...........|
+#> | U| 754.34076 | 86.16 | -3.207 | -4.569 | -0.3344 |
+#> |.....................| 4.433 | 0.6939 | 0.8950 | 1.178 |
+#> |.....................| 0.9787 |...........|...........|...........|
+#> | X| 754.34076 | 86.16 | 0.04047 | 0.01037 | 0.4172 |
+#> |.....................| 4.433 | 0.6939 | 0.8950 | 1.178 |
+#> |.....................| 0.9787 |...........|...........|...........|
+#> | F| Forward Diff. | 23.15 | 0.04366 | 0.6990 | 0.3728 |
+#> |.....................| -18.16 | 3.647 | 2.362 | -7.534 |
+#> |.....................| -5.170 |...........|...........|...........|
+#> | 12| 754.16941 | 0.9900 | -0.9703 | -1.002 | -0.9081 |
+#> |.....................| -0.7432 | -0.8951 | -0.8875 | -0.8512 |
+#> |.....................| -0.8626 |...........|...........|...........|
+#> | U| 754.16941 | 85.67 | -3.207 | -4.569 | -0.3344 |
+#> |.....................| 4.448 | 0.6928 | 0.8940 | 1.182 |
+#> |.....................| 0.9811 |...........|...........|...........|
+#> | X| 754.16941 | 85.67 | 0.04047 | 0.01036 | 0.4172 |
+#> |.....................| 4.448 | 0.6928 | 0.8940 | 1.182 |
+#> |.....................| 0.9811 |...........|...........|...........|
+#> | F| Forward Diff. | -22.36 | 0.07996 | 0.6524 | 0.3446 |
+#> |.....................| -17.12 | 3.002 | 2.262 | -7.362 |
+#> |.....................| -4.949 |...........|...........|...........|
+#> | 13| 754.00081 | 0.9955 | -0.9704 | -1.002 | -0.9083 |
+#> |.....................| -0.7363 | -0.8967 | -0.8886 | -0.8472 |
+#> |.....................| -0.8599 |...........|...........|...........|
+#> | U| 754.00081 | 86.14 | -3.207 | -4.570 | -0.3345 |
+#> |.....................| 4.463 | 0.6916 | 0.8930 | 1.187 |
+#> |.....................| 0.9836 |...........|...........|...........|
+#> | X| 754.00081 | 86.14 | 0.04047 | 0.01036 | 0.4171 |
+#> |.....................| 4.463 | 0.6916 | 0.8930 | 1.187 |
+#> |.....................| 0.9836 |...........|...........|...........|
+#> | F| Forward Diff. | 21.00 | 0.04440 | 0.6979 | 0.3804 |
+#> |.....................| -15.79 | 3.414 | 2.168 | -7.205 |
+#> |.....................| -4.903 |...........|...........|...........|
+#> | 14| 753.84435 | 0.9903 | -0.9704 | -1.003 | -0.9086 |
+#> |.....................| -0.7296 | -0.8985 | -0.8898 | -0.8427 |
+#> |.....................| -0.8570 |...........|...........|...........|
+#> | U| 753.84435 | 85.70 | -3.207 | -4.570 | -0.3346 |
+#> |.....................| 4.477 | 0.6903 | 0.8919 | 1.192 |
+#> |.....................| 0.9865 |...........|...........|...........|
+#> | X| 753.84435 | 85.70 | 0.04047 | 0.01036 | 0.4171 |
+#> |.....................| 4.477 | 0.6903 | 0.8919 | 1.192 |
+#> |.....................| 0.9865 |...........|...........|...........|
+#> | F| Forward Diff. | -19.93 | 0.07681 | 0.6538 | 0.3555 |
+#> |.....................| -14.84 | 2.820 | 2.056 | -6.999 |
+#> |.....................| -4.662 |...........|...........|...........|
+#> | 15| 753.69372 | 0.9952 | -0.9704 | -1.003 | -0.9089 |
+#> |.....................| -0.7234 | -0.9005 | -0.8911 | -0.8377 |
+#> |.....................| -0.8537 |...........|...........|...........|
+#> | U| 753.69372 | 86.12 | -3.207 | -4.571 | -0.3347 |
+#> |.....................| 4.491 | 0.6890 | 0.8908 | 1.198 |
+#> |.....................| 0.9897 |...........|...........|...........|
+#> | X| 753.69372 | 86.12 | 0.04046 | 0.01035 | 0.4171 |
+#> |.....................| 4.491 | 0.6890 | 0.8908 | 1.198 |
+#> |.....................| 0.9897 |...........|...........|...........|
+#> | F| Forward Diff. | 18.81 | 0.04462 | 0.6942 | 0.3896 |
+#> |.....................| -13.66 | 3.180 | 1.953 | -6.807 |
+#> |.....................| -4.573 |...........|...........|...........|
+#> | 16| 753.55534 | 0.9906 | -0.9705 | -1.004 | -0.9093 |
+#> |.....................| -0.7176 | -0.9027 | -0.8924 | -0.8322 |
+#> |.....................| -0.8502 |...........|...........|...........|
+#> | U| 753.55534 | 85.72 | -3.207 | -4.571 | -0.3348 |
+#> |.....................| 4.503 | 0.6875 | 0.8896 | 1.204 |
+#> |.....................| 0.9931 |...........|...........|...........|
+#> | X| 753.55534 | 85.72 | 0.04046 | 0.01034 | 0.4171 |
+#> |.....................| 4.503 | 0.6875 | 0.8896 | 1.204 |
+#> |.....................| 0.9931 |...........|...........|...........|
+#> | F| Forward Diff. | -17.61 | 0.07313 | 0.6517 | 0.3679 |
+#> |.....................| -12.86 | 2.639 | 1.835 | -6.564 |
+#> |.....................| -4.309 |...........|...........|...........|
+#> | 17| 753.42478 | 0.9950 | -0.9706 | -1.005 | -0.9097 |
+#> |.....................| -0.7124 | -0.9049 | -0.8937 | -0.8262 |
+#> |.....................| -0.8464 |...........|...........|...........|
+#> | U| 753.42478 | 86.11 | -3.207 | -4.572 | -0.3350 |
+#> |.....................| 4.515 | 0.6859 | 0.8884 | 1.211 |
+#> |.....................| 0.9967 |...........|...........|...........|
+#> | X| 753.42478 | 86.11 | 0.04046 | 0.01034 | 0.4170 |
+#> |.....................| 4.515 | 0.6859 | 0.8884 | 1.211 |
+#> |.....................| 0.9967 |...........|...........|...........|
+#> | F| Forward Diff. | 16.74 | 0.04433 | 0.6853 | 0.4002 |
+#> |.....................| -11.89 | 2.952 | 1.729 | -6.336 |
+#> |.....................| -4.181 |...........|...........|...........|
+#> | 18| 753.30602 | 0.9909 | -0.9706 | -1.006 | -0.9103 |
+#> |.....................| -0.7078 | -0.9075 | -0.8949 | -0.8197 |
+#> |.....................| -0.8425 |...........|...........|...........|
+#> | U| 753.30602 | 85.74 | -3.207 | -4.573 | -0.3352 |
+#> |.....................| 4.525 | 0.6841 | 0.8873 | 1.219 |
+#> |.....................| 1.001 |...........|...........|...........|
+#> | X| 753.30602 | 85.74 | 0.04046 | 0.01033 | 0.4170 |
+#> |.....................| 4.525 | 0.6841 | 0.8873 | 1.219 |
+#> |.....................| 1.001 |...........|...........|...........|
+#> | F| Forward Diff. | -15.54 | 0.06924 | 0.6430 | 0.3812 |
+#> |.....................| -11.26 | 2.462 | 1.618 | -6.066 |
+#> |.....................| -3.903 |...........|...........|...........|
+#> | 19| 753.19508 | 0.9949 | -0.9707 | -1.007 | -0.9109 |
+#> |.....................| -0.7036 | -0.9102 | -0.8961 | -0.8129 |
+#> |.....................| -0.8385 |...........|...........|...........|
+#> | U| 753.19508 | 86.09 | -3.208 | -4.574 | -0.3354 |
+#> |.....................| 4.533 | 0.6822 | 0.8862 | 1.227 |
+#> |.....................| 1.004 |...........|...........|...........|
+#> | X| 753.19508 | 86.09 | 0.04045 | 0.01032 | 0.4169 |
+#> |.....................| 4.533 | 0.6822 | 0.8862 | 1.227 |
+#> |.....................| 1.004 |...........|...........|...........|
+#> | F| Forward Diff. | 14.90 | 0.04352 | 0.6689 | 0.4113 |
+#> |.....................| -10.49 | 2.732 | 1.522 | -5.813 |
+#> |.....................| -3.751 |...........|...........|...........|
+#> | 20| 753.09443 | 0.9911 | -0.9708 | -1.008 | -0.9117 |
+#> |.....................| -0.7001 | -0.9132 | -0.8972 | -0.8058 |
+#> |.....................| -0.8346 |...........|...........|...........|
+#> | U| 753.09443 | 85.77 | -3.208 | -4.575 | -0.3356 |
+#> |.....................| 4.541 | 0.6801 | 0.8852 | 1.235 |
+#> |.....................| 1.008 |...........|...........|...........|
+#> | X| 753.09443 | 85.77 | 0.04045 | 0.01031 | 0.4169 |
+#> |.....................| 4.541 | 0.6801 | 0.8852 | 1.235 |
+#> |.....................| 1.008 |...........|...........|...........|
+#> | F| Forward Diff. | -13.80 | 0.06521 | 0.6240 | 0.3942 |
+#> |.....................| -10.02 | 2.285 | 1.423 | -5.526 |
+#> |.....................| -3.476 |...........|...........|...........|
+#> | 21| 753.00021 | 0.9948 | -0.9709 | -1.009 | -0.9127 |
+#> |.....................| -0.6968 | -0.9163 | -0.8982 | -0.7985 |
+#> |.....................| -0.8307 |...........|...........|...........|
+#> | U| 753.00021 | 86.08 | -3.208 | -4.576 | -0.3360 |
+#> |.....................| 4.548 | 0.6779 | 0.8843 | 1.243 |
+#> |.....................| 1.012 |...........|...........|...........|
+#> | X| 753.00021 | 86.08 | 0.04045 | 0.01029 | 0.4168 |
+#> |.....................| 4.548 | 0.6779 | 0.8843 | 1.243 |
+#> |.....................| 1.012 |...........|...........|...........|
+#> | F| Forward Diff. | 13.31 | 0.04216 | 0.6406 | 0.4217 |
+#> |.....................| -9.402 | 2.517 | 1.347 | -5.262 |
+#> |.....................| -3.321 |...........|...........|...........|
+#> | 22| 752.91432 | 0.9914 | -0.9710 | -1.010 | -0.9139 |
+#> |.....................| -0.6939 | -0.9197 | -0.8991 | -0.7911 |
+#> |.....................| -0.8272 |...........|...........|...........|
+#> | U| 752.91432 | 85.79 | -3.208 | -4.578 | -0.3364 |
+#> |.....................| 4.555 | 0.6755 | 0.8835 | 1.252 |
+#> |.....................| 1.015 |...........|...........|...........|
+#> | X| 752.91432 | 85.79 | 0.04044 | 0.01028 | 0.4167 |
+#> |.....................| 4.555 | 0.6755 | 0.8835 | 1.252 |
+#> |.....................| 1.015 |...........|...........|...........|
+#> | F| Forward Diff. | -12.35 | 0.06128 | 0.5909 | 0.4053 |
+#> |.....................| -9.027 | 2.101 | 1.271 | -4.717 |
+#> |.....................| -3.067 |...........|...........|...........|
+#> | 23| 752.83200 | 0.9948 | -0.9711 | -1.012 | -0.9155 |
+#> |.....................| -0.6906 | -0.9238 | -0.9000 | -0.7843 |
+#> |.....................| -0.8235 |...........|...........|...........|
+#> | U| 752.832 | 86.09 | -3.208 | -4.580 | -0.3369 |
+#> |.....................| 4.561 | 0.6727 | 0.8827 | 1.260 |
+#> |.....................| 1.019 |...........|...........|...........|
+#> | X| 752.832 | 86.09 | 0.04044 | 0.01026 | 0.4166 |
+#> |.....................| 4.561 | 0.6727 | 0.8827 | 1.260 |
+#> |.....................| 1.019 |...........|...........|...........|
+#> | F| Forward Diff. | 12.74 | 0.03978 | 0.5956 | 0.4312 |
+#> |.....................| -8.422 | 2.296 | 1.202 | -4.471 |
+#> |.....................| -2.914 |...........|...........|...........|
+#> | 24| 752.75140 | 0.9918 | -0.9713 | -1.014 | -0.9179 |
+#> |.....................| -0.6872 | -0.9288 | -0.9011 | -0.7785 |
+#> |.....................| -0.8198 |...........|...........|...........|
+#> | U| 752.7514 | 85.82 | -3.208 | -4.582 | -0.3377 |
+#> |.....................| 4.569 | 0.6692 | 0.8818 | 1.266 |
+#> |.....................| 1.022 |...........|...........|...........|
+#> | X| 752.7514 | 85.82 | 0.04043 | 0.01024 | 0.4164 |
+#> |.....................| 4.569 | 0.6692 | 0.8818 | 1.266 |
+#> |.....................| 1.022 |...........|...........|...........|
+#> | F| Forward Diff. | -10.02 | 0.05546 | 0.5361 | 0.4172 |
+#> |.....................| -7.958 | 1.872 | 1.117 | -4.424 |
+#> |.....................| -2.664 |...........|...........|...........|
+#> | 25| 752.68235 | 0.9947 | -0.9715 | -1.016 | -0.9205 |
+#> |.....................| -0.6845 | -0.9329 | -0.9018 | -0.7712 |
+#> |.....................| -0.8173 |...........|...........|...........|
+#> | U| 752.68235 | 86.07 | -3.208 | -4.584 | -0.3386 |
+#> |.....................| 4.575 | 0.6663 | 0.8811 | 1.275 |
+#> |.....................| 1.025 |...........|...........|...........|
+#> | X| 752.68235 | 86.07 | 0.04042 | 0.01022 | 0.4162 |
+#> |.....................| 4.575 | 0.6663 | 0.8811 | 1.275 |
+#> |.....................| 1.025 |...........|...........|...........|
+#> | F| Forward Diff. | 10.53 | 0.03715 | 0.5273 | 0.4360 |
+#> |.....................| -7.447 | 2.014 | 1.063 | -3.990 |
+#> |.....................| -2.556 |...........|...........|...........|
+#> | 26| 752.62160 | 0.9918 | -0.9717 | -1.019 | -0.9237 |
+#> |.....................| -0.6821 | -0.9370 | -0.9025 | -0.7637 |
+#> |.....................| -0.8151 |...........|...........|...........|
+#> | U| 752.6216 | 85.83 | -3.209 | -4.586 | -0.3397 |
+#> |.....................| 4.580 | 0.6635 | 0.8804 | 1.284 |
+#> |.....................| 1.027 |...........|...........|...........|
+#> | X| 752.6216 | 85.83 | 0.04042 | 0.01020 | 0.4159 |
+#> |.....................| 4.580 | 0.6635 | 0.8804 | 1.284 |
+#> |.....................| 1.027 |...........|...........|...........|
+#> | F| Forward Diff. | -10.27 | 0.05173 | 0.4657 | 0.4178 |
+#> |.....................| -7.153 | 1.648 | 1.004 | -3.701 |
+#> |.....................| -2.385 |...........|...........|...........|
+#> | 27| 752.55758 | 0.9944 | -0.9719 | -1.021 | -0.9287 |
+#> |.....................| -0.6786 | -0.9418 | -0.9036 | -0.7591 |
+#> |.....................| -0.8121 |...........|...........|...........|
+#> | U| 752.55758 | 86.05 | -3.209 | -4.588 | -0.3413 |
+#> |.....................| 4.587 | 0.6600 | 0.8795 | 1.289 |
+#> |.....................| 1.030 |...........|...........|...........|
+#> | X| 752.55758 | 86.05 | 0.04040 | 0.01017 | 0.4155 |
+#> |.....................| 4.587 | 0.6600 | 0.8795 | 1.289 |
+#> |.....................| 1.030 |...........|...........|...........|
+#> | F| Forward Diff. | 7.976 | 0.03464 | 0.4539 | 0.4351 |
+#> |.....................| -6.545 | 1.728 | 0.9236 | -3.536 |
+#> |.....................| -2.257 |...........|...........|...........|
+#> | 28| 752.50465 | 0.9921 | -0.9722 | -1.023 | -0.9345 |
+#> |.....................| -0.6755 | -0.9456 | -0.9043 | -0.7539 |
+#> |.....................| -0.8090 |...........|...........|...........|
+#> | U| 752.50465 | 85.85 | -3.209 | -4.590 | -0.3432 |
+#> |.....................| 4.594 | 0.6574 | 0.8788 | 1.295 |
+#> |.....................| 1.033 |...........|...........|...........|
+#> | X| 752.50465 | 85.85 | 0.04039 | 0.01015 | 0.4150 |
+#> |.....................| 4.594 | 0.6574 | 0.8788 | 1.295 |
+#> |.....................| 1.033 |...........|...........|...........|
+#> | F| Forward Diff. | -8.947 | 0.04577 | 0.4043 | 0.4205 |
+#> |.....................| -6.122 | 1.399 | 0.8644 | -3.339 |
+#> |.....................| -2.062 |...........|...........|...........|
+#> | 29| 752.46010 | 0.9944 | -0.9724 | -1.024 | -0.9405 |
+#> |.....................| -0.6742 | -0.9477 | -0.9048 | -0.7467 |
+#> |.....................| -0.8068 |...........|...........|...........|
+#> | U| 752.4601 | 86.05 | -3.209 | -4.591 | -0.3452 |
+#> |.....................| 4.597 | 0.6559 | 0.8784 | 1.303 |
+#> |.....................| 1.035 |...........|...........|...........|
+#> | X| 752.4601 | 86.05 | 0.04039 | 0.01014 | 0.4145 |
+#> |.....................| 4.597 | 0.6559 | 0.8784 | 1.303 |
+#> |.....................| 1.035 |...........|...........|...........|
+#> | F| Forward Diff. | 6.603 | 0.03134 | 0.3976 | 0.4307 |
+#> |.....................| -5.878 | 1.523 | 0.8347 | -3.098 |
+#> |.....................| -1.971 |...........|...........|...........|
+#> | 30| 752.42045 | 0.9923 | -0.9726 | -1.025 | -0.9478 |
+#> |.....................| -0.6717 | -0.9497 | -0.9056 | -0.7410 |
+#> |.....................| -0.8056 |...........|...........|...........|
+#> | U| 752.42045 | 85.87 | -3.210 | -4.593 | -0.3477 |
+#> |.....................| 4.602 | 0.6545 | 0.8777 | 1.310 |
+#> |.....................| 1.036 |...........|...........|...........|
+#> | X| 752.42045 | 85.87 | 0.04038 | 0.01013 | 0.4139 |
+#> |.....................| 4.602 | 0.6545 | 0.8777 | 1.310 |
+#> |.....................| 1.036 |...........|...........|...........|
+#> | F| Forward Diff. | -7.567 | 0.04074 | 0.3551 | 0.4112 |
+#> |.....................| -5.553 | 1.278 | 0.7625 | -2.890 |
+#> |.....................| -1.881 |...........|...........|...........|
+#> | 31| 752.38271 | 0.9943 | -0.9729 | -1.026 | -0.9563 |
+#> |.....................| -0.6682 | -0.9523 | -0.9058 | -0.7392 |
+#> |.....................| -0.8032 |...........|...........|...........|
+#> | U| 752.38271 | 86.04 | -3.210 | -4.594 | -0.3505 |
+#> |.....................| 4.610 | 0.6527 | 0.8775 | 1.312 |
+#> |.....................| 1.038 |...........|...........|...........|
+#> | X| 752.38271 | 86.04 | 0.04037 | 0.01012 | 0.4133 |
+#> |.....................| 4.610 | 0.6527 | 0.8775 | 1.312 |
+#> |.....................| 1.038 |...........|...........|...........|
+#> | F| Forward Diff. | 5.602 | 0.02847 | 0.3641 | 0.4189 |
+#> |.....................| -5.001 | 1.344 | 0.7516 | -2.828 |
+#> |.....................| -1.805 |...........|...........|...........|
+#> | 32| 752.35435 | 0.9925 | -0.9730 | -1.028 | -0.9633 |
+#> |.....................| -0.6679 | -0.9545 | -0.9069 | -0.7341 |
+#> |.....................| -0.7988 |...........|...........|...........|
+#> | U| 752.35435 | 85.89 | -3.210 | -4.595 | -0.3529 |
+#> |.....................| 4.611 | 0.6511 | 0.8766 | 1.318 |
+#> |.....................| 1.043 |...........|...........|...........|
+#> | X| 752.35435 | 85.89 | 0.04036 | 0.01010 | 0.4127 |
+#> |.....................| 4.611 | 0.6511 | 0.8766 | 1.318 |
+#> |.....................| 1.043 |...........|...........|...........|
+#> | F| Forward Diff. | -6.571 | 0.03612 | 0.3357 | 0.4086 |
+#> |.....................| -4.992 | 1.118 | 0.6605 | -2.632 |
+#> |.....................| -1.560 |...........|...........|...........|
+#> | 33| 752.32772 | 0.9943 | -0.9732 | -1.029 | -0.9711 |
+#> |.....................| -0.6669 | -0.9557 | -0.9071 | -0.7282 |
+#> |.....................| -0.7989 |...........|...........|...........|
+#> | U| 752.32772 | 86.04 | -3.210 | -4.596 | -0.3555 |
+#> |.....................| 4.613 | 0.6503 | 0.8764 | 1.325 |
+#> |.....................| 1.043 |...........|...........|...........|
+#> | X| 752.32772 | 86.04 | 0.04035 | 0.01009 | 0.4121 |
+#> |.....................| 4.613 | 0.6503 | 0.8764 | 1.325 |
+#> |.....................| 1.043 |...........|...........|...........|
+#> | F| Forward Diff. | 5.212 | 0.02538 | 0.3153 | 0.4089 |
+#> |.....................| -4.808 | 1.231 | 0.6502 | -2.445 |
+#> |.....................| -1.583 |...........|...........|...........|
+#> | 34| 752.30453 | 0.9927 | -0.9733 | -1.030 | -0.9795 |
+#> |.....................| -0.6622 | -0.9567 | -0.9058 | -0.7271 |
+#> |.....................| -0.8012 |...........|...........|...........|
+#> | U| 752.30453 | 85.90 | -3.210 | -4.598 | -0.3583 |
+#> |.....................| 4.623 | 0.6496 | 0.8775 | 1.326 |
+#> |.....................| 1.040 |...........|...........|...........|
+#> | X| 752.30453 | 85.90 | 0.04035 | 0.01008 | 0.4114 |
+#> |.....................| 4.623 | 0.6496 | 0.8775 | 1.326 |
+#> |.....................| 1.040 |...........|...........|...........|
+#> | F| Forward Diff. | -5.777 | 0.03360 | 0.2795 | 0.3849 |
+#> |.....................| -4.177 | 1.041 | 0.7583 | -2.411 |
+#> |.....................| -1.694 |...........|...........|...........|
+#> | 35| 752.28211 | 0.9943 | -0.9735 | -1.030 | -0.9865 |
+#> |.....................| -0.6621 | -0.9586 | -0.9093 | -0.7251 |
+#> |.....................| -0.7954 |...........|...........|...........|
+#> | U| 752.28211 | 86.04 | -3.210 | -4.598 | -0.3606 |
+#> |.....................| 4.623 | 0.6483 | 0.8743 | 1.328 |
+#> |.....................| 1.046 |...........|...........|...........|
+#> | X| 752.28211 | 86.04 | 0.04034 | 0.01008 | 0.4108 |
+#> |.....................| 4.623 | 0.6483 | 0.8743 | 1.328 |
+#> |.....................| 1.046 |...........|...........|...........|
+#> | F| Forward Diff. | 4.685 | 0.02318 | 0.3105 | 0.3984 |
+#> |.....................| -4.118 | 1.106 | 0.4577 | -2.335 |
+#> |.....................| -1.438 |...........|...........|...........|
+#> | 36| 752.26507 | 0.9926 | -0.9736 | -1.031 | -0.9930 |
+#> |.....................| -0.6630 | -0.9604 | -0.9091 | -0.7199 |
+#> |.....................| -0.7902 |...........|...........|...........|
+#> | U| 752.26507 | 85.89 | -3.210 | -4.598 | -0.3628 |
+#> |.....................| 4.621 | 0.6470 | 0.8745 | 1.334 |
+#> |.....................| 1.051 |...........|...........|...........|
+#> | X| 752.26507 | 85.89 | 0.04034 | 0.01007 | 0.4103 |
+#> |.....................| 4.621 | 0.6470 | 0.8745 | 1.334 |
+#> |.....................| 1.051 |...........|...........|...........|
+#> | F| Forward Diff. | -6.810 | 0.03096 | 0.2910 | 0.3899 |
+#> |.....................| -4.283 | 0.8991 | 0.4756 | -2.130 |
+#> |.....................| -1.153 |...........|...........|...........|
+#> | 37| 752.24597 | 0.9942 | -0.9737 | -1.033 | -1.000 |
+#> |.....................| -0.6608 | -0.9614 | -0.9045 | -0.7160 |
+#> |.....................| -0.7919 |...........|...........|...........|
+#> | U| 752.24597 | 86.03 | -3.211 | -4.600 | -0.3653 |
+#> |.....................| 4.626 | 0.6463 | 0.8787 | 1.339 |
+#> |.....................| 1.049 |...........|...........|...........|
+#> | X| 752.24597 | 86.03 | 0.04033 | 0.01005 | 0.4097 |
+#> |.....................| 4.626 | 0.6463 | 0.8787 | 1.339 |
+#> |.....................| 1.049 |...........|...........|...........|
+#> | F| Forward Diff. | 3.512 | 0.02244 | 0.2659 | 0.3868 |
+#> |.....................| -3.943 | 0.9821 | 0.8784 | -2.032 |
+#> |.....................| -1.263 |...........|...........|...........|
+#> | 38| 752.22949 | 0.9926 | -0.9738 | -1.034 | -1.007 |
+#> |.....................| -0.6572 | -0.9618 | -0.9098 | -0.7144 |
+#> |.....................| -0.7948 |...........|...........|...........|
+#> | U| 752.22949 | 85.90 | -3.211 | -4.601 | -0.3676 |
+#> |.....................| 4.634 | 0.6461 | 0.8739 | 1.341 |
+#> |.....................| 1.047 |...........|...........|...........|
+#> | X| 752.22949 | 85.90 | 0.04033 | 0.01004 | 0.4091 |
+#> |.....................| 4.634 | 0.6461 | 0.8739 | 1.341 |
+#> |.....................| 1.047 |...........|...........|...........|
+#> | F| Forward Diff. | -6.652 | 0.02915 | 0.2261 | 0.3631 |
+#> |.....................| -3.474 | 0.8493 | 0.4224 | -1.980 |
+#> |.....................| -1.394 |...........|...........|...........|
+#> | 39| 752.21433 | 0.9945 | -0.9739 | -1.034 | -1.016 |
+#> |.....................| -0.6569 | -0.9629 | -0.9144 | -0.7124 |
+#> |.....................| -0.7922 |...........|...........|...........|
+#> | U| 752.21433 | 86.05 | -3.211 | -4.601 | -0.3704 |
+#> |.....................| 4.634 | 0.6453 | 0.8697 | 1.343 |
+#> |.....................| 1.049 |...........|...........|...........|
+#> | X| 752.21433 | 86.05 | 0.04032 | 0.01004 | 0.4085 |
+#> |.....................| 4.634 | 0.6453 | 0.8697 | 1.343 |
+#> |.....................| 1.049 |...........|...........|...........|
+#> | F| Forward Diff. | 5.271 | 0.01812 | 0.2470 | 0.3694 |
+#> |.....................| -3.388 | 0.9655 | 0.02976 | -1.920 |
+#> |.....................| -1.299 |...........|...........|...........|
+#> | 40| 752.19821 | 0.9933 | -0.9740 | -1.034 | -1.022 |
+#> |.....................| -0.6566 | -0.9648 | -0.9096 | -0.7099 |
+#> |.....................| -0.7872 |...........|...........|...........|
+#> | U| 752.19821 | 85.95 | -3.211 | -4.602 | -0.3726 |
+#> |.....................| 4.635 | 0.6440 | 0.8741 | 1.346 |
+#> |.....................| 1.054 |...........|...........|...........|
+#> | X| 752.19821 | 85.95 | 0.04032 | 0.01004 | 0.4079 |
+#> |.....................| 4.635 | 0.6440 | 0.8741 | 1.346 |
+#> |.....................| 1.054 |...........|...........|...........|
+#> | F| Forward Diff. | -2.667 | 0.02369 | 0.2481 | 0.3640 |
+#> |.....................| -3.371 | 0.7751 | 0.4401 | -1.801 |
+#> |.....................| -1.045 |...........|...........|...........|
+#> | 41| 752.18532 | 0.9951 | -0.9741 | -1.036 | -1.031 |
+#> |.....................| -0.6545 | -0.9659 | -0.9070 | -0.7062 |
+#> |.....................| -0.7858 |...........|...........|...........|
+#> | U| 752.18532 | 86.11 | -3.211 | -4.603 | -0.3754 |
+#> |.....................| 4.639 | 0.6432 | 0.8764 | 1.350 |
+#> |.....................| 1.055 |...........|...........|...........|
+#> | X| 752.18532 | 86.11 | 0.04032 | 0.01002 | 0.4072 |
+#> |.....................| 4.639 | 0.6432 | 0.8764 | 1.350 |
+#> |.....................| 1.055 |...........|...........|...........|
+#> | F| Forward Diff. | 8.833 | 0.01368 | 0.2421 | 0.3674 |
+#> |.....................| -3.039 | 0.8770 | 0.6679 | -1.687 |
+#> |.....................| -1.010 |...........|...........|...........|
+#> | 42| 752.16831 | 0.9936 | -0.9742 | -1.037 | -1.039 |
+#> |.....................| -0.6539 | -0.9664 | -0.9110 | -0.7027 |
+#> |.....................| -0.7873 |...........|...........|...........|
+#> | U| 752.16831 | 85.98 | -3.211 | -4.605 | -0.3782 |
+#> |.....................| 4.641 | 0.6428 | 0.8728 | 1.354 |
+#> |.....................| 1.054 |...........|...........|...........|
+#> | X| 752.16831 | 85.98 | 0.04031 | 0.01001 | 0.4066 |
+#> |.....................| 4.641 | 0.6428 | 0.8728 | 1.354 |
+#> |.....................| 1.054 |...........|...........|...........|
+#> | F| Forward Diff. | -0.7512 | 0.02003 | 0.1902 | 0.3449 |
+#> |.....................| -2.985 | 0.7407 | 0.3269 | -1.581 |
+#> |.....................| -1.064 |...........|...........|...........|
+#> | 43| 752.14828 | 0.9957 | -0.9743 | -1.038 | -1.040 |
+#> |.....................| -0.6457 | -0.9684 | -0.9119 | -0.6984 |
+#> |.....................| -0.7843 |...........|...........|...........|
+#> | U| 752.14828 | 86.16 | -3.211 | -4.605 | -0.3785 |
+#> |.....................| 4.658 | 0.6414 | 0.8720 | 1.359 |
+#> |.....................| 1.057 |...........|...........|...........|
+#> | X| 752.14828 | 86.16 | 0.04031 | 0.01000 | 0.4065 |
+#> |.....................| 4.658 | 0.6414 | 0.8720 | 1.359 |
+#> |.....................| 1.057 |...........|...........|...........|
+#> | F| Forward Diff. | 12.68 | 0.008742 | 0.2033 | 0.3626 |
+#> |.....................| -1.835 | 0.8163 | 0.2532 | -1.452 |
+#> |.....................| -0.9466 |...........|...........|...........|
+#> | 44| 752.12689 | 0.9938 | -0.9744 | -1.038 | -1.049 |
+#> |.....................| -0.6468 | -0.9706 | -0.9116 | -0.6946 |
+#> |.....................| -0.7819 |...........|...........|...........|
+#> | U| 752.12689 | 86.00 | -3.211 | -4.606 | -0.3814 |
+#> |.....................| 4.656 | 0.6399 | 0.8723 | 1.363 |
+#> |.....................| 1.059 |...........|...........|...........|
+#> | X| 752.12689 | 86.00 | 0.04030 | 0.009996 | 0.4058 |
+#> |.....................| 4.656 | 0.6399 | 0.8723 | 1.363 |
+#> |.....................| 1.059 |...........|...........|...........|
+#> | F| Forward Diff. | -0.08747 | 0.01751 | 0.1808 | 0.3434 |
+#> |.....................| -2.013 | 0.5634 | 0.2760 | -1.320 |
+#> |.....................| -0.7971 |...........|...........|...........|
+#> | 45| 752.10460 | 0.9941 | -0.9745 | -1.039 | -1.050 |
+#> |.....................| -0.6390 | -0.9728 | -0.9127 | -0.6895 |
+#> |.....................| -0.7788 |...........|...........|...........|
+#> | U| 752.1046 | 86.03 | -3.211 | -4.606 | -0.3818 |
+#> |.....................| 4.673 | 0.6383 | 0.8713 | 1.369 |
+#> |.....................| 1.062 |...........|...........|...........|
+#> | X| 752.1046 | 86.03 | 0.04030 | 0.009989 | 0.4057 |
+#> |.....................| 4.673 | 0.6383 | 0.8713 | 1.369 |
+#> |.....................| 1.062 |...........|...........|...........|
+#> | 46| 752.09051 | 0.9947 | -0.9746 | -1.040 | -1.052 |
+#> |.....................| -0.6247 | -0.9768 | -0.9147 | -0.6801 |
+#> |.....................| -0.7732 |...........|...........|...........|
+#> | U| 752.09051 | 86.08 | -3.211 | -4.608 | -0.3827 |
+#> |.....................| 4.704 | 0.6355 | 0.8695 | 1.380 |
+#> |.....................| 1.067 |...........|...........|...........|
+#> | X| 752.09051 | 86.08 | 0.04030 | 0.009976 | 0.4055 |
+#> |.....................| 4.704 | 0.6355 | 0.8695 | 1.380 |
+#> |.....................| 1.067 |...........|...........|...........|
+#> | F| Forward Diff. | 5.771 | 0.01029 | 0.1542 | 0.3620 |
+#> |.....................| 0.8997 | 0.2873 | 0.01810 | -0.9019 |
+#> |.....................| -0.3639 |...........|...........|...........|
+#> | 47| 752.06630 | 0.9944 | -0.9751 | -1.045 | -1.068 |
+#> |.....................| -0.6300 | -0.9815 | -0.9184 | -0.6573 |
+#> |.....................| -0.7726 |...........|...........|...........|
+#> | U| 752.0663 | 86.05 | -3.212 | -4.613 | -0.3878 |
+#> |.....................| 4.692 | 0.6323 | 0.8661 | 1.407 |
+#> |.....................| 1.068 |...........|...........|...........|
+#> | X| 752.0663 | 86.05 | 0.04028 | 0.009926 | 0.4043 |
+#> |.....................| 4.692 | 0.6323 | 0.8661 | 1.407 |
+#> |.....................| 1.068 |...........|...........|...........|
+#> | F| Forward Diff. | 3.128 | 0.007908 | 0.004436 | 0.3353 |
+#> |.....................| 0.2209 | 0.1645 | -0.3029 | -0.2852 |
+#> |.....................| -0.2419 |...........|...........|...........|
+#> | 48| 752.06241 | 0.9926 | -0.9758 | -1.042 | -1.095 |
+#> |.....................| -0.6306 | -0.9841 | -0.9113 | -0.6557 |
+#> |.....................| -0.7685 |...........|...........|...........|
+#> | U| 752.06241 | 85.89 | -3.213 | -4.609 | -0.3969 |
+#> |.....................| 4.691 | 0.6304 | 0.8725 | 1.408 |
+#> |.....................| 1.072 |...........|...........|...........|
+#> | X| 752.06241 | 85.89 | 0.04025 | 0.009958 | 0.4021 |
+#> |.....................| 4.691 | 0.6304 | 0.8725 | 1.408 |
+#> |.....................| 1.072 |...........|...........|...........|
+#> | F| Forward Diff. | -8.924 | 0.01284 | 0.1020 | 0.2919 |
+#> |.....................| 0.1011 | -0.08995 | 0.3194 | -0.2130 |
+#> |.....................| -0.05120 |...........|...........|...........|
+#> | 49| 752.04768 | 0.9941 | -0.9763 | -1.043 | -1.124 |
+#> |.....................| -0.6313 | -0.9862 | -0.9116 | -0.6566 |
+#> |.....................| -0.7644 |...........|...........|...........|
+#> | U| 752.04768 | 86.02 | -3.213 | -4.611 | -0.4065 |
+#> |.....................| 4.690 | 0.6289 | 0.8723 | 1.407 |
+#> |.....................| 1.076 |...........|...........|...........|
+#> | X| 752.04768 | 86.02 | 0.04023 | 0.009946 | 0.3998 |
+#> |.....................| 4.690 | 0.6289 | 0.8723 | 1.407 |
+#> |.....................| 1.076 |...........|...........|...........|
+#> | F| Forward Diff. | 0.04447 | 0.001311 | 0.1345 | 0.2729 |
+#> |.....................| 0.05334 | -0.06694 | 0.2984 | -0.1966 |
+#> |.....................| 0.06514 |...........|...........|...........|
+#> | 50| 752.04768 | 0.9941 | -0.9763 | -1.043 | -1.124 |
+#> |.....................| -0.6313 | -0.9862 | -0.9116 | -0.6566 |
+#> |.....................| -0.7644 |...........|...........|...........|
+#> | U| 752.04768 | 86.02 | -3.213 | -4.611 | -0.4065 |
+#> |.....................| 4.690 | 0.6289 | 0.8723 | 1.407 |
+#> |.....................| 1.076 |...........|...........|...........|
+#> | X| 752.04768 | 86.02 | 0.04023 | 0.009946 | 0.3998 |
+#> |.....................| 4.690 | 0.6289 | 0.8723 | 1.407 |
+#> |.....................| 1.076 |...........|...........|...........|
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
+#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
+#> |.....................| log_beta | sigma | o1 | o2 |
+#> |.....................| o3 | o4 | o5 |...........|
+#> | 1| 491.68697 | 1.000 | -1.000 | -0.9113 | -0.8954 |
+#> |.....................| -0.8491 | -0.8582 | -0.8760 | -0.8739 |
+#> |.....................| -0.8673 | -0.8694 | -0.8683 |...........|
+#> | U| 491.68697 | 94.21 | -5.416 | -0.9966 | -0.2046 |
+#> |.....................| 2.098 | 1.647 | 0.7612 | 0.8665 |
+#> |.....................| 1.192 | 1.089 | 1.144 |...........|
+#> | X| 491.68697 | 94.21 | 0.004447 | 0.2696 | 0.8150 |
+#> |.....................| 8.153 | 1.647 | 0.7612 | 0.8665 |
+#> |.....................| 1.192 | 1.089 | 1.144 |...........|
+#> | G| Gill Diff. | 19.86 | 1.831 | -0.1132 | -0.03447 |
+#> |.....................| -0.1365 | -48.08 | 10.28 | 8.952 |
+#> |.....................| -12.04 | -8.764 | -10.61 |...........|
+#> | 2| 1105.9428 | 0.6506 | -1.032 | -0.9093 | -0.8948 |
+#> |.....................| -0.8467 | -0.01215 | -1.057 | -1.031 |
+#> |.....................| -0.6554 | -0.7152 | -0.6817 |...........|
+#> | U| 1105.9428 | 61.29 | -5.448 | -0.9946 | -0.2040 |
+#> |.....................| 2.101 | 2.344 | 0.6235 | 0.7300 |
+#> |.....................| 1.445 | 1.256 | 1.357 |...........|
+#> | X| 1105.9428 | 61.29 | 0.004306 | 0.2700 | 0.8155 |
+#> |.....................| 8.173 | 2.344 | 0.6235 | 0.7300 |
+#> |.....................| 1.445 | 1.256 | 1.357 |...........|
+#> | 3| 499.02505 | 0.9651 | -1.003 | -0.9111 | -0.8953 |
+#> |.....................| -0.8489 | -0.7736 | -0.8941 | -0.8896 |
+#> |.....................| -0.8462 | -0.8540 | -0.8497 |...........|
+#> | U| 499.02505 | 90.91 | -5.419 | -0.9964 | -0.2045 |
+#> |.....................| 2.099 | 1.717 | 0.7475 | 0.8529 |
+#> |.....................| 1.217 | 1.105 | 1.165 |...........|
+#> | X| 499.02505 | 90.91 | 0.004433 | 0.2696 | 0.8150 |
+#> |.....................| 8.155 | 1.717 | 0.7475 | 0.8529 |
+#> |.....................| 1.217 | 1.105 | 1.165 |...........|
+#> | 4| 491.11153 | 0.9924 | -1.001 | -0.9112 | -0.8954 |
+#> |.....................| -0.8491 | -0.8397 | -0.8799 | -0.8773 |
+#> |.....................| -0.8627 | -0.8661 | -0.8642 |...........|
+#> | U| 491.11153 | 93.49 | -5.416 | -0.9966 | -0.2046 |
+#> |.....................| 2.098 | 1.663 | 0.7582 | 0.8635 |
+#> |.....................| 1.198 | 1.092 | 1.148 |...........|
+#> | X| 491.11153 | 93.49 | 0.004444 | 0.2696 | 0.8150 |
+#> |.....................| 8.154 | 1.663 | 0.7582 | 0.8635 |
+#> |.....................| 1.198 | 1.092 | 1.148 |...........|
+#> | F| Forward Diff. | -141.0 | 1.761 | -0.2309 | -0.1084 |
+#> |.....................| -0.3671 | -44.06 | 11.23 | 7.698 |
+#> |.....................| -11.77 | -8.480 | -10.17 |...........|
+#> | 5| 489.72110 | 1.001 | -1.001 | -0.9112 | -0.8954 |
+#> |.....................| -0.8490 | -0.8217 | -0.8840 | -0.8806 |
+#> |.....................| -0.8581 | -0.8627 | -0.8602 |...........|
+#> | U| 489.7211 | 94.29 | -5.417 | -0.9965 | -0.2046 |
+#> |.....................| 2.099 | 1.678 | 0.7552 | 0.8607 |
+#> |.....................| 1.203 | 1.096 | 1.153 |...........|
+#> | X| 489.7211 | 94.29 | 0.004441 | 0.2696 | 0.8150 |
+#> |.....................| 8.154 | 1.678 | 0.7552 | 0.8607 |
+#> |.....................| 1.203 | 1.096 | 1.153 |...........|
+#> | F| Forward Diff. | 37.99 | 1.786 | -0.09663 | -0.03934 |
+#> |.....................| -0.1210 | -40.49 | 9.520 | 7.642 |
+#> |.....................| -11.65 | -8.313 | -10.04 |...........|
+#> | 6| 488.87741 | 0.9957 | -1.002 | -0.9111 | -0.8953 |
+#> |.....................| -0.8490 | -0.8027 | -0.8883 | -0.8842 |
+#> |.....................| -0.8530 | -0.8591 | -0.8558 |...........|
+#> | U| 488.87741 | 93.80 | -5.418 | -0.9965 | -0.2045 |
+#> |.....................| 2.099 | 1.693 | 0.7519 | 0.8576 |
+#> |.....................| 1.209 | 1.100 | 1.158 |...........|
+#> | X| 488.87741 | 93.80 | 0.004437 | 0.2696 | 0.8150 |
+#> |.....................| 8.155 | 1.693 | 0.7519 | 0.8576 |
+#> |.....................| 1.209 | 1.100 | 1.158 |...........|
+#> | F| Forward Diff. | -68.52 | 1.732 | -0.1791 | -0.08434 |
+#> |.....................| -0.2775 | -36.72 | 9.505 | 7.234 |
+#> |.....................| -11.37 | -8.098 | -9.790 |...........|
+#> | 7| 487.98842 | 1.002 | -1.003 | -0.9111 | -0.8953 |
+#> |.....................| -0.8489 | -0.7841 | -0.8926 | -0.8878 |
+#> |.....................| -0.8478 | -0.8553 | -0.8512 |...........|
+#> | U| 487.98842 | 94.37 | -5.418 | -0.9964 | -0.2045 |
+#> |.....................| 2.099 | 1.708 | 0.7486 | 0.8545 |
+#> |.....................| 1.215 | 1.104 | 1.163 |...........|
+#> | X| 487.98842 | 94.37 | 0.004434 | 0.2697 | 0.8150 |
+#> |.....................| 8.156 | 1.708 | 0.7486 | 0.8545 |
+#> |.....................| 1.215 | 1.104 | 1.163 |...........|
+#> | F| Forward Diff. | 53.83 | 1.743 | -0.07921 | -0.03701 |
+#> |.....................| -0.09401 | -33.22 | 8.823 | 7.101 |
+#> |.....................| -11.24 | -7.914 | -9.621 |...........|
+#> | 8| 487.18834 | 0.9967 | -1.004 | -0.9110 | -0.8953 |
+#> |.....................| -0.8488 | -0.7657 | -0.8973 | -0.8916 |
+#> |.....................| -0.8421 | -0.8512 | -0.8463 |...........|
+#> | U| 487.18834 | 93.89 | -5.419 | -0.9963 | -0.2045 |
+#> |.....................| 2.099 | 1.724 | 0.7451 | 0.8512 |
+#> |.....................| 1.222 | 1.108 | 1.169 |...........|
+#> | X| 487.18834 | 93.89 | 0.004430 | 0.2697 | 0.8151 |
+#> |.....................| 8.156 | 1.724 | 0.7451 | 0.8512 |
+#> |.....................| 1.222 | 1.108 | 1.169 |...........|
+#> | F| Forward Diff. | -47.29 | 1.692 | -0.1608 | -0.08286 |
+#> |.....................| -0.2512 | -29.89 | 8.493 | 6.629 |
+#> |.....................| -10.92 | -7.677 | -9.350 |...........|
+#> | 9| 486.46922 | 1.002 | -1.005 | -0.9109 | -0.8952 |
+#> |.....................| -0.8487 | -0.7480 | -0.9022 | -0.8958 |
+#> |.....................| -0.8355 | -0.8466 | -0.8406 |...........|
+#> | U| 486.46922 | 94.36 | -5.420 | -0.9963 | -0.2045 |
+#> |.....................| 2.099 | 1.738 | 0.7413 | 0.8476 |
+#> |.....................| 1.230 | 1.113 | 1.175 |...........|
+#> | X| 486.46922 | 94.36 | 0.004425 | 0.2697 | 0.8151 |
+#> |.....................| 8.157 | 1.738 | 0.7413 | 0.8476 |
+#> |.....................| 1.230 | 1.113 | 1.175 |...........|
+#> | F| Forward Diff. | 49.83 | 1.694 | -0.07480 | -0.03429 |
+#> |.....................| -0.09436 | -26.68 | 8.123 | 6.503 |
+#> |.....................| -10.68 | -7.439 | -9.119 |...........|
+#> | 10| 485.78721 | 0.9968 | -1.006 | -0.9109 | -0.8952 |
+#> |.....................| -0.8486 | -0.7319 | -0.9078 | -0.9005 |
+#> |.....................| -0.8277 | -0.8412 | -0.8339 |...........|
+#> | U| 485.78721 | 93.91 | -5.422 | -0.9962 | -0.2044 |
+#> |.....................| 2.099 | 1.752 | 0.7370 | 0.8435 |
+#> |.....................| 1.239 | 1.119 | 1.183 |...........|
+#> | X| 485.78721 | 93.91 | 0.004420 | 0.2697 | 0.8151 |
+#> |.....................| 8.158 | 1.752 | 0.7370 | 0.8435 |
+#> |.....................| 1.239 | 1.119 | 1.183 |...........|
+#> | F| Forward Diff. | -42.45 | 1.646 | -0.1526 | -0.07491 |
+#> |.....................| -0.2510 | -24.12 | 7.576 | 5.974 |
+#> |.....................| -10.35 | -7.128 | -8.768 |...........|
+#> | 11| 485.17009 | 1.001 | -1.008 | -0.9107 | -0.8952 |
+#> |.....................| -0.8484 | -0.7183 | -0.9141 | -0.9058 |
+#> |.....................| -0.8180 | -0.8347 | -0.8257 |...........|
+#> | U| 485.17009 | 94.32 | -5.423 | -0.9961 | -0.2044 |
+#> |.....................| 2.099 | 1.763 | 0.7322 | 0.8389 |
+#> |.....................| 1.251 | 1.126 | 1.192 |...........|
+#> | X| 485.17009 | 94.32 | 0.004413 | 0.2697 | 0.8152 |
+#> |.....................| 8.160 | 1.763 | 0.7322 | 0.8389 |
+#> |.....................| 1.251 | 1.126 | 1.192 |...........|
+#> | 12| 484.56759 | 1.002 | -1.010 | -0.9106 | -0.8951 |
+#> |.....................| -0.8481 | -0.7038 | -0.9212 | -0.9119 |
+#> |.....................| -0.8067 | -0.8272 | -0.8163 |...........|
+#> | U| 484.56759 | 94.37 | -5.425 | -0.9959 | -0.2043 |
+#> |.....................| 2.099 | 1.775 | 0.7268 | 0.8336 |
+#> |.....................| 1.264 | 1.134 | 1.203 |...........|
+#> | X| 484.56759 | 94.37 | 0.004404 | 0.2697 | 0.8152 |
+#> |.....................| 8.162 | 1.775 | 0.7268 | 0.8336 |
+#> |.....................| 1.264 | 1.134 | 1.203 |...........|
+#> | 13| 483.17982 | 1.003 | -1.015 | -0.9102 | -0.8949 |
+#> |.....................| -0.8475 | -0.6634 | -0.9410 | -0.9287 |
+#> |.....................| -0.7754 | -0.8064 | -0.7900 |...........|
+#> | U| 483.17982 | 94.51 | -5.431 | -0.9956 | -0.2042 |
+#> |.....................| 2.100 | 1.808 | 0.7117 | 0.8190 |
+#> |.....................| 1.302 | 1.157 | 1.233 |...........|
+#> | X| 483.17982 | 94.51 | 0.004381 | 0.2698 | 0.8153 |
+#> |.....................| 8.167 | 1.808 | 0.7117 | 0.8190 |
+#> |.....................| 1.302 | 1.157 | 1.233 |...........|
+#> | F| Forward Diff. | 68.60 | 1.559 | 0.008498 | -0.01857 |
+#> |.....................| -0.01950 | -13.38 | 5.413 | 4.461 |
+#> |.....................| -8.084 | -5.202 | -6.751 |...........|
+#> | 14| 482.50435 | 0.9937 | -1.034 | -0.9105 | -0.8944 |
+#> |.....................| -0.8462 | -0.6947 | -0.9713 | -0.9553 |
+#> |.....................| -0.7043 | -0.7694 | -0.7343 |...........|
+#> | U| 482.50435 | 93.61 | -5.449 | -0.9958 | -0.2036 |
+#> |.....................| 2.101 | 1.782 | 0.6887 | 0.7959 |
+#> |.....................| 1.386 | 1.197 | 1.297 |...........|
+#> | X| 482.50435 | 93.61 | 0.004300 | 0.2698 | 0.8158 |
+#> |.....................| 8.177 | 1.782 | 0.6887 | 0.7959 |
+#> |.....................| 1.386 | 1.197 | 1.297 |...........|
+#> | F| Forward Diff. | -85.62 | 1.442 | -0.1650 | -0.08233 |
+#> |.....................| -0.3434 | -17.31 | 3.930 | 3.048 |
+#> |.....................| -4.934 | -3.045 | -4.080 |...........|
+#> | 15| 481.97261 | 1.003 | -1.090 | -0.9106 | -0.8929 |
+#> |.....................| -0.8403 | -0.7109 | -0.9936 | -0.9798 |
+#> |.....................| -0.6305 | -0.7595 | -0.6850 |...........|
+#> | U| 481.97261 | 94.53 | -5.505 | -0.9959 | -0.2021 |
+#> |.....................| 2.107 | 1.769 | 0.6717 | 0.7747 |
+#> |.....................| 1.474 | 1.208 | 1.353 |...........|
+#> | X| 481.97261 | 94.53 | 0.004066 | 0.2697 | 0.8170 |
+#> |.....................| 8.226 | 1.769 | 0.6717 | 0.7747 |
+#> |.....................| 1.474 | 1.208 | 1.353 |...........|
+#> | F| Forward Diff. | 56.89 | 1.274 | 0.1237 | 0.02279 |
+#> |.....................| 0.2367 | -19.64 | 1.923 | 2.281 |
+#> |.....................| -1.663 | -2.419 | -1.870 |...........|
+#> | 16| 481.06506 | 1.001 | -1.169 | -0.9152 | -0.8919 |
+#> |.....................| -0.8407 | -0.6475 | -0.9528 | -0.9773 |
+#> |.....................| -0.6368 | -0.7786 | -0.6952 |...........|
+#> | U| 481.06506 | 94.29 | -5.585 | -1.000 | -0.2011 |
+#> |.....................| 2.107 | 1.821 | 0.7028 | 0.7769 |
+#> |.....................| 1.467 | 1.187 | 1.341 |...........|
+#> | X| 481.06506 | 94.29 | 0.003755 | 0.2688 | 0.8179 |
+#> |.....................| 8.223 | 1.821 | 0.7028 | 0.7769 |
+#> |.....................| 1.467 | 1.187 | 1.341 |...........|
+#> | F| Forward Diff. | 24.24 | 0.9898 | -0.1087 | 0.01886 |
+#> |.....................| 0.1247 | -10.78 | 3.743 | 2.188 |
+#> |.....................| -2.085 | -3.507 | -2.452 |...........|
+#> | 17| 481.22982 | 0.9921 | -1.212 | -0.9099 | -0.8928 |
+#> |.....................| -0.8459 | -0.6315 | -1.015 | -0.9814 |
+#> |.....................| -0.6906 | -0.7213 | -0.7106 |...........|
+#> | U| 481.22982 | 93.46 | -5.628 | -0.9952 | -0.2020 |
+#> |.....................| 2.102 | 1.834 | 0.6553 | 0.7733 |
+#> |.....................| 1.403 | 1.250 | 1.324 |...........|
+#> | X| 481.22982 | 93.46 | 0.003596 | 0.2699 | 0.8171 |
+#> |.....................| 8.180 | 1.834 | 0.6553 | 0.7733 |
+#> |.....................| 1.403 | 1.250 | 1.324 |...........|
+#> | 18| 481.29798 | 0.9919 | -1.186 | -0.9131 | -0.8922 |
+#> |.....................| -0.8428 | -0.6388 | -0.9780 | -0.9794 |
+#> |.....................| -0.6574 | -0.7554 | -0.7007 |...........|
+#> | U| 481.29798 | 93.44 | -5.602 | -0.9984 | -0.2014 |
+#> |.....................| 2.105 | 1.828 | 0.6836 | 0.7751 |
+#> |.....................| 1.442 | 1.213 | 1.335 |...........|
+#> | X| 481.29798 | 93.44 | 0.003691 | 0.2693 | 0.8176 |
+#> |.....................| 8.206 | 1.828 | 0.6836 | 0.7751 |
+#> |.....................| 1.442 | 1.213 | 1.335 |...........|
+#> | 19| 481.41397 | 0.9918 | -1.173 | -0.9147 | -0.8919 |
+#> |.....................| -0.8412 | -0.6424 | -0.9596 | -0.9784 |
+#> |.....................| -0.6408 | -0.7724 | -0.6957 |...........|
+#> | U| 481.41397 | 93.43 | -5.589 | -1.000 | -0.2012 |
+#> |.....................| 2.106 | 1.825 | 0.6976 | 0.7759 |
+#> |.....................| 1.462 | 1.194 | 1.341 |...........|
+#> | X| 481.41397 | 93.43 | 0.003739 | 0.2689 | 0.8178 |
+#> |.....................| 8.219 | 1.825 | 0.6976 | 0.7759 |
+#> |.....................| 1.462 | 1.194 | 1.341 |...........|
+#> | 20| 481.05031 | 0.9977 | -1.169 | -0.9152 | -0.8919 |
+#> |.....................| -0.8407 | -0.6461 | -0.9533 | -0.9776 |
+#> |.....................| -0.6366 | -0.7782 | -0.6949 |...........|
+#> | U| 481.05031 | 93.99 | -5.585 | -1.000 | -0.2011 |
+#> |.....................| 2.107 | 1.822 | 0.7024 | 0.7766 |
+#> |.....................| 1.467 | 1.188 | 1.342 |...........|
+#> | X| 481.05031 | 93.99 | 0.003754 | 0.2688 | 0.8179 |
+#> |.....................| 8.223 | 1.822 | 0.7024 | 0.7766 |
+#> |.....................| 1.467 | 1.188 | 1.342 |...........|
+#> | F| Forward Diff. | -27.42 | 0.9768 | -0.2107 | -0.01109 |
+#> |.....................| -0.02839 | -10.63 | 3.585 | 2.076 |
+#> |.....................| -2.082 | -3.487 | -2.432 |...........|
+#> | 21| 481.00693 | 0.9997 | -1.170 | -0.9150 | -0.8919 |
+#> |.....................| -0.8408 | -0.6450 | -0.9548 | -0.9778 |
+#> |.....................| -0.6377 | -0.7765 | -0.6951 |...........|
+#> | U| 481.00693 | 94.18 | -5.586 | -1.000 | -0.2011 |
+#> |.....................| 2.107 | 1.823 | 0.7012 | 0.7764 |
+#> |.....................| 1.466 | 1.190 | 1.342 |...........|
+#> | X| 481.00693 | 94.18 | 0.003750 | 0.2689 | 0.8178 |
+#> |.....................| 8.222 | 1.823 | 0.7012 | 0.7764 |
+#> |.....................| 1.466 | 1.190 | 1.342 |...........|
+#> | F| Forward Diff. | 5.549 | 0.9801 | -0.1366 | 0.007724 |
+#> |.....................| 0.06864 | -10.47 | 3.736 | 2.095 |
+#> |.....................| -2.145 | -3.386 | -2.439 |...........|
+#> | 22| 480.97727 | 0.9982 | -1.171 | -0.9150 | -0.8919 |
+#> |.....................| -0.8408 | -0.6422 | -0.9558 | -0.9784 |
+#> |.....................| -0.6371 | -0.7756 | -0.6944 |...........|
+#> | U| 480.97727 | 94.04 | -5.586 | -1.000 | -0.2011 |
+#> |.....................| 2.107 | 1.825 | 0.7005 | 0.7760 |
+#> |.....................| 1.466 | 1.191 | 1.342 |...........|
+#> | X| 480.97727 | 94.04 | 0.003749 | 0.2689 | 0.8178 |
+#> |.....................| 8.222 | 1.825 | 0.7005 | 0.7760 |
+#> |.....................| 1.466 | 1.191 | 1.342 |...........|
+#> | F| Forward Diff. | -18.22 | 0.9728 | -0.1820 | -0.005388 |
+#> |.....................| -0.004679 | -10.15 | 3.348 | 1.956 |
+#> |.....................| -2.141 | -3.348 | -2.415 |...........|
+#> | 23| 480.94781 | 0.9999 | -1.172 | -0.9148 | -0.8919 |
+#> |.....................| -0.8410 | -0.6410 | -0.9575 | -0.9785 |
+#> |.....................| -0.6383 | -0.7738 | -0.6946 |...........|
+#> | U| 480.94781 | 94.20 | -5.587 | -1.000 | -0.2011 |
+#> |.....................| 2.107 | 1.826 | 0.6992 | 0.7758 |
+#> |.....................| 1.465 | 1.193 | 1.342 |...........|
+#> | X| 480.94781 | 94.20 | 0.003745 | 0.2689 | 0.8178 |
+#> |.....................| 8.220 | 1.826 | 0.6992 | 0.7758 |
+#> |.....................| 1.465 | 1.193 | 1.342 |...........|
+#> | F| Forward Diff. | 8.568 | 0.9740 | -0.1199 | 0.009837 |
+#> |.....................| 0.07469 | -9.926 | 3.371 | 0.7973 |
+#> |.....................| -2.181 | -3.230 | -2.408 |...........|
+#> | 24| 480.92664 | 0.9984 | -1.173 | -0.9147 | -0.8919 |
+#> |.....................| -0.8411 | -0.6390 | -0.9589 | -0.9778 |
+#> |.....................| -0.6386 | -0.7721 | -0.6942 |...........|
+#> | U| 480.92664 | 94.06 | -5.588 | -1.000 | -0.2011 |
+#> |.....................| 2.107 | 1.828 | 0.6981 | 0.7765 |
+#> |.....................| 1.465 | 1.195 | 1.343 |...........|
+#> | X| 480.92664 | 94.06 | 0.003741 | 0.2689 | 0.8178 |
+#> |.....................| 8.219 | 1.828 | 0.6981 | 0.7765 |
+#> |.....................| 1.465 | 1.195 | 1.343 |...........|
+#> | F| Forward Diff. | -15.24 | 0.9644 | -0.1632 | -0.002739 |
+#> |.....................| -0.008738 | -9.656 | 3.177 | 0.7945 |
+#> |.....................| -2.140 | -3.159 | -2.407 |...........|
+#> | 25| 480.90633 | 0.9999 | -1.174 | -0.9146 | -0.8920 |
+#> |.....................| -0.8412 | -0.6376 | -0.9602 | -0.9760 |
+#> |.....................| -0.6390 | -0.7705 | -0.6939 |...........|
+#> | U| 480.90633 | 94.20 | -5.589 | -0.9999 | -0.2012 |
+#> |.....................| 2.106 | 1.829 | 0.6971 | 0.7780 |
+#> |.....................| 1.464 | 1.196 | 1.343 |...........|
+#> | X| 480.90633 | 94.20 | 0.003737 | 0.2690 | 0.8178 |
+#> |.....................| 8.219 | 1.829 | 0.6971 | 0.7780 |
+#> |.....................| 1.464 | 1.196 | 1.343 |...........|
+#> | F| Forward Diff. | 8.878 | 0.9654 | -0.1149 | 0.008298 |
+#> |.....................| 0.06381 | -9.456 | 3.199 | 2.165 |
+#> |.....................| -2.158 | -3.035 | -2.359 |...........|
+#> | 26| 480.88677 | 0.9984 | -1.175 | -0.9145 | -0.8920 |
+#> |.....................| -0.8413 | -0.6358 | -0.9617 | -0.9757 |
+#> |.....................| -0.6395 | -0.7687 | -0.6936 |...........|
+#> | U| 480.88677 | 94.05 | -5.591 | -0.9998 | -0.2012 |
+#> |.....................| 2.106 | 1.831 | 0.6960 | 0.7783 |
+#> |.....................| 1.464 | 1.198 | 1.343 |...........|
+#> | X| 480.88677 | 94.05 | 0.003733 | 0.2690 | 0.8178 |
+#> |.....................| 8.218 | 1.831 | 0.6960 | 0.7783 |
+#> |.....................| 1.464 | 1.198 | 1.343 |...........|
+#> | F| Forward Diff. | -15.55 | 0.9550 | -0.1566 | -0.004027 |
+#> |.....................| -0.01529 | -9.334 | 3.082 | 0.8457 |
+#> |.....................| -2.216 | -2.967 | -2.371 |...........|
+#> | 27| 480.86430 | 0.9998 | -1.177 | -0.9143 | -0.8920 |
+#> |.....................| -0.8414 | -0.6346 | -0.9633 | -0.9749 |
+#> |.....................| -0.6404 | -0.7668 | -0.6935 |...........|
+#> | U| 480.8643 | 94.19 | -5.592 | -0.9996 | -0.2012 |
+#> |.....................| 2.106 | 1.832 | 0.6948 | 0.7790 |
+#> |.....................| 1.463 | 1.200 | 1.343 |...........|
+#> | X| 480.8643 | 94.19 | 0.003727 | 0.2690 | 0.8177 |
+#> |.....................| 8.217 | 1.832 | 0.6948 | 0.7790 |
+#> |.....................| 1.463 | 1.200 | 1.343 |...........|
+#> | F| Forward Diff. | 6.756 | 0.9537 | -0.1079 | 0.006011 |
+#> |.....................| 0.04748 | -9.023 | 3.021 | 2.222 |
+#> |.....................| -2.227 | -2.836 | -2.339 |...........|
+#> | 28| 480.84403 | 0.9982 | -1.178 | -0.9142 | -0.8920 |
+#> |.....................| -0.8415 | -0.6324 | -0.9646 | -0.9751 |
+#> |.....................| -0.6405 | -0.7653 | -0.6931 |...........|
+#> | U| 480.84403 | 94.04 | -5.593 | -0.9995 | -0.2012 |
+#> |.....................| 2.106 | 1.833 | 0.6938 | 0.7788 |
+#> |.....................| 1.462 | 1.202 | 1.344 |...........|
+#> | X| 480.84403 | 94.04 | 0.003723 | 0.2690 | 0.8177 |
+#> |.....................| 8.216 | 1.833 | 0.6938 | 0.7788 |
+#> |.....................| 1.462 | 1.202 | 1.344 |...........|
+#> | F| Forward Diff. | -17.74 | 0.9443 | -0.1486 | -0.005686 |
+#> |.....................| -0.02964 | -8.905 | 2.905 | 2.091 |
+#> |.....................| -2.264 | -2.753 | -2.319 |...........|
+#> | 29| 480.81486 | 0.9998 | -1.179 | -0.9140 | -0.8921 |
+#> |.....................| -0.8417 | -0.6315 | -0.9657 | -0.9770 |
+#> |.....................| -0.6415 | -0.7640 | -0.6932 |...........|
+#> | U| 480.81486 | 94.18 | -5.595 | -0.9993 | -0.2013 |
+#> |.....................| 2.106 | 1.834 | 0.6930 | 0.7772 |
+#> |.....................| 1.461 | 1.203 | 1.344 |...........|
+#> | X| 480.81486 | 94.18 | 0.003718 | 0.2691 | 0.8177 |
+#> |.....................| 8.215 | 1.834 | 0.6930 | 0.7772 |
+#> |.....................| 1.461 | 1.203 | 1.344 |...........|
+#> | F| Forward Diff. | 6.172 | 0.9439 | -0.09077 | 0.005496 |
+#> |.....................| 0.04002 | -8.557 | 3.060 | 0.8688 |
+#> |.....................| -2.237 | -2.681 | -2.329 |...........|
+#> | 30| 480.79675 | 0.9982 | -1.180 | -0.9139 | -0.8921 |
+#> |.....................| -0.8418 | -0.6292 | -0.9672 | -0.9770 |
+#> |.....................| -0.6415 | -0.7628 | -0.6927 |...........|
+#> | U| 480.79675 | 94.04 | -5.596 | -0.9992 | -0.2013 |
+#> |.....................| 2.106 | 1.836 | 0.6918 | 0.7772 |
+#> |.....................| 1.461 | 1.205 | 1.344 |...........|
+#> | X| 480.79675 | 94.04 | 0.003714 | 0.2691 | 0.8177 |
+#> |.....................| 8.214 | 1.836 | 0.6918 | 0.7772 |
+#> |.....................| 1.461 | 1.205 | 1.344 |...........|
+#> | F| Forward Diff. | -18.05 | 0.9344 | -0.1333 | -0.006636 |
+#> |.....................| -0.03697 | -8.406 | 2.763 | 0.7695 |
+#> |.....................| -2.291 | -2.623 | -2.307 |...........|
+#> | 31| 480.77804 | 0.9997 | -1.182 | -0.9138 | -0.8921 |
+#> |.....................| -0.8419 | -0.6281 | -0.9686 | -0.9750 |
+#> |.....................| -0.6417 | -0.7615 | -0.6923 |...........|
+#> | U| 480.77804 | 94.18 | -5.597 | -0.9991 | -0.2013 |
+#> |.....................| 2.106 | 1.837 | 0.6907 | 0.7789 |
+#> |.....................| 1.461 | 1.206 | 1.345 |...........|
+#> | X| 480.77804 | 94.18 | 0.003708 | 0.2691 | 0.8176 |
+#> |.....................| 8.213 | 1.837 | 0.6907 | 0.7789 |
+#> |.....................| 1.461 | 1.206 | 1.345 |...........|
+#> | F| Forward Diff. | 5.466 | 0.9331 | -0.08875 | 0.003744 |
+#> |.....................| 0.02543 | -8.171 | 2.670 | 2.155 |
+#> |.....................| -2.279 | -2.534 | -2.278 |...........|
+#> | 32| 480.75892 | 0.9982 | -1.183 | -0.9137 | -0.8921 |
+#> |.....................| -0.8419 | -0.6258 | -0.9698 | -0.9756 |
+#> |.....................| -0.6414 | -0.7603 | -0.6917 |...........|
+#> | U| 480.75892 | 94.03 | -5.598 | -0.9991 | -0.2014 |
+#> |.....................| 2.106 | 1.839 | 0.6899 | 0.7784 |
+#> |.....................| 1.461 | 1.207 | 1.346 |...........|
+#> | X| 480.75892 | 94.03 | 0.003704 | 0.2691 | 0.8176 |
+#> |.....................| 8.212 | 1.839 | 0.6899 | 0.7784 |
+#> |.....................| 1.461 | 1.207 | 1.346 |...........|
+#> | F| Forward Diff. | -18.29 | 0.9240 | -0.1279 | -0.008301 |
+#> |.....................| -0.04619 | -7.961 | 2.584 | 0.8229 |
+#> |.....................| -2.311 | -2.476 | -2.253 |...........|
+#> | 33| 480.73432 | 0.9997 | -1.185 | -0.9136 | -0.8922 |
+#> |.....................| -0.8421 | -0.6250 | -0.9708 | -0.9758 |
+#> |.....................| -0.6420 | -0.7587 | -0.6914 |...........|
+#> | U| 480.73432 | 94.18 | -5.601 | -0.9989 | -0.2014 |
+#> |.....................| 2.105 | 1.840 | 0.6891 | 0.7782 |
+#> |.....................| 1.461 | 1.209 | 1.346 |...........|
+#> | X| 480.73432 | 94.18 | 0.003695 | 0.2692 | 0.8176 |
+#> |.....................| 8.211 | 1.840 | 0.6891 | 0.7782 |
+#> |.....................| 1.461 | 1.209 | 1.346 |...........|
+#> | F| Forward Diff. | 5.056 | 0.9202 | -0.07575 | 0.002374 |
+#> |.....................| 0.02179 | -7.789 | 2.502 | 2.101 |
+#> |.....................| -2.273 | -2.370 | -2.217 |...........|
+#> | 34| 480.71449 | 0.9983 | -1.187 | -0.9135 | -0.8922 |
+#> |.....................| -0.8422 | -0.6227 | -0.9719 | -0.9765 |
+#> |.....................| -0.6416 | -0.7575 | -0.6908 |...........|
+#> | U| 480.71449 | 94.05 | -5.602 | -0.9988 | -0.2014 |
+#> |.....................| 2.105 | 1.841 | 0.6883 | 0.7776 |
+#> |.....................| 1.461 | 1.210 | 1.347 |...........|
+#> | X| 480.71449 | 94.05 | 0.003690 | 0.2692 | 0.8175 |
+#> |.....................| 8.210 | 1.841 | 0.6883 | 0.7776 |
+#> |.....................| 1.461 | 1.210 | 1.347 |...........|
+#> | F| Forward Diff. | -16.10 | 0.9104 | -0.1099 | -0.008208 |
+#> |.....................| -0.04557 | -7.571 | 2.606 | 1.992 |
+#> |.....................| -2.295 | -2.312 | -2.196 |...........|
+#> | 35| 480.68777 | 0.9997 | -1.189 | -0.9134 | -0.8923 |
+#> |.....................| -0.8423 | -0.6220 | -0.9726 | -0.9789 |
+#> |.....................| -0.6421 | -0.7569 | -0.6908 |...........|
+#> | U| 480.68777 | 94.18 | -5.604 | -0.9987 | -0.2015 |
+#> |.....................| 2.105 | 1.842 | 0.6877 | 0.7755 |
+#> |.....................| 1.461 | 1.211 | 1.347 |...........|
+#> | X| 480.68777 | 94.18 | 0.003683 | 0.2692 | 0.8175 |
+#> |.....................| 8.209 | 1.842 | 0.6877 | 0.7755 |
+#> |.....................| 1.461 | 1.211 | 1.347 |...........|
+#> | F| Forward Diff. | 4.858 | 0.9091 | -0.06076 | 0.001972 |
+#> |.....................| 0.01464 | -7.318 | 2.391 | 0.7174 |
+#> |.....................| -2.245 | -2.255 | -2.188 |...........|
+#> | 36| 480.67297 | 0.9982 | -1.190 | -0.9134 | -0.8923 |
+#> |.....................| -0.8424 | -0.6196 | -0.9738 | -0.9789 |
+#> |.....................| -0.6415 | -0.7559 | -0.6900 |...........|
+#> | U| 480.67297 | 94.03 | -5.605 | -0.9987 | -0.2015 |
+#> |.....................| 2.105 | 1.844 | 0.6868 | 0.7755 |
+#> |.....................| 1.461 | 1.212 | 1.348 |...........|
+#> | X| 480.67297 | 94.03 | 0.003678 | 0.2692 | 0.8175 |
+#> |.....................| 8.209 | 1.844 | 0.6868 | 0.7755 |
+#> |.....................| 1.461 | 1.212 | 1.348 |...........|
+#> | F| Forward Diff. | -18.29 | 0.8994 | -0.1037 | -0.01039 |
+#> |.....................| -0.05604 | -7.086 | 2.324 | 0.6431 |
+#> |.....................| -2.272 | -2.229 | -2.170 |...........|
+#> | 37| 480.65610 | 0.9996 | -1.192 | -0.9134 | -0.8923 |
+#> |.....................| -0.8424 | -0.6187 | -0.9745 | -0.9768 |
+#> |.....................| -0.6410 | -0.7549 | -0.6892 |...........|
+#> | U| 480.6561 | 94.17 | -5.607 | -0.9987 | -0.2015 |
+#> |.....................| 2.105 | 1.845 | 0.6862 | 0.7773 |
+#> |.....................| 1.462 | 1.213 | 1.348 |...........|
+#> | X| 480.6561 | 94.17 | 0.003671 | 0.2692 | 0.8175 |
+#> |.....................| 8.208 | 1.845 | 0.6862 | 0.7773 |
+#> |.....................| 1.462 | 1.213 | 1.348 |...........|
+#> | F| Forward Diff. | 3.523 | 0.8967 | -0.06519 |-0.0005238 |
+#> |.....................| 0.007306 | -6.938 | 2.250 | 0.8205 |
+#> |.....................| -2.209 | -2.143 | -2.109 |...........|
+#> | 38| 480.63930 | 0.9982 | -1.192 | -0.9133 | -0.8923 |
+#> |.....................| -0.8425 | -0.6159 | -0.9754 | -0.9772 |
+#> |.....................| -0.6401 | -0.7540 | -0.6884 |...........|
+#> | U| 480.6393 | 94.04 | -5.608 | -0.9987 | -0.2015 |
+#> |.....................| 2.105 | 1.847 | 0.6856 | 0.7770 |
+#> |.....................| 1.463 | 1.214 | 1.349 |...........|
+#> | X| 480.6393 | 94.04 | 0.003670 | 0.2692 | 0.8175 |
+#> |.....................| 8.208 | 1.847 | 0.6856 | 0.7770 |
+#> |.....................| 1.463 | 1.214 | 1.349 |...........|
+#> | F| Forward Diff. | -17.45 | 0.8903 | -0.1044 | -0.01155 |
+#> |.....................| -0.05881 | -6.641 | 2.195 | 1.966 |
+#> |.....................| -2.207 | -2.119 | -2.090 |...........|
+#> | 39| 480.61554 | 0.9996 | -1.195 | -0.9133 | -0.8924 |
+#> |.....................| -0.8426 | -0.6153 | -0.9757 | -0.9778 |
+#> |.....................| -0.6400 | -0.7531 | -0.6877 |...........|
+#> | U| 480.61554 | 94.16 | -5.611 | -0.9986 | -0.2016 |
+#> |.....................| 2.105 | 1.848 | 0.6853 | 0.7765 |
+#> |.....................| 1.463 | 1.215 | 1.350 |...........|
+#> | X| 480.61554 | 94.16 | 0.003659 | 0.2692 | 0.8174 |
+#> |.....................| 8.207 | 1.848 | 0.6853 | 0.7765 |
+#> |.....................| 1.463 | 1.215 | 1.350 |...........|
+#> | F| Forward Diff. | 2.395 | 0.8850 | -0.05988 | -0.001937 |
+#> |.....................| 0.0008548 | -6.531 | 2.145 | 0.7341 |
+#> |.....................| -2.178 | -2.045 | -2.040 |...........|
+#> | 40| 480.59501 | 0.9985 | -1.195 | -0.9132 | -0.8924 |
+#> |.....................| -0.8426 | -0.6124 | -0.9766 | -0.9781 |
+#> |.....................| -0.6390 | -0.7522 | -0.6868 |...........|
+#> | U| 480.59501 | 94.06 | -5.611 | -0.9986 | -0.2016 |
+#> |.....................| 2.105 | 1.850 | 0.6846 | 0.7762 |
+#> |.....................| 1.464 | 1.216 | 1.351 |...........|
+#> | X| 480.59501 | 94.06 | 0.003658 | 0.2692 | 0.8174 |
+#> |.....................| 8.207 | 1.850 | 0.6846 | 0.7762 |
+#> |.....................| 1.464 | 1.216 | 1.351 |...........|
+#> | F| Forward Diff. | -13.20 | 0.8797 | -0.08878 | -0.01245 |
+#> |.....................| -0.05202 | -6.149 | 2.097 | 1.936 |
+#> |.....................| -2.128 | -2.007 | -2.021 |...........|
+#> | 41| 480.57374 | 0.9995 | -1.198 | -0.9132 | -0.8924 |
+#> |.....................| -0.8426 | -0.6117 | -0.9768 | -0.9794 |
+#> |.....................| -0.6387 | -0.7515 | -0.6862 |...........|
+#> | U| 480.57374 | 94.16 | -5.614 | -0.9986 | -0.2016 |
+#> |.....................| 2.105 | 1.851 | 0.6845 | 0.7751 |
+#> |.....................| 1.464 | 1.217 | 1.352 |...........|
+#> | X| 480.57374 | 94.16 | 0.003647 | 0.2692 | 0.8174 |
+#> |.....................| 8.207 | 1.851 | 0.6845 | 0.7751 |
+#> |.....................| 1.464 | 1.217 | 1.352 |...........|
+#> | 42| 480.55656 | 0.9993 | -1.203 | -0.9133 | -0.8924 |
+#> |.....................| -0.8427 | -0.6115 | -0.9767 | -0.9815 |
+#> |.....................| -0.6386 | -0.7506 | -0.6853 |...........|
+#> | U| 480.55656 | 94.14 | -5.619 | -0.9986 | -0.2016 |
+#> |.....................| 2.105 | 1.851 | 0.6846 | 0.7733 |
+#> |.....................| 1.465 | 1.218 | 1.353 |...........|
+#> | X| 480.55656 | 94.14 | 0.003629 | 0.2692 | 0.8174 |
+#> |.....................| 8.206 | 1.851 | 0.6846 | 0.7733 |
+#> |.....................| 1.465 | 1.218 | 1.353 |...........|
+#> | 43| 480.48642 | 0.9984 | -1.228 | -0.9134 | -0.8925 |
+#> |.....................| -0.8432 | -0.6102 | -0.9761 | -0.9914 |
+#> |.....................| -0.6380 | -0.7463 | -0.6812 |...........|
+#> | U| 480.48642 | 94.05 | -5.643 | -0.9987 | -0.2017 |
+#> |.....................| 2.104 | 1.852 | 0.6850 | 0.7647 |
+#> |.....................| 1.465 | 1.223 | 1.357 |...........|
+#> | X| 480.48642 | 94.05 | 0.003541 | 0.2692 | 0.8174 |
+#> |.....................| 8.202 | 1.852 | 0.6850 | 0.7647 |
+#> |.....................| 1.465 | 1.223 | 1.357 |...........|
+#> | 44| 480.43193 | 0.9946 | -1.325 | -0.9138 | -0.8928 |
+#> |.....................| -0.8452 | -0.6054 | -0.9741 | -1.031 |
+#> |.....................| -0.6354 | -0.7292 | -0.6649 |...........|
+#> | U| 480.43193 | 93.70 | -5.741 | -0.9991 | -0.2020 |
+#> |.....................| 2.102 | 1.856 | 0.6866 | 0.7303 |
+#> |.....................| 1.469 | 1.241 | 1.376 |...........|
+#> | X| 480.43193 | 93.70 | 0.003212 | 0.2691 | 0.8171 |
+#> |.....................| 8.185 | 1.856 | 0.6866 | 0.7303 |
+#> |.....................| 1.469 | 1.241 | 1.376 |...........|
+#> | F| Forward Diff. | -73.68 | 0.5532 | -0.05170 | -0.03792 |
+#> |.....................| -0.2632 | -4.949 | 2.751 | -2.063 |
+#> |.....................| -2.027 | -0.5538 | -1.006 |...........|
+#> | 45| 480.12037 | 0.9986 | -1.465 | -0.9157 | -0.8935 |
+#> |.....................| -0.8478 | -0.6011 | -0.9922 | -1.022 |
+#> |.....................| -0.6184 | -0.7143 | -0.6451 |...........|
+#> | U| 480.12037 | 94.07 | -5.880 | -1.001 | -0.2027 |
+#> |.....................| 2.100 | 1.859 | 0.6728 | 0.7378 |
+#> |.....................| 1.489 | 1.257 | 1.399 |...........|
+#> | X| 480.12037 | 94.07 | 0.002795 | 0.2687 | 0.8166 |
+#> |.....................| 8.164 | 1.859 | 0.6728 | 0.7378 |
+#> |.....................| 1.489 | 1.257 | 1.399 |...........|
+#> | F| Forward Diff. | -14.31 | 0.1919 | -0.006458 | -0.005637 |
+#> |.....................| -0.1500 | -5.088 | 0.6605 | -0.1467 |
+#> |.....................| -1.672 | 0.02074 | -0.4009 |...........|
+#> | 46| 480.21684 | 0.9998 | -1.532 | -0.9143 | -0.8951 |
+#> |.....................| -0.8360 | -0.5884 | -0.9862 | -1.032 |
+#> |.....................| -0.5071 | -0.7680 | -0.6684 |...........|
+#> | U| 480.21684 | 94.19 | -5.947 | -0.9996 | -0.2043 |
+#> |.....................| 2.112 | 1.870 | 0.6773 | 0.7298 |
+#> |.....................| 1.621 | 1.199 | 1.372 |...........|
+#> | X| 480.21684 | 94.19 | 0.002613 | 0.2690 | 0.8152 |
+#> |.....................| 8.261 | 1.870 | 0.6773 | 0.7298 |
+#> |.....................| 1.621 | 1.199 | 1.372 |...........|
+#> | 47| 480.06028 | 1.000 | -1.489 | -0.9152 | -0.8941 |
+#> |.....................| -0.8435 | -0.5961 | -0.9901 | -1.026 |
+#> |.....................| -0.5774 | -0.7340 | -0.6536 |...........|
+#> | U| 480.06028 | 94.21 | -5.905 | -1.000 | -0.2033 |
+#> |.....................| 2.104 | 1.863 | 0.6744 | 0.7349 |
+#> |.....................| 1.538 | 1.236 | 1.389 |...........|
+#> | X| 480.06028 | 94.21 | 0.002726 | 0.2688 | 0.8161 |
+#> |.....................| 8.200 | 1.863 | 0.6744 | 0.7349 |
+#> |.....................| 1.538 | 1.236 | 1.389 |...........|
+#> | F| Forward Diff. | 6.437 | 0.1507 | 0.07551 | -0.008836 |
+#> |.....................| 0.08632 | -3.858 | 0.8547 | 0.1963 |
+#> |.....................| 0.4591 | -0.8475 | -0.5830 |...........|
+#> | 48| 480.03665 | 0.9987 | -1.532 | -0.9229 | -0.8934 |
+#> |.....................| -0.8415 | -0.5884 | -1.015 | -1.029 |
+#> |.....................| -0.5816 | -0.7442 | -0.6445 |...........|
+#> | U| 480.03665 | 94.09 | -5.948 | -1.008 | -0.2026 |
+#> |.....................| 2.106 | 1.870 | 0.6552 | 0.7323 |
+#> |.....................| 1.533 | 1.225 | 1.399 |...........|
+#> | X| 480.03665 | 94.09 | 0.002612 | 0.2673 | 0.8166 |
+#> |.....................| 8.216 | 1.870 | 0.6552 | 0.7323 |
+#> |.....................| 1.533 | 1.225 | 1.399 |...........|
+#> | F| Forward Diff. | -11.33 | 0.04720 | -0.3576 | -0.009993 |
+#> |.....................| 0.09366 | -3.049 | -0.8552 | 2.379 |
+#> |.....................| 0.07272 | -1.673 | -0.4189 |...........|
+#> | 49| 480.00388 | 0.9997 | -1.574 | -0.9191 | -0.8927 |
+#> |.....................| -0.8426 | -0.5789 | -1.009 | -1.024 |
+#> |.....................| -0.5828 | -0.7165 | -0.6339 |...........|
+#> | U| 480.00388 | 94.18 | -5.990 | -1.004 | -0.2019 |
+#> |.....................| 2.105 | 1.878 | 0.6600 | 0.7361 |
+#> |.....................| 1.531 | 1.255 | 1.412 |...........|
+#> | X| 480.00388 | 94.18 | 0.002504 | 0.2681 | 0.8172 |
+#> |.....................| 8.207 | 1.878 | 0.6600 | 0.7361 |
+#> |.....................| 1.531 | 1.255 | 1.412 |...........|
+#> | F| Forward Diff. | 1.604 | -0.07853 | -0.1199 | 0.02191 |
+#> |.....................| 0.1056 | -1.650 | -0.4080 | 0.6580 |
+#> |.....................| 0.2834 | 0.2201 | 0.3460 |...........|
+#> | 50| 480.03472 | 1.000 | -1.551 | -0.8873 | -0.8972 |
+#> |.....................| -0.8660 | -0.5703 | -1.019 | -1.030 |
+#> |.....................| -0.5914 | -0.7201 | -0.6545 |...........|
+#> | U| 480.03472 | 94.21 | -5.967 | -0.9727 | -0.2064 |
+#> |.....................| 2.082 | 1.885 | 0.6528 | 0.7314 |
+#> |.....................| 1.521 | 1.251 | 1.388 |...........|
+#> | X| 480.03472 | 94.21 | 0.002563 | 0.2743 | 0.8135 |
+#> |.....................| 8.017 | 1.885 | 0.6528 | 0.7314 |
+#> |.....................| 1.521 | 1.251 | 1.388 |...........|
+#> | 51| 480.00362 | 0.9987 | -1.569 | -0.9113 | -0.8938 |
+#> |.....................| -0.8484 | -0.5757 | -1.011 | -1.026 |
+#> |.....................| -0.5851 | -0.7175 | -0.6392 |...........|
+#> | U| 480.00362 | 94.09 | -5.984 | -0.9966 | -0.2030 |
+#> |.....................| 2.099 | 1.880 | 0.6585 | 0.7346 |
+#> |.....................| 1.528 | 1.254 | 1.406 |...........|
+#> | X| 480.00362 | 94.09 | 0.002519 | 0.2696 | 0.8163 |
+#> |.....................| 8.160 | 1.880 | 0.6585 | 0.7346 |
+#> |.....................| 1.528 | 1.254 | 1.406 |...........|
+#> | F| Forward Diff. | -11.27 | -0.06004 | 0.2734 | -0.003181 |
+#> |.....................| -0.1459 | -1.804 | -0.6958 | 0.2356 |
+#> |.....................| -0.08489 | -0.1057 | -0.1437 |...........|
+#> | 52| 479.99564 | 1.000 | -1.563 | -0.9133 | -0.8943 |
+#> |.....................| -0.8490 | -0.5744 | -1.010 | -1.027 |
+#> |.....................| -0.5870 | -0.7192 | -0.6381 |...........|
+#> | U| 479.99564 | 94.21 | -5.979 | -0.9986 | -0.2035 |
+#> |.....................| 2.099 | 1.881 | 0.6592 | 0.7342 |
+#> |.....................| 1.526 | 1.252 | 1.407 |...........|
+#> | X| 479.99564 | 94.21 | 0.002532 | 0.2692 | 0.8159 |
+#> |.....................| 8.155 | 1.881 | 0.6592 | 0.7342 |
+#> |.....................| 1.526 | 1.252 | 1.407 |...........|
+#> | F| Forward Diff. | 5.442 | -0.04353 | 0.2015 | -0.005586 |
+#> |.....................| -0.1078 | -1.130 | -0.4765 | -0.6210 |
+#> |.....................| 0.09560 | 0.04932 | 0.1423 |...........|
+#> | 53| 479.99256 | 0.9995 | -1.560 | -0.9178 | -0.8945 |
+#> |.....................| -0.8473 | -0.5732 | -1.008 | -1.026 |
+#> |.....................| -0.5881 | -0.7196 | -0.6366 |...........|
+#> | U| 479.99256 | 94.16 | -5.975 | -1.003 | -0.2037 |
+#> |.....................| 2.100 | 1.882 | 0.6609 | 0.7344 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99256 | 94.16 | 0.002541 | 0.2683 | 0.8157 |
+#> |.....................| 8.169 | 1.882 | 0.6609 | 0.7344 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | F| Forward Diff. | -1.663 | -0.03616 | -0.04918 | -0.01811 |
+#> |.....................| -0.07323 | -1.616 | -0.5475 | -0.9126 |
+#> |.....................| -0.2713 | -0.2260 | -0.04317 |...........|
+#> | 54| 479.99337 | 0.9995 | -1.558 | -0.9178 | -0.8940 |
+#> |.....................| -0.8453 | -0.5718 | -1.004 | -1.025 |
+#> |.....................| -0.5887 | -0.7198 | -0.6325 |...........|
+#> | U| 479.99337 | 94.16 | -5.974 | -1.003 | -0.2032 |
+#> |.....................| 2.102 | 1.883 | 0.6641 | 0.7358 |
+#> |.....................| 1.524 | 1.251 | 1.413 |...........|
+#> | X| 479.99337 | 94.16 | 0.002545 | 0.2683 | 0.8161 |
+#> |.....................| 8.185 | 1.883 | 0.6641 | 0.7358 |
+#> |.....................| 1.524 | 1.251 | 1.413 |...........|
+#> | 55| 479.99257 | 0.9996 | -1.559 | -0.9178 | -0.8942 |
+#> |.....................| -0.8464 | -0.5725 | -1.006 | -1.026 |
+#> |.....................| -0.5884 | -0.7197 | -0.6348 |...........|
+#> | U| 479.99257 | 94.17 | -5.975 | -1.003 | -0.2035 |
+#> |.....................| 2.101 | 1.883 | 0.6623 | 0.7351 |
+#> |.....................| 1.525 | 1.252 | 1.411 |...........|
+#> | X| 479.99257 | 94.17 | 0.002543 | 0.2683 | 0.8159 |
+#> |.....................| 8.175 | 1.883 | 0.6623 | 0.7351 |
+#> |.....................| 1.525 | 1.252 | 1.411 |...........|
+#> | 56| 479.99255 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99255 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99255 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | C| Central Diff. | 1.014 | -0.03924 | -0.07311 | -0.03520 |
+#> |.....................| -0.07193 | -1.047 | -0.3482 | -0.6653 |
+#> |.....................| -0.001386 | 0.002313 | -0.01832 |...........|
+#> | 57| 479.99382 | 0.9993 | -1.559 | -0.9177 | -0.8943 |
+#> |.....................| -0.8469 | -0.5723 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99382 | 94.14 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6617 | 0.7350 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99382 | 94.14 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6617 | 0.7350 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | 58| 479.99260 | 0.9996 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5726 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.9926 | 94.17 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.9926 | 94.17 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | 59| 479.99255 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99255 | 94.17 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99255 | 94.17 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | 60| 479.99254 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99254 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99254 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | C| Central Diff. | 0.7083 | -0.03937 | -0.07377 | -0.03537 |
+#> |.....................| -0.07427 | -1.038 | -0.3482 | -0.6698 |
+#> |.....................| -0.009774 | 0.01032 | -0.01719 |...........|
+#> | 61| 479.99255 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99255 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99255 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | 62| 479.99264 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99264 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99264 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | 63| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99259 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | 64| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99259 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | 65| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99259 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | 66| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99259 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | 67| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99259 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | 68| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99259 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | 69| 479.99258 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99258 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99258 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | 70| 479.99258 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99258 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99258 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | 71| 479.99258 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
+#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
+#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
+#> | U| 479.99258 | 94.18 | -5.975 | -1.003 | -0.2036 |
+#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> | X| 479.99258 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
+#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
+#> |.....................| 1.525 | 1.252 | 1.409 |...........|
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
+#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
+#> |.....................| log_k2 | g_qlogis | sigma | o1 |
+#> |.....................| o2 | o3 | o4 | o5 |
+#> |.....................| o6 |...........|...........|...........|
+#> | 1| 514.27068 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#> |.....................| -0.8683 |...........|...........|...........|
+#> | U| 514.27068 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 514.27068 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | G| Gill Diff. | 26.19 | 1.724 | -0.1273 | 0.01210 |
+#> |.....................| -0.2599 | 0.04964 | -46.10 | 17.02 |
+#> |.....................| 9.682 | -11.00 | -4.182 | 3.869 |
+#> |.....................| -10.57 |...........|...........|...........|
+#> | 2| 1072.3430 | 0.5548 | -1.029 | -0.9091 | -0.9298 |
+#> |.....................| -0.9733 | -0.8898 | -0.07504 | -1.166 |
+#> |.....................| -1.039 | -0.6809 | -0.8005 | -0.9394 |
+#> |.....................| -0.6887 |...........|...........|...........|
+#> | U| 1072.343 | 52.05 | -5.403 | -0.9690 | -1.880 |
+#> |.....................| -4.266 | 0.1355 | 2.292 | 0.5199 |
+#> |.....................| 0.7209 | 1.403 | 1.065 | 0.8339 |
+#> |.....................| 1.368 |...........|...........|...........|
+#> | X| 1072.343 | 52.05 | 0.004504 | 0.2751 | 0.1526 |
+#> |.....................| 0.01403 | 0.5338 | 2.292 | 0.5199 |
+#> |.....................| 0.7209 | 1.403 | 1.065 | 0.8339 |
+#> |.....................| 1.368 |...........|...........|...........|
+#> | 3| 539.25377 | 0.9555 | -1.003 | -0.9110 | -0.9296 |
+#> |.....................| -0.9773 | -0.8890 | -0.7801 | -0.9058 |
+#> |.....................| -0.8907 | -0.8491 | -0.8645 | -0.8802 |
+#> |.....................| -0.8503 |...........|...........|...........|
+#> | U| 539.25377 | 89.63 | -5.376 | -0.9709 | -1.880 |
+#> |.....................| -4.270 | 0.1356 | 1.712 | 0.7103 |
+#> |.....................| 0.8487 | 1.204 | 1.001 | 0.8867 |
+#> |.....................| 1.181 |...........|...........|...........|
+#> | X| 539.25377 | 89.63 | 0.004625 | 0.2747 | 0.1526 |
+#> |.....................| 0.01398 | 0.5339 | 1.712 | 0.7103 |
+#> |.....................| 0.8487 | 1.204 | 1.001 | 0.8867 |
+#> |.....................| 1.181 |...........|...........|...........|
+#> | 4| 527.20532 | 0.9955 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9777 | -0.8889 | -0.8506 | -0.8798 |
+#> |.....................| -0.8759 | -0.8659 | -0.8709 | -0.8743 |
+#> |.....................| -0.8665 |...........|...........|...........|
+#> | U| 527.20532 | 93.39 | -5.374 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.654 | 0.7293 |
+#> |.....................| 0.8615 | 1.184 | 0.9947 | 0.8920 |
+#> |.....................| 1.162 |...........|...........|...........|
+#> | X| 527.20532 | 93.39 | 0.004637 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.654 | 0.7293 |
+#> |.....................| 0.8615 | 1.184 | 0.9947 | 0.8920 |
+#> |.....................| 1.162 |...........|...........|...........|
+#> | 5| 527.55150 | 0.9996 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8576 | -0.8772 |
+#> |.....................| -0.8744 | -0.8676 | -0.8715 | -0.8737 |
+#> |.....................| -0.8681 |...........|...........|...........|
+#> | U| 527.5515 | 93.77 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.648 | 0.7312 |
+#> |.....................| 0.8628 | 1.182 | 0.9941 | 0.8925 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 527.5515 | 93.77 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.648 | 0.7312 |
+#> |.....................| 0.8628 | 1.182 | 0.9941 | 0.8925 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | 6| 527.60332 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#> |.....................| -0.8743 | -0.8678 | -0.8716 | -0.8737 |
+#> |.....................| -0.8682 |...........|...........|...........|
+#> | U| 527.60332 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 527.60332 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | 7| 527.60868 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#> |.....................| -0.8683 |...........|...........|...........|
+#> | U| 527.60868 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 527.60868 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | 8| 527.60932 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#> |.....................| -0.8683 |...........|...........|...........|
+#> | U| 527.60932 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 527.60932 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | 9| 527.60939 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#> |.....................| -0.8683 |...........|...........|...........|
+#> | U| 527.60939 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 527.60939 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | 10| 527.60940 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#> |.....................| -0.8683 |...........|...........|...........|
+#> | U| 527.6094 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 527.6094 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | 11| 527.60940 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#> |.....................| -0.8683 |...........|...........|...........|
+#> | U| 527.6094 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 527.6094 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | 12| 527.60940 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#> |.....................| -0.8683 |...........|...........|...........|
+#> | U| 527.6094 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 527.6094 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | 13| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#> |.....................| -0.8683 |...........|...........|...........|
+#> | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 527.60941 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | 14| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#> |.....................| -0.8683 |...........|...........|...........|
+#> | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 527.60941 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | 15| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#> |.....................| -0.8683 |...........|...........|...........|
+#> | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 527.60941 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | 16| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#> |.....................| -0.8683 |...........|...........|...........|
+#> | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 527.60941 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | 17| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
+#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
+#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
+#> |.....................| -0.8683 |...........|...........|...........|
+#> | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
+#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> | X| 527.60941 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
+#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
+#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
+#> |.....................| 1.160 |...........|...........|...........|
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo
+# Variance by variable is supported by 'saem' and 'focei'
+f_nlmixr_fomc_sfo_saem_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "saem")
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> 1: 93.6104 -5.6552 -0.1308 2.1755 -1.1174 2.9315 1.6064 0.6616 0.5897 0.4753 9.7765 10.2253
+#> 2: 93.8838 -5.6936 -0.1062 2.2361 -1.0529 2.7849 1.5260 0.6285 0.5602 0.4515 7.9206 5.2721
+#> 3: 93.9304 -5.7260 -0.0940 2.2480 -1.0317 2.6457 1.4889 0.5971 0.5322 0.4290 7.5051 3.6573
+#> 4: 93.6107 -5.7914 -0.0929 2.2382 -1.0171 2.5134 2.0027 0.5676 0.5056 0.4075 7.3763 3.1438
+#> 5: 93.7262 -5.7517 -0.0926 2.2365 -1.0306 2.3877 1.9026 0.5679 0.4803 0.3871 7.2914 3.0275
+#> 6: 93.7261 -5.7719 -0.0823 2.2625 -1.0391 2.2683 2.1168 0.5638 0.4563 0.3678 7.0857 2.8196
+#> 7: 93.5991 -5.8553 -0.0917 2.2659 -1.0146 2.1549 2.3708 0.5618 0.4335 0.3494 6.9413 2.7447
+#> 8: 93.4288 -5.8969 -0.0885 2.2757 -1.0253 2.1183 2.4324 0.5615 0.4118 0.3319 7.2269 2.6781
+#> 9: 93.4049 -6.1188 -0.0863 2.2841 -1.0154 2.0124 3.0090 0.5633 0.3912 0.3153 7.2084 2.7464
+#> 10: 93.4773 -6.1940 -0.0816 2.2893 -1.0174 1.9958 3.6308 0.5540 0.3716 0.2996 7.2414 2.8980
+#> 11: 93.5334 -6.1739 -0.0772 2.2901 -1.0479 2.2841 3.4492 0.5567 0.3531 0.2846 7.0567 2.8159
+#> 12: 93.5824 -6.3716 -0.0875 2.2706 -1.0452 2.1699 4.3087 0.5505 0.3354 0.2704 7.2970 2.3790
+#> 13: 93.8528 -6.3302 -0.0846 2.2564 -1.0302 2.0614 4.6014 0.5475 0.3186 0.2568 7.3901 2.1942
+#> 14: 94.0343 -6.1408 -0.0887 2.2666 -1.0280 1.9995 4.3714 0.5202 0.3027 0.2440 7.1696 2.0730
+#> 15: 94.1712 -6.3900 -0.0759 2.2825 -1.0112 1.8995 5.0913 0.5358 0.2876 0.2318 7.2155 2.0259
+#> 16: 93.9481 -6.1284 -0.0798 2.2707 -1.0264 1.8046 4.8368 0.5501 0.2732 0.2202 7.2731 2.0912
+#> 17: 93.7828 -6.2736 -0.0852 2.2870 -1.0249 1.7143 4.5949 0.5408 0.2595 0.2092 7.0213 2.0417
+#> 18: 93.8758 -6.3616 -0.0851 2.2713 -1.0157 1.8699 4.9132 0.5349 0.2465 0.1987 7.0613 1.8601
+#> 19: 93.7565 -6.5413 -0.0866 2.2695 -1.0166 2.5251 5.9754 0.5312 0.2547 0.1888 7.2555 1.7947
+#> 20: 93.7233 -6.3942 -0.0970 2.2620 -1.0195 2.3989 5.6766 0.5484 0.2576 0.1794 7.0292 1.8687
+#> 21: 93.8298 -6.2619 -0.0974 2.2570 -1.0118 2.2789 5.3928 0.5497 0.2545 0.1704 6.7138 1.8157
+#> 22: 93.9520 -6.1633 -0.0874 2.2777 -1.0274 2.1650 5.1232 0.5437 0.2641 0.1622 6.8254 1.8443
+#> 23: 93.8442 -6.3255 -0.0855 2.2568 -1.0151 2.1243 4.9615 0.5334 0.2885 0.1556 6.8049 1.8073
+#> 24: 93.9659 -6.5470 -0.0855 2.2572 -1.0178 2.0788 6.2156 0.5425 0.2834 0.1583 6.9598 1.8686
+#> 25: 94.3004 -6.4881 -0.0920 2.2371 -1.0187 3.2507 5.9048 0.5367 0.2872 0.1609 6.8709 1.8839
+#> 26: 94.1750 -6.4437 -0.0964 2.2337 -1.0301 3.1136 5.6096 0.5307 0.2820 0.1611 6.5948 1.8742
+#> 27: 94.6007 -6.3072 -0.0750 2.2936 -1.0343 3.9844 5.3291 0.5042 0.2679 0.1695 6.7524 1.8335
+#> 28: 94.4915 -6.1389 -0.0826 2.2730 -1.0223 3.7852 5.0626 0.4998 0.2590 0.1812 6.4646 1.8937
+#> 29: 94.1900 -6.1516 -0.0836 2.2680 -1.0287 3.7861 4.8095 0.4976 0.2612 0.1875 6.4674 1.8998
+#> 30: 94.6632 -6.0574 -0.0773 2.2637 -1.0280 3.5968 4.5690 0.4948 0.2525 0.2040 6.5945 1.9022
+#> 31: 94.3460 -6.1684 -0.0761 2.2677 -1.0276 3.4170 4.3406 0.4901 0.2690 0.2038 6.9918 1.8446
+#> 32: 94.4385 -5.9347 -0.0751 2.2893 -1.0146 3.3283 4.1235 0.4882 0.2576 0.2002 6.7622 1.7754
+#> 33: 94.7021 -5.9329 -0.0787 2.2987 -1.0108 3.3485 3.9174 0.4859 0.2640 0.1941 6.9648 1.8014
+#> 34: 94.4058 -6.0311 -0.0692 2.2980 -1.0125 3.1811 3.7215 0.4994 0.2676 0.1936 6.9791 1.7561
+#> 35: 94.4503 -6.0470 -0.0692 2.2950 -1.0100 3.5600 3.7611 0.4994 0.2637 0.1928 6.8010 1.7890
+#> 36: 94.3400 -6.0339 -0.0792 2.2960 -1.0204 3.3820 3.5731 0.4822 0.2638 0.1887 6.6462 1.6763
+#> 37: 94.1497 -6.0221 -0.0879 2.2653 -1.0073 3.2129 3.3944 0.4979 0.2506 0.1793 6.4853 1.7911
+#> 38: 94.1574 -5.8638 -0.0884 2.2752 -1.0156 3.0523 3.2247 0.4992 0.2435 0.1772 6.4329 1.7707
+#> 39: 94.1680 -5.9558 -0.0948 2.2535 -1.0205 2.8997 3.0635 0.5065 0.2448 0.1819 6.4462 1.8100
+#> 40: 94.0516 -6.0814 -0.0881 2.2531 -1.0356 2.7547 3.4976 0.4949 0.2515 0.1827 6.4734 1.8133
+#> 41: 94.1522 -6.1880 -0.0849 2.2618 -1.0230 2.6170 4.1610 0.5129 0.2389 0.1797 6.4165 1.7782
+#> 42: 94.2178 -6.1829 -0.0854 2.2791 -1.0325 2.8092 4.1174 0.5052 0.2288 0.1853 6.4332 1.7883
+#> 43: 93.9083 -6.1600 -0.0831 2.2860 -1.0350 2.9631 3.9116 0.4914 0.2310 0.1826 6.4865 1.8449
+#> 44: 93.9636 -6.1494 -0.0824 2.2903 -1.0150 2.8149 3.7221 0.4921 0.2214 0.1805 6.4818 1.9385
+#> 45: 93.9937 -6.2329 -0.0895 2.2832 -1.0157 4.2815 4.5622 0.5075 0.2250 0.1796 6.4098 1.8355
+#> 46: 93.8001 -6.1784 -0.0944 2.2664 -1.0212 4.0674 4.3341 0.5023 0.2274 0.1795 6.5539 1.7875
+#> 47: 93.8997 -6.3400 -0.0945 2.2627 -1.0183 3.8641 4.9860 0.5017 0.2312 0.1834 6.5497 1.7838
+#> 48: 93.7861 -6.3496 -0.0944 2.2713 -1.0255 3.6709 5.3403 0.5025 0.2197 0.1839 6.1766 1.9080
+#> 49: 93.7128 -6.3914 -0.0944 2.2752 -1.0137 3.4873 5.6007 0.5051 0.2198 0.1788 6.3050 1.8320
+#> 50: 94.1645 -6.3056 -0.0945 2.2755 -1.0062 3.3130 5.3207 0.4998 0.2176 0.1781 6.4998 1.8516
+#> 51: 93.9897 -6.1556 -0.1026 2.2633 -1.0097 3.1473 5.0547 0.4853 0.2439 0.1796 6.3184 1.7981
+#> 52: 93.7604 -6.2264 -0.1068 2.2485 -0.9936 2.9899 4.8209 0.4887 0.2542 0.1793 6.5076 1.7916
+#> 53: 93.8821 -6.5447 -0.1049 2.2546 -1.0020 2.8404 6.5603 0.4701 0.2556 0.1789 6.5735 1.7763
+#> 54: 93.8865 -6.4028 -0.1081 2.2507 -1.0162 2.6984 6.2323 0.4724 0.2576 0.1846 6.3607 1.8295
+#> 55: 94.0120 -6.5455 -0.0986 2.2728 -1.0119 2.5635 6.3983 0.4550 0.2686 0.1773 6.6815 1.7869
+#> 56: 94.1921 -6.6581 -0.0953 2.2713 -1.0151 2.4353 8.2169 0.4478 0.2675 0.1763 6.6257 1.7873
+#> 57: 93.8812 -6.4499 -0.1081 2.2447 -1.0182 2.3136 7.8060 0.4683 0.2562 0.1804 6.2421 1.8455
+#> 58: 93.9830 -6.5112 -0.1092 2.2436 -1.0136 2.1979 7.4157 0.4695 0.2569 0.1762 6.3196 1.8224
+#> 59: 93.8537 -6.6528 -0.1105 2.2390 -1.0089 2.0880 9.0039 0.4689 0.2534 0.1692 6.3735 1.8049
+#> 60: 93.7399 -6.4780 -0.1212 2.2263 -0.9979 1.9836 8.5537 0.4565 0.2445 0.1696 6.4748 1.8439
+#> 61: 93.8180 -6.4608 -0.1243 2.2275 -1.0039 1.8844 8.1260 0.4630 0.2414 0.1693 6.3936 1.7653
+#> 62: 93.5774 -6.3127 -0.1298 2.2250 -1.0022 1.7902 7.7197 0.4711 0.2452 0.1708 6.5708 1.8014
+#> 63: 93.5731 -6.2060 -0.1327 2.2213 -1.0031 1.7007 7.3337 0.4685 0.2426 0.1712 6.4933 1.8318
+#> 64: 93.3587 -6.2299 -0.1316 2.2290 -1.0004 1.6302 6.9671 0.4694 0.2460 0.1710 6.2584 1.8361
+#> 65: 93.2982 -6.1900 -0.1354 2.2341 -0.9963 1.5487 6.6187 0.4685 0.2482 0.1750 6.0950 1.8341
+#> 66: 93.4532 -6.2107 -0.1251 2.2254 -0.9786 1.4713 6.2878 0.4822 0.2489 0.1701 6.3732 1.7951
+#> 67: 93.5878 -6.1823 -0.1208 2.2455 -0.9766 1.3977 5.9734 0.4860 0.2407 0.1668 6.4456 1.8371
+#> 68: 93.5819 -5.9209 -0.1200 2.2599 -0.9792 1.3278 5.6747 0.4793 0.2412 0.1686 6.5728 1.8144
+#> 69: 93.4002 -6.1142 -0.1242 2.2542 -0.9878 1.4433 5.3910 0.4730 0.2511 0.1830 6.3888 1.7900
+#> 70: 93.2631 -6.1875 -0.1271 2.2639 -0.9844 1.5244 5.1214 0.4711 0.2444 0.1770 6.5093 1.7117
+#> 71: 93.2629 -6.2944 -0.1275 2.2418 -0.9805 1.4481 4.8654 0.4612 0.2522 0.1748 6.4659 1.8500
+#> 72: 93.0324 -6.2727 -0.1332 2.2421 -0.9766 1.3757 5.1467 0.4519 0.2524 0.1673 6.3452 1.8054
+#> 73: 93.0174 -6.4402 -0.1391 2.2320 -0.9795 1.3069 6.1963 0.4480 0.2563 0.1637 6.3915 1.8506
+#> 74: 93.0073 -6.4286 -0.1450 2.2241 -0.9962 1.2416 6.0011 0.4510 0.2461 0.1682 6.6924 1.8302
+#> 75: 93.2607 -6.5056 -0.1379 2.2233 -0.9926 1.1795 6.0508 0.4573 0.2540 0.1669 6.4813 1.7896
+#> 76: 93.2937 -6.1637 -0.1404 2.2228 -0.9970 1.1205 5.7483 0.4588 0.2529 0.1656 6.3781 1.7976
+#> 77: 93.2223 -6.1702 -0.1381 2.2200 -0.9858 1.4369 5.4609 0.4633 0.2585 0.1697 6.3510 1.8749
+#> 78: 93.3189 -6.1924 -0.1355 2.2238 -0.9944 1.3651 5.1878 0.4608 0.2631 0.1612 6.1888 1.7669
+#> 79: 93.2417 -6.6345 -0.1335 2.2340 -0.9865 1.2968 7.3486 0.4570 0.2564 0.1532 6.0902 1.7505
+#> 80: 93.3476 -6.3069 -0.1305 2.2319 -0.9880 1.6281 6.9812 0.4649 0.2525 0.1514 6.0659 1.7582
+#> 81: 93.4798 -6.3145 -0.1253 2.2468 -0.9989 1.9108 6.6321 0.4447 0.2583 0.1579 6.0843 1.7959
+#> 82: 93.2745 -6.2461 -0.1184 2.2529 -0.9937 1.8153 6.3005 0.4439 0.2602 0.1691 6.2826 1.7896
+#> 83: 93.4628 -6.3953 -0.1189 2.2640 -0.9880 1.7245 6.1094 0.4430 0.2612 0.1709 6.4474 1.6820
+#> 84: 93.3664 -6.2885 -0.1105 2.2675 -0.9875 1.6383 6.1170 0.4498 0.2689 0.1719 6.4847 1.6731
+#> 85: 93.5090 -6.3029 -0.1095 2.2709 -0.9898 1.6666 6.1406 0.4365 0.2693 0.1710 6.2452 1.6594
+#> 86: 93.5097 -6.2256 -0.1106 2.2701 -0.9928 1.5833 6.2468 0.4365 0.2749 0.1632 6.2007 1.7178
+#> 87: 93.5165 -6.3038 -0.1046 2.2731 -0.9877 1.5041 5.9345 0.4398 0.2667 0.1603 6.3928 1.7003
+#> 88: 93.3766 -6.2723 -0.1071 2.2771 -0.9881 1.4289 5.6378 0.4241 0.2538 0.1598 6.1043 1.6772
+#> 89: 93.4448 -6.0430 -0.1102 2.2781 -0.9725 1.3575 5.3559 0.4187 0.2915 0.1518 6.0153 1.7593
+#> 90: 93.2843 -6.1065 -0.1089 2.2866 -0.9705 1.5362 5.0881 0.4203 0.2844 0.1656 5.9235 1.6631
+#> 91: 93.4159 -6.0210 -0.1095 2.2879 -0.9798 2.1371 4.8337 0.4245 0.2857 0.1573 5.9182 1.7482
+#> 92: 93.3198 -6.2526 -0.1075 2.2919 -0.9791 2.0303 4.7352 0.4159 0.2918 0.1590 6.0853 1.6755
+#> 93: 93.3269 -6.1838 -0.1173 2.2809 -0.9999 1.9287 4.4985 0.4211 0.2893 0.1684 6.1189 1.6734
+#> 94: 93.2077 -6.1086 -0.1148 2.2890 -0.9918 2.1061 4.2736 0.4230 0.2802 0.1662 5.9328 1.7116
+#> 95: 93.0207 -6.1510 -0.1170 2.2665 -0.9791 2.1360 4.0630 0.4199 0.2937 0.1734 6.1415 1.6737
+#> 96: 93.2134 -6.1614 -0.1152 2.2861 -0.9711 2.5372 4.1579 0.4211 0.2790 0.1647 6.1575 1.6338
+#> 97: 93.1425 -6.2333 -0.1140 2.2912 -0.9665 2.4103 4.4551 0.4136 0.2835 0.1645 6.0790 1.6652
+#> 98: 92.9412 -6.2651 -0.1167 2.2847 -0.9738 2.2898 4.7233 0.4095 0.2882 0.1836 5.9305 1.6158
+#> 99: 92.9087 -6.1870 -0.1177 2.2833 -0.9744 2.1753 4.4872 0.4142 0.2913 0.1876 5.9838 1.7003
+#> 100: 92.7788 -6.2113 -0.1146 2.2928 -0.9939 2.0665 4.4195 0.4109 0.2945 0.1866 6.0195 1.7275
+#> 101: 92.8783 -6.0718 -0.1080 2.2959 -0.9968 1.9632 4.1985 0.4142 0.2966 0.1778 6.2542 1.6844
+#> 102: 93.0451 -6.3706 -0.1086 2.2894 -0.9974 1.8650 5.2121 0.4135 0.3030 0.1769 6.2204 1.6281
+#> 103: 93.2901 -6.4069 -0.1066 2.2943 -0.9896 1.7718 5.7453 0.4152 0.2879 0.1818 6.0239 1.7299
+#> 104: 93.3437 -6.3694 -0.1063 2.2769 -0.9914 1.6832 5.8903 0.4210 0.2884 0.1855 6.1116 1.7415
+#> 105: 93.4609 -6.2767 -0.1060 2.2751 -1.0157 1.5990 5.5958 0.4214 0.2865 0.1841 6.1287 1.7322
+#> 106: 93.5833 -6.2340 -0.1006 2.2879 -1.0084 1.8669 5.3160 0.4272 0.2982 0.1829 6.0211 1.6726
+#> 107: 93.7800 -6.1505 -0.0948 2.2685 -1.0219 1.7735 5.0502 0.4325 0.2841 0.1753 5.8556 1.7636
+#> 108: 93.8532 -6.3744 -0.0938 2.2650 -1.0210 2.0297 5.7080 0.4307 0.2836 0.1701 6.0669 1.6804
+#> 109: 93.8994 -6.3544 -0.0829 2.2862 -1.0287 1.9282 5.4226 0.4184 0.3113 0.1789 6.2343 1.6667
+#> 110: 94.0150 -6.5609 -0.0905 2.2821 -1.0088 2.1118 6.8121 0.4276 0.3275 0.1845 6.1640 1.6706
+#> 111: 93.7887 -6.0185 -0.0925 2.2831 -1.0097 2.0062 6.4715 0.4209 0.3255 0.1852 6.2823 1.6301
+#> 112: 93.9709 -6.0918 -0.0934 2.2857 -1.0067 2.2032 6.1479 0.4207 0.3285 0.1817 6.1718 1.6494
+#> 113: 93.8761 -6.3434 -0.0955 2.2919 -1.0223 2.5209 5.8405 0.4259 0.3293 0.1842 6.0377 1.6431
+#> 114: 93.6959 -6.2312 -0.0934 2.2782 -1.0154 2.3949 5.5485 0.4237 0.3460 0.1814 6.2225 1.6229
+#> 115: 93.5487 -6.0915 -0.0971 2.2836 -1.0083 2.2751 5.2711 0.4199 0.3557 0.1783 6.5929 1.6479
+#> 116: 93.5953 -6.1479 -0.1013 2.2760 -1.0018 2.1614 5.0075 0.4163 0.3399 0.1794 6.1822 1.6222
+#> 117: 93.3508 -6.1730 -0.1076 2.2632 -0.9953 2.0533 4.7571 0.4057 0.3303 0.1803 6.3444 1.7106
+#> 118: 93.4462 -5.9724 -0.1177 2.2557 -0.9963 2.0318 4.5193 0.3956 0.3349 0.1920 6.0439 1.7146
+#> 119: 93.5841 -6.0400 -0.1151 2.2480 -1.0035 1.9956 4.2933 0.3968 0.3448 0.1929 6.0754 1.6750
+#> 120: 93.4891 -6.0937 -0.1175 2.2499 -1.0006 1.8958 4.0786 0.3927 0.3392 0.1927 6.1654 1.6495
+#> 121: 93.4611 -6.1371 -0.1217 2.2538 -1.0067 1.8011 3.8747 0.3864 0.3549 0.1851 5.9558 1.6940
+#> 122: 93.4636 -6.1015 -0.1243 2.2564 -1.0002 1.7414 3.6810 0.3840 0.3557 0.1860 6.0583 1.6629
+#> 123: 93.2988 -5.9318 -0.1243 2.2601 -0.9989 2.2063 3.4969 0.3840 0.3543 0.1833 5.9686 1.5966
+#> 124: 93.4200 -5.9847 -0.1231 2.2594 -0.9991 2.0959 3.3221 0.3846 0.3544 0.1787 6.1292 1.5957
+#> 125: 93.3727 -6.1217 -0.1239 2.2584 -1.0082 1.9911 3.6395 0.3838 0.3577 0.1782 6.2794 1.6262
+#> 126: 93.4956 -6.0529 -0.1244 2.2482 -1.0096 1.8916 3.4576 0.3847 0.3505 0.1753 6.1181 1.6347
+#> 127: 93.6265 -5.9360 -0.1298 2.2342 -1.0075 1.7970 3.2847 0.3887 0.3367 0.1691 6.2315 1.7051
+#> 128: 93.4446 -6.0523 -0.1337 2.2453 -1.0079 1.7072 3.1205 0.3840 0.3302 0.1759 6.2082 1.6705
+#> 129: 93.4470 -6.0065 -0.1321 2.2321 -1.0015 1.6636 2.9644 0.3853 0.3303 0.1671 6.1479 1.6733
+#> 130: 93.3205 -5.9628 -0.1290 2.2252 -0.9954 2.0336 2.9210 0.3879 0.3284 0.1634 6.0582 1.6372
+#> 131: 93.3836 -5.8919 -0.1358 2.2375 -0.9930 2.1392 2.7749 0.3801 0.3202 0.1644 5.9972 1.6837
+#> 132: 93.1041 -5.9265 -0.1203 2.2552 -0.9929 2.0323 2.8741 0.3831 0.3353 0.1755 6.0648 1.5934
+#> 133: 93.1617 -6.0668 -0.1175 2.2538 -0.9963 1.9306 3.6825 0.3846 0.3187 0.1790 6.0732 1.5684
+#> 134: 93.1503 -6.1208 -0.1232 2.2644 -0.9851 2.3429 3.8026 0.3788 0.3296 0.1737 5.8807 1.5722
+#> 135: 92.8629 -5.9726 -0.1197 2.2650 -0.9761 2.2257 3.6124 0.3802 0.3407 0.1765 5.8408 1.5446
+#> 136: 93.1460 -6.0654 -0.1227 2.2661 -0.9736 2.1144 3.4583 0.3770 0.3434 0.1700 5.7690 1.5561
+#> 137: 93.1243 -6.2350 -0.1274 2.2472 -0.9811 2.0087 4.3526 0.3733 0.3670 0.1615 5.9377 1.5224
+#> 138: 93.1203 -6.1704 -0.1283 2.2472 -0.9891 1.9083 4.1557 0.3788 0.3671 0.1641 5.8765 1.5525
+#> 139: 93.2841 -6.0586 -0.1366 2.2404 -0.9894 1.8129 4.3184 0.3718 0.3693 0.1630 6.1854 1.6388
+#> 140: 93.4239 -6.2398 -0.1382 2.2459 -0.9713 1.7241 4.5903 0.3713 0.3627 0.1548 6.0737 1.5826
+#> 141: 93.4149 -6.1972 -0.1388 2.2605 -0.9686 2.2179 4.5557 0.3701 0.3675 0.1486 6.0793 1.5603
+#> 142: 93.4404 -5.8955 -0.1203 2.2682 -0.9706 2.1070 4.3279 0.3830 0.3719 0.1581 5.9534 1.6189
+#> 143: 93.3108 -5.8069 -0.1142 2.2835 -0.9672 2.0194 4.1115 0.3787 0.3924 0.1592 5.9410 1.5521
+#> 144: 93.3953 -5.7456 -0.1154 2.2891 -0.9553 2.2741 3.9059 0.3787 0.3849 0.1633 6.0163 1.5640
+#> 145: 93.3322 -5.8301 -0.1100 2.2926 -0.9595 2.1604 3.7106 0.3687 0.3754 0.1657 5.8968 1.5844
+#> 146: 93.0844 -5.8926 -0.1084 2.2870 -0.9605 2.0524 3.5251 0.3649 0.3713 0.1646 6.1960 1.5691
+#> 147: 93.2106 -6.0084 -0.1074 2.2931 -0.9654 1.9498 3.5341 0.3646 0.3669 0.1641 6.0548 1.5230
+#> 148: 93.2005 -6.1989 -0.1065 2.2924 -0.9740 1.8523 4.4855 0.3631 0.3660 0.1759 5.9600 1.5194
+#> 149: 93.0788 -6.2470 -0.1108 2.2861 -0.9836 2.1348 4.7630 0.3597 0.3815 0.1815 5.9584 1.5227
+#> 150: 93.2241 -6.2660 -0.1126 2.2847 -0.9912 2.1149 5.0574 0.3656 0.3788 0.1781 5.7213 1.5379
+#> 151: 93.0046 -6.5379 -0.1164 2.2757 -0.9845 2.0092 6.8660 0.3719 0.3827 0.1807 5.7612 1.5697
+#> 152: 93.2222 -6.4637 -0.1154 2.2737 -0.9950 1.6744 6.2289 0.3670 0.3881 0.1638 5.8514 1.5920
+#> 153: 93.1619 -6.3230 -0.1224 2.2638 -0.9924 1.7907 5.5429 0.3842 0.3946 0.1720 5.7562 1.5493
+#> 154: 93.0402 -6.4004 -0.1205 2.2633 -0.9868 1.7620 6.2494 0.3860 0.3891 0.1737 5.7577 1.5109
+#> 155: 93.1692 -6.4353 -0.1203 2.2696 -0.9761 1.8710 6.4519 0.3949 0.3962 0.1721 5.8348 1.4949
+#> 156: 93.2709 -6.2672 -0.1203 2.2663 -0.9708 2.1172 5.1692 0.3949 0.4187 0.1637 6.1251 1.5012
+#> 157: 93.1264 -6.1931 -0.1208 2.2728 -0.9669 1.9985 4.7739 0.3938 0.4031 0.1696 6.1014 1.5627
+#> 158: 93.1263 -6.1951 -0.1237 2.2826 -0.9729 1.7675 4.6131 0.3928 0.3904 0.1659 6.1582 1.5647
+#> 159: 92.9780 -6.2831 -0.1242 2.2726 -0.9770 1.8348 5.4674 0.3938 0.3887 0.1631 6.0622 1.5787
+#> 160: 93.1289 -6.4397 -0.1263 2.2651 -0.9675 2.4637 6.0560 0.3919 0.4017 0.1626 5.9486 1.5859
+#> 161: 93.2629 -6.3336 -0.1294 2.2670 -0.9666 2.9602 5.4966 0.3872 0.3988 0.1667 5.9034 1.5421
+#> 162: 93.1652 -6.3800 -0.1342 2.2518 -0.9754 2.8800 5.6206 0.3908 0.4158 0.1627 5.9332 1.5306
+#> 163: 93.2886 -6.4115 -0.1437 2.2330 -0.9685 1.9997 6.2760 0.4015 0.4076 0.1623 5.7905 1.5398
+#> 164: 93.4631 -6.7246 -0.1396 2.2358 -0.9854 1.8885 7.8014 0.3952 0.4028 0.1573 5.7052 1.5695
+#> 165: 93.4757 -6.8408 -0.1404 2.2346 -0.9825 2.4877 9.3632 0.3948 0.4019 0.1615 5.8406 1.5902
+#> 166: 93.9075 -6.7707 -0.1428 2.2331 -0.9848 1.9761 8.9292 0.3939 0.3909 0.1610 5.7600 1.5966
+#> 167: 93.8895 -7.1938 -0.1363 2.2449 -0.9870 2.0894 11.4058 0.3850 0.3899 0.1627 5.8501 1.5748
+#> 168: 93.5849 -6.8478 -0.1294 2.2466 -0.9888 2.3573 9.4037 0.3935 0.3808 0.1645 6.0206 1.6591
+#> 169: 93.4931 -6.4550 -0.1173 2.2727 -0.9990 2.1948 6.5738 0.3844 0.4029 0.1699 6.0990 1.6123
+#> 170: 93.7188 -6.4015 -0.1173 2.2715 -0.9981 1.8800 6.1745 0.3844 0.4001 0.1635 6.1990 1.5745
+#> 171: 93.5938 -6.4389 -0.1119 2.2663 -0.9893 2.5731 6.5397 0.3858 0.4044 0.1554 6.1636 1.5631
+#> 172: 93.4515 -6.2049 -0.1050 2.2937 -0.9701 2.6134 4.6813 0.3687 0.4017 0.1715 6.3875 1.5006
+#> 173: 93.2254 -6.2074 -0.1041 2.3111 -0.9661 2.5799 4.6939 0.3669 0.4016 0.1738 6.5633 1.5229
+#> 174: 93.4116 -6.1198 -0.1050 2.3075 -0.9711 3.0196 4.3080 0.3720 0.3988 0.1778 6.4856 1.5214
+#> 175: 93.4952 -6.0439 -0.1050 2.3008 -0.9714 3.1172 3.7728 0.3720 0.3979 0.1749 6.1918 1.4985
+#> 176: 93.6186 -6.0891 -0.1061 2.3033 -0.9794 2.1081 3.8909 0.3705 0.4029 0.1796 6.1064 1.4657
+#> 177: 93.6432 -5.9977 -0.1031 2.2953 -0.9950 1.9411 3.4156 0.3694 0.3970 0.1843 6.0473 1.4918
+#> 178: 93.5736 -6.0079 -0.0996 2.2986 -0.9809 1.7778 3.5107 0.3696 0.3909 0.1840 6.1243 1.4937
+#> 179: 93.6407 -6.0246 -0.0977 2.3042 -0.9770 2.0631 3.8144 0.3718 0.3885 0.1798 6.1851 1.5212
+#> 180: 93.6336 -5.8865 -0.0969 2.3217 -0.9871 2.2566 3.1377 0.3721 0.3715 0.1784 6.0747 1.5546
+#> 181: 93.5075 -5.8632 -0.0965 2.3140 -0.9764 2.5812 2.9771 0.3715 0.3728 0.1876 5.9833 1.5356
+#> 182: 93.4464 -5.8627 -0.0930 2.3211 -0.9713 2.5956 2.8054 0.3836 0.3759 0.1861 6.1293 1.6259
+#> 183: 93.2737 -5.8238 -0.0977 2.3127 -0.9642 2.8739 2.6277 0.3846 0.3743 0.1868 6.0451 1.6493
+#> 184: 93.2191 -5.9175 -0.0993 2.3107 -0.9592 2.3088 3.0689 0.3829 0.3515 0.1711 6.1487 1.6666
+#> 185: 93.3626 -5.8872 -0.1070 2.3112 -0.9413 2.2812 3.2719 0.3712 0.3555 0.1783 6.1295 1.6288
+#> 186: 93.1585 -5.8532 -0.1053 2.3140 -0.9665 2.7906 2.8415 0.3734 0.3531 0.1680 6.0294 1.6104
+#> 187: 93.3041 -5.6798 -0.0957 2.3158 -0.9608 3.1056 2.0850 0.3813 0.3484 0.1728 6.1191 1.5813
+#> 188: 93.2466 -5.6791 -0.0954 2.3172 -0.9446 3.8296 2.1956 0.3816 0.3439 0.1757 5.9670 1.5445
+#> 189: 93.3532 -5.6883 -0.0859 2.3335 -0.9594 2.8968 2.3125 0.3691 0.3512 0.1812 5.9467 1.6101
+#> 190: 93.5064 -5.6288 -0.0726 2.3548 -0.9562 2.8233 2.1930 0.3334 0.3700 0.1759 6.4036 1.5877
+#> 191: 93.4145 -5.6906 -0.0726 2.3467 -0.9624 2.8818 2.3581 0.3334 0.3771 0.1712 6.2046 1.4952
+#> 192: 93.2060 -5.7479 -0.0716 2.3433 -0.9618 2.5221 2.6613 0.3324 0.3909 0.1552 6.1651 1.4971
+#> 193: 93.2904 -5.7634 -0.0811 2.3327 -0.9585 2.6968 2.6324 0.3339 0.3856 0.1632 6.5621 1.5258
+#> 194: 93.5271 -5.7859 -0.0874 2.3419 -0.9580 2.8361 2.8424 0.3286 0.3784 0.1636 6.3714 1.5386
+#> 195: 93.3944 -5.9358 -0.0838 2.3407 -0.9718 3.4161 3.2427 0.3315 0.3787 0.1678 6.3722 1.5181
+#> 196: 93.2341 -5.9078 -0.0701 2.3492 -0.9816 3.1580 3.0586 0.3285 0.3666 0.1681 6.4633 1.5382
+#> 197: 93.2967 -6.0131 -0.0745 2.3426 -0.9991 3.7978 3.6459 0.3353 0.3491 0.1796 6.2264 1.5310
+#> 198: 93.2628 -5.7991 -0.0730 2.3434 -0.9819 2.3896 2.6695 0.3371 0.3431 0.1762 6.3141 1.5254
+#> 199: 93.2765 -5.9078 -0.0782 2.3553 -0.9864 2.2760 3.3883 0.3420 0.3459 0.1866 6.0192 1.4982
+#> 200: 93.0447 -5.9148 -0.0769 2.3543 -0.9759 2.1516 2.9675 0.3455 0.3476 0.1870 5.9079 1.4688
+#> 201: 93.1655 -5.8951 -0.0763 2.3493 -0.9707 1.8254 2.9481 0.3448 0.3526 0.1831 6.0676 1.5097
+#> 202: 93.1082 -5.8916 -0.0768 2.3499 -0.9673 1.8503 2.9562 0.3447 0.3574 0.1821 6.1282 1.5026
+#> 203: 93.0728 -5.9316 -0.0774 2.3506 -0.9650 2.0210 3.2306 0.3441 0.3563 0.1827 6.1253 1.4974
+#> 204: 93.0846 -5.9347 -0.0773 2.3494 -0.9648 2.1463 3.2567 0.3453 0.3563 0.1824 6.1301 1.4911
+#> 205: 93.0929 -5.9439 -0.0781 2.3491 -0.9659 2.2204 3.3165 0.3453 0.3572 0.1823 6.1098 1.4941
+#> 206: 93.1795 -5.9401 -0.0795 2.3481 -0.9681 2.2588 3.2940 0.3470 0.3568 0.1829 6.1132 1.4996
+#> 207: 93.2303 -5.9158 -0.0805 2.3467 -0.9703 2.3439 3.1823 0.3484 0.3571 0.1845 6.1021 1.5059
+#> 208: 93.2161 -5.8969 -0.0825 2.3440 -0.9700 2.3306 3.0999 0.3496 0.3563 0.1848 6.0998 1.5177
+#> 209: 93.2077 -5.8842 -0.0848 2.3413 -0.9681 2.3580 3.0406 0.3499 0.3553 0.1841 6.0829 1.5199
+#> 210: 93.1951 -5.8661 -0.0867 2.3383 -0.9656 2.4170 2.9578 0.3501 0.3543 0.1833 6.0562 1.5261
+#> 211: 93.1870 -5.8543 -0.0892 2.3347 -0.9645 2.4650 2.9307 0.3502 0.3548 0.1831 6.0286 1.5289
+#> 212: 93.2077 -5.8506 -0.0915 2.3316 -0.9626 2.4909 2.9544 0.3504 0.3555 0.1835 6.0079 1.5300
+#> 213: 93.2104 -5.8492 -0.0938 2.3283 -0.9612 2.4695 2.9635 0.3503 0.3548 0.1841 5.9859 1.5341
+#> 214: 93.2059 -5.8537 -0.0959 2.3255 -0.9615 2.4264 3.0084 0.3499 0.3540 0.1835 5.9698 1.5370
+#> 215: 93.2051 -5.8569 -0.0977 2.3227 -0.9608 2.4277 3.0541 0.3495 0.3534 0.1830 5.9586 1.5374
+#> 216: 93.1879 -5.8596 -0.0993 2.3199 -0.9600 2.4347 3.0802 0.3493 0.3534 0.1828 5.9465 1.5380
+#> 217: 93.1834 -5.8621 -0.1008 2.3173 -0.9594 2.4479 3.0998 0.3491 0.3535 0.1827 5.9369 1.5402
+#> 218: 93.1796 -5.8657 -0.1021 2.3152 -0.9593 2.4234 3.1238 0.3492 0.3534 0.1835 5.9184 1.5441
+#> 219: 93.1680 -5.8721 -0.1032 2.3132 -0.9588 2.4640 3.1464 0.3494 0.3531 0.1839 5.8929 1.5493
+#> 220: 93.1579 -5.8839 -0.1044 2.3118 -0.9586 2.5707 3.1909 0.3495 0.3531 0.1847 5.8754 1.5496
+#> 221: 93.1557 -5.8882 -0.1058 2.3100 -0.9583 2.6662 3.2052 0.3492 0.3533 0.1854 5.8662 1.5518
+#> 222: 93.1624 -5.8832 -0.1074 2.3075 -0.9578 2.7993 3.1736 0.3490 0.3542 0.1861 5.8489 1.5546
+#> 223: 93.1699 -5.8771 -0.1086 2.3052 -0.9583 2.9085 3.1456 0.3488 0.3558 0.1871 5.8436 1.5610
+#> 224: 93.1870 -5.8751 -0.1097 2.3037 -0.9583 2.9988 3.1279 0.3487 0.3570 0.1878 5.8390 1.5628
+#> 225: 93.2094 -5.8719 -0.1110 2.3012 -0.9583 3.0581 3.1018 0.3485 0.3574 0.1885 5.8214 1.5656
+#> 226: 93.2352 -5.8683 -0.1122 2.2988 -0.9587 3.1297 3.0761 0.3482 0.3584 0.1895 5.8105 1.5680
+#> 227: 93.2611 -5.8653 -0.1132 2.2964 -0.9589 3.1563 3.0610 0.3476 0.3594 0.1904 5.8038 1.5701
+#> 228: 93.2741 -5.8593 -0.1140 2.2943 -0.9591 3.1641 3.0356 0.3470 0.3603 0.1911 5.7984 1.5730
+#> 229: 93.2899 -5.8593 -0.1151 2.2919 -0.9595 3.1626 3.0313 0.3466 0.3613 0.1918 5.7999 1.5745
+#> 230: 93.3048 -5.8650 -0.1164 2.2899 -0.9593 3.1743 3.0542 0.3460 0.3624 0.1921 5.7990 1.5753
+#> 231: 93.3159 -5.8638 -0.1177 2.2875 -0.9592 3.1930 3.0524 0.3454 0.3631 0.1924 5.7956 1.5748
+#> 232: 93.3209 -5.8611 -0.1189 2.2852 -0.9590 3.1872 3.0420 0.3450 0.3639 0.1926 5.7921 1.5755
+#> 233: 93.3196 -5.8556 -0.1200 2.2833 -0.9589 3.1861 3.0209 0.3445 0.3644 0.1926 5.7852 1.5779
+#> 234: 93.3245 -5.8530 -0.1210 2.2813 -0.9591 3.1890 3.0115 0.3441 0.3651 0.1922 5.7781 1.5786
+#> 235: 93.3219 -5.8522 -0.1218 2.2800 -0.9593 3.1573 3.0042 0.3437 0.3659 0.1917 5.7813 1.5797
+#> 236: 93.3155 -5.8524 -0.1227 2.2789 -0.9595 3.1542 3.0035 0.3433 0.3669 0.1913 5.7834 1.5800
+#> 237: 93.3060 -5.8556 -0.1235 2.2779 -0.9599 3.1308 3.0158 0.3430 0.3678 0.1910 5.7833 1.5809
+#> 238: 93.3111 -5.8563 -0.1242 2.2772 -0.9602 3.1194 3.0099 0.3427 0.3683 0.1907 5.7842 1.5809
+#> 239: 93.3177 -5.8580 -0.1248 2.2764 -0.9605 3.0944 3.0130 0.3423 0.3686 0.1904 5.7840 1.5815
+#> 240: 93.3222 -5.8606 -0.1255 2.2754 -0.9608 3.0739 3.0140 0.3420 0.3686 0.1902 5.7843 1.5825
+#> 241: 93.3289 -5.8627 -0.1262 2.2740 -0.9611 3.0848 3.0167 0.3417 0.3688 0.1900 5.7836 1.5840
+#> 242: 93.3366 -5.8627 -0.1270 2.2727 -0.9612 3.1273 3.0103 0.3415 0.3691 0.1898 5.7855 1.5850
+#> 243: 93.3441 -5.8646 -0.1277 2.2714 -0.9614 3.1530 3.0218 0.3414 0.3692 0.1896 5.7829 1.5856
+#> 244: 93.3499 -5.8645 -0.1285 2.2700 -0.9618 3.1705 3.0265 0.3412 0.3694 0.1894 5.7778 1.5874
+#> 245: 93.3619 -5.8673 -0.1294 2.2686 -0.9622 3.1863 3.0397 0.3412 0.3694 0.1892 5.7752 1.5889
+#> 246: 93.3745 -5.8698 -0.1301 2.2671 -0.9627 3.2105 3.0484 0.3412 0.3693 0.1890 5.7716 1.5905
+#> 247: 93.3838 -5.8757 -0.1307 2.2659 -0.9632 3.2158 3.0715 0.3412 0.3693 0.1889 5.7688 1.5922
+#> 248: 93.3914 -5.8799 -0.1314 2.2650 -0.9640 3.2268 3.0851 0.3413 0.3690 0.1889 5.7648 1.5934
+#> 249: 93.3983 -5.8844 -0.1319 2.2640 -0.9648 3.2471 3.0990 0.3415 0.3691 0.1889 5.7641 1.5944
+#> 250: 93.4032 -5.8898 -0.1324 2.2629 -0.9655 3.2828 3.1197 0.3414 0.3694 0.1887 5.7623 1.5965
+#> 251: 93.4053 -5.8939 -0.1329 2.2621 -0.9657 3.3074 3.1303 0.3414 0.3698 0.1887 5.7611 1.5978
+#> 252: 93.4095 -5.8950 -0.1334 2.2613 -0.9658 3.3479 3.1281 0.3414 0.3701 0.1887 5.7578 1.5986
+#> 253: 93.4132 -5.8956 -0.1340 2.2606 -0.9660 3.3486 3.1283 0.3413 0.3703 0.1887 5.7559 1.5999
+#> 254: 93.4201 -5.8966 -0.1345 2.2597 -0.9660 3.3502 3.1298 0.3413 0.3706 0.1888 5.7593 1.5997
+#> 255: 93.4235 -5.8953 -0.1349 2.2590 -0.9656 3.3332 3.1220 0.3412 0.3706 0.1887 5.7571 1.6012
+#> 256: 93.4231 -5.8926 -0.1353 2.2585 -0.9651 3.3255 3.1104 0.3411 0.3706 0.1886 5.7569 1.6018
+#> 257: 93.4247 -5.8874 -0.1356 2.2582 -0.9646 3.3164 3.0917 0.3410 0.3705 0.1885 5.7585 1.6030
+#> 258: 93.4198 -5.8857 -0.1359 2.2580 -0.9641 3.3086 3.0828 0.3409 0.3702 0.1885 5.7608 1.6026
+#> 259: 93.4125 -5.8833 -0.1362 2.2576 -0.9638 3.2926 3.0726 0.3408 0.3701 0.1885 5.7651 1.6023
+#> 260: 93.4073 -5.8847 -0.1365 2.2572 -0.9640 3.2737 3.0759 0.3406 0.3703 0.1885 5.7687 1.6030
+#> 261: 93.4049 -5.8885 -0.1368 2.2571 -0.9642 3.2510 3.0904 0.3402 0.3702 0.1882 5.7742 1.6028
+#> 262: 93.4036 -5.8931 -0.1371 2.2566 -0.9645 3.2279 3.1104 0.3397 0.3699 0.1880 5.7766 1.6033
+#> 263: 93.4026 -5.8964 -0.1375 2.2562 -0.9647 3.2024 3.1313 0.3395 0.3696 0.1877 5.7786 1.6029
+#> 264: 93.3990 -5.9003 -0.1377 2.2559 -0.9649 3.1808 3.1545 0.3393 0.3694 0.1874 5.7778 1.6022
+#> 265: 93.4005 -5.9013 -0.1380 2.2555 -0.9650 3.1664 3.1680 0.3390 0.3693 0.1871 5.7765 1.6021
+#> 266: 93.4005 -5.9011 -0.1382 2.2552 -0.9653 3.1530 3.1708 0.3387 0.3692 0.1869 5.7763 1.6020
+#> 267: 93.4006 -5.9035 -0.1384 2.2549 -0.9654 3.1384 3.1902 0.3384 0.3690 0.1866 5.7768 1.6014
+#> 268: 93.3972 -5.9086 -0.1385 2.2547 -0.9653 3.1224 3.2331 0.3380 0.3688 0.1863 5.7778 1.6008
+#> 269: 93.3936 -5.9113 -0.1386 2.2547 -0.9654 3.0959 3.2552 0.3377 0.3688 0.1861 5.7782 1.6001
+#> 270: 93.3867 -5.9139 -0.1387 2.2547 -0.9653 3.0853 3.2756 0.3372 0.3687 0.1859 5.7787 1.5989
+#> 271: 93.3836 -5.9154 -0.1389 2.2545 -0.9654 3.0824 3.2889 0.3367 0.3686 0.1858 5.7761 1.5980
+#> 272: 93.3812 -5.9160 -0.1390 2.2543 -0.9653 3.0741 3.2919 0.3362 0.3686 0.1857 5.7729 1.5977
+#> 273: 93.3767 -5.9174 -0.1390 2.2542 -0.9652 3.0663 3.2992 0.3358 0.3687 0.1856 5.7699 1.5970
+#> 274: 93.3696 -5.9171 -0.1391 2.2543 -0.9652 3.0604 3.2940 0.3355 0.3687 0.1855 5.7688 1.5958
+#> 275: 93.3658 -5.9177 -0.1393 2.2544 -0.9651 3.0605 3.2961 0.3353 0.3687 0.1853 5.7675 1.5952
+#> 276: 93.3621 -5.9185 -0.1395 2.2543 -0.9649 3.0508 3.2992 0.3351 0.3686 0.1852 5.7672 1.5940
+#> 277: 93.3602 -5.9206 -0.1397 2.2542 -0.9649 3.0453 3.3087 0.3349 0.3685 0.1851 5.7679 1.5935
+#> 278: 93.3565 -5.9213 -0.1400 2.2539 -0.9648 3.0366 3.3117 0.3347 0.3683 0.1852 5.7695 1.5931
+#> 279: 93.3548 -5.9222 -0.1403 2.2535 -0.9647 3.0284 3.3179 0.3345 0.3682 0.1854 5.7703 1.5928
+#> 280: 93.3544 -5.9215 -0.1407 2.2528 -0.9647 3.0193 3.3141 0.3344 0.3683 0.1854 5.7714 1.5927
+#> 281: 93.3533 -5.9205 -0.1410 2.2522 -0.9647 3.0130 3.3090 0.3341 0.3685 0.1855 5.7706 1.5927
+#> 282: 93.3564 -5.9189 -0.1414 2.2514 -0.9648 3.0025 3.3019 0.3339 0.3686 0.1856 5.7682 1.5930
+#> 283: 93.3571 -5.9164 -0.1417 2.2508 -0.9646 2.9990 3.2926 0.3337 0.3686 0.1858 5.7642 1.5943
+#> 284: 93.3576 -5.9154 -0.1421 2.2501 -0.9644 2.9976 3.2895 0.3336 0.3686 0.1860 5.7625 1.5942
+#> 285: 93.3584 -5.9142 -0.1425 2.2496 -0.9644 2.9906 3.2835 0.3334 0.3684 0.1861 5.7591 1.5939
+#> 286: 93.3609 -5.9137 -0.1429 2.2491 -0.9642 2.9852 3.2817 0.3332 0.3682 0.1863 5.7572 1.5939
+#> 287: 93.3641 -5.9131 -0.1433 2.2485 -0.9641 2.9732 3.2785 0.3331 0.3680 0.1863 5.7547 1.5944
+#> 288: 93.3671 -5.9128 -0.1436 2.2480 -0.9641 2.9673 3.2767 0.3330 0.3679 0.1864 5.7540 1.5939
+#> 289: 93.3676 -5.9125 -0.1440 2.2474 -0.9639 2.9663 3.2765 0.3329 0.3678 0.1865 5.7536 1.5939
+#> 290: 93.3659 -5.9126 -0.1443 2.2469 -0.9637 2.9570 3.2776 0.3328 0.3678 0.1866 5.7523 1.5941
+#> 291: 93.3620 -5.9109 -0.1447 2.2466 -0.9634 2.9472 3.2713 0.3327 0.3676 0.1866 5.7527 1.5943
+#> 292: 93.3601 -5.9096 -0.1450 2.2462 -0.9632 2.9359 3.2664 0.3326 0.3675 0.1866 5.7517 1.5944
+#> 293: 93.3582 -5.9077 -0.1453 2.2457 -0.9629 2.9295 3.2586 0.3326 0.3675 0.1866 5.7514 1.5945
+#> 294: 93.3583 -5.9054 -0.1456 2.2454 -0.9626 2.9203 3.2478 0.3326 0.3676 0.1867 5.7508 1.5942
+#> 295: 93.3577 -5.9037 -0.1459 2.2449 -0.9624 2.9216 3.2406 0.3325 0.3678 0.1867 5.7493 1.5934
+#> 296: 93.3570 -5.9016 -0.1462 2.2445 -0.9623 2.9304 3.2334 0.3323 0.3680 0.1868 5.7502 1.5933
+#> 297: 93.3538 -5.8988 -0.1462 2.2441 -0.9621 2.9429 3.2217 0.3321 0.3681 0.1870 5.7539 1.5939
+#> 298: 93.3525 -5.8966 -0.1463 2.2438 -0.9620 2.9662 3.2118 0.3319 0.3683 0.1870 5.7555 1.5942
+#> 299: 93.3526 -5.8957 -0.1465 2.2437 -0.9619 2.9812 3.2056 0.3318 0.3685 0.1870 5.7582 1.5938
+#> 300: 93.3504 -5.8953 -0.1467 2.2436 -0.9616 2.9982 3.2029 0.3316 0.3688 0.1873 5.7609 1.5937
+#> 301: 93.3469 -5.8941 -0.1469 2.2434 -0.9612 3.0124 3.1993 0.3315 0.3690 0.1875 5.7641 1.5933
+#> 302: 93.3442 -5.8944 -0.1472 2.2434 -0.9609 3.0353 3.2015 0.3313 0.3692 0.1876 5.7660 1.5937
+#> 303: 93.3428 -5.8970 -0.1474 2.2432 -0.9607 3.0454 3.2160 0.3312 0.3692 0.1876 5.7654 1.5938
+#> 304: 93.3407 -5.9012 -0.1475 2.2430 -0.9607 3.0626 3.2409 0.3310 0.3693 0.1877 5.7649 1.5932
+#> 305: 93.3395 -5.9051 -0.1476 2.2429 -0.9607 3.0756 3.2632 0.3308 0.3693 0.1879 5.7650 1.5924
+#> 306: 93.3398 -5.9099 -0.1478 2.2429 -0.9607 3.0881 3.2952 0.3306 0.3694 0.1880 5.7655 1.5920
+#> 307: 93.3406 -5.9128 -0.1479 2.2427 -0.9608 3.0995 3.3163 0.3305 0.3695 0.1880 5.7666 1.5921
+#> 308: 93.3418 -5.9165 -0.1480 2.2426 -0.9610 3.1060 3.3420 0.3303 0.3696 0.1881 5.7674 1.5914
+#> 309: 93.3437 -5.9205 -0.1481 2.2424 -0.9610 3.1185 3.3703 0.3301 0.3697 0.1882 5.7665 1.5908
+#> 310: 93.3442 -5.9236 -0.1482 2.2422 -0.9612 3.1270 3.3902 0.3299 0.3698 0.1882 5.7650 1.5904
+#> 311: 93.3482 -5.9268 -0.1482 2.2421 -0.9614 3.1333 3.4086 0.3296 0.3698 0.1882 5.7636 1.5900
+#> 312: 93.3529 -5.9286 -0.1482 2.2420 -0.9615 3.1348 3.4186 0.3294 0.3699 0.1882 5.7622 1.5895
+#> 313: 93.3573 -5.9290 -0.1481 2.2419 -0.9617 3.1332 3.4199 0.3291 0.3699 0.1882 5.7621 1.5891
+#> 314: 93.3630 -5.9293 -0.1482 2.2418 -0.9619 3.1398 3.4211 0.3289 0.3700 0.1883 5.7594 1.5888
+#> 315: 93.3669 -5.9284 -0.1483 2.2416 -0.9622 3.1464 3.4155 0.3286 0.3702 0.1885 5.7586 1.5889
+#> 316: 93.3724 -5.9279 -0.1485 2.2412 -0.9624 3.1426 3.4124 0.3283 0.3704 0.1887 5.7581 1.5887
+#> 317: 93.3763 -5.9281 -0.1487 2.2409 -0.9626 3.1335 3.4108 0.3281 0.3706 0.1888 5.7573 1.5880
+#> 318: 93.3786 -5.9275 -0.1488 2.2405 -0.9627 3.1262 3.4057 0.3279 0.3709 0.1888 5.7579 1.5876
+#> 319: 93.3821 -5.9275 -0.1490 2.2402 -0.9628 3.1273 3.4032 0.3276 0.3711 0.1889 5.7570 1.5870
+#> 320: 93.3856 -5.9272 -0.1491 2.2401 -0.9629 3.1337 3.3989 0.3273 0.3715 0.1888 5.7563 1.5861
+#> 321: 93.3902 -5.9263 -0.1492 2.2399 -0.9631 3.1388 3.3931 0.3269 0.3718 0.1887 5.7555 1.5852
+#> 322: 93.3951 -5.9251 -0.1493 2.2397 -0.9631 3.1415 3.3856 0.3266 0.3721 0.1886 5.7552 1.5846
+#> 323: 93.3988 -5.9251 -0.1493 2.2395 -0.9632 3.1377 3.3824 0.3262 0.3724 0.1885 5.7556 1.5841
+#> 324: 93.4030 -5.9236 -0.1494 2.2394 -0.9633 3.1355 3.3738 0.3259 0.3727 0.1885 5.7562 1.5837
+#> 325: 93.4047 -5.9219 -0.1495 2.2393 -0.9633 3.1415 3.3647 0.3256 0.3731 0.1884 5.7553 1.5831
+#> 326: 93.4077 -5.9204 -0.1495 2.2391 -0.9634 3.1489 3.3564 0.3254 0.3735 0.1884 5.7562 1.5829
+#> 327: 93.4121 -5.9185 -0.1496 2.2390 -0.9635 3.1503 3.3472 0.3250 0.3739 0.1884 5.7562 1.5825
+#> 328: 93.4157 -5.9182 -0.1496 2.2389 -0.9636 3.1564 3.3432 0.3246 0.3743 0.1884 5.7559 1.5823
+#> 329: 93.4181 -5.9169 -0.1496 2.2388 -0.9638 3.1666 3.3361 0.3243 0.3746 0.1884 5.7544 1.5822
+#> 330: 93.4206 -5.9171 -0.1497 2.2386 -0.9640 3.1726 3.3349 0.3239 0.3748 0.1885 5.7538 1.5824
+#> 331: 93.4214 -5.9172 -0.1497 2.2385 -0.9642 3.1764 3.3332 0.3236 0.3750 0.1886 5.7540 1.5824
+#> 332: 93.4226 -5.9171 -0.1497 2.2385 -0.9645 3.1787 3.3303 0.3232 0.3752 0.1887 5.7539 1.5826
+#> 333: 93.4242 -5.9168 -0.1497 2.2384 -0.9645 3.1757 3.3287 0.3229 0.3755 0.1886 5.7545 1.5823
+#> 334: 93.4273 -5.9167 -0.1497 2.2383 -0.9645 3.1832 3.3290 0.3226 0.3758 0.1887 5.7540 1.5818
+#> 335: 93.4306 -5.9170 -0.1498 2.2384 -0.9644 3.1910 3.3318 0.3223 0.3760 0.1887 5.7548 1.5814
+#> 336: 93.4315 -5.9177 -0.1498 2.2384 -0.9644 3.1999 3.3355 0.3219 0.3762 0.1887 5.7558 1.5811
+#> 337: 93.4332 -5.9181 -0.1499 2.2384 -0.9643 3.2145 3.3360 0.3216 0.3764 0.1887 5.7581 1.5805
+#> 338: 93.4352 -5.9169 -0.1498 2.2384 -0.9643 3.2221 3.3307 0.3213 0.3767 0.1887 5.7592 1.5802
+#> 339: 93.4385 -5.9152 -0.1498 2.2384 -0.9643 3.2356 3.3242 0.3210 0.3770 0.1887 5.7605 1.5797
+#> 340: 93.4417 -5.9130 -0.1498 2.2384 -0.9643 3.2506 3.3167 0.3207 0.3773 0.1888 5.7599 1.5794
+#> 341: 93.4452 -5.9102 -0.1497 2.2382 -0.9641 3.2568 3.3064 0.3205 0.3772 0.1888 5.7590 1.5799
+#> 342: 93.4487 -5.9077 -0.1497 2.2381 -0.9641 3.2628 3.2970 0.3203 0.3772 0.1889 5.7587 1.5802
+#> 343: 93.4519 -5.9055 -0.1497 2.2380 -0.9642 3.2685 3.2892 0.3201 0.3772 0.1889 5.7585 1.5810
+#> 344: 93.4556 -5.9048 -0.1497 2.2379 -0.9643 3.2690 3.2847 0.3200 0.3771 0.1891 5.7573 1.5812
+#> 345: 93.4588 -5.9041 -0.1498 2.2377 -0.9645 3.2704 3.2807 0.3199 0.3771 0.1893 5.7567 1.5811
+#> 346: 93.4605 -5.9033 -0.1498 2.2376 -0.9647 3.2655 3.2747 0.3198 0.3770 0.1893 5.7557 1.5808
+#> 347: 93.4638 -5.9027 -0.1498 2.2375 -0.9648 3.2725 3.2701 0.3198 0.3768 0.1894 5.7532 1.5808
+#> 348: 93.4643 -5.9028 -0.1498 2.2373 -0.9649 3.2764 3.2676 0.3197 0.3768 0.1893 5.7523 1.5807
+#> 349: 93.4664 -5.9023 -0.1497 2.2372 -0.9650 3.2806 3.2638 0.3197 0.3767 0.1893 5.7527 1.5815
+#> 350: 93.4700 -5.9014 -0.1497 2.2370 -0.9651 3.2817 3.2585 0.3196 0.3767 0.1892 5.7534 1.5817
+#> 351: 93.4724 -5.9001 -0.1497 2.2369 -0.9652 3.2825 3.2522 0.3196 0.3768 0.1892 5.7541 1.5818
+#> 352: 93.4744 -5.8986 -0.1497 2.2369 -0.9653 3.2875 3.2460 0.3195 0.3768 0.1891 5.7546 1.5819
+#> 353: 93.4738 -5.8975 -0.1496 2.2369 -0.9653 3.2891 3.2407 0.3195 0.3769 0.1889 5.7560 1.5822
+#> 354: 93.4733 -5.8960 -0.1496 2.2369 -0.9652 3.2856 3.2333 0.3194 0.3768 0.1889 5.7579 1.5824
+#> 355: 93.4731 -5.8944 -0.1496 2.2370 -0.9652 3.2893 3.2259 0.3194 0.3767 0.1888 5.7599 1.5826
+#> 356: 93.4724 -5.8933 -0.1495 2.2373 -0.9652 3.2924 3.2197 0.3194 0.3767 0.1888 5.7608 1.5832
+#> 357: 93.4723 -5.8929 -0.1493 2.2376 -0.9654 3.2907 3.2164 0.3194 0.3767 0.1887 5.7605 1.5833
+#> 358: 93.4723 -5.8923 -0.1491 2.2378 -0.9654 3.2875 3.2120 0.3194 0.3766 0.1886 5.7608 1.5837
+#> 359: 93.4705 -5.8931 -0.1490 2.2379 -0.9656 3.2875 3.2121 0.3194 0.3764 0.1886 5.7606 1.5843
+#> 360: 93.4699 -5.8938 -0.1488 2.2382 -0.9658 3.2837 3.2133 0.3195 0.3763 0.1886 5.7606 1.5848
+#> 361: 93.4693 -5.8951 -0.1487 2.2383 -0.9659 3.2822 3.2164 0.3195 0.3763 0.1886 5.7600 1.5852
+#> 362: 93.4691 -5.8963 -0.1486 2.2385 -0.9660 3.2770 3.2196 0.3195 0.3763 0.1884 5.7618 1.5856
+#> 363: 93.4681 -5.8970 -0.1485 2.2387 -0.9660 3.2706 3.2208 0.3195 0.3762 0.1883 5.7639 1.5857
+#> 364: 93.4674 -5.8970 -0.1484 2.2389 -0.9660 3.2593 3.2189 0.3195 0.3760 0.1881 5.7659 1.5855
+#> 365: 93.4680 -5.8968 -0.1482 2.2391 -0.9659 3.2513 3.2174 0.3196 0.3758 0.1881 5.7686 1.5857
+#> 366: 93.4672 -5.8962 -0.1480 2.2393 -0.9658 3.2493 3.2161 0.3196 0.3755 0.1880 5.7714 1.5861
+#> 367: 93.4656 -5.8953 -0.1479 2.2396 -0.9657 3.2462 3.2121 0.3195 0.3753 0.1881 5.7721 1.5862
+#> 368: 93.4645 -5.8946 -0.1478 2.2398 -0.9657 3.2469 3.2083 0.3194 0.3750 0.1882 5.7724 1.5860
+#> 369: 93.4638 -5.8946 -0.1476 2.2401 -0.9657 3.2544 3.2068 0.3194 0.3749 0.1882 5.7713 1.5856
+#> 370: 93.4639 -5.8946 -0.1475 2.2404 -0.9657 3.2547 3.2066 0.3194 0.3748 0.1882 5.7719 1.5853
+#> 371: 93.4646 -5.8959 -0.1474 2.2407 -0.9657 3.2584 3.2129 0.3194 0.3746 0.1883 5.7725 1.5847
+#> 372: 93.4648 -5.8964 -0.1473 2.2409 -0.9658 3.2649 3.2172 0.3193 0.3745 0.1883 5.7730 1.5843
+#> 373: 93.4658 -5.8958 -0.1471 2.2411 -0.9659 3.2744 3.2135 0.3193 0.3743 0.1884 5.7730 1.5843
+#> 374: 93.4678 -5.8953 -0.1470 2.2412 -0.9662 3.2855 3.2100 0.3192 0.3742 0.1885 5.7727 1.5847
+#> 375: 93.4697 -5.8955 -0.1470 2.2413 -0.9663 3.2917 3.2087 0.3190 0.3742 0.1885 5.7733 1.5845
+#> 376: 93.4707 -5.8960 -0.1469 2.2414 -0.9664 3.2997 3.2095 0.3189 0.3741 0.1885 5.7726 1.5841
+#> 377: 93.4712 -5.8965 -0.1468 2.2415 -0.9665 3.3016 3.2100 0.3188 0.3741 0.1885 5.7724 1.5836
+#> 378: 93.4706 -5.8971 -0.1468 2.2416 -0.9665 3.2958 3.2113 0.3187 0.3741 0.1884 5.7733 1.5829
+#> 379: 93.4699 -5.8983 -0.1467 2.2418 -0.9666 3.2940 3.2174 0.3186 0.3741 0.1883 5.7732 1.5827
+#> 380: 93.4709 -5.8993 -0.1467 2.2418 -0.9667 3.2907 3.2225 0.3185 0.3739 0.1882 5.7726 1.5826
+#> 381: 93.4730 -5.9009 -0.1467 2.2418 -0.9667 3.2861 3.2325 0.3185 0.3737 0.1881 5.7709 1.5825
+#> 382: 93.4746 -5.9018 -0.1467 2.2418 -0.9667 3.2841 3.2407 0.3184 0.3734 0.1880 5.7692 1.5822
+#> 383: 93.4744 -5.9033 -0.1468 2.2418 -0.9667 3.2847 3.2537 0.3184 0.3732 0.1878 5.7672 1.5819
+#> 384: 93.4747 -5.9049 -0.1468 2.2418 -0.9667 3.2854 3.2640 0.3184 0.3729 0.1878 5.7657 1.5816
+#> 385: 93.4751 -5.9062 -0.1468 2.2418 -0.9666 3.2917 3.2702 0.3184 0.3727 0.1877 5.7642 1.5813
+#> 386: 93.4756 -5.9074 -0.1468 2.2418 -0.9666 3.2971 3.2753 0.3185 0.3725 0.1876 5.7625 1.5810
+#> 387: 93.4761 -5.9084 -0.1469 2.2417 -0.9666 3.2988 3.2789 0.3185 0.3723 0.1875 5.7613 1.5804
+#> 388: 93.4777 -5.9092 -0.1469 2.2417 -0.9666 3.3055 3.2811 0.3185 0.3721 0.1875 5.7599 1.5803
+#> 389: 93.4805 -5.9092 -0.1468 2.2417 -0.9667 3.3138 3.2802 0.3185 0.3719 0.1874 5.7588 1.5803
+#> 390: 93.4828 -5.9089 -0.1468 2.2417 -0.9667 3.3164 3.2782 0.3186 0.3718 0.1873 5.7576 1.5806
+#> 391: 93.4854 -5.9094 -0.1467 2.2416 -0.9668 3.3265 3.2800 0.3186 0.3716 0.1873 5.7556 1.5804
+#> 392: 93.4877 -5.9103 -0.1467 2.2416 -0.9669 3.3327 3.2836 0.3187 0.3715 0.1873 5.7535 1.5803
+#> 393: 93.4899 -5.9110 -0.1467 2.2416 -0.9669 3.3419 3.2876 0.3187 0.3715 0.1873 5.7517 1.5803
+#> 394: 93.4925 -5.9117 -0.1467 2.2416 -0.9669 3.3494 3.2903 0.3187 0.3714 0.1873 5.7508 1.5801
+#> 395: 93.4945 -5.9121 -0.1467 2.2416 -0.9670 3.3536 3.2912 0.3187 0.3714 0.1873 5.7497 1.5796
+#> 396: 93.4951 -5.9124 -0.1467 2.2416 -0.9670 3.3590 3.2918 0.3187 0.3715 0.1873 5.7476 1.5793
+#> 397: 93.4955 -5.9123 -0.1467 2.2416 -0.9669 3.3626 3.2904 0.3186 0.3715 0.1873 5.7456 1.5788
+#> 398: 93.4971 -5.9120 -0.1467 2.2416 -0.9669 3.3735 3.2887 0.3186 0.3716 0.1873 5.7433 1.5786
+#> 399: 93.4995 -5.9116 -0.1467 2.2415 -0.9669 3.3854 3.2866 0.3186 0.3716 0.1873 5.7422 1.5785
+#> 400: 93.5007 -5.9116 -0.1466 2.2415 -0.9669 3.3923 3.2856 0.3186 0.3717 0.1873 5.7416 1.5786
+#> 401: 93.5028 -5.9109 -0.1467 2.2415 -0.9669 3.4020 3.2820 0.3186 0.3718 0.1873 5.7412 1.5787
+#> 402: 93.5042 -5.9099 -0.1467 2.2414 -0.9669 3.4114 3.2781 0.3186 0.3719 0.1874 5.7406 1.5788
+#> 403: 93.5054 -5.9090 -0.1467 2.2413 -0.9670 3.4179 3.2735 0.3186 0.3720 0.1874 5.7401 1.5785
+#> 404: 93.5071 -5.9093 -0.1468 2.2412 -0.9670 3.4190 3.2726 0.3186 0.3720 0.1875 5.7392 1.5779
+#> 405: 93.5087 -5.9087 -0.1468 2.2411 -0.9671 3.4186 3.2689 0.3186 0.3721 0.1876 5.7386 1.5776
+#> 406: 93.5091 -5.9087 -0.1469 2.2411 -0.9671 3.4228 3.2688 0.3186 0.3721 0.1876 5.7377 1.5774
+#> 407: 93.5094 -5.9091 -0.1470 2.2411 -0.9672 3.4285 3.2698 0.3186 0.3720 0.1877 5.7368 1.5770
+#> 408: 93.5108 -5.9081 -0.1470 2.2410 -0.9672 3.4378 3.2648 0.3187 0.3719 0.1877 5.7358 1.5766
+#> 409: 93.5113 -5.9082 -0.1470 2.2410 -0.9672 3.4444 3.2643 0.3187 0.3719 0.1878 5.7357 1.5763
+#> 410: 93.5102 -5.9099 -0.1470 2.2410 -0.9672 3.4502 3.2731 0.3188 0.3719 0.1878 5.7359 1.5756
+#> 411: 93.5097 -5.9109 -0.1469 2.2410 -0.9673 3.4534 3.2793 0.3188 0.3718 0.1878 5.7348 1.5753
+#> 412: 93.5102 -5.9114 -0.1469 2.2410 -0.9673 3.4522 3.2836 0.3189 0.3717 0.1878 5.7330 1.5753
+#> 413: 93.5110 -5.9120 -0.1469 2.2410 -0.9675 3.4534 3.2885 0.3189 0.3716 0.1878 5.7320 1.5756
+#> 414: 93.5126 -5.9130 -0.1469 2.2410 -0.9675 3.4550 3.2943 0.3190 0.3716 0.1878 5.7314 1.5753
+#> 415: 93.5144 -5.9140 -0.1469 2.2409 -0.9676 3.4574 3.3003 0.3190 0.3715 0.1878 5.7304 1.5751
+#> 416: 93.5147 -5.9149 -0.1469 2.2409 -0.9676 3.4632 3.3059 0.3191 0.3714 0.1878 5.7292 1.5750
+#> 417: 93.5132 -5.9156 -0.1468 2.2410 -0.9677 3.4675 3.3090 0.3192 0.3713 0.1878 5.7292 1.5747
+#> 418: 93.5131 -5.9165 -0.1468 2.2410 -0.9678 3.4680 3.3130 0.3192 0.3712 0.1878 5.7296 1.5747
+#> 419: 93.5142 -5.9166 -0.1467 2.2411 -0.9678 3.4663 3.3143 0.3193 0.3712 0.1879 5.7302 1.5744
+#> 420: 93.5150 -5.9164 -0.1466 2.2412 -0.9679 3.4626 3.3130 0.3193 0.3712 0.1879 5.7303 1.5744
+#> 421: 93.5162 -5.9169 -0.1465 2.2413 -0.9681 3.4596 3.3158 0.3194 0.3713 0.1880 5.7315 1.5743
+#> 422: 93.5173 -5.9172 -0.1465 2.2414 -0.9682 3.4567 3.3165 0.3194 0.3714 0.1881 5.7332 1.5740
+#> 423: 93.5174 -5.9178 -0.1464 2.2415 -0.9684 3.4550 3.3185 0.3194 0.3715 0.1882 5.7348 1.5741
+#> 424: 93.5174 -5.9189 -0.1464 2.2417 -0.9685 3.4531 3.3225 0.3193 0.3716 0.1882 5.7360 1.5737
+#> 425: 93.5171 -5.9184 -0.1463 2.2418 -0.9685 3.4508 3.3186 0.3192 0.3718 0.1882 5.7372 1.5738
+#> 426: 93.5167 -5.9177 -0.1462 2.2419 -0.9686 3.4566 3.3143 0.3192 0.3720 0.1882 5.7385 1.5735
+#> 427: 93.5185 -5.9174 -0.1462 2.2420 -0.9687 3.4561 3.3114 0.3191 0.3721 0.1881 5.7389 1.5734
+#> 428: 93.5192 -5.9177 -0.1461 2.2421 -0.9688 3.4574 3.3112 0.3191 0.3722 0.1880 5.7398 1.5731
+#> 429: 93.5184 -5.9179 -0.1460 2.2421 -0.9689 3.4558 3.3102 0.3190 0.3723 0.1879 5.7405 1.5729
+#> 430: 93.5170 -5.9187 -0.1460 2.2421 -0.9690 3.4575 3.3132 0.3190 0.3724 0.1879 5.7404 1.5727
+#> 431: 93.5156 -5.9192 -0.1460 2.2422 -0.9691 3.4556 3.3150 0.3190 0.3724 0.1879 5.7405 1.5726
+#> 432: 93.5148 -5.9203 -0.1459 2.2422 -0.9692 3.4557 3.3201 0.3190 0.3725 0.1878 5.7409 1.5727
+#> 433: 93.5134 -5.9215 -0.1459 2.2422 -0.9692 3.4569 3.3263 0.3190 0.3726 0.1878 5.7415 1.5731
+#> 434: 93.5128 -5.9222 -0.1459 2.2423 -0.9691 3.4623 3.3304 0.3190 0.3726 0.1877 5.7422 1.5728
+#> 435: 93.5116 -5.9231 -0.1459 2.2424 -0.9691 3.4672 3.3376 0.3191 0.3727 0.1877 5.7424 1.5726
+#> 436: 93.5111 -5.9228 -0.1459 2.2425 -0.9692 3.4658 3.3352 0.3190 0.3727 0.1876 5.7429 1.5725
+#> 437: 93.5100 -5.9227 -0.1459 2.2425 -0.9692 3.4651 3.3328 0.3190 0.3727 0.1876 5.7430 1.5725
+#> 438: 93.5071 -5.9230 -0.1459 2.2425 -0.9692 3.4614 3.3329 0.3190 0.3728 0.1876 5.7437 1.5725
+#> 439: 93.5035 -5.9225 -0.1459 2.2426 -0.9691 3.4555 3.3298 0.3190 0.3728 0.1875 5.7449 1.5725
+#> 440: 93.5006 -5.9222 -0.1459 2.2426 -0.9690 3.4503 3.3286 0.3190 0.3728 0.1874 5.7461 1.5723
+#> 441: 93.4988 -5.9220 -0.1459 2.2427 -0.9689 3.4445 3.3272 0.3190 0.3728 0.1874 5.7466 1.5721
+#> 442: 93.4971 -5.9216 -0.1459 2.2428 -0.9688 3.4392 3.3265 0.3190 0.3728 0.1874 5.7475 1.5721
+#> 443: 93.4957 -5.9214 -0.1458 2.2429 -0.9688 3.4338 3.3256 0.3190 0.3729 0.1874 5.7487 1.5723
+#> 444: 93.4949 -5.9210 -0.1458 2.2430 -0.9688 3.4288 3.3236 0.3189 0.3729 0.1874 5.7502 1.5721
+#> 445: 93.4932 -5.9210 -0.1458 2.2430 -0.9687 3.4283 3.3237 0.3189 0.3731 0.1874 5.7516 1.5719
+#> 446: 93.4922 -5.9205 -0.1458 2.2430 -0.9687 3.4253 3.3215 0.3188 0.3733 0.1873 5.7524 1.5717
+#> 447: 93.4917 -5.9205 -0.1458 2.2430 -0.9686 3.4257 3.3213 0.3187 0.3736 0.1873 5.7528 1.5715
+#> 448: 93.4924 -5.9205 -0.1458 2.2430 -0.9685 3.4296 3.3209 0.3186 0.3737 0.1872 5.7532 1.5717
+#> 449: 93.4920 -5.9203 -0.1459 2.2430 -0.9684 3.4302 3.3194 0.3185 0.3739 0.1872 5.7542 1.5717
+#> 450: 93.4915 -5.9207 -0.1459 2.2430 -0.9684 3.4314 3.3217 0.3184 0.3741 0.1871 5.7551 1.5715
+#> 451: 93.4915 -5.9214 -0.1459 2.2430 -0.9684 3.4371 3.3253 0.3183 0.3743 0.1871 5.7562 1.5717
+#> 452: 93.4926 -5.9212 -0.1458 2.2430 -0.9683 3.4417 3.3242 0.3182 0.3745 0.1870 5.7567 1.5717
+#> 453: 93.4935 -5.9211 -0.1459 2.2430 -0.9683 3.4413 3.3232 0.3182 0.3746 0.1870 5.7574 1.5714
+#> 454: 93.4941 -5.9209 -0.1459 2.2429 -0.9683 3.4406 3.3222 0.3182 0.3748 0.1870 5.7580 1.5713
+#> 455: 93.4947 -5.9212 -0.1459 2.2429 -0.9684 3.4450 3.3232 0.3181 0.3750 0.1870 5.7580 1.5710
+#> 456: 93.4950 -5.9214 -0.1459 2.2429 -0.9684 3.4481 3.3236 0.3181 0.3751 0.1870 5.7585 1.5708
+#> 457: 93.4961 -5.9220 -0.1459 2.2429 -0.9685 3.4516 3.3266 0.3180 0.3752 0.1869 5.7590 1.5707
+#> 458: 93.4965 -5.9218 -0.1459 2.2428 -0.9685 3.4553 3.3257 0.3179 0.3753 0.1869 5.7589 1.5707
+#> 459: 93.4959 -5.9212 -0.1459 2.2428 -0.9685 3.4572 3.3229 0.3178 0.3754 0.1868 5.7596 1.5705
+#> 460: 93.4960 -5.9209 -0.1459 2.2428 -0.9685 3.4573 3.3209 0.3178 0.3755 0.1868 5.7598 1.5704
+#> 461: 93.4944 -5.9211 -0.1459 2.2428 -0.9685 3.4592 3.3202 0.3177 0.3757 0.1868 5.7609 1.5701
+#> 462: 93.4941 -5.9214 -0.1459 2.2428 -0.9686 3.4630 3.3206 0.3176 0.3759 0.1868 5.7617 1.5700
+#> 463: 93.4932 -5.9215 -0.1459 2.2429 -0.9686 3.4708 3.3197 0.3175 0.3761 0.1868 5.7622 1.5699
+#> 464: 93.4933 -5.9209 -0.1459 2.2429 -0.9685 3.4759 3.3162 0.3175 0.3762 0.1869 5.7628 1.5696
+#> 465: 93.4928 -5.9204 -0.1459 2.2428 -0.9685 3.4794 3.3133 0.3174 0.3764 0.1870 5.7642 1.5693
+#> 466: 93.4934 -5.9197 -0.1460 2.2428 -0.9685 3.4838 3.3105 0.3173 0.3766 0.1870 5.7659 1.5693
+#> 467: 93.4931 -5.9197 -0.1460 2.2428 -0.9685 3.4866 3.3094 0.3172 0.3768 0.1871 5.7667 1.5691
+#> 468: 93.4933 -5.9198 -0.1460 2.2428 -0.9685 3.4916 3.3099 0.3172 0.3769 0.1871 5.7672 1.5690
+#> 469: 93.4936 -5.9200 -0.1461 2.2427 -0.9685 3.4929 3.3119 0.3171 0.3771 0.1871 5.7681 1.5689
+#> 470: 93.4938 -5.9200 -0.1461 2.2427 -0.9685 3.4931 3.3111 0.3171 0.3773 0.1871 5.7685 1.5687
+#> 471: 93.4943 -5.9198 -0.1461 2.2427 -0.9685 3.4932 3.3097 0.3170 0.3776 0.1871 5.7681 1.5686
+#> 472: 93.4931 -5.9197 -0.1461 2.2427 -0.9684 3.4923 3.3092 0.3170 0.3778 0.1870 5.7683 1.5686
+#> 473: 93.4928 -5.9193 -0.1461 2.2426 -0.9684 3.4918 3.3068 0.3169 0.3781 0.1870 5.7690 1.5685
+#> 474: 93.4920 -5.9193 -0.1462 2.2426 -0.9683 3.4878 3.3075 0.3169 0.3781 0.1870 5.7687 1.5688
+#> 475: 93.4909 -5.9191 -0.1463 2.2425 -0.9683 3.4868 3.3069 0.3169 0.3782 0.1869 5.7681 1.5692
+#> 476: 93.4887 -5.9190 -0.1464 2.2424 -0.9682 3.4881 3.3072 0.3169 0.3783 0.1869 5.7673 1.5694
+#> 477: 93.4875 -5.9185 -0.1465 2.2423 -0.9681 3.4847 3.3059 0.3169 0.3784 0.1868 5.7667 1.5696
+#> 478: 93.4867 -5.9182 -0.1466 2.2421 -0.9681 3.4804 3.3056 0.3170 0.3784 0.1867 5.7661 1.5700
+#> 479: 93.4865 -5.9178 -0.1468 2.2419 -0.9681 3.4768 3.3043 0.3171 0.3784 0.1867 5.7657 1.5702
+#> 480: 93.4863 -5.9181 -0.1469 2.2417 -0.9680 3.4733 3.3057 0.3172 0.3784 0.1866 5.7656 1.5702
+#> 481: 93.4865 -5.9182 -0.1470 2.2415 -0.9680 3.4694 3.3069 0.3173 0.3784 0.1866 5.7648 1.5705
+#> 482: 93.4871 -5.9187 -0.1472 2.2412 -0.9681 3.4667 3.3089 0.3173 0.3784 0.1865 5.7631 1.5709
+#> 483: 93.4860 -5.9192 -0.1473 2.2410 -0.9681 3.4668 3.3107 0.3174 0.3785 0.1865 5.7624 1.5709
+#> 484: 93.4858 -5.9193 -0.1474 2.2408 -0.9681 3.4681 3.3111 0.3174 0.3786 0.1864 5.7615 1.5713
+#> 485: 93.4858 -5.9195 -0.1476 2.2406 -0.9681 3.4643 3.3110 0.3174 0.3787 0.1864 5.7612 1.5717
+#> 486: 93.4853 -5.9198 -0.1477 2.2404 -0.9682 3.4665 3.3115 0.3174 0.3788 0.1864 5.7612 1.5717
+#> 487: 93.4856 -5.9201 -0.1478 2.2402 -0.9682 3.4687 3.3143 0.3173 0.3790 0.1864 5.7612 1.5719
+#> 488: 93.4858 -5.9209 -0.1479 2.2401 -0.9683 3.4688 3.3186 0.3173 0.3792 0.1864 5.7626 1.5722
+#> 489: 93.4870 -5.9211 -0.1480 2.2399 -0.9684 3.4681 3.3198 0.3174 0.3794 0.1863 5.7640 1.5725
+#> 490: 93.4881 -5.9213 -0.1481 2.2398 -0.9684 3.4694 3.3211 0.3174 0.3797 0.1864 5.7650 1.5728
+#> 491: 93.4892 -5.9210 -0.1482 2.2395 -0.9685 3.4716 3.3193 0.3173 0.3799 0.1864 5.7650 1.5732
+#> 492: 93.4907 -5.9211 -0.1483 2.2393 -0.9686 3.4754 3.3179 0.3173 0.3801 0.1865 5.7648 1.5736
+#> 493: 93.4928 -5.9215 -0.1484 2.2390 -0.9686 3.4858 3.3185 0.3173 0.3803 0.1865 5.7640 1.5738
+#> 494: 93.4937 -5.9217 -0.1485 2.2388 -0.9687 3.4940 3.3182 0.3172 0.3805 0.1865 5.7639 1.5740
+#> 495: 93.4945 -5.9213 -0.1485 2.2386 -0.9688 3.4998 3.3151 0.3172 0.3808 0.1866 5.7638 1.5742
+#> 496: 93.4953 -5.9208 -0.1486 2.2384 -0.9688 3.5036 3.3123 0.3172 0.3810 0.1867 5.7635 1.5745
+#> 497: 93.4969 -5.9205 -0.1487 2.2382 -0.9689 3.5064 3.3109 0.3172 0.3813 0.1868 5.7637 1.5747
+#> 498: 93.4980 -5.9205 -0.1488 2.2379 -0.9690 3.5057 3.3104 0.3171 0.3815 0.1868 5.7639 1.5752
+#> 499: 93.4999 -5.9205 -0.1488 2.2377 -0.9691 3.5095 3.3102 0.3171 0.3817 0.1869 5.7639 1.5756
+#> 500: 93.5013 -5.9210 -0.1489 2.2376 -0.9691 3.5093 3.3135 0.3171 0.3818 0.1869 5.7644 1.5758#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"#> Calculating residuals/tables#> done#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
+#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
+#> |.....................| log_beta |sigma_parent | sigma_A1 | o1 |
+#> |.....................| o2 | o3 | o4 | o5 |
+#> | 1| 470.09130 | 1.000 | -1.000 | -0.9119 | -0.8960 |
+#> |.....................| -0.8494 | -0.8528 | -0.8683 | -0.8768 |
+#> |.....................| -0.8744 | -0.8681 | -0.8700 | -0.8694 |
+#> | U| 470.0913 | 94.11 | -5.371 | -0.9909 | -0.1965 |
+#> |.....................| 2.121 | 1.952 | 1.178 | 0.7545 |
+#> |.....................| 0.8769 | 1.189 | 1.095 | 1.127 |
+#> | X| 470.0913 | 94.11 | 0.004648 | 0.2707 | 0.8216 |
+#> |.....................| 8.339 | 1.952 | 1.178 | 0.7545 |
+#> |.....................| 0.8769 | 1.189 | 1.095 | 1.127 |
+#> | G| Gill Diff. | 72.01 | 2.213 | -0.2476 | -0.3163 |
+#> |.....................| -0.8532 | -32.82 | -13.44 | 9.552 |
+#> |.....................| 11.72 | -12.16 | -9.599 | -9.049 |
+#> | 2| 5180.4321 | 0.1393 | -1.026 | -0.9090 | -0.8922 |
+#> |.....................| -0.8392 | -0.4605 | -0.7077 | -0.9910 |
+#> |.....................| -1.014 | -0.7228 | -0.7553 | -0.7612 |
+#> | U| 5180.4321 | 13.11 | -5.398 | -0.9880 | -0.1927 |
+#> |.....................| 2.131 | 2.334 | 1.272 | 0.6684 |
+#> |.....................| 0.7541 | 1.362 | 1.220 | 1.248 |
+#> | X| 5180.4321 | 13.11 | 0.004526 | 0.2713 | 0.8247 |
+#> |.....................| 8.424 | 2.334 | 1.272 | 0.6684 |
+#> |.....................| 0.7541 | 1.362 | 1.220 | 1.248 |
+#> | 3| 529.93288 | 0.9139 | -1.003 | -0.9116 | -0.8956 |
+#> |.....................| -0.8484 | -0.8135 | -0.8523 | -0.8883 |
+#> |.....................| -0.8884 | -0.8536 | -0.8585 | -0.8585 |
+#> | U| 529.93288 | 86.01 | -5.374 | -0.9906 | -0.1961 |
+#> |.....................| 2.122 | 1.990 | 1.187 | 0.7459 |
+#> |.....................| 0.8647 | 1.206 | 1.107 | 1.139 |
+#> | X| 529.93288 | 86.01 | 0.004635 | 0.2708 | 0.8219 |
+#> |.....................| 8.347 | 1.990 | 1.187 | 0.7459 |
+#> |.....................| 0.8647 | 1.206 | 1.107 | 1.139 |
+#> | 4| 469.96296 | 0.9914 | -1.000 | -0.9119 | -0.8959 |
+#> |.....................| -0.8493 | -0.8489 | -0.8667 | -0.8780 |
+#> |.....................| -0.8758 | -0.8667 | -0.8689 | -0.8683 |
+#> | U| 469.96296 | 93.30 | -5.372 | -0.9909 | -0.1965 |
+#> |.....................| 2.121 | 1.955 | 1.179 | 0.7536 |
+#> |.....................| 0.8757 | 1.191 | 1.096 | 1.128 |
+#> | X| 469.96296 | 93.30 | 0.004646 | 0.2707 | 0.8216 |
+#> |.....................| 8.339 | 1.955 | 1.179 | 0.7536 |
+#> |.....................| 0.8757 | 1.191 | 1.096 | 1.128 |
+#> | F| Forward Diff. | -91.63 | 2.121 | -0.4143 | -0.3985 |
+#> |.....................| -1.124 | -34.23 | -12.87 | 9.567 |
+#> |.....................| 8.592 | -11.79 | -9.469 | -8.518 |
+#> | 5| 469.41305 | 0.9973 | -1.001 | -0.9118 | -0.8959 |
+#> |.....................| -0.8491 | -0.8424 | -0.8642 | -0.8798 |
+#> |.....................| -0.8776 | -0.8644 | -0.8670 | -0.8666 |
+#> | U| 469.41305 | 93.85 | -5.372 | -0.9908 | -0.1964 |
+#> |.....................| 2.121 | 1.962 | 1.180 | 0.7523 |
+#> |.....................| 0.8741 | 1.193 | 1.098 | 1.130 |
+#> | X| 469.41305 | 93.85 | 0.004644 | 0.2707 | 0.8217 |
+#> |.....................| 8.341 | 1.962 | 1.180 | 0.7523 |
+#> |.....................| 0.8741 | 1.193 | 1.098 | 1.130 |
+#> | F| Forward Diff. | 19.88 | 2.163 | -0.2989 | -0.3449 |
+#> |.....................| -0.9473 | -32.84 | -13.22 | 8.952 |
+#> |.....................| 11.37 | -11.75 | -9.421 | -8.530 |
+#> | 6| 469.13124 | 0.9930 | -1.001 | -0.9118 | -0.8958 |
+#> |.....................| -0.8489 | -0.8354 | -0.8614 | -0.8817 |
+#> |.....................| -0.8801 | -0.8619 | -0.8650 | -0.8648 |
+#> | U| 469.13124 | 93.45 | -5.373 | -0.9908 | -0.1963 |
+#> |.....................| 2.121 | 1.969 | 1.182 | 0.7508 |
+#> |.....................| 0.8719 | 1.196 | 1.100 | 1.132 |
+#> | X| 469.13124 | 93.45 | 0.004642 | 0.2708 | 0.8218 |
+#> |.....................| 8.343 | 1.969 | 1.182 | 0.7508 |
+#> |.....................| 0.8719 | 1.196 | 1.100 | 1.132 |
+#> | F| Forward Diff. | -60.06 | 2.108 | -0.3845 | -0.3876 |
+#> |.....................| -1.088 | -32.82 | -12.89 | 8.720 |
+#> |.....................| 9.663 | -11.60 | -9.301 | -8.348 |
+#> | 7| 468.71336 | 0.9979 | -1.002 | -0.9117 | -0.8957 |
+#> |.....................| -0.8487 | -0.8285 | -0.8586 | -0.8835 |
+#> |.....................| -0.8823 | -0.8594 | -0.8631 | -0.8630 |
+#> | U| 468.71336 | 93.91 | -5.373 | -0.9907 | -0.1962 |
+#> |.....................| 2.122 | 1.975 | 1.183 | 0.7495 |
+#> |.....................| 0.8700 | 1.199 | 1.102 | 1.134 |
+#> | X| 468.71336 | 93.91 | 0.004640 | 0.2708 | 0.8218 |
+#> |.....................| 8.345 | 1.975 | 1.183 | 0.7495 |
+#> |.....................| 0.8700 | 1.199 | 1.102 | 1.134 |
+#> | F| Forward Diff. | 31.80 | 2.131 | -0.3007 | -0.3556 |
+#> |.....................| -0.9543 | -30.66 | -12.35 | 8.979 |
+#> |.....................| 9.681 | -11.54 | -9.231 | -8.330 |
+#> | 8| 468.42878 | 0.9931 | -1.002 | -0.9116 | -0.8956 |
+#> |.....................| -0.8484 | -0.8217 | -0.8559 | -0.8855 |
+#> |.....................| -0.8845 | -0.8568 | -0.8610 | -0.8612 |
+#> | U| 468.42878 | 93.46 | -5.373 | -0.9906 | -0.1962 |
+#> |.....................| 2.122 | 1.982 | 1.185 | 0.7480 |
+#> |.....................| 0.8681 | 1.202 | 1.105 | 1.136 |
+#> | X| 468.42878 | 93.46 | 0.004638 | 0.2708 | 0.8219 |
+#> |.....................| 8.346 | 1.982 | 1.185 | 0.7480 |
+#> |.....................| 0.8681 | 1.202 | 1.105 | 1.136 |
+#> | F| Forward Diff. | -55.97 | 2.081 | -0.3855 | -0.3928 |
+#> |.....................| -1.100 | -30.89 | -12.11 | 8.596 |
+#> |.....................| 9.353 | -11.36 | -9.087 | -8.137 |
+#> | 9| 468.02528 | 0.9977 | -1.003 | -0.9115 | -0.8955 |
+#> |.....................| -0.8482 | -0.8148 | -0.8531 | -0.8875 |
+#> |.....................| -0.8866 | -0.8542 | -0.8589 | -0.8593 |
+#> | U| 468.02528 | 93.90 | -5.374 | -0.9905 | -0.1961 |
+#> |.....................| 2.122 | 1.989 | 1.187 | 0.7465 |
+#> |.....................| 0.8662 | 1.206 | 1.107 | 1.138 |
+#> | X| 468.02528 | 93.90 | 0.004636 | 0.2708 | 0.8220 |
+#> |.....................| 8.348 | 1.989 | 1.187 | 0.7465 |
+#> |.....................| 0.8662 | 1.206 | 1.107 | 1.138 |
+#> | F| Forward Diff. | 28.40 | 2.101 | -0.3066 | -0.3612 |
+#> |.....................| -0.9721 | -29.21 | -11.91 | 8.561 |
+#> |.....................| 9.360 | -11.31 | -9.026 | -8.108 |
+#> | 10| 467.76129 | 0.9930 | -1.003 | -0.9115 | -0.8954 |
+#> |.....................| -0.8479 | -0.8081 | -0.8503 | -0.8895 |
+#> |.....................| -0.8888 | -0.8515 | -0.8567 | -0.8574 |
+#> | U| 467.76129 | 93.46 | -5.374 | -0.9905 | -0.1960 |
+#> |.....................| 2.122 | 1.995 | 1.188 | 0.7450 |
+#> |.....................| 0.8643 | 1.209 | 1.109 | 1.140 |
+#> | X| 467.76129 | 93.46 | 0.004633 | 0.2708 | 0.8220 |
+#> |.....................| 8.351 | 1.995 | 1.188 | 0.7450 |
+#> |.....................| 0.8643 | 1.209 | 1.109 | 1.140 |
+#> | F| Forward Diff. | -56.33 | 2.052 | -0.3905 | -0.3944 |
+#> |.....................| -1.108 | -29.62 | -11.80 | 8.124 |
+#> |.....................| 9.000 | -11.14 | -8.878 | -7.912 |
+#> | 11| 467.36507 | 0.9976 | -1.004 | -0.9114 | -0.8953 |
+#> |.....................| -0.8477 | -0.8013 | -0.8475 | -0.8914 |
+#> |.....................| -0.8910 | -0.8487 | -0.8545 | -0.8554 |
+#> | U| 467.36507 | 93.88 | -5.375 | -0.9904 | -0.1959 |
+#> |.....................| 2.123 | 2.002 | 1.190 | 0.7435 |
+#> |.....................| 0.8624 | 1.212 | 1.112 | 1.142 |
+#> | X| 467.36507 | 93.88 | 0.004631 | 0.2708 | 0.8221 |
+#> |.....................| 8.353 | 2.002 | 1.190 | 0.7435 |
+#> |.....................| 0.8624 | 1.212 | 1.112 | 1.142 |
+#> | F| Forward Diff. | 25.62 | 2.072 | -0.2964 | -0.3658 |
+#> |.....................| -0.9890 | -26.78 | -10.91 | 8.547 |
+#> |.....................| 9.002 | -11.08 | -8.799 | -7.879 |
+#> | 12| 467.13453 | 0.9928 | -1.004 | -0.9113 | -0.8952 |
+#> |.....................| -0.8474 | -0.7947 | -0.8448 | -0.8935 |
+#> |.....................| -0.8932 | -0.8459 | -0.8523 | -0.8534 |
+#> | U| 467.13453 | 93.43 | -5.376 | -0.9903 | -0.1958 |
+#> |.....................| 2.123 | 2.008 | 1.191 | 0.7419 |
+#> |.....................| 0.8604 | 1.215 | 1.114 | 1.145 |
+#> | X| 467.13453 | 93.43 | 0.004628 | 0.2709 | 0.8222 |
+#> |.....................| 8.355 | 2.008 | 1.191 | 0.7419 |
+#> |.....................| 0.8604 | 1.215 | 1.114 | 1.145 |
+#> | F| Forward Diff. | -59.86 | 2.021 | -0.3893 | -0.4093 |
+#> |.....................| -1.140 | -28.00 | -11.13 | 7.926 |
+#> |.....................| 9.918 | -10.90 | -8.684 | -7.680 |
+#> | 13| 466.72836 | 0.9971 | -1.005 | -0.9112 | -0.8951 |
+#> |.....................| -0.8471 | -0.7882 | -0.8421 | -0.8957 |
+#> |.....................| -0.8959 | -0.8428 | -0.8499 | -0.8513 |
+#> | U| 466.72836 | 93.84 | -5.376 | -0.9902 | -0.1956 |
+#> |.....................| 2.123 | 2.015 | 1.193 | 0.7403 |
+#> |.....................| 0.8581 | 1.219 | 1.117 | 1.147 |
+#> | X| 466.72836 | 93.84 | 0.004626 | 0.2709 | 0.8223 |
+#> |.....................| 8.358 | 2.015 | 1.193 | 0.7403 |
+#> |.....................| 0.8581 | 1.219 | 1.117 | 1.147 |
+#> | F| Forward Diff. | 18.13 | 2.039 | -0.3145 | -0.3694 |
+#> |.....................| -1.015 | -26.10 | -10.63 | 8.044 |
+#> |.....................| 8.616 | -10.80 | -8.580 | -7.637 |
+#> | 14| 466.53378 | 0.9925 | -1.005 | -0.9111 | -0.8950 |
+#> |.....................| -0.8468 | -0.7815 | -0.8394 | -0.8978 |
+#> |.....................| -0.8981 | -0.8400 | -0.8477 | -0.8494 |
+#> | U| 466.53378 | 93.40 | -5.377 | -0.9901 | -0.1956 |
+#> |.....................| 2.123 | 2.021 | 1.195 | 0.7387 |
+#> |.....................| 0.8562 | 1.222 | 1.119 | 1.149 |
+#> | X| 466.53378 | 93.40 | 0.004623 | 0.2709 | 0.8224 |
+#> |.....................| 8.360 | 2.021 | 1.195 | 0.7387 |
+#> |.....................| 0.8562 | 1.222 | 1.119 | 1.149 |
+#> | F| Forward Diff. | -63.81 | 1.989 | -0.4067 | -0.4178 |
+#> |.....................| -1.167 | -26.39 | -10.45 | 7.924 |
+#> |.....................| 8.221 | -10.62 | -8.445 | -7.432 |
+#> | 15| 466.13347 | 0.9972 | -1.006 | -0.9110 | -0.8949 |
+#> |.....................| -0.8464 | -0.7752 | -0.8368 | -0.9000 |
+#> |.....................| -0.9002 | -0.8369 | -0.8452 | -0.8472 |
+#> | U| 466.13347 | 93.85 | -5.377 | -0.9900 | -0.1954 |
+#> |.....................| 2.124 | 2.027 | 1.196 | 0.7370 |
+#> |.....................| 0.8543 | 1.226 | 1.122 | 1.152 |
+#> | X| 466.13347 | 93.85 | 0.004620 | 0.2709 | 0.8225 |
+#> |.....................| 8.363 | 2.027 | 1.196 | 0.7370 |
+#> |.....................| 0.8543 | 1.226 | 1.122 | 1.152 |
+#> | F| Forward Diff. | 18.92 | 2.012 | -0.3108 | -0.3757 |
+#> |.....................| -1.021 | -25.52 | -10.81 | 7.279 |
+#> |.....................| 9.661 | -10.54 | -8.331 | -7.395 |
+#> | 16| 465.94504 | 0.9925 | -1.006 | -0.9109 | -0.8948 |
+#> |.....................| -0.8461 | -0.7686 | -0.8339 | -0.9019 |
+#> |.....................| -0.9028 | -0.8341 | -0.8430 | -0.8453 |
+#> | U| 465.94504 | 93.41 | -5.378 | -0.9899 | -0.1953 |
+#> |.....................| 2.124 | 2.034 | 1.198 | 0.7356 |
+#> |.....................| 0.8521 | 1.229 | 1.124 | 1.154 |
+#> | X| 465.94504 | 93.41 | 0.004618 | 0.2709 | 0.8226 |
+#> |.....................| 8.366 | 2.034 | 1.198 | 0.7356 |
+#> |.....................| 0.8521 | 1.229 | 1.124 | 1.154 |
+#> | F| Forward Diff. | -61.65 | 1.961 | -0.4097 | -0.4254 |
+#> |.....................| -1.181 | -25.22 | -10.13 | 7.338 |
+#> |.....................| 9.206 | -10.38 | -8.223 | -7.205 |
+#> | 17| 465.56754 | 0.9973 | -1.007 | -0.9108 | -0.8946 |
+#> |.....................| -0.8457 | -0.7626 | -0.8312 | -0.9037 |
+#> |.....................| -0.9058 | -0.8309 | -0.8405 | -0.8432 |
+#> | U| 465.56754 | 93.86 | -5.378 | -0.9898 | -0.1952 |
+#> |.....................| 2.125 | 2.040 | 1.199 | 0.7342 |
+#> |.....................| 0.8494 | 1.233 | 1.127 | 1.156 |
+#> | X| 465.56754 | 93.86 | 0.004615 | 0.2710 | 0.8227 |
+#> |.....................| 8.369 | 2.040 | 1.199 | 0.7342 |
+#> |.....................| 0.8494 | 1.233 | 1.127 | 1.156 |
+#> | F| Forward Diff. | 20.78 | 1.982 | -0.3060 | -0.3796 |
+#> |.....................| -1.026 | -23.61 | -9.859 | 7.282 |
+#> |.....................| 6.603 | -10.29 | -8.096 | -7.167 |
+#> | 18| 465.36858 | 0.9928 | -1.008 | -0.9107 | -0.8945 |
+#> |.....................| -0.8454 | -0.7560 | -0.8284 | -0.9059 |
+#> |.....................| -0.9077 | -0.8278 | -0.8381 | -0.8410 |
+#> | U| 465.36858 | 93.44 | -5.379 | -0.9897 | -0.1950 |
+#> |.....................| 2.125 | 2.046 | 1.201 | 0.7326 |
+#> |.....................| 0.8477 | 1.237 | 1.130 | 1.159 |
+#> | X| 465.36858 | 93.44 | 0.004612 | 0.2710 | 0.8228 |
+#> |.....................| 8.372 | 2.046 | 1.201 | 0.7326 |
+#> |.....................| 0.8477 | 1.237 | 1.130 | 1.159 |
+#> | F| Forward Diff. | -55.43 | 1.935 | -0.4028 | -0.4254 |
+#> |.....................| -1.182 | -23.34 | -9.189 | 7.305 |
+#> |.....................| 7.555 | -10.07 | -7.946 | -6.960 |
+#> | 19| 465.01863 | 0.9972 | -1.008 | -0.9105 | -0.8943 |
+#> |.....................| -0.8449 | -0.7499 | -0.8257 | -0.9082 |
+#> |.....................| -0.9092 | -0.8240 | -0.8352 | -0.8386 |
+#> | U| 465.01863 | 93.84 | -5.380 | -0.9895 | -0.1948 |
+#> |.....................| 2.125 | 2.052 | 1.203 | 0.7308 |
+#> |.....................| 0.8464 | 1.241 | 1.133 | 1.161 |
+#> | X| 465.01863 | 93.84 | 0.004609 | 0.2710 | 0.8230 |
+#> |.....................| 8.376 | 2.052 | 1.203 | 0.7308 |
+#> |.....................| 0.8464 | 1.241 | 1.133 | 1.161 |
+#> | F| Forward Diff. | 18.74 | 1.956 | -0.3105 | -0.3857 |
+#> |.....................| -1.041 | -22.36 | -9.386 | 7.151 |
+#> |.....................| 7.639 | -9.969 | -7.832 | -6.900 |
+#> | 20| 464.81883 | 0.9930 | -1.009 | -0.9104 | -0.8942 |
+#> |.....................| -0.8445 | -0.7435 | -0.8230 | -0.9105 |
+#> |.....................| -0.9115 | -0.8207 | -0.8326 | -0.8363 |
+#> | U| 464.81883 | 93.45 | -5.381 | -0.9894 | -0.1947 |
+#> |.....................| 2.126 | 2.058 | 1.204 | 0.7291 |
+#> |.....................| 0.8444 | 1.245 | 1.136 | 1.164 |
+#> | X| 464.81883 | 93.45 | 0.004605 | 0.2710 | 0.8231 |
+#> |.....................| 8.380 | 2.058 | 1.204 | 0.7291 |
+#> |.....................| 0.8444 | 1.245 | 1.136 | 1.164 |
+#> | F| Forward Diff. | -51.40 | 1.910 | -0.3971 | -0.4173 |
+#> |.....................| -1.192 | -21.85 | -8.569 | 7.088 |
+#> |.....................| 7.257 | -9.784 | -7.694 | -6.698 |
+#> | 21| 464.49434 | 0.9973 | -1.010 | -0.9102 | -0.8940 |
+#> |.....................| -0.8439 | -0.7380 | -0.8206 | -0.9131 |
+#> |.....................| -0.9139 | -0.8168 | -0.8296 | -0.8338 |
+#> | U| 464.49434 | 93.85 | -5.381 | -0.9892 | -0.1945 |
+#> |.....................| 2.126 | 2.064 | 1.206 | 0.7271 |
+#> |.....................| 0.8423 | 1.250 | 1.139 | 1.167 |
+#> | X| 464.49434 | 93.85 | 0.004602 | 0.2711 | 0.8233 |
+#> |.....................| 8.385 | 2.064 | 1.206 | 0.7271 |
+#> |.....................| 0.8423 | 1.250 | 1.139 | 1.167 |
+#> | F| Forward Diff. | 20.43 | 1.927 | -0.3065 | -0.3887 |
+#> |.....................| -1.043 | -20.85 | -8.676 | 6.819 |
+#> |.....................| 7.291 | -9.652 | -7.555 | -6.636 |
+#> | 22| 464.27900 | 0.9935 | -1.011 | -0.9101 | -0.8938 |
+#> |.....................| -0.8433 | -0.7319 | -0.8180 | -0.9156 |
+#> |.....................| -0.9164 | -0.8129 | -0.8266 | -0.8314 |
+#> | U| 464.279 | 93.50 | -5.382 | -0.9891 | -0.1943 |
+#> |.....................| 2.127 | 2.070 | 1.207 | 0.7252 |
+#> |.....................| 0.8401 | 1.255 | 1.142 | 1.169 |
+#> | X| 464.279 | 93.50 | 0.004598 | 0.2711 | 0.8234 |
+#> |.....................| 8.389 | 2.070 | 1.207 | 0.7252 |
+#> |.....................| 0.8401 | 1.255 | 1.142 | 1.169 |
+#> | F| Forward Diff. | -42.65 | 1.884 | -0.3905 | -0.4168 |
+#> |.....................| -1.174 | -21.12 | -8.566 | 6.431 |
+#> |.....................| 8.301 | -9.439 | -7.399 | -6.436 |
+#> | 23| 463.98221 | 0.9971 | -1.012 | -0.9099 | -0.8935 |
+#> |.....................| -0.8426 | -0.7266 | -0.8156 | -0.9179 |
+#> |.....................| -0.9200 | -0.8088 | -0.8235 | -0.8288 |
+#> | U| 463.98221 | 93.84 | -5.383 | -0.9889 | -0.1940 |
+#> |.....................| 2.128 | 2.075 | 1.209 | 0.7235 |
+#> |.....................| 0.8370 | 1.260 | 1.146 | 1.172 |
+#> | X| 463.98221 | 93.84 | 0.004593 | 0.2711 | 0.8236 |
+#> |.....................| 8.395 | 2.075 | 1.209 | 0.7235 |
+#> |.....................| 0.8370 | 1.260 | 1.146 | 1.172 |
+#> | F| Forward Diff. | 17.69 | 1.891 | -0.3039 | -0.3774 |
+#> |.....................| -1.038 | -20.36 | -8.704 | 6.334 |
+#> |.....................| 6.886 | -9.291 | -7.246 | -6.355 |
+#> | 24| 463.80345 | 0.9930 | -1.013 | -0.9097 | -0.8933 |
+#> |.....................| -0.8421 | -0.7205 | -0.8127 | -0.9199 |
+#> |.....................| -0.9227 | -0.8053 | -0.8209 | -0.8265 |
+#> | U| 463.80345 | 93.45 | -5.384 | -0.9887 | -0.1939 |
+#> |.....................| 2.128 | 2.081 | 1.210 | 0.7220 |
+#> |.....................| 0.8346 | 1.264 | 1.148 | 1.175 |
+#> | X| 463.80345 | 93.45 | 0.004590 | 0.2712 | 0.8238 |
+#> |.....................| 8.399 | 2.081 | 1.210 | 0.7220 |
+#> |.....................| 0.8346 | 1.264 | 1.148 | 1.175 |
+#> | F| Forward Diff. | -49.16 | 1.846 | -0.3979 | -0.4233 |
+#> |.....................| -1.191 | -20.11 | -8.128 | 6.150 |
+#> |.....................| 7.842 | -9.114 | -7.113 | -6.163 |
+#> | 25| 463.50095 | 0.9970 | -1.014 | -0.9095 | -0.8930 |
+#> |.....................| -0.8413 | -0.7152 | -0.8100 | -0.9219 |
+#> |.....................| -0.9258 | -0.8011 | -0.8178 | -0.8240 |
+#> | U| 463.50095 | 93.83 | -5.385 | -0.9885 | -0.1936 |
+#> |.....................| 2.129 | 2.086 | 1.212 | 0.7205 |
+#> |.....................| 0.8318 | 1.269 | 1.152 | 1.178 |
+#> | X| 463.50095 | 93.83 | 0.004585 | 0.2712 | 0.8240 |
+#> |.....................| 8.406 | 2.086 | 1.212 | 0.7205 |
+#> |.....................| 0.8318 | 1.269 | 1.152 | 1.178 |
+#> | F| Forward Diff. | 15.76 | 1.857 | -0.2989 | -0.3817 |
+#> |.....................| -1.050 | -19.47 | -8.354 | 5.597 |
+#> |.....................| 5.177 | -8.956 | -6.950 | -6.091 |
+#> | 26| 463.33971 | 0.9930 | -1.014 | -0.9093 | -0.8928 |
+#> |.....................| -0.8408 | -0.7088 | -0.8070 | -0.9237 |
+#> |.....................| -0.9274 | -0.7974 | -0.8150 | -0.8217 |
+#> | U| 463.33971 | 93.45 | -5.386 | -0.9883 | -0.1934 |
+#> |.....................| 2.129 | 2.092 | 1.214 | 0.7192 |
+#> |.....................| 0.8304 | 1.273 | 1.155 | 1.180 |
+#> | X| 463.33971 | 93.45 | 0.004581 | 0.2712 | 0.8242 |
+#> |.....................| 8.411 | 2.092 | 1.214 | 0.7192 |
+#> |.....................| 0.8304 | 1.273 | 1.155 | 1.180 |
+#> | F| Forward Diff. | -49.38 | 1.817 | -0.3945 | -0.4254 |
+#> |.....................| -1.192 | -18.49 | -7.219 | 6.140 |
+#> |.....................| 6.147 | -8.752 | -6.775 | -5.892 |
+#> | 27| 463.06378 | 0.9971 | -1.016 | -0.9091 | -0.8925 |
+#> |.....................| -0.8398 | -0.7035 | -0.8044 | -0.9255 |
+#> |.....................| -0.9274 | -0.7927 | -0.8116 | -0.8189 |
+#> | U| 463.06378 | 93.84 | -5.387 | -0.9881 | -0.1930 |
+#> |.....................| 2.130 | 2.097 | 1.215 | 0.7178 |
+#> |.....................| 0.8305 | 1.279 | 1.159 | 1.184 |
+#> | X| 463.06378 | 93.84 | 0.004575 | 0.2713 | 0.8245 |
+#> |.....................| 8.419 | 2.097 | 1.215 | 0.7178 |
+#> |.....................| 0.8305 | 1.279 | 1.159 | 1.184 |
+#> | F| Forward Diff. | 17.15 | 1.839 | -0.2941 | -0.3829 |
+#> |.....................| -1.046 | -18.21 | -7.786 | 5.595 |
+#> |.....................| 7.714 | -8.592 | -6.652 | -5.814 |
+#> | 28| 462.87224 | 0.9938 | -1.017 | -0.9088 | -0.8922 |
+#> |.....................| -0.8390 | -0.6982 | -0.8019 | -0.9277 |
+#> |.....................| -0.9311 | -0.7885 | -0.8085 | -0.8163 |
+#> | U| 462.87224 | 93.52 | -5.388 | -0.9879 | -0.1927 |
+#> |.....................| 2.131 | 2.102 | 1.217 | 0.7161 |
+#> |.....................| 0.8272 | 1.284 | 1.162 | 1.186 |
+#> | X| 462.87224 | 93.52 | 0.004570 | 0.2713 | 0.8247 |
+#> |.....................| 8.425 | 2.102 | 1.217 | 0.7161 |
+#> |.....................| 0.8272 | 1.284 | 1.162 | 1.186 |
+#> | F| Forward Diff. | -35.81 | 1.797 | -0.3699 | -0.4180 |
+#> |.....................| -1.164 | -17.54 | -6.949 | 5.683 |
+#> |.....................| 5.938 | -8.368 | -6.484 | -5.617 |
+#> | 29| 462.64279 | 0.9976 | -1.018 | -0.9085 | -0.8918 |
+#> |.....................| -0.8379 | -0.6938 | -0.7998 | -0.9297 |
+#> |.....................| -0.9347 | -0.7837 | -0.8051 | -0.8136 |
+#> | U| 462.64279 | 93.88 | -5.390 | -0.9876 | -0.1923 |
+#> |.....................| 2.132 | 2.107 | 1.218 | 0.7146 |
+#> |.....................| 0.8240 | 1.289 | 1.166 | 1.189 |
+#> | X| 462.64279 | 93.88 | 0.004563 | 0.2714 | 0.8250 |
+#> |.....................| 8.435 | 2.107 | 1.218 | 0.7146 |
+#> |.....................| 0.8240 | 1.289 | 1.166 | 1.189 |
+#> | F| Forward Diff. | 23.89 | 1.802 | -0.2695 | -0.3764 |
+#> |.....................| -1.014 | -17.48 | -7.590 | 5.234 |
+#> |.....................| 7.275 | -8.199 | -6.306 | -5.540 |
+#> | 30| 462.43086 | 0.9946 | -1.020 | -0.9083 | -0.8914 |
+#> |.....................| -0.8367 | -0.6890 | -0.7974 | -0.9317 |
+#> |.....................| -0.9381 | -0.7789 | -0.8017 | -0.8108 |
+#> | U| 462.43086 | 93.61 | -5.391 | -0.9873 | -0.1919 |
+#> |.....................| 2.134 | 2.111 | 1.219 | 0.7131 |
+#> |.....................| 0.8211 | 1.295 | 1.169 | 1.193 |
+#> | X| 462.43086 | 93.61 | 0.004556 | 0.2715 | 0.8254 |
+#> |.....................| 8.445 | 2.111 | 1.219 | 0.7131 |
+#> |.....................| 0.8211 | 1.295 | 1.169 | 1.193 |
+#> | F| Forward Diff. | -22.12 | 1.763 | -0.3409 | -0.4033 |
+#> |.....................| -1.105 | -16.76 | -6.743 | 5.132 |
+#> |.....................| 5.573 | -7.935 | -6.123 | -5.337 |
+#> | 31| 462.24769 | 0.9981 | -1.021 | -0.9079 | -0.8909 |
+#> |.....................| -0.8355 | -0.6838 | -0.7950 | -0.9332 |
+#> |.....................| -0.9404 | -0.7741 | -0.7984 | -0.8080 |
+#> | U| 462.24769 | 93.94 | -5.393 | -0.9870 | -0.1915 |
+#> |.....................| 2.135 | 2.117 | 1.221 | 0.7120 |
+#> |.....................| 0.8190 | 1.301 | 1.173 | 1.196 |
+#> | X| 462.24769 | 93.94 | 0.004549 | 0.2715 | 0.8258 |
+#> |.....................| 8.455 | 2.117 | 1.221 | 0.7120 |
+#> |.....................| 0.8190 | 1.301 | 1.173 | 1.196 |
+#> | F| Forward Diff. | 32.76 | 1.771 | -0.2440 | -0.3645 |
+#> |.....................| -0.9678 | -16.08 | -6.874 | 5.077 |
+#> |.....................| 5.606 | -7.758 | -5.959 | -5.256 |
+#> | 32| 462.04894 | 0.9949 | -1.023 | -0.9076 | -0.8904 |
+#> |.....................| -0.8341 | -0.6790 | -0.7932 | -0.9353 |
+#> |.....................| -0.9395 | -0.7687 | -0.7947 | -0.8049 |
+#> | U| 462.04894 | 93.63 | -5.395 | -0.9866 | -0.1909 |
+#> |.....................| 2.136 | 2.121 | 1.222 | 0.7104 |
+#> |.....................| 0.8198 | 1.307 | 1.177 | 1.199 |
+#> | X| 462.04894 | 93.63 | 0.004540 | 0.2716 | 0.8262 |
+#> |.....................| 8.467 | 2.121 | 1.222 | 0.7104 |
+#> |.....................| 0.8198 | 1.307 | 1.177 | 1.199 |
+#> | F| Forward Diff. | -16.92 | 1.743 | -0.3189 | -0.3951 |
+#> |.....................| -1.072 | -15.84 | -6.430 | 4.847 |
+#> |.....................| 5.467 | -7.483 | -5.756 | -5.023 |
+#> | 33| 461.88553 | 0.9980 | -1.025 | -0.9073 | -0.8898 |
+#> |.....................| -0.8327 | -0.6736 | -0.7912 | -0.9375 |
+#> |.....................| -0.9397 | -0.7637 | -0.7912 | -0.8019 |
+#> | U| 461.88553 | 93.92 | -5.397 | -0.9863 | -0.1904 |
+#> |.....................| 2.138 | 2.126 | 1.223 | 0.7088 |
+#> |.....................| 0.8197 | 1.313 | 1.181 | 1.203 |
+#> | X| 461.88553 | 93.92 | 0.004531 | 0.2716 | 0.8266 |
+#> |.....................| 8.479 | 2.126 | 1.223 | 0.7088 |
+#> |.....................| 0.8197 | 1.313 | 1.181 | 1.203 |
+#> | F| Forward Diff. | 30.55 | 1.755 | -0.2327 | -0.3563 |
+#> |.....................| -0.9551 | -15.13 | -6.434 | 4.973 |
+#> |.....................| 5.515 | -7.304 | -5.584 | -4.904 |
+#> | 34| 461.69674 | 0.9949 | -1.028 | -0.9069 | -0.8892 |
+#> |.....................| -0.8309 | -0.6692 | -0.7896 | -0.9402 |
+#> |.....................| -0.9399 | -0.7583 | -0.7876 | -0.7990 |
+#> | U| 461.69674 | 93.63 | -5.400 | -0.9859 | -0.1897 |
+#> |.....................| 2.139 | 2.131 | 1.224 | 0.7067 |
+#> |.....................| 0.8195 | 1.320 | 1.185 | 1.206 |
+#> | X| 461.69674 | 93.63 | 0.004519 | 0.2717 | 0.8272 |
+#> |.....................| 8.494 | 2.131 | 1.224 | 0.7067 |
+#> |.....................| 0.8195 | 1.320 | 1.185 | 1.206 |
+#> | F| Forward Diff. | -16.57 | 1.720 | -0.3086 | -0.3856 |
+#> |.....................| -1.039 | -14.73 | -5.908 | 4.823 |
+#> |.....................| 5.359 | -7.008 | -5.393 | -4.695 |
+#> | 35| 461.54208 | 0.9978 | -1.031 | -0.9065 | -0.8885 |
+#> |.....................| -0.8293 | -0.6648 | -0.7883 | -0.9440 |
+#> |.....................| -0.9414 | -0.7533 | -0.7842 | -0.7963 |
+#> | U| 461.54208 | 93.91 | -5.402 | -0.9855 | -0.1891 |
+#> |.....................| 2.141 | 2.135 | 1.225 | 0.7038 |
+#> |.....................| 0.8182 | 1.325 | 1.189 | 1.209 |
+#> | X| 461.54208 | 93.91 | 0.004507 | 0.2718 | 0.8277 |
+#> |.....................| 8.508 | 2.135 | 1.225 | 0.7038 |
+#> |.....................| 0.8182 | 1.325 | 1.189 | 1.209 |
+#> | F| Forward Diff. | 27.49 | 1.722 | -0.2172 | -0.3438 |
+#> |.....................| -0.9069 | -13.76 | -5.979 | 4.702 |
+#> |.....................| 5.353 | -6.828 | -5.231 | -4.587 |
+#> | 36| 461.38014 | 0.9949 | -1.034 | -0.9061 | -0.8878 |
+#> |.....................| -0.8274 | -0.6624 | -0.7872 | -0.9482 |
+#> |.....................| -0.9437 | -0.7482 | -0.7807 | -0.7935 |
+#> | U| 461.38014 | 93.63 | -5.405 | -0.9851 | -0.1883 |
+#> |.....................| 2.143 | 2.137 | 1.225 | 0.7007 |
+#> |.....................| 0.8162 | 1.332 | 1.192 | 1.212 |
+#> | X| 461.38014 | 93.63 | 0.004492 | 0.2719 | 0.8283 |
+#> |.....................| 8.524 | 2.137 | 1.225 | 0.7007 |
+#> |.....................| 0.8162 | 1.332 | 1.192 | 1.212 |
+#> | F| Forward Diff. | -16.54 | 1.681 | -0.2967 | -0.3702 |
+#> |.....................| -1.003 | -14.15 | -5.693 | 4.358 |
+#> |.....................| 5.078 | -6.560 | -5.051 | -4.397 |
+#> | 37| 461.22820 | 0.9976 | -1.038 | -0.9057 | -0.8870 |
+#> |.....................| -0.8255 | -0.6585 | -0.7854 | -0.9513 |
+#> |.....................| -0.9460 | -0.7433 | -0.7774 | -0.7908 |
+#> | U| 461.2282 | 93.88 | -5.409 | -0.9847 | -0.1876 |
+#> |.....................| 2.145 | 2.141 | 1.226 | 0.6983 |
+#> |.....................| 0.8141 | 1.337 | 1.196 | 1.215 |
+#> | X| 461.2282 | 93.88 | 0.004476 | 0.2720 | 0.8290 |
+#> |.....................| 8.540 | 2.141 | 1.226 | 0.6983 |
+#> |.....................| 0.8141 | 1.337 | 1.196 | 1.215 |
+#> | F| Forward Diff. | 22.68 | 1.675 | -0.2117 | -0.3293 |
+#> |.....................| -0.8651 | -13.27 | -5.458 | 4.237 |
+#> |.....................| 3.708 | -6.326 | -4.874 | -4.289 |
+#> | 38| 461.10880 | 0.9948 | -1.041 | -0.9053 | -0.8864 |
+#> |.....................| -0.8238 | -0.6532 | -0.7845 | -0.9533 |
+#> |.....................| -0.9419 | -0.7394 | -0.7747 | -0.7885 |
+#> | U| 461.1088 | 93.62 | -5.412 | -0.9844 | -0.1869 |
+#> |.....................| 2.146 | 2.146 | 1.227 | 0.6968 |
+#> |.....................| 0.8177 | 1.342 | 1.199 | 1.218 |
+#> | X| 461.1088 | 93.62 | 0.004461 | 0.2720 | 0.8295 |
+#> |.....................| 8.555 | 2.146 | 1.227 | 0.6968 |
+#> |.....................| 0.8177 | 1.342 | 1.199 | 1.218 |
+#> | F| Forward Diff. | -17.23 | 1.655 | -0.2888 | -0.3567 |
+#> |.....................| -0.9524 | -13.71 | -5.652 | 3.877 |
+#> |.....................| 5.125 | -6.149 | -4.743 | -4.110 |
+#> | 39| 460.99174 | 0.9974 | -1.045 | -0.9049 | -0.8856 |
+#> |.....................| -0.8221 | -0.6468 | -0.7824 | -0.9536 |
+#> |.....................| -0.9388 | -0.7360 | -0.7723 | -0.7867 |
+#> | U| 460.99174 | 93.87 | -5.416 | -0.9840 | -0.1862 |
+#> |.....................| 2.148 | 2.153 | 1.228 | 0.6966 |
+#> |.....................| 0.8204 | 1.346 | 1.202 | 1.220 |
+#> | X| 460.99174 | 93.87 | 0.004444 | 0.2721 | 0.8301 |
+#> |.....................| 8.569 | 2.153 | 1.228 | 0.6966 |
+#> |.....................| 0.8204 | 1.346 | 1.202 | 1.220 |
+#> | F| Forward Diff. | 21.44 | 1.663 | -0.2166 | -0.3206 |
+#> |.....................| -0.8444 | -13.00 | -5.647 | 3.881 |
+#> |.....................| 5.370 | -6.036 | -4.631 | -4.039 |
+#> | 40| 460.85317 | 0.9948 | -1.049 | -0.9044 | -0.8849 |
+#> |.....................| -0.8203 | -0.6417 | -0.7791 | -0.9516 |
+#> |.....................| -0.9438 | -0.7341 | -0.7712 | -0.7862 |
+#> | U| 460.85317 | 93.62 | -5.420 | -0.9835 | -0.1854 |
+#> |.....................| 2.150 | 2.158 | 1.230 | 0.6981 |
+#> |.....................| 0.8161 | 1.348 | 1.203 | 1.220 |
+#> | X| 460.85317 | 93.62 | 0.004425 | 0.2722 | 0.8308 |
+#> |.....................| 8.585 | 2.158 | 1.230 | 0.6981 |
+#> |.....................| 0.8161 | 1.348 | 1.203 | 1.220 |
+#> | F| Forward Diff. | -17.08 | 1.613 | -0.2650 | -0.3380 |
+#> |.....................| -0.8994 | -12.83 | -5.261 | 3.879 |
+#> |.....................| 3.650 | -5.911 | -4.518 | -3.985 |
+#> | 41| 460.73362 | 0.9974 | -1.054 | -0.9040 | -0.8841 |
+#> |.....................| -0.8184 | -0.6359 | -0.7754 | -0.9517 |
+#> |.....................| -0.9423 | -0.7308 | -0.7693 | -0.7845 |
+#> | U| 460.73362 | 93.86 | -5.425 | -0.9831 | -0.1846 |
+#> |.....................| 2.152 | 2.163 | 1.232 | 0.6980 |
+#> |.....................| 0.8173 | 1.352 | 1.205 | 1.222 |
+#> | X| 460.73362 | 93.86 | 0.004404 | 0.2723 | 0.8314 |
+#> |.....................| 8.601 | 2.163 | 1.232 | 0.6980 |
+#> |.....................| 0.8173 | 1.352 | 1.205 | 1.222 |
+#> | F| Forward Diff. | 20.68 | 1.612 | -0.1811 | -0.2966 |
+#> |.....................| -0.7710 | -11.91 | -4.976 | 4.011 |
+#> |.....................| 3.788 | -5.788 | -4.468 | -3.936 |
+#> | 42| 460.64877 | 0.9948 | -1.058 | -0.9038 | -0.8835 |
+#> |.....................| -0.8171 | -0.6318 | -0.7737 | -0.9543 |
+#> |.....................| -0.9372 | -0.7272 | -0.7669 | -0.7822 |
+#> | U| 460.64877 | 93.62 | -5.429 | -0.9829 | -0.1841 |
+#> |.....................| 2.153 | 2.167 | 1.233 | 0.6961 |
+#> |.....................| 0.8219 | 1.357 | 1.208 | 1.225 |
+#> | X| 460.64877 | 93.62 | 0.004387 | 0.2723 | 0.8319 |
+#> |.....................| 8.612 | 2.167 | 1.233 | 0.6961 |
+#> |.....................| 0.8219 | 1.357 | 1.208 | 1.225 |
+#> | F| Forward Diff. | -16.17 | 1.594 | -0.2646 | -0.3254 |
+#> |.....................| -0.8335 | -11.77 | -4.666 | 3.810 |
+#> |.....................| 5.289 | -5.625 | -4.348 | -3.754 |
+#> | 43| 460.54180 | 0.9972 | -1.063 | -0.9035 | -0.8829 |
+#> |.....................| -0.8158 | -0.6297 | -0.7745 | -0.9584 |
+#> |.....................| -0.9393 | -0.7227 | -0.7634 | -0.7794 |
+#> | U| 460.5418 | 93.85 | -5.434 | -0.9826 | -0.1834 |
+#> |.....................| 2.154 | 2.169 | 1.233 | 0.6929 |
+#> |.....................| 0.8200 | 1.362 | 1.211 | 1.228 |
+#> | X| 460.5418 | 93.85 | 0.004366 | 0.2724 | 0.8324 |
+#> |.....................| 8.623 | 2.169 | 1.233 | 0.6929 |
+#> |.....................| 0.8200 | 1.362 | 1.211 | 1.228 |
+#> | F| Forward Diff. | 18.48 | 1.582 | -0.1851 | -0.2851 |
+#> |.....................| -0.7462 | -11.38 | -4.808 | 3.651 |
+#> |.....................| 5.261 | -5.402 | -4.159 | -3.623 |
+#> | 44| 460.43711 | 0.9948 | -1.067 | -0.9032 | -0.8823 |
+#> |.....................| -0.8147 | -0.6284 | -0.7753 | -0.9609 |
+#> |.....................| -0.9464 | -0.7199 | -0.7613 | -0.7778 |
+#> | U| 460.43711 | 93.63 | -5.438 | -0.9823 | -0.1829 |
+#> |.....................| 2.156 | 2.171 | 1.232 | 0.6911 |
+#> |.....................| 0.8138 | 1.365 | 1.214 | 1.230 |
+#> | X| 460.43711 | 93.63 | 0.004347 | 0.2724 | 0.8329 |
+#> |.....................| 8.632 | 2.171 | 1.232 | 0.6911 |
+#> |.....................| 0.8138 | 1.365 | 1.214 | 1.230 |
+#> | 45| 460.35910 | 0.9948 | -1.072 | -0.9029 | -0.8817 |
+#> |.....................| -0.8135 | -0.6285 | -0.7770 | -0.9633 |
+#> |.....................| -0.9542 | -0.7172 | -0.7594 | -0.7765 |
+#> | U| 460.3591 | 93.63 | -5.443 | -0.9820 | -0.1822 |
+#> |.....................| 2.157 | 2.170 | 1.231 | 0.6893 |
+#> |.....................| 0.8069 | 1.368 | 1.216 | 1.231 |
+#> | X| 460.3591 | 93.63 | 0.004325 | 0.2725 | 0.8334 |
+#> |.....................| 8.643 | 2.170 | 1.231 | 0.6893 |
+#> |.....................| 0.8069 | 1.368 | 1.216 | 1.231 |
+#> | 46| 460.06586 | 0.9948 | -1.095 | -0.9016 | -0.8789 |
+#> |.....................| -0.8080 | -0.6294 | -0.7850 | -0.9744 |
+#> |.....................| -0.9902 | -0.7052 | -0.7507 | -0.7704 |
+#> | U| 460.06586 | 93.63 | -5.466 | -0.9807 | -0.1794 |
+#> |.....................| 2.162 | 2.170 | 1.227 | 0.6809 |
+#> |.....................| 0.7753 | 1.383 | 1.225 | 1.238 |
+#> | X| 460.06586 | 93.63 | 0.004227 | 0.2728 | 0.8358 |
+#> |.....................| 8.691 | 2.170 | 1.227 | 0.6809 |
+#> |.....................| 0.7753 | 1.383 | 1.225 | 1.238 |
+#> | 47| 459.86897 | 0.9949 | -1.169 | -0.8972 | -0.8697 |
+#> |.....................| -0.7899 | -0.6321 | -0.8109 | -1.010 |
+#> |.....................| -1.107 | -0.6662 | -0.7224 | -0.7508 |
+#> | U| 459.86897 | 93.63 | -5.541 | -0.9763 | -0.1702 |
+#> |.....................| 2.180 | 2.167 | 1.211 | 0.6537 |
+#> |.....................| 0.6731 | 1.429 | 1.256 | 1.260 |
+#> | X| 459.86897 | 93.63 | 0.003924 | 0.2736 | 0.8435 |
+#> |.....................| 8.849 | 2.167 | 1.211 | 0.6537 |
+#> |.....................| 0.6731 | 1.429 | 1.256 | 1.260 |
+#> | F| Forward Diff. | -18.09 | 0.8663 | 0.2544 | 0.003114 |
+#> |.....................| -0.1212 | -11.64 | -7.047 | 0.1395 |
+#> |.....................| -6.727 | -2.881 | -1.866 | -2.263 |
+#> | 48| 458.58262 | 0.9946 | -1.323 | -0.9067 | -0.8597 |
+#> |.....................| -0.7710 | -0.5295 | -0.7001 | -0.9650 |
+#> |.....................| -1.113 | -0.6398 | -0.7228 | -0.7390 |
+#> | U| 458.58262 | 93.60 | -5.695 | -0.9858 | -0.1602 |
+#> |.....................| 2.199 | 2.267 | 1.277 | 0.6880 |
+#> |.....................| 0.6674 | 1.460 | 1.256 | 1.273 |
+#> | X| 458.58262 | 93.60 | 0.003363 | 0.2717 | 0.8520 |
+#> |.....................| 9.019 | 2.267 | 1.277 | 0.6880 |
+#> |.....................| 0.6674 | 1.460 | 1.256 | 1.273 |
+#> | F| Forward Diff. | -24.91 | 0.5848 | -0.03458 | 0.2475 |
+#> |.....................| 0.3762 | -4.573 | -0.04388 | 1.648 |
+#> |.....................| -5.878 | -2.073 | -1.935 | -2.146 |
+#> | 49| 460.44377 | 0.9922 | -1.558 | -0.9059 | -0.8818 |
+#> |.....................| -0.8081 | -0.3861 | -0.8607 | -1.070 |
+#> |.....................| -0.9432 | -0.5131 | -0.5915 | -0.5851 |
+#> | U| 460.44377 | 93.38 | -5.929 | -0.9849 | -0.1824 |
+#> |.....................| 2.162 | 2.407 | 1.182 | 0.6086 |
+#> |.....................| 0.8166 | 1.611 | 1.400 | 1.447 |
+#> | X| 460.44377 | 93.38 | 0.002660 | 0.2719 | 0.8333 |
+#> |.....................| 8.690 | 2.407 | 1.182 | 0.6086 |
+#> |.....................| 0.8166 | 1.611 | 1.400 | 1.447 |
+#> | 50| 458.18867 | 0.9958 | -1.393 | -0.9065 | -0.8663 |
+#> |.....................| -0.7821 | -0.4865 | -0.7479 | -0.9965 |
+#> |.....................| -1.062 | -0.6019 | -0.6835 | -0.6930 |
+#> | U| 458.18867 | 93.71 | -5.765 | -0.9855 | -0.1668 |
+#> |.....................| 2.188 | 2.309 | 1.248 | 0.6642 |
+#> |.....................| 0.7122 | 1.506 | 1.299 | 1.325 |
+#> | X| 458.18867 | 93.71 | 0.003136 | 0.2718 | 0.8463 |
+#> |.....................| 8.919 | 2.309 | 1.248 | 0.6642 |
+#> |.....................| 0.7122 | 1.506 | 1.299 | 1.325 |
+#> | F| Forward Diff. | -3.049 | 0.4396 | -0.1330 | 0.02964 |
+#> |.....................| -0.08039 | -2.599 | -3.012 | -0.1957 |
+#> |.....................| -2.463 | -0.6721 | 0.3494 | 0.7476 |
+#> | 51| 458.45407 | 0.9980 | -1.449 | -0.8787 | -0.8738 |
+#> |.....................| -0.7836 | -0.4935 | -0.7244 | -1.061 |
+#> |.....................| -1.034 | -0.5419 | -0.6952 | -0.7610 |
+#> | U| 458.45407 | 93.92 | -5.821 | -0.9579 | -0.1743 |
+#> |.....................| 2.187 | 2.302 | 1.262 | 0.6155 |
+#> |.....................| 0.7366 | 1.577 | 1.286 | 1.249 |
+#> | X| 458.45407 | 93.92 | 0.002965 | 0.2773 | 0.8400 |
+#> |.....................| 8.906 | 2.302 | 1.262 | 0.6155 |
+#> |.....................| 0.7366 | 1.577 | 1.286 | 1.249 |
+#> | 52| 458.19883 | 0.9985 | -1.406 | -0.9001 | -0.8680 |
+#> |.....................| -0.7823 | -0.4861 | -0.7404 | -1.011 |
+#> |.....................| -1.054 | -0.5879 | -0.6864 | -0.7089 |
+#> | U| 458.19883 | 93.97 | -5.778 | -0.9792 | -0.1685 |
+#> |.....................| 2.188 | 2.309 | 1.253 | 0.6534 |
+#> |.....................| 0.7193 | 1.522 | 1.296 | 1.307 |
+#> | X| 458.19883 | 93.97 | 0.003096 | 0.2731 | 0.8449 |
+#> |.....................| 8.917 | 2.309 | 1.253 | 0.6534 |
+#> |.....................| 0.7193 | 1.522 | 1.296 | 1.307 |
+#> | 53| 458.20478 | 0.9986 | -1.399 | -0.9039 | -0.8670 |
+#> |.....................| -0.7821 | -0.4848 | -0.7433 | -1.002 |
+#> |.....................| -1.058 | -0.5961 | -0.6848 | -0.6996 |
+#> | U| 458.20478 | 93.98 | -5.770 | -0.9830 | -0.1675 |
+#> |.....................| 2.188 | 2.311 | 1.251 | 0.6601 |
+#> |.....................| 0.7162 | 1.512 | 1.297 | 1.318 |
+#> | X| 458.20478 | 93.98 | 0.003120 | 0.2723 | 0.8458 |
+#> |.....................| 8.919 | 2.311 | 1.251 | 0.6601 |
+#> |.....................| 0.7162 | 1.512 | 1.297 | 1.318 |
+#> | 54| 458.21371 | 0.9986 | -1.394 | -0.9063 | -0.8663 |
+#> |.....................| -0.7820 | -0.4840 | -0.7451 | -0.9963 |
+#> |.....................| -1.060 | -0.6013 | -0.6838 | -0.6937 |
+#> | U| 458.21371 | 93.98 | -5.765 | -0.9854 | -0.1669 |
+#> |.....................| 2.188 | 2.311 | 1.250 | 0.6644 |
+#> |.....................| 0.7142 | 1.506 | 1.298 | 1.325 |
+#> | X| 458.21371 | 93.98 | 0.003135 | 0.2718 | 0.8463 |
+#> |.....................| 8.920 | 2.311 | 1.250 | 0.6644 |
+#> |.....................| 0.7142 | 1.506 | 1.298 | 1.325 |
+#> | 55| 458.18572 | 0.9965 | -1.393 | -0.9064 | -0.8663 |
+#> |.....................| -0.7820 | -0.4858 | -0.7472 | -0.9964 |
+#> |.....................| -1.062 | -0.6017 | -0.6836 | -0.6932 |
+#> | U| 458.18572 | 93.79 | -5.765 | -0.9855 | -0.1668 |
+#> |.....................| 2.188 | 2.310 | 1.249 | 0.6643 |
+#> |.....................| 0.7128 | 1.506 | 1.299 | 1.325 |
+#> | X| 458.18572 | 93.79 | 0.003136 | 0.2718 | 0.8463 |
+#> |.....................| 8.919 | 2.310 | 1.249 | 0.6643 |
+#> |.....................| 0.7128 | 1.506 | 1.299 | 1.325 |
+#> | F| Forward Diff. | 5.905 | 0.4355 | -0.1157 | 0.02634 |
+#> |.....................| -0.05151 | -1.735 | -2.785 | -0.07657 |
+#> |.....................| -2.587 | -0.1320 | 0.06282 | 0.8041 |
+#> | 56| 458.18221 | 0.9957 | -1.394 | -0.9063 | -0.8663 |
+#> |.....................| -0.7820 | -0.4856 | -0.7465 | -0.9968 |
+#> |.....................| -1.061 | -0.6016 | -0.6835 | -0.6937 |
+#> | U| 458.18221 | 93.70 | -5.765 | -0.9853 | -0.1669 |
+#> |.....................| 2.188 | 2.310 | 1.249 | 0.6640 |
+#> |.....................| 0.7132 | 1.506 | 1.299 | 1.325 |
+#> | X| 458.18221 | 93.70 | 0.003135 | 0.2718 | 0.8463 |
+#> |.....................| 8.920 | 2.310 | 1.249 | 0.6640 |
+#> |.....................| 0.7132 | 1.506 | 1.299 | 1.325 |
+#> | F| Forward Diff. | -4.339 | 0.4378 | -0.1282 | 0.03581 |
+#> |.....................| -0.09329 | -1.978 | -2.551 | -0.01933 |
+#> |.....................| -3.951 | -0.1424 | 0.01723 | 0.8408 |
+#> | 57| 458.17882 | 0.9963 | -1.394 | -0.9061 | -0.8663 |
+#> |.....................| -0.7819 | -0.4855 | -0.7459 | -0.9972 |
+#> |.....................| -1.060 | -0.6016 | -0.6832 | -0.6941 |
+#> | U| 458.17882 | 93.76 | -5.766 | -0.9852 | -0.1669 |
+#> |.....................| 2.188 | 2.310 | 1.250 | 0.6637 |
+#> |.....................| 0.7139 | 1.506 | 1.299 | 1.324 |
+#> | X| 458.17882 | 93.76 | 0.003134 | 0.2719 | 0.8463 |
+#> |.....................| 8.920 | 2.310 | 1.250 | 0.6637 |
+#> |.....................| 0.7139 | 1.506 | 1.299 | 1.324 |
+#> | F| Forward Diff. | 2.737 | 0.4289 | -0.1193 | 0.04099 |
+#> |.....................| -0.07175 | -2.104 | -2.655 | -0.1084 |
+#> |.....................| -2.489 | -0.08715 | 0.1037 | 0.7775 |
+#> | 58| 458.17628 | 0.9955 | -1.394 | -0.9061 | -0.8663 |
+#> |.....................| -0.7819 | -0.4849 | -0.7451 | -0.9972 |
+#> |.....................| -1.060 | -0.6016 | -0.6832 | -0.6943 |
+#> | U| 458.17628 | 93.69 | -5.766 | -0.9851 | -0.1669 |
+#> |.....................| 2.188 | 2.311 | 1.250 | 0.6637 |
+#> |.....................| 0.7145 | 1.506 | 1.299 | 1.324 |
+#> | X| 458.17628 | 93.69 | 0.003133 | 0.2719 | 0.8463 |
+#> |.....................| 8.920 | 2.311 | 1.250 | 0.6637 |
+#> |.....................| 0.7145 | 1.506 | 1.299 | 1.324 |
+#> | F| Forward Diff. | -5.829 | 0.4364 | -0.1238 | 0.03009 |
+#> |.....................| -0.09450 | -1.871 | -2.366 | 0.01771 |
+#> |.....................| -2.486 | -0.08743 | 0.03350 | 0.7982 |
+#> | 59| 458.17323 | 0.9963 | -1.395 | -0.9059 | -0.8664 |
+#> |.....................| -0.7819 | -0.4846 | -0.7446 | -0.9977 |
+#> |.....................| -1.059 | -0.6018 | -0.6829 | -0.6949 |
+#> | U| 458.17323 | 93.77 | -5.766 | -0.9850 | -0.1669 |
+#> |.....................| 2.188 | 2.311 | 1.250 | 0.6633 |
+#> |.....................| 0.7149 | 1.506 | 1.299 | 1.323 |
+#> | X| 458.17323 | 93.77 | 0.003132 | 0.2719 | 0.8463 |
+#> |.....................| 8.921 | 2.311 | 1.250 | 0.6633 |
+#> |.....................| 0.7149 | 1.506 | 1.299 | 1.323 |
+#> | F| Forward Diff. | 3.135 | 0.4259 | -0.1111 | 0.03860 |
+#> |.....................| -0.07150 | -1.713 | -2.294 | -0.1635 |
+#> |.....................| -3.755 | -0.1071 | 0.1242 | 0.7274 |
+#> | 60| 458.17055 | 0.9957 | -1.395 | -0.9058 | -0.8664 |
+#> |.....................| -0.7818 | -0.4843 | -0.7440 | -0.9980 |
+#> |.....................| -1.058 | -0.6018 | -0.6828 | -0.6953 |
+#> | U| 458.17055 | 93.70 | -5.766 | -0.9848 | -0.1669 |
+#> |.....................| 2.188 | 2.311 | 1.251 | 0.6631 |
+#> |.....................| 0.7157 | 1.506 | 1.300 | 1.323 |
+#> | X| 458.17055 | 93.70 | 0.003131 | 0.2719 | 0.8463 |
+#> |.....................| 8.921 | 2.311 | 1.251 | 0.6631 |
+#> |.....................| 0.7157 | 1.506 | 1.300 | 1.323 |
+#> | F| Forward Diff. | -3.767 | 0.4346 | -0.1027 | 0.03296 |
+#> |.....................| -0.07232 | -2.503 | -3.089 | -0.1630 |
+#> |.....................| -2.382 | -0.08570 | 0.1151 | 0.7161 |
+#> | 61| 458.16819 | 0.9965 | -1.395 | -0.9058 | -0.8664 |
+#> |.....................| -0.7818 | -0.4837 | -0.7432 | -0.9981 |
+#> |.....................| -1.058 | -0.6018 | -0.6828 | -0.6955 |
+#> | U| 458.16819 | 93.79 | -5.767 | -0.9848 | -0.1669 |
+#> |.....................| 2.188 | 2.312 | 1.251 | 0.6630 |
+#> |.....................| 0.7162 | 1.506 | 1.300 | 1.322 |
+#> | X| 458.16819 | 93.79 | 0.003130 | 0.2719 | 0.8462 |
+#> |.....................| 8.921 | 2.312 | 1.251 | 0.6630 |
+#> |.....................| 0.7162 | 1.506 | 1.300 | 1.322 |
+#> | F| Forward Diff. | 6.568 | 0.4333 | -0.07429 | 0.03599 |
+#> |.....................| -0.03802 | -2.553 | -3.191 | -0.5393 |
+#> |.....................| -0.9714 | -0.8035 | 0.1031 | 0.6902 |
+#> | 62| 458.16513 | 0.9957 | -1.396 | -0.9056 | -0.8666 |
+#> |.....................| -0.7821 | -0.4835 | -0.7425 | -0.9983 |
+#> |.....................| -1.057 | -0.6019 | -0.6824 | -0.6959 |
+#> | U| 458.16513 | 93.70 | -5.767 | -0.9847 | -0.1672 |
+#> |.....................| 2.188 | 2.312 | 1.252 | 0.6629 |
+#> |.....................| 0.7164 | 1.506 | 1.300 | 1.322 |
+#> | X| 458.16513 | 93.70 | 0.003129 | 0.2720 | 0.8461 |
+#> |.....................| 8.919 | 2.312 | 1.252 | 0.6629 |
+#> |.....................| 0.7164 | 1.506 | 1.300 | 1.322 |
+#> | F| Forward Diff. | -3.933 | 0.4306 | -0.09800 | 0.02413 |
+#> |.....................| -0.09225 | -1.469 | -2.000 | -0.05194 |
+#> |.....................| -3.675 | -0.07209 | 0.09082 | 0.7196 |
+#> | 63| 458.16261 | 0.9962 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4834 | -0.7420 | -0.9986 |
+#> |.....................| -1.057 | -0.6017 | -0.6820 | -0.6964 |
+#> | U| 458.16261 | 93.76 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.312 | 1.252 | 0.6626 |
+#> |.....................| 0.7170 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16261 | 93.76 | 0.003127 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.312 | 1.252 | 0.6626 |
+#> |.....................| 0.7170 | 1.506 | 1.300 | 1.321 |
+#> | F| Forward Diff. | 2.233 | 0.4197 | -0.09277 | 0.03004 |
+#> |.....................| -0.08165 | -1.772 | -2.245 | -0.08206 |
+#> |.....................| -2.339 | -0.1510 | 0.07888 | 0.6887 |
+#> | 64| 458.16062 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16062 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16062 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | M| Mixed Diff. | -6.515 | 0.4169 | -0.1028 |-1.670e+05 |
+#> |.....................| -0.1097 | -2.956 | -2.997 | -0.5657 |
+#> |.....................| -4.153 | -0.6659 | -0.7853 | 0.1256 |
+#> | 65| 458.16519 | 0.9948 | -1.397 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4822 | -0.7405 | -0.9986 |
+#> |.....................| -1.055 | -0.6016 | -0.6821 | -0.6969 |
+#> | U| 458.16519 | 93.62 | -5.768 | -0.9844 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.253 | 0.6627 |
+#> |.....................| 0.7183 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16519 | 93.62 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.253 | 0.6627 |
+#> |.....................| 0.7183 | 1.506 | 1.300 | 1.321 |
+#> | 66| 458.16209 | 0.9951 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4825 | -0.7409 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6968 |
+#> | U| 458.16209 | 93.65 | -5.768 | -0.9844 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.253 | 0.6626 |
+#> |.....................| 0.7180 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16209 | 93.65 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.253 | 0.6626 |
+#> |.....................| 0.7180 | 1.506 | 1.300 | 1.321 |
+#> | 67| 458.16115 | 0.9953 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4827 | -0.7410 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16115 | 93.67 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.253 | 0.6626 |
+#> |.....................| 0.7178 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16115 | 93.67 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.253 | 0.6626 |
+#> |.....................| 0.7178 | 1.506 | 1.300 | 1.321 |
+#> | 68| 458.16084 | 0.9954 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4827 | -0.7411 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16084 | 93.68 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16084 | 93.68 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
+#> | 69| 458.16072 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16072 | 93.68 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16072 | 93.68 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
+#> | 70| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
+#> | 71| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 72| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 73| 458.16072 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16072 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16072 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 74| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 75| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 76| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 77| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 78| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 79| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 80| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 81| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 82| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 83| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 84| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 85| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 86| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 87| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 88| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 89| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 90| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 91| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | 92| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
+#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
+#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
+#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
+#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
+#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
+#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> 1: 93.5791 -5.6199 -2.0817 -3.9984 -1.2037 0.1481 4.5359 1.6042 1.1515 2.4545 0.4989 0.5230 19.1822 10.0277
+#> 2: 93.5157 -5.6781 -1.9742 -4.0546 -1.1333 0.1109 4.4678 1.5240 1.0939 2.3318 0.4740 0.6338 12.8885 7.4711
+#> 3: 93.2898 -5.7047 -1.8559 -4.1328 -1.0939 0.0438 5.0096 1.4478 1.1939 2.2152 0.4503 0.6021 11.0381 5.1444
+#> 4: 93.0426 -5.7814 -1.8501 -4.1839 -1.0410 0.0594 6.3802 1.4778 1.2229 2.1556 0.4278 0.5972 10.2381 4.4049
+#> 5: 92.9134 -5.8482 -1.8162 -4.2071 -1.0582 0.0732 6.9858 1.8242 1.1718 2.3151 0.4064 0.5822 9.8642 4.4088
+#> 6: 92.7655 -5.8047 -1.8535 -4.2041 -0.9870 0.0611 6.6365 1.7739 1.1619 2.2910 0.3861 0.5531 8.6374 4.0594
+#> 7: 93.0259 -5.8252 -1.9173 -4.2093 -0.9549 0.0995 6.3047 2.2731 1.1038 2.1765 0.3668 0.5255 9.0819 3.0678
+#> 8: 93.1406 -5.7510 -1.9019 -4.2213 -0.9559 0.1508 5.9894 2.5908 1.0919 2.0948 0.3484 0.4992 8.3332 2.3703
+#> 9: 93.3980 -5.5162 -1.9512 -4.2707 -0.9026 0.1570 5.6900 2.4612 1.0373 2.3579 0.3310 0.4742 7.7762 2.1692
+#> 10: 93.5148 -5.4966 -1.9184 -4.2482 -0.9045 0.1396 5.4055 2.3382 0.9855 2.2400 0.3145 0.4652 7.5796 1.9233
+#> 11: 93.1833 -5.5679 -1.9315 -4.2869 -0.9148 0.1713 5.1352 2.2213 0.9362 2.1465 0.2987 0.4622 7.5181 1.8003
+#> 12: 92.9902 -5.7249 -1.9741 -4.3054 -0.9148 0.1927 4.8784 2.9298 0.8975 2.3858 0.2838 0.5005 7.3638 1.7074
+#> 13: 92.5821 -5.7143 -1.9662 -4.3403 -0.8940 0.1595 4.6345 2.8035 0.9305 2.5370 0.2696 0.4755 7.1732 1.6333
+#> 14: 92.1385 -5.5571 -1.9874 -4.2935 -0.8815 0.1762 5.5000 2.6634 0.9011 2.4102 0.2561 0.5012 7.1920 1.7020
+#> 15: 92.1244 -5.5198 -1.9701 -4.3134 -0.8984 0.1704 5.2250 2.5302 0.9705 2.4401 0.2433 0.4839 7.4072 1.6160
+#> 16: 92.6306 -5.4666 -1.9776 -4.3023 -0.8906 0.1737 4.9638 2.4037 1.0278 2.3181 0.2312 0.5183 7.5105 1.6033
+#> 17: 92.5769 -5.4886 -2.0034 -4.3892 -0.8863 0.1967 5.6659 2.2835 1.0796 2.7700 0.2196 0.5138 7.6495 1.4656
+#> 18: 92.0321 -5.5257 -2.0086 -4.3651 -0.8914 0.1869 6.5345 2.1693 1.0771 2.6315 0.2086 0.4906 7.8248 1.4297
+#> 19: 92.5497 -5.5509 -1.9892 -4.3590 -0.8947 0.2148 6.2078 2.0936 1.0629 2.4999 0.1992 0.4847 7.8809 1.4881
+#> 20: 92.3638 -5.5322 -1.9943 -4.3507 -0.9153 0.1787 6.2176 2.1784 1.0242 2.5190 0.1923 0.4604 7.7900 1.5147
+#> 21: 92.3946 -5.5963 -1.9984 -4.3234 -0.9031 0.1961 5.9067 2.4305 0.9962 2.3930 0.1827 0.4374 7.6671 1.5182
+#> 22: 92.3389 -5.7757 -1.9686 -4.3485 -0.9054 0.1677 5.6113 3.2010 0.9650 2.4493 0.1907 0.4220 7.1305 1.5425
+#> 23: 92.5054 -5.7766 -1.9947 -4.3613 -0.9069 0.1781 5.3308 3.2506 0.9932 2.5478 0.1868 0.4217 7.6690 1.4526
+#> 24: 92.5865 -5.8597 -1.9691 -4.4676 -0.8950 0.1755 5.0642 4.0954 0.9471 3.5482 0.1891 0.4438 7.2397 1.6349
+#> 25: 92.3775 -5.8727 -1.9577 -4.4964 -0.8955 0.1477 4.8354 3.8906 0.9557 3.5054 0.2003 0.4216 6.7966 1.5576
+#> 26: 92.2427 -5.9696 -1.9672 -4.4384 -0.9063 0.1733 4.5937 4.0917 0.9924 3.3326 0.1918 0.4341 6.9377 1.5723
+#> 27: 92.7312 -5.8434 -1.9590 -4.3655 -0.9095 0.1669 4.4448 3.8871 1.0032 3.1660 0.2006 0.4320 7.1970 1.5118
+#> 28: 92.7033 -5.8759 -1.9827 -4.3776 -0.9145 0.1844 4.5885 3.6928 0.9750 3.0077 0.2093 0.4104 6.8745 1.4865
+#> 29: 92.5242 -5.8627 -1.9806 -4.4623 -0.9142 0.2069 5.2823 3.5081 0.9748 3.5849 0.2098 0.4120 6.9735 1.5115
+#> 30: 92.2312 -5.8332 -1.9739 -4.3699 -0.9100 0.1624 5.0182 3.5473 0.9553 3.4056 0.2102 0.3914 6.8547 1.5172
+#> 31: 92.1659 -5.7898 -1.9642 -4.3956 -0.9105 0.1625 4.7672 3.3700 0.9442 3.2571 0.2071 0.3795 6.5191 1.5452
+#> 32: 92.5436 -5.7968 -1.9642 -4.3987 -0.9179 0.1110 4.5289 3.2015 0.9382 3.0943 0.2024 0.3605 6.5921 1.5105
+#> 33: 92.7837 -5.8155 -1.9539 -4.3145 -0.9157 0.1398 4.3024 3.3616 0.9119 2.9395 0.1981 0.3494 6.2870 1.6036
+#> 34: 93.0500 -5.8853 -1.9587 -4.2507 -0.9146 0.1455 4.0873 4.3592 0.9129 2.7926 0.1961 0.3319 6.3493 1.6059
+#> 35: 93.1208 -5.8581 -1.9614 -4.2722 -0.9127 0.1255 4.0645 4.1413 0.9262 2.6529 0.1964 0.3157 6.1337 1.6010
+#> 36: 93.1002 -5.8598 -1.9886 -4.2092 -0.9076 0.1192 4.2392 3.9342 0.9566 2.5203 0.2015 0.3222 6.5326 1.4847
+#> 37: 92.8242 -5.6228 -1.9655 -4.2054 -0.9099 0.1010 6.8190 3.7375 0.9087 2.3943 0.1942 0.3141 6.2613 1.6015
+#> 38: 93.1512 -5.5747 -1.9736 -4.2054 -0.9115 0.0887 6.4781 3.5506 0.8904 2.2746 0.1930 0.3298 6.4960 1.5750
+#> 39: 92.9998 -5.5416 -1.9750 -4.2124 -0.9101 0.0953 6.1542 3.3731 0.9013 2.1608 0.1858 0.3204 6.6470 1.5705
+#> 40: 93.2158 -5.7057 -1.9587 -4.2101 -0.9122 0.0630 5.8464 3.2044 0.9350 2.1357 0.1851 0.3044 6.6842 1.5069
+#> 41: 93.0585 -5.5453 -1.9306 -4.2101 -0.9021 0.0531 5.5541 3.0442 0.9458 2.1673 0.1851 0.2892 6.3923 1.5949
+#> 42: 93.0958 -5.4512 -1.9484 -4.2227 -0.8959 0.0649 5.2764 2.8920 0.9571 2.1930 0.1829 0.2747 6.3082 1.5985
+#> 43: 93.2333 -5.5398 -1.9391 -4.2400 -0.8972 0.0870 5.0126 2.7474 0.9913 2.2830 0.1984 0.2720 6.0810 1.6131
+#> 44: 92.9479 -5.5648 -1.9227 -4.2468 -0.9104 0.0963 4.7620 2.6100 0.9682 2.2976 0.2038 0.2648 5.8461 1.6955
+#> 45: 93.0244 -5.6247 -1.9379 -4.2588 -0.9093 0.0865 5.2997 2.4894 0.9837 2.3100 0.2039 0.2844 5.9439 1.6121
+#> 46: 92.5959 -5.6240 -1.9513 -4.2588 -0.9172 0.0923 5.3111 2.5081 1.0158 2.3100 0.2050 0.2702 6.0141 1.6189
+#> 47: 92.8483 -5.5823 -1.9529 -4.2684 -0.9194 0.0770 6.2469 2.3827 1.0328 2.3567 0.2104 0.2567 6.0472 1.5858
+#> 48: 92.6210 -5.6336 -1.9379 -4.3049 -0.9054 0.0747 7.5721 2.3177 1.0379 2.5427 0.2103 0.2439 6.0431 1.5860
+#> 49: 92.6337 -5.6723 -1.9486 -4.2879 -0.8985 0.0773 7.1935 2.6572 1.0181 2.4515 0.2056 0.2559 6.0895 1.5217
+#> 50: 92.2413 -5.7138 -1.9587 -4.2804 -0.8926 0.0774 8.1551 2.9779 1.0282 2.4807 0.2090 0.2510 6.2355 1.5223
+#> 51: 92.2223 -5.6765 -1.9496 -4.2971 -0.8840 0.1034 7.7638 3.0625 1.0017 2.6024 0.2075 0.2384 6.3495 1.6621
+#> 52: 92.4242 -5.6573 -1.9408 -4.2943 -0.8993 0.1136 8.3190 2.9093 1.0044 2.4822 0.2163 0.2411 6.0611 1.5241
+#> 53: 92.6070 -5.5921 -1.9397 -4.2873 -0.9046 0.0904 10.3681 2.7639 1.0098 2.4895 0.2194 0.2393 6.1728 1.5264
+#> 54: 92.9339 -5.6194 -1.9292 -4.2950 -0.9006 0.1010 9.9150 2.6257 1.0088 2.4268 0.2346 0.2492 5.9203 1.5693
+#> 55: 93.4640 -5.5851 -1.8969 -4.2614 -0.9065 0.1058 10.3986 2.4944 1.0204 2.3055 0.2257 0.2403 5.7030 1.5717
+#> 56: 93.3646 -5.5851 -1.9127 -4.3130 -0.9196 0.1077 9.8787 2.3697 1.0067 2.6259 0.2261 0.2370 5.7389 1.5053
+#> 57: 93.5408 -5.4962 -1.9150 -4.3285 -0.9148 0.0880 9.3848 2.2512 0.9903 2.6118 0.2160 0.2494 5.7530 1.5780
+#> 58: 93.5195 -5.4358 -1.9459 -4.3041 -0.9076 0.1022 8.9155 2.1386 1.0220 2.5253 0.2220 0.2578 6.0138 1.4494
+#> 59: 93.5906 -5.4624 -1.9507 -4.3065 -0.9124 0.1374 8.4698 2.0317 1.0230 2.5539 0.2212 0.2449 5.7538 1.6021
+#> 60: 93.3308 -5.3784 -1.9540 -4.2417 -0.9173 0.1337 8.0463 1.9301 1.0298 2.4262 0.2173 0.2327 5.8841 1.4634
+#> 61: 93.3506 -5.4000 -1.9688 -4.2389 -0.9130 0.0942 7.6440 1.8336 1.0437 2.3049 0.2216 0.2210 6.0098 1.4243
+#> 62: 93.6969 -5.4175 -1.9467 -4.2389 -0.9135 0.1315 7.2618 1.7419 1.0213 2.2519 0.2250 0.2149 5.6278 1.4755
+#> 63: 93.6188 -5.3860 -1.9295 -4.2637 -0.9222 0.1196 7.8033 1.6548 1.0340 2.2699 0.2282 0.2282 5.6763 1.4755
+#> 64: 93.6782 -5.4118 -1.9518 -4.2655 -0.9298 0.1055 8.3519 1.5721 1.0227 2.4426 0.2317 0.2560 5.8006 1.4724
+#> 65: 93.5253 -5.4313 -1.9314 -4.2538 -0.9245 0.0919 7.9343 1.4980 1.0771 2.3486 0.2249 0.2635 5.8752 1.4850
+#> 66: 93.3192 -5.5672 -1.9715 -4.2575 -0.9224 0.1404 8.2293 1.9722 1.0233 2.3758 0.2365 0.2546 5.9462 1.5148
+#> 67: 93.0765 -5.4861 -1.9673 -4.2472 -0.9103 0.0935 8.3227 1.8736 0.9889 2.3305 0.2493 0.2419 5.7836 1.4946
+#> 68: 93.2666 -5.4963 -1.9635 -4.2435 -0.9093 0.0940 9.2911 1.7800 1.0050 2.3179 0.2495 0.2298 5.7104 1.4797
+#> 69: 93.3894 -5.5666 -1.9342 -4.2325 -0.9227 0.0957 9.0211 2.0287 1.0012 2.3052 0.2483 0.2348 5.8939 1.5158
+#> 70: 93.2671 -5.5710 -1.9486 -4.2723 -0.9323 0.1062 8.5700 2.1251 0.9714 2.3266 0.2498 0.2466 6.1562 1.5041
+#> 71: 92.9975 -5.5829 -1.9507 -4.2632 -0.9317 0.1166 8.1415 2.0322 0.9403 2.3654 0.2373 0.2454 5.8668 1.5122
+#> 72: 92.6364 -5.5255 -1.9888 -4.2605 -0.9255 0.1062 8.8866 1.9306 0.9680 2.4488 0.2314 0.2438 6.2101 1.5098
+#> 73: 92.4442 -5.5679 -1.9880 -4.3501 -0.9070 0.0972 9.1986 1.9203 0.9597 3.1091 0.2369 0.2412 6.1257 1.5029
+#> 74: 92.3866 -5.5447 -1.9895 -4.3137 -0.9004 0.0898 10.2222 1.8961 0.9573 2.9536 0.2494 0.2361 6.0474 1.4875
+#> 75: 92.2491 -5.6481 -1.9591 -4.3587 -0.8991 0.1028 9.7111 2.2694 1.0140 2.9121 0.2524 0.2243 6.0995 1.4780
+#> 76: 92.4656 -5.6014 -1.9860 -4.3538 -0.9015 0.0978 11.3121 2.1560 0.9861 2.9372 0.2489 0.2314 6.0996 1.4464
+#> 77: 92.5076 -5.5929 -1.9560 -4.3624 -0.9051 0.1008 12.0483 2.0482 1.0212 3.0132 0.2551 0.2378 5.9595 1.5081
+#> 78: 92.5987 -5.7000 -1.9592 -4.3611 -0.9131 0.0958 11.4458 2.3873 1.0062 2.9848 0.2549 0.2372 6.0385 1.4666
+#> 79: 92.4883 -5.7675 -1.9900 -4.4226 -0.9163 0.1153 10.8735 2.7867 0.9616 3.4984 0.2546 0.2309 5.9441 1.4722
+#> 80: 92.1716 -5.7782 -1.9810 -4.4398 -0.9122 0.1193 10.3299 3.0280 0.9642 3.6766 0.2520 0.2291 6.3013 1.4698
+#> 81: 92.1145 -5.8494 -1.9836 -4.3634 -0.9196 0.1013 9.8134 3.1850 0.9160 3.4927 0.2562 0.2409 6.2458 1.4664
+#> 82: 92.3761 -5.9668 -1.9722 -4.3888 -0.9240 0.1139 9.9738 3.9484 0.8923 3.3519 0.2434 0.2318 6.0987 1.4847
+#> 83: 92.7805 -6.1135 -1.9335 -4.3600 -0.9273 0.1027 11.2060 4.7684 0.8932 3.1843 0.2454 0.2202 5.9824 1.4920
+#> 84: 92.9601 -6.2190 -1.9374 -4.3187 -0.9376 0.1140 10.6457 5.6632 0.9077 3.0250 0.2464 0.2188 5.9979 1.5152
+#> 85: 92.4579 -6.1486 -1.9398 -4.3269 -0.9417 0.0979 10.1134 5.3800 0.9011 2.8738 0.2446 0.2330 5.7007 1.5648
+#> 86: 92.3580 -6.2177 -1.9549 -4.3287 -0.9510 0.1073 9.6077 5.1608 0.9318 2.7301 0.2497 0.2214 5.9916 1.5305
+#> 87: 92.8919 -6.3309 -1.9480 -4.3285 -0.9647 0.1009 9.1273 6.4577 0.9494 2.7023 0.2408 0.2126 5.9053 1.4313
+#> 88: 93.0621 -6.1220 -1.9623 -4.3341 -0.9624 0.1300 8.6710 6.1349 0.9563 2.6593 0.2404 0.2130 6.1925 1.4510
+#> 89: 92.7711 -6.2636 -1.9545 -4.3520 -0.9496 0.1227 8.2374 6.2143 0.9791 2.5862 0.2346 0.2333 5.9772 1.4523
+#> 90: 92.9148 -6.5481 -1.9586 -4.3275 -0.9496 0.1096 7.8255 8.2617 0.9787 2.4647 0.2346 0.2216 5.9136 1.4247
+#> 91: 92.8129 -6.4655 -1.9753 -4.3287 -0.9435 0.1210 9.1893 7.8487 0.9642 2.5304 0.2354 0.2268 5.9129 1.4229
+#> 92: 93.1090 -6.4752 -1.9841 -4.3533 -0.9428 0.1509 10.1133 7.7232 0.9160 2.6037 0.2457 0.2265 5.8601 1.4646
+#> 93: 93.4781 -6.3780 -1.9909 -4.3713 -0.9450 0.1544 9.6076 7.3370 0.9153 2.7656 0.2485 0.2499 5.9150 1.5180
+#> 94: 93.2125 -6.3021 -1.9798 -4.3459 -0.9470 0.1520 9.6738 6.9702 0.9314 2.6273 0.2428 0.2519 5.8752 1.4456
+#> 95: 93.0091 -5.9727 -1.9828 -4.3777 -0.9447 0.1370 9.6411 6.6217 0.9107 2.7137 0.2428 0.2556 5.8302 1.4477
+#> 96: 92.8731 -5.7813 -1.9952 -4.3343 -0.9352 0.1505 9.1590 6.2906 0.9011 2.5780 0.2366 0.2546 6.0545 1.4887
+#> 97: 92.7834 -5.8119 -1.9975 -4.3303 -0.9258 0.1231 8.8022 5.9760 0.9005 2.5331 0.2392 0.2419 5.9522 1.4754
+#> 98: 92.8447 -5.9773 -1.9940 -4.3353 -0.9301 0.1409 8.3621 5.6772 0.9244 2.4828 0.2426 0.2490 6.1027 1.4129
+#> 99: 93.1697 -5.8958 -1.9964 -4.3325 -0.9248 0.1411 7.9440 5.3934 0.9586 2.6138 0.2378 0.2545 6.2793 1.3719
+#> 100: 93.2536 -5.8481 -2.0009 -4.3408 -0.9304 0.1718 8.7965 5.1237 0.9290 2.6161 0.2398 0.2418 6.0908 1.4534
+#> 101: 93.2942 -5.8684 -1.9650 -4.3096 -0.9305 0.1496 9.7633 4.8675 0.9166 2.4853 0.2372 0.2565 5.9079 1.4948
+#> 102: 93.2636 -6.1363 -1.9517 -4.2653 -0.9235 0.1175 10.7772 5.1927 0.8944 2.3610 0.2448 0.2812 5.7748 1.5533
+#> 103: 92.6954 -5.9371 -1.9524 -4.2792 -0.9045 0.1288 10.2383 4.9331 0.8876 2.2429 0.2406 0.2720 5.5496 1.5601
+#> 104: 92.6149 -6.0650 -1.9532 -4.2752 -0.9048 0.0973 10.9914 4.6864 0.8845 2.1875 0.2475 0.2584 5.5593 1.4897
+#> 105: 92.8231 -5.9779 -1.9650 -4.2939 -0.9013 0.1112 10.4712 4.4521 0.9193 2.1985 0.2416 0.2455 5.4420 1.4910
+#> 106: 92.7599 -5.9602 -1.9594 -4.3018 -0.9026 0.1273 10.1396 4.2295 0.9308 2.1700 0.2453 0.2625 5.5458 1.4429
+#> 107: 93.1433 -5.9509 -1.9638 -4.2715 -0.9324 0.1385 9.6327 4.0415 0.9271 2.1026 0.2415 0.2626 5.4762 1.4286
+#> 108: 93.1354 -5.7359 -1.9691 -4.2962 -0.9256 0.1346 10.2794 3.8394 0.9387 2.1671 0.2412 0.2627 5.5107 1.4200
+#> 109: 92.9608 -5.8252 -1.9780 -4.3149 -0.9125 0.1564 9.7654 4.0619 0.9380 2.1731 0.2325 0.2657 5.8118 1.4379
+#> 110: 93.1043 -5.7632 -1.9874 -4.2868 -0.9113 0.1178 9.2771 3.8588 0.9420 2.1477 0.2214 0.2524 5.9352 1.4377
+#> 111: 92.8879 -5.7965 -1.9781 -4.2851 -0.9147 0.1107 8.8133 3.6659 0.9526 2.1891 0.2130 0.2398 5.6360 1.4461
+#> 112: 92.9347 -5.7484 -1.9460 -4.2825 -0.9195 0.1078 8.3726 3.4826 0.9710 2.2687 0.2051 0.2278 5.5771 1.5123
+#> 113: 92.7217 -5.7193 -1.9328 -4.2721 -0.9252 0.1021 7.9540 3.3085 1.0056 2.2848 0.2244 0.2164 5.7135 1.5082
+#> 114: 92.9944 -5.7382 -1.9414 -4.2835 -0.9210 0.1210 7.5563 3.1430 1.0184 2.2457 0.2260 0.2182 5.6799 1.4751
+#> 115: 93.1261 -5.8876 -1.9290 -4.2753 -0.9382 0.0960 9.7696 3.4406 1.0140 2.2745 0.2171 0.2073 5.3919 1.4919
+#> 116: 92.7669 -5.9842 -1.9484 -4.2828 -0.9504 0.1122 9.2811 4.1332 1.0202 2.2835 0.2160 0.2136 5.3651 1.5337
+#> 117: 92.9804 -5.9847 -1.9584 -4.2879 -0.9474 0.1234 9.2911 3.9265 0.9692 2.3115 0.2135 0.2163 5.1053 1.4774
+#> 118: 93.2853 -5.8443 -1.9494 -4.2700 -0.9400 0.1105 9.8572 3.7302 0.9736 2.2489 0.2192 0.2223 5.2416 1.4668
+#> 119: 93.2776 -5.8592 -1.9458 -4.2600 -0.9394 0.1072 9.3643 3.5437 0.9789 2.1964 0.2176 0.2205 5.2942 1.4847
+#> 120: 93.0335 -5.8156 -1.9453 -4.2623 -0.9437 0.1139 8.8961 3.3665 0.9698 2.2380 0.2206 0.2231 5.4427 1.4470
+#> 121: 93.0115 -5.8402 -1.9355 -4.2596 -0.9291 0.1138 8.4513 3.3018 0.9743 2.1463 0.2096 0.2120 5.1537 1.4487
+#> 122: 93.6277 -5.8852 -1.9276 -4.2787 -0.9419 0.1388 8.0287 3.4114 0.9438 2.1410 0.2072 0.2104 5.1198 1.5201
+#> 123: 93.4952 -6.0977 -1.9332 -4.2847 -0.9431 0.1412 7.6273 4.8225 0.9472 2.1335 0.2081 0.2129 5.2003 1.6193
+#> 124: 93.7207 -6.2280 -1.9105 -4.2692 -0.9551 0.1422 7.2459 5.4835 0.9657 2.0896 0.2148 0.2272 5.2901 1.5482
+#> 125: 93.6041 -6.0808 -1.9356 -4.2748 -0.9531 0.1184 7.0201 5.2094 0.9591 2.0421 0.2089 0.2158 5.3848 1.4896
+#> 126: 93.5193 -6.0164 -1.9296 -4.2890 -0.9600 0.1351 7.6848 4.9489 0.9931 2.1387 0.1989 0.2129 5.1988 1.4492
+#> 127: 93.7135 -5.9340 -1.9448 -4.2883 -0.9633 0.1428 8.3411 4.7014 0.9820 2.1192 0.1985 0.2046 5.3953 1.4985
+#> 128: 94.2312 -5.8849 -1.9404 -4.2754 -0.9633 0.1495 7.9240 4.4664 0.9884 2.0587 0.1902 0.2171 5.7113 1.4987
+#> 129: 94.0390 -5.8674 -1.9229 -4.3309 -0.9614 0.1472 8.5108 4.2430 1.0319 2.1023 0.1909 0.2154 5.5654 1.4294
+#> 130: 93.4178 -6.0458 -1.9224 -4.3364 -0.9560 0.1570 8.0852 4.4639 1.0184 2.2804 0.1869 0.2182 5.6585 1.4443
+#> 131: 93.5483 -6.2682 -1.9258 -4.3654 -0.9554 0.1449 7.6810 5.6020 1.0254 2.3477 0.1857 0.2230 5.4266 1.4324
+#> 132: 93.5180 -6.3297 -1.9204 -4.3577 -0.9640 0.1365 7.2969 5.5672 1.0354 2.3257 0.1788 0.2118 5.4913 1.4859
+#> 133: 93.4707 -6.0990 -1.9415 -4.3315 -0.9775 0.1232 6.9321 5.2888 1.0686 2.3421 0.1851 0.2012 5.8429 1.4618
+#> 134: 93.1012 -6.1236 -1.9308 -4.3409 -0.9654 0.1225 7.6471 5.0244 1.0517 2.4652 0.1947 0.2008 5.6902 1.5432
+#> 135: 93.2545 -6.1070 -1.9408 -4.3415 -0.9553 0.1228 9.2701 4.7732 1.0160 2.3607 0.1919 0.1907 5.5154 1.5317
+#> 136: 93.3338 -6.0321 -1.9336 -4.3074 -0.9598 0.1120 8.8066 4.5345 0.9652 2.2427 0.1999 0.2249 5.3667 1.6036
+#> 137: 93.5910 -6.0627 -1.9339 -4.3074 -0.9529 0.1407 8.3663 4.3078 0.9538 2.2128 0.1966 0.2195 5.2959 1.6015
+#> 138: 93.6338 -5.9702 -1.9252 -4.3105 -0.9615 0.1373 7.9480 4.0924 0.9875 2.2635 0.1964 0.2218 5.4532 1.5261
+#> 139: 93.6403 -5.8913 -1.9237 -4.2962 -0.9582 0.1165 8.0749 3.8878 0.9746 2.2457 0.1972 0.2125 5.9356 1.5173
+#> 140: 92.8503 -5.8314 -1.9452 -4.3180 -0.9487 0.1142 8.6356 3.6934 0.9933 2.2044 0.1961 0.2019 5.7908 1.5138
+#> 141: 93.1249 -6.0584 -1.9448 -4.3139 -0.9367 0.0950 8.9231 4.4196 1.0220 2.2246 0.2079 0.2077 6.0233 1.4339
+#> 142: 93.1846 -6.3026 -1.9152 -4.3093 -0.9392 0.0866 10.1508 5.9592 1.0562 2.3325 0.2082 0.2133 5.5285 1.4832
+#> 143: 92.4682 -6.1485 -1.9146 -4.2812 -0.9376 0.0260 9.6433 5.6613 1.0618 2.3594 0.2000 0.2027 6.0573 1.4428
+#> 144: 92.7792 -6.1108 -1.8939 -4.2740 -0.9341 0.0765 9.1611 5.3782 1.0917 2.3074 0.2057 0.2240 6.2141 1.4953
+#> 145: 93.1314 -6.2086 -1.8939 -4.3580 -0.9341 0.0741 8.7031 5.1093 1.0931 2.7164 0.2105 0.2229 5.8543 1.4855
+#> 146: 93.2254 -6.2170 -1.8998 -4.3724 -0.9311 0.0677 8.2679 5.0506 1.0811 2.8434 0.2049 0.2118 5.5455 1.4763
+#> 147: 93.3264 -6.0136 -1.8998 -4.3853 -0.9328 0.0817 9.4673 4.7980 1.0668 2.8512 0.2009 0.2114 5.5518 1.5225
+#> 148: 93.2298 -5.9143 -1.8921 -4.5001 -0.9296 0.1057 8.9939 4.5581 1.0563 3.8266 0.1982 0.2043 5.5242 1.5614
+#> 149: 93.3604 -5.9894 -1.8832 -4.5223 -0.9338 0.0858 8.5442 4.3302 1.0544 4.3930 0.1986 0.2003 5.4353 1.4957
+#> 150: 93.4715 -5.9630 -1.8833 -4.4796 -0.9335 0.0827 8.1170 4.1137 1.0912 4.1733 0.1984 0.1903 5.7477 1.4554
+#> 151: 93.3385 -5.8026 -1.9052 -4.4507 -0.9368 0.0684 8.7726 3.9080 1.1249 3.9647 0.2074 0.1808 5.7693 1.4400
+#> 152: 93.1682 -5.8529 -1.9441 -4.3545 -0.9309 0.0752 8.8042 3.1783 1.0496 3.0168 0.2069 0.1688 5.9161 1.4565
+#> 153: 93.0559 -6.0261 -1.9425 -4.3431 -0.9327 0.1016 9.1435 3.9939 1.0120 2.8470 0.1894 0.1509 5.4435 1.5486
+#> 154: 92.8582 -6.0887 -1.9278 -4.3094 -0.9352 0.1064 8.4316 4.2991 0.9819 2.6257 0.1907 0.1609 5.4587 1.5208
+#> 155: 93.3200 -5.8480 -1.9149 -4.3363 -0.9294 0.1143 9.6700 3.1734 0.9942 2.6441 0.1824 0.1906 5.5193 1.6410
+#> 156: 93.3199 -5.9053 -1.9213 -4.3163 -0.9369 0.1291 7.5899 3.5902 0.9823 2.4648 0.1770 0.1956 5.3816 1.5356
+#> 157: 93.2434 -5.8763 -1.9161 -4.3035 -0.9549 0.1075 8.4137 3.2576 0.9935 2.5007 0.1795 0.1852 5.4053 1.5706
+#> 158: 93.1494 -5.9243 -1.8929 -4.3162 -0.9680 0.1296 8.2959 3.3262 1.0029 2.4943 0.1866 0.1921 5.4369 1.5510
+#> 159: 93.5683 -6.0335 -1.9127 -4.3040 -0.9675 0.1271 7.7222 4.0079 0.9768 2.5765 0.1869 0.2028 5.7165 1.4968
+#> 160: 93.9417 -6.0018 -1.9085 -4.2818 -0.9611 0.1161 5.8791 4.4991 0.9658 2.4933 0.1878 0.1986 6.0579 1.5272
+#> 161: 94.1252 -5.9264 -1.8943 -4.2805 -0.9645 0.0860 4.9517 3.6307 0.9754 2.4988 0.1934 0.1785 5.7457 1.5878
+#> 162: 93.9389 -5.7613 -1.8946 -4.2410 -0.9752 0.0898 6.7269 2.5865 1.0184 2.4379 0.1933 0.1908 5.9052 1.5215
+#> 163: 93.5890 -5.7243 -1.8992 -4.2636 -0.9722 0.0759 8.4484 2.5137 1.0151 2.3869 0.1928 0.1889 5.4694 1.5048
+#> 164: 93.9751 -5.7314 -1.8786 -4.3271 -0.9702 0.1020 6.6884 2.5136 1.0133 2.8395 0.1907 0.1998 5.4625 1.4854
+#> 165: 93.9708 -5.7409 -1.8856 -4.3129 -0.9616 0.1094 5.8809 2.4589 1.0401 2.6662 0.1912 0.1998 5.4339 1.4549
+#> 166: 93.9265 -5.6937 -1.9134 -4.3080 -0.9702 0.1151 5.6940 2.4086 1.0065 2.6864 0.1983 0.1987 5.6907 1.4857
+#> 167: 93.4157 -5.7312 -1.9163 -4.3286 -0.9638 0.1216 5.1230 2.5468 1.0487 2.5930 0.1917 0.1940 5.5938 1.4267
+#> 168: 93.3701 -5.8757 -1.9196 -4.3493 -0.9579 0.1134 6.0802 3.3929 1.0517 2.6981 0.1888 0.2063 5.4125 1.4365
+#> 169: 93.4342 -6.0262 -1.9041 -4.3347 -0.9526 0.0997 6.0780 3.6349 1.0623 2.7344 0.1946 0.1978 5.4930 1.4594
+#> 170: 93.3751 -6.1195 -1.9093 -4.3541 -0.9872 0.0834 6.8972 4.0337 1.0763 2.8428 0.2077 0.2005 5.6759 1.4455
+#> 171: 93.3603 -6.0360 -1.9196 -4.4632 -0.9763 0.0866 7.4236 3.6025 1.0684 3.7611 0.2046 0.1894 5.6282 1.4414
+#> 172: 93.2776 -5.9538 -1.9031 -4.4815 -0.9779 0.1024 5.4751 3.2802 1.0599 3.9487 0.2115 0.1990 5.6116 1.4230
+#> 173: 93.4470 -5.8580 -1.9193 -4.4170 -0.9641 0.0957 5.6416 2.8005 1.0440 3.4509 0.2066 0.1863 5.5804 1.4485
+#> 174: 93.2952 -5.8590 -1.9010 -4.3600 -0.9640 0.0789 6.4314 2.9503 1.0808 2.9773 0.2045 0.1969 5.4423 1.4421
+#> 175: 93.3756 -5.7733 -1.8959 -4.3621 -0.9504 0.0609 6.1723 2.5287 1.0950 3.0019 0.2127 0.2053 5.4338 1.4470
+#> 176: 93.1450 -5.8266 -1.9053 -4.3401 -0.9457 0.0633 6.5237 3.0522 1.0942 2.9464 0.2134 0.2021 5.6501 1.3664
+#> 177: 92.7723 -5.9978 -1.9231 -4.3529 -0.9524 0.0658 7.4519 4.2374 1.0640 3.0260 0.2158 0.2146 5.9180 1.4100
+#> 178: 92.7261 -5.9836 -1.9189 -4.3349 -0.9576 0.0768 5.5211 4.2557 1.0611 2.8827 0.2169 0.2088 5.8872 1.4206
+#> 179: 92.9599 -6.0071 -1.9259 -4.3081 -0.9581 0.0657 6.0953 3.8205 1.0816 2.6709 0.2122 0.2014 5.8221 1.4026
+#> 180: 93.0831 -6.1544 -1.9400 -4.3018 -0.9496 0.0411 4.2312 4.9005 1.1064 2.6542 0.2143 0.2221 6.3264 1.3820
+#> 181: 92.8840 -6.0889 -1.9364 -4.3200 -0.9566 0.0861 4.2186 4.4615 1.0930 2.7270 0.2142 0.2424 6.0486 1.4035
+#> 182: 93.1913 -6.1457 -1.9384 -4.3085 -0.9606 0.0733 6.2878 4.6026 1.0917 2.6393 0.2131 0.2151 5.7042 1.4952
+#> 183: 93.1218 -6.3114 -1.9355 -4.2883 -0.9742 0.0741 7.2675 5.1377 1.0914 2.5060 0.2220 0.2111 5.5099 1.4097
+#> 184: 93.1462 -6.3147 -1.9068 -4.2880 -0.9653 0.0893 7.6928 5.6510 1.0563 2.5066 0.2256 0.2201 5.4138 1.5319
+#> 185: 93.1825 -6.3608 -1.9265 -4.2815 -0.9549 0.0873 7.1340 5.9801 1.0363 2.4788 0.2177 0.1958 5.4202 1.4569
+#> 186: 93.6270 -6.1413 -1.9278 -4.2702 -0.9696 0.1185 6.7652 4.5535 1.0400 2.3673 0.2163 0.1932 5.3005 1.5012
+#> 187: 93.9922 -6.3364 -1.9269 -4.2702 -0.9729 0.1197 7.7694 6.1592 0.9948 2.3673 0.2196 0.2091 5.3075 1.5105
+#> 188: 93.8884 -6.0236 -1.9207 -4.2928 -0.9900 0.1343 7.8090 4.2847 0.9840 2.4238 0.2195 0.1966 5.2861 1.5607
+#> 189: 94.3110 -6.0809 -1.9145 -4.2826 -0.9840 0.1224 8.5580 4.0998 0.9800 2.4505 0.2294 0.1840 5.7107 1.5180
+#> 190: 94.0039 -6.0996 -1.9140 -4.2793 -0.9782 0.1429 10.6594 4.1655 0.9796 2.4415 0.2297 0.1960 5.7533 1.5720
+#> 191: 93.9692 -6.1129 -1.9362 -4.3261 -0.9705 0.1462 8.8201 4.3146 1.0124 2.4625 0.2287 0.2049 5.5670 1.5206
+#> 192: 93.3178 -5.9759 -1.9192 -4.3378 -0.9664 0.1434 8.8047 3.7150 1.0282 2.4137 0.2243 0.1977 5.3858 1.4599
+#> 193: 93.1427 -5.9388 -1.9391 -4.3211 -0.9650 0.1401 7.1862 3.2835 1.0218 2.3216 0.2163 0.1866 5.3930 1.5017
+#> 194: 93.0588 -6.0605 -1.9361 -4.3350 -0.9462 0.1330 6.8930 4.0020 1.0166 2.3186 0.2057 0.1818 5.2535 1.5075
+#> 195: 93.1820 -6.1201 -1.9579 -4.3034 -0.9534 0.1557 8.1300 4.4218 0.9932 2.1873 0.2099 0.1834 5.4862 1.4698
+#> 196: 93.2230 -5.8879 -1.9725 -4.2965 -0.9584 0.1390 8.1307 3.0777 1.0051 2.1597 0.2089 0.1683 5.7058 1.3970
+#> 197: 93.3504 -5.8829 -1.9677 -4.3075 -0.9577 0.1638 6.7115 3.0660 1.0050 2.1377 0.2024 0.1642 5.4691 1.5016
+#> 198: 93.3016 -5.8771 -1.9885 -4.3241 -0.9605 0.1562 6.4722 3.0381 0.9727 2.2053 0.1975 0.1683 5.3434 1.4885
+#> 199: 93.2464 -5.8787 -1.9871 -4.3430 -0.9528 0.1751 4.5894 3.0445 0.9748 2.2247 0.1886 0.1780 5.4469 1.4405
+#> 200: 93.3474 -5.7995 -1.9767 -4.3298 -0.9480 0.1947 4.7024 2.8535 0.9895 2.2234 0.1951 0.2012 5.5130 1.4641
+#> 201: 93.3231 -5.8169 -1.9737 -4.3268 -0.9510 0.1804 4.4248 2.8913 0.9738 2.2141 0.1955 0.2057 5.5422 1.4843
+#> 202: 93.3484 -5.8009 -1.9732 -4.3240 -0.9519 0.1674 4.4068 2.8084 0.9736 2.2040 0.1959 0.2033 5.5843 1.4744
+#> 203: 93.2617 -5.7915 -1.9678 -4.3211 -0.9535 0.1629 4.5333 2.7678 0.9877 2.1980 0.1961 0.2023 5.6265 1.4811
+#> 204: 93.2210 -5.8071 -1.9647 -4.3220 -0.9504 0.1629 4.6144 2.8347 0.9922 2.1938 0.1937 0.2013 5.5745 1.4988
+#> 205: 93.1914 -5.8104 -1.9667 -4.3225 -0.9484 0.1593 4.5880 2.8639 0.9931 2.1952 0.1916 0.1979 5.5960 1.5057
+#> 206: 93.1827 -5.8348 -1.9697 -4.3236 -0.9498 0.1587 4.7189 3.0353 0.9929 2.2016 0.1922 0.1947 5.6096 1.5136
+#> 207: 93.2017 -5.8760 -1.9714 -4.3239 -0.9518 0.1592 4.8171 3.2659 0.9947 2.2042 0.1927 0.1910 5.6413 1.5078
+#> 208: 93.2226 -5.8819 -1.9736 -4.3261 -0.9532 0.1610 4.8241 3.2964 0.9957 2.2122 0.1938 0.1878 5.6704 1.5031
+#> 209: 93.2158 -5.8786 -1.9743 -4.3278 -0.9538 0.1595 4.6275 3.2763 0.9963 2.2279 0.1950 0.1848 5.6758 1.5038
+#> 210: 93.2216 -5.8798 -1.9746 -4.3286 -0.9535 0.1589 4.5667 3.2857 0.9974 2.2473 0.1948 0.1834 5.6707 1.5054
+#> 211: 93.2238 -5.8847 -1.9763 -4.3302 -0.9530 0.1591 4.5745 3.2932 0.9956 2.2576 0.1948 0.1823 5.6691 1.4990
+#> 212: 93.2242 -5.8893 -1.9777 -4.3323 -0.9532 0.1600 4.6203 3.2955 0.9938 2.2704 0.1958 0.1814 5.6732 1.4994
+#> 213: 93.2246 -5.8950 -1.9756 -4.3345 -0.9532 0.1588 4.7363 3.3106 0.9894 2.2864 0.1960 0.1791 5.6401 1.5015
+#> 214: 93.2056 -5.9070 -1.9740 -4.3368 -0.9532 0.1586 4.7814 3.3538 0.9888 2.3047 0.1960 0.1761 5.6265 1.5008
+#> 215: 93.2126 -5.9157 -1.9720 -4.3405 -0.9533 0.1580 4.9117 3.3916 0.9890 2.3191 0.1959 0.1742 5.6054 1.5015
+#> 216: 93.2161 -5.9242 -1.9716 -4.3423 -0.9533 0.1594 5.0163 3.4425 0.9897 2.3291 0.1959 0.1739 5.5975 1.5005
+#> 217: 93.2193 -5.9351 -1.9715 -4.3445 -0.9537 0.1614 4.9927 3.5085 0.9905 2.3309 0.1957 0.1739 5.5905 1.5024
+#> 218: 93.1973 -5.9314 -1.9725 -4.3479 -0.9548 0.1640 5.0502 3.4902 0.9918 2.3344 0.1952 0.1740 5.5909 1.5046
+#> 219: 93.1938 -5.9312 -1.9729 -4.3508 -0.9539 0.1664 5.0446 3.4901 0.9922 2.3365 0.1949 0.1746 5.5808 1.5046
+#> 220: 93.1994 -5.9424 -1.9734 -4.3531 -0.9536 0.1683 5.0462 3.5593 0.9917 2.3370 0.1945 0.1754 5.5831 1.5055
+#> 221: 93.2015 -5.9511 -1.9746 -4.3550 -0.9537 0.1702 5.1062 3.6002 0.9899 2.3368 0.1945 0.1762 5.5731 1.5043
+#> 222: 93.2057 -5.9653 -1.9756 -4.3571 -0.9541 0.1718 5.1727 3.6876 0.9886 2.3364 0.1943 0.1776 5.5813 1.5047
+#> 223: 93.1998 -5.9723 -1.9761 -4.3592 -0.9540 0.1726 5.1866 3.7239 0.9871 2.3428 0.1940 0.1791 5.5702 1.5047
+#> 224: 93.2042 -5.9799 -1.9768 -4.3615 -0.9540 0.1734 5.1516 3.7613 0.9849 2.3531 0.1934 0.1809 5.5705 1.5039
+#> 225: 93.1974 -5.9813 -1.9776 -4.3648 -0.9540 0.1740 5.1225 3.7676 0.9840 2.3663 0.1929 0.1834 5.5698 1.5030
+#> 226: 93.1963 -5.9807 -1.9777 -4.3679 -0.9535 0.1751 5.1632 3.7694 0.9839 2.3785 0.1927 0.1850 5.5676 1.5069
+#> 227: 93.1912 -5.9740 -1.9783 -4.3707 -0.9533 0.1768 5.1987 3.7421 0.9835 2.3931 0.1922 0.1855 5.5597 1.5091
+#> 228: 93.1902 -5.9799 -1.9792 -4.3745 -0.9533 0.1784 5.2070 3.7641 0.9825 2.4134 0.1917 0.1861 5.5502 1.5086
+#> 229: 93.1903 -5.9894 -1.9805 -4.3792 -0.9533 0.1796 5.2398 3.8109 0.9812 2.4382 0.1910 0.1870 5.5486 1.5075
+#> 230: 93.1833 -5.9946 -1.9816 -4.3836 -0.9530 0.1814 5.2357 3.8346 0.9800 2.4614 0.1904 0.1883 5.5515 1.5065
+#> 231: 93.1740 -6.0001 -1.9834 -4.3871 -0.9528 0.1833 5.2848 3.8635 0.9783 2.4814 0.1898 0.1893 5.5526 1.5057
+#> 232: 93.1581 -6.0071 -1.9852 -4.3904 -0.9523 0.1857 5.3056 3.8967 0.9766 2.5002 0.1891 0.1904 5.5571 1.5057
+#> 233: 93.1417 -6.0131 -1.9865 -4.3933 -0.9517 0.1869 5.3290 3.9227 0.9745 2.5129 0.1885 0.1909 5.5609 1.5069
+#> 234: 93.1245 -6.0198 -1.9878 -4.3961 -0.9514 0.1880 5.3062 3.9567 0.9731 2.5269 0.1886 0.1916 5.5645 1.5074
+#> 235: 93.1084 -6.0269 -1.9885 -4.3985 -0.9514 0.1892 5.3213 3.9969 0.9729 2.5390 0.1887 0.1931 5.5722 1.5065
+#> 236: 93.1037 -6.0382 -1.9897 -4.4009 -0.9517 0.1899 5.3601 4.0674 0.9744 2.5501 0.1886 0.1949 5.5811 1.5066
+#> 237: 93.0989 -6.0432 -1.9906 -4.4031 -0.9518 0.1909 5.3744 4.0877 0.9755 2.5623 0.1885 0.1964 5.5890 1.5051
+#> 238: 93.0932 -6.0433 -1.9912 -4.4041 -0.9521 0.1915 5.4192 4.0775 0.9772 2.5698 0.1886 0.1980 5.5980 1.5029
+#> 239: 93.0943 -6.0475 -1.9913 -4.4056 -0.9520 0.1921 5.4483 4.0960 0.9792 2.5785 0.1888 0.1997 5.5999 1.5011
+#> 240: 93.0904 -6.0498 -1.9909 -4.4070 -0.9520 0.1925 5.4921 4.1095 0.9814 2.5867 0.1887 0.2011 5.5974 1.5013
+#> 241: 93.0883 -6.0508 -1.9910 -4.4086 -0.9520 0.1931 5.5503 4.1140 0.9827 2.5966 0.1887 0.2023 5.6049 1.4997
+#> 242: 93.0884 -6.0487 -1.9916 -4.4102 -0.9517 0.1940 5.5634 4.1021 0.9831 2.6059 0.1886 0.2039 5.6116 1.5005
+#> 243: 93.0836 -6.0466 -1.9920 -4.4123 -0.9517 0.1950 5.5786 4.0878 0.9837 2.6204 0.1887 0.2054 5.6217 1.5000
+#> 244: 93.0756 -6.0477 -1.9926 -4.4149 -0.9517 0.1956 5.5827 4.0904 0.9843 2.6385 0.1887 0.2070 5.6306 1.4995
+#> 245: 93.0664 -6.0533 -1.9930 -4.4174 -0.9514 0.1963 5.6228 4.1208 0.9857 2.6549 0.1888 0.2086 5.6346 1.4996
+#> 246: 93.0643 -6.0543 -1.9931 -4.4200 -0.9511 0.1969 5.6236 4.1257 0.9872 2.6735 0.1886 0.2096 5.6381 1.4989
+#> 247: 93.0631 -6.0568 -1.9929 -4.4227 -0.9511 0.1974 5.6045 4.1389 0.9889 2.6910 0.1886 0.2107 5.6408 1.4984
+#> 248: 93.0636 -6.0567 -1.9924 -4.4264 -0.9513 0.1974 5.6016 4.1412 0.9906 2.7225 0.1886 0.2117 5.6424 1.4992
+#> 249: 93.0727 -6.0560 -1.9920 -4.4302 -0.9514 0.1973 5.6088 4.1383 0.9922 2.7584 0.1885 0.2125 5.6441 1.4992
+#> 250: 93.0865 -6.0551 -1.9915 -4.4337 -0.9512 0.1973 5.6127 4.1386 0.9941 2.7852 0.1884 0.2135 5.6522 1.4977
+#> 251: 93.0887 -6.0551 -1.9910 -4.4364 -0.9511 0.1967 5.5869 4.1455 0.9964 2.8060 0.1883 0.2146 5.6561 1.4968
+#> 252: 93.0877 -6.0522 -1.9904 -4.4376 -0.9511 0.1964 5.5778 4.1346 0.9987 2.8151 0.1883 0.2155 5.6583 1.4964
+#> 253: 93.0843 -6.0518 -1.9897 -4.4391 -0.9512 0.1961 5.5948 4.1323 1.0011 2.8253 0.1884 0.2164 5.6588 1.4972
+#> 254: 93.0818 -6.0518 -1.9896 -4.4399 -0.9512 0.1957 5.6122 4.1352 1.0016 2.8319 0.1882 0.2169 5.6573 1.4991
+#> 255: 93.0838 -6.0524 -1.9895 -4.4401 -0.9514 0.1954 5.6310 4.1366 1.0025 2.8408 0.1880 0.2174 5.6584 1.4996
+#> 256: 93.0850 -6.0579 -1.9892 -4.4400 -0.9515 0.1948 5.6526 4.1752 1.0043 2.8482 0.1879 0.2181 5.6611 1.4979
+#> 257: 93.0868 -6.0600 -1.9890 -4.4391 -0.9517 0.1940 5.6742 4.1941 1.0055 2.8499 0.1878 0.2189 5.6649 1.4985
+#> 258: 93.0873 -6.0606 -1.9888 -4.4391 -0.9518 0.1932 5.7088 4.2037 1.0066 2.8552 0.1877 0.2196 5.6668 1.4983
+#> 259: 93.0912 -6.0650 -1.9882 -4.4377 -0.9519 0.1925 5.7494 4.2300 1.0080 2.8537 0.1877 0.2204 5.6729 1.4977
+#> 260: 93.0964 -6.0699 -1.9874 -4.4362 -0.9519 0.1918 5.7609 4.2588 1.0100 2.8513 0.1877 0.2212 5.6792 1.4974
+#> 261: 93.1014 -6.0737 -1.9866 -4.4350 -0.9522 0.1913 5.7971 4.2807 1.0115 2.8496 0.1877 0.2220 5.6812 1.4969
+#> 262: 93.1064 -6.0734 -1.9859 -4.4346 -0.9526 0.1909 5.7936 4.2719 1.0129 2.8505 0.1877 0.2228 5.6824 1.4958
+#> 263: 93.1092 -6.0783 -1.9850 -4.4344 -0.9530 0.1906 5.8078 4.2973 1.0141 2.8525 0.1879 0.2233 5.6815 1.4954
+#> 264: 93.1128 -6.0830 -1.9842 -4.4338 -0.9535 0.1901 5.8245 4.3273 1.0146 2.8527 0.1880 0.2237 5.6768 1.4958
+#> 265: 93.1198 -6.0874 -1.9834 -4.4331 -0.9541 0.1895 5.8467 4.3490 1.0149 2.8522 0.1880 0.2238 5.6693 1.4965
+#> 266: 93.1284 -6.0890 -1.9828 -4.4327 -0.9546 0.1888 5.8350 4.3488 1.0149 2.8513 0.1881 0.2239 5.6650 1.4970
+#> 267: 93.1380 -6.0926 -1.9819 -4.4326 -0.9549 0.1883 5.8440 4.3677 1.0156 2.8526 0.1883 0.2240 5.6609 1.4974
+#> 268: 93.1480 -6.0915 -1.9810 -4.4321 -0.9552 0.1873 5.8565 4.3552 1.0163 2.8522 0.1886 0.2238 5.6537 1.4990
+#> 269: 93.1539 -6.0910 -1.9803 -4.4314 -0.9556 0.1866 5.8709 4.3438 1.0179 2.8503 0.1888 0.2237 5.6495 1.4989
+#> 270: 93.1620 -6.0898 -1.9798 -4.4311 -0.9561 0.1861 5.8678 4.3301 1.0197 2.8507 0.1890 0.2235 5.6466 1.4984
+#> 271: 93.1668 -6.0881 -1.9792 -4.4305 -0.9565 0.1857 5.8508 4.3147 1.0209 2.8487 0.1891 0.2234 5.6487 1.4997
+#> 272: 93.1725 -6.0848 -1.9787 -4.4300 -0.9569 0.1855 5.8431 4.2948 1.0217 2.8474 0.1894 0.2233 5.6488 1.5000
+#> 273: 93.1770 -6.0809 -1.9783 -4.4297 -0.9572 0.1850 5.8432 4.2739 1.0227 2.8470 0.1897 0.2235 5.6497 1.5000
+#> 274: 93.1797 -6.0774 -1.9776 -4.4299 -0.9574 0.1846 5.8549 4.2532 1.0243 2.8494 0.1901 0.2235 5.6511 1.5003
+#> 275: 93.1829 -6.0759 -1.9774 -4.4303 -0.9578 0.1845 5.8633 4.2387 1.0255 2.8514 0.1906 0.2234 5.6561 1.5010
+#> 276: 93.1846 -6.0764 -1.9771 -4.4303 -0.9581 0.1845 5.8738 4.2322 1.0267 2.8523 0.1911 0.2232 5.6554 1.5020
+#> 277: 93.1880 -6.0792 -1.9768 -4.4305 -0.9584 0.1844 5.8980 4.2423 1.0278 2.8541 0.1915 0.2229 5.6586 1.5019
+#> 278: 93.1920 -6.0791 -1.9766 -4.4307 -0.9586 0.1841 5.9368 4.2391 1.0289 2.8559 0.1919 0.2226 5.6600 1.5024
+#> 279: 93.1892 -6.0786 -1.9766 -4.4310 -0.9586 0.1839 5.9822 4.2309 1.0300 2.8584 0.1925 0.2226 5.6642 1.5015
+#> 280: 93.1868 -6.0782 -1.9765 -4.4311 -0.9587 0.1836 6.0381 4.2253 1.0311 2.8616 0.1930 0.2227 5.6686 1.5008
+#> 281: 93.1805 -6.0781 -1.9764 -4.4309 -0.9586 0.1832 6.0718 4.2228 1.0325 2.8626 0.1936 0.2227 5.6741 1.5002
+#> 282: 93.1780 -6.0768 -1.9762 -4.4318 -0.9585 0.1829 6.0867 4.2160 1.0341 2.8701 0.1941 0.2228 5.6740 1.4998
+#> 283: 93.1777 -6.0736 -1.9760 -4.4325 -0.9583 0.1825 6.1250 4.2003 1.0355 2.8768 0.1946 0.2228 5.6761 1.5010
+#> 284: 93.1745 -6.0726 -1.9757 -4.4337 -0.9582 0.1823 6.1509 4.1975 1.0370 2.8843 0.1951 0.2227 5.6764 1.5009
+#> 285: 93.1742 -6.0719 -1.9755 -4.4348 -0.9579 0.1820 6.1652 4.1936 1.0381 2.8910 0.1954 0.2225 5.6773 1.5011
+#> 286: 93.1706 -6.0698 -1.9754 -4.4356 -0.9576 0.1818 6.1840 4.1844 1.0394 2.8966 0.1958 0.2224 5.6780 1.5011
+#> 287: 93.1672 -6.0678 -1.9752 -4.4370 -0.9573 0.1816 6.2123 4.1767 1.0400 2.9079 0.1963 0.2224 5.6757 1.5015
+#> 288: 93.1628 -6.0658 -1.9753 -4.4379 -0.9572 0.1815 6.2355 4.1700 1.0407 2.9150 0.1967 0.2223 5.6742 1.5013
+#> 289: 93.1588 -6.0628 -1.9753 -4.4389 -0.9569 0.1818 6.2435 4.1565 1.0416 2.9217 0.1969 0.2218 5.6777 1.5007
+#> 290: 93.1560 -6.0590 -1.9754 -4.4399 -0.9565 0.1820 6.2564 4.1394 1.0425 2.9291 0.1971 0.2214 5.6778 1.5006
+#> 291: 93.1552 -6.0555 -1.9754 -4.4409 -0.9562 0.1821 6.2753 4.1246 1.0435 2.9375 0.1973 0.2210 5.6779 1.5009
+#> 292: 93.1546 -6.0541 -1.9754 -4.4415 -0.9558 0.1820 6.2881 4.1183 1.0444 2.9414 0.1975 0.2205 5.6762 1.5006
+#> 293: 93.1506 -6.0535 -1.9756 -4.4424 -0.9555 0.1821 6.2856 4.1182 1.0454 2.9474 0.1976 0.2200 5.6770 1.4994
+#> 294: 93.1453 -6.0520 -1.9758 -4.4424 -0.9553 0.1819 6.2733 4.1124 1.0463 2.9487 0.1979 0.2195 5.6792 1.4985
+#> 295: 93.1431 -6.0487 -1.9760 -4.4421 -0.9551 0.1820 6.2655 4.1009 1.0469 2.9498 0.1982 0.2190 5.6797 1.4989
+#> 296: 93.1425 -6.0460 -1.9760 -4.4432 -0.9548 0.1818 6.2801 4.0912 1.0478 2.9566 0.1984 0.2185 5.6795 1.4989
+#> 297: 93.1403 -6.0442 -1.9761 -4.4440 -0.9545 0.1818 6.2979 4.0836 1.0485 2.9626 0.1987 0.2182 5.6783 1.4978
+#> 298: 93.1400 -6.0438 -1.9763 -4.4440 -0.9543 0.1817 6.3069 4.0842 1.0492 2.9646 0.1989 0.2178 5.6783 1.4968
+#> 299: 93.1373 -6.0426 -1.9764 -4.4445 -0.9540 0.1813 6.3134 4.0790 1.0505 2.9694 0.1991 0.2175 5.6800 1.4953
+#> 300: 93.1340 -6.0412 -1.9764 -4.4450 -0.9538 0.1811 6.3192 4.0731 1.0516 2.9744 0.1993 0.2171 5.6782 1.4938
+#> 301: 93.1330 -6.0402 -1.9766 -4.4455 -0.9535 0.1808 6.3278 4.0685 1.0531 2.9784 0.1996 0.2167 5.6819 1.4925
+#> 302: 93.1308 -6.0402 -1.9768 -4.4457 -0.9534 0.1806 6.3417 4.0684 1.0549 2.9813 0.1998 0.2163 5.6824 1.4905
+#> 303: 93.1294 -6.0373 -1.9769 -4.4459 -0.9532 0.1804 6.3489 4.0538 1.0565 2.9838 0.2000 0.2159 5.6841 1.4890
+#> 304: 93.1304 -6.0345 -1.9771 -4.4461 -0.9530 0.1801 6.3543 4.0409 1.0581 2.9859 0.2002 0.2155 5.6869 1.4875
+#> 305: 93.1287 -6.0319 -1.9772 -4.4463 -0.9528 0.1800 6.3496 4.0293 1.0597 2.9882 0.2003 0.2151 5.6902 1.4867
+#> 306: 93.1261 -6.0301 -1.9775 -4.4474 -0.9527 0.1802 6.3479 4.0231 1.0614 2.9989 0.2003 0.2145 5.6963 1.4856
+#> 307: 93.1232 -6.0284 -1.9777 -4.4479 -0.9526 0.1802 6.3507 4.0135 1.0629 3.0036 0.2004 0.2141 5.6987 1.4849
+#> 308: 93.1192 -6.0264 -1.9779 -4.4483 -0.9524 0.1802 6.3641 4.0019 1.0644 3.0084 0.2004 0.2135 5.6991 1.4837
+#> 309: 93.1137 -6.0253 -1.9783 -4.4487 -0.9522 0.1803 6.3579 3.9953 1.0658 3.0133 0.2004 0.2130 5.7035 1.4826
+#> 310: 93.1100 -6.0223 -1.9787 -4.4489 -0.9520 0.1804 6.3423 3.9800 1.0665 3.0171 0.2005 0.2126 5.7061 1.4822
+#> 311: 93.1044 -6.0215 -1.9791 -4.4496 -0.9517 0.1804 6.3365 3.9744 1.0675 3.0251 0.2005 0.2121 5.7092 1.4816
+#> 312: 93.1006 -6.0206 -1.9795 -4.4501 -0.9516 0.1806 6.3317 3.9681 1.0688 3.0321 0.2006 0.2115 5.7128 1.4805
+#> 313: 93.0951 -6.0194 -1.9797 -4.4499 -0.9516 0.1805 6.3297 3.9609 1.0702 3.0333 0.2008 0.2109 5.7137 1.4805
+#> 314: 93.0922 -6.0192 -1.9800 -4.4497 -0.9515 0.1804 6.3486 3.9570 1.0715 3.0345 0.2009 0.2104 5.7144 1.4800
+#> 315: 93.0883 -6.0186 -1.9804 -4.4495 -0.9515 0.1803 6.3712 3.9528 1.0726 3.0351 0.2011 0.2100 5.7156 1.4794
+#> 316: 93.0808 -6.0182 -1.9808 -4.4492 -0.9514 0.1802 6.3979 3.9483 1.0738 3.0345 0.2013 0.2097 5.7164 1.4792
+#> 317: 93.0758 -6.0174 -1.9813 -4.4487 -0.9513 0.1801 6.4377 3.9428 1.0747 3.0327 0.2015 0.2094 5.7175 1.4787
+#> 318: 93.0713 -6.0166 -1.9816 -4.4484 -0.9513 0.1801 6.4856 3.9375 1.0757 3.0316 0.2017 0.2091 5.7197 1.4778
+#> 319: 93.0659 -6.0176 -1.9819 -4.4482 -0.9511 0.1800 6.5263 3.9425 1.0768 3.0313 0.2018 0.2088 5.7218 1.4772
+#> 320: 93.0607 -6.0165 -1.9822 -4.4484 -0.9510 0.1798 6.5554 3.9372 1.0777 3.0329 0.2019 0.2087 5.7236 1.4771
+#> 321: 93.0551 -6.0145 -1.9825 -4.4487 -0.9509 0.1797 6.5844 3.9275 1.0787 3.0368 0.2021 0.2085 5.7256 1.4766
+#> 322: 93.0531 -6.0130 -1.9827 -4.4491 -0.9507 0.1797 6.6073 3.9201 1.0797 3.0400 0.2021 0.2082 5.7250 1.4759
+#> 323: 93.0477 -6.0123 -1.9828 -4.4493 -0.9506 0.1794 6.6255 3.9149 1.0804 3.0420 0.2021 0.2080 5.7249 1.4756
+#> 324: 93.0425 -6.0107 -1.9829 -4.4498 -0.9504 0.1792 6.6282 3.9060 1.0813 3.0457 0.2022 0.2078 5.7250 1.4754
+#> 325: 93.0389 -6.0090 -1.9830 -4.4504 -0.9503 0.1792 6.6252 3.8965 1.0819 3.0496 0.2022 0.2077 5.7246 1.4749
+#> 326: 93.0411 -6.0093 -1.9832 -4.4509 -0.9503 0.1795 6.6358 3.8976 1.0827 3.0516 0.2022 0.2076 5.7248 1.4738
+#> 327: 93.0418 -6.0095 -1.9834 -4.4514 -0.9503 0.1797 6.6415 3.8962 1.0834 3.0533 0.2022 0.2075 5.7237 1.4737
+#> 328: 93.0434 -6.0093 -1.9835 -4.4520 -0.9503 0.1798 6.6621 3.8957 1.0841 3.0550 0.2022 0.2074 5.7247 1.4731
+#> 329: 93.0446 -6.0109 -1.9836 -4.4522 -0.9503 0.1798 6.6763 3.9048 1.0847 3.0543 0.2022 0.2072 5.7259 1.4725
+#> 330: 93.0451 -6.0133 -1.9838 -4.4518 -0.9503 0.1799 6.6859 3.9192 1.0852 3.0521 0.2022 0.2070 5.7252 1.4719
+#> 331: 93.0456 -6.0136 -1.9838 -4.4516 -0.9503 0.1799 6.6773 3.9217 1.0858 3.0505 0.2022 0.2067 5.7250 1.4715
+#> 332: 93.0463 -6.0133 -1.9839 -4.4515 -0.9504 0.1799 6.6560 3.9195 1.0863 3.0494 0.2022 0.2063 5.7255 1.4710
+#> 333: 93.0496 -6.0122 -1.9839 -4.4513 -0.9505 0.1800 6.6484 3.9134 1.0869 3.0474 0.2022 0.2060 5.7253 1.4705
+#> 334: 93.0520 -6.0105 -1.9838 -4.4513 -0.9505 0.1801 6.6314 3.9035 1.0877 3.0462 0.2022 0.2056 5.7259 1.4702
+#> 335: 93.0550 -6.0088 -1.9836 -4.4510 -0.9507 0.1800 6.6194 3.8941 1.0887 3.0451 0.2022 0.2051 5.7263 1.4702
+#> 336: 93.0554 -6.0081 -1.9834 -4.4509 -0.9508 0.1800 6.6100 3.8896 1.0896 3.0444 0.2022 0.2048 5.7266 1.4705
+#> 337: 93.0582 -6.0067 -1.9832 -4.4507 -0.9509 0.1800 6.6089 3.8805 1.0904 3.0445 0.2021 0.2044 5.7260 1.4706
+#> 338: 93.0631 -6.0073 -1.9831 -4.4507 -0.9511 0.1801 6.5993 3.8798 1.0908 3.0443 0.2021 0.2040 5.7250 1.4711
+#> 339: 93.0689 -6.0071 -1.9831 -4.4508 -0.9513 0.1803 6.5976 3.8749 1.0911 3.0442 0.2021 0.2037 5.7240 1.4714
+#> 340: 93.0694 -6.0085 -1.9831 -4.4507 -0.9516 0.1804 6.5915 3.8779 1.0914 3.0436 0.2022 0.2032 5.7227 1.4711
+#> 341: 93.0709 -6.0097 -1.9830 -4.4508 -0.9518 0.1804 6.5862 3.8803 1.0915 3.0429 0.2023 0.2026 5.7213 1.4715
+#> 342: 93.0741 -6.0104 -1.9829 -4.4507 -0.9521 0.1804 6.5894 3.8812 1.0918 3.0417 0.2024 0.2022 5.7204 1.4714
+#> 343: 93.0781 -6.0122 -1.9829 -4.4505 -0.9523 0.1804 6.5907 3.8870 1.0921 3.0410 0.2024 0.2016 5.7202 1.4712
+#> 344: 93.0818 -6.0134 -1.9829 -4.4503 -0.9525 0.1804 6.5908 3.8895 1.0926 3.0400 0.2025 0.2011 5.7182 1.4712
+#> 345: 93.0850 -6.0148 -1.9829 -4.4500 -0.9528 0.1806 6.5984 3.8931 1.0926 3.0387 0.2026 0.2006 5.7169 1.4712
+#> 346: 93.0849 -6.0155 -1.9831 -4.4502 -0.9529 0.1807 6.6079 3.8986 1.0931 3.0401 0.2028 0.2002 5.7172 1.4716
+#> 347: 93.0859 -6.0161 -1.9832 -4.4503 -0.9530 0.1809 6.6307 3.9028 1.0941 3.0404 0.2029 0.1998 5.7170 1.4712
+#> 348: 93.0885 -6.0173 -1.9833 -4.4503 -0.9532 0.1809 6.6470 3.9096 1.0951 3.0404 0.2030 0.1993 5.7174 1.4708
+#> 349: 93.0894 -6.0189 -1.9835 -4.4503 -0.9534 0.1810 6.6443 3.9190 1.0955 3.0410 0.2031 0.1989 5.7175 1.4707
+#> 350: 93.0924 -6.0196 -1.9836 -4.4502 -0.9535 0.1813 6.6543 3.9218 1.0957 3.0409 0.2032 0.1983 5.7182 1.4705
+#> 351: 93.0938 -6.0203 -1.9838 -4.4503 -0.9536 0.1814 6.6630 3.9233 1.0963 3.0417 0.2032 0.1977 5.7189 1.4703
+#> 352: 93.0946 -6.0210 -1.9838 -4.4505 -0.9537 0.1816 6.6698 3.9263 1.0968 3.0432 0.2033 0.1973 5.7196 1.4701
+#> 353: 93.0969 -6.0214 -1.9839 -4.4505 -0.9538 0.1818 6.6837 3.9270 1.0973 3.0442 0.2034 0.1968 5.7199 1.4701
+#> 354: 93.1014 -6.0199 -1.9839 -4.4504 -0.9539 0.1817 6.7040 3.9204 1.0978 3.0438 0.2034 0.1962 5.7191 1.4703
+#> 355: 93.1035 -6.0197 -1.9838 -4.4502 -0.9539 0.1816 6.7119 3.9222 1.0983 3.0433 0.2034 0.1957 5.7194 1.4706
+#> 356: 93.1055 -6.0198 -1.9839 -4.4496 -0.9539 0.1815 6.7302 3.9277 1.0989 3.0409 0.2035 0.1952 5.7206 1.4707
+#> 357: 93.1080 -6.0188 -1.9837 -4.4490 -0.9540 0.1813 6.7558 3.9243 1.0997 3.0386 0.2035 0.1948 5.7217 1.4706
+#> 358: 93.1111 -6.0182 -1.9835 -4.4484 -0.9541 0.1812 6.7733 3.9204 1.1005 3.0365 0.2035 0.1944 5.7209 1.4700
+#> 359: 93.1148 -6.0175 -1.9834 -4.4481 -0.9542 0.1811 6.7997 3.9151 1.1012 3.0355 0.2035 0.1940 5.7191 1.4696
+#> 360: 93.1157 -6.0176 -1.9832 -4.4478 -0.9543 0.1810 6.8133 3.9155 1.1017 3.0340 0.2035 0.1937 5.7158 1.4691
+#> 361: 93.1169 -6.0185 -1.9830 -4.4476 -0.9544 0.1808 6.8098 3.9232 1.1022 3.0328 0.2035 0.1934 5.7143 1.4690
+#> 362: 93.1173 -6.0205 -1.9829 -4.4472 -0.9545 0.1805 6.8125 3.9361 1.1024 3.0319 0.2035 0.1931 5.7137 1.4693
+#> 363: 93.1162 -6.0230 -1.9828 -4.4467 -0.9545 0.1801 6.8240 3.9524 1.1025 3.0312 0.2035 0.1928 5.7125 1.4695
+#> 364: 93.1173 -6.0240 -1.9826 -4.4464 -0.9546 0.1799 6.8341 3.9575 1.1027 3.0307 0.2035 0.1924 5.7092 1.4695
+#> 365: 93.1199 -6.0259 -1.9824 -4.4462 -0.9547 0.1796 6.8476 3.9687 1.1028 3.0316 0.2036 0.1920 5.7073 1.4695
+#> 366: 93.1220 -6.0277 -1.9821 -4.4461 -0.9548 0.1793 6.8542 3.9777 1.1032 3.0319 0.2037 0.1916 5.7060 1.4694
+#> 367: 93.1230 -6.0287 -1.9819 -4.4460 -0.9548 0.1791 6.8633 3.9829 1.1038 3.0331 0.2038 0.1914 5.7056 1.4693
+#> 368: 93.1255 -6.0276 -1.9816 -4.4459 -0.9549 0.1789 6.8734 3.9764 1.1038 3.0341 0.2038 0.1912 5.7050 1.4695
+#> 369: 93.1258 -6.0263 -1.9814 -4.4461 -0.9549 0.1787 6.8756 3.9698 1.1039 3.0357 0.2039 0.1910 5.7031 1.4697
+#> 370: 93.1288 -6.0252 -1.9811 -4.4463 -0.9548 0.1785 6.8892 3.9639 1.1039 3.0375 0.2040 0.1909 5.7029 1.4701
+#> 371: 93.1317 -6.0245 -1.9810 -4.4467 -0.9548 0.1784 6.8974 3.9601 1.1037 3.0391 0.2040 0.1907 5.7037 1.4700
+#> 372: 93.1346 -6.0233 -1.9811 -4.4465 -0.9548 0.1781 6.9042 3.9536 1.1035 3.0386 0.2040 0.1905 5.7038 1.4700
+#> 373: 93.1340 -6.0234 -1.9810 -4.4461 -0.9547 0.1778 6.9034 3.9548 1.1034 3.0371 0.2039 0.1903 5.7040 1.4698
+#> 374: 93.1324 -6.0230 -1.9811 -4.4456 -0.9547 0.1775 6.9080 3.9527 1.1034 3.0349 0.2038 0.1901 5.7055 1.4691
+#> 375: 93.1309 -6.0226 -1.9812 -4.4451 -0.9546 0.1773 6.9093 3.9493 1.1034 3.0334 0.2037 0.1899 5.7063 1.4683
+#> 376: 93.1298 -6.0215 -1.9811 -4.4447 -0.9546 0.1770 6.9039 3.9432 1.1035 3.0319 0.2036 0.1897 5.7064 1.4678
+#> 377: 93.1296 -6.0209 -1.9811 -4.4443 -0.9546 0.1768 6.8932 3.9390 1.1036 3.0305 0.2035 0.1895 5.7056 1.4672
+#> 378: 93.1292 -6.0200 -1.9810 -4.4438 -0.9545 0.1764 6.8850 3.9349 1.1037 3.0288 0.2034 0.1892 5.7068 1.4667
+#> 379: 93.1284 -6.0196 -1.9808 -4.4432 -0.9544 0.1760 6.8766 3.9318 1.1038 3.0266 0.2033 0.1890 5.7072 1.4665
+#> 380: 93.1304 -6.0182 -1.9806 -4.4425 -0.9543 0.1756 6.8737 3.9249 1.1040 3.0236 0.2033 0.1888 5.7074 1.4662
+#> 381: 93.1315 -6.0169 -1.9804 -4.4417 -0.9542 0.1754 6.8707 3.9193 1.1040 3.0210 0.2032 0.1886 5.7066 1.4661
+#> 382: 93.1331 -6.0160 -1.9801 -4.4409 -0.9542 0.1750 6.8645 3.9150 1.1040 3.0187 0.2032 0.1885 5.7063 1.4664
+#> 383: 93.1334 -6.0153 -1.9800 -4.4403 -0.9542 0.1746 6.8599 3.9123 1.1037 3.0167 0.2032 0.1882 5.7074 1.4665
+#> 384: 93.1328 -6.0140 -1.9801 -4.4397 -0.9540 0.1742 6.8600 3.9074 1.1034 3.0149 0.2031 0.1879 5.7072 1.4667
+#> 385: 93.1306 -6.0137 -1.9801 -4.4392 -0.9539 0.1739 6.8449 3.9073 1.1031 3.0137 0.2030 0.1876 5.7084 1.4665
+#> 386: 93.1281 -6.0134 -1.9801 -4.4388 -0.9539 0.1735 6.8356 3.9088 1.1028 3.0123 0.2029 0.1872 5.7087 1.4667
+#> 387: 93.1267 -6.0141 -1.9801 -4.4384 -0.9537 0.1732 6.8364 3.9150 1.1025 3.0110 0.2028 0.1869 5.7101 1.4669
+#> 388: 93.1252 -6.0142 -1.9801 -4.4380 -0.9536 0.1730 6.8374 3.9192 1.1022 3.0097 0.2028 0.1866 5.7110 1.4670
+#> 389: 93.1223 -6.0140 -1.9801 -4.4375 -0.9535 0.1728 6.8334 3.9209 1.1019 3.0083 0.2028 0.1862 5.7105 1.4674
+#> 390: 93.1221 -6.0144 -1.9800 -4.4371 -0.9534 0.1726 6.8248 3.9256 1.1014 3.0068 0.2028 0.1859 5.7098 1.4675
+#> 391: 93.1210 -6.0149 -1.9799 -4.4365 -0.9533 0.1725 6.8339 3.9293 1.1011 3.0054 0.2028 0.1856 5.7109 1.4678
+#> 392: 93.1193 -6.0145 -1.9799 -4.4360 -0.9532 0.1724 6.8360 3.9279 1.1009 3.0040 0.2028 0.1852 5.7107 1.4678
+#> 393: 93.1200 -6.0149 -1.9799 -4.4357 -0.9532 0.1723 6.8461 3.9287 1.1005 3.0019 0.2028 0.1849 5.7100 1.4678
+#> 394: 93.1202 -6.0138 -1.9799 -4.4355 -0.9532 0.1723 6.8520 3.9229 1.1006 3.0003 0.2028 0.1846 5.7085 1.4679
+#> 395: 93.1203 -6.0134 -1.9800 -4.4354 -0.9532 0.1723 6.8583 3.9200 1.1005 2.9987 0.2027 0.1844 5.7072 1.4680
+#> 396: 93.1195 -6.0131 -1.9800 -4.4353 -0.9532 0.1724 6.8593 3.9169 1.1004 2.9969 0.2027 0.1842 5.7062 1.4676
+#> 397: 93.1195 -6.0130 -1.9801 -4.4352 -0.9532 0.1724 6.8591 3.9143 1.1004 2.9958 0.2027 0.1839 5.7046 1.4675
+#> 398: 93.1200 -6.0128 -1.9801 -4.4352 -0.9532 0.1725 6.8522 3.9125 1.1004 2.9945 0.2028 0.1836 5.7032 1.4675
+#> 399: 93.1200 -6.0135 -1.9803 -4.4351 -0.9531 0.1726 6.8471 3.9166 1.1003 2.9933 0.2028 0.1833 5.7032 1.4673
+#> 400: 93.1204 -6.0139 -1.9803 -4.4351 -0.9531 0.1727 6.8438 3.9191 1.1003 2.9918 0.2027 0.1832 5.7026 1.4671
+#> 401: 93.1198 -6.0139 -1.9804 -4.4351 -0.9530 0.1728 6.8373 3.9186 1.1004 2.9901 0.2027 0.1831 5.7015 1.4670
+#> 402: 93.1199 -6.0141 -1.9804 -4.4351 -0.9530 0.1729 6.8357 3.9194 1.1005 2.9882 0.2027 0.1830 5.7003 1.4671
+#> 403: 93.1196 -6.0155 -1.9804 -4.4350 -0.9530 0.1730 6.8285 3.9255 1.1007 2.9863 0.2026 0.1829 5.7001 1.4671
+#> 404: 93.1183 -6.0164 -1.9805 -4.4350 -0.9531 0.1732 6.8204 3.9308 1.1009 2.9843 0.2026 0.1829 5.7008 1.4670
+#> 405: 93.1178 -6.0161 -1.9805 -4.4350 -0.9532 0.1733 6.8205 3.9286 1.1012 2.9823 0.2025 0.1829 5.7013 1.4669
+#> 406: 93.1176 -6.0171 -1.9806 -4.4348 -0.9533 0.1735 6.8253 3.9319 1.1013 2.9801 0.2025 0.1828 5.7026 1.4666
+#> 407: 93.1168 -6.0185 -1.9807 -4.4348 -0.9533 0.1736 6.8290 3.9373 1.1015 2.9788 0.2024 0.1830 5.7033 1.4664
+#> 408: 93.1165 -6.0198 -1.9808 -4.4349 -0.9534 0.1738 6.8217 3.9428 1.1017 2.9773 0.2023 0.1830 5.7047 1.4663
+#> 409: 93.1165 -6.0210 -1.9809 -4.4350 -0.9534 0.1741 6.8208 3.9505 1.1019 2.9761 0.2021 0.1830 5.7055 1.4661
+#> 410: 93.1169 -6.0230 -1.9810 -4.4351 -0.9535 0.1745 6.8239 3.9617 1.1020 2.9751 0.2020 0.1829 5.7052 1.4658
+#> 411: 93.1166 -6.0237 -1.9811 -4.4353 -0.9536 0.1748 6.8234 3.9664 1.1020 2.9741 0.2019 0.1829 5.7043 1.4657
+#> 412: 93.1164 -6.0235 -1.9812 -4.4355 -0.9536 0.1751 6.8205 3.9643 1.1020 2.9735 0.2017 0.1827 5.7053 1.4654
+#> 413: 93.1182 -6.0232 -1.9814 -4.4356 -0.9537 0.1755 6.8133 3.9615 1.1020 2.9726 0.2016 0.1825 5.7070 1.4650
+#> 414: 93.1190 -6.0226 -1.9815 -4.4360 -0.9537 0.1760 6.8113 3.9578 1.1021 2.9726 0.2015 0.1825 5.7081 1.4648
+#> 415: 93.1183 -6.0226 -1.9817 -4.4364 -0.9538 0.1765 6.8081 3.9557 1.1021 2.9725 0.2014 0.1824 5.7085 1.4646
+#> 416: 93.1185 -6.0238 -1.9818 -4.4369 -0.9538 0.1768 6.8134 3.9617 1.1020 2.9734 0.2013 0.1822 5.7103 1.4645
+#> 417: 93.1190 -6.0245 -1.9819 -4.4373 -0.9540 0.1770 6.8164 3.9664 1.1022 2.9743 0.2012 0.1819 5.7102 1.4650
+#> 418: 93.1219 -6.0256 -1.9818 -4.4376 -0.9542 0.1773 6.8206 3.9710 1.1026 2.9745 0.2011 0.1816 5.7110 1.4655
+#> 419: 93.1255 -6.0261 -1.9817 -4.4381 -0.9543 0.1776 6.8183 3.9714 1.1030 2.9759 0.2010 0.1814 5.7134 1.4659
+#> 420: 93.1294 -6.0262 -1.9816 -4.4385 -0.9546 0.1779 6.8113 3.9704 1.1033 2.9768 0.2009 0.1810 5.7156 1.4666
+#> 421: 93.1319 -6.0259 -1.9815 -4.4392 -0.9547 0.1781 6.7989 3.9685 1.1036 2.9786 0.2008 0.1808 5.7171 1.4676
+#> 422: 93.1338 -6.0263 -1.9814 -4.4398 -0.9548 0.1783 6.7922 3.9681 1.1038 2.9806 0.2006 0.1808 5.7179 1.4681
+#> 423: 93.1353 -6.0266 -1.9813 -4.4406 -0.9550 0.1786 6.7868 3.9674 1.1040 2.9837 0.2006 0.1808 5.7181 1.4687
+#> 424: 93.1374 -6.0270 -1.9811 -4.4414 -0.9550 0.1787 6.7758 3.9674 1.1043 2.9866 0.2004 0.1807 5.7198 1.4693
+#> 425: 93.1383 -6.0270 -1.9811 -4.4420 -0.9551 0.1787 6.7547 3.9674 1.1042 2.9887 0.2003 0.1806 5.7211 1.4702
+#> 426: 93.1400 -6.0268 -1.9811 -4.4427 -0.9551 0.1789 6.7376 3.9654 1.1043 2.9917 0.2002 0.1805 5.7241 1.4706
+#> 427: 93.1391 -6.0268 -1.9811 -4.4433 -0.9552 0.1790 6.7196 3.9634 1.1045 2.9951 0.2001 0.1805 5.7271 1.4710
+#> 428: 93.1404 -6.0268 -1.9810 -4.4442 -0.9552 0.1792 6.7104 3.9628 1.1044 2.9999 0.2000 0.1803 5.7282 1.4712
+#> 429: 93.1431 -6.0265 -1.9810 -4.4450 -0.9553 0.1793 6.7029 3.9612 1.1045 3.0043 0.1999 0.1803 5.7293 1.4716
+#> 430: 93.1464 -6.0263 -1.9809 -4.4457 -0.9554 0.1795 6.6962 3.9606 1.1046 3.0074 0.1999 0.1802 5.7291 1.4724
+#> 431: 93.1485 -6.0267 -1.9809 -4.4460 -0.9555 0.1797 6.6865 3.9623 1.1046 3.0082 0.1998 0.1802 5.7287 1.4726
+#> 432: 93.1509 -6.0277 -1.9808 -4.4462 -0.9556 0.1798 6.6843 3.9658 1.1047 3.0086 0.1998 0.1801 5.7280 1.4727
+#> 433: 93.1528 -6.0289 -1.9806 -4.4464 -0.9557 0.1798 6.6840 3.9714 1.1049 3.0087 0.1998 0.1801 5.7282 1.4729
+#> 434: 93.1555 -6.0286 -1.9804 -4.4467 -0.9557 0.1798 6.6870 3.9693 1.1052 3.0094 0.1997 0.1800 5.7277 1.4729
+#> 435: 93.1574 -6.0290 -1.9803 -4.4467 -0.9558 0.1798 6.6893 3.9712 1.1055 3.0095 0.1996 0.1800 5.7278 1.4727
+#> 436: 93.1594 -6.0299 -1.9802 -4.4468 -0.9558 0.1798 6.6934 3.9749 1.1059 3.0103 0.1996 0.1801 5.7271 1.4727
+#> 437: 93.1600 -6.0311 -1.9800 -4.4469 -0.9558 0.1797 6.7010 3.9812 1.1065 3.0110 0.1996 0.1801 5.7275 1.4727
+#> 438: 93.1617 -6.0318 -1.9799 -4.4471 -0.9559 0.1796 6.7120 3.9865 1.1069 3.0121 0.1995 0.1801 5.7271 1.4727
+#> 439: 93.1634 -6.0329 -1.9798 -4.4472 -0.9559 0.1795 6.7279 3.9930 1.1075 3.0127 0.1995 0.1802 5.7268 1.4727
+#> 440: 93.1644 -6.0332 -1.9797 -4.4473 -0.9559 0.1794 6.7338 3.9962 1.1080 3.0136 0.1994 0.1803 5.7270 1.4726
+#> 441: 93.1654 -6.0335 -1.9795 -4.4477 -0.9558 0.1794 6.7435 3.9988 1.1085 3.0155 0.1994 0.1805 5.7274 1.4728
+#> 442: 93.1670 -6.0340 -1.9792 -4.4480 -0.9558 0.1794 6.7493 4.0028 1.1091 3.0173 0.1993 0.1808 5.7282 1.4729
+#> 443: 93.1685 -6.0346 -1.9790 -4.4485 -0.9558 0.1793 6.7577 4.0073 1.1092 3.0202 0.1992 0.1811 5.7267 1.4732
+#> 444: 93.1671 -6.0346 -1.9789 -4.4491 -0.9558 0.1792 6.7559 4.0069 1.1093 3.0238 0.1992 0.1813 5.7258 1.4733
+#> 445: 93.1655 -6.0355 -1.9789 -4.4497 -0.9557 0.1790 6.7552 4.0127 1.1094 3.0276 0.1992 0.1814 5.7262 1.4733
+#> 446: 93.1641 -6.0361 -1.9787 -4.4501 -0.9557 0.1789 6.7579 4.0169 1.1096 3.0306 0.1991 0.1816 5.7262 1.4732
+#> 447: 93.1628 -6.0363 -1.9786 -4.4503 -0.9556 0.1787 6.7680 4.0196 1.1099 3.0318 0.1991 0.1818 5.7258 1.4729
+#> 448: 93.1629 -6.0371 -1.9787 -4.4509 -0.9556 0.1786 6.7705 4.0248 1.1100 3.0358 0.1990 0.1820 5.7267 1.4725
+#> 449: 93.1626 -6.0381 -1.9785 -4.4510 -0.9556 0.1784 6.7800 4.0298 1.1101 3.0368 0.1989 0.1822 5.7266 1.4722
+#> 450: 93.1614 -6.0386 -1.9782 -4.4514 -0.9556 0.1782 6.7796 4.0316 1.1103 3.0392 0.1989 0.1824 5.7260 1.4720
+#> 451: 93.1603 -6.0397 -1.9779 -4.4518 -0.9556 0.1780 6.7799 4.0381 1.1107 3.0416 0.1988 0.1827 5.7264 1.4720
+#> 452: 93.1610 -6.0406 -1.9775 -4.4522 -0.9556 0.1777 6.7813 4.0424 1.1111 3.0443 0.1988 0.1828 5.7268 1.4719
+#> 453: 93.1618 -6.0414 -1.9771 -4.4523 -0.9556 0.1774 6.7814 4.0490 1.1115 3.0456 0.1987 0.1830 5.7262 1.4721
+#> 454: 93.1625 -6.0415 -1.9767 -4.4525 -0.9555 0.1771 6.7799 4.0499 1.1118 3.0473 0.1986 0.1831 5.7260 1.4723
+#> 455: 93.1636 -6.0412 -1.9765 -4.4528 -0.9555 0.1769 6.7778 4.0489 1.1123 3.0496 0.1985 0.1832 5.7268 1.4722
+#> 456: 93.1653 -6.0401 -1.9762 -4.4532 -0.9554 0.1768 6.7703 4.0441 1.1127 3.0517 0.1983 0.1834 5.7282 1.4725
+#> 457: 93.1672 -6.0396 -1.9760 -4.4535 -0.9554 0.1766 6.7683 4.0427 1.1129 3.0539 0.1982 0.1835 5.7281 1.4727
+#> 458: 93.1692 -6.0398 -1.9757 -4.4539 -0.9554 0.1765 6.7627 4.0450 1.1132 3.0570 0.1981 0.1835 5.7294 1.4729
+#> 459: 93.1708 -6.0402 -1.9756 -4.4542 -0.9554 0.1763 6.7615 4.0483 1.1133 3.0596 0.1980 0.1836 5.7320 1.4728
+#> 460: 93.1710 -6.0401 -1.9755 -4.4544 -0.9553 0.1762 6.7629 4.0487 1.1135 3.0615 0.1979 0.1835 5.7323 1.4730
+#> 461: 93.1708 -6.0403 -1.9755 -4.4546 -0.9552 0.1762 6.7639 4.0492 1.1136 3.0631 0.1978 0.1834 5.7321 1.4729
+#> 462: 93.1707 -6.0405 -1.9755 -4.4548 -0.9552 0.1760 6.7657 4.0506 1.1136 3.0647 0.1977 0.1833 5.7323 1.4727
+#> 463: 93.1690 -6.0403 -1.9755 -4.4548 -0.9551 0.1759 6.7607 4.0494 1.1136 3.0651 0.1976 0.1832 5.7332 1.4726
+#> 464: 93.1673 -6.0400 -1.9755 -4.4548 -0.9551 0.1758 6.7588 4.0480 1.1138 3.0652 0.1975 0.1832 5.7344 1.4724
+#> 465: 93.1657 -6.0399 -1.9755 -4.4548 -0.9550 0.1756 6.7601 4.0474 1.1138 3.0652 0.1974 0.1831 5.7350 1.4724
+#> 466: 93.1656 -6.0406 -1.9754 -4.4548 -0.9549 0.1755 6.7589 4.0514 1.1139 3.0658 0.1973 0.1831 5.7355 1.4723
+#> 467: 93.1657 -6.0408 -1.9753 -4.4548 -0.9549 0.1754 6.7558 4.0525 1.1139 3.0664 0.1972 0.1831 5.7358 1.4725
+#> 468: 93.1664 -6.0411 -1.9752 -4.4551 -0.9548 0.1753 6.7546 4.0551 1.1140 3.0679 0.1971 0.1832 5.7358 1.4723
+#> 469: 93.1667 -6.0412 -1.9751 -4.4552 -0.9547 0.1752 6.7547 4.0554 1.1141 3.0676 0.1970 0.1833 5.7354 1.4721
+#> 470: 93.1664 -6.0413 -1.9750 -4.4552 -0.9546 0.1751 6.7579 4.0564 1.1143 3.0676 0.1969 0.1833 5.7352 1.4718
+#> 471: 93.1656 -6.0411 -1.9750 -4.4553 -0.9545 0.1750 6.7611 4.0555 1.1142 3.0681 0.1968 0.1834 5.7354 1.4715
+#> 472: 93.1644 -6.0408 -1.9751 -4.4554 -0.9544 0.1749 6.7577 4.0542 1.1142 3.0686 0.1968 0.1834 5.7362 1.4712
+#> 473: 93.1632 -6.0405 -1.9751 -4.4554 -0.9543 0.1749 6.7527 4.0526 1.1141 3.0686 0.1967 0.1835 5.7363 1.4708
+#> 474: 93.1619 -6.0405 -1.9752 -4.4555 -0.9542 0.1748 6.7479 4.0521 1.1140 3.0689 0.1967 0.1835 5.7366 1.4705
+#> 475: 93.1609 -6.0413 -1.9753 -4.4557 -0.9542 0.1748 6.7469 4.0558 1.1139 3.0698 0.1967 0.1835 5.7379 1.4702
+#> 476: 93.1607 -6.0411 -1.9754 -4.4556 -0.9542 0.1747 6.7414 4.0549 1.1139 3.0697 0.1966 0.1835 5.7388 1.4698
+#> 477: 93.1597 -6.0413 -1.9754 -4.4560 -0.9542 0.1747 6.7321 4.0560 1.1137 3.0733 0.1966 0.1836 5.7392 1.4697
+#> 478: 93.1591 -6.0421 -1.9754 -4.4563 -0.9542 0.1745 6.7239 4.0608 1.1137 3.0765 0.1965 0.1836 5.7399 1.4697
+#> 479: 93.1589 -6.0438 -1.9754 -4.4564 -0.9542 0.1744 6.7150 4.0719 1.1136 3.0785 0.1964 0.1838 5.7421 1.4695
+#> 480: 93.1594 -6.0459 -1.9754 -4.4566 -0.9542 0.1742 6.7102 4.0895 1.1135 3.0807 0.1964 0.1839 5.7446 1.4695
+#> 481: 93.1604 -6.0472 -1.9754 -4.4570 -0.9542 0.1741 6.7104 4.1016 1.1135 3.0848 0.1964 0.1841 5.7456 1.4693
+#> 482: 93.1584 -6.0486 -1.9754 -4.4573 -0.9542 0.1739 6.7061 4.1152 1.1136 3.0877 0.1964 0.1842 5.7464 1.4690
+#> 483: 93.1561 -6.0501 -1.9754 -4.4576 -0.9541 0.1737 6.7067 4.1286 1.1135 3.0903 0.1963 0.1843 5.7475 1.4688
+#> 484: 93.1545 -6.0507 -1.9754 -4.4578 -0.9541 0.1737 6.7113 4.1362 1.1134 3.0918 0.1963 0.1845 5.7488 1.4687
+#> 485: 93.1524 -6.0507 -1.9754 -4.4583 -0.9540 0.1736 6.7094 4.1381 1.1134 3.0970 0.1964 0.1847 5.7496 1.4685
+#> 486: 93.1510 -6.0508 -1.9754 -4.4586 -0.9540 0.1735 6.7118 4.1405 1.1134 3.0996 0.1964 0.1847 5.7502 1.4682
+#> 487: 93.1495 -6.0507 -1.9755 -4.4591 -0.9539 0.1734 6.7128 4.1406 1.1134 3.1037 0.1965 0.1848 5.7510 1.4680
+#> 488: 93.1494 -6.0502 -1.9756 -4.4597 -0.9538 0.1734 6.7171 4.1384 1.1135 3.1081 0.1965 0.1848 5.7508 1.4677
+#> 489: 93.1497 -6.0497 -1.9756 -4.4604 -0.9538 0.1734 6.7188 4.1358 1.1135 3.1133 0.1966 0.1847 5.7499 1.4675
+#> 490: 93.1507 -6.0486 -1.9757 -4.4607 -0.9538 0.1735 6.7206 4.1319 1.1136 3.1157 0.1967 0.1847 5.7498 1.4672
+#> 491: 93.1507 -6.0476 -1.9757 -4.4612 -0.9537 0.1735 6.7141 4.1270 1.1136 3.1187 0.1968 0.1846 5.7503 1.4672
+#> 492: 93.1507 -6.0470 -1.9758 -4.4618 -0.9536 0.1735 6.7140 4.1238 1.1139 3.1218 0.1969 0.1846 5.7511 1.4669
+#> 493: 93.1513 -6.0468 -1.9758 -4.4623 -0.9535 0.1736 6.7214 4.1232 1.1141 3.1246 0.1970 0.1845 5.7514 1.4668
+#> 494: 93.1511 -6.0467 -1.9759 -4.4629 -0.9534 0.1737 6.7332 4.1232 1.1144 3.1278 0.1971 0.1845 5.7512 1.4664
+#> 495: 93.1511 -6.0464 -1.9761 -4.4635 -0.9533 0.1738 6.7377 4.1218 1.1145 3.1309 0.1972 0.1845 5.7515 1.4661
+#> 496: 93.1498 -6.0465 -1.9762 -4.4639 -0.9532 0.1739 6.7412 4.1241 1.1147 3.1325 0.1974 0.1845 5.7514 1.4657
+#> 497: 93.1482 -6.0467 -1.9764 -4.4644 -0.9532 0.1741 6.7506 4.1259 1.1149 3.1346 0.1975 0.1846 5.7513 1.4652
+#> 498: 93.1479 -6.0465 -1.9765 -4.4647 -0.9531 0.1743 6.7588 4.1263 1.1150 3.1357 0.1977 0.1846 5.7511 1.4648
+#> 499: 93.1462 -6.0455 -1.9766 -4.4651 -0.9530 0.1745 6.7659 4.1219 1.1152 3.1374 0.1978 0.1847 5.7515 1.4645
+#> 500: 93.1455 -6.0439 -1.9768 -4.4657 -0.9529 0.1747 6.7747 4.1151 1.1154 3.1404 0.1980 0.1848 5.7516 1.4641#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"#> Calculating residuals/tables#> done#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
+#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
+#> |.....................| log_k2 | g_qlogis |sigma_parent | sigma_A1 |
+#> |.....................| o1 | o2 | o3 | o4 |
+#> |.....................| o5 | o6 |...........|...........|
+#> | 1| 488.12318 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#> |.....................| -0.8750 | -0.8689 |...........|...........|
+#> | U| 488.12318 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | X| 488.12318 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | G| Gill Diff. | 52.24 | 2.364 | -0.1419 | 0.08101 |
+#> |.....................| -0.5200 | 0.08781 | -28.20 | -16.37 |
+#> |.....................| 14.83 | 13.24 | -12.01 | -2.482 |
+#> |.....................| 5.466 | -10.09 |...........|...........|
+#> | 2| 2642.5634 | 0.2192 | -1.035 | -0.9096 | -0.9332 |
+#> |.....................| -0.9743 | -0.8898 | -0.4296 | -0.6255 |
+#> |.....................| -1.099 | -1.073 | -0.6891 | -0.8357 |
+#> |.....................| -0.9567 | -0.7180 |...........|...........|
+#> | U| 2642.5634 | 20.48 | -5.348 | -0.9517 | -1.954 |
+#> |.....................| -4.421 | 0.1928 | 2.469 | 1.224 |
+#> |.....................| 0.5606 | 0.7036 | 1.386 | 1.005 |
+#> |.....................| 0.7896 | 1.336 |...........|...........|
+#> | X| 2642.5634 | 20.48 | 0.004759 | 0.2785 | 0.1417 |
+#> |.....................| 0.01202 | 0.5480 | 2.469 | 1.224 |
+#> |.....................| 0.5606 | 0.7036 | 1.386 | 1.005 |
+#> |.....................| 0.7896 | 1.336 |...........|...........|
+#> | 3| 546.98314 | 0.9219 | -1.004 | -0.9115 | -0.9321 |
+#> |.....................| -0.9813 | -0.8886 | -0.8089 | -0.8458 |
+#> |.....................| -0.9000 | -0.8944 | -0.8506 | -0.8691 |
+#> |.....................| -0.8831 | -0.8538 |...........|...........|
+#> | U| 546.98314 | 86.13 | -5.316 | -0.9535 | -1.953 |
+#> |.....................| -4.428 | 0.1930 | 2.082 | 1.104 |
+#> |.....................| 0.7044 | 0.8599 | 1.196 | 0.9723 |
+#> |.....................| 0.8529 | 1.178 |...........|...........|
+#> | X| 546.98314 | 86.13 | 0.004913 | 0.2782 | 0.1419 |
+#> |.....................| 0.01193 | 0.5481 | 2.082 | 1.104 |
+#> |.....................| 0.7044 | 0.8599 | 1.196 | 0.9723 |
+#> |.....................| 0.8529 | 1.178 |...........|...........|
+#> | 4| 506.37737 | 0.9922 | -1.000 | -0.9117 | -0.9320 |
+#> |.....................| -0.9820 | -0.8885 | -0.8469 | -0.8679 |
+#> |.....................| -0.8800 | -0.8766 | -0.8668 | -0.8724 |
+#> |.....................| -0.8758 | -0.8674 |...........|...........|
+#> | U| 506.37737 | 92.70 | -5.313 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.043 | 1.092 |
+#> |.....................| 0.7187 | 0.8755 | 1.177 | 0.9691 |
+#> |.....................| 0.8592 | 1.163 |...........|...........|
+#> | X| 506.37737 | 92.70 | 0.004928 | 0.2781 | 0.1419 |
+#> |.....................| 0.01193 | 0.5481 | 2.043 | 1.092 |
+#> |.....................| 0.7187 | 0.8755 | 1.177 | 0.9691 |
+#> |.....................| 0.8592 | 1.163 |...........|...........|
+#> | 5| 506.42840 | 0.9992 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8507 | -0.8701 |
+#> |.....................| -0.8780 | -0.8748 | -0.8684 | -0.8727 |
+#> |.....................| -0.8751 | -0.8687 |...........|...........|
+#> | U| 506.4284 | 93.35 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.091 |
+#> |.....................| 0.7202 | 0.8771 | 1.175 | 0.9688 |
+#> |.....................| 0.8598 | 1.161 |...........|...........|
+#> | X| 506.4284 | 93.35 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.091 |
+#> |.....................| 0.7202 | 0.8771 | 1.175 | 0.9688 |
+#> |.....................| 0.8598 | 1.161 |...........|...........|
+#> | 6| 506.47762 | 0.9999 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#> |.....................| -0.8750 | -0.8689 |...........|...........|
+#> | U| 506.47762 | 93.42 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | X| 506.47762 | 93.42 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | 7| 506.48298 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#> |.....................| -0.8750 | -0.8689 |...........|...........|
+#> | U| 506.48298 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | X| 506.48298 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | 8| 506.48363 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#> |.....................| -0.8750 | -0.8689 |...........|...........|
+#> | U| 506.48363 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | X| 506.48363 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | 9| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#> |.....................| -0.8750 | -0.8689 |...........|...........|
+#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | 10| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#> |.....................| -0.8750 | -0.8689 |...........|...........|
+#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | 11| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#> |.....................| -0.8750 | -0.8689 |...........|...........|
+#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | 12| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#> |.....................| -0.8750 | -0.8689 |...........|...........|
+#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | 13| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#> |.....................| -0.8750 | -0.8689 |...........|...........|
+#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | 14| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#> |.....................| -0.8750 | -0.8689 |...........|...........|
+#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | 15| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#> |.....................| -0.8750 | -0.8689 |...........|...........|
+#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | 16| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#> |.....................| -0.8750 | -0.8689 |...........|...........|
+#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | 17| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
+#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
+#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
+#> |.....................| -0.8750 | -0.8689 |...........|...........|
+#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
+#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
+#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
+#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
+#> |.....................| 0.8599 | 1.161 |...........|...........|
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo
+# Identical two-component error for all variables is only possible with
+# est = 'focei' in nlmixr
+f_nlmixr_fomc_sfo_focei_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei")
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
+#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
+#> |.....................| log_beta | sigma_low | rsd_high | o1 |
+#> |.....................| o2 | o3 | o4 | o5 |
+#> | 1| 504.82714 | 1.000 | -1.000 | -0.9114 | -0.8944 |
+#> |.....................| -0.8457 | -0.8687 | -0.8916 | -0.8768 |
+#> |.....................| -0.8745 | -0.8676 | -0.8705 | -0.8704 |
+#> | U| 504.82714 | 93.12 | -5.303 | -0.9442 | -0.1065 |
+#> |.....................| 2.291 | 1.160 | 0.03005 | 0.7578 |
+#> |.....................| 0.8738 | 1.213 | 1.069 | 1.072 |
+#> | X| 504.82714 | 93.12 | 0.004975 | 0.2801 | 0.8989 |
+#> |.....................| 9.884 | 1.160 | 0.03005 | 0.7578 |
+#> |.....................| 0.8738 | 1.213 | 1.069 | 1.072 |
+#> | G| Gill Diff. | 73.79 | 2.406 | 0.05615 | 0.2285 |
+#> |.....................| 0.009051 | -72.42 | -25.46 | 1.201 |
+#> |.....................| 11.89 | -10.88 | -9.982 | -10.81 |
+#> | 2| 4107.3121 | 0.3213 | -1.022 | -0.9119 | -0.8965 |
+#> |.....................| -0.8458 | -0.2026 | -0.6574 | -0.8879 |
+#> |.....................| -0.9839 | -0.7675 | -0.7787 | -0.7710 |
+#> | U| 4107.3121 | 29.92 | -5.326 | -0.9447 | -0.1086 |
+#> |.....................| 2.291 | 1.546 | 0.03357 | 0.7494 |
+#> |.....................| 0.7782 | 1.335 | 1.167 | 1.179 |
+#> | X| 4107.3121 | 29.92 | 0.004866 | 0.2800 | 0.8971 |
+#> |.....................| 9.883 | 1.546 | 0.03357 | 0.7494 |
+#> |.....................| 0.7782 | 1.335 | 1.167 | 1.179 |
+#> | 3| 528.17103 | 0.9321 | -1.002 | -0.9115 | -0.8946 |
+#> |.....................| -0.8457 | -0.8021 | -0.8682 | -0.8779 |
+#> |.....................| -0.8854 | -0.8576 | -0.8613 | -0.8605 |
+#> | U| 528.17103 | 86.80 | -5.306 | -0.9442 | -0.1067 |
+#> |.....................| 2.291 | 1.198 | 0.03041 | 0.7570 |
+#> |.....................| 0.8642 | 1.226 | 1.079 | 1.083 |
+#> | X| 528.17103 | 86.80 | 0.004964 | 0.2800 | 0.8988 |
+#> |.....................| 9.884 | 1.198 | 0.03041 | 0.7570 |
+#> |.....................| 0.8642 | 1.226 | 1.079 | 1.083 |
+#> | 4| 503.95550 | 0.9892 | -1.000 | -0.9114 | -0.8944 |
+#> |.....................| -0.8457 | -0.8581 | -0.8879 | -0.8770 |
+#> |.....................| -0.8762 | -0.8660 | -0.8691 | -0.8689 |
+#> | U| 503.9555 | 92.11 | -5.304 | -0.9442 | -0.1066 |
+#> |.....................| 2.291 | 1.166 | 0.03011 | 0.7577 |
+#> |.....................| 0.8723 | 1.215 | 1.070 | 1.074 |
+#> | X| 503.9555 | 92.11 | 0.004973 | 0.2801 | 0.8989 |
+#> |.....................| 9.884 | 1.166 | 0.03011 | 0.7577 |
+#> |.....................| 0.8723 | 1.215 | 1.070 | 1.074 |
+#> | F| Forward Diff. | -82.12 | 2.266 | -0.2557 | 0.1457 |
+#> |.....................| -0.3150 | -70.09 | -26.27 | 1.274 |
+#> |.....................| 9.305 | -11.84 | -9.592 | -10.45 |
+#> | 5| 503.06948 | 1.000 | -1.001 | -0.9114 | -0.8944 |
+#> |.....................| -0.8456 | -0.8479 | -0.8841 | -0.8772 |
+#> |.....................| -0.8776 | -0.8643 | -0.8677 | -0.8674 |
+#> | U| 503.06948 | 93.16 | -5.304 | -0.9442 | -0.1066 |
+#> |.....................| 2.291 | 1.172 | 0.03017 | 0.7575 |
+#> |.....................| 0.8711 | 1.217 | 1.072 | 1.075 |
+#> | X| 503.06948 | 93.16 | 0.004971 | 0.2801 | 0.8989 |
+#> |.....................| 9.884 | 1.172 | 0.03017 | 0.7575 |
+#> |.....................| 0.8711 | 1.217 | 1.072 | 1.075 |
+#> | F| Forward Diff. | 78.20 | 2.380 | 0.07920 | 0.2489 |
+#> |.....................| 0.04185 | -69.32 | -24.13 | 1.306 |
+#> |.....................| 9.997 | -11.88 | -9.541 | -10.51 |
+#> | 6| 502.21512 | 0.9895 | -1.001 | -0.9114 | -0.8945 |
+#> |.....................| -0.8456 | -0.8375 | -0.8805 | -0.8774 |
+#> |.....................| -0.8791 | -0.8625 | -0.8662 | -0.8658 |
+#> | U| 502.21512 | 92.14 | -5.304 | -0.9442 | -0.1066 |
+#> |.....................| 2.291 | 1.178 | 0.03022 | 0.7574 |
+#> |.....................| 0.8698 | 1.220 | 1.073 | 1.077 |
+#> | X| 502.21512 | 92.14 | 0.004969 | 0.2801 | 0.8989 |
+#> |.....................| 9.884 | 1.178 | 0.03022 | 0.7574 |
+#> |.....................| 0.8698 | 1.220 | 1.073 | 1.077 |
+#> | F| Forward Diff. | -79.18 | 2.245 | -0.2400 | 0.1569 |
+#> |.....................| -0.2882 | -67.02 | -25.09 | 1.000 |
+#> |.....................| 9.365 | -11.67 | -9.440 | -10.32 |
+#> | 7| 501.33312 | 1.000 | -1.001 | -0.9114 | -0.8945 |
+#> |.....................| -0.8456 | -0.8270 | -0.8765 | -0.8775 |
+#> |.....................| -0.8805 | -0.8607 | -0.8647 | -0.8642 |
+#> | U| 501.33312 | 93.14 | -5.305 | -0.9441 | -0.1067 |
+#> |.....................| 2.291 | 1.184 | 0.03028 | 0.7573 |
+#> |.....................| 0.8685 | 1.222 | 1.075 | 1.079 |
+#> | X| 501.33312 | 93.14 | 0.004968 | 0.2801 | 0.8988 |
+#> |.....................| 9.884 | 1.184 | 0.03028 | 0.7573 |
+#> |.....................| 0.8685 | 1.222 | 1.075 | 1.079 |
+#> | F| Forward Diff. | 73.96 | 2.351 | 0.08380 | 0.2565 |
+#> |.....................| 0.05289 | -66.42 | -23.08 | 0.9343 |
+#> |.....................| 11.48 | -11.71 | -9.377 | -10.38 |
+#> | 8| 500.50460 | 0.9897 | -1.002 | -0.9114 | -0.8946 |
+#> |.....................| -0.8456 | -0.8163 | -0.8728 | -0.8777 |
+#> |.....................| -0.8824 | -0.8588 | -0.8632 | -0.8625 |
+#> | U| 500.5046 | 92.16 | -5.305 | -0.9442 | -0.1067 |
+#> |.....................| 2.291 | 1.190 | 0.03034 | 0.7572 |
+#> |.....................| 0.8669 | 1.224 | 1.077 | 1.081 |
+#> | X| 500.5046 | 92.16 | 0.004966 | 0.2801 | 0.8988 |
+#> |.....................| 9.884 | 1.190 | 0.03034 | 0.7572 |
+#> |.....................| 0.8669 | 1.224 | 1.077 | 1.081 |
+#> | F| Forward Diff. | -76.85 | 2.219 | -0.2273 | 0.1675 |
+#> |.....................| -0.2752 | -63.09 | -23.56 | 1.068 |
+#> |.....................| 8.794 | -11.52 | -9.279 | -10.19 |
+#> | 9| 499.65692 | 1.000 | -1.002 | -0.9113 | -0.8946 |
+#> |.....................| -0.8456 | -0.8056 | -0.8689 | -0.8779 |
+#> |.....................| -0.8839 | -0.8568 | -0.8617 | -0.8608 |
+#> | U| 499.65692 | 93.14 | -5.306 | -0.9441 | -0.1067 |
+#> |.....................| 2.291 | 1.196 | 0.03040 | 0.7570 |
+#> |.....................| 0.8655 | 1.226 | 1.078 | 1.082 |
+#> | X| 499.65692 | 93.14 | 0.004964 | 0.2801 | 0.8988 |
+#> |.....................| 9.885 | 1.196 | 0.03040 | 0.7570 |
+#> |.....................| 0.8655 | 1.226 | 1.078 | 1.082 |
+#> | F| Forward Diff. | 72.32 | 2.320 | 0.09176 | 0.2615 |
+#> |.....................| 0.06934 | -62.36 | -21.54 | 1.140 |
+#> |.....................| 9.404 | -11.56 | -9.216 | -10.24 |
+#> | 10| 498.81870 | 0.9902 | -1.003 | -0.9114 | -0.8946 |
+#> |.....................| -0.8456 | -0.7946 | -0.8650 | -0.8781 |
+#> |.....................| -0.8856 | -0.8548 | -0.8600 | -0.8589 |
+#> | U| 498.8187 | 92.21 | -5.306 | -0.9441 | -0.1068 |
+#> |.....................| 2.291 | 1.203 | 0.03045 | 0.7569 |
+#> |.....................| 0.8641 | 1.229 | 1.080 | 1.084 |
+#> | X| 498.8187 | 92.21 | 0.004962 | 0.2801 | 0.8987 |
+#> |.....................| 9.885 | 1.203 | 0.03045 | 0.7569 |
+#> |.....................| 0.8641 | 1.229 | 1.080 | 1.084 |
+#> | F| Forward Diff. | -70.56 | 2.198 | -0.2057 | 0.1798 |
+#> |.....................| -0.2468 | -59.74 | -22.28 | 0.8150 |
+#> |.....................| 7.180 | -11.33 | -9.109 | -10.05 |
+#> | 11| 497.99655 | 1.000 | -1.003 | -0.9113 | -0.8947 |
+#> |.....................| -0.8455 | -0.7835 | -0.8609 | -0.8782 |
+#> |.....................| -0.8869 | -0.8527 | -0.8583 | -0.8571 |
+#> | U| 497.99655 | 93.13 | -5.306 | -0.9441 | -0.1068 |
+#> |.....................| 2.291 | 1.209 | 0.03052 | 0.7568 |
+#> |.....................| 0.8629 | 1.231 | 1.082 | 1.086 |
+#> | X| 497.99655 | 93.13 | 0.004960 | 0.2801 | 0.8987 |
+#> |.....................| 9.885 | 1.209 | 0.03052 | 0.7568 |
+#> |.....................| 0.8629 | 1.231 | 1.082 | 1.086 |
+#> | F| Forward Diff. | 69.16 | 2.293 | 0.1087 | 0.2725 |
+#> |.....................| 0.08752 | -59.63 | -20.54 | 0.7584 |
+#> |.....................| 10.86 | -11.45 | -9.094 | -10.13 |
+#> | 12| 497.16410 | 0.9907 | -1.003 | -0.9113 | -0.8947 |
+#> |.....................| -0.8455 | -0.7720 | -0.8569 | -0.8784 |
+#> |.....................| -0.8889 | -0.8505 | -0.8566 | -0.8551 |
+#> | U| 497.1641 | 92.25 | -5.307 | -0.9441 | -0.1069 |
+#> |.....................| 2.291 | 1.216 | 0.03058 | 0.7566 |
+#> |.....................| 0.8612 | 1.234 | 1.084 | 1.088 |
+#> | X| 497.1641 | 92.25 | 0.004958 | 0.2801 | 0.8987 |
+#> |.....................| 9.885 | 1.216 | 0.03058 | 0.7566 |
+#> |.....................| 0.8612 | 1.234 | 1.084 | 1.088 |
+#> | F| Forward Diff. | -65.09 | 2.175 | -0.1829 | 0.1920 |
+#> |.....................| -0.2233 | -56.76 | -21.02 | 0.6415 |
+#> |.....................| 9.983 | -11.18 | -8.930 | -9.895 |
+#> | 13| 496.40281 | 1.000 | -1.004 | -0.9113 | -0.8948 |
+#> |.....................| -0.8455 | -0.7609 | -0.8528 | -0.8785 |
+#> |.....................| -0.8909 | -0.8483 | -0.8548 | -0.8532 |
+#> | U| 496.40281 | 93.15 | -5.307 | -0.9441 | -0.1069 |
+#> |.....................| 2.291 | 1.222 | 0.03064 | 0.7566 |
+#> |.....................| 0.8594 | 1.237 | 1.086 | 1.091 |
+#> | X| 496.40281 | 93.15 | 0.004955 | 0.2801 | 0.8986 |
+#> |.....................| 9.885 | 1.222 | 0.03064 | 0.7566 |
+#> |.....................| 0.8594 | 1.237 | 1.086 | 1.091 |
+#> | F| Forward Diff. | 70.05 | 2.265 | 0.1236 | 0.2851 |
+#> |.....................| 0.1152 | -55.71 | -19.12 | 0.8701 |
+#> |.....................| 7.394 | -11.22 | -8.890 | -9.949 |
+#> | 14| 495.59236 | 0.9910 | -1.004 | -0.9113 | -0.8948 |
+#> |.....................| -0.8455 | -0.7494 | -0.8488 | -0.8787 |
+#> |.....................| -0.8926 | -0.8459 | -0.8530 | -0.8511 |
+#> | U| 495.59236 | 92.28 | -5.308 | -0.9441 | -0.1070 |
+#> |.....................| 2.291 | 1.229 | 0.03070 | 0.7564 |
+#> |.....................| 0.8580 | 1.240 | 1.088 | 1.093 |
+#> | X| 495.59236 | 92.28 | 0.004953 | 0.2801 | 0.8986 |
+#> |.....................| 9.885 | 1.229 | 0.03070 | 0.7564 |
+#> |.....................| 0.8580 | 1.240 | 1.088 | 1.093 |
+#> | F| Forward Diff. | -61.97 | 2.150 | -0.1619 | 0.2028 |
+#> |.....................| -0.2007 | -53.46 | -19.76 | 0.5341 |
+#> |.....................| 9.715 | -10.96 | -8.745 | -9.729 |
+#> | 15| 494.82198 | 1.000 | -1.005 | -0.9113 | -0.8949 |
+#> |.....................| -0.8455 | -0.7378 | -0.8446 | -0.8788 |
+#> |.....................| -0.8946 | -0.8435 | -0.8510 | -0.8489 |
+#> | U| 494.82198 | 93.11 | -5.308 | -0.9441 | -0.1070 |
+#> |.....................| 2.291 | 1.235 | 0.03076 | 0.7563 |
+#> |.....................| 0.8562 | 1.243 | 1.090 | 1.095 |
+#> | X| 494.82198 | 93.11 | 0.004951 | 0.2801 | 0.8985 |
+#> |.....................| 9.886 | 1.235 | 0.03076 | 0.7563 |
+#> |.....................| 0.8562 | 1.243 | 1.090 | 1.095 |
+#> | F| Forward Diff. | 62.35 | 2.229 | 0.1203 | 0.2879 |
+#> |.....................| 0.1180 | -52.16 | -17.88 | 0.7550 |
+#> |.....................| 8.431 | -10.99 | -8.665 | -9.736 |
+#> | 16| 494.07821 | 0.9910 | -1.005 | -0.9113 | -0.8949 |
+#> |.....................| -0.8455 | -0.7261 | -0.8406 | -0.8789 |
+#> |.....................| -0.8966 | -0.8410 | -0.8490 | -0.8467 |
+#> | U| 494.07821 | 92.28 | -5.309 | -0.9441 | -0.1071 |
+#> |.....................| 2.291 | 1.242 | 0.03082 | 0.7562 |
+#> |.....................| 0.8544 | 1.246 | 1.092 | 1.098 |
+#> | X| 494.07821 | 92.28 | 0.004948 | 0.2801 | 0.8985 |
+#> |.....................| 9.885 | 1.242 | 0.03082 | 0.7562 |
+#> |.....................| 0.8544 | 1.246 | 1.092 | 1.098 |
+#> | F| Forward Diff. | -62.97 | 2.119 | -0.1628 | 0.2103 |
+#> |.....................| -0.1835 | -49.97 | -18.50 | 0.4855 |
+#> |.....................| 6.275 | -10.75 | -8.529 | -9.546 |
+#> | 17| 493.31030 | 0.9997 | -1.006 | -0.9113 | -0.8950 |
+#> |.....................| -0.8455 | -0.7143 | -0.8363 | -0.8790 |
+#> |.....................| -0.8981 | -0.8383 | -0.8469 | -0.8443 |
+#> | U| 493.3103 | 93.08 | -5.309 | -0.9441 | -0.1071 |
+#> |.....................| 2.291 | 1.249 | 0.03089 | 0.7561 |
+#> |.....................| 0.8531 | 1.249 | 1.094 | 1.100 |
+#> | X| 493.3103 | 93.08 | 0.004946 | 0.2801 | 0.8984 |
+#> |.....................| 9.886 | 1.249 | 0.03089 | 0.7561 |
+#> |.....................| 0.8531 | 1.249 | 1.094 | 1.100 |
+#> | F| Forward Diff. | 56.08 | 2.195 | 0.1067 | 0.2931 |
+#> |.....................| 0.1254 | -49.64 | -16.98 | 0.3491 |
+#> |.....................| 8.549 | -10.78 | -8.455 | -9.552 |
+#> | 18| 492.59068 | 0.9914 | -1.006 | -0.9113 | -0.8951 |
+#> |.....................| -0.8455 | -0.7023 | -0.8321 | -0.8791 |
+#> |.....................| -0.9000 | -0.8355 | -0.8448 | -0.8419 |
+#> | U| 492.59068 | 92.32 | -5.310 | -0.9441 | -0.1072 |
+#> |.....................| 2.291 | 1.256 | 0.03095 | 0.7561 |
+#> |.....................| 0.8514 | 1.252 | 1.096 | 1.103 |
+#> | X| 492.59068 | 92.32 | 0.004943 | 0.2801 | 0.8983 |
+#> |.....................| 9.885 | 1.256 | 0.03095 | 0.7561 |
+#> |.....................| 0.8514 | 1.252 | 1.096 | 1.103 |
+#> | F| Forward Diff. | -58.13 | 2.097 | -0.1289 | 0.2246 |
+#> |.....................| -0.1582 | -47.13 | -17.33 | 0.3097 |
+#> |.....................| 7.738 | -10.54 | -8.304 | -9.345 |
+#> | 19| 491.88063 | 0.9998 | -1.007 | -0.9113 | -0.8951 |
+#> |.....................| -0.8455 | -0.6905 | -0.8279 | -0.8791 |
+#> |.....................| -0.9022 | -0.8327 | -0.8426 | -0.8394 |
+#> | U| 491.88063 | 93.10 | -5.310 | -0.9441 | -0.1073 |
+#> |.....................| 2.291 | 1.263 | 0.03101 | 0.7561 |
+#> |.....................| 0.8496 | 1.256 | 1.099 | 1.105 |
+#> | X| 491.88063 | 93.10 | 0.004940 | 0.2801 | 0.8983 |
+#> |.....................| 9.886 | 1.263 | 0.03101 | 0.7561 |
+#> |.....................| 0.8496 | 1.256 | 1.099 | 1.105 |
+#> | F| Forward Diff. | 56.71 | 2.166 | 0.1292 | 0.3076 |
+#> |.....................| 0.1542 | -45.57 | -15.60 | 0.4873 |
+#> |.....................| 6.413 | -10.51 | -8.202 | -9.332 |
+#> | 20| 491.19020 | 0.9917 | -1.008 | -0.9113 | -0.8952 |
+#> |.....................| -0.8455 | -0.6785 | -0.8237 | -0.8792 |
+#> |.....................| -0.9039 | -0.8296 | -0.8402 | -0.8366 |
+#> | U| 491.1902 | 92.34 | -5.311 | -0.9441 | -0.1074 |
+#> |.....................| 2.291 | 1.270 | 0.03107 | 0.7560 |
+#> |.....................| 0.8481 | 1.259 | 1.101 | 1.108 |
+#> | X| 491.1902 | 92.34 | 0.004937 | 0.2801 | 0.8982 |
+#> |.....................| 9.885 | 1.270 | 0.03107 | 0.7560 |
+#> |.....................| 0.8481 | 1.259 | 1.101 | 1.108 |
+#> | F| Forward Diff. | -55.56 | 2.070 | -0.1130 | 0.2359 |
+#> |.....................| -0.1346 | -44.07 | -16.23 | 0.1008 |
+#> |.....................| 7.464 | -10.26 | -8.060 | -9.125 |
+#> | 21| 490.47868 | 0.9993 | -1.008 | -0.9113 | -0.8953 |
+#> |.....................| -0.8455 | -0.6665 | -0.8194 | -0.8791 |
+#> |.....................| -0.9059 | -0.8264 | -0.8377 | -0.8337 |
+#> | U| 490.47868 | 93.05 | -5.312 | -0.9441 | -0.1075 |
+#> |.....................| 2.291 | 1.277 | 0.03114 | 0.7561 |
+#> |.....................| 0.8463 | 1.263 | 1.104 | 1.111 |
+#> | X| 490.47868 | 93.05 | 0.004934 | 0.2801 | 0.8981 |
+#> |.....................| 9.885 | 1.277 | 0.03114 | 0.7561 |
+#> |.....................| 0.8463 | 1.263 | 1.104 | 1.111 |
+#> | F| Forward Diff. | 47.93 | 2.132 | 0.1269 | 0.3117 |
+#> |.....................| 0.1562 | -43.27 | -14.78 | 0.06906 |
+#> |.....................| 9.295 | -10.26 | -7.955 | -9.092 |
+#> | 22| 489.84765 | 0.9918 | -1.009 | -0.9114 | -0.8954 |
+#> |.....................| -0.8456 | -0.6545 | -0.8153 | -0.8790 |
+#> |.....................| -0.9090 | -0.8231 | -0.8352 | -0.8308 |
+#> | U| 489.84765 | 92.35 | -5.312 | -0.9441 | -0.1076 |
+#> |.....................| 2.291 | 1.284 | 0.03120 | 0.7562 |
+#> |.....................| 0.8436 | 1.267 | 1.107 | 1.115 |
+#> | X| 489.84765 | 92.35 | 0.004930 | 0.2801 | 0.8980 |
+#> |.....................| 9.885 | 1.284 | 0.03120 | 0.7562 |
+#> |.....................| 0.8436 | 1.267 | 1.107 | 1.115 |
+#> | F| Forward Diff. | -55.71 | 2.038 | -0.1283 | 0.2328 |
+#> |.....................| -0.1164 | -41.15 | -15.14 | 0.009736 |
+#> |.....................| 8.505 | -10.03 | -7.805 | -8.885 |
+#> | 23| 489.17644 | 0.9994 | -1.010 | -0.9113 | -0.8955 |
+#> |.....................| -0.8456 | -0.6429 | -0.8112 | -0.8788 |
+#> |.....................| -0.9126 | -0.8197 | -0.8325 | -0.8278 |
+#> | U| 489.17644 | 93.06 | -5.313 | -0.9441 | -0.1077 |
+#> |.....................| 2.291 | 1.290 | 0.03126 | 0.7563 |
+#> |.....................| 0.8405 | 1.272 | 1.109 | 1.118 |
+#> | X| 489.17644 | 93.06 | 0.004927 | 0.2801 | 0.8979 |
+#> |.....................| 9.885 | 1.290 | 0.03126 | 0.7563 |
+#> |.....................| 0.8405 | 1.272 | 1.109 | 1.118 |
+#> | F| Forward Diff. | 46.87 | 2.093 | 0.1493 | 0.3243 |
+#> |.....................| 0.1838 | -40.03 | -13.57 | 0.1411 |
+#> |.....................| 5.593 | -9.957 | -7.669 | -8.831 |
+#> | 24| 488.58015 | 0.9920 | -1.011 | -0.9114 | -0.8957 |
+#> |.....................| -0.8457 | -0.6309 | -0.8071 | -0.8787 |
+#> |.....................| -0.9147 | -0.8159 | -0.8297 | -0.8244 |
+#> | U| 488.58015 | 92.37 | -5.314 | -0.9442 | -0.1078 |
+#> |.....................| 2.291 | 1.297 | 0.03132 | 0.7564 |
+#> |.....................| 0.8386 | 1.276 | 1.112 | 1.121 |
+#> | X| 488.58015 | 92.37 | 0.004923 | 0.2801 | 0.8978 |
+#> |.....................| 9.884 | 1.297 | 0.03132 | 0.7564 |
+#> |.....................| 0.8386 | 1.276 | 1.112 | 1.121 |
+#> | F| Forward Diff. | -53.50 | 2.005 | -0.1078 | 0.2446 |
+#> |.....................| -0.09190 | -37.89 | -13.87 | 0.05672 |
+#> |.....................| 4.909 | -9.713 | -7.511 | -8.606 |
+#> | 25| 487.93833 | 0.9991 | -1.011 | -0.9114 | -0.8958 |
+#> |.....................| -0.8457 | -0.6190 | -0.8030 | -0.8785 |
+#> |.....................| -0.9153 | -0.8117 | -0.8266 | -0.8207 |
+#> | U| 487.93833 | 93.04 | -5.315 | -0.9442 | -0.1080 |
+#> |.....................| 2.291 | 1.304 | 0.03139 | 0.7566 |
+#> |.....................| 0.8381 | 1.281 | 1.116 | 1.125 |
+#> | X| 487.93833 | 93.04 | 0.004918 | 0.2801 | 0.8977 |
+#> |.....................| 9.883 | 1.304 | 0.03139 | 0.7566 |
+#> |.....................| 0.8381 | 1.281 | 1.116 | 1.125 |
+#> | F| Forward Diff. | 41.92 | 2.065 | 0.1569 | 0.3320 |
+#> |.....................| 0.1961 | -37.34 | -12.63 | 0.01172 |
+#> |.....................| 5.301 | -9.646 | -7.360 | -8.530 |
+#> | 26| 487.37063 | 0.9925 | -1.012 | -0.9115 | -0.8960 |
+#> |.....................| -0.8458 | -0.6069 | -0.7990 | -0.8783 |
+#> |.....................| -0.9161 | -0.8073 | -0.8233 | -0.8168 |
+#> | U| 487.37063 | 92.42 | -5.316 | -0.9443 | -0.1081 |
+#> |.....................| 2.291 | 1.311 | 0.03145 | 0.7567 |
+#> |.....................| 0.8374 | 1.287 | 1.119 | 1.130 |
+#> | X| 487.37063 | 92.42 | 0.004913 | 0.2800 | 0.8975 |
+#> |.....................| 9.882 | 1.311 | 0.03145 | 0.7567 |
+#> |.....................| 0.8374 | 1.287 | 1.119 | 1.130 |
+#> | F| Forward Diff. | -47.84 | 1.989 | -0.08553 | 0.2559 |
+#> |.....................| -0.06263 | -35.59 | -12.91 | -0.09336 |
+#> |.....................| 8.020 | -9.356 | -7.180 | -8.291 |
+#> | 27| 486.76802 | 0.9991 | -1.014 | -0.9115 | -0.8962 |
+#> |.....................| -0.8459 | -0.5954 | -0.7952 | -0.8779 |
+#> |.....................| -0.9197 | -0.8027 | -0.8200 | -0.8127 |
+#> | U| 486.76802 | 93.03 | -5.317 | -0.9443 | -0.1083 |
+#> |.....................| 2.291 | 1.318 | 0.03150 | 0.7570 |
+#> |.....................| 0.8342 | 1.292 | 1.123 | 1.134 |
+#> | X| 486.76802 | 93.03 | 0.004908 | 0.2800 | 0.8973 |
+#> |.....................| 9.881 | 1.318 | 0.03150 | 0.7570 |
+#> |.....................| 0.8342 | 1.292 | 1.123 | 1.134 |
+#> | F| Forward Diff. | 39.28 | 2.032 | 0.1697 | 0.3409 |
+#> |.....................| 0.2161 | -34.26 | -11.60 | -0.04206 |
+#> |.....................| 6.414 | -9.258 | -7.014 | -8.183 |
+#> | 28| 486.25961 | 0.9924 | -1.015 | -0.9116 | -0.8964 |
+#> |.....................| -0.8461 | -0.5843 | -0.7916 | -0.8775 |
+#> |.....................| -0.9242 | -0.7980 | -0.8166 | -0.8086 |
+#> | U| 486.25961 | 92.41 | -5.318 | -0.9444 | -0.1086 |
+#> |.....................| 2.290 | 1.324 | 0.03156 | 0.7573 |
+#> |.....................| 0.8303 | 1.298 | 1.126 | 1.138 |
+#> | X| 486.25961 | 92.41 | 0.004902 | 0.2800 | 0.8971 |
+#> |.....................| 9.880 | 1.324 | 0.03156 | 0.7573 |
+#> |.....................| 0.8303 | 1.298 | 1.126 | 1.138 |
+#> | F| Forward Diff. | -50.63 | 1.945 | -0.07307 | 0.2626 |
+#> |.....................| -0.04930 | -33.11 | -12.03 | -0.1686 |
+#> |.....................| 7.510 | -8.984 | -6.802 | -7.934 |
+#> | 29| 485.66844 | 0.9985 | -1.016 | -0.9117 | -0.8967 |
+#> |.....................| -0.8462 | -0.5738 | -0.7881 | -0.8769 |
+#> |.....................| -0.9293 | -0.7927 | -0.8129 | -0.8039 |
+#> | U| 485.66844 | 92.98 | -5.319 | -0.9445 | -0.1089 |
+#> |.....................| 2.290 | 1.331 | 0.03161 | 0.7578 |
+#> |.....................| 0.8259 | 1.304 | 1.130 | 1.143 |
+#> | X| 485.66844 | 92.98 | 0.004895 | 0.2800 | 0.8969 |
+#> |.....................| 9.878 | 1.331 | 0.03161 | 0.7578 |
+#> |.....................| 0.8259 | 1.304 | 1.130 | 1.143 |
+#> | F| Forward Diff. | 30.24 | 1.977 | 0.1746 | 0.3455 |
+#> |.....................| 0.2218 | -32.22 | -10.87 | -0.2249 |
+#> |.....................| 4.336 | -8.820 | -6.615 | -7.812 |
+#> | 30| 485.23968 | 0.9921 | -1.017 | -0.9119 | -0.8970 |
+#> |.....................| -0.8465 | -0.5622 | -0.7845 | -0.8762 |
+#> |.....................| -0.9314 | -0.7876 | -0.8094 | -0.7994 |
+#> | U| 485.23968 | 92.38 | -5.321 | -0.9447 | -0.1091 |
+#> |.....................| 2.290 | 1.337 | 0.03166 | 0.7583 |
+#> |.....................| 0.8240 | 1.310 | 1.134 | 1.148 |
+#> | X| 485.23968 | 92.38 | 0.004889 | 0.2800 | 0.8966 |
+#> |.....................| 9.876 | 1.337 | 0.03166 | 0.7583 |
+#> |.....................| 0.8240 | 1.310 | 1.134 | 1.148 |
+#> | F| Forward Diff. | -56.59 | 1.902 | -0.07536 | 0.2678 |
+#> |.....................| -0.04797 | -30.46 | -11.14 | -0.09043 |
+#> |.....................| 3.742 | -8.533 | -6.412 | -7.541 |
+#> | 31| 484.69662 | 0.9984 | -1.019 | -0.9121 | -0.8974 |
+#> |.....................| -0.8467 | -0.5517 | -0.7813 | -0.8754 |
+#> |.....................| -0.9289 | -0.7816 | -0.8053 | -0.7941 |
+#> | U| 484.69662 | 92.97 | -5.322 | -0.9448 | -0.1095 |
+#> |.....................| 2.290 | 1.343 | 0.03171 | 0.7589 |
+#> |.....................| 0.8262 | 1.318 | 1.138 | 1.154 |
+#> | X| 484.69662 | 92.97 | 0.004881 | 0.2799 | 0.8963 |
+#> |.....................| 9.873 | 1.343 | 0.03171 | 0.7589 |
+#> |.....................| 0.8262 | 1.318 | 1.138 | 1.154 |
+#> | F| Forward Diff. | 27.47 | 1.960 | 0.1737 | 0.3487 |
+#> |.....................| 0.2320 | -29.84 | -10.04 | -0.2714 |
+#> |.....................| 5.731 | -8.337 | -6.228 | -7.371 |
+#> | 32| 484.27605 | 0.9928 | -1.021 | -0.9123 | -0.8978 |
+#> |.....................| -0.8471 | -0.5404 | -0.7779 | -0.8746 |
+#> |.....................| -0.9302 | -0.7757 | -0.8014 | -0.7889 |
+#> | U| 484.27605 | 92.45 | -5.324 | -0.9451 | -0.1099 |
+#> |.....................| 2.289 | 1.350 | 0.03176 | 0.7595 |
+#> |.....................| 0.8251 | 1.325 | 1.143 | 1.159 |
+#> | X| 484.27605 | 92.45 | 0.004872 | 0.2799 | 0.8959 |
+#> |.....................| 9.870 | 1.350 | 0.03176 | 0.7595 |
+#> |.....................| 0.8251 | 1.325 | 1.143 | 1.159 |
+#> | F| Forward Diff. | -48.28 | 1.894 | -0.05804 | 0.2769 |
+#> |.....................| -0.01457 | -28.21 | -10.24 | -0.1977 |
+#> |.....................| 5.253 | -8.027 | -5.998 | -7.085 |
+#> | 33| 483.77365 | 0.9986 | -1.023 | -0.9126 | -0.8983 |
+#> |.....................| -0.8475 | -0.5309 | -0.7752 | -0.8734 |
+#> |.....................| -0.9343 | -0.7690 | -0.7970 | -0.7831 |
+#> | U| 483.77365 | 92.99 | -5.326 | -0.9453 | -0.1104 |
+#> |.....................| 2.289 | 1.355 | 0.03180 | 0.7604 |
+#> |.....................| 0.8215 | 1.333 | 1.147 | 1.166 |
+#> | X| 483.77365 | 92.99 | 0.004861 | 0.2798 | 0.8954 |
+#> |.....................| 9.866 | 1.355 | 0.03180 | 0.7604 |
+#> |.....................| 0.8215 | 1.333 | 1.147 | 1.166 |
+#> | F| Forward Diff. | 28.59 | 1.923 | 0.1952 | 0.3548 |
+#> |.....................| 0.2608 | -27.76 | -9.333 | -0.3645 |
+#> |.....................| 3.958 | -7.814 | -5.777 | -6.894 |
+#> | 34| 483.37086 | 0.9934 | -1.025 | -0.9129 | -0.8989 |
+#> |.....................| -0.8480 | -0.5203 | -0.7721 | -0.8720 |
+#> |.....................| -0.9349 | -0.7624 | -0.7928 | -0.7774 |
+#> | U| 483.37086 | 92.51 | -5.329 | -0.9456 | -0.1110 |
+#> |.....................| 2.289 | 1.362 | 0.03185 | 0.7615 |
+#> |.....................| 0.8209 | 1.341 | 1.152 | 1.172 |
+#> | X| 483.37086 | 92.51 | 0.004850 | 0.2798 | 0.8949 |
+#> |.....................| 9.861 | 1.362 | 0.03185 | 0.7615 |
+#> |.....................| 0.8209 | 1.341 | 1.152 | 1.172 |
+#> | F| Forward Diff. | -41.16 | 1.862 | -0.03265 | 0.2828 |
+#> |.....................| 0.01951 | -26.43 | -9.488 | -0.2833 |
+#> |.....................| 3.545 | -7.469 | -5.528 | -6.584 |
+#> | 35| 482.96272 | 0.9987 | -1.028 | -0.9132 | -0.8995 |
+#> |.....................| -0.8485 | -0.5103 | -0.7694 | -0.8702 |
+#> |.....................| -0.9315 | -0.7558 | -0.7888 | -0.7716 |
+#> | U| 482.96272 | 92.99 | -5.332 | -0.9459 | -0.1117 |
+#> |.....................| 2.288 | 1.367 | 0.03189 | 0.7629 |
+#> |.....................| 0.8240 | 1.349 | 1.156 | 1.178 |
+#> | X| 482.96272 | 92.99 | 0.004836 | 0.2797 | 0.8943 |
+#> |.....................| 9.856 | 1.367 | 0.03189 | 0.7629 |
+#> |.....................| 0.8240 | 1.349 | 1.156 | 1.178 |
+#> | F| Forward Diff. | 28.21 | 1.908 | 0.1917 | 0.3504 |
+#> |.....................| 0.2712 | -25.82 | -8.599 | -0.3385 |
+#> |.....................| 4.050 | -7.278 | -5.334 | -6.398 |
+#> | 36| 482.60011 | 0.9939 | -1.032 | -0.9136 | -0.9003 |
+#> |.....................| -0.8492 | -0.4998 | -0.7669 | -0.8684 |
+#> |.....................| -0.9296 | -0.7490 | -0.7849 | -0.7659 |
+#> | U| 482.60011 | 92.55 | -5.335 | -0.9462 | -0.1124 |
+#> |.....................| 2.287 | 1.373 | 0.03193 | 0.7642 |
+#> |.....................| 0.8256 | 1.357 | 1.160 | 1.184 |
+#> | X| 482.60011 | 92.55 | 0.004820 | 0.2796 | 0.8937 |
+#> |.....................| 9.849 | 1.373 | 0.03193 | 0.7642 |
+#> |.....................| 0.8256 | 1.357 | 1.160 | 1.184 |
+#> | F| Forward Diff. | -36.31 | 1.855 | -0.03781 | 0.2769 |
+#> |.....................| 0.03076 | -24.99 | -8.890 | -0.4685 |
+#> |.....................| 7.176 | -6.892 | -5.117 | -6.081 |
+#> | 37| 482.21198 | 0.9982 | -1.035 | -0.9138 | -0.9009 |
+#> |.....................| -0.8497 | -0.4920 | -0.7653 | -0.8661 |
+#> |.....................| -0.9399 | -0.7441 | -0.7821 | -0.7617 |
+#> | U| 482.21198 | 92.95 | -5.338 | -0.9465 | -0.1130 |
+#> |.....................| 2.287 | 1.378 | 0.03195 | 0.7659 |
+#> |.....................| 0.8166 | 1.363 | 1.163 | 1.189 |
+#> | X| 482.21198 | 92.95 | 0.004805 | 0.2796 | 0.8931 |
+#> |.....................| 9.844 | 1.378 | 0.03195 | 0.7659 |
+#> |.....................| 0.8166 | 1.363 | 1.163 | 1.189 |
+#> | F| Forward Diff. | 20.01 | 1.850 | 0.1852 | 0.3312 |
+#> |.....................| 0.2616 | -23.95 | -7.997 | -0.3393 |
+#> |.....................| 4.985 | -6.711 | -4.923 | -5.940 |
+#> | 38| 481.96846 | 0.9924 | -1.037 | -0.9141 | -0.9014 |
+#> |.....................| -0.8503 | -0.4828 | -0.7630 | -0.8646 |
+#> |.....................| -0.9490 | -0.7399 | -0.7795 | -0.7579 |
+#> | U| 481.96846 | 92.41 | -5.341 | -0.9468 | -0.1136 |
+#> |.....................| 2.286 | 1.383 | 0.03199 | 0.7671 |
+#> |.....................| 0.8087 | 1.368 | 1.166 | 1.193 |
+#> | X| 481.96846 | 92.41 | 0.004793 | 0.2795 | 0.8927 |
+#> |.....................| 9.838 | 1.383 | 0.03199 | 0.7671 |
+#> |.....................| 0.8087 | 1.368 | 1.166 | 1.193 |
+#> | F| Forward Diff. | -59.26 | 1.761 | -0.08116 | 0.2547 |
+#> |.....................| -0.02692 | -22.78 | -8.366 | -0.2344 |
+#> |.....................| 4.087 | -6.524 | -4.792 | -5.748 |
+#> | 39| 481.52549 | 0.9980 | -1.042 | -0.9148 | -0.9024 |
+#> |.....................| -0.8514 | -0.4755 | -0.7621 | -0.8625 |
+#> |.....................| -0.9558 | -0.7333 | -0.7761 | -0.7520 |
+#> | U| 481.52549 | 92.93 | -5.345 | -0.9474 | -0.1146 |
+#> |.....................| 2.285 | 1.388 | 0.03200 | 0.7686 |
+#> |.....................| 0.8027 | 1.376 | 1.170 | 1.199 |
+#> | X| 481.52549 | 92.93 | 0.004770 | 0.2794 | 0.8917 |
+#> |.....................| 9.827 | 1.388 | 0.03200 | 0.7686 |
+#> |.....................| 0.8027 | 1.376 | 1.170 | 1.199 |
+#> | F| Forward Diff. | 14.56 | 1.771 | 0.1903 | 0.3270 |
+#> |.....................| 0.2641 | -22.44 | -7.508 | -0.4496 |
+#> |.....................| 2.566 | -6.373 | -4.622 | -5.584 |
+#> | 40| 481.26396 | 0.9932 | -1.045 | -0.9155 | -0.9032 |
+#> |.....................| -0.8523 | -0.4642 | -0.7593 | -0.8605 |
+#> |.....................| -0.9543 | -0.7272 | -0.7727 | -0.7469 |
+#> | U| 481.26396 | 92.49 | -5.349 | -0.9480 | -0.1154 |
+#> |.....................| 2.284 | 1.394 | 0.03204 | 0.7702 |
+#> |.....................| 0.8040 | 1.384 | 1.173 | 1.205 |
+#> | X| 481.26396 | 92.49 | 0.004753 | 0.2793 | 0.8910 |
+#> |.....................| 9.818 | 1.394 | 0.03204 | 0.7702 |
+#> |.....................| 0.8040 | 1.384 | 1.173 | 1.205 |
+#> | F| Forward Diff. | -49.84 | 1.721 | -0.06329 | 0.2500 |
+#> |.....................| 0.003387 | -21.58 | -7.808 | -0.4470 |
+#> |.....................| 3.805 | -6.020 | -4.412 | -5.292 |
+#> | 41| 480.91101 | 0.9981 | -1.051 | -0.9163 | -0.9044 |
+#> |.....................| -0.8537 | -0.4552 | -0.7584 | -0.8559 |
+#> |.....................| -0.9510 | -0.7207 | -0.7698 | -0.7416 |
+#> | U| 480.91101 | 92.94 | -5.355 | -0.9488 | -0.1166 |
+#> |.....................| 2.283 | 1.399 | 0.03206 | 0.7737 |
+#> |.....................| 0.8069 | 1.392 | 1.176 | 1.210 |
+#> | X| 480.91101 | 92.94 | 0.004727 | 0.2791 | 0.8900 |
+#> |.....................| 9.804 | 1.399 | 0.03206 | 0.7737 |
+#> |.....................| 0.8069 | 1.392 | 1.176 | 1.210 |
+#> | F| Forward Diff. | 16.05 | 1.751 | 0.1631 | 0.3020 |
+#> |.....................| 0.2540 | -20.90 | -6.928 | -0.3893 |
+#> |.....................| 4.288 | -5.817 | -4.263 | -5.144 |
+#> | 42| 480.64341 | 0.9941 | -1.056 | -0.9169 | -0.9053 |
+#> |.....................| -0.8549 | -0.4456 | -0.7571 | -0.8527 |
+#> |.....................| -0.9585 | -0.7158 | -0.7673 | -0.7373 |
+#> | U| 480.64341 | 92.57 | -5.360 | -0.9493 | -0.1175 |
+#> |.....................| 2.282 | 1.405 | 0.03208 | 0.7761 |
+#> |.....................| 0.8004 | 1.398 | 1.179 | 1.215 |
+#> | X| 480.64341 | 92.57 | 0.004703 | 0.2790 | 0.8892 |
+#> |.....................| 9.793 | 1.405 | 0.03208 | 0.7761 |
+#> |.....................| 0.8004 | 1.398 | 1.179 | 1.215 |
+#> | F| Forward Diff. | -40.16 | 1.680 | -0.01378 | 0.2424 |
+#> |.....................| 0.03021 | -20.27 | -7.228 | -0.4675 |
+#> |.....................| 4.140 | -5.523 | -4.100 | -4.903 |
+#> | 43| 480.34062 | 0.9982 | -1.062 | -0.9177 | -0.9064 |
+#> |.....................| -0.8561 | -0.4387 | -0.7572 | -0.8486 |
+#> |.....................| -0.9687 | -0.7122 | -0.7655 | -0.7338 |
+#> | U| 480.34062 | 92.95 | -5.365 | -0.9501 | -0.1185 |
+#> |.....................| 2.280 | 1.409 | 0.03207 | 0.7792 |
+#> |.....................| 0.7914 | 1.402 | 1.181 | 1.219 |
+#> | X| 480.34062 | 92.95 | 0.004675 | 0.2789 | 0.8883 |
+#> |.....................| 9.781 | 1.409 | 0.03207 | 0.7792 |
+#> |.....................| 0.7914 | 1.402 | 1.181 | 1.219 |
+#> | 44| 480.11354 | 0.9982 | -1.069 | -0.9186 | -0.9075 |
+#> |.....................| -0.8576 | -0.4327 | -0.7582 | -0.8437 |
+#> |.....................| -0.9807 | -0.7086 | -0.7639 | -0.7301 |
+#> | U| 480.11354 | 92.95 | -5.372 | -0.9510 | -0.1197 |
+#> |.....................| 2.279 | 1.412 | 0.03206 | 0.7829 |
+#> |.....................| 0.7810 | 1.406 | 1.183 | 1.223 |
+#> | X| 480.11354 | 92.95 | 0.004643 | 0.2787 | 0.8872 |
+#> |.....................| 9.767 | 1.412 | 0.03206 | 0.7829 |
+#> |.....................| 0.7810 | 1.406 | 1.183 | 1.223 |
+#> | 45| 479.24256 | 0.9982 | -1.100 | -0.9228 | -0.9129 |
+#> |.....................| -0.8642 | -0.4061 | -0.7626 | -0.8221 |
+#> |.....................| -1.034 | -0.6924 | -0.7565 | -0.7138 |
+#> | U| 479.24256 | 92.95 | -5.404 | -0.9550 | -0.1250 |
+#> |.....................| 2.272 | 1.428 | 0.03199 | 0.7993 |
+#> |.....................| 0.7344 | 1.426 | 1.191 | 1.240 |
+#> | X| 479.24256 | 92.95 | 0.004500 | 0.2779 | 0.8825 |
+#> |.....................| 9.702 | 1.428 | 0.03199 | 0.7993 |
+#> |.....................| 0.7344 | 1.426 | 1.191 | 1.240 |
+#> | 46| 477.60836 | 1.003 | -1.228 | -0.9400 | -0.9346 |
+#> |.....................| -0.8912 | -0.2901 | -0.7784 | -0.7332 |
+#> |.....................| -1.206 | -0.6258 | -0.7257 | -0.6466 |
+#> | U| 477.60836 | 93.40 | -5.531 | -0.9712 | -0.1467 |
+#> |.....................| 2.245 | 1.495 | 0.03176 | 0.8667 |
+#> |.....................| 0.5843 | 1.507 | 1.224 | 1.312 |
+#> | X| 477.60836 | 93.40 | 0.003961 | 0.2746 | 0.8635 |
+#> |.....................| 9.444 | 1.495 | 0.03176 | 0.8667 |
+#> |.....................| 0.5843 | 1.507 | 1.224 | 1.312 |
+#> | F| Forward Diff. | 50.81 | 0.8332 | 0.6263 | 0.04339 |
+#> |.....................| 0.5543 | -9.740 | -2.969 | 0.1978 |
+#> |.....................| -10.28 | -2.761 | -1.505 | -1.849 |
+#> | 47| 476.77966 | 1.006 | -1.398 | -0.9862 | -0.9532 |
+#> |.....................| -0.9413 | -0.07616 | -0.7687 | -0.6374 |
+#> |.....................| -0.9573 | -0.5395 | -0.7103 | -0.5930 |
+#> | U| 476.77966 | 93.71 | -5.701 | -1.015 | -0.1654 |
+#> |.....................| 2.195 | 1.619 | 0.03190 | 0.9393 |
+#> |.....................| 0.8014 | 1.612 | 1.240 | 1.369 |
+#> | X| 476.77966 | 93.71 | 0.003342 | 0.2660 | 0.8476 |
+#> |.....................| 8.982 | 1.619 | 0.03190 | 0.9393 |
+#> |.....................| 0.8014 | 1.612 | 1.240 | 1.369 |
+#> | F| Forward Diff. | 100.8 | 0.5681 | -2.148 | -0.2910 |
+#> |.....................| -0.6169 | 0.8458 | 0.8586 | 0.3650 |
+#> |.....................| 3.820 | 1.443 | -0.7364 | 0.2440 |
+#> | 48| 478.65806 | 0.9952 | -1.512 | -0.6913 | -0.9031 |
+#> |.....................| -0.8317 | -0.01918 | -0.7109 | -0.6555 |
+#> |.....................| -0.9083 | -0.7021 | -0.6121 | -0.6260 |
+#> | U| 478.65806 | 92.67 | -5.815 | -0.7363 | -0.1152 |
+#> |.....................| 2.305 | 1.652 | 0.03277 | 0.9255 |
+#> |.....................| 0.8442 | 1.414 | 1.345 | 1.334 |
+#> | X| 478.65806 | 92.67 | 0.002982 | 0.3238 | 0.8912 |
+#> |.....................| 10.02 | 1.652 | 0.03277 | 0.9255 |
+#> |.....................| 0.8442 | 1.414 | 1.345 | 1.334 |
+#> | 49| 476.83500 | 0.9931 | -1.426 | -0.9118 | -0.9406 |
+#> |.....................| -0.9137 | -0.06192 | -0.7543 | -0.6420 |
+#> |.....................| -0.9454 | -0.5805 | -0.6855 | -0.6013 |
+#> | U| 476.835 | 92.48 | -5.730 | -0.9445 | -0.1527 |
+#> |.....................| 2.223 | 1.627 | 0.03212 | 0.9358 |
+#> |.....................| 0.8118 | 1.562 | 1.267 | 1.361 |
+#> | X| 476.835 | 92.48 | 0.003247 | 0.2800 | 0.8584 |
+#> |.....................| 9.234 | 1.627 | 0.03212 | 0.9358 |
+#> |.....................| 0.8118 | 1.562 | 1.267 | 1.361 |
+#> | 50| 476.86775 | 0.9928 | -1.411 | -0.9513 | -0.9473 |
+#> |.....................| -0.9284 | -0.06958 | -0.7620 | -0.6396 |
+#> |.....................| -0.9520 | -0.5587 | -0.6987 | -0.5969 |
+#> | U| 476.86775 | 92.44 | -5.715 | -0.9819 | -0.1595 |
+#> |.....................| 2.208 | 1.623 | 0.03200 | 0.9376 |
+#> |.....................| 0.8060 | 1.588 | 1.252 | 1.365 |
+#> | X| 476.86775 | 92.44 | 0.003297 | 0.2725 | 0.8526 |
+#> |.....................| 9.099 | 1.623 | 0.03200 | 0.9376 |
+#> |.....................| 0.8060 | 1.588 | 1.252 | 1.365 |
+#> | 51| 476.94436 | 0.9926 | -1.403 | -0.9724 | -0.9509 |
+#> |.....................| -0.9362 | -0.07366 | -0.7662 | -0.6383 |
+#> |.....................| -0.9556 | -0.5471 | -0.7057 | -0.5945 |
+#> | U| 476.94436 | 92.42 | -5.706 | -1.002 | -0.1630 |
+#> |.....................| 2.200 | 1.621 | 0.03194 | 0.9386 |
+#> |.....................| 0.8029 | 1.602 | 1.245 | 1.368 |
+#> | X| 476.94436 | 92.42 | 0.003324 | 0.2686 | 0.8496 |
+#> |.....................| 9.028 | 1.621 | 0.03194 | 0.9386 |
+#> |.....................| 0.8029 | 1.602 | 1.245 | 1.368 |
+#> | 52| 476.64580 | 0.9959 | -1.398 | -0.9860 | -0.9532 |
+#> |.....................| -0.9413 | -0.07625 | -0.7688 | -0.6374 |
+#> |.....................| -0.9577 | -0.5396 | -0.7102 | -0.5930 |
+#> | U| 476.6458 | 92.74 | -5.701 | -1.015 | -0.1653 |
+#> |.....................| 2.195 | 1.619 | 0.03190 | 0.9392 |
+#> |.....................| 0.8011 | 1.611 | 1.240 | 1.369 |
+#> | X| 476.6458 | 92.74 | 0.003342 | 0.2661 | 0.8476 |
+#> |.....................| 8.983 | 1.619 | 0.03190 | 0.9392 |
+#> |.....................| 0.8011 | 1.611 | 1.240 | 1.369 |
+#> | F| Forward Diff. | -76.03 | 0.4748 | -3.401 | -0.5335 |
+#> |.....................| -1.858 | 1.570 | -0.1336 | 0.2990 |
+#> |.....................| 3.107 | 1.921 | -0.6340 | 0.6252 |
+#> | 53| 476.45477 | 1.000 | -1.400 | -0.9787 | -0.9521 |
+#> |.....................| -0.9380 | -0.07508 | -0.7683 | -0.6381 |
+#> |.....................| -0.9567 | -0.5427 | -0.7079 | -0.5935 |
+#> | U| 476.45477 | 93.14 | -5.704 | -1.008 | -0.1642 |
+#> |.....................| 2.199 | 1.620 | 0.03191 | 0.9387 |
+#> |.....................| 0.8019 | 1.608 | 1.243 | 1.369 |
+#> | X| 476.45477 | 93.14 | 0.003334 | 0.2674 | 0.8486 |
+#> |.....................| 9.012 | 1.620 | 0.03191 | 0.9387 |
+#> |.....................| 0.8019 | 1.608 | 1.243 | 1.369 |
+#> | F| Forward Diff. | 0.2803 | 0.4975 | -2.426 | -0.4122 |
+#> |.....................| -1.237 | 1.245 | 0.3711 | 0.1250 |
+#> |.....................| 4.601 | 1.480 | -0.5654 | 0.4236 |
+#> | 54| 476.38303 | 0.9998 | -1.401 | -0.9743 | -0.9513 |
+#> |.....................| -0.9358 | -0.07732 | -0.7690 | -0.6383 |
+#> |.....................| -0.9650 | -0.5454 | -0.7069 | -0.5943 |
+#> | U| 476.38303 | 93.10 | -5.704 | -1.004 | -0.1635 |
+#> |.....................| 2.201 | 1.618 | 0.03190 | 0.9385 |
+#> |.....................| 0.7947 | 1.604 | 1.244 | 1.368 |
+#> | X| 476.38303 | 93.10 | 0.003331 | 0.2682 | 0.8492 |
+#> |.....................| 9.032 | 1.618 | 0.03190 | 0.9385 |
+#> |.....................| 0.7947 | 1.604 | 1.244 | 1.368 |
+#> | 55| 476.22864 | 0.9983 | -1.404 | -0.9612 | -0.9491 |
+#> |.....................| -0.9291 | -0.08404 | -0.7710 | -0.6390 |
+#> |.....................| -0.9898 | -0.5533 | -0.7039 | -0.5966 |
+#> | U| 476.22864 | 92.96 | -5.707 | -0.9912 | -0.1612 |
+#> |.....................| 2.207 | 1.614 | 0.03187 | 0.9380 |
+#> |.....................| 0.7730 | 1.595 | 1.247 | 1.366 |
+#> | X| 476.22864 | 92.96 | 0.003322 | 0.2707 | 0.8511 |
+#> |.....................| 9.093 | 1.614 | 0.03187 | 0.9380 |
+#> |.....................| 0.7730 | 1.595 | 1.247 | 1.366 |
+#> | 56| 476.57199 | 0.9958 | -1.445 | -0.8532 | -0.9271 |
+#> |.....................| -0.8725 | -0.06353 | -0.7679 | -0.6421 |
+#> |.....................| -0.9751 | -0.5970 | -0.6712 | -0.6082 |
+#> | U| 476.57199 | 92.73 | -5.749 | -0.8892 | -0.1393 |
+#> |.....................| 2.264 | 1.626 | 0.03191 | 0.9357 |
+#> |.....................| 0.7859 | 1.542 | 1.282 | 1.353 |
+#> | X| 476.57199 | 92.73 | 0.003186 | 0.2913 | 0.8700 |
+#> |.....................| 9.623 | 1.626 | 0.03191 | 0.9357 |
+#> |.....................| 0.7859 | 1.542 | 1.282 | 1.353 |
+#> | F| Forward Diff. | -32.75 | 0.5399 | -1.515 | -0.3941 |
+#> |.....................| -1.151 | 1.245 | 0.03890 | 0.2327 |
+#> |.....................| 2.518 | 0.9004 | -0.2852 | 0.3306 |
+#> | 57| 476.21990 | 0.9982 | -1.515 | -0.9538 | -0.8974 |
+#> |.....................| -0.8289 | -0.1020 | -0.7526 | -0.6734 |
+#> |.....................| -0.9899 | -0.5334 | -0.6863 | -0.5986 |
+#> | U| 476.2199 | 92.95 | -5.819 | -0.9842 | -0.1096 |
+#> |.....................| 2.308 | 1.604 | 0.03214 | 0.9120 |
+#> |.....................| 0.7729 | 1.619 | 1.266 | 1.364 |
+#> | X| 476.2199 | 92.95 | 0.002972 | 0.2721 | 0.8962 |
+#> |.....................| 10.05 | 1.604 | 0.03214 | 0.9120 |
+#> |.....................| 0.7729 | 1.619 | 1.266 | 1.364 |
+#> | F| Forward Diff. | -17.29 | 0.1752 | -1.213 | 0.7541 |
+#> |.....................| 1.907 | 0.8055 | -0.1948 | -0.02118 |
+#> |.....................| 1.522 | 1.784 | 0.5826 | 0.3001 |
+#> | 58| 476.15328 | 0.9997 | -1.587 | -0.9380 | -0.8926 |
+#> |.....................| -0.8393 | -0.1057 | -0.7294 | -0.6920 |
+#> |.....................| -0.9908 | -0.5546 | -0.6943 | -0.5998 |
+#> | U| 476.15328 | 93.09 | -5.890 | -0.9693 | -0.1048 |
+#> |.....................| 2.297 | 1.602 | 0.03249 | 0.8979 |
+#> |.....................| 0.7721 | 1.593 | 1.257 | 1.362 |
+#> | X| 476.15328 | 93.09 | 0.002766 | 0.2750 | 0.9005 |
+#> |.....................| 9.947 | 1.602 | 0.03249 | 0.8979 |
+#> |.....................| 0.7721 | 1.593 | 1.257 | 1.362 |
+#> | F| Forward Diff. | 9.478 | -0.04668 | -0.07764 | 0.8847 |
+#> |.....................| 1.686 | 1.059 | 0.2200 | -0.09397 |
+#> |.....................| 3.078 | 0.7416 | 0.1570 | 0.2315 |
+#> | 59| 476.01802 | 1.000 | -1.651 | -0.9570 | -0.8992 |
+#> |.....................| -0.8607 | -0.1274 | -0.7088 | -0.7141 |
+#> |.....................| -1.015 | -0.5543 | -0.6984 | -0.6027 |
+#> | U| 476.01802 | 93.12 | -5.954 | -0.9872 | -0.1113 |
+#> |.....................| 2.276 | 1.589 | 0.03280 | 0.8811 |
+#> |.....................| 0.7512 | 1.594 | 1.253 | 1.359 |
+#> | X| 476.01802 | 93.12 | 0.002594 | 0.2715 | 0.8947 |
+#> |.....................| 9.736 | 1.589 | 0.03280 | 0.8811 |
+#> |.....................| 0.7512 | 1.594 | 1.253 | 1.359 |
+#> | 60| 476.22711 | 1.004 | -1.844 | -1.014 | -0.9185 |
+#> |.....................| -0.9244 | -0.1921 | -0.6470 | -0.7805 |
+#> |.....................| -1.085 | -0.5529 | -0.7106 | -0.6114 |
+#> | U| 476.22711 | 93.52 | -6.147 | -1.041 | -0.1307 |
+#> |.....................| 2.212 | 1.552 | 0.03373 | 0.8308 |
+#> |.....................| 0.6895 | 1.595 | 1.240 | 1.350 |
+#> | X| 476.22711 | 93.52 | 0.002140 | 0.2610 | 0.8775 |
+#> |.....................| 9.136 | 1.552 | 0.03373 | 0.8308 |
+#> |.....................| 0.6895 | 1.595 | 1.240 | 1.350 |
+#> | F| Forward Diff. | 11.37 | -0.1053 | -1.010 | 0.7448 |
+#> |.....................| 1.048 | 0.2820 | 0.2022 | -0.3140 |
+#> |.....................| 0.8239 | 0.7199 | -0.08354 | 0.05077 |
+#> | 61| 477.73164 | 0.9986 | -1.783 | -0.8482 | -1.092 |
+#> |.....................| -0.9355 | -0.2068 | -0.7199 | -0.6608 |
+#> |.....................| -1.022 | -0.4554 | -0.5612 | -0.5707 |
+#> | U| 477.73164 | 92.99 | -6.086 | -0.8845 | -0.3044 |
+#> |.....................| 2.201 | 1.543 | 0.03264 | 0.9215 |
+#> |.....................| 0.7445 | 1.714 | 1.399 | 1.393 |
+#> | X| 477.73164 | 92.99 | 0.002274 | 0.2922 | 0.7376 |
+#> |.....................| 9.035 | 1.543 | 0.03264 | 0.9215 |
+#> |.....................| 0.7445 | 1.714 | 1.399 | 1.393 |
+#> | 62| 476.07192 | 0.9962 | -1.664 | -0.9459 | -0.9184 |
+#> |.....................| -0.8684 | -0.1353 | -0.7100 | -0.7087 |
+#> |.....................| -1.016 | -0.5448 | -0.6848 | -0.5995 |
+#> | U| 476.07192 | 92.76 | -5.967 | -0.9768 | -0.1306 |
+#> |.....................| 2.268 | 1.585 | 0.03278 | 0.8852 |
+#> |.....................| 0.7503 | 1.605 | 1.267 | 1.362 |
+#> | X| 476.07192 | 92.76 | 0.002561 | 0.2735 | 0.8776 |
+#> |.....................| 9.662 | 1.585 | 0.03278 | 0.8852 |
+#> |.....................| 0.7503 | 1.605 | 1.267 | 1.362 |
+#> | 63| 476.10587 | 0.9957 | -1.654 | -0.9539 | -0.9043 |
+#> |.....................| -0.8630 | -0.1295 | -0.7092 | -0.7126 |
+#> |.....................| -1.015 | -0.5521 | -0.6949 | -0.6019 |
+#> | U| 476.10587 | 92.72 | -5.958 | -0.9843 | -0.1164 |
+#> |.....................| 2.274 | 1.588 | 0.03280 | 0.8822 |
+#> |.....................| 0.7508 | 1.596 | 1.257 | 1.360 |
+#> | X| 476.10587 | 92.72 | 0.002586 | 0.2720 | 0.8901 |
+#> |.....................| 9.714 | 1.588 | 0.03280 | 0.8822 |
+#> |.....................| 0.7508 | 1.596 | 1.257 | 1.360 |
+#> | 64| 476.02413 | 0.9981 | -1.651 | -0.9568 | -0.8993 |
+#> |.....................| -0.8609 | -0.1274 | -0.7088 | -0.7140 |
+#> |.....................| -1.015 | -0.5544 | -0.6984 | -0.6027 |
+#> | U| 476.02413 | 92.94 | -5.954 | -0.9870 | -0.1114 |
+#> |.....................| 2.276 | 1.589 | 0.03280 | 0.8812 |
+#> |.....................| 0.7511 | 1.593 | 1.253 | 1.359 |
+#> | X| 476.02413 | 92.94 | 0.002594 | 0.2715 | 0.8946 |
+#> |.....................| 9.735 | 1.589 | 0.03280 | 0.8812 |
+#> |.....................| 0.7511 | 1.593 | 1.253 | 1.359 |
+#> | 65| 476.01367 | 0.9993 | -1.651 | -0.9569 | -0.8992 |
+#> |.....................| -0.8608 | -0.1274 | -0.7088 | -0.7141 |
+#> |.....................| -1.015 | -0.5543 | -0.6984 | -0.6027 |
+#> | U| 476.01367 | 93.05 | -5.954 | -0.9871 | -0.1114 |
+#> |.....................| 2.276 | 1.589 | 0.03280 | 0.8812 |
+#> |.....................| 0.7512 | 1.594 | 1.253 | 1.359 |
+#> | X| 476.01367 | 93.05 | 0.002594 | 0.2715 | 0.8946 |
+#> |.....................| 9.736 | 1.589 | 0.03280 | 0.8812 |
+#> |.....................| 0.7512 | 1.594 | 1.253 | 1.359 |
+#> | F| Forward Diff. | -0.2880 | -0.1104 | -1.088 | 0.7255 |
+#> |.....................| 0.9655 | -0.09765 | 0.02713 | -0.4308 |
+#> |.....................| 1.898 | 0.6709 | -0.08067 | 0.06084 |
+#> | 66| 476.01068 | 0.9993 | -1.651 | -0.9566 | -0.8994 |
+#> |.....................| -0.8610 | -0.1274 | -0.7088 | -0.7139 |
+#> |.....................| -1.015 | -0.5545 | -0.6983 | -0.6027 |
+#> | U| 476.01068 | 93.06 | -5.954 | -0.9868 | -0.1116 |
+#> |.....................| 2.276 | 1.589 | 0.03280 | 0.8813 |
+#> |.....................| 0.7507 | 1.593 | 1.253 | 1.359 |
+#> | X| 476.01068 | 93.06 | 0.002595 | 0.2715 | 0.8944 |
+#> |.....................| 9.733 | 1.589 | 0.03280 | 0.8813 |
+#> |.....................| 0.7507 | 1.593 | 1.253 | 1.359 |
+#> | 67| 476.00249 | 0.9996 | -1.651 | -0.9556 | -0.9000 |
+#> |.....................| -0.8619 | -0.1273 | -0.7089 | -0.7136 |
+#> |.....................| -1.017 | -0.5551 | -0.6983 | -0.6027 |
+#> | U| 476.00249 | 93.08 | -5.954 | -0.9860 | -0.1122 |
+#> |.....................| 2.275 | 1.589 | 0.03280 | 0.8815 |
+#> |.....................| 0.7493 | 1.593 | 1.253 | 1.359 |
+#> | X| 476.00249 | 93.08 | 0.002595 | 0.2717 | 0.8939 |
+#> |.....................| 9.725 | 1.589 | 0.03280 | 0.8815 |
+#> |.....................| 0.7493 | 1.593 | 1.253 | 1.359 |
+#> | 68| 475.98648 | 0.9997 | -1.654 | -0.9518 | -0.9062 |
+#> |.....................| -0.8643 | -0.1288 | -0.7101 | -0.7095 |
+#> |.....................| -1.019 | -0.5521 | -0.6956 | -0.6031 |
+#> | U| 475.98648 | 93.09 | -5.957 | -0.9823 | -0.1183 |
+#> |.....................| 2.272 | 1.589 | 0.03278 | 0.8846 |
+#> |.....................| 0.7477 | 1.596 | 1.256 | 1.359 |
+#> | X| 475.98648 | 93.09 | 0.002587 | 0.2724 | 0.8884 |
+#> |.....................| 9.702 | 1.589 | 0.03278 | 0.8846 |
+#> |.....................| 0.7477 | 1.596 | 1.256 | 1.359 |
+#> | 69| 475.97179 | 0.9994 | -1.666 | -0.9399 | -0.9282 |
+#> |.....................| -0.8710 | -0.1347 | -0.7147 | -0.6948 |
+#> |.....................| -1.020 | -0.5387 | -0.6854 | -0.6045 |
+#> | U| 475.97179 | 93.06 | -5.969 | -0.9711 | -0.1404 |
+#> |.....................| 2.266 | 1.585 | 0.03271 | 0.8957 |
+#> |.....................| 0.7463 | 1.612 | 1.267 | 1.357 |
+#> | X| 475.97179 | 93.06 | 0.002557 | 0.2747 | 0.8690 |
+#> |.....................| 9.637 | 1.585 | 0.03271 | 0.8957 |
+#> |.....................| 0.7463 | 1.612 | 1.267 | 1.357 |
+#> | F| Forward Diff. | 1.543 | -0.1187 | -0.09427 | 0.04746 |
+#> |.....................| 0.7019 | 0.1743 | 0.004057 | -0.1664 |
+#> |.....................| 1.824 | 1.487 | 0.8060 | -0.1087 |
+#> | 70| 475.93640 | 0.9984 | -1.664 | -0.9398 | -0.9470 |
+#> |.....................| -0.8662 | -0.1315 | -0.7271 | -0.6595 |
+#> |.....................| -1.030 | -0.5499 | -0.6986 | -0.5913 |
+#> | U| 475.9364 | 92.96 | -5.967 | -0.9710 | -0.1592 |
+#> |.....................| 2.270 | 1.587 | 0.03253 | 0.9225 |
+#> |.....................| 0.7382 | 1.599 | 1.253 | 1.371 |
+#> | X| 475.9364 | 92.96 | 0.002561 | 0.2747 | 0.8529 |
+#> |.....................| 9.682 | 1.587 | 0.03253 | 0.9225 |
+#> |.....................| 0.7382 | 1.599 | 1.253 | 1.371 |
+#> | F| Forward Diff. | -18.02 | -0.07507 | -0.1675 | -0.4306 |
+#> |.....................| 0.8222 | -0.4249 | -0.3576 | -0.06909 |
+#> |.....................| -0.1553 | 0.7789 | -0.06902 | 0.4423 |
+#> | 71| 475.93449 | 0.9995 | -1.655 | -0.9484 | -0.9330 |
+#> |.....................| -0.8784 | -0.1258 | -0.7357 | -0.6330 |
+#> |.....................| -1.033 | -0.5716 | -0.6758 | -0.5988 |
+#> | U| 475.93449 | 93.07 | -5.959 | -0.9791 | -0.1451 |
+#> |.....................| 2.258 | 1.590 | 0.03240 | 0.9426 |
+#> |.....................| 0.7351 | 1.573 | 1.277 | 1.363 |
+#> | X| 475.93449 | 93.07 | 0.002583 | 0.2731 | 0.8649 |
+#> |.....................| 9.566 | 1.590 | 0.03240 | 0.9426 |
+#> |.....................| 0.7351 | 1.573 | 1.277 | 1.363 |
+#> | F| Forward Diff. | -1.432 | -0.03245 | -0.4539 | -0.04331 |
+#> |.....................| 0.5695 | -0.03993 | -0.2223 | 0.1396 |
+#> |.....................| -0.3709 | -0.08203 | 1.409 | 0.03273 |
+#> | 72| 475.92305 | 1.001 | -1.648 | -0.9418 | -0.9189 |
+#> |.....................| -0.8867 | -0.1240 | -0.7358 | -0.6284 |
+#> |.....................| -1.035 | -0.5652 | -0.6857 | -0.6066 |
+#> | U| 475.92305 | 93.18 | -5.952 | -0.9729 | -0.1311 |
+#> |.....................| 2.250 | 1.591 | 0.03240 | 0.9461 |
+#> |.....................| 0.7335 | 1.580 | 1.266 | 1.355 |
+#> | X| 475.92305 | 93.18 | 0.002602 | 0.2743 | 0.8772 |
+#> |.....................| 9.486 | 1.591 | 0.03240 | 0.9461 |
+#> |.....................| 0.7335 | 1.580 | 1.266 | 1.355 |
+#> | F| Forward Diff. | 18.31 | 0.001701 | 0.03033 | 0.3531 |
+#> |.....................| 0.4204 | 0.05655 | -0.08057 | 0.1734 |
+#> |.....................| -0.4632 | 0.1099 | 0.8178 | -0.3689 |
+#> | 73| 475.91938 | 0.9986 | -1.638 | -0.9366 | -0.9070 |
+#> |.....................| -0.8945 | -0.1236 | -0.7244 | -0.6267 |
+#> |.....................| -1.037 | -0.5623 | -0.6914 | -0.6147 |
+#> | U| 475.91938 | 92.99 | -5.941 | -0.9680 | -0.1192 |
+#> |.....................| 2.242 | 1.592 | 0.03257 | 0.9474 |
+#> |.....................| 0.7320 | 1.584 | 1.260 | 1.346 |
+#> | X| 475.91938 | 92.99 | 0.002629 | 0.2753 | 0.8877 |
+#> |.....................| 9.412 | 1.592 | 0.03257 | 0.9474 |
+#> |.....................| 0.7320 | 1.584 | 1.260 | 1.346 |
+#> | F| Forward Diff. | -15.99 | 0.01876 | 0.07238 | 0.5908 |
+#> |.....................| -0.09055 | 0.2914 | -0.2119 | 0.1409 |
+#> |.....................| 0.4365 | 0.1061 | 0.4376 | -0.5157 |
+#> | 74| 475.91938 | 0.9986 | -1.638 | -0.9366 | -0.9070 |
+#> |.....................| -0.8945 | -0.1236 | -0.7244 | -0.6267 |
+#> |.....................| -1.037 | -0.5623 | -0.6914 | -0.6147 |
+#> | U| 475.91938 | 92.99 | -5.941 | -0.9680 | -0.1192 |
+#> |.....................| 2.242 | 1.592 | 0.03257 | 0.9474 |
+#> |.....................| 0.7320 | 1.584 | 1.260 | 1.346 |
+#> | X| 475.91938 | 92.99 | 0.002629 | 0.2753 | 0.8877 |
+#> |.....................| 9.412 | 1.592 | 0.03257 | 0.9474 |
+#> |.....................| 0.7320 | 1.584 | 1.260 | 1.346 |
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
+#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
+#> |.....................| log_k2 | g_qlogis | sigma_low | rsd_high |
+#> |.....................| o1 | o2 | o3 | o4 |
+#> |.....................| o5 | o6 |...........|...........|
+#> | 1| 495.80376 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#> |.....................| -0.8749 | -0.8675 |...........|...........|
+#> | U| 495.80376 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | X| 495.80376 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | G| Gill Diff. | 40.10 | 2.344 | -0.09792 | 0.01304 |
+#> |.....................| -0.4854 | 0.6353 | -29.93 | -20.00 |
+#> |.....................| 1.261 | 9.993 | -12.68 | -0.7774 |
+#> |.....................| 8.106 | -12.55 |...........|...........|
+#> | 2| 2936.2793 | 0.3119 | -1.040 | -0.9093 | -0.9382 |
+#> |.....................| -0.9801 | -0.8941 | -0.3619 | -0.5483 |
+#> |.....................| -0.8992 | -1.046 | -0.6506 | -0.8594 |
+#> |.....................| -1.014 | -0.6521 |...........|...........|
+#> | U| 2936.2793 | 28.54 | -5.229 | -0.8860 | -2.190 |
+#> |.....................| -4.622 | 0.4539 | 1.041 | 0.06759 |
+#> |.....................| 0.7138 | 0.7431 | 1.443 | 0.9756 |
+#> |.....................| 0.7388 | 1.478 |...........|...........|
+#> | X| 2936.2793 | 28.54 | 0.005360 | 0.2919 | 0.1119 |
+#> |.....................| 0.009832 | 0.6116 | 1.041 | 0.06759 |
+#> |.....................| 0.7138 | 0.7431 | 1.443 | 0.9756 |
+#> |.....................| 0.7388 | 1.478 |...........|...........|
+#> | 3| 515.54714 | 0.9312 | -1.004 | -0.9108 | -0.9380 |
+#> |.....................| -0.9876 | -0.8843 | -0.8242 | -0.8571 |
+#> |.....................| -0.8797 | -0.8912 | -0.8464 | -0.8714 |
+#> |.....................| -0.8888 | -0.8460 |...........|...........|
+#> | U| 515.54714 | 85.19 | -5.193 | -0.8873 | -2.190 |
+#> |.....................| -4.630 | 0.4584 | 0.8493 | 0.05868 |
+#> |.....................| 0.7280 | 0.8815 | 1.211 | 0.9641 |
+#> |.....................| 0.8462 | 1.242 |...........|...........|
+#> | X| 515.54714 | 85.19 | 0.005557 | 0.2917 | 0.1119 |
+#> |.....................| 0.009758 | 0.6126 | 0.8493 | 0.05868 |
+#> |.....................| 0.7280 | 0.8815 | 1.211 | 0.9641 |
+#> |.....................| 0.8462 | 1.242 |...........|...........|
+#> | 4| 501.46574 | 0.9922 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9884 | -0.8833 | -0.8697 | -0.8876 |
+#> |.....................| -0.8778 | -0.8761 | -0.8657 | -0.8726 |
+#> |.....................| -0.8765 | -0.8650 |...........|...........|
+#> | U| 501.46574 | 90.77 | -5.189 | -0.8874 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8304 | 0.05781 |
+#> |.....................| 0.7294 | 0.8952 | 1.188 | 0.9629 |
+#> |.....................| 0.8568 | 1.219 |...........|...........|
+#> | X| 501.46574 | 90.77 | 0.005577 | 0.2916 | 0.1119 |
+#> |.....................| 0.009751 | 0.6127 | 0.8304 | 0.05781 |
+#> |.....................| 0.7294 | 0.8952 | 1.188 | 0.9629 |
+#> |.....................| 0.8568 | 1.219 |...........|...........|
+#> | 5| 501.84206 | 0.9992 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9884 | -0.8832 | -0.8749 | -0.8911 |
+#> |.....................| -0.8776 | -0.8743 | -0.8679 | -0.8727 |
+#> |.....................| -0.8751 | -0.8673 |...........|...........|
+#> | U| 501.84206 | 91.41 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8283 | 0.05771 |
+#> |.....................| 0.7296 | 0.8967 | 1.185 | 0.9628 |
+#> |.....................| 0.8580 | 1.216 |...........|...........|
+#> | X| 501.84206 | 91.41 | 0.005579 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8283 | 0.05771 |
+#> |.....................| 0.7296 | 0.8967 | 1.185 | 0.9628 |
+#> |.....................| 0.8580 | 1.216 |...........|...........|
+#> | 6| 501.90183 | 0.9999 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8914 |
+#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#> |.....................| -0.8749 | -0.8675 |...........|...........|
+#> | U| 501.90183 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05770 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | X| 501.90183 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05770 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | 7| 501.90808 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#> |.....................| -0.8749 | -0.8675 |...........|...........|
+#> | U| 501.90808 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | X| 501.90808 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | 8| 501.90873 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#> |.....................| -0.8749 | -0.8675 |...........|...........|
+#> | U| 501.90873 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | X| 501.90873 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | 9| 501.90880 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#> |.....................| -0.8749 | -0.8675 |...........|...........|
+#> | U| 501.9088 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | X| 501.9088 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | 10| 501.90881 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#> |.....................| -0.8749 | -0.8675 |...........|...........|
+#> | U| 501.90881 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | X| 501.90881 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | 11| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#> |.....................| -0.8749 | -0.8675 |...........|...........|
+#> | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | X| 501.90882 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | 12| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#> |.....................| -0.8749 | -0.8675 |...........|...........|
+#> | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | X| 501.90882 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | 13| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#> |.....................| -0.8749 | -0.8675 |...........|...........|
+#> | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | X| 501.90882 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | 14| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#> |.....................| -0.8749 | -0.8675 |...........|...........|
+#> | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | X| 501.90882 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | 15| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#> |.....................| -0.8749 | -0.8675 |...........|...........|
+#> | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | X| 501.90882 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | 16| 501.90883 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#> |.....................| -0.8749 | -0.8675 |...........|...........|
+#> | U| 501.90883 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | X| 501.90883 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | 17| 501.90883 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
+#> |.....................| -0.8749 | -0.8675 |...........|...........|
+#> | U| 501.90883 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> | X| 501.90883 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
+#> |.....................| 0.8582 | 1.216 |...........|...........|
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo
+# Two-component error by variable is possible with both estimation methods
+# Variance by variable is supported by 'saem' and 'focei'
+f_nlmixr_fomc_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "saem",
+ error_model = "obs_tc")
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> 1: 92.2740 -5.2361 0.2113 1.9393 -2.0029 2.8805 1.6298 0.7279 0.7192 0.4382 6.7264 0.4769 7.2363 0.6178
+#> 2: 93.1532 -5.3060 0.0602 2.0735 -2.0177 2.7365 1.5483 0.6915 0.8577 0.4163 7.5229 0.0003 8.5494 0.0006
+#> 3: 9.3232e+01 -5.5491e+00 5.1555e-02 2.4627e+00 -1.4981e+00 2.5997e+00 1.4709e+00 6.5697e-01 8.1480e-01 3.9549e-01 4.6581e+00 4.3492e-05 5.3112e+00 1.7818e-04
+#> 4: 9.3109e+01 -5.6749e+00 3.7928e-02 2.4274e+00 -1.3355e+00 2.4697e+00 1.3973e+00 6.2412e-01 7.7406e-01 3.7572e-01 3.5252e+00 9.5643e-05 4.0990e+00 4.6584e-05
+#> 5: 9.3327e+01 -5.8341e+00 -1.6798e-02 2.4024e+00 -1.2129e+00 2.3462e+00 1.3274e+00 5.9292e-01 7.3536e-01 3.5693e-01 3.3259e+00 1.6901e-05 3.5218e+00 4.0075e-05
+#> 6: 9.3449e+01 -6.0745e+00 -6.1031e-02 2.3458e+00 -1.2034e+00 2.2289e+00 1.8700e+00 5.6327e-01 6.9859e-01 3.3908e-01 2.9533e+00 6.5587e-07 3.1056e+00 2.1346e-02
+#> 7: 93.2519 -6.0564 -0.0590 2.3588 -1.1293 2.1174 1.8910 0.5351 0.6637 0.3221 2.8211 0.0082 2.8507 0.0251
+#> 8: 93.0343 -5.9362 -0.0851 2.2949 -1.0760 2.0116 1.7964 0.5084 0.6305 0.3060 2.5340 0.0181 2.6368 0.0243
+#> 9: 93.1444 -6.1910 -0.1199 2.2709 -1.1077 1.9110 1.8664 0.4829 0.5990 0.2907 2.3768 0.0191 2.3601 0.0284
+#> 10: 93.2748 -6.4970 -0.1598 2.2235 -1.1034 2.1024 3.1968 0.4588 0.5690 0.2762 2.1991 0.0255 2.2790 0.0316
+#> 11: 93.4141 -6.4463 -0.1698 2.1876 -1.0890 1.9973 3.0370 0.4358 0.5406 0.2624 2.1469 0.0266 2.1681 0.0325
+#> 12: 93.4935 -6.5467 -0.1715 2.1666 -1.0952 1.8974 3.7848 0.4141 0.5135 0.2493 1.9137 0.0292 2.0701 0.0331
+#> 13: 93.6730 -6.4173 -0.1752 2.1387 -1.0753 1.8026 3.7278 0.3934 0.4879 0.2368 1.9084 0.0272 2.0289 0.0369
+#> 14: 93.5721 -6.2146 -0.1738 2.1854 -1.0740 2.0902 3.5415 0.3737 0.4635 0.2250 1.9861 0.0239 2.0052 0.0347
+#> 15: 93.6638 -6.3103 -0.1693 2.1828 -1.0327 2.0702 3.3644 0.3720 0.4403 0.2137 1.8947 0.0247 1.9865 0.0375
+#> 16: 93.4156 -6.0957 -0.1666 2.1755 -1.0737 2.6391 3.1962 0.3691 0.4183 0.2030 1.9089 0.0241 2.0159 0.0360
+#> 17: 93.4257 -6.1494 -0.1705 2.1664 -1.0589 2.5072 3.0714 0.3697 0.3974 0.1929 1.8253 0.0268 2.0391 0.0301
+#> 18: 93.5593 -6.1696 -0.1780 2.1670 -1.0129 2.3818 3.7604 0.3725 0.3775 0.1832 1.8529 0.0304 1.8784 0.0298
+#> 19: 93.5027 -6.2960 -0.1791 2.1543 -1.0325 2.6052 4.5501 0.3942 0.3586 0.1741 1.8082 0.0328 1.8654 0.0335
+#> 20: 93.4480 -6.4389 -0.1776 2.1772 -1.0485 2.6607 5.1881 0.3894 0.3554 0.1654 1.8032 0.0322 1.9018 0.0312
+#> 21: 93.6411 -6.2893 -0.1750 2.1759 -1.0350 2.5276 4.9287 0.3817 0.3386 0.1605 1.8533 0.0264 1.9317 0.0301
+#> 22: 93.9320 -6.1469 -0.1750 2.1910 -1.0527 2.4013 4.6823 0.3720 0.3642 0.1525 1.8949 0.0273 1.8977 0.0310
+#> 23: 93.6074 -6.3097 -0.1502 2.2111 -1.0155 2.2812 4.6643 0.3832 0.4236 0.1449 1.7075 0.0340 1.7367 0.0337
+#> 24: 93.7425 -6.4598 -0.1446 2.2249 -1.0011 2.7056 6.0597 0.3949 0.4075 0.1479 1.7180 0.0360 1.7786 0.0302
+#> 25: 94.1822 -6.3674 -0.1496 2.1917 -1.0011 3.4724 5.7567 0.3897 0.4355 0.1465 1.6977 0.0356 1.8373 0.0328
+#> 26: 94.0446 -6.3235 -0.1496 2.2004 -1.0414 3.5912 5.4688 0.3897 0.4438 0.1405 1.6765 0.0344 1.8262 0.0355
+#> 27: 94.4454 -6.2148 -0.1370 2.2360 -1.0220 4.6238 5.1954 0.3702 0.4216 0.1335 1.7209 0.0349 1.7702 0.0336
+#> 28: 94.1837 -6.1301 -0.1376 2.2253 -1.0261 4.3926 4.9356 0.3644 0.4005 0.1345 1.6968 0.0290 1.8540 0.0316
+#> 29: 94.0681 -5.8726 -0.1440 2.2237 -1.0400 4.1730 4.6889 0.3750 0.4055 0.1464 1.7084 0.0329 1.7379 0.0407
+#> 30: 94.5866 -5.9141 -0.1416 2.2045 -1.0350 3.9896 4.4544 0.3770 0.3852 0.1769 1.6009 0.0326 1.8718 0.0350
+#> 31: 94.1640 -6.0370 -0.1382 2.2140 -1.0189 5.4942 4.2317 0.3759 0.3809 0.1680 1.5887 0.0386 1.8918 0.0286
+#> 32: 94.5952 -5.8349 -0.1373 2.2374 -1.0283 5.2195 4.0201 0.3745 0.3835 0.1636 1.6451 0.0375 1.7459 0.0382
+#> 33: 95.0936 -5.8145 -0.1356 2.2325 -1.0037 4.9634 3.8191 0.3614 0.3644 0.1677 1.6313 0.0414 1.6809 0.0399
+#> 34: 94.7033 -5.8916 -0.1208 2.2687 -0.9896 5.4935 3.6281 0.3741 0.3536 0.1701 1.5923 0.0376 1.2962 0.0644
+#> 35: 94.8127 -5.9839 -0.1122 2.2615 -0.9983 5.2188 3.7348 0.3817 0.3661 0.1712 1.5848 0.0313 1.1651 0.0752
+#> 36: 94.6798 -5.8938 -0.1203 2.2441 -1.0009 4.9578 3.5480 0.3835 0.3478 0.1708 1.5525 0.0313 1.1527 0.0712
+#> 37: 93.9759 -5.8017 -0.1274 2.2346 -1.0021 4.7100 3.3706 0.3868 0.3350 0.1622 1.6278 0.0256 1.7263 0.0372
+#> 38: 94.2013 -5.8617 -0.1206 2.2570 -1.0125 4.4745 3.2021 0.3754 0.3520 0.1574 1.5396 0.0290 1.0653 0.0746
+#> 39: 94.1314 -5.7645 -0.1261 2.2381 -1.0361 4.2507 3.0420 0.3804 0.3521 0.1543 1.6280 0.0267 1.1461 0.0755
+#> 40: 93.7934 -5.8654 -0.1206 2.2417 -1.0503 4.0382 2.8899 0.3624 0.3413 0.1747 1.6231 0.0239 1.5698 0.0513
+#> 41: 93.8756 -6.0150 -0.1171 2.2581 -1.0313 3.8363 3.3629 0.3809 0.3369 0.1944 1.6461 0.0217 1.7762 0.0345
+#> 42: 94.0644 -5.9723 -0.1136 2.2769 -1.0295 3.6445 3.2171 0.3702 0.3394 0.1920 1.5035 0.0416 1.5148 0.0475
+#> 43: 93.7394 -5.9927 -0.1233 2.2650 -1.0374 3.4622 3.0562 0.3735 0.3370 0.1824 1.6022 0.0379 1.5080 0.0468
+#> 44: 93.5428 -5.9784 -0.1187 2.2780 -1.0279 3.2891 2.9495 0.3732 0.3289 0.1742 1.5456 0.0471 1.4361 0.0517
+#> 45: 93.2885 -5.9836 -0.1273 2.2650 -1.0100 3.1247 3.2884 0.3768 0.3719 0.1655 1.6579 0.0336 1.4031 0.0585
+#> 46: 93.4080 -5.9261 -0.1371 2.2513 -1.0159 3.4180 3.1630 0.3709 0.3762 0.1711 1.7365 0.0269 1.4612 0.0530
+#> 47: 93.4548 -5.8101 -0.1372 2.2650 -1.0058 3.2471 3.0049 0.3703 0.3921 0.1797 1.7161 0.0300 1.4813 0.0524
+#> 48: 93.1829 -5.6877 -0.1391 2.2594 -1.0035 3.0848 2.8546 0.3690 0.3901 0.1707 1.7558 0.0292 1.5856 0.0487
+#> 49: 93.1860 -5.8153 -0.1349 2.2793 -0.9905 2.9305 2.7119 0.3619 0.3877 0.1690 1.7255 0.0299 1.6143 0.0465
+#> 50: 93.5597 -5.7551 -0.1334 2.2669 -0.9808 2.7840 2.5763 0.3652 0.3795 0.1716 1.6690 0.0290 1.4895 0.0536
+#> 51: 93.5952 -5.8089 -0.1358 2.2626 -1.0100 2.6448 2.4475 0.3640 0.4246 0.1630 1.5892 0.0344 1.3958 0.0604
+#> 52: 93.3111 -5.9181 -0.1323 2.2489 -0.9909 2.5126 2.8739 0.3695 0.4337 0.1549 1.5200 0.0329 1.2246 0.0685
+#> 53: 93.4921 -6.0837 -0.1307 2.2513 -1.0031 2.3869 3.6029 0.3678 0.4363 0.1682 1.4683 0.0336 1.2917 0.0665
+#> 54: 93.4808 -6.2019 -0.1488 2.2068 -1.0207 2.2676 4.1833 0.3952 0.4145 0.1598 1.6478 0.0325 1.2418 0.0659
+#> 55: 93.5453 -6.2747 -0.1411 2.2297 -1.0122 2.1542 4.5107 0.3941 0.4044 0.1556 1.5685 0.0358 1.3236 0.0654
+#> 56: 94.0212 -6.2713 -0.1355 2.2228 -1.0205 2.0465 5.1718 0.3901 0.4101 0.1516 1.5568 0.0341 1.1952 0.0736
+#> 57: 93.7155 -6.2511 -0.1574 2.1899 -1.0374 1.9442 4.9132 0.3991 0.3974 0.1442 1.5528 0.0364 1.5497 0.0485
+#> 58: 93.9064 -6.2021 -0.1543 2.1935 -1.0277 1.8470 4.6676 0.3935 0.3944 0.1458 1.5590 0.0354 1.3512 0.0613
+#> 59: 93.9059 -6.3971 -0.1550 2.1899 -1.0124 1.7546 5.8885 0.3925 0.3943 0.1446 1.5641 0.0373 1.4293 0.0550
+#> 60: 93.8600 -6.2474 -0.1552 2.1978 -0.9930 1.7661 5.5941 0.3905 0.4078 0.1532 1.5235 0.0364 1.5442 0.0477
+#> 61: 93.8936 -6.3077 -0.1568 2.2022 -1.0084 1.7122 5.3507 0.3946 0.4146 0.1455 1.5154 0.0342 1.3664 0.0587
+#> 62: 93.6133 -6.1446 -0.1473 2.2277 -1.0195 1.6266 5.0832 0.3794 0.4254 0.1383 1.5586 0.0330 1.1663 0.0705
+#> 63: 93.5549 -6.3005 -0.1437 2.2302 -1.0096 1.5452 5.0969 0.3651 0.4262 0.1349 1.5730 0.0323 1.2501 0.0668
+#> 64: 93.3212 -6.1190 -0.1428 2.2309 -1.0005 1.4826 4.8421 0.3661 0.4181 0.1443 1.6657 0.0259 1.3409 0.0627
+#> 65: 93.2534 -5.9614 -0.1492 2.2310 -0.9865 1.4084 4.6000 0.3735 0.4186 0.1695 1.6883 0.0235 1.4446 0.0563
+#> 66: 93.3429 -5.9786 -0.1401 2.2198 -0.9934 1.3380 4.3700 0.3807 0.4094 0.1610 1.6697 0.0270 1.1164 0.0778
+#> 67: 93.5657 -6.2158 -0.1405 2.2326 -0.9891 1.2711 4.4653 0.3827 0.4063 0.1530 1.5851 0.0316 1.3581 0.0590
+#> 68: 93.4898 -5.9763 -0.1375 2.2431 -0.9837 1.2076 4.2420 0.3771 0.4127 0.1453 1.6134 0.0325 1.1459 0.0744
+#> 69: 93.4995 -6.1375 -0.1412 2.2423 -1.0003 1.3178 4.3907 0.3746 0.4202 0.1403 1.6223 0.0304 1.3354 0.0608
+#> 70: 93.4369 -6.1690 -0.1395 2.2472 -1.0047 1.6239 4.5654 0.3793 0.4087 0.1400 1.6317 0.0349 1.4812 0.0494
+#> 71: 93.4041 -6.3637 -0.1489 2.2348 -1.0125 1.5427 5.3897 0.3603 0.3883 0.1330 1.5954 0.0303 1.3502 0.0612
+#> 72: 93.1755 -6.4067 -0.1441 2.2492 -0.9859 1.4656 6.3554 0.3423 0.3688 0.1388 1.6135 0.0287 1.6402 0.0435
+#> 73: 93.0023 -6.7319 -0.1526 2.2550 -0.9800 1.3923 7.6438 0.3341 0.3504 0.1462 1.5491 0.0312 1.3997 0.0554
+#> 74: 92.8952 -6.7189 -0.1530 2.2393 -0.9936 1.5478 7.2616 0.3344 0.3329 0.1503 1.5626 0.0326 1.3340 0.0634
+#> 75: 93.0812 -6.8015 -0.1546 2.2265 -0.9751 1.4704 8.9537 0.3501 0.3162 0.1438 1.6019 0.0268 1.1663 0.0715
+#> 76: 93.1080 -6.1728 -0.1515 2.2259 -1.0010 1.3969 8.5060 0.3407 0.3015 0.1398 1.6484 0.0279 1.3118 0.0637
+#> 77: 92.9248 -6.3432 -0.1573 2.2221 -0.9819 1.4456 8.0807 0.3506 0.3002 0.1442 1.5947 0.0294 1.6368 0.0407
+#> 78: 93.0194 -6.1448 -0.1611 2.2228 -0.9831 1.3733 7.6767 0.3487 0.3046 0.1369 1.6471 0.0254 1.4261 0.0529
+#> 79: 92.9378 -6.6970 -0.1593 2.2313 -0.9910 1.3046 10.0158 0.3460 0.2999 0.1386 1.6108 0.0267 1.5818 0.0420
+#> 80: 93.0293 -6.3275 -0.1579 2.2290 -0.9753 1.3191 9.5150 0.3543 0.2960 0.1490 1.6570 0.0259 1.5435 0.0431
+#> 81: 93.1417 -6.2258 -0.1607 2.2285 -0.9399 1.4131 9.0393 0.3514 0.3020 0.1415 1.6990 0.0236 1.6875 0.0364
+#> 82: 92.9115 -6.1764 -0.1555 2.2204 -0.9471 1.3424 8.5873 0.3502 0.2954 0.1540 1.6780 0.0216 1.2280 0.0687
+#> 83: 93.0528 -6.3505 -0.1559 2.2391 -0.9651 1.2753 8.1579 0.3499 0.2903 0.1706 1.6924 0.0242 1.6807 0.0465
+#> 84: 93.0032 -6.2300 -0.1596 2.2300 -0.9232 1.2115 7.9391 0.3470 0.2995 0.1858 1.7153 0.0259 1.7160 0.0406
+#> 85: 93.0518 -6.3704 -0.1434 2.2696 -0.9330 1.1510 8.3071 0.3504 0.2916 0.1765 1.7072 0.0275 1.5494 0.0490
+#> 86: 93.1344 -6.3566 -0.1424 2.2595 -0.9512 1.0934 9.2972 0.3520 0.2869 0.1677 1.6609 0.0253 1.5022 0.0508
+#> 87: 93.2468 -6.3860 -0.1449 2.2505 -0.9601 1.0387 8.8323 0.3474 0.3046 0.1593 1.6326 0.0262 1.3048 0.0626
+#> 88: 93.2286 -6.3886 -0.1466 2.2452 -0.9870 0.9868 8.3907 0.3474 0.2894 0.1513 1.6554 0.0245 1.6330 0.0376
+#> 89: 93.2892 -6.0277 -0.1469 2.2403 -0.9694 0.9375 7.9712 0.3451 0.2904 0.1438 1.6795 0.0251 1.6691 0.0365
+#> 90: 93.1766 -6.1076 -0.1460 2.2502 -0.9729 0.8906 7.5726 0.3458 0.2932 0.1481 1.6182 0.0331 1.5854 0.0401
+#> 91: 93.3300 -6.0932 -0.1559 2.2356 -0.9551 0.8461 7.1940 0.3771 0.2883 0.1512 1.6728 0.0272 1.6098 0.0401
+#> 92: 93.2470 -6.4839 -0.1592 2.2265 -1.0016 0.8038 6.8343 0.3813 0.2923 0.1597 1.7017 0.0300 1.6084 0.0423
+#> 93: 93.2272 -6.2819 -0.1612 2.2356 -1.0073 0.7636 6.4926 0.3849 0.2816 0.1722 1.5422 0.0420 1.4772 0.0493
+#> 94: 93.1441 -6.1805 -0.1571 2.2274 -1.0106 0.7254 6.1680 0.3878 0.2811 0.1636 1.5998 0.0403 1.4386 0.0535
+#> 95: 92.7747 -6.2274 -0.1709 2.2191 -1.0042 0.6891 5.8596 0.3909 0.2905 0.1591 1.7184 0.0282 1.6086 0.0519
+#> 96: 92.9830 -6.3291 -0.1603 2.2297 -1.0053 0.6547 5.5666 0.3774 0.2850 0.1512 1.7427 0.0284 1.7548 0.0384
+#> 97: 92.9302 -6.3943 -0.1608 2.2211 -0.9643 0.6219 5.2882 0.3817 0.2828 0.1589 1.7080 0.0295 1.7102 0.0398
+#> 98: 92.7704 -6.3554 -0.1679 2.1894 -0.9736 0.5908 5.4196 0.3864 0.2813 0.1560 1.7234 0.0240 1.2269 0.0685
+#> 99: 92.7596 -6.2138 -0.1687 2.2088 -0.9744 0.5613 5.1486 0.3939 0.2983 0.1482 1.6732 0.0250 1.5718 0.0497
+#> 100: 92.6608 -6.2662 -0.1687 2.2180 -1.0107 0.5332 5.1471 0.3939 0.2927 0.1408 1.8434 0.0232 1.7316 0.0413
+#> 101: 92.7024 -6.1288 -0.1643 2.2096 -1.0032 0.5066 4.8898 0.3934 0.2807 0.1349 1.7055 0.0253 1.5883 0.0439
+#> 102: 92.8885 -6.3175 -0.1697 2.2208 -0.9967 0.4812 4.9699 0.3888 0.2912 0.1371 1.7311 0.0284 1.6455 0.0402
+#> 103: 92.9487 -6.2493 -0.1677 2.1861 -0.9874 0.4572 4.9605 0.3907 0.2844 0.1626 1.6898 0.0279 1.6252 0.0409
+#> 104: 92.9633 -6.2534 -0.1731 2.1797 -0.9790 0.4343 4.8675 0.4015 0.2784 0.1758 1.6516 0.0268 1.6901 0.0360
+#> 105: 93.0513 -6.0656 -0.1748 2.1802 -0.9876 0.4126 4.6241 0.4041 0.2801 0.1670 1.6863 0.0269 1.6208 0.0366
+#> 106: 93.0600 -6.2162 -0.1860 2.1783 -0.9702 0.4570 4.5504 0.4451 0.2761 0.1586 1.6859 0.0274 1.5273 0.0437
+#> 107: 93.1856 -6.1826 -0.1801 2.1796 -0.9813 0.4341 4.7286 0.4517 0.2807 0.1575 1.6268 0.0341 1.2548 0.0630
+#> 108: 93.2401 -6.2943 -0.1783 2.1808 -0.9806 0.4124 5.3114 0.4502 0.2786 0.1496 1.6676 0.0291 1.4627 0.0484
+#> 109: 93.0988 -6.1669 -0.1655 2.2018 -0.9682 0.4036 5.0458 0.4302 0.3195 0.1435 1.6524 0.0295 1.5759 0.0447
+#> 110: 93.2129 -6.3104 -0.1748 2.1876 -0.9837 0.4825 5.6408 0.4430 0.3306 0.1595 1.6068 0.0326 1.6295 0.0388
+#> 111: 93.1292 -5.9096 -0.1740 2.1932 -0.9674 0.5262 5.3587 0.4444 0.3233 0.1646 1.5777 0.0334 1.6590 0.0374
+#> 112: 93.2723 -5.8153 -0.1706 2.1920 -0.9761 0.5109 5.0908 0.4486 0.3180 0.1634 1.6128 0.0321 1.6551 0.0396
+#> 113: 93.3171 -6.0458 -0.1666 2.1879 -0.9740 0.5530 4.8362 0.4508 0.3303 0.1607 1.5862 0.0325 1.2705 0.0643
+#> 114: 93.1717 -5.9615 -0.1655 2.1638 -0.9773 0.5254 4.5944 0.4472 0.3283 0.1657 1.6307 0.0287 1.2995 0.0677
+#> 115: 93.1917 -6.0856 -0.1592 2.1576 -1.0269 0.4991 4.3647 0.4349 0.3464 0.1574 1.6430 0.0354 1.2812 0.0714
+#> 116: 93.1287 -5.9635 -0.1609 2.1640 -0.9985 0.4741 4.1465 0.4237 0.3408 0.1495 1.6910 0.0269 1.2338 0.0738
+#> 117: 93.1184 -5.8768 -0.1603 2.1842 -0.9557 0.4504 3.9392 0.4211 0.3293 0.1420 1.6447 0.0257 1.2680 0.0705
+#> 118: 93.2207 -5.7436 -0.1654 2.1709 -0.9816 0.4279 3.7422 0.4158 0.3298 0.1349 1.6860 0.0238 1.1436 0.0780
+#> 119: 93.3064 -5.8397 -0.1713 2.1722 -1.0093 0.4065 3.5551 0.4100 0.3429 0.1384 1.6612 0.0262 1.6491 0.0458
+#> 120: 93.2749 -5.8221 -0.1737 2.1643 -1.0166 0.3862 3.3773 0.4044 0.3305 0.1527 1.6516 0.0232 1.7832 0.0410
+#> 121: 93.1620 -5.9756 -0.1579 2.2018 -1.0007 0.3818 3.2992 0.3841 0.3433 0.1620 1.6648 0.0251 1.3408 0.0665
+#> 122: 93.2070 -6.0164 -0.1540 2.2154 -1.0196 0.4217 3.5598 0.3649 0.3436 0.1539 1.6757 0.0287 1.3019 0.0652
+#> 123: 93.1588 -5.7424 -0.1581 2.2142 -0.9985 0.5270 3.3818 0.3491 0.3584 0.1655 1.6321 0.0237 1.3494 0.0644
+#> 124: 93.1496 -5.6257 -0.1463 2.2264 -0.9767 0.5914 3.2127 0.3347 0.3738 0.1573 1.6553 0.0226 1.5964 0.0544
+#> 125: 93.0224 -5.8536 -0.1742 2.1859 -0.9939 0.6381 3.0521 0.3840 0.3692 0.1664 1.6009 0.0246 1.4169 0.0652
+#> 126: 93.0788 -5.6973 -0.1778 2.1772 -0.9574 0.6062 2.8995 0.3710 0.3630 0.1839 1.5256 0.0312 1.5566 0.0518
+#> 127: 93.1613 -5.5833 -0.1729 2.1806 -0.9588 0.5759 2.7545 0.3532 0.3464 0.1878 1.5708 0.0307 1.6405 0.0476
+#> 128: 93.2043 -5.6742 -0.1746 2.1919 -0.9814 0.7099 2.6168 0.3569 0.3422 0.1848 1.6236 0.0312 1.5066 0.0517
+#> 129: 93.1963 -5.7026 -0.1770 2.1853 -0.9814 0.6744 2.4859 0.3544 0.3390 0.1774 1.6150 0.0293 1.5712 0.0479
+#> 130: 93.1669 -5.7260 -0.1826 2.1565 -0.9959 0.6407 2.3616 0.3750 0.3249 0.1685 1.6347 0.0215 1.5556 0.0535
+#> 131: 93.0792 -5.7201 -0.1971 2.1339 -1.0057 0.7376 2.2436 0.3901 0.3086 0.1616 1.7653 0.0206 1.6640 0.0458
+#> 132: 92.8580 -5.8266 -0.1877 2.1512 -0.9940 0.7008 2.3272 0.3895 0.3161 0.1863 1.6050 0.0231 1.5123 0.0558
+#> 133: 92.8479 -5.8397 -0.1834 2.1637 -0.9815 0.7195 2.4732 0.3875 0.3060 0.1877 1.6197 0.0217 1.4131 0.0617
+#> 134: 92.9218 -5.8317 -0.1903 2.1709 -0.9903 0.6835 2.5070 0.3808 0.3147 0.1857 1.7298 0.0225 1.5493 0.0521
+#> 135: 92.7533 -5.7287 -0.1909 2.1670 -0.9674 0.6493 2.3817 0.3792 0.3156 0.1981 1.7074 0.0222 1.2776 0.0718
+#> 136: 92.7255 -5.9071 -0.1787 2.1826 -0.9826 0.6169 2.8147 0.3603 0.3172 0.1882 1.6242 0.0288 1.2313 0.0682
+#> 137: 92.7882 -5.9574 -0.1847 2.1549 -0.9848 0.5860 3.0538 0.3651 0.3206 0.1787 1.5640 0.0277 1.1609 0.0716
+#> 138: 92.8155 -5.9445 -0.1719 2.1750 -0.9838 0.5567 3.3525 0.3568 0.3390 0.1698 1.5507 0.0259 1.0634 0.0816
+#> 139: 92.9393 -6.0638 -0.1726 2.1840 -0.9888 0.5289 4.1627 0.3562 0.3453 0.1613 1.5792 0.0259 1.5189 0.0533
+#> 140: 93.0330 -6.1823 -0.1726 2.1984 -0.9850 0.5024 4.3153 0.3562 0.3506 0.1533 1.6467 0.0248 1.5734 0.0459
+#> 141: 93.0651 -6.1847 -0.1702 2.2183 -0.9749 0.4773 4.1656 0.3604 0.3626 0.1527 1.5887 0.0272 1.5613 0.0433
+#> 142: 93.0350 -5.9581 -0.1641 2.2133 -0.9707 0.4535 3.9574 0.3642 0.3541 0.1662 1.5904 0.0246 1.4665 0.0556
+#> 143: 92.9215 -5.7798 -0.1642 2.2269 -0.9665 0.5015 3.7595 0.3665 0.3626 0.1667 1.6019 0.0275 1.3379 0.0563
+#> 144: 93.0132 -5.6752 -0.1629 2.2273 -0.9468 0.4764 3.5715 0.3648 0.3555 0.1648 1.5218 0.0320 1.1736 0.0695
+#> 145: 92.9596 -5.8104 -0.1449 2.2498 -0.9730 0.4526 3.3929 0.3465 0.3524 0.1670 1.5918 0.0284 1.3067 0.0630
+#> 146: 92.7925 -5.7223 -0.1458 2.2463 -0.9569 0.5591 3.2233 0.3443 0.3492 0.1587 1.6175 0.0260 1.0691 0.0729
+#> 147: 92.8399 -5.8322 -0.1478 2.2485 -0.9474 0.5312 3.2015 0.3422 0.3536 0.1507 1.6257 0.0255 1.2184 0.0622
+#> 148: 92.8390 -5.9554 -0.1498 2.2490 -0.9550 0.5046 3.6305 0.3387 0.3597 0.1615 1.5994 0.0263 1.2274 0.0638
+#> 149: 92.8158 -5.9697 -0.1511 2.2337 -0.9812 0.4794 3.8244 0.3386 0.3894 0.1559 1.5723 0.0255 1.0661 0.0760
+#> 150: 92.8379 -6.0841 -0.1532 2.2323 -0.9832 0.4554 4.3416 0.3340 0.3840 0.1575 1.5375 0.0272 1.1589 0.0677
+#> 151: 92.6741 -6.3268 -0.1572 2.2252 -0.9782 0.4327 5.9395 0.3389 0.3859 0.1584 1.5384 0.0252 1.2809 0.0638
+#> 152: 92.7165 -6.3594 -0.1527 2.2233 -1.0007 0.4210 5.8433 0.3384 0.3915 0.1324 1.5861 0.0254 1.0728 0.0756
+#> 153: 92.6823 -6.2114 -0.1640 2.2160 -0.9861 0.5285 5.4117 0.3473 0.3878 0.1376 1.6150 0.0255 1.2105 0.0659
+#> 154: 92.4787 -6.1829 -0.1622 2.2055 -0.9571 0.5031 5.7087 0.3490 0.3748 0.1345 1.5749 0.0250 1.0579 0.0741
+#> 155: 92.4780 -6.4925 -0.1675 2.2190 -0.9301 0.4020 7.4764 0.3587 0.3785 0.1287 1.5959 0.0258 1.1342 0.0709
+#> 156: 92.5151 -6.2825 -0.1673 2.2194 -0.9174 0.3603 5.6463 0.3589 0.3848 0.1202 1.5413 0.0301 1.1866 0.0674
+#> 157: 92.5140 -6.0058 -0.1644 2.2312 -0.9298 0.3857 4.2481 0.3610 0.3706 0.1281 1.5944 0.0292 1.2712 0.0631
+#> 158: 92.5669 -5.8692 -0.1673 2.2493 -0.9413 0.4751 3.7632 0.3600 0.3572 0.1383 1.6202 0.0323 1.4797 0.0499
+#> 159: 92.4844 -6.0078 -0.1540 2.2464 -0.9423 0.4626 4.6774 0.3587 0.3603 0.1450 1.6404 0.0280 1.3577 0.0587
+#> 160: 92.5182 -6.1231 -0.1504 2.2518 -0.9274 0.4153 5.0466 0.3616 0.3633 0.1373 1.5891 0.0297 1.2392 0.0653
+#> 161: 92.5665 -5.9062 -0.1569 2.2563 -0.9412 0.3989 4.3594 0.3541 0.3719 0.1433 1.6242 0.0314 1.2822 0.0627
+#> 162: 92.5749 -6.0936 -0.1507 2.2752 -0.9474 0.3140 4.4065 0.3438 0.3921 0.1320 1.5013 0.0378 1.1647 0.0662
+#> 163: 92.6248 -6.1392 -0.1565 2.2499 -0.9499 0.2129 4.6022 0.3512 0.3890 0.1425 1.4936 0.0336 1.4339 0.0494
+#> 164: 92.6486 -6.3898 -0.1590 2.2519 -0.9574 0.1948 5.7817 0.3564 0.3925 0.1308 1.5218 0.0326 1.2197 0.0630
+#> 165: 92.6600 -6.3261 -0.1606 2.2464 -0.9815 0.3054 5.9162 0.3611 0.3979 0.1433 1.5747 0.0316 1.2062 0.0632
+#> 166: 92.7951 -6.3068 -0.1630 2.2428 -0.9542 0.3144 5.7041 0.3597 0.3766 0.1612 1.5464 0.0317 1.2649 0.0617
+#> 167: 92.8541 -6.4919 -0.1642 2.2275 -0.9505 0.3509 6.3858 0.3639 0.3713 0.1581 1.5543 0.0315 1.3546 0.0574
+#> 168: 92.6848 -6.3299 -0.1618 2.2329 -0.9494 0.4645 5.7127 0.3700 0.3698 0.1544 1.5058 0.0340 1.1747 0.0685
+#> 169: 92.5817 -6.0236 -0.1572 2.2583 -0.9510 0.6725 3.9864 0.3672 0.3812 0.1763 1.4445 0.0386 1.3230 0.0583
+#> 170: 92.7223 -5.9170 -0.1609 2.2456 -0.9485 0.5137 3.7991 0.3712 0.3714 0.1601 1.5502 0.0385 1.3393 0.0547
+#> 171: 92.6532 -5.9417 -0.1544 2.2294 -0.9448 0.6206 3.9052 0.3789 0.3634 0.1487 1.5809 0.0314 1.1226 0.0711
+#> 172: 92.4803 -5.7302 -0.1414 2.2679 -0.9255 0.7853 2.7901 0.3598 0.3666 0.1508 1.5531 0.0341 1.1785 0.0667
+#> 173: 92.3172 -5.7462 -0.1405 2.2823 -0.9193 1.2505 2.9155 0.3579 0.3678 0.1480 1.4894 0.0434 1.2288 0.0618
+#> 174: 92.4674 -5.6638 -0.1415 2.2775 -0.9054 1.0653 2.8138 0.3623 0.3740 0.1371 1.5301 0.0393 1.0790 0.0669
+#> 175: 92.5581 -5.6388 -0.1338 2.2878 -0.9154 0.6617 2.5216 0.3471 0.3719 0.1546 1.5231 0.0361 1.0672 0.0723
+#> 176: 92.7218 -5.7548 -0.1249 2.3099 -0.9203 0.4464 2.8226 0.3570 0.3978 0.1570 1.4938 0.0354 1.1125 0.0655
+#> 177: 92.7655 -5.6769 -0.1232 2.3114 -0.9257 0.5291 2.5249 0.3571 0.4023 0.1657 1.4392 0.0386 1.1149 0.0663
+#> 178: 92.7966 -5.6766 -0.1219 2.3202 -0.9142 0.4897 2.3359 0.3605 0.3944 0.1720 1.4792 0.0401 1.1665 0.0637
+#> 179: 92.8304 -5.7678 -0.1133 2.3352 -0.9262 0.5428 2.8512 0.3552 0.4191 0.1716 1.4994 0.0410 1.0651 0.0701
+#> 180: 92.8413 -5.7485 -0.1124 2.3452 -0.9494 0.5179 2.6552 0.3555 0.4025 0.1778 1.5102 0.0383 1.1541 0.0670
+#> 181: 92.7078 -5.7437 -0.1145 2.3257 -0.9482 0.6237 2.5673 0.3564 0.3851 0.1897 1.5373 0.0335 1.1413 0.0698
+#> 182: 92.6278 -5.7965 -0.1115 2.3341 -0.9763 0.7558 2.7421 0.3541 0.3850 0.1625 1.5720 0.0309 1.1164 0.0758
+#> 183: 92.4359 -5.7826 -0.1211 2.3204 -0.9481 1.2089 3.0954 0.3598 0.3813 0.1384 1.6391 0.0333 1.2142 0.0646
+#> 184: 92.4840 -5.9143 -0.1218 2.2965 -0.9330 1.2610 4.0248 0.3752 0.3549 0.1597 1.6019 0.0292 1.0945 0.0767
+#> 185: 92.5659 -5.8333 -0.1223 2.2914 -0.9090 1.0578 3.9752 0.3706 0.3640 0.1769 1.5858 0.0287 1.7070 0.0404
+#> 186: 92.5157 -5.9540 -0.1274 2.2967 -0.9678 1.0199 3.7413 0.3625 0.3766 0.1354 1.5905 0.0321 1.2521 0.0660
+#> 187: 92.6988 -5.8607 -0.1193 2.2922 -0.9685 1.1721 2.9764 0.3511 0.3823 0.1347 1.5790 0.0352 1.1477 0.0746
+#> 188: 92.7427 -5.9073 -0.1166 2.3166 -0.9529 1.3606 2.9747 0.3487 0.3981 0.1322 1.5315 0.0344 1.3014 0.0594
+#> 189: 92.6288 -5.8326 -0.1075 2.3268 -0.9543 1.3459 3.2341 0.3388 0.3983 0.1622 1.5374 0.0334 1.5390 0.0504
+#> 190: 92.8047 -5.6198 -0.1064 2.3212 -0.9148 1.6280 2.5774 0.3319 0.4086 0.1656 1.5159 0.0321 1.5423 0.0515
+#> 191: 92.7642 -5.5780 -0.1105 2.3041 -0.9414 1.5723 2.6038 0.3402 0.4111 0.1612 1.5254 0.0321 1.1206 0.0792
+#> 192: 92.7137 -5.5650 -0.1087 2.3014 -0.9399 1.1968 2.0552 0.3412 0.4267 0.1418 1.4910 0.0332 0.9683 0.0834
+#> 193: 93.0503 -5.6414 -0.1060 2.3050 -0.9563 1.0067 2.2362 0.3434 0.4179 0.1371 1.5947 0.0279 1.0349 0.0813
+#> 194: 93.1071 -5.6349 -0.1048 2.3170 -0.9613 1.1495 2.6224 0.3451 0.4086 0.1419 1.6235 0.0276 1.0558 0.0792
+#> 195: 93.0741 -5.7863 -0.1052 2.3293 -0.9605 1.1597 3.0814 0.3440 0.4342 0.1394 1.5248 0.0348 1.0554 0.0771
+#> 196: 93.0768 -5.6986 -0.0911 2.3395 -0.9537 1.1388 2.7165 0.3463 0.4303 0.1467 1.5960 0.0324 1.1195 0.0755
+#> 197: 92.8638 -5.7840 -0.1009 2.3420 -0.9699 1.0231 2.8293 0.3625 0.4272 0.1849 1.5366 0.0360 1.3691 0.0602
+#> 198: 92.8979 -5.8328 -0.0905 2.3497 -0.9668 0.8847 2.7469 0.3509 0.4357 0.1842 1.5501 0.0361 1.1744 0.0715
+#> 199: 92.7817 -6.0173 -0.0946 2.3477 -0.9729 0.8131 3.4886 0.3517 0.4471 0.1906 1.4350 0.0393 1.2311 0.0693
+#> 200: 92.6353 -6.0362 -0.0924 2.3396 -0.9621 0.8259 3.3916 0.3556 0.4569 0.1867 1.4397 0.0350 1.0910 0.0793
+#> 201: 92.6908 -6.0423 -0.0917 2.3400 -0.9564 0.6766 3.6159 0.3552 0.4565 0.1735 1.4506 0.0362 1.0646 0.0794
+#> 202: 92.6302 -6.0238 -0.0919 2.3443 -0.9546 0.5824 3.6723 0.3555 0.4576 0.1716 1.4800 0.0363 1.0519 0.0791
+#> 203: 92.6040 -6.0387 -0.0944 2.3405 -0.9579 0.5710 3.9080 0.3583 0.4476 0.1752 1.4934 0.0373 1.0842 0.0762
+#> 204: 92.6042 -6.0088 -0.0965 2.3351 -0.9580 0.6145 3.8412 0.3608 0.4413 0.1720 1.5047 0.0374 1.0694 0.0760
+#> 205: 92.5887 -6.0107 -0.0968 2.3362 -0.9576 0.6432 3.8854 0.3606 0.4405 0.1711 1.4896 0.0380 1.0615 0.0750
+#> 206: 92.6452 -5.9990 -0.0992 2.3311 -0.9581 0.6728 3.8231 0.3636 0.4339 0.1683 1.4904 0.0379 1.0630 0.0747
+#> 207: 92.6867 -5.9760 -0.1012 2.3283 -0.9606 0.6907 3.6867 0.3665 0.4303 0.1665 1.4908 0.0376 1.0656 0.0739
+#> 208: 92.6867 -5.9652 -0.1033 2.3252 -0.9611 0.6656 3.6185 0.3680 0.4271 0.1656 1.4972 0.0369 1.0944 0.0724
+#> 209: 92.6807 -5.9535 -0.1051 2.3225 -0.9621 0.6532 3.5653 0.3669 0.4249 0.1641 1.4992 0.0366 1.1029 0.0721
+#> 210: 92.6772 -5.9392 -0.1067 2.3185 -0.9611 0.6492 3.4774 0.3661 0.4220 0.1620 1.5034 0.0360 1.0982 0.0723
+#> 211: 92.6803 -5.9099 -0.1089 2.3129 -0.9619 0.6462 3.3783 0.3656 0.4218 0.1622 1.5094 0.0354 1.1060 0.0725
+#> 212: 92.7033 -5.9046 -0.1110 2.3085 -0.9606 0.6467 3.3879 0.3653 0.4222 0.1602 1.5099 0.0350 1.1004 0.0726
+#> 213: 92.7143 -5.9026 -0.1135 2.3046 -0.9594 0.6326 3.3887 0.3646 0.4214 0.1585 1.5139 0.0347 1.1050 0.0722
+#> 214: 92.7156 -5.9151 -0.1157 2.3011 -0.9590 0.6186 3.4587 0.3637 0.4205 0.1571 1.5149 0.0344 1.1060 0.0720
+#> 215: 92.7185 -5.9240 -0.1177 2.2984 -0.9585 0.6226 3.5192 0.3630 0.4190 0.1564 1.5155 0.0342 1.1159 0.0713
+#> 216: 92.7133 -5.9331 -0.1197 2.2953 -0.9575 0.6253 3.5505 0.3630 0.4179 0.1552 1.5199 0.0338 1.1276 0.0708
+#> 217: 92.7111 -5.9341 -0.1215 2.2924 -0.9579 0.6200 3.5565 0.3627 0.4170 0.1542 1.5238 0.0337 1.1409 0.0702
+#> 218: 92.7142 -5.9390 -0.1226 2.2901 -0.9588 0.6110 3.5792 0.3623 0.4162 0.1541 1.5236 0.0335 1.1378 0.0704
+#> 219: 92.7121 -5.9351 -0.1233 2.2891 -0.9587 0.6083 3.5562 0.3617 0.4154 0.1535 1.5280 0.0335 1.1518 0.0697
+#> 220: 92.7133 -5.9467 -0.1244 2.2876 -0.9591 0.6158 3.6036 0.3614 0.4147 0.1542 1.5273 0.0334 1.1572 0.0693
+#> 221: 92.7206 -5.9543 -0.1253 2.2856 -0.9602 0.6252 3.6357 0.3610 0.4131 0.1540 1.5272 0.0335 1.1591 0.0692
+#> 222: 92.7267 -5.9436 -0.1262 2.2840 -0.9608 0.6377 3.5725 0.3608 0.4118 0.1540 1.5302 0.0334 1.1735 0.0683
+#> 223: 92.7364 -5.9346 -0.1268 2.2825 -0.9619 0.6430 3.5288 0.3606 0.4117 0.1542 1.5327 0.0332 1.1883 0.0676
+#> 224: 92.7464 -5.9269 -0.1274 2.2822 -0.9621 0.6394 3.4906 0.3604 0.4107 0.1541 1.5342 0.0334 1.2022 0.0667
+#> 225: 92.7572 -5.9244 -0.1278 2.2813 -0.9616 0.6340 3.4677 0.3603 0.4100 0.1535 1.5345 0.0334 1.2129 0.0661
+#> 226: 92.7662 -5.9237 -0.1282 2.2803 -0.9615 0.6336 3.4532 0.3603 0.4101 0.1532 1.5326 0.0334 1.2151 0.0661
+#> 227: 92.7778 -5.9193 -0.1286 2.2792 -0.9628 0.6280 3.4339 0.3604 0.4096 0.1527 1.5323 0.0334 1.2217 0.0658
+#> 228: 92.7824 -5.9112 -0.1289 2.2782 -0.9636 0.6217 3.3964 0.3607 0.4091 0.1525 1.5316 0.0335 1.2255 0.0658
+#> 229: 92.7895 -5.9077 -0.1291 2.2770 -0.9646 0.6178 3.3717 0.3607 0.4096 0.1521 1.5326 0.0334 1.2247 0.0660
+#> 230: 92.7987 -5.9153 -0.1297 2.2758 -0.9648 0.6177 3.4004 0.3603 0.4098 0.1517 1.5333 0.0334 1.2321 0.0656
+#> 231: 92.8081 -5.9176 -0.1308 2.2735 -0.9654 0.6185 3.4195 0.3596 0.4086 0.1513 1.5361 0.0331 1.2359 0.0656
+#> 232: 92.8119 -5.9161 -0.1318 2.2715 -0.9658 0.6140 3.4221 0.3590 0.4075 0.1513 1.5387 0.0330 1.2434 0.0653
+#> 233: 92.8117 -5.9111 -0.1329 2.2694 -0.9662 0.6096 3.4008 0.3586 0.4065 0.1511 1.5410 0.0328 1.2426 0.0654
+#> 234: 92.8132 -5.9040 -0.1339 2.2672 -0.9660 0.6097 3.3787 0.3583 0.4059 0.1506 1.5425 0.0325 1.2463 0.0654
+#> 235: 92.8117 -5.8978 -0.1347 2.2653 -0.9661 0.6020 3.3558 0.3579 0.4051 0.1502 1.5443 0.0324 1.2439 0.0657
+#> 236: 92.8050 -5.8967 -0.1355 2.2638 -0.9663 0.5963 3.3466 0.3575 0.4046 0.1495 1.5453 0.0322 1.2377 0.0661
+#> 237: 92.7975 -5.9004 -0.1362 2.2625 -0.9668 0.5891 3.3624 0.3571 0.4043 0.1491 1.5460 0.0321 1.2334 0.0664
+#> 238: 92.7965 -5.9036 -0.1371 2.2613 -0.9670 0.5828 3.3683 0.3569 0.4037 0.1488 1.5486 0.0320 1.2405 0.0662
+#> 239: 92.8006 -5.9067 -0.1376 2.2607 -0.9677 0.5767 3.3801 0.3568 0.4027 0.1490 1.5487 0.0319 1.2478 0.0658
+#> 240: 92.8061 -5.9102 -0.1382 2.2597 -0.9678 0.5697 3.3876 0.3566 0.4014 0.1489 1.5499 0.0319 1.2545 0.0654
+#> 241: 92.8111 -5.9132 -0.1388 2.2589 -0.9684 0.5647 3.3986 0.3567 0.4004 0.1489 1.5507 0.0319 1.2607 0.0651
+#> 242: 92.8157 -5.9119 -0.1395 2.2577 -0.9686 0.5610 3.3902 0.3568 0.3995 0.1490 1.5524 0.0319 1.2673 0.0647
+#> 243: 92.8204 -5.9142 -0.1401 2.2567 -0.9689 0.5597 3.3991 0.3570 0.3983 0.1492 1.5526 0.0319 1.2728 0.0646
+#> 244: 92.8272 -5.9129 -0.1408 2.2558 -0.9689 0.5598 3.3989 0.3574 0.3972 0.1493 1.5542 0.0319 1.2805 0.0642
+#> 245: 92.8361 -5.9152 -0.1414 2.2548 -0.9693 0.5617 3.4133 0.3580 0.3959 0.1500 1.5541 0.0318 1.2876 0.0638
+#> 246: 92.8432 -5.9122 -0.1420 2.2536 -0.9695 0.5627 3.4039 0.3584 0.3946 0.1507 1.5546 0.0318 1.2944 0.0633
+#> 247: 92.8481 -5.9125 -0.1426 2.2524 -0.9695 0.5574 3.4087 0.3588 0.3931 0.1515 1.5556 0.0318 1.3003 0.0629
+#> 248: 92.8486 -5.9123 -0.1433 2.2515 -0.9693 0.5545 3.4095 0.3594 0.3916 0.1519 1.5583 0.0317 1.3043 0.0626
+#> 249: 92.8515 -5.9123 -0.1439 2.2505 -0.9694 0.5547 3.4088 0.3600 0.3904 0.1523 1.5605 0.0316 1.3087 0.0623
+#> 250: 92.8521 -5.9139 -0.1443 2.2493 -0.9691 0.5589 3.4212 0.3604 0.3894 0.1525 1.5617 0.0316 1.3081 0.0624
+#> 251: 92.8530 -5.9118 -0.1450 2.2484 -0.9683 0.5562 3.4138 0.3612 0.3884 0.1528 1.5615 0.0316 1.3066 0.0625
+#> 252: 92.8568 -5.9075 -0.1457 2.2474 -0.9681 0.5506 3.3889 0.3619 0.3875 0.1531 1.5620 0.0315 1.3067 0.0625
+#> 253: 92.8603 -5.9070 -0.1464 2.2467 -0.9682 0.5476 3.3746 0.3622 0.3867 0.1539 1.5640 0.0314 1.3122 0.0622
+#> 254: 92.8653 -5.9077 -0.1470 2.2457 -0.9688 0.5448 3.3656 0.3626 0.3858 0.1546 1.5641 0.0314 1.3147 0.0620
+#> 255: 92.8686 -5.9059 -0.1477 2.2445 -0.9688 0.5406 3.3533 0.3630 0.3850 0.1549 1.5637 0.0314 1.3155 0.0619
+#> 256: 92.8706 -5.9011 -0.1483 2.2435 -0.9685 0.5384 3.3300 0.3634 0.3841 0.1550 1.5644 0.0313 1.3161 0.0617
+#> 257: 92.8721 -5.8957 -0.1488 2.2426 -0.9683 0.5398 3.3084 0.3638 0.3833 0.1552 1.5647 0.0313 1.3158 0.0617
+#> 258: 92.8725 -5.8928 -0.1493 2.2419 -0.9680 0.5392 3.2921 0.3641 0.3822 0.1552 1.5665 0.0312 1.3184 0.0614
+#> 259: 92.8718 -5.8915 -0.1498 2.2411 -0.9680 0.5367 3.2850 0.3644 0.3815 0.1553 1.5668 0.0312 1.3202 0.0613
+#> 260: 92.8701 -5.8928 -0.1499 2.2409 -0.9679 0.5339 3.2888 0.3652 0.3802 0.1552 1.5675 0.0312 1.3215 0.0612
+#> 261: 92.8700 -5.8961 -0.1499 2.2407 -0.9679 0.5302 3.2976 0.3659 0.3789 0.1551 1.5677 0.0312 1.3197 0.0613
+#> 262: 92.8683 -5.9013 -0.1500 2.2407 -0.9678 0.5282 3.3236 0.3666 0.3778 0.1549 1.5684 0.0312 1.3184 0.0613
+#> 263: 92.8662 -5.9021 -0.1498 2.2407 -0.9677 0.5271 3.3285 0.3670 0.3767 0.1547 1.5682 0.0313 1.3156 0.0615
+#> 264: 92.8631 -5.9059 -0.1495 2.2409 -0.9675 0.5244 3.3527 0.3673 0.3755 0.1547 1.5677 0.0313 1.3139 0.0616
+#> 265: 92.8635 -5.9042 -0.1492 2.2411 -0.9675 0.5220 3.3541 0.3675 0.3745 0.1545 1.5676 0.0313 1.3098 0.0618
+#> 266: 92.8636 -5.9033 -0.1490 2.2411 -0.9673 0.5208 3.3523 0.3680 0.3735 0.1546 1.5679 0.0312 1.3087 0.0619
+#> 267: 92.8639 -5.9035 -0.1489 2.2413 -0.9673 0.5208 3.3566 0.3685 0.3726 0.1546 1.5676 0.0312 1.3072 0.0621
+#> 268: 92.8620 -5.9065 -0.1487 2.2413 -0.9674 0.5191 3.3797 0.3689 0.3717 0.1545 1.5676 0.0312 1.3103 0.0620
+#> 269: 92.8593 -5.9073 -0.1486 2.2416 -0.9672 0.5192 3.3885 0.3693 0.3710 0.1545 1.5685 0.0312 1.3136 0.0618
+#> 270: 92.8549 -5.9087 -0.1487 2.2418 -0.9672 0.5209 3.4007 0.3695 0.3703 0.1544 1.5703 0.0312 1.3177 0.0615
+#> 271: 92.8519 -5.9089 -0.1487 2.2416 -0.9671 0.5227 3.4043 0.3696 0.3697 0.1545 1.5705 0.0312 1.3216 0.0613
+#> 272: 92.8493 -5.9084 -0.1488 2.2416 -0.9669 0.5223 3.3999 0.3698 0.3693 0.1543 1.5707 0.0311 1.3206 0.0614
+#> 273: 92.8479 -5.9090 -0.1486 2.2416 -0.9667 0.5230 3.3980 0.3701 0.3689 0.1544 1.5699 0.0311 1.3192 0.0615
+#> 274: 92.8456 -5.9108 -0.1485 2.2417 -0.9667 0.5249 3.4024 0.3705 0.3684 0.1544 1.5688 0.0311 1.3169 0.0617
+#> 275: 92.8440 -5.9131 -0.1483 2.2422 -0.9666 0.5253 3.4117 0.3707 0.3677 0.1542 1.5690 0.0311 1.3166 0.0616
+#> 276: 92.8425 -5.9132 -0.1482 2.2426 -0.9662 0.5241 3.4171 0.3709 0.3670 0.1540 1.5689 0.0311 1.3142 0.0617
+#> 277: 92.8412 -5.9139 -0.1481 2.2430 -0.9660 0.5214 3.4228 0.3711 0.3663 0.1540 1.5687 0.0311 1.3173 0.0615
+#> 278: 92.8398 -5.9139 -0.1479 2.2432 -0.9659 0.5184 3.4254 0.3712 0.3654 0.1540 1.5684 0.0311 1.3148 0.0617
+#> 279: 92.8386 -5.9156 -0.1478 2.2433 -0.9661 0.5157 3.4338 0.3713 0.3649 0.1539 1.5682 0.0311 1.3136 0.0618
+#> 280: 92.8378 -5.9173 -0.1478 2.2428 -0.9663 0.5127 3.4381 0.3714 0.3643 0.1537 1.5679 0.0311 1.3104 0.0621
+#> 281: 92.8364 -5.9188 -0.1479 2.2423 -0.9666 0.5089 3.4418 0.3716 0.3634 0.1533 1.5674 0.0311 1.3071 0.0623
+#> 282: 92.8377 -5.9179 -0.1481 2.2418 -0.9668 0.5045 3.4355 0.3717 0.3626 0.1530 1.5686 0.0311 1.3055 0.0624
+#> 283: 92.8385 -5.9157 -0.1485 2.2410 -0.9667 0.5014 3.4260 0.3720 0.3616 0.1527 1.5699 0.0311 1.3072 0.0622
+#> 284: 92.8388 -5.9156 -0.1489 2.2403 -0.9666 0.4977 3.4274 0.3723 0.3605 0.1525 1.5705 0.0310 1.3081 0.0621
+#> 285: 92.8374 -5.9156 -0.1492 2.2395 -0.9668 0.4944 3.4215 0.3727 0.3594 0.1525 1.5716 0.0310 1.3103 0.0619
+#> 286: 92.8376 -5.9168 -0.1496 2.2388 -0.9672 0.4915 3.4197 0.3731 0.3583 0.1526 1.5724 0.0310 1.3141 0.0617
+#> 287: 92.8393 -5.9176 -0.1498 2.2380 -0.9673 0.4886 3.4177 0.3735 0.3572 0.1523 1.5737 0.0309 1.3155 0.0615
+#> 288: 92.8400 -5.9206 -0.1502 2.2372 -0.9675 0.4873 3.4259 0.3739 0.3562 0.1523 1.5739 0.0309 1.3160 0.0614
+#> 289: 92.8404 -5.9217 -0.1506 2.2362 -0.9678 0.4845 3.4269 0.3744 0.3552 0.1524 1.5735 0.0309 1.3165 0.0614
+#> 290: 92.8395 -5.9255 -0.1510 2.2354 -0.9680 0.4830 3.4395 0.3748 0.3543 0.1521 1.5737 0.0308 1.3159 0.0615
+#> 291: 92.8384 -5.9274 -0.1513 2.2345 -0.9680 0.4841 3.4460 0.3752 0.3533 0.1518 1.5742 0.0309 1.3173 0.0613
+#> 292: 92.8384 -5.9276 -0.1515 2.2342 -0.9681 0.4865 3.4437 0.3755 0.3525 0.1516 1.5738 0.0309 1.3163 0.0614
+#> 293: 92.8385 -5.9281 -0.1517 2.2338 -0.9681 0.4882 3.4446 0.3757 0.3516 0.1513 1.5738 0.0308 1.3143 0.0614
+#> 294: 92.8400 -5.9277 -0.1519 2.2335 -0.9680 0.4871 3.4449 0.3758 0.3508 0.1512 1.5736 0.0308 1.3149 0.0614
+#> 295: 92.8414 -5.9279 -0.1520 2.2331 -0.9680 0.4842 3.4523 0.3760 0.3502 0.1510 1.5740 0.0308 1.3153 0.0614
+#> 296: 92.8424 -5.9282 -0.1521 2.2329 -0.9681 0.4835 3.4589 0.3760 0.3496 0.1509 1.5743 0.0307 1.3180 0.0613
+#> 297: 92.8409 -5.9281 -0.1522 2.2325 -0.9683 0.4827 3.4636 0.3760 0.3491 0.1509 1.5745 0.0307 1.3216 0.0611
+#> 298: 92.8395 -5.9276 -0.1522 2.2322 -0.9684 0.4819 3.4641 0.3761 0.3486 0.1508 1.5744 0.0307 1.3226 0.0612
+#> 299: 92.8388 -5.9305 -0.1524 2.2321 -0.9686 0.4800 3.4829 0.3761 0.3481 0.1507 1.5745 0.0307 1.3218 0.0612
+#> 300: 92.8375 -5.9329 -0.1524 2.2321 -0.9683 0.4792 3.4982 0.3761 0.3477 0.1505 1.5745 0.0307 1.3205 0.0613
+#> 301: 92.8359 -5.9337 -0.1524 2.2321 -0.9680 0.4788 3.5056 0.3762 0.3473 0.1503 1.5746 0.0306 1.3182 0.0614
+#> 302: 92.8346 -5.9360 -0.1524 2.2322 -0.9678 0.4800 3.5237 0.3763 0.3470 0.1500 1.5744 0.0306 1.3174 0.0614
+#> 303: 92.8338 -5.9387 -0.1524 2.2324 -0.9674 0.4795 3.5444 0.3764 0.3467 0.1501 1.5738 0.0307 1.3181 0.0613
+#> 304: 92.8318 -5.9436 -0.1524 2.2327 -0.9673 0.4787 3.5819 0.3766 0.3464 0.1502 1.5735 0.0307 1.3191 0.0612
+#> 305: 92.8300 -5.9486 -0.1524 2.2327 -0.9673 0.4794 3.6200 0.3766 0.3460 0.1502 1.5726 0.0308 1.3198 0.0611
+#> 306: 92.8294 -5.9540 -0.1524 2.2328 -0.9673 0.4788 3.6681 0.3766 0.3456 0.1502 1.5723 0.0309 1.3214 0.0610
+#> 307: 92.8287 -5.9579 -0.1525 2.2330 -0.9669 0.4779 3.7052 0.3766 0.3452 0.1498 1.5735 0.0309 1.3235 0.0609
+#> 308: 92.8290 -5.9624 -0.1524 2.2332 -0.9669 0.4775 3.7470 0.3766 0.3448 0.1500 1.5737 0.0309 1.3265 0.0607
+#> 309: 92.8293 -5.9653 -0.1524 2.2333 -0.9668 0.4774 3.7756 0.3766 0.3443 0.1499 1.5736 0.0309 1.3290 0.0605
+#> 310: 92.8289 -5.9672 -0.1523 2.2335 -0.9669 0.4762 3.7957 0.3767 0.3438 0.1499 1.5736 0.0309 1.3316 0.0603
+#> 311: 92.8301 -5.9702 -0.1521 2.2337 -0.9670 0.4755 3.8172 0.3767 0.3432 0.1498 1.5737 0.0309 1.3324 0.0603
+#> 312: 92.8322 -5.9715 -0.1520 2.2341 -0.9670 0.4742 3.8229 0.3767 0.3427 0.1496 1.5734 0.0309 1.3309 0.0603
+#> 313: 92.8338 -5.9713 -0.1517 2.2342 -0.9672 0.4737 3.8202 0.3766 0.3422 0.1494 1.5733 0.0309 1.3306 0.0604
+#> 314: 92.8360 -5.9711 -0.1515 2.2343 -0.9675 0.4725 3.8154 0.3767 0.3417 0.1493 1.5733 0.0309 1.3322 0.0603
+#> 315: 92.8378 -5.9694 -0.1514 2.2343 -0.9680 0.4714 3.8051 0.3767 0.3414 0.1494 1.5734 0.0309 1.3352 0.0601
+#> 316: 92.8400 -5.9683 -0.1514 2.2343 -0.9682 0.4705 3.7984 0.3767 0.3410 0.1495 1.5735 0.0309 1.3354 0.0602
+#> 317: 92.8422 -5.9689 -0.1513 2.2344 -0.9686 0.4695 3.7961 0.3768 0.3406 0.1497 1.5735 0.0309 1.3362 0.0602
+#> 318: 92.8440 -5.9696 -0.1510 2.2347 -0.9689 0.4681 3.7934 0.3769 0.3403 0.1499 1.5731 0.0309 1.3381 0.0601
+#> 319: 92.8458 -5.9710 -0.1508 2.2350 -0.9692 0.4668 3.7913 0.3769 0.3401 0.1500 1.5723 0.0309 1.3403 0.0599
+#> 320: 92.8474 -5.9719 -0.1506 2.2353 -0.9695 0.4667 3.7876 0.3769 0.3400 0.1502 1.5714 0.0309 1.3423 0.0598
+#> 321: 92.8494 -5.9710 -0.1503 2.2355 -0.9696 0.4673 3.7790 0.3769 0.3397 0.1503 1.5709 0.0309 1.3439 0.0597
+#> 322: 92.8511 -5.9693 -0.1501 2.2359 -0.9698 0.4690 3.7674 0.3769 0.3395 0.1503 1.5708 0.0309 1.3451 0.0596
+#> 323: 92.8528 -5.9700 -0.1498 2.2364 -0.9699 0.4696 3.7641 0.3768 0.3394 0.1504 1.5701 0.0310 1.3470 0.0594
+#> 324: 92.8547 -5.9695 -0.1495 2.2369 -0.9699 0.4703 3.7567 0.3767 0.3392 0.1505 1.5698 0.0310 1.3485 0.0593
+#> 325: 92.8563 -5.9678 -0.1490 2.2376 -0.9702 0.4701 3.7473 0.3769 0.3395 0.1505 1.5702 0.0311 1.3494 0.0592
+#> 326: 92.8582 -5.9676 -0.1486 2.2382 -0.9703 0.4709 3.7434 0.3771 0.3397 0.1506 1.5700 0.0311 1.3479 0.0593
+#> 327: 92.8603 -5.9665 -0.1481 2.2389 -0.9704 0.4716 3.7361 0.3769 0.3399 0.1507 1.5699 0.0311 1.3471 0.0594
+#> 328: 92.8622 -5.9671 -0.1477 2.2397 -0.9704 0.4726 3.7379 0.3767 0.3398 0.1507 1.5698 0.0311 1.3481 0.0593
+#> 329: 92.8639 -5.9667 -0.1473 2.2405 -0.9707 0.4735 3.7366 0.3766 0.3398 0.1506 1.5696 0.0311 1.3482 0.0593
+#> 330: 92.8663 -5.9673 -0.1469 2.2413 -0.9708 0.4736 3.7382 0.3765 0.3397 0.1506 1.5691 0.0312 1.3492 0.0592
+#> 331: 92.8674 -5.9670 -0.1464 2.2420 -0.9710 0.4740 3.7350 0.3763 0.3397 0.1507 1.5689 0.0312 1.3512 0.0591
+#> 332: 92.8681 -5.9664 -0.1460 2.2428 -0.9710 0.4737 3.7311 0.3762 0.3396 0.1509 1.5687 0.0312 1.3527 0.0590
+#> 333: 92.8683 -5.9649 -0.1456 2.2436 -0.9708 0.4727 3.7232 0.3760 0.3397 0.1509 1.5686 0.0312 1.3505 0.0591
+#> 334: 92.8690 -5.9642 -0.1452 2.2444 -0.9707 0.4723 3.7194 0.3758 0.3399 0.1511 1.5682 0.0312 1.3490 0.0592
+#> 335: 92.8698 -5.9656 -0.1447 2.2454 -0.9707 0.4722 3.7289 0.3756 0.3400 0.1512 1.5674 0.0313 1.3476 0.0592
+#> 336: 92.8691 -5.9664 -0.1443 2.2463 -0.9706 0.4724 3.7333 0.3753 0.3401 0.1511 1.5669 0.0313 1.3455 0.0593
+#> 337: 92.8687 -5.9670 -0.1440 2.2471 -0.9705 0.4742 3.7378 0.3749 0.3402 0.1510 1.5665 0.0314 1.3433 0.0594
+#> 338: 92.8683 -5.9663 -0.1435 2.2480 -0.9703 0.4747 3.7370 0.3746 0.3405 0.1510 1.5663 0.0313 1.3402 0.0595
+#> 339: 92.8682 -5.9650 -0.1431 2.2488 -0.9701 0.4760 3.7332 0.3743 0.3408 0.1509 1.5661 0.0313 1.3374 0.0597
+#> 340: 92.8684 -5.9639 -0.1427 2.2496 -0.9699 0.4774 3.7283 0.3739 0.3411 0.1510 1.5658 0.0313 1.3358 0.0597
+#> 341: 92.8685 -5.9610 -0.1423 2.2504 -0.9696 0.4782 3.7169 0.3735 0.3413 0.1510 1.5661 0.0313 1.3338 0.0598
+#> 342: 92.8681 -5.9581 -0.1419 2.2512 -0.9696 0.4802 3.7060 0.3731 0.3416 0.1511 1.5661 0.0313 1.3316 0.0599
+#> 343: 92.8671 -5.9557 -0.1414 2.2521 -0.9697 0.4821 3.6971 0.3726 0.3419 0.1510 1.5667 0.0313 1.3292 0.0601
+#> 344: 92.8662 -5.9550 -0.1409 2.2531 -0.9696 0.4825 3.6931 0.3722 0.3424 0.1509 1.5660 0.0314 1.3269 0.0602
+#> 345: 92.8651 -5.9542 -0.1405 2.2542 -0.9696 0.4825 3.6886 0.3717 0.3429 0.1511 1.5645 0.0315 1.3252 0.0602
+#> 346: 92.8636 -5.9534 -0.1401 2.2549 -0.9696 0.4822 3.6821 0.3714 0.3432 0.1510 1.5638 0.0315 1.3231 0.0603
+#> 347: 92.8622 -5.9532 -0.1397 2.2557 -0.9696 0.4815 3.6782 0.3712 0.3435 0.1509 1.5636 0.0315 1.3220 0.0604
+#> 348: 92.8593 -5.9538 -0.1394 2.2566 -0.9697 0.4813 3.6787 0.3709 0.3438 0.1508 1.5634 0.0315 1.3202 0.0605
+#> 349: 92.8574 -5.9532 -0.1389 2.2574 -0.9697 0.4808 3.6739 0.3706 0.3440 0.1506 1.5630 0.0316 1.3179 0.0606
+#> 350: 92.8561 -5.9528 -0.1385 2.2583 -0.9697 0.4801 3.6705 0.3703 0.3443 0.1505 1.5625 0.0316 1.3161 0.0607
+#> 351: 92.8541 -5.9518 -0.1381 2.2591 -0.9697 0.4804 3.6650 0.3700 0.3446 0.1505 1.5619 0.0316 1.3141 0.0608
+#> 352: 92.8528 -5.9516 -0.1377 2.2599 -0.9700 0.4818 3.6626 0.3698 0.3449 0.1504 1.5614 0.0316 1.3122 0.0609
+#> 353: 92.8506 -5.9518 -0.1373 2.2607 -0.9700 0.4836 3.6601 0.3697 0.3451 0.1506 1.5604 0.0317 1.3116 0.0610
+#> 354: 92.8482 -5.9507 -0.1369 2.2615 -0.9700 0.4852 3.6520 0.3696 0.3451 0.1506 1.5595 0.0317 1.3099 0.0611
+#> 355: 92.8459 -5.9500 -0.1365 2.2624 -0.9699 0.4873 3.6467 0.3695 0.3454 0.1505 1.5589 0.0318 1.3090 0.0611
+#> 356: 92.8441 -5.9494 -0.1361 2.2632 -0.9700 0.4893 3.6407 0.3696 0.3456 0.1505 1.5581 0.0319 1.3083 0.0612
+#> 357: 92.8425 -5.9492 -0.1356 2.2641 -0.9700 0.4906 3.6359 0.3696 0.3459 0.1506 1.5568 0.0320 1.3082 0.0612
+#> 358: 92.8414 -5.9487 -0.1351 2.2649 -0.9700 0.4914 3.6300 0.3697 0.3460 0.1506 1.5559 0.0321 1.3064 0.0613
+#> 359: 92.8395 -5.9487 -0.1346 2.2657 -0.9700 0.4923 3.6262 0.3699 0.3462 0.1507 1.5558 0.0321 1.3050 0.0614
+#> 360: 92.8373 -5.9478 -0.1341 2.2666 -0.9700 0.4922 3.6206 0.3700 0.3465 0.1509 1.5553 0.0322 1.3061 0.0614
+#> 361: 92.8353 -5.9475 -0.1337 2.2673 -0.9699 0.4912 3.6183 0.3700 0.3469 0.1510 1.5549 0.0322 1.3051 0.0614
+#> 362: 92.8339 -5.9474 -0.1333 2.2681 -0.9699 0.4896 3.6164 0.3700 0.3472 0.1510 1.5549 0.0322 1.3041 0.0616
+#> 363: 92.8318 -5.9470 -0.1328 2.2690 -0.9696 0.4882 3.6136 0.3700 0.3476 0.1510 1.5541 0.0323 1.3035 0.0616
+#> 364: 92.8305 -5.9460 -0.1325 2.2697 -0.9695 0.4863 3.6099 0.3701 0.3477 0.1510 1.5533 0.0324 1.3028 0.0616
+#> 365: 92.8300 -5.9451 -0.1320 2.2705 -0.9693 0.4851 3.6083 0.3703 0.3479 0.1511 1.5535 0.0324 1.3017 0.0617
+#> 366: 92.8290 -5.9444 -0.1317 2.2710 -0.9691 0.4841 3.6062 0.3707 0.3476 0.1512 1.5534 0.0325 1.3013 0.0617
+#> 367: 92.8279 -5.9438 -0.1313 2.2715 -0.9688 0.4829 3.6026 0.3711 0.3473 0.1513 1.5537 0.0325 1.2996 0.0618
+#> 368: 92.8270 -5.9437 -0.1310 2.2721 -0.9687 0.4824 3.6015 0.3715 0.3471 0.1513 1.5535 0.0325 1.2984 0.0619
+#> 369: 92.8268 -5.9444 -0.1306 2.2726 -0.9686 0.4829 3.6042 0.3718 0.3469 0.1514 1.5530 0.0325 1.2983 0.0619
+#> 370: 92.8268 -5.9455 -0.1303 2.2732 -0.9686 0.4833 3.6099 0.3721 0.3466 0.1513 1.5526 0.0326 1.2971 0.0619
+#> 371: 92.8269 -5.9462 -0.1300 2.2737 -0.9686 0.4842 3.6169 0.3723 0.3465 0.1512 1.5516 0.0326 1.2961 0.0619
+#> 372: 92.8272 -5.9465 -0.1297 2.2741 -0.9685 0.4852 3.6242 0.3726 0.3463 0.1512 1.5507 0.0327 1.2950 0.0620
+#> 373: 92.8275 -5.9456 -0.1294 2.2746 -0.9686 0.4861 3.6219 0.3729 0.3461 0.1511 1.5501 0.0328 1.2946 0.0620
+#> 374: 92.8278 -5.9445 -0.1291 2.2750 -0.9687 0.4867 3.6175 0.3730 0.3461 0.1509 1.5496 0.0328 1.2942 0.0620
+#> 375: 92.8285 -5.9438 -0.1289 2.2753 -0.9689 0.4874 3.6118 0.3731 0.3459 0.1509 1.5491 0.0329 1.2938 0.0620
+#> 376: 92.8286 -5.9439 -0.1287 2.2755 -0.9689 0.4876 3.6100 0.3733 0.3458 0.1508 1.5488 0.0329 1.2930 0.0621
+#> 377: 92.8289 -5.9431 -0.1285 2.2758 -0.9690 0.4870 3.6054 0.3735 0.3456 0.1508 1.5487 0.0329 1.2921 0.0621
+#> 378: 92.8293 -5.9428 -0.1284 2.2760 -0.9689 0.4865 3.6019 0.3737 0.3454 0.1508 1.5484 0.0329 1.2910 0.0622
+#> 379: 92.8294 -5.9441 -0.1282 2.2763 -0.9688 0.4857 3.6077 0.3739 0.3451 0.1507 1.5480 0.0329 1.2907 0.0622
+#> 380: 92.8296 -5.9448 -0.1281 2.2766 -0.9688 0.4844 3.6104 0.3741 0.3448 0.1506 1.5475 0.0329 1.2901 0.0622
+#> 381: 92.8301 -5.9461 -0.1280 2.2767 -0.9689 0.4833 3.6194 0.3743 0.3444 0.1505 1.5476 0.0329 1.2893 0.0622
+#> 382: 92.8312 -5.9464 -0.1278 2.2768 -0.9689 0.4823 3.6237 0.3745 0.3441 0.1505 1.5476 0.0329 1.2881 0.0622
+#> 383: 92.8317 -5.9459 -0.1277 2.2770 -0.9687 0.4817 3.6282 0.3747 0.3438 0.1504 1.5479 0.0329 1.2875 0.0622
+#> 384: 92.8325 -5.9458 -0.1276 2.2772 -0.9686 0.4818 3.6293 0.3749 0.3434 0.1503 1.5481 0.0329 1.2863 0.0623
+#> 385: 92.8337 -5.9449 -0.1275 2.2773 -0.9685 0.4832 3.6263 0.3751 0.3431 0.1503 1.5481 0.0330 1.2860 0.0622
+#> 386: 92.8346 -5.9455 -0.1274 2.2773 -0.9682 0.4834 3.6283 0.3754 0.3427 0.1501 1.5483 0.0330 1.2851 0.0623
+#> 387: 92.8353 -5.9460 -0.1273 2.2775 -0.9681 0.4831 3.6303 0.3756 0.3424 0.1499 1.5486 0.0330 1.2836 0.0623
+#> 388: 92.8365 -5.9462 -0.1272 2.2777 -0.9680 0.4831 3.6294 0.3759 0.3420 0.1498 1.5486 0.0330 1.2830 0.0624
+#> 389: 92.8378 -5.9456 -0.1271 2.2779 -0.9678 0.4830 3.6260 0.3762 0.3416 0.1497 1.5486 0.0330 1.2816 0.0624
+#> 390: 92.8397 -5.9454 -0.1270 2.2779 -0.9678 0.4835 3.6245 0.3765 0.3413 0.1496 1.5488 0.0330 1.2805 0.0625
+#> 391: 92.8416 -5.9461 -0.1269 2.2780 -0.9679 0.4841 3.6273 0.3768 0.3409 0.1497 1.5486 0.0330 1.2816 0.0624
+#> 392: 92.8430 -5.9471 -0.1269 2.2779 -0.9679 0.4844 3.6293 0.3771 0.3408 0.1498 1.5483 0.0330 1.2830 0.0623
+#> 393: 92.8444 -5.9478 -0.1269 2.2779 -0.9680 0.4841 3.6310 0.3774 0.3407 0.1500 1.5485 0.0330 1.2842 0.0623
+#> 394: 92.8458 -5.9492 -0.1268 2.2779 -0.9680 0.4839 3.6370 0.3775 0.3407 0.1502 1.5484 0.0330 1.2847 0.0622
+#> 395: 92.8474 -5.9501 -0.1268 2.2780 -0.9681 0.4830 3.6391 0.3777 0.3406 0.1503 1.5485 0.0330 1.2849 0.0622
+#> 396: 92.8484 -5.9500 -0.1267 2.2781 -0.9682 0.4820 3.6369 0.3778 0.3406 0.1504 1.5490 0.0330 1.2850 0.0622
+#> 397: 92.8497 -5.9490 -0.1267 2.2782 -0.9680 0.4813 3.6308 0.3779 0.3407 0.1504 1.5494 0.0330 1.2848 0.0622
+#> 398: 92.8511 -5.9478 -0.1267 2.2782 -0.9679 0.4811 3.6256 0.3780 0.3407 0.1505 1.5498 0.0330 1.2844 0.0622
+#> 399: 92.8531 -5.9467 -0.1266 2.2782 -0.9680 0.4804 3.6208 0.3781 0.3407 0.1505 1.5505 0.0330 1.2842 0.0623
+#> 400: 92.8545 -5.9465 -0.1266 2.2782 -0.9679 0.4793 3.6175 0.3783 0.3406 0.1505 1.5506 0.0329 1.2833 0.0623
+#> 401: 92.8558 -5.9458 -0.1266 2.2781 -0.9679 0.4787 3.6135 0.3784 0.3406 0.1506 1.5506 0.0329 1.2836 0.0623
+#> 402: 92.8571 -5.9454 -0.1266 2.2780 -0.9678 0.4788 3.6122 0.3786 0.3405 0.1506 1.5508 0.0329 1.2841 0.0623
+#> 403: 92.8583 -5.9454 -0.1267 2.2778 -0.9679 0.4794 3.6115 0.3790 0.3402 0.1507 1.5508 0.0330 1.2859 0.0622
+#> 404: 92.8593 -5.9466 -0.1268 2.2776 -0.9681 0.4787 3.6149 0.3793 0.3401 0.1508 1.5507 0.0330 1.2875 0.0621
+#> 405: 92.8598 -5.9475 -0.1269 2.2774 -0.9681 0.4781 3.6208 0.3796 0.3399 0.1509 1.5507 0.0330 1.2888 0.0620
+#> 406: 92.8596 -5.9480 -0.1269 2.2773 -0.9680 0.4776 3.6238 0.3798 0.3397 0.1509 1.5508 0.0330 1.2895 0.0619
+#> 407: 92.8588 -5.9487 -0.1270 2.2773 -0.9679 0.4773 3.6289 0.3801 0.3395 0.1508 1.5510 0.0331 1.2887 0.0619
+#> 408: 92.8587 -5.9489 -0.1271 2.2771 -0.9677 0.4777 3.6323 0.3804 0.3391 0.1508 1.5513 0.0331 1.2878 0.0620
+#> 409: 92.8585 -5.9498 -0.1272 2.2770 -0.9677 0.4791 3.6383 0.3806 0.3389 0.1506 1.5512 0.0331 1.2865 0.0621
+#> 410: 92.8574 -5.9522 -0.1272 2.2769 -0.9676 0.4810 3.6538 0.3809 0.3387 0.1507 1.5509 0.0331 1.2855 0.0621
+#> 411: 92.8568 -5.9532 -0.1272 2.2767 -0.9675 0.4817 3.6651 0.3811 0.3385 0.1507 1.5508 0.0332 1.2842 0.0622
+#> 412: 92.8562 -5.9535 -0.1273 2.2767 -0.9674 0.4819 3.6756 0.3812 0.3383 0.1507 1.5509 0.0332 1.2851 0.0621
+#> 413: 92.8559 -5.9542 -0.1274 2.2766 -0.9672 0.4824 3.6881 0.3814 0.3381 0.1507 1.5514 0.0332 1.2848 0.0621
+#> 414: 92.8556 -5.9550 -0.1274 2.2765 -0.9670 0.4835 3.6990 0.3815 0.3379 0.1507 1.5519 0.0332 1.2838 0.0622
+#> 415: 92.8551 -5.9566 -0.1274 2.2764 -0.9669 0.4838 3.7133 0.3816 0.3377 0.1506 1.5522 0.0332 1.2828 0.0623
+#> 416: 92.8547 -5.9581 -0.1275 2.2764 -0.9668 0.4848 3.7276 0.3818 0.3374 0.1504 1.5526 0.0332 1.2814 0.0623
+#> 417: 92.8538 -5.9581 -0.1274 2.2764 -0.9667 0.4856 3.7321 0.3818 0.3372 0.1503 1.5532 0.0332 1.2800 0.0624
+#> 418: 92.8527 -5.9590 -0.1273 2.2766 -0.9665 0.4869 3.7398 0.3817 0.3372 0.1502 1.5532 0.0332 1.2787 0.0625
+#> 419: 92.8524 -5.9596 -0.1272 2.2768 -0.9663 0.4869 3.7467 0.3817 0.3372 0.1501 1.5531 0.0332 1.2779 0.0625
+#> 420: 92.8520 -5.9598 -0.1271 2.2771 -0.9662 0.4863 3.7494 0.3817 0.3372 0.1501 1.5528 0.0332 1.2774 0.0625
+#> 421: 92.8516 -5.9601 -0.1270 2.2772 -0.9661 0.4855 3.7541 0.3817 0.3372 0.1500 1.5527 0.0333 1.2763 0.0625
+#> 422: 92.8509 -5.9602 -0.1270 2.2775 -0.9659 0.4855 3.7554 0.3818 0.3371 0.1499 1.5525 0.0333 1.2753 0.0626
+#> 423: 92.8497 -5.9608 -0.1269 2.2777 -0.9658 0.4855 3.7590 0.3819 0.3371 0.1499 1.5524 0.0334 1.2746 0.0626
+#> 424: 92.8490 -5.9620 -0.1269 2.2779 -0.9658 0.4852 3.7657 0.3820 0.3370 0.1498 1.5521 0.0334 1.2740 0.0626
+#> 425: 92.8481 -5.9615 -0.1268 2.2780 -0.9657 0.4852 3.7639 0.3819 0.3369 0.1497 1.5520 0.0334 1.2741 0.0625
+#> 426: 92.8471 -5.9611 -0.1267 2.2783 -0.9656 0.4859 3.7632 0.3819 0.3369 0.1495 1.5520 0.0335 1.2744 0.0625
+#> 427: 92.8470 -5.9605 -0.1266 2.2784 -0.9655 0.4856 3.7616 0.3819 0.3368 0.1494 1.5522 0.0335 1.2739 0.0625
+#> 428: 92.8464 -5.9602 -0.1266 2.2786 -0.9653 0.4851 3.7603 0.3820 0.3367 0.1493 1.5522 0.0335 1.2731 0.0625
+#> 429: 92.8450 -5.9593 -0.1265 2.2788 -0.9652 0.4852 3.7573 0.3820 0.3366 0.1493 1.5525 0.0335 1.2720 0.0626
+#> 430: 92.8440 -5.9590 -0.1264 2.2789 -0.9651 0.4862 3.7586 0.3821 0.3365 0.1493 1.5524 0.0335 1.2710 0.0627
+#> 431: 92.8428 -5.9583 -0.1263 2.2791 -0.9649 0.4868 3.7575 0.3821 0.3365 0.1493 1.5522 0.0335 1.2698 0.0627
+#> 432: 92.8417 -5.9583 -0.1262 2.2793 -0.9649 0.4881 3.7580 0.3821 0.3365 0.1493 1.5518 0.0335 1.2683 0.0628
+#> 433: 92.8404 -5.9589 -0.1261 2.2796 -0.9648 0.4888 3.7614 0.3821 0.3364 0.1494 1.5513 0.0335 1.2681 0.0628
+#> 434: 92.8392 -5.9585 -0.1260 2.2798 -0.9646 0.4900 3.7602 0.3821 0.3363 0.1494 1.5509 0.0336 1.2686 0.0627
+#> 435: 92.8376 -5.9587 -0.1260 2.2801 -0.9645 0.4913 3.7622 0.3822 0.3362 0.1494 1.5506 0.0336 1.2677 0.0627
+#> 436: 92.8367 -5.9581 -0.1259 2.2802 -0.9646 0.4912 3.7594 0.3821 0.3361 0.1494 1.5504 0.0336 1.2684 0.0627
+#> 437: 92.8352 -5.9588 -0.1259 2.2803 -0.9647 0.4910 3.7634 0.3821 0.3360 0.1494 1.5501 0.0337 1.2695 0.0626
+#> 438: 92.8332 -5.9592 -0.1259 2.2804 -0.9648 0.4913 3.7649 0.3821 0.3358 0.1494 1.5498 0.0337 1.2705 0.0625
+#> 439: 92.8310 -5.9589 -0.1258 2.2805 -0.9648 0.4916 3.7630 0.3821 0.3357 0.1494 1.5497 0.0337 1.2713 0.0625
+#> 440: 92.8292 -5.9590 -0.1258 2.2806 -0.9649 0.4915 3.7620 0.3821 0.3355 0.1493 1.5494 0.0338 1.2712 0.0625
+#> 441: 92.8276 -5.9590 -0.1258 2.2808 -0.9650 0.4915 3.7619 0.3822 0.3353 0.1493 1.5493 0.0338 1.2712 0.0625
+#> 442: 92.8258 -5.9587 -0.1257 2.2809 -0.9650 0.4927 3.7592 0.3822 0.3351 0.1493 1.5493 0.0338 1.2707 0.0625
+#> 443: 92.8241 -5.9586 -0.1256 2.2811 -0.9651 0.4941 3.7563 0.3822 0.3350 0.1493 1.5491 0.0338 1.2704 0.0625
+#> 444: 92.8228 -5.9591 -0.1256 2.2812 -0.9651 0.4954 3.7566 0.3822 0.3349 0.1493 1.5488 0.0339 1.2703 0.0625
+#> 445: 92.8210 -5.9596 -0.1256 2.2813 -0.9652 0.4972 3.7573 0.3821 0.3348 0.1493 1.5484 0.0339 1.2702 0.0625
+#> 446: 92.8193 -5.9595 -0.1255 2.2815 -0.9652 0.4989 3.7551 0.3821 0.3348 0.1494 1.5482 0.0339 1.2708 0.0624
+#> 447: 92.8183 -5.9598 -0.1255 2.2817 -0.9652 0.5002 3.7548 0.3820 0.3347 0.1494 1.5478 0.0339 1.2710 0.0624
+#> 448: 92.8177 -5.9607 -0.1255 2.2818 -0.9653 0.5019 3.7585 0.3819 0.3347 0.1495 1.5475 0.0340 1.2711 0.0624
+#> 449: 92.8171 -5.9613 -0.1254 2.2819 -0.9654 0.5040 3.7592 0.3819 0.3347 0.1495 1.5474 0.0340 1.2711 0.0624
+#> 450: 92.8164 -5.9621 -0.1253 2.2821 -0.9655 0.5060 3.7632 0.3818 0.3346 0.1495 1.5470 0.0340 1.2704 0.0624
+#> 451: 92.8157 -5.9628 -0.1253 2.2822 -0.9655 0.5082 3.7655 0.3816 0.3346 0.1495 1.5469 0.0340 1.2699 0.0625
+#> 452: 92.8157 -5.9633 -0.1252 2.2824 -0.9656 0.5092 3.7657 0.3815 0.3346 0.1495 1.5468 0.0340 1.2691 0.0625
+#> 453: 92.8155 -5.9631 -0.1252 2.2823 -0.9657 0.5099 3.7646 0.3815 0.3347 0.1494 1.5470 0.0340 1.2684 0.0625
+#> 454: 92.8149 -5.9627 -0.1252 2.2823 -0.9656 0.5110 3.7623 0.3815 0.3347 0.1495 1.5470 0.0340 1.2678 0.0626
+#> 455: 92.8147 -5.9626 -0.1253 2.2822 -0.9656 0.5118 3.7610 0.3816 0.3347 0.1495 1.5471 0.0340 1.2675 0.0626
+#> 456: 92.8146 -5.9631 -0.1253 2.2821 -0.9657 0.5124 3.7612 0.3817 0.3348 0.1495 1.5473 0.0340 1.2684 0.0625
+#> 457: 92.8146 -5.9639 -0.1253 2.2820 -0.9658 0.5131 3.7636 0.3817 0.3347 0.1494 1.5471 0.0340 1.2683 0.0625
+#> 458: 92.8142 -5.9641 -0.1254 2.2818 -0.9658 0.5143 3.7637 0.3817 0.3347 0.1493 1.5472 0.0340 1.2679 0.0626
+#> 459: 92.8129 -5.9636 -0.1254 2.2818 -0.9660 0.5155 3.7609 0.3817 0.3347 0.1493 1.5474 0.0340 1.2692 0.0625
+#> 460: 92.8118 -5.9630 -0.1254 2.2817 -0.9660 0.5155 3.7563 0.3818 0.3347 0.1493 1.5476 0.0340 1.2703 0.0624
+#> 461: 92.8102 -5.9625 -0.1255 2.2816 -0.9661 0.5159 3.7525 0.3818 0.3347 0.1493 1.5478 0.0340 1.2711 0.0624
+#> 462: 92.8090 -5.9628 -0.1255 2.2814 -0.9661 0.5163 3.7520 0.3819 0.3347 0.1492 1.5481 0.0340 1.2708 0.0624
+#> 463: 92.8075 -5.9633 -0.1256 2.2813 -0.9660 0.5180 3.7534 0.3819 0.3347 0.1491 1.5484 0.0340 1.2705 0.0624
+#> 464: 92.8066 -5.9628 -0.1256 2.2812 -0.9659 0.5194 3.7507 0.3820 0.3347 0.1490 1.5485 0.0340 1.2702 0.0624
+#> 465: 92.8058 -5.9627 -0.1257 2.2811 -0.9658 0.5212 3.7506 0.3820 0.3347 0.1490 1.5484 0.0340 1.2696 0.0625
+#> 466: 92.8055 -5.9624 -0.1258 2.2808 -0.9656 0.5227 3.7510 0.3821 0.3347 0.1489 1.5487 0.0340 1.2704 0.0624
+#> 467: 92.8052 -5.9624 -0.1260 2.2805 -0.9656 0.5242 3.7518 0.3822 0.3346 0.1488 1.5488 0.0340 1.2715 0.0623
+#> 468: 92.8054 -5.9623 -0.1261 2.2803 -0.9654 0.5260 3.7545 0.3823 0.3346 0.1487 1.5493 0.0340 1.2730 0.0623
+#> 469: 92.8052 -5.9629 -0.1262 2.2803 -0.9654 0.5278 3.7617 0.3824 0.3346 0.1486 1.5495 0.0340 1.2737 0.0622
+#> 470: 92.8055 -5.9638 -0.1263 2.2802 -0.9653 0.5290 3.7667 0.3825 0.3347 0.1486 1.5494 0.0341 1.2729 0.0623
+#> 471: 92.8061 -5.9645 -0.1263 2.2801 -0.9653 0.5293 3.7702 0.3825 0.3347 0.1485 1.5494 0.0341 1.2724 0.0623
+#> 472: 92.8057 -5.9645 -0.1264 2.2800 -0.9653 0.5288 3.7699 0.3826 0.3347 0.1484 1.5495 0.0341 1.2728 0.0623
+#> 473: 92.8053 -5.9643 -0.1265 2.2799 -0.9652 0.5282 3.7701 0.3827 0.3347 0.1483 1.5494 0.0341 1.2721 0.0623
+#> 474: 92.8049 -5.9638 -0.1266 2.2798 -0.9653 0.5273 3.7676 0.3828 0.3347 0.1483 1.5495 0.0341 1.2722 0.0623
+#> 475: 92.8041 -5.9639 -0.1267 2.2796 -0.9654 0.5269 3.7668 0.3829 0.3347 0.1482 1.5495 0.0341 1.2721 0.0623
+#> 476: 92.8032 -5.9641 -0.1269 2.2794 -0.9653 0.5260 3.7681 0.3830 0.3347 0.1481 1.5496 0.0341 1.2716 0.0623
+#> 477: 92.8026 -5.9634 -0.1270 2.2792 -0.9653 0.5249 3.7647 0.3831 0.3347 0.1480 1.5500 0.0341 1.2716 0.0623
+#> 478: 92.8021 -5.9627 -0.1271 2.2789 -0.9653 0.5241 3.7606 0.3832 0.3346 0.1480 1.5500 0.0341 1.2718 0.0623
+#> 479: 92.8019 -5.9623 -0.1272 2.2787 -0.9654 0.5241 3.7581 0.3833 0.3345 0.1480 1.5502 0.0342 1.2714 0.0624
+#> 480: 92.8017 -5.9631 -0.1274 2.2784 -0.9654 0.5241 3.7606 0.3835 0.3344 0.1479 1.5503 0.0342 1.2711 0.0624
+#> 481: 92.8020 -5.9638 -0.1275 2.2781 -0.9654 0.5237 3.7659 0.3837 0.3343 0.1478 1.5508 0.0342 1.2720 0.0624
+#> 482: 92.8024 -5.9640 -0.1278 2.2777 -0.9654 0.5228 3.7668 0.3838 0.3342 0.1478 1.5512 0.0342 1.2729 0.0623
+#> 483: 92.8017 -5.9645 -0.1280 2.2773 -0.9654 0.5224 3.7676 0.3840 0.3341 0.1478 1.5515 0.0342 1.2741 0.0622
+#> 484: 92.8012 -5.9642 -0.1281 2.2771 -0.9653 0.5221 3.7649 0.3841 0.3340 0.1478 1.5521 0.0341 1.2747 0.0622
+#> 485: 92.8009 -5.9642 -0.1283 2.2769 -0.9653 0.5214 3.7635 0.3842 0.3339 0.1479 1.5523 0.0341 1.2752 0.0622
+#> 486: 92.8002 -5.9639 -0.1284 2.2767 -0.9652 0.5213 3.7609 0.3842 0.3339 0.1480 1.5523 0.0341 1.2760 0.0621
+#> 487: 92.7998 -5.9636 -0.1285 2.2767 -0.9652 0.5212 3.7603 0.3842 0.3339 0.1480 1.5525 0.0341 1.2762 0.0621
+#> 488: 92.7995 -5.9634 -0.1285 2.2766 -0.9652 0.5218 3.7592 0.3841 0.3339 0.1480 1.5530 0.0341 1.2773 0.0621
+#> 489: 92.7996 -5.9630 -0.1286 2.2765 -0.9653 0.5220 3.7578 0.3841 0.3339 0.1480 1.5532 0.0341 1.2778 0.0621
+#> 490: 92.8001 -5.9629 -0.1287 2.2764 -0.9652 0.5226 3.7573 0.3841 0.3339 0.1479 1.5533 0.0341 1.2788 0.0620
+#> 491: 92.8001 -5.9629 -0.1287 2.2762 -0.9651 0.5225 3.7568 0.3841 0.3338 0.1479 1.5533 0.0341 1.2790 0.0620
+#> 492: 92.8005 -5.9625 -0.1288 2.2761 -0.9651 0.5228 3.7544 0.3840 0.3339 0.1479 1.5536 0.0341 1.2797 0.0619
+#> 493: 92.8010 -5.9626 -0.1289 2.2759 -0.9651 0.5228 3.7544 0.3840 0.3339 0.1479 1.5537 0.0340 1.2795 0.0620
+#> 494: 92.8014 -5.9623 -0.1290 2.2757 -0.9651 0.5239 3.7523 0.3839 0.3340 0.1479 1.5540 0.0340 1.2790 0.0620
+#> 495: 92.8017 -5.9617 -0.1291 2.2755 -0.9652 0.5244 3.7491 0.3838 0.3341 0.1480 1.5540 0.0340 1.2787 0.0621
+#> 496: 92.8019 -5.9613 -0.1291 2.2754 -0.9652 0.5246 3.7459 0.3837 0.3341 0.1481 1.5539 0.0340 1.2802 0.0620
+#> 497: 92.8023 -5.9611 -0.1292 2.2753 -0.9653 0.5252 3.7447 0.3836 0.3340 0.1482 1.5539 0.0340 1.2814 0.0620
+#> 498: 92.8025 -5.9615 -0.1292 2.2752 -0.9653 0.5254 3.7446 0.3836 0.3339 0.1483 1.5539 0.0340 1.2825 0.0619
+#> 499: 92.8033 -5.9616 -0.1292 2.2751 -0.9654 0.5254 3.7447 0.3836 0.3338 0.1483 1.5538 0.0340 1.2834 0.0619
+#> 500: 92.8041 -5.9630 -0.1292 2.2752 -0.9655 0.5248 3.7529 0.3836 0.3337 0.1484 1.5538 0.0340 1.2841 0.0619#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"#> Calculating residuals/tables#> donef_nlmixr_fomc_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei",
+ error_model = "obs_tc")
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
+#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
+#> |.....................| log_beta |sigma_low_parent |rsd_high_parent |sigma_low_A1 |
+#> |.....................|rsd_high_A1 | o1 | o2 | o3 |
+#> |.....................| o4 | o5 |...........|...........|
+#> | 1| 504.82714 | 1.000 | -1.000 | -0.9114 | -0.8944 |
+#> |.....................| -0.8457 | -0.8687 | -0.8916 | -0.8687 |
+#> |.....................| -0.8916 | -0.8768 | -0.8745 | -0.8676 |
+#> |.....................| -0.8705 | -0.8704 |...........|...........|
+#> | U| 504.82714 | 93.12 | -5.303 | -0.9442 | -0.1065 |
+#> |.....................| 2.291 | 1.160 | 0.03005 | 1.160 |
+#> |.....................| 0.03005 | 0.7578 | 0.8738 | 1.213 |
+#> |.....................| 1.069 | 1.072 |...........|...........|
+#> | X| 504.82714 | 93.12 | 0.004975 | 0.2801 | 0.8989 |
+#> |.....................| 9.884 | 1.160 | 0.03005 | 1.160 |
+#> |.....................| 0.03005 | 0.7578 | 0.8738 | 1.213 |
+#> |.....................| 1.069 | 1.072 |...........|...........|
+#> | G| Gill Diff. | 73.79 | 2.406 | 0.05615 | 0.2285 |
+#> |.....................| 0.009051 | -73.50 | -23.10 | 0.2441 |
+#> |.....................| -2.663 | 1.201 | 11.89 | -10.88 |
+#> |.....................| -9.982 | -10.81 |...........|...........|
+#> | 2| 4109.9562 | 0.3228 | -1.022 | -0.9119 | -0.8965 |
+#> |.....................| -0.8458 | -0.1941 | -0.6796 | -0.8709 |
+#> |.....................| -0.8672 | -0.8879 | -0.9836 | -0.7677 |
+#> |.....................| -0.7789 | -0.7712 |...........|...........|
+#> | U| 4109.9562 | 30.05 | -5.326 | -0.9447 | -0.1086 |
+#> |.....................| 2.291 | 1.551 | 0.03324 | 1.158 |
+#> |.....................| 0.03042 | 0.7495 | 0.7784 | 1.335 |
+#> |.....................| 1.167 | 1.178 |...........|...........|
+#> | X| 4109.9562 | 30.05 | 0.004866 | 0.2800 | 0.8971 |
+#> |.....................| 9.883 | 1.551 | 0.03324 | 1.158 |
+#> |.....................| 0.03042 | 0.7495 | 0.7784 | 1.335 |
+#> |.....................| 1.167 | 1.178 |...........|...........|
+#> | 3| 527.72868 | 0.9323 | -1.002 | -0.9115 | -0.8946 |
+#> |.....................| -0.8457 | -0.8012 | -0.8704 | -0.8689 |
+#> |.....................| -0.8892 | -0.8779 | -0.8854 | -0.8576 |
+#> |.....................| -0.8613 | -0.8605 |...........|...........|
+#> | U| 527.72868 | 86.81 | -5.306 | -0.9442 | -0.1067 |
+#> |.....................| 2.291 | 1.199 | 0.03037 | 1.159 |
+#> |.....................| 0.03009 | 0.7570 | 0.8642 | 1.226 |
+#> |.....................| 1.079 | 1.083 |...........|...........|
+#> | X| 527.72868 | 86.81 | 0.004964 | 0.2800 | 0.8988 |
+#> |.....................| 9.884 | 1.199 | 0.03037 | 1.159 |
+#> |.....................| 0.03009 | 0.7570 | 0.8642 | 1.226 |
+#> |.....................| 1.079 | 1.083 |...........|...........|
+#> | 4| 503.94655 | 0.9891 | -1.000 | -0.9114 | -0.8944 |
+#> |.....................| -0.8457 | -0.8578 | -0.8882 | -0.8687 |
+#> |.....................| -0.8912 | -0.8770 | -0.8762 | -0.8660 |
+#> |.....................| -0.8690 | -0.8688 |...........|...........|
+#> | U| 503.94655 | 92.10 | -5.304 | -0.9442 | -0.1066 |
+#> |.....................| 2.291 | 1.166 | 0.03011 | 1.160 |
+#> |.....................| 0.03006 | 0.7577 | 0.8722 | 1.215 |
+#> |.....................| 1.070 | 1.074 |...........|...........|
+#> | X| 503.94655 | 92.10 | 0.004973 | 0.2801 | 0.8989 |
+#> |.....................| 9.884 | 1.166 | 0.03011 | 1.160 |
+#> |.....................| 0.03006 | 0.7577 | 0.8722 | 1.215 |
+#> |.....................| 1.070 | 1.074 |...........|...........|
+#> | F| Forward Diff. | -83.20 | 2.270 | -0.2572 | 0.1460 |
+#> |.....................| -0.3233 | -71.29 | -24.25 | 0.7297 |
+#> |.....................| -2.130 | 1.329 | 9.332 | -11.82 |
+#> |.....................| -9.604 | -10.42 |...........|...........|
+#> | 5| 503.03407 | 1.000 | -1.001 | -0.9114 | -0.8944 |
+#> |.....................| -0.8456 | -0.8473 | -0.8847 | -0.8688 |
+#> |.....................| -0.8909 | -0.8772 | -0.8776 | -0.8642 |
+#> |.....................| -0.8676 | -0.8673 |...........|...........|
+#> | U| 503.03407 | 93.15 | -5.304 | -0.9442 | -0.1066 |
+#> |.....................| 2.291 | 1.172 | 0.03016 | 1.159 |
+#> |.....................| 0.03007 | 0.7575 | 0.8710 | 1.217 |
+#> |.....................| 1.072 | 1.075 |...........|...........|
+#> | X| 503.03407 | 93.15 | 0.004971 | 0.2801 | 0.8989 |
+#> |.....................| 9.884 | 1.172 | 0.03016 | 1.159 |
+#> |.....................| 0.03007 | 0.7575 | 0.8710 | 1.217 |
+#> |.....................| 1.072 | 1.075 |...........|...........|
+#> | F| Forward Diff. | 79.23 | 2.386 | 0.06830 | 0.2424 |
+#> |.....................| 0.02121 | -70.84 | -22.28 | -0.5289 |
+#> |.....................| -2.713 | 1.149 | 11.82 | -11.86 |
+#> |.....................| -9.567 | -10.47 |...........|...........|
+#> | 6| 502.12413 | 0.9895 | -1.001 | -0.9114 | -0.8945 |
+#> |.....................| -0.8456 | -0.8365 | -0.8812 | -0.8687 |
+#> |.....................| -0.8905 | -0.8774 | -0.8794 | -0.8624 |
+#> |.....................| -0.8662 | -0.8657 |...........|...........|
+#> | U| 502.12413 | 92.14 | -5.304 | -0.9442 | -0.1066 |
+#> |.....................| 2.291 | 1.178 | 0.03021 | 1.160 |
+#> |.....................| 0.03007 | 0.7574 | 0.8695 | 1.220 |
+#> |.....................| 1.073 | 1.077 |...........|...........|
+#> | X| 502.12413 | 92.14 | 0.004969 | 0.2801 | 0.8989 |
+#> |.....................| 9.884 | 1.178 | 0.03021 | 1.160 |
+#> |.....................| 0.03007 | 0.7574 | 0.8695 | 1.220 |
+#> |.....................| 1.073 | 1.077 |...........|...........|
+#> | F| Forward Diff. | -77.28 | 2.252 | -0.2503 | 0.1427 |
+#> |.....................| -0.3238 | -69.21 | -23.25 | 0.3943 |
+#> |.....................| -2.493 | 1.092 | 10.79 | -11.67 |
+#> |.....................| -9.485 | -10.25 |...........|...........|
+#> | 7| 501.24651 | 1.000 | -1.001 | -0.9114 | -0.8945 |
+#> |.....................| -0.8456 | -0.8257 | -0.8776 | -0.8688 |
+#> |.....................| -0.8901 | -0.8775 | -0.8811 | -0.8606 |
+#> |.....................| -0.8647 | -0.8641 |...........|...........|
+#> | U| 501.24651 | 93.15 | -5.305 | -0.9441 | -0.1067 |
+#> |.....................| 2.291 | 1.184 | 0.03026 | 1.160 |
+#> |.....................| 0.03008 | 0.7573 | 0.8680 | 1.222 |
+#> |.....................| 1.075 | 1.079 |...........|...........|
+#> | X| 501.24651 | 93.15 | 0.004968 | 0.2801 | 0.8988 |
+#> |.....................| 9.885 | 1.184 | 0.03026 | 1.160 |
+#> |.....................| 0.03008 | 0.7573 | 0.8680 | 1.222 |
+#> |.....................| 1.075 | 1.079 |...........|...........|
+#> | F| Forward Diff. | 78.96 | 2.363 | 0.07229 | 0.2390 |
+#> |.....................| 0.02239 | -67.81 | -20.97 | 0.1381 |
+#> |.....................| -2.125 | 1.379 | 9.797 | -11.70 |
+#> |.....................| -9.438 | -10.29 |...........|...........|
+#> | 8| 500.35160 | 0.9896 | -1.002 | -0.9114 | -0.8945 |
+#> |.....................| -0.8456 | -0.8148 | -0.8742 | -0.8688 |
+#> |.....................| -0.8898 | -0.8778 | -0.8827 | -0.8587 |
+#> |.....................| -0.8632 | -0.8625 |...........|...........|
+#> | U| 500.3516 | 92.15 | -5.305 | -0.9441 | -0.1067 |
+#> |.....................| 2.291 | 1.191 | 0.03032 | 1.159 |
+#> |.....................| 0.03008 | 0.7571 | 0.8666 | 1.224 |
+#> |.....................| 1.077 | 1.081 |...........|...........|
+#> | X| 500.3516 | 92.15 | 0.004966 | 0.2801 | 0.8988 |
+#> |.....................| 9.885 | 1.191 | 0.03032 | 1.159 |
+#> |.....................| 0.03008 | 0.7571 | 0.8666 | 1.224 |
+#> |.....................| 1.077 | 1.081 |...........|...........|
+#> | F| Forward Diff. | -75.23 | 2.232 | -0.2459 | 0.1501 |
+#> |.....................| -0.3253 | -66.87 | -22.19 | 0.4436 |
+#> |.....................| -2.150 | 0.9434 | 9.182 | -11.49 |
+#> |.....................| -9.350 | -10.07 |...........|...........|
+#> | 9| 499.45361 | 1.000 | -1.002 | -0.9113 | -0.8946 |
+#> |.....................| -0.8455 | -0.8036 | -0.8705 | -0.8689 |
+#> |.....................| -0.8894 | -0.8779 | -0.8842 | -0.8568 |
+#> |.....................| -0.8616 | -0.8608 |...........|...........|
+#> | U| 499.45361 | 93.12 | -5.306 | -0.9441 | -0.1067 |
+#> |.....................| 2.291 | 1.197 | 0.03037 | 1.159 |
+#> |.....................| 0.03009 | 0.7570 | 0.8653 | 1.226 |
+#> |.....................| 1.078 | 1.082 |...........|...........|
+#> | X| 499.45361 | 93.12 | 0.004964 | 0.2801 | 0.8988 |
+#> |.....................| 9.885 | 1.197 | 0.03037 | 1.159 |
+#> |.....................| 0.03009 | 0.7570 | 0.8653 | 1.226 |
+#> |.....................| 1.078 | 1.082 |...........|...........|
+#> | F| Forward Diff. | 73.21 | 2.337 | 0.06584 | 0.2472 |
+#> |.....................| 0.008903 | -65.96 | -20.21 | -0.3457 |
+#> |.....................| -2.677 | 1.048 | 11.29 | -11.53 |
+#> |.....................| -9.311 | -10.11 |...........|...........|
+#> | 10| 498.59105 | 0.9896 | -1.003 | -0.9113 | -0.8946 |
+#> |.....................| -0.8455 | -0.7924 | -0.8671 | -0.8688 |
+#> |.....................| -0.8890 | -0.8781 | -0.8861 | -0.8548 |
+#> |.....................| -0.8600 | -0.8591 |...........|...........|
+#> | U| 498.59105 | 92.15 | -5.306 | -0.9441 | -0.1068 |
+#> |.....................| 2.291 | 1.204 | 0.03042 | 1.159 |
+#> |.....................| 0.03009 | 0.7568 | 0.8636 | 1.229 |
+#> |.....................| 1.080 | 1.084 |...........|...........|
+#> | X| 498.59105 | 92.15 | 0.004962 | 0.2801 | 0.8987 |
+#> |.....................| 9.885 | 1.204 | 0.03042 | 1.159 |
+#> |.....................| 0.03009 | 0.7568 | 0.8636 | 1.229 |
+#> |.....................| 1.080 | 1.084 |...........|...........|
+#> | F| Forward Diff. | -74.43 | 2.211 | -0.2431 | 0.1502 |
+#> |.....................| -0.3305 | -64.40 | -21.08 | 0.5329 |
+#> |.....................| -2.487 | 0.9319 | 8.926 | -11.33 |
+#> |.....................| -9.217 | -9.888 |...........|...........|
+#> | 11| 497.71590 | 1.000 | -1.003 | -0.9113 | -0.8946 |
+#> |.....................| -0.8455 | -0.7811 | -0.8634 | -0.8689 |
+#> |.....................| -0.8885 | -0.8783 | -0.8877 | -0.8529 |
+#> |.....................| -0.8584 | -0.8573 |...........|...........|
+#> | U| 497.7159 | 93.11 | -5.306 | -0.9441 | -0.1068 |
+#> |.....................| 2.291 | 1.210 | 0.03048 | 1.159 |
+#> |.....................| 0.03010 | 0.7567 | 0.8622 | 1.231 |
+#> |.....................| 1.082 | 1.086 |...........|...........|
+#> | X| 497.7159 | 93.11 | 0.004960 | 0.2801 | 0.8987 |
+#> |.....................| 9.886 | 1.210 | 0.03048 | 1.159 |
+#> |.....................| 0.03010 | 0.7567 | 0.8622 | 1.231 |
+#> |.....................| 1.082 | 1.086 |...........|...........|
+#> | F| Forward Diff. | 71.79 | 2.312 | 0.07434 | 0.2557 |
+#> |.....................| 0.006614 | -63.04 | -18.95 | 0.3164 |
+#> |.....................| -2.117 | 1.342 | 9.274 | -11.35 |
+#> |.....................| -9.172 | -9.924 |...........|...........|
+#> | 12| 496.86264 | 0.9898 | -1.003 | -0.9113 | -0.8947 |
+#> |.....................| -0.8455 | -0.7696 | -0.8599 | -0.8690 |
+#> |.....................| -0.8881 | -0.8785 | -0.8894 | -0.8508 |
+#> |.....................| -0.8567 | -0.8555 |...........|...........|
+#> | U| 496.86264 | 92.17 | -5.307 | -0.9441 | -0.1068 |
+#> |.....................| 2.291 | 1.217 | 0.03053 | 1.159 |
+#> |.....................| 0.03011 | 0.7565 | 0.8607 | 1.234 |
+#> |.....................| 1.084 | 1.088 |...........|...........|
+#> | X| 496.86264 | 92.17 | 0.004958 | 0.2801 | 0.8987 |
+#> |.....................| 9.886 | 1.217 | 0.03053 | 1.159 |
+#> |.....................| 0.03011 | 0.7565 | 0.8607 | 1.234 |
+#> |.....................| 1.084 | 1.088 |...........|...........|
+#> | F| Forward Diff. | -71.54 | 2.190 | -0.2371 | 0.1482 |
+#> |.....................| -0.3369 | -61.67 | -19.90 | 0.9419 |
+#> |.....................| -2.139 | 1.041 | 7.036 | -11.13 |
+#> |.....................| -9.064 | -9.692 |...........|...........|
+#> | 13| 495.99097 | 0.9997 | -1.004 | -0.9113 | -0.8947 |
+#> |.....................| -0.8454 | -0.7580 | -0.8562 | -0.8692 |
+#> |.....................| -0.8877 | -0.8787 | -0.8907 | -0.8487 |
+#> |.....................| -0.8550 | -0.8537 |...........|...........|
+#> | U| 495.99097 | 93.09 | -5.307 | -0.9441 | -0.1069 |
+#> |.....................| 2.291 | 1.224 | 0.03059 | 1.159 |
+#> |.....................| 0.03011 | 0.7564 | 0.8596 | 1.236 |
+#> |.....................| 1.085 | 1.090 |...........|...........|
+#> | X| 495.99097 | 93.09 | 0.004956 | 0.2801 | 0.8987 |
+#> |.....................| 9.886 | 1.224 | 0.03059 | 1.159 |
+#> |.....................| 0.03011 | 0.7564 | 0.8596 | 1.236 |
+#> |.....................| 1.085 | 1.090 |...........|...........|
+#> | F| Forward Diff. | 67.48 | 2.282 | 0.05510 | 0.2442 |
+#> |.....................| -0.01700 | -60.62 | -17.93 | 0.4372 |
+#> |.....................| -2.100 | 1.212 | 9.042 | -11.17 |
+#> |.....................| -9.025 | -9.723 |...........|...........|
+#> | 14| 495.15472 | 0.9899 | -1.004 | -0.9113 | -0.8948 |
+#> |.....................| -0.8454 | -0.7463 | -0.8527 | -0.8693 |
+#> |.....................| -0.8873 | -0.8789 | -0.8924 | -0.8465 |
+#> |.....................| -0.8533 | -0.8518 |...........|...........|
+#> | U| 495.15472 | 92.18 | -5.308 | -0.9441 | -0.1069 |
+#> |.....................| 2.291 | 1.231 | 0.03064 | 1.159 |
+#> |.....................| 0.03012 | 0.7562 | 0.8581 | 1.239 |
+#> |.....................| 1.087 | 1.092 |...........|...........|
+#> | X| 495.15472 | 92.18 | 0.004954 | 0.2801 | 0.8986 |
+#> |.....................| 9.886 | 1.231 | 0.03064 | 1.159 |
+#> |.....................| 0.03012 | 0.7562 | 0.8581 | 1.239 |
+#> |.....................| 1.087 | 1.092 |...........|...........|
+#> | F| Forward Diff. | -68.93 | 2.171 | -0.2257 | 0.1488 |
+#> |.....................| -0.3348 | -59.34 | -18.81 | 1.070 |
+#> |.....................| -2.082 | 1.016 | 8.208 | -10.96 |
+#> |.....................| -8.930 | -9.498 |...........|...........|
+#> | 15| 494.30065 | 0.9995 | -1.005 | -0.9112 | -0.8948 |
+#> |.....................| -0.8453 | -0.7344 | -0.8490 | -0.8695 |
+#> |.....................| -0.8869 | -0.8792 | -0.8941 | -0.8443 |
+#> |.....................| -0.8515 | -0.8499 |...........|...........|
+#> | U| 494.30065 | 93.07 | -5.308 | -0.9440 | -0.1069 |
+#> |.....................| 2.291 | 1.237 | 0.03069 | 1.159 |
+#> |.....................| 0.03013 | 0.7561 | 0.8567 | 1.242 |
+#> |.....................| 1.089 | 1.094 |...........|...........|
+#> | X| 494.30065 | 93.07 | 0.004951 | 0.2801 | 0.8986 |
+#> |.....................| 9.887 | 1.237 | 0.03069 | 1.159 |
+#> |.....................| 0.03013 | 0.7561 | 0.8567 | 1.242 |
+#> |.....................| 1.089 | 1.094 |...........|...........|
+#> | F| Forward Diff. | 65.20 | 2.260 | 0.06851 | 0.2416 |
+#> |.....................| -0.02143 | -58.42 | -17.03 | 0.3665 |
+#> |.....................| -2.202 | 1.112 | 7.377 | -10.96 |
+#> |.....................| -8.866 | -9.510 |...........|...........|
+#> | 16| 493.48608 | 0.9901 | -1.005 | -0.9112 | -0.8948 |
+#> |.....................| -0.8453 | -0.7225 | -0.8455 | -0.8696 |
+#> |.....................| -0.8865 | -0.8794 | -0.8956 | -0.8421 |
+#> |.....................| -0.8496 | -0.8479 |...........|...........|
+#> | U| 493.48608 | 92.19 | -5.309 | -0.9440 | -0.1070 |
+#> |.....................| 2.291 | 1.244 | 0.03075 | 1.159 |
+#> |.....................| 0.03013 | 0.7559 | 0.8553 | 1.244 |
+#> |.....................| 1.091 | 1.096 |...........|...........|
+#> | X| 493.48608 | 92.19 | 0.004949 | 0.2801 | 0.8985 |
+#> |.....................| 9.887 | 1.244 | 0.03075 | 1.159 |
+#> |.....................| 0.03013 | 0.7559 | 0.8553 | 1.244 |
+#> |.....................| 1.091 | 1.096 |...........|...........|
+#> | F| Forward Diff. | -66.94 | 2.152 | -0.2367 | 0.1452 |
+#> |.....................| -0.3412 | -57.13 | -17.84 | 1.057 |
+#> |.....................| -2.129 | 0.9540 | 6.557 | -10.77 |
+#> |.....................| -8.770 | -9.285 |...........|...........|
+#> | 17| 492.64670 | 0.9993 | -1.006 | -0.9112 | -0.8949 |
+#> |.....................| -0.8453 | -0.7105 | -0.8419 | -0.8698 |
+#> |.....................| -0.8860 | -0.8796 | -0.8969 | -0.8398 |
+#> |.....................| -0.8478 | -0.8460 |...........|...........|
+#> | U| 492.6467 | 93.06 | -5.309 | -0.9440 | -0.1070 |
+#> |.....................| 2.291 | 1.251 | 0.03080 | 1.159 |
+#> |.....................| 0.03014 | 0.7557 | 0.8542 | 1.247 |
+#> |.....................| 1.093 | 1.098 |...........|...........|
+#> | X| 492.6467 | 93.06 | 0.004947 | 0.2801 | 0.8985 |
+#> |.....................| 9.888 | 1.251 | 0.03080 | 1.159 |
+#> |.....................| 0.03014 | 0.7557 | 0.8542 | 1.247 |
+#> |.....................| 1.093 | 1.098 |...........|...........|
+#> | F| Forward Diff. | 62.51 | 2.244 | 0.07930 | 0.2506 |
+#> |.....................| -0.02305 | -56.21 | -16.10 | 0.4420 |
+#> |.....................| -2.202 | 1.071 | 7.160 | -10.75 |
+#> |.....................| -8.705 | -9.292 |...........|...........|
+#> | 18| 491.85024 | 0.9902 | -1.006 | -0.9112 | -0.8949 |
+#> |.....................| -0.8453 | -0.6983 | -0.8384 | -0.8699 |
+#> |.....................| -0.8855 | -0.8798 | -0.8984 | -0.8374 |
+#> |.....................| -0.8459 | -0.8439 |...........|...........|
+#> | U| 491.85024 | 92.21 | -5.310 | -0.9440 | -0.1071 |
+#> |.....................| 2.291 | 1.258 | 0.03085 | 1.159 |
+#> |.....................| 0.03015 | 0.7556 | 0.8529 | 1.250 |
+#> |.....................| 1.095 | 1.100 |...........|...........|
+#> | X| 491.85024 | 92.21 | 0.004944 | 0.2801 | 0.8985 |
+#> |.....................| 9.888 | 1.258 | 0.03085 | 1.159 |
+#> |.....................| 0.03015 | 0.7556 | 0.8529 | 1.250 |
+#> |.....................| 1.095 | 1.100 |...........|...........|
+#> | F| Forward Diff. | -64.39 | 2.132 | -0.2231 | 0.1507 |
+#> |.....................| -0.3455 | -54.91 | -16.84 | 1.107 |
+#> |.....................| -2.130 | 0.9153 | 6.361 | -10.56 |
+#> |.....................| -8.604 | -9.065 |...........|...........|
+#> | 19| 491.03181 | 0.9992 | -1.007 | -0.9112 | -0.8950 |
+#> |.....................| -0.8452 | -0.6860 | -0.8347 | -0.8702 |
+#> |.....................| -0.8850 | -0.8800 | -0.8997 | -0.8350 |
+#> |.....................| -0.8439 | -0.8419 |...........|...........|
+#> | U| 491.03181 | 93.04 | -5.310 | -0.9440 | -0.1071 |
+#> |.....................| 2.291 | 1.265 | 0.03091 | 1.159 |
+#> |.....................| 0.03015 | 0.7554 | 0.8517 | 1.253 |
+#> |.....................| 1.097 | 1.103 |...........|...........|
+#> | X| 491.03181 | 93.04 | 0.004942 | 0.2801 | 0.8984 |
+#> |.....................| 9.888 | 1.265 | 0.03091 | 1.159 |
+#> |.....................| 0.03015 | 0.7554 | 0.8517 | 1.253 |
+#> |.....................| 1.097 | 1.103 |...........|...........|
+#> | F| Forward Diff. | 59.97 | 2.217 | 0.06954 | 0.2512 |
+#> |.....................| -0.03854 | -54.10 | -15.21 | 0.3955 |
+#> |.....................| -2.336 | 1.047 | 8.162 | -10.81 |
+#> |.....................| -8.706 | -9.233 |...........|...........|
+#> | 20| 490.24998 | 0.9904 | -1.007 | -0.9112 | -0.8950 |
+#> |.....................| -0.8452 | -0.6737 | -0.8313 | -0.8703 |
+#> |.....................| -0.8845 | -0.8803 | -0.9015 | -0.8325 |
+#> |.....................| -0.8419 | -0.8397 |...........|...........|
+#> | U| 490.24998 | 92.22 | -5.311 | -0.9440 | -0.1072 |
+#> |.....................| 2.291 | 1.273 | 0.03096 | 1.159 |
+#> |.....................| 0.03016 | 0.7552 | 0.8502 | 1.256 |
+#> |.....................| 1.099 | 1.105 |...........|...........|
+#> | X| 490.24998 | 92.22 | 0.004939 | 0.2801 | 0.8984 |
+#> |.....................| 9.889 | 1.273 | 0.03096 | 1.159 |
+#> |.....................| 0.03016 | 0.7552 | 0.8502 | 1.256 |
+#> |.....................| 1.099 | 1.105 |...........|...........|
+#> | F| Forward Diff. | -61.40 | 2.114 | -0.2172 | 0.1580 |
+#> |.....................| -0.3477 | -53.15 | -16.02 | 0.7982 |
+#> |.....................| -2.483 | 0.7215 | 9.240 | -10.34 |
+#> |.....................| -8.435 | -8.843 |...........|...........|
+#> | 21| 489.45580 | 0.9991 | -1.008 | -0.9111 | -0.8951 |
+#> |.....................| -0.8451 | -0.6614 | -0.8278 | -0.8705 |
+#> |.....................| -0.8839 | -0.8804 | -0.9038 | -0.8300 |
+#> |.....................| -0.8398 | -0.8376 |...........|...........|
+#> | U| 489.4558 | 93.03 | -5.311 | -0.9439 | -0.1072 |
+#> |.....................| 2.291 | 1.280 | 0.03101 | 1.159 |
+#> |.....................| 0.03017 | 0.7551 | 0.8482 | 1.259 |
+#> |.....................| 1.102 | 1.107 |...........|...........|
+#> | X| 489.4558 | 93.03 | 0.004937 | 0.2801 | 0.8983 |
+#> |.....................| 9.889 | 1.280 | 0.03101 | 1.159 |
+#> |.....................| 0.03017 | 0.7551 | 0.8482 | 1.259 |
+#> |.....................| 1.102 | 1.107 |...........|...........|
+#> | F| Forward Diff. | 58.20 | 2.191 | 0.07193 | 0.2543 |
+#> |.....................| -0.04201 | -51.69 | -14.22 | 0.6968 |
+#> |.....................| -2.088 | 1.024 | 8.024 | -10.34 |
+#> |.....................| -8.364 | -8.845 |...........|...........|
+#> | 22| 488.71859 | 0.9903 | -1.008 | -0.9111 | -0.8951 |
+#> |.....................| -0.8451 | -0.6491 | -0.8245 | -0.8707 |
+#> |.....................| -0.8833 | -0.8807 | -0.9059 | -0.8275 |
+#> |.....................| -0.8378 | -0.8354 |...........|...........|
+#> | U| 488.71859 | 92.21 | -5.312 | -0.9439 | -0.1073 |
+#> |.....................| 2.291 | 1.287 | 0.03106 | 1.158 |
+#> |.....................| 0.03018 | 0.7549 | 0.8463 | 1.262 |
+#> |.....................| 1.104 | 1.110 |...........|...........|
+#> | X| 488.71859 | 92.21 | 0.004934 | 0.2801 | 0.8983 |
+#> |.....................| 9.890 | 1.287 | 0.03106 | 1.158 |
+#> |.....................| 0.03018 | 0.7549 | 0.8463 | 1.262 |
+#> |.....................| 1.104 | 1.110 |...........|...........|
+#> | F| Forward Diff. | -62.72 | 2.087 | -0.2158 | 0.1536 |
+#> |.....................| -0.3560 | -50.59 | -14.96 | 1.289 |
+#> |.....................| -2.066 | 0.8753 | 7.259 | -10.12 |
+#> |.....................| -8.247 | -8.604 |...........|...........|
+#> | 23| 487.91801 | 0.9987 | -1.009 | -0.9111 | -0.8952 |
+#> |.....................| -0.8450 | -0.6366 | -0.8210 | -0.8711 |
+#> |.....................| -0.8828 | -0.8809 | -0.9078 | -0.8248 |
+#> |.....................| -0.8356 | -0.8332 |...........|...........|
+#> | U| 487.91801 | 93.00 | -5.312 | -0.9439 | -0.1073 |
+#> |.....................| 2.292 | 1.294 | 0.03112 | 1.158 |
+#> |.....................| 0.03019 | 0.7547 | 0.8446 | 1.265 |
+#> |.....................| 1.106 | 1.112 |...........|...........|
+#> | X| 487.91801 | 93.00 | 0.004931 | 0.2801 | 0.8982 |
+#> |.....................| 9.890 | 1.294 | 0.03112 | 1.158 |
+#> |.....................| 0.03019 | 0.7547 | 0.8446 | 1.265 |
+#> |.....................| 1.106 | 1.112 |...........|...........|
+#> | F| Forward Diff. | 52.73 | 2.162 | 0.07610 | 0.2481 |
+#> |.....................| -0.05835 | -50.28 | -13.63 | 0.1991 |
+#> |.....................| -2.681 | 0.6961 | 9.479 | -10.12 |
+#> |.....................| -8.180 | -8.607 |...........|...........|
+#> | 24| 487.19380 | 0.9906 | -1.009 | -0.9111 | -0.8952 |
+#> |.....................| -0.8450 | -0.6240 | -0.8177 | -0.8712 |
+#> |.....................| -0.8820 | -0.8811 | -0.9103 | -0.8222 |
+#> |.....................| -0.8335 | -0.8310 |...........|...........|
+#> | U| 487.1938 | 92.24 | -5.313 | -0.9439 | -0.1074 |
+#> |.....................| 2.292 | 1.301 | 0.03116 | 1.158 |
+#> |.....................| 0.03020 | 0.7546 | 0.8424 | 1.269 |
+#> |.....................| 1.108 | 1.114 |...........|...........|
+#> | X| 487.1938 | 92.24 | 0.004929 | 0.2801 | 0.8982 |
+#> |.....................| 9.891 | 1.301 | 0.03116 | 1.158 |
+#> |.....................| 0.03020 | 0.7546 | 0.8424 | 1.269 |
+#> |.....................| 1.108 | 1.114 |...........|...........|
+#> | F| Forward Diff. | -58.70 | 2.065 | -0.2024 | 0.1592 |
+#> |.....................| -0.3563 | -48.58 | -14.05 | 1.280 |
+#> |.....................| -2.114 | 0.8980 | 5.535 | -9.882 |
+#> |.....................| -8.046 | -8.364 |...........|...........|
+#> | 25| 486.45861 | 0.9990 | -1.010 | -0.9111 | -0.8953 |
+#> |.....................| -0.8449 | -0.6115 | -0.8144 | -0.8715 |
+#> |.....................| -0.8813 | -0.8813 | -0.9121 | -0.8195 |
+#> |.....................| -0.8313 | -0.8287 |...........|...........|
+#> | U| 486.45861 | 93.03 | -5.313 | -0.9439 | -0.1074 |
+#> |.....................| 2.292 | 1.309 | 0.03121 | 1.158 |
+#> |.....................| 0.03021 | 0.7545 | 0.8409 | 1.272 |
+#> |.....................| 1.111 | 1.117 |...........|...........|
+#> | X| 486.45861 | 93.03 | 0.004926 | 0.2801 | 0.8981 |
+#> |.....................| 9.892 | 1.309 | 0.03121 | 1.158 |
+#> |.....................| 0.03021 | 0.7545 | 0.8409 | 1.272 |
+#> |.....................| 1.111 | 1.117 |...........|...........|
+#> | F| Forward Diff. | 56.64 | 2.141 | 0.09518 | 0.2574 |
+#> |.....................| -0.04938 | -48.45 | -12.81 | 0.1110 |
+#> |.....................| -2.819 | 0.7463 | 7.804 | -9.858 |
+#> |.....................| -7.976 | -8.366 |...........|...........|
+#> | 26| 485.70463 | 0.9912 | -1.011 | -0.9111 | -0.8954 |
+#> |.....................| -0.8448 | -0.5987 | -0.8113 | -0.8717 |
+#> |.....................| -0.8805 | -0.8815 | -0.9139 | -0.8166 |
+#> |.....................| -0.8290 | -0.8264 |...........|...........|
+#> | U| 485.70463 | 92.30 | -5.314 | -0.9439 | -0.1075 |
+#> |.....................| 2.292 | 1.316 | 0.03126 | 1.158 |
+#> |.....................| 0.03022 | 0.7543 | 0.8393 | 1.275 |
+#> |.....................| 1.113 | 1.119 |...........|...........|
+#> | X| 485.70463 | 92.30 | 0.004923 | 0.2801 | 0.8981 |
+#> |.....................| 9.892 | 1.316 | 0.03126 | 1.158 |
+#> |.....................| 0.03022 | 0.7543 | 0.8393 | 1.275 |
+#> |.....................| 1.113 | 1.119 |...........|...........|
+#> | F| Forward Diff. | -49.75 | 2.049 | -0.1896 | 0.1657 |
+#> |.....................| -0.3394 | -47.06 | -13.27 | 0.8968 |
+#> |.....................| -2.558 | 0.5259 | 7.006 | -9.655 |
+#> |.....................| -7.860 | -8.128 |...........|...........|
+#> | 27| 485.03383 | 0.9993 | -1.011 | -0.9111 | -0.8954 |
+#> |.....................| -0.8447 | -0.5860 | -0.8081 | -0.8719 |
+#> |.....................| -0.8796 | -0.8816 | -0.9160 | -0.8138 |
+#> |.....................| -0.8267 | -0.8240 |...........|...........|
+#> | U| 485.03383 | 93.05 | -5.315 | -0.9439 | -0.1076 |
+#> |.....................| 2.292 | 1.323 | 0.03131 | 1.158 |
+#> |.....................| 0.03024 | 0.7542 | 0.8375 | 1.279 |
+#> |.....................| 1.116 | 1.122 |...........|...........|
+#> | X| 485.03383 | 93.05 | 0.004920 | 0.2801 | 0.8980 |
+#> |.....................| 9.893 | 1.323 | 0.03131 | 1.158 |
+#> |.....................| 0.03024 | 0.7542 | 0.8375 | 1.279 |
+#> |.....................| 1.116 | 1.122 |...........|...........|
+#> | F| Forward Diff. | 59.36 | 2.117 | 0.1128 | 0.2587 |
+#> |.....................| -0.03694 | -45.49 | -11.65 | 0.8714 |
+#> |.....................| -2.196 | 0.9711 | 7.208 | -9.629 |
+#> |.....................| -7.785 | -8.123 |...........|...........|
+#> | 28| 484.30050 | 0.9913 | -1.012 | -0.9111 | -0.8955 |
+#> |.....................| -0.8447 | -0.5733 | -0.8052 | -0.8723 |
+#> |.....................| -0.8788 | -0.8818 | -0.9181 | -0.8109 |
+#> |.....................| -0.8243 | -0.8216 |...........|...........|
+#> | U| 484.3005 | 92.30 | -5.315 | -0.9439 | -0.1077 |
+#> |.....................| 2.292 | 1.331 | 0.03135 | 1.157 |
+#> |.....................| 0.03025 | 0.7541 | 0.8357 | 1.282 |
+#> |.....................| 1.118 | 1.124 |...........|...........|
+#> | X| 484.3005 | 92.30 | 0.004916 | 0.2801 | 0.8979 |
+#> |.....................| 9.894 | 1.331 | 0.03135 | 1.157 |
+#> |.....................| 0.03025 | 0.7541 | 0.8357 | 1.282 |
+#> |.....................| 1.118 | 1.124 |...........|...........|
+#> | F| Forward Diff. | -49.13 | 2.024 | -0.1788 | 0.1668 |
+#> |.....................| -0.3408 | -44.74 | -12.30 | 1.348 |
+#> |.....................| -2.137 | 0.7757 | 5.010 | -9.393 |
+#> |.....................| -7.651 | -7.866 |...........|...........|
+#> | 29| 483.61888 | 0.9988 | -1.013 | -0.9110 | -0.8956 |
+#> |.....................| -0.8446 | -0.5603 | -0.8022 | -0.8729 |
+#> |.....................| -0.8781 | -0.8821 | -0.9194 | -0.8078 |
+#> |.....................| -0.8218 | -0.8191 |...........|...........|
+#> | U| 483.61888 | 93.00 | -5.316 | -0.9438 | -0.1077 |
+#> |.....................| 2.292 | 1.338 | 0.03140 | 1.157 |
+#> |.....................| 0.03026 | 0.7539 | 0.8345 | 1.286 |
+#> |.....................| 1.121 | 1.127 |...........|...........|
+#> | X| 483.61888 | 93.00 | 0.004913 | 0.2801 | 0.8979 |
+#> |.....................| 9.895 | 1.338 | 0.03140 | 1.157 |
+#> |.....................| 0.03026 | 0.7539 | 0.8345 | 1.286 |
+#> |.....................| 1.121 | 1.127 |...........|...........|
+#> | F| Forward Diff. | 51.77 | 2.082 | 0.08733 | 0.2462 |
+#> |.....................| -0.07383 | -44.60 | -11.22 | 0.3023 |
+#> |.....................| -2.722 | 0.5489 | 8.672 | -9.371 |
+#> |.....................| -7.562 | -7.848 |...........|...........|
+#> | 30| 482.91165 | 0.9915 | -1.013 | -0.9110 | -0.8957 |
+#> |.....................| -0.8445 | -0.5473 | -0.7995 | -0.8732 |
+#> |.....................| -0.8770 | -0.8822 | -0.9219 | -0.8047 |
+#> |.....................| -0.8192 | -0.8165 |...........|...........|
+#> | U| 482.91165 | 92.33 | -5.317 | -0.9438 | -0.1078 |
+#> |.....................| 2.292 | 1.346 | 0.03144 | 1.157 |
+#> |.....................| 0.03027 | 0.7538 | 0.8323 | 1.290 |
+#> |.....................| 1.124 | 1.130 |...........|...........|
+#> | X| 482.91165 | 92.33 | 0.004909 | 0.2801 | 0.8978 |
+#> |.....................| 9.895 | 1.346 | 0.03144 | 1.157 |
+#> |.....................| 0.03027 | 0.7538 | 0.8323 | 1.290 |
+#> |.....................| 1.124 | 1.130 |...........|...........|
+#> | F| Forward Diff. | -45.50 | 2.003 | -0.1660 | 0.1702 |
+#> |.....................| -0.3374 | -43.33 | -11.63 | 0.9930 |
+#> |.....................| -2.511 | 0.4656 | 7.949 | -9.128 |
+#> |.....................| -7.427 | -7.608 |...........|...........|
+#> | 31| 482.28997 | 0.9991 | -1.014 | -0.9110 | -0.8957 |
+#> |.....................| -0.8444 | -0.5346 | -0.7968 | -0.8735 |
+#> |.....................| -0.8759 | -0.8822 | -0.9253 | -0.8017 |
+#> |.....................| -0.8168 | -0.8141 |...........|...........|
+#> | U| 482.28997 | 93.03 | -5.317 | -0.9438 | -0.1079 |
+#> |.....................| 2.292 | 1.353 | 0.03148 | 1.157 |
+#> |.....................| 0.03029 | 0.7538 | 0.8294 | 1.293 |
+#> |.....................| 1.126 | 1.132 |...........|...........|
+#> | X| 482.28997 | 93.03 | 0.004906 | 0.2801 | 0.8977 |
+#> |.....................| 9.896 | 1.353 | 0.03148 | 1.157 |
+#> |.....................| 0.03029 | 0.7538 | 0.8294 | 1.293 |
+#> |.....................| 1.126 | 1.132 |...........|...........|
+#> | F| Forward Diff. | 55.95 | 2.054 | 0.1106 | 0.2465 |
+#> |.....................| -0.05340 | -42.18 | -10.21 | 0.8261 |
+#> |.....................| -2.234 | 0.9104 | 5.096 | -9.114 |
+#> |.....................| -7.334 | -7.590 |...........|...........|
+#> | 32| 481.60550 | 0.9915 | -1.015 | -0.9110 | -0.8958 |
+#> |.....................| -0.8443 | -0.5217 | -0.7945 | -0.8740 |
+#> |.....................| -0.8749 | -0.8824 | -0.9274 | -0.7984 |
+#> |.....................| -0.8142 | -0.8115 |...........|...........|
+#> | U| 481.6055 | 92.33 | -5.318 | -0.9438 | -0.1080 |
+#> |.....................| 2.292 | 1.361 | 0.03151 | 1.156 |
+#> |.....................| 0.03031 | 0.7536 | 0.8276 | 1.297 |
+#> |.....................| 1.129 | 1.135 |...........|...........|
+#> | X| 481.6055 | 92.33 | 0.004902 | 0.2801 | 0.8977 |
+#> |.....................| 9.897 | 1.361 | 0.03151 | 1.156 |
+#> |.....................| 0.03031 | 0.7536 | 0.8276 | 1.297 |
+#> |.....................| 1.129 | 1.135 |...........|...........|
+#> | F| Forward Diff. | -45.82 | 1.973 | -0.1624 | 0.1674 |
+#> |.....................| -0.3387 | -41.15 | -10.74 | 1.410 |
+#> |.....................| -2.130 | 0.6088 | 4.422 | -8.852 |
+#> |.....................| -7.186 | -7.335 |...........|...........|
+#> | 33| 480.97343 | 0.9986 | -1.016 | -0.9110 | -0.8959 |
+#> |.....................| -0.8442 | -0.5084 | -0.7922 | -0.8748 |
+#> |.....................| -0.8740 | -0.8826 | -0.9278 | -0.7950 |
+#> |.....................| -0.8114 | -0.8088 |...........|...........|
+#> | U| 480.97343 | 92.98 | -5.319 | -0.9438 | -0.1081 |
+#> |.....................| 2.292 | 1.368 | 0.03155 | 1.156 |
+#> |.....................| 0.03032 | 0.7534 | 0.8272 | 1.301 |
+#> |.....................| 1.132 | 1.138 |...........|...........|
+#> | X| 480.97343 | 92.98 | 0.004897 | 0.2801 | 0.8976 |
+#> |.....................| 9.898 | 1.368 | 0.03155 | 1.156 |
+#> |.....................| 0.03032 | 0.7534 | 0.8272 | 1.301 |
+#> |.....................| 1.132 | 1.138 |...........|...........|
+#> | F| Forward Diff. | 47.76 | 2.024 | 0.09167 | 0.2404 |
+#> |.....................| -0.07393 | -40.22 | -9.470 | 1.031 |
+#> |.....................| -2.098 | 0.8752 | 6.346 | -8.797 |
+#> |.....................| -7.089 | -7.296 |...........|...........|
+#> | 34| 480.33235 | 0.9916 | -1.017 | -0.9110 | -0.8960 |
+#> |.....................| -0.8441 | -0.4952 | -0.7903 | -0.8757 |
+#> |.....................| -0.8731 | -0.8830 | -0.9294 | -0.7914 |
+#> |.....................| -0.8086 | -0.8060 |...........|...........|
+#> | U| 480.33235 | 92.33 | -5.320 | -0.9438 | -0.1082 |
+#> |.....................| 2.292 | 1.376 | 0.03158 | 1.155 |
+#> |.....................| 0.03033 | 0.7532 | 0.8258 | 1.306 |
+#> |.....................| 1.135 | 1.141 |...........|...........|
+#> | X| 480.33235 | 92.33 | 0.004893 | 0.2801 | 0.8975 |
+#> |.....................| 9.899 | 1.376 | 0.03158 | 1.155 |
+#> |.....................| 0.03033 | 0.7532 | 0.8258 | 1.306 |
+#> |.....................| 1.135 | 1.141 |...........|...........|
+#> | F| Forward Diff. | -44.82 | 1.956 | -0.1640 | 0.1653 |
+#> |.....................| -0.3374 | -39.36 | -9.982 | 1.432 |
+#> |.....................| -2.136 | 0.6770 | 5.747 | -8.552 |
+#> |.....................| -6.943 | -7.038 |...........|...........|
+#> | 35| 479.71253 | 0.9984 | -1.018 | -0.9110 | -0.8961 |
+#> |.....................| -0.8439 | -0.4821 | -0.7885 | -0.8768 |
+#> |.....................| -0.8721 | -0.8833 | -0.9319 | -0.7879 |
+#> |.....................| -0.8057 | -0.8033 |...........|...........|
+#> | U| 479.71253 | 92.97 | -5.321 | -0.9438 | -0.1083 |
+#> |.....................| 2.293 | 1.384 | 0.03160 | 1.155 |
+#> |.....................| 0.03035 | 0.7529 | 0.8236 | 1.310 |
+#> |.....................| 1.138 | 1.144 |...........|...........|
+#> | X| 479.71253 | 92.97 | 0.004888 | 0.2801 | 0.8974 |
+#> |.....................| 9.901 | 1.384 | 0.03160 | 1.155 |
+#> |.....................| 0.03035 | 0.7529 | 0.8236 | 1.310 |
+#> |.....................| 1.138 | 1.144 |...........|...........|
+#> | F| Forward Diff. | 45.27 | 2.001 | 0.09802 | 0.2411 |
+#> |.....................| -0.07361 | -39.48 | -9.147 | 0.2467 |
+#> |.....................| -2.886 | 0.4583 | 7.836 | -8.475 |
+#> |.....................| -6.831 | -7.001 |...........|...........|
+#> | 36| 479.08241 | 0.9920 | -1.019 | -0.9110 | -0.8962 |
+#> |.....................| -0.8438 | -0.4691 | -0.7871 | -0.8771 |
+#> |.....................| -0.8704 | -0.8833 | -0.9359 | -0.7844 |
+#> |.....................| -0.8029 | -0.8006 |...........|...........|
+#> | U| 479.08241 | 92.37 | -5.322 | -0.9438 | -0.1084 |
+#> |.....................| 2.293 | 1.391 | 0.03163 | 1.155 |
+#> |.....................| 0.03037 | 0.7529 | 0.8201 | 1.314 |
+#> |.....................| 1.141 | 1.147 |...........|...........|
+#> | X| 479.08241 | 92.37 | 0.004883 | 0.2801 | 0.8973 |
+#> |.....................| 9.902 | 1.391 | 0.03163 | 1.155 |
+#> |.....................| 0.03037 | 0.7529 | 0.8201 | 1.314 |
+#> |.....................| 1.141 | 1.147 |...........|...........|
+#> | F| Forward Diff. | -39.48 | 1.926 | -0.1378 | 0.1752 |
+#> |.....................| -0.3206 | -38.45 | -9.498 | 0.8453 |
+#> |.....................| -2.699 | 0.3871 | 5.589 | -8.242 |
+#> |.....................| -6.674 | -6.762 |...........|...........|
+#> | 37| 478.53604 | 0.9990 | -1.019 | -0.9110 | -0.8964 |
+#> |.....................| -0.8437 | -0.4561 | -0.7854 | -0.8772 |
+#> |.....................| -0.8684 | -0.8832 | -0.9392 | -0.7811 |
+#> |.....................| -0.8002 | -0.7981 |...........|...........|
+#> | U| 478.53604 | 93.02 | -5.323 | -0.9438 | -0.1085 |
+#> |.....................| 2.293 | 1.399 | 0.03165 | 1.155 |
+#> |.....................| 0.03040 | 0.7530 | 0.8172 | 1.318 |
+#> |.....................| 1.144 | 1.150 |...........|...........|
+#> | X| 478.53604 | 93.02 | 0.004879 | 0.2801 | 0.8972 |
+#> |.....................| 9.903 | 1.399 | 0.03165 | 1.155 |
+#> |.....................| 0.03040 | 0.7530 | 0.8172 | 1.318 |
+#> |.....................| 1.144 | 1.150 |...........|...........|
+#> | F| Forward Diff. | 52.06 | 1.969 | 0.1359 | 0.2508 |
+#> |.....................| -0.04337 | -37.95 | -8.435 | 0.2680 |
+#> |.....................| -2.930 | 0.5186 | 5.955 | -8.188 |
+#> |.....................| -6.576 | -6.741 |...........|...........|
+#> | 38| 477.90297 | 0.9924 | -1.021 | -0.9111 | -0.8965 |
+#> |.....................| -0.8436 | -0.4428 | -0.7846 | -0.8771 |
+#> |.....................| -0.8659 | -0.8830 | -0.9416 | -0.7776 |
+#> |.....................| -0.7975 | -0.7955 |...........|...........|
+#> | U| 477.90297 | 92.41 | -5.324 | -0.9439 | -0.1086 |
+#> |.....................| 2.293 | 1.406 | 0.03166 | 1.155 |
+#> |.....................| 0.03044 | 0.7531 | 0.8151 | 1.323 |
+#> |.....................| 1.147 | 1.152 |...........|...........|
+#> | X| 477.90297 | 92.41 | 0.004873 | 0.2801 | 0.8971 |
+#> |.....................| 9.904 | 1.406 | 0.03166 | 1.155 |
+#> |.....................| 0.03044 | 0.7531 | 0.8151 | 1.323 |
+#> |.....................| 1.147 | 1.152 |...........|...........|
+#> | F| Forward Diff. | -35.48 | 1.900 | -0.1171 | 0.1805 |
+#> |.....................| -0.3013 | -36.12 | -8.554 | 1.521 |
+#> |.....................| -2.082 | 0.5139 | 5.057 | -7.934 |
+#> |.....................| -6.421 | -6.501 |...........|...........|
+#> | 39| 477.39487 | 0.9991 | -1.022 | -0.9111 | -0.8966 |
+#> |.....................| -0.8434 | -0.4296 | -0.7836 | -0.8780 |
+#> |.....................| -0.8642 | -0.8831 | -0.9436 | -0.7740 |
+#> |.....................| -0.7946 | -0.7928 |...........|...........|
+#> | U| 477.39487 | 93.04 | -5.325 | -0.9439 | -0.1088 |
+#> |.....................| 2.293 | 1.414 | 0.03168 | 1.154 |
+#> |.....................| 0.03047 | 0.7531 | 0.8134 | 1.327 |
+#> |.....................| 1.150 | 1.155 |...........|...........|
+#> | X| 477.39487 | 93.04 | 0.004868 | 0.2801 | 0.8969 |
+#> |.....................| 9.906 | 1.414 | 0.03168 | 1.154 |
+#> |.....................| 0.03047 | 0.7531 | 0.8134 | 1.327 |
+#> |.....................| 1.150 | 1.155 |...........|...........|
+#> | F| Forward Diff. | 53.22 | 1.947 | 0.1564 | 0.2562 |
+#> |.....................| -0.02756 | -35.38 | -7.440 | 1.129 |
+#> |.....................| -2.109 | 0.8531 | 5.389 | -7.888 |
+#> |.....................| -6.311 | -6.462 |...........|...........|
+#> | 40| 476.77835 | 0.9927 | -1.023 | -0.9112 | -0.8968 |
+#> |.....................| -0.8433 | -0.4165 | -0.7840 | -0.8801 |
+#> |.....................| -0.8630 | -0.8835 | -0.9455 | -0.7699 |
+#> |.....................| -0.7913 | -0.7897 |...........|...........|
+#> | U| 476.77835 | 92.44 | -5.326 | -0.9439 | -0.1090 |
+#> |.....................| 2.293 | 1.422 | 0.03167 | 1.153 |
+#> |.....................| 0.03048 | 0.7527 | 0.8117 | 1.332 |
+#> |.....................| 1.153 | 1.159 |...........|...........|
+#> | X| 476.77835 | 92.44 | 0.004861 | 0.2801 | 0.8968 |
+#> |.....................| 9.907 | 1.422 | 0.03167 | 1.153 |
+#> |.....................| 0.03048 | 0.7527 | 0.8117 | 1.332 |
+#> |.....................| 1.153 | 1.159 |...........|...........|
+#> | F| Forward Diff. | -31.48 | 1.878 | -0.09989 | 0.1868 |
+#> |.....................| -0.2862 | -34.69 | -7.934 | 1.303 |
+#> |.....................| -2.230 | 0.5238 | 3.299 | -7.623 |
+#> |.....................| -6.137 | -6.207 |...........|...........|
+#> | 41| 476.29140 | 0.9988 | -1.024 | -0.9112 | -0.8970 |
+#> |.....................| -0.8432 | -0.4030 | -0.7837 | -0.8817 |
+#> |.....................| -0.8615 | -0.8839 | -0.9453 | -0.7660 |
+#> |.....................| -0.7883 | -0.7869 |...........|...........|
+#> | U| 476.2914 | 93.01 | -5.328 | -0.9440 | -0.1091 |
+#> |.....................| 2.293 | 1.430 | 0.03168 | 1.152 |
+#> |.....................| 0.03051 | 0.7524 | 0.8119 | 1.337 |
+#> |.....................| 1.157 | 1.162 |...........|...........|
+#> | X| 476.2914 | 93.01 | 0.004855 | 0.2801 | 0.8966 |
+#> |.....................| 9.909 | 1.430 | 0.03168 | 1.152 |
+#> |.....................| 0.03051 | 0.7524 | 0.8119 | 1.337 |
+#> |.....................| 1.157 | 1.162 |...........|...........|
+#> | F| Forward Diff. | 48.73 | 1.930 | 0.1514 | 0.2545 |
+#> |.....................| -0.03521 | -34.01 | -6.934 | 1.004 |
+#> |.....................| -2.133 | 0.7968 | 5.252 | -7.528 |
+#> |.....................| -6.021 | -6.137 |...........|...........|
+#> | 42| 475.72593 | 0.9927 | -1.026 | -0.9113 | -0.8972 |
+#> |.....................| -0.8430 | -0.3897 | -0.7848 | -0.8834 |
+#> |.....................| -0.8598 | -0.8844 | -0.9451 | -0.7619 |
+#> |.....................| -0.7851 | -0.7840 |...........|...........|
+#> | U| 475.72593 | 92.44 | -5.329 | -0.9441 | -0.1094 |
+#> |.....................| 2.294 | 1.437 | 0.03166 | 1.151 |
+#> |.....................| 0.03053 | 0.7521 | 0.8121 | 1.342 |
+#> |.....................| 1.160 | 1.165 |...........|...........|
+#> | X| 475.72593 | 92.44 | 0.004847 | 0.2801 | 0.8964 |
+#> |.....................| 9.910 | 1.437 | 0.03166 | 1.151 |
+#> |.....................| 0.03053 | 0.7521 | 0.8121 | 1.342 |
+#> |.....................| 1.160 | 1.165 |...........|...........|
+#> | F| Forward Diff. | -31.62 | 1.868 | -0.1026 | 0.1833 |
+#> |.....................| -0.2884 | -33.06 | -7.282 | 1.547 |
+#> |.....................| -2.194 | 0.5347 | 3.320 | -7.249 |
+#> |.....................| -5.852 | -5.889 |...........|...........|
+#> | 43| 475.25217 | 0.9986 | -1.027 | -0.9113 | -0.8974 |
+#> |.....................| -0.8428 | -0.3762 | -0.7856 | -0.8854 |
+#> |.....................| -0.8580 | -0.8849 | -0.9453 | -0.7580 |
+#> |.....................| -0.7821 | -0.7812 |...........|...........|
+#> | U| 475.25217 | 92.99 | -5.331 | -0.9441 | -0.1096 |
+#> |.....................| 2.294 | 1.445 | 0.03165 | 1.150 |
+#> |.....................| 0.03056 | 0.7517 | 0.8119 | 1.346 |
+#> |.....................| 1.163 | 1.168 |...........|...........|
+#> | X| 475.25217 | 92.99 | 0.004840 | 0.2801 | 0.8962 |
+#> |.....................| 9.912 | 1.445 | 0.03165 | 1.150 |
+#> |.....................| 0.03056 | 0.7517 | 0.8119 | 1.346 |
+#> |.....................| 1.163 | 1.168 |...........|...........|
+#> | F| Forward Diff. | 45.01 | 1.918 | 0.1424 | 0.2472 |
+#> |.....................| -0.04139 | -32.61 | -6.424 | 0.9161 |
+#> |.....................| -2.151 | 0.6354 | 5.209 | -7.174 |
+#> |.....................| -5.746 | -5.822 |...........|...........|
+#> | 44| 474.72079 | 0.9929 | -1.029 | -0.9114 | -0.8977 |
+#> |.....................| -0.8427 | -0.3629 | -0.7879 | -0.8876 |
+#> |.....................| -0.8559 | -0.8852 | -0.9458 | -0.7541 |
+#> |.....................| -0.7790 | -0.7785 |...........|...........|
+#> | U| 474.72079 | 92.46 | -5.333 | -0.9442 | -0.1098 |
+#> |.....................| 2.294 | 1.453 | 0.03161 | 1.149 |
+#> |.....................| 0.03059 | 0.7515 | 0.8114 | 1.351 |
+#> |.....................| 1.167 | 1.171 |...........|...........|
+#> | X| 474.72079 | 92.46 | 0.004831 | 0.2800 | 0.8960 |
+#> |.....................| 9.913 | 1.453 | 0.03161 | 1.149 |
+#> |.....................| 0.03059 | 0.7515 | 0.8114 | 1.351 |
+#> |.....................| 1.167 | 1.171 |...........|...........|
+#> | F| Forward Diff. | -29.98 | 1.856 | -0.09377 | 0.1852 |
+#> |.....................| -0.2753 | -32.15 | -6.889 | 1.072 |
+#> |.....................| -2.266 | 0.4091 | 3.274 | -6.876 |
+#> |.....................| -5.564 | -5.585 |...........|...........|
+#> | 45| 474.26379 | 0.9985 | -1.031 | -0.9115 | -0.8979 |
+#> |.....................| -0.8425 | -0.3491 | -0.7895 | -0.8887 |
+#> |.....................| -0.8536 | -0.8852 | -0.9464 | -0.7506 |
+#> |.....................| -0.7762 | -0.7761 |...........|...........|
+#> | U| 474.26379 | 92.98 | -5.335 | -0.9443 | -0.1101 |
+#> |.....................| 2.294 | 1.461 | 0.03159 | 1.148 |
+#> |.....................| 0.03063 | 0.7515 | 0.8109 | 1.355 |
+#> |.....................| 1.170 | 1.173 |...........|...........|
+#> | X| 474.26379 | 92.98 | 0.004822 | 0.2800 | 0.8958 |
+#> |.....................| 9.915 | 1.461 | 0.03159 | 1.148 |
+#> |.....................| 0.03063 | 0.7515 | 0.8109 | 1.355 |
+#> |.....................| 1.170 | 1.173 |...........|...........|
+#> | F| Forward Diff. | 42.78 | 1.902 | 0.1464 | 0.2388 |
+#> |.....................| -0.03417 | -31.28 | -5.931 | 0.8375 |
+#> |.....................| -2.202 | 0.7305 | 5.128 | -6.841 |
+#> |.....................| -5.479 | -5.554 |...........|...........|
+#> | 46| 473.76810 | 0.9929 | -1.033 | -0.9117 | -0.8982 |
+#> |.....................| -0.8424 | -0.3358 | -0.7928 | -0.8897 |
+#> |.....................| -0.8508 | -0.8855 | -0.9473 | -0.7471 |
+#> |.....................| -0.7734 | -0.7737 |...........|...........|
+#> | U| 473.7681 | 92.46 | -5.337 | -0.9444 | -0.1104 |
+#> |.....................| 2.294 | 1.469 | 0.03154 | 1.147 |
+#> |.....................| 0.03067 | 0.7512 | 0.8101 | 1.360 |
+#> |.....................| 1.173 | 1.176 |...........|...........|
+#> | X| 473.7681 | 92.46 | 0.004812 | 0.2800 | 0.8955 |
+#> |.....................| 9.917 | 1.469 | 0.03154 | 1.147 |
+#> |.....................| 0.03067 | 0.7512 | 0.8101 | 1.360 |
+#> |.....................| 1.173 | 1.176 |...........|...........|
+#> | F| Forward Diff. | -30.83 | 1.832 | -0.1003 | 0.1743 |
+#> |.....................| -0.2686 | -30.77 | -6.362 | 1.107 |
+#> |.....................| -2.234 | 0.4249 | 4.678 | -6.593 |
+#> |.....................| -5.329 | -5.340 |...........|...........|
+#> | 47| 473.32508 | 0.9983 | -1.035 | -0.9117 | -0.8984 |
+#> |.....................| -0.8422 | -0.3229 | -0.7959 | -0.8909 |
+#> |.....................| -0.8482 | -0.8859 | -0.9520 | -0.7438 |
+#> |.....................| -0.7708 | -0.7715 |...........|...........|
+#> | U| 473.32508 | 92.96 | -5.339 | -0.9445 | -0.1106 |
+#> |.....................| 2.294 | 1.476 | 0.03149 | 1.147 |
+#> |.....................| 0.03071 | 0.7509 | 0.8061 | 1.364 |
+#> |.....................| 1.175 | 1.178 |...........|...........|
+#> | X| 473.32508 | 92.96 | 0.004802 | 0.2800 | 0.8953 |
+#> |.....................| 9.918 | 1.476 | 0.03149 | 1.147 |
+#> |.....................| 0.03071 | 0.7509 | 0.8061 | 1.364 |
+#> |.....................| 1.175 | 1.178 |...........|...........|
+#> | F| Forward Diff. | 38.19 | 1.865 | 0.1554 | 0.2504 |
+#> |.....................| -0.02116 | -30.15 | -5.522 | 0.8218 |
+#> |.....................| -2.215 | 0.6878 | 4.772 | -6.537 |
+#> |.....................| -5.232 | -5.315 |...........|...........|
+#> | 48| 472.87290 | 0.9930 | -1.038 | -0.9119 | -0.8988 |
+#> |.....................| -0.8421 | -0.3103 | -0.8002 | -0.8921 |
+#> |.....................| -0.8451 | -0.8864 | -0.9564 | -0.7407 |
+#> |.....................| -0.7684 | -0.7695 |...........|...........|
+#> | U| 472.8729 | 92.47 | -5.341 | -0.9447 | -0.1109 |
+#> |.....................| 2.294 | 1.483 | 0.03143 | 1.146 |
+#> |.....................| 0.03075 | 0.7506 | 0.8022 | 1.367 |
+#> |.....................| 1.178 | 1.180 |...........|...........|
+#> | X| 472.8729 | 92.47 | 0.004791 | 0.2800 | 0.8950 |
+#> |.....................| 9.919 | 1.483 | 0.03143 | 1.146 |
+#> |.....................| 0.03075 | 0.7506 | 0.8022 | 1.367 |
+#> |.....................| 1.178 | 1.180 |...........|...........|
+#> | F| Forward Diff. | -31.43 | 1.786 | -0.07853 | 0.1828 |
+#> |.....................| -0.2451 | -29.69 | -5.937 | 1.129 |
+#> |.....................| -2.237 | 0.5225 | 4.143 | -6.356 |
+#> |.....................| -5.097 | -5.139 |...........|...........|
+#> | 49| 472.45068 | 0.9981 | -1.040 | -0.9121 | -0.8991 |
+#> |.....................| -0.8421 | -0.2974 | -0.8046 | -0.8935 |
+#> |.....................| -0.8420 | -0.8871 | -0.9597 | -0.7375 |
+#> |.....................| -0.7660 | -0.7674 |...........|...........|
+#> | U| 472.45068 | 92.94 | -5.343 | -0.9449 | -0.1112 |
+#> |.....................| 2.294 | 1.491 | 0.03136 | 1.145 |
+#> |.....................| 0.03080 | 0.7500 | 0.7993 | 1.371 |
+#> |.....................| 1.180 | 1.183 |...........|...........|
+#> | X| 472.45068 | 92.94 | 0.004780 | 0.2799 | 0.8947 |
+#> |.....................| 9.919 | 1.491 | 0.03136 | 1.145 |
+#> |.....................| 0.03080 | 0.7500 | 0.7993 | 1.371 |
+#> |.....................| 1.180 | 1.183 |...........|...........|
+#> | F| Forward Diff. | 34.69 | 1.825 | 0.1712 | 0.2558 |
+#> |.....................| 0.0008262 | -30.15 | -5.461 | 0.02383 |
+#> |.....................| -3.011 | 0.3236 | 4.609 | -6.242 |
+#> |.....................| -4.997 | -5.107 |...........|...........|
+#> | 50| 472.02915 | 0.9936 | -1.042 | -0.9125 | -0.8995 |
+#> |.....................| -0.8422 | -0.2847 | -0.8092 | -0.8923 |
+#> |.....................| -0.8364 | -0.8868 | -0.9626 | -0.7353 |
+#> |.....................| -0.7644 | -0.7660 |...........|...........|
+#> | U| 472.02915 | 92.52 | -5.345 | -0.9452 | -0.1116 |
+#> |.....................| 2.294 | 1.498 | 0.03129 | 1.146 |
+#> |.....................| 0.03088 | 0.7503 | 0.7968 | 1.374 |
+#> |.....................| 1.182 | 1.184 |...........|...........|
+#> | X| 472.02915 | 92.52 | 0.004770 | 0.2799 | 0.8944 |
+#> |.....................| 9.918 | 1.498 | 0.03129 | 1.146 |
+#> |.....................| 0.03088 | 0.7503 | 0.7968 | 1.374 |
+#> |.....................| 1.182 | 1.184 |...........|...........|
+#> | F| Forward Diff. | -26.29 | 1.758 | -0.04843 | 0.1910 |
+#> |.....................| -0.1997 | -28.69 | -5.506 | 1.097 |
+#> |.....................| -2.285 | 0.4947 | 2.297 | -6.079 |
+#> |.....................| -4.892 | -4.970 |...........|...........|
+#> | 51| 471.69520 | 0.9992 | -1.044 | -0.9127 | -0.8998 |
+#> |.....................| -0.8423 | -0.2715 | -0.8127 | -0.8918 |
+#> |.....................| -0.8317 | -0.8866 | -0.9606 | -0.7330 |
+#> |.....................| -0.7627 | -0.7642 |...........|...........|
+#> | U| 471.6952 | 93.04 | -5.347 | -0.9454 | -0.1120 |
+#> |.....................| 2.294 | 1.506 | 0.03124 | 1.146 |
+#> |.....................| 0.03096 | 0.7504 | 0.7985 | 1.377 |
+#> |.....................| 1.184 | 1.186 |...........|...........|
+#> | X| 471.6952 | 93.04 | 0.004761 | 0.2798 | 0.8941 |
+#> |.....................| 9.917 | 1.506 | 0.03124 | 1.146 |
+#> |.....................| 0.03096 | 0.7504 | 0.7985 | 1.377 |
+#> |.....................| 1.184 | 1.186 |...........|...........|
+#> | F| Forward Diff. | 46.70 | 1.815 | 0.2108 | 0.2607 |
+#> |.....................| 0.05766 | -27.95 | -4.639 | 0.9041 |
+#> |.....................| -2.201 | 0.7590 | 4.326 | -6.078 |
+#> |.....................| -4.851 | -4.972 |...........|...........|
+#> | 52| 471.30240 | 0.9939 | -1.046 | -0.9131 | -0.9002 |
+#> |.....................| -0.8425 | -0.2596 | -0.8187 | -0.8939 |
+#> |.....................| -0.8280 | -0.8876 | -0.9571 | -0.7302 |
+#> |.....................| -0.7606 | -0.7622 |...........|...........|
+#> | U| 471.3024 | 92.55 | -5.350 | -0.9458 | -0.1124 |
+#> |.....................| 2.294 | 1.513 | 0.03115 | 1.145 |
+#> |.....................| 0.03101 | 0.7497 | 0.8016 | 1.380 |
+#> |.....................| 1.186 | 1.188 |...........|...........|
+#> | X| 471.3024 | 92.55 | 0.004750 | 0.2797 | 0.8937 |
+#> |.....................| 9.915 | 1.513 | 0.03115 | 1.145 |
+#> |.....................| 0.03101 | 0.7497 | 0.8016 | 1.380 |
+#> |.....................| 1.186 | 1.188 |...........|...........|
+#> | F| Forward Diff. | -23.61 | 1.763 | -0.06060 | 0.1836 |
+#> |.....................| -0.1912 | -28.31 | -5.279 | 0.6597 |
+#> |.....................| -2.739 | 0.2048 | 5.941 | -5.864 |
+#> |.....................| -4.747 | -4.787 |...........|...........|
+#> | 53| 470.94339 | 0.9985 | -1.048 | -0.9133 | -0.9006 |
+#> |.....................| -0.8426 | -0.2476 | -0.8235 | -0.8946 |
+#> |.....................| -0.8237 | -0.8877 | -0.9629 | -0.7278 |
+#> |.....................| -0.7587 | -0.7604 |...........|...........|
+#> | U| 470.94339 | 92.98 | -5.352 | -0.9460 | -0.1127 |
+#> |.....................| 2.294 | 1.520 | 0.03108 | 1.145 |
+#> |.....................| 0.03108 | 0.7496 | 0.7965 | 1.383 |
+#> |.....................| 1.188 | 1.190 |...........|...........|
+#> | X| 470.94339 | 92.98 | 0.004740 | 0.2797 | 0.8934 |
+#> |.....................| 9.914 | 1.520 | 0.03108 | 1.145 |
+#> |.....................| 0.03108 | 0.7496 | 0.7965 | 1.383 |
+#> |.....................| 1.188 | 1.190 |...........|...........|
+#> | F| Forward Diff. | 36.04 | 1.791 | 0.1836 | 0.2544 |
+#> |.....................| 0.04274 | -27.03 | -4.370 | 0.9159 |
+#> |.....................| -2.217 | 0.6791 | 4.141 | -5.840 |
+#> |.....................| -4.667 | -4.764 |...........|...........|
+#> | 54| 470.60274 | 0.9931 | -1.051 | -0.9136 | -0.9010 |
+#> |.....................| -0.8428 | -0.2366 | -0.8300 | -0.8957 |
+#> |.....................| -0.8190 | -0.8879 | -0.9681 | -0.7257 |
+#> |.....................| -0.7570 | -0.7588 |...........|...........|
+#> | U| 470.60274 | 92.48 | -5.354 | -0.9463 | -0.1131 |
+#> |.....................| 2.294 | 1.526 | 0.03098 | 1.144 |
+#> |.....................| 0.03115 | 0.7494 | 0.7919 | 1.386 |
+#> |.....................| 1.190 | 1.192 |...........|...........|
+#> | X| 470.60274 | 92.48 | 0.004728 | 0.2796 | 0.8930 |
+#> |.....................| 9.912 | 1.526 | 0.03098 | 1.144 |
+#> |.....................| 0.03115 | 0.7494 | 0.7919 | 1.386 |
+#> |.....................| 1.190 | 1.192 |...........|...........|
+#> | F| Forward Diff. | -35.91 | 1.718 | -0.07847 | 0.1786 |
+#> |.....................| -0.1996 | -26.69 | -4.843 | 1.231 |
+#> |.....................| -2.229 | 0.5625 | 3.489 | -5.662 |
+#> |.....................| -4.557 | -4.604 |...........|...........|
+#> | 55| 470.25392 | 0.9977 | -1.054 | -0.9140 | -0.9015 |
+#> |.....................| -0.8431 | -0.2250 | -0.8375 | -0.8987 |
+#> |.....................| -0.8153 | -0.8894 | -0.9673 | -0.7229 |
+#> |.....................| -0.7550 | -0.7569 |...........|...........|
+#> | U| 470.25392 | 92.90 | -5.357 | -0.9467 | -0.1136 |
+#> |.....................| 2.293 | 1.533 | 0.03087 | 1.142 |
+#> |.....................| 0.03120 | 0.7483 | 0.7927 | 1.389 |
+#> |.....................| 1.192 | 1.194 |...........|...........|
+#> | X| 470.25392 | 92.90 | 0.004715 | 0.2796 | 0.8926 |
+#> |.....................| 9.909 | 1.533 | 0.03087 | 1.142 |
+#> |.....................| 0.03120 | 0.7483 | 0.7927 | 1.389 |
+#> |.....................| 1.192 | 1.194 |...........|...........|
+#> | F| Forward Diff. | 23.42 | 1.753 | 0.1414 | 0.2393 |
+#> |.....................| 0.01691 | -26.51 | -4.262 | 0.6993 |
+#> |.....................| -2.408 | 0.5525 | 2.318 | -5.573 |
+#> |.....................| -4.475 | -4.572 |...........|...........|
+#> | 56| 469.96066 | 0.9934 | -1.056 | -0.9144 | -0.9019 |
+#> |.....................| -0.8434 | -0.2128 | -0.8432 | -0.9002 |
+#> |.....................| -0.8113 | -0.8903 | -0.9627 | -0.7205 |
+#> |.....................| -0.7531 | -0.7551 |...........|...........|
+#> | U| 469.96066 | 92.50 | -5.359 | -0.9470 | -0.1140 |
+#> |.....................| 2.293 | 1.540 | 0.03078 | 1.141 |
+#> |.....................| 0.03126 | 0.7476 | 0.7967 | 1.392 |
+#> |.....................| 1.194 | 1.196 |...........|...........|
+#> | X| 469.96066 | 92.50 | 0.004704 | 0.2795 | 0.8922 |
+#> |.....................| 9.906 | 1.540 | 0.03078 | 1.141 |
+#> |.....................| 0.03126 | 0.7476 | 0.7967 | 1.392 |
+#> |.....................| 1.194 | 1.196 |...........|...........|
+#> | F| Forward Diff. | -33.10 | 1.713 | -0.09549 | 0.1710 |
+#> |.....................| -0.1943 | -25.89 | -4.557 | 1.045 |
+#> |.....................| -2.243 | 0.5648 | 3.834 | -5.392 |
+#> |.....................| -4.399 | -4.402 |...........|...........|
+#> | 57| 469.66426 | 0.9983 | -1.059 | -0.9147 | -0.9023 |
+#> |.....................| -0.8437 | -0.2012 | -0.8503 | -0.9014 |
+#> |.....................| -0.8068 | -0.8914 | -0.9589 | -0.7186 |
+#> |.....................| -0.7515 | -0.7537 |...........|...........|
+#> | U| 469.66426 | 92.95 | -5.362 | -0.9473 | -0.1144 |
+#> |.....................| 2.293 | 1.547 | 0.03068 | 1.141 |
+#> |.....................| 0.03133 | 0.7468 | 0.8000 | 1.394 |
+#> |.....................| 1.196 | 1.197 |...........|...........|
+#> | X| 469.66426 | 92.95 | 0.004691 | 0.2794 | 0.8919 |
+#> |.....................| 9.903 | 1.547 | 0.03068 | 1.141 |
+#> |.....................| 0.03133 | 0.7468 | 0.8000 | 1.394 |
+#> |.....................| 1.196 | 1.197 |...........|...........|
+#> | F| Forward Diff. | 29.48 | 1.769 | 0.1441 | 0.2362 |
+#> |.....................| 0.03493 | -25.40 | -3.876 | 0.7581 |
+#> |.....................| -2.246 | 0.6653 | 4.370 | -5.362 |
+#> |.....................| -4.340 | -4.389 |...........|...........|
+#> | 58| 469.35361 | 0.9940 | -1.062 | -0.9149 | -0.9027 |
+#> |.....................| -0.8440 | -0.1900 | -0.8585 | -0.9032 |
+#> |.....................| -0.8026 | -0.8931 | -0.9615 | -0.7168 |
+#> |.....................| -0.7497 | -0.7523 |...........|...........|
+#> | U| 469.35361 | 92.56 | -5.365 | -0.9475 | -0.1149 |
+#> |.....................| 2.293 | 1.553 | 0.03055 | 1.140 |
+#> |.....................| 0.03139 | 0.7454 | 0.7977 | 1.396 |
+#> |.....................| 1.198 | 1.199 |...........|...........|
+#> | X| 469.35361 | 92.56 | 0.004677 | 0.2794 | 0.8915 |
+#> |.....................| 9.900 | 1.553 | 0.03055 | 1.140 |
+#> |.....................| 0.03139 | 0.7454 | 0.7977 | 1.396 |
+#> |.....................| 1.198 | 1.199 |...........|...........|
+#> | F| Forward Diff. | -26.71 | 1.702 | -0.07338 | 0.1729 |
+#> |.....................| -0.1601 | -26.00 | -4.465 | 0.4354 |
+#> |.....................| -2.821 | 0.3110 | 5.728 | -5.228 |
+#> |.....................| -4.240 | -4.266 |...........|...........|
+#> | 59| 469.04262 | 0.9978 | -1.064 | -0.9151 | -0.9031 |
+#> |.....................| -0.8443 | -0.1798 | -0.8657 | -0.9030 |
+#> |.....................| -0.7971 | -0.8938 | -0.9685 | -0.7157 |
+#> |.....................| -0.7487 | -0.7515 |...........|...........|
+#> | U| 469.04262 | 92.91 | -5.368 | -0.9477 | -0.1152 |
+#> |.....................| 2.292 | 1.559 | 0.03044 | 1.140 |
+#> |.....................| 0.03147 | 0.7450 | 0.7916 | 1.398 |
+#> |.....................| 1.199 | 1.200 |...........|...........|
+#> | X| 469.04262 | 92.91 | 0.004665 | 0.2794 | 0.8912 |
+#> |.....................| 9.897 | 1.559 | 0.03044 | 1.140 |
+#> |.....................| 0.03147 | 0.7450 | 0.7916 | 1.398 |
+#> |.....................| 1.199 | 1.200 |...........|...........|
+#> | 60| 468.78438 | 0.9975 | -1.068 | -0.9154 | -0.9036 |
+#> |.....................| -0.8447 | -0.1709 | -0.8764 | -0.9025 |
+#> |.....................| -0.7900 | -0.8946 | -0.9771 | -0.7153 |
+#> |.....................| -0.7482 | -0.7514 |...........|...........|
+#> | U| 468.78438 | 92.88 | -5.371 | -0.9479 | -0.1157 |
+#> |.....................| 2.292 | 1.564 | 0.03028 | 1.140 |
+#> |.....................| 0.03158 | 0.7443 | 0.7841 | 1.398 |
+#> |.....................| 1.200 | 1.200 |...........|...........|
+#> | X| 468.78438 | 92.88 | 0.004649 | 0.2793 | 0.8907 |
+#> |.....................| 9.893 | 1.564 | 0.03028 | 1.140 |
+#> |.....................| 0.03158 | 0.7443 | 0.7841 | 1.398 |
+#> |.....................| 1.200 | 1.200 |...........|...........|
+#> | 61| 467.65199 | 0.9960 | -1.083 | -0.9167 | -0.9058 |
+#> |.....................| -0.8469 | -0.1283 | -0.9284 | -0.9002 |
+#> |.....................| -0.7560 | -0.8987 | -1.018 | -0.7133 |
+#> |.....................| -0.7456 | -0.7506 |...........|...........|
+#> | U| 467.65199 | 92.74 | -5.387 | -0.9492 | -0.1179 |
+#> |.....................| 2.290 | 1.589 | 0.02950 | 1.141 |
+#> |.....................| 0.03209 | 0.7413 | 0.7481 | 1.401 |
+#> |.....................| 1.202 | 1.201 |...........|...........|
+#> | X| 467.65199 | 92.74 | 0.004577 | 0.2791 | 0.8887 |
+#> |.....................| 9.872 | 1.589 | 0.02950 | 1.141 |
+#> |.....................| 0.03209 | 0.7413 | 0.7481 | 1.401 |
+#> |.....................| 1.202 | 1.201 |...........|...........|
+#> | 62| 464.96560 | 0.9898 | -1.148 | -0.9222 | -0.9151 |
+#> |.....................| -0.8556 | 0.04847 | -1.144 | -0.8910 |
+#> |.....................| -0.6148 | -0.9154 | -1.189 | -0.7051 |
+#> |.....................| -0.7350 | -0.7474 |...........|...........|
+#> | U| 464.9656 | 92.17 | -5.451 | -0.9543 | -0.1273 |
+#> |.....................| 2.281 | 1.691 | 0.02626 | 1.147 |
+#> |.....................| 0.03421 | 0.7285 | 0.5986 | 1.411 |
+#> |.....................| 1.214 | 1.204 |...........|...........|
+#> | X| 464.9656 | 92.17 | 0.004291 | 0.2780 | 0.8805 |
+#> |.....................| 9.786 | 1.691 | 0.02626 | 1.147 |
+#> |.....................| 0.03421 | 0.7285 | 0.5986 | 1.411 |
+#> |.....................| 1.214 | 1.204 |...........|...........|
+#> | F| Forward Diff. | -134.9 | 0.8693 | 0.2607 | 0.2086 |
+#> |.....................| 0.2111 | -19.53 | -3.427 | 3.399 |
+#> |.....................| -2.172 | 1.526 | -11.79 | -4.993 |
+#> |.....................| -3.321 | -4.659 |...........|...........|
+#> | 63| 458.88877 | 1.003 | -1.235 | -0.9465 | -0.9328 |
+#> |.....................| -0.8841 | 0.3192 | -1.460 | -0.9475 |
+#> |.....................| -0.4237 | -0.9768 | -1.134 | -0.6574 |
+#> |.....................| -0.7075 | -0.6995 |...........|...........|
+#> | U| 458.88877 | 93.40 | -5.538 | -0.9774 | -0.1450 |
+#> |.....................| 2.252 | 1.848 | 0.02152 | 1.114 |
+#> |.....................| 0.03709 | 0.6820 | 0.6469 | 1.468 |
+#> |.....................| 1.243 | 1.255 |...........|...........|
+#> | X| 458.88877 | 93.40 | 0.003933 | 0.2734 | 0.8651 |
+#> |.....................| 9.511 | 1.848 | 0.02152 | 1.114 |
+#> |.....................| 0.03709 | 0.6820 | 0.6469 | 1.468 |
+#> |.....................| 1.243 | 1.255 |...........|...........|
+#> | 64| 455.19412 | 1.006 | -1.330 | -0.9732 | -0.9522 |
+#> |.....................| -0.9154 | 0.6143 | -1.806 | -1.009 |
+#> |.....................| -0.2144 | -1.044 | -1.075 | -0.6056 |
+#> |.....................| -0.6776 | -0.6473 |...........|...........|
+#> | U| 455.19412 | 93.67 | -5.634 | -1.003 | -0.1644 |
+#> |.....................| 2.221 | 2.019 | 0.01631 | 1.078 |
+#> |.....................| 0.04023 | 0.6311 | 0.6989 | 1.531 |
+#> |.....................| 1.275 | 1.311 |...........|...........|
+#> | X| 455.19412 | 93.67 | 0.003576 | 0.2684 | 0.8484 |
+#> |.....................| 9.218 | 2.019 | 0.01631 | 1.078 |
+#> |.....................| 0.04023 | 0.6311 | 0.6989 | 1.531 |
+#> |.....................| 1.275 | 1.311 |...........|...........|
+#> | F| Forward Diff. | 18.82 | 0.9889 | -1.032 | -0.1489 |
+#> |.....................| 0.2009 | -8.117 | -0.5123 | 0.1656 |
+#> |.....................| -2.314 | -3.473 | -0.8284 | 0.3432 |
+#> |.....................| -0.8357 | 0.04588 |...........|...........|
+#> | 65| 458.62552 | 1.004 | -1.494 | -0.8145 | -0.9319 |
+#> |.....................| -0.9630 | 1.033 | -2.192 | -1.036 |
+#> |.....................| 0.2529 | -0.5036 | -0.8838 | -0.8679 |
+#> |.....................| -0.7178 | -0.8209 |...........|...........|
+#> | U| 458.62552 | 93.52 | -5.797 | -0.8527 | -0.1440 |
+#> |.....................| 2.174 | 2.262 | 0.01051 | 1.062 |
+#> |.....................| 0.04725 | 1.041 | 0.8656 | 1.213 |
+#> |.....................| 1.232 | 1.125 |...........|...........|
+#> | X| 458.62552 | 93.52 | 0.003036 | 0.2989 | 0.8659 |
+#> |.....................| 8.789 | 2.262 | 0.01051 | 1.062 |
+#> |.....................| 0.04725 | 1.041 | 0.8656 | 1.213 |
+#> |.....................| 1.232 | 1.125 |...........|...........|
+#> | 66| 454.48694 | 1.003 | -1.384 | -0.9206 | -0.9455 |
+#> |.....................| -0.9312 | 0.7538 | -1.934 | -1.018 |
+#> |.....................| -0.05956 | -0.8649 | -1.011 | -0.6924 |
+#> |.....................| -0.6908 | -0.7048 |...........|...........|
+#> | U| 454.48694 | 93.41 | -5.688 | -0.9529 | -0.1576 |
+#> |.....................| 2.205 | 2.100 | 0.01439 | 1.073 |
+#> |.....................| 0.04256 | 0.7669 | 0.7542 | 1.426 |
+#> |.....................| 1.261 | 1.250 |...........|...........|
+#> | X| 454.48694 | 93.41 | 0.003387 | 0.2783 | 0.8542 |
+#> |.....................| 9.074 | 2.100 | 0.01439 | 1.073 |
+#> |.....................| 0.04256 | 0.7669 | 0.7542 | 1.426 |
+#> |.....................| 1.261 | 1.250 |...........|...........|
+#> | F| Forward Diff. | -11.88 | 0.8805 | 1.030 | 0.0001663 |
+#> |.....................| -0.3119 | -6.748 | -1.151 | 0.2517 |
+#> |.....................| -3.379 | 3.981 | 5.317 | -4.395 |
+#> |.....................| -1.890 | -2.785 |...........|...........|
+#> | 67| 453.47854 | 1.004 | -1.455 | -0.9097 | -0.9308 |
+#> |.....................| -0.9364 | 0.8078 | -2.047 | -1.046 |
+#> |.....................| 0.2383 | -0.8443 | -0.9977 | -0.6524 |
+#> |.....................| -0.6789 | -0.6970 |...........|...........|
+#> | U| 453.47854 | 93.48 | -5.759 | -0.9426 | -0.1429 |
+#> |.....................| 2.200 | 2.132 | 0.01270 | 1.056 |
+#> |.....................| 0.04703 | 0.7825 | 0.7661 | 1.474 |
+#> |.....................| 1.274 | 1.258 |...........|...........|
+#> | X| 453.47854 | 93.48 | 0.003156 | 0.2804 | 0.8668 |
+#> |.....................| 9.026 | 2.132 | 0.01270 | 1.056 |
+#> |.....................| 0.04703 | 0.7825 | 0.7661 | 1.474 |
+#> |.....................| 1.274 | 1.258 |...........|...........|
+#> | F| Forward Diff. | -7.580 | 0.7096 | 1.748 | 0.4450 |
+#> |.....................| -0.3063 | -5.686 | -1.090 | 2.089 |
+#> |.....................| -1.806 | 4.661 | 3.477 | -2.550 |
+#> |.....................| -1.063 | -2.646 |...........|...........|
+#> | 68| 452.65869 | 1.010 | -1.604 | -0.9910 | -0.9601 |
+#> |.....................| -0.9321 | 0.9548 | -2.236 | -1.333 |
+#> |.....................| 0.7427 | -0.9083 | -1.017 | -0.7899 |
+#> |.....................| -0.7453 | -0.6781 |...........|...........|
+#> | U| 452.65869 | 94.06 | -5.907 | -1.019 | -0.1723 |
+#> |.....................| 2.204 | 2.217 | 0.009851 | 0.8906 |
+#> |.....................| 0.05461 | 0.7340 | 0.7490 | 1.308 |
+#> |.....................| 1.203 | 1.278 |...........|...........|
+#> | X| 452.65869 | 94.06 | 0.002719 | 0.2652 | 0.8418 |
+#> |.....................| 9.065 | 2.217 | 0.009851 | 0.8906 |
+#> |.....................| 0.05461 | 0.7340 | 0.7490 | 1.308 |
+#> |.....................| 1.203 | 1.278 |...........|...........|
+#> | F| Forward Diff. | 87.74 | 0.4343 | -0.7887 | -0.2527 |
+#> |.....................| -0.1232 | -3.287 | -0.3715 | -5.728 |
+#> |.....................| -3.469 | 4.620 | 5.104 | -8.863 |
+#> |.....................| -5.024 | -1.180 |...........|...........|
+#> | 69| 455.46876 | 1.000 | -1.721 | -0.9929 | -1.109 |
+#> |.....................| -0.8905 | 1.109 | -2.343 | -1.386 |
+#> |.....................| 1.193 | -1.162 | -0.9750 | -0.9277 |
+#> |.....................| -0.5804 | -0.9245 |...........|...........|
+#> | U| 455.46876 | 93.13 | -6.025 | -1.021 | -0.3216 |
+#> |.....................| 2.246 | 2.306 | 0.008241 | 0.8595 |
+#> |.....................| 0.06138 | 0.5417 | 0.7859 | 1.140 |
+#> |.....................| 1.379 | 1.014 |...........|...........|
+#> | X| 455.46876 | 93.13 | 0.002419 | 0.2648 | 0.7250 |
+#> |.....................| 9.450 | 2.306 | 0.008241 | 0.8595 |
+#> |.....................| 0.06138 | 0.5417 | 0.7859 | 1.140 |
+#> |.....................| 1.379 | 1.014 |...........|...........|
+#> | 70| 453.13548 | 0.9926 | -1.633 | -0.9913 | -0.9976 |
+#> |.....................| -0.9216 | 0.9941 | -2.263 | -1.345 |
+#> |.....................| 0.8563 | -0.9728 | -1.008 | -0.8230 |
+#> |.....................| -0.7030 | -0.7398 |...........|...........|
+#> | U| 453.13548 | 92.43 | -5.937 | -1.020 | -0.2097 |
+#> |.....................| 2.215 | 2.240 | 0.009448 | 0.8833 |
+#> |.....................| 0.05632 | 0.6851 | 0.7575 | 1.268 |
+#> |.....................| 1.248 | 1.212 |...........|...........|
+#> | X| 453.13548 | 92.43 | 0.002640 | 0.2651 | 0.8108 |
+#> |.....................| 9.161 | 2.240 | 0.009448 | 0.8833 |
+#> |.....................| 0.05632 | 0.6851 | 0.7575 | 1.268 |
+#> |.....................| 1.248 | 1.212 |...........|...........|
+#> | 71| 453.54485 | 0.9910 | -1.615 | -0.9910 | -0.9747 |
+#> |.....................| -0.9280 | 0.9706 | -2.247 | -1.337 |
+#> |.....................| 0.7875 | -0.9341 | -1.014 | -0.8015 |
+#> |.....................| -0.7281 | -0.7020 |...........|...........|
+#> | U| 453.54485 | 92.28 | -5.919 | -1.019 | -0.1868 |
+#> |.....................| 2.209 | 2.226 | 0.009694 | 0.8882 |
+#> |.....................| 0.05529 | 0.7144 | 0.7517 | 1.294 |
+#> |.....................| 1.221 | 1.253 |...........|...........|
+#> | X| 453.54485 | 92.28 | 0.002688 | 0.2651 | 0.8296 |
+#> |.....................| 9.103 | 2.226 | 0.009694 | 0.8882 |
+#> |.....................| 0.05529 | 0.7144 | 0.7517 | 1.294 |
+#> |.....................| 1.221 | 1.253 |...........|...........|
+#> | 72| 453.87696 | 0.9902 | -1.606 | -0.9909 | -0.9627 |
+#> |.....................| -0.9313 | 0.9582 | -2.238 | -1.332 |
+#> |.....................| 0.7513 | -0.9138 | -1.018 | -0.7903 |
+#> |.....................| -0.7413 | -0.6822 |...........|...........|
+#> | U| 453.87696 | 92.21 | -5.909 | -1.019 | -0.1748 |
+#> |.....................| 2.205 | 2.219 | 0.009824 | 0.8908 |
+#> |.....................| 0.05474 | 0.7298 | 0.7487 | 1.307 |
+#> |.....................| 1.207 | 1.274 |...........|...........|
+#> | X| 453.87696 | 92.21 | 0.002714 | 0.2652 | 0.8396 |
+#> |.....................| 9.072 | 2.219 | 0.009824 | 0.8908 |
+#> |.....................| 0.05474 | 0.7298 | 0.7487 | 1.307 |
+#> |.....................| 1.207 | 1.274 |...........|...........|
+#> | 73| 452.40810 | 1.003 | -1.604 | -0.9910 | -0.9601 |
+#> |.....................| -0.9321 | 0.9550 | -2.236 | -1.332 |
+#> |.....................| 0.7430 | -0.9087 | -1.018 | -0.7892 |
+#> |.....................| -0.7449 | -0.6781 |...........|...........|
+#> | U| 452.4081 | 93.41 | -5.907 | -1.019 | -0.1722 |
+#> |.....................| 2.204 | 2.217 | 0.009851 | 0.8908 |
+#> |.....................| 0.05462 | 0.7337 | 0.7487 | 1.309 |
+#> |.....................| 1.203 | 1.278 |...........|...........|
+#> | X| 452.4081 | 93.41 | 0.002719 | 0.2652 | 0.8418 |
+#> |.....................| 9.065 | 2.217 | 0.009851 | 0.8908 |
+#> |.....................| 0.05462 | 0.7337 | 0.7487 | 1.309 |
+#> |.....................| 1.203 | 1.278 |...........|...........|
+#> | F| Forward Diff. | -20.28 | 0.3985 | -0.9900 | -0.3302 |
+#> |.....................| -0.4580 | -3.509 | -0.7634 | -5.125 |
+#> |.....................| -3.224 | 3.921 | 4.784 | -8.607 |
+#> |.....................| -4.910 | -1.049 |...........|...........|
+#> | 74| 452.35774 | 1.005 | -1.605 | -0.9906 | -0.9617 |
+#> |.....................| -0.9314 | 0.9567 | -2.238 | -1.332 |
+#> |.....................| 0.7462 | -0.9112 | -1.018 | -0.7890 |
+#> |.....................| -0.7417 | -0.6810 |...........|...........|
+#> | U| 452.35774 | 93.58 | -5.909 | -1.019 | -0.1738 |
+#> |.....................| 2.205 | 2.218 | 0.009828 | 0.8908 |
+#> |.....................| 0.05467 | 0.7317 | 0.7485 | 1.309 |
+#> |.....................| 1.207 | 1.275 |...........|...........|
+#> | X| 452.35774 | 93.58 | 0.002715 | 0.2652 | 0.8405 |
+#> |.....................| 9.072 | 2.218 | 0.009828 | 0.8908 |
+#> |.....................| 0.05467 | 0.7317 | 0.7485 | 1.309 |
+#> |.....................| 1.207 | 1.275 |...........|...........|
+#> | F| Forward Diff. | 9.319 | 0.4042 | -0.9262 | -0.3428 |
+#> |.....................| -0.3413 | -3.482 | -0.6441 | -5.151 |
+#> |.....................| -3.223 | 3.864 | 4.863 | -8.623 |
+#> |.....................| -4.770 | -1.217 |...........|...........|
+#> | 75| 452.31017 | 1.003 | -1.607 | -0.9902 | -0.9631 |
+#> |.....................| -0.9307 | 0.9586 | -2.239 | -1.332 |
+#> |.....................| 0.7493 | -0.9137 | -1.019 | -0.7876 |
+#> |.....................| -0.7383 | -0.6834 |...........|...........|
+#> | U| 452.31017 | 93.41 | -5.910 | -1.019 | -0.1752 |
+#> |.....................| 2.206 | 2.219 | 0.009807 | 0.8910 |
+#> |.....................| 0.05471 | 0.7298 | 0.7478 | 1.310 |
+#> |.....................| 1.210 | 1.273 |...........|...........|
+#> | X| 452.31017 | 93.41 | 0.002711 | 0.2653 | 0.8393 |
+#> |.....................| 9.078 | 2.219 | 0.009807 | 0.8910 |
+#> |.....................| 0.05471 | 0.7298 | 0.7478 | 1.310 |
+#> |.....................| 1.210 | 1.273 |...........|...........|
+#> | F| Forward Diff. | -20.20 | 0.3903 | -0.9767 | -0.3983 |
+#> |.....................| -0.4106 | -3.495 | -0.7375 | -5.052 |
+#> |.....................| -3.297 | 3.718 | 4.704 | -8.538 |
+#> |.....................| -4.606 | -1.295 |...........|...........|
+#> | 76| 452.25868 | 1.005 | -1.609 | -0.9898 | -0.9648 |
+#> |.....................| -0.9300 | 0.9604 | -2.241 | -1.332 |
+#> |.....................| 0.7529 | -0.9160 | -1.019 | -0.7870 |
+#> |.....................| -0.7354 | -0.6858 |...........|...........|
+#> | U| 452.25868 | 93.58 | -5.912 | -1.018 | -0.1770 |
+#> |.....................| 2.207 | 2.220 | 0.009778 | 0.8908 |
+#> |.....................| 0.05477 | 0.7281 | 0.7476 | 1.311 |
+#> |.....................| 1.213 | 1.270 |...........|...........|
+#> | X| 452.25868 | 93.58 | 0.002707 | 0.2654 | 0.8378 |
+#> |.....................| 9.084 | 2.220 | 0.009778 | 0.8908 |
+#> |.....................| 0.05477 | 0.7281 | 0.7476 | 1.311 |
+#> |.....................| 1.213 | 1.270 |...........|...........|
+#> | F| Forward Diff. | 8.768 | 0.3959 | -0.9108 | -0.4152 |
+#> |.....................| -0.2985 | -3.789 | -0.7277 | -5.480 |
+#> |.....................| -3.800 | 3.463 | 7.165 | -8.525 |
+#> |.....................| -4.480 | -1.429 |...........|...........|
+#> | 77| 452.20380 | 1.003 | -1.610 | -0.9896 | -0.9665 |
+#> |.....................| -0.9299 | 0.9625 | -2.243 | -1.331 |
+#> |.....................| 0.7574 | -0.9182 | -1.020 | -0.7855 |
+#> |.....................| -0.7330 | -0.6868 |...........|...........|
+#> | U| 452.2038 | 93.42 | -5.913 | -1.018 | -0.1787 |
+#> |.....................| 2.207 | 2.221 | 0.009753 | 0.8912 |
+#> |.....................| 0.05483 | 0.7265 | 0.7464 | 1.313 |
+#> |.....................| 1.216 | 1.269 |...........|...........|
+#> | X| 452.2038 | 93.42 | 0.002704 | 0.2654 | 0.8364 |
+#> |.....................| 9.085 | 2.221 | 0.009753 | 0.8912 |
+#> |.....................| 0.05483 | 0.7265 | 0.7464 | 1.313 |
+#> |.....................| 1.216 | 1.269 |...........|...........|
+#> | F| Forward Diff. | -17.51 | 0.3875 | -0.9566 | -0.4713 |
+#> |.....................| -0.3666 | -3.384 | -0.7134 | -4.862 |
+#> |.....................| -3.257 | 3.566 | 3.539 | -8.382 |
+#> |.....................| -4.308 | -1.428 |...........|...........|
+#> | 78| 452.15674 | 1.006 | -1.611 | -0.9895 | -0.9681 |
+#> |.....................| -0.9296 | 0.9646 | -2.244 | -1.331 |
+#> |.....................| 0.7624 | -0.9204 | -1.020 | -0.7847 |
+#> |.....................| -0.7317 | -0.6876 |...........|...........|
+#> | U| 452.15674 | 93.63 | -5.915 | -1.018 | -0.1803 |
+#> |.....................| 2.207 | 2.222 | 0.009729 | 0.8915 |
+#> |.....................| 0.05491 | 0.7248 | 0.7463 | 1.314 |
+#> |.....................| 1.217 | 1.268 |...........|...........|
+#> | X| 452.15674 | 93.63 | 0.002700 | 0.2654 | 0.8350 |
+#> |.....................| 9.088 | 2.222 | 0.009729 | 0.8915 |
+#> |.....................| 0.05491 | 0.7248 | 0.7463 | 1.314 |
+#> |.....................| 1.217 | 1.268 |...........|...........|
+#> | F| Forward Diff. | 16.34 | 0.3942 | -0.8917 | -0.4820 |
+#> |.....................| -0.2498 | -3.403 | -0.6022 | -5.023 |
+#> |.....................| -3.383 | 3.482 | 3.627 | -8.397 |
+#> |.....................| -4.266 | -1.517 |...........|...........|
+#> | 79| 452.11013 | 1.004 | -1.613 | -0.9892 | -0.9692 |
+#> |.....................| -0.9285 | 0.9667 | -2.245 | -1.330 |
+#> |.....................| 0.7674 | -0.9230 | -1.020 | -0.7840 |
+#> |.....................| -0.7312 | -0.6887 |...........|...........|
+#> | U| 452.11013 | 93.48 | -5.917 | -1.018 | -0.1814 |
+#> |.....................| 2.208 | 2.224 | 0.009710 | 0.8921 |
+#> |.....................| 0.05499 | 0.7229 | 0.7466 | 1.315 |
+#> |.....................| 1.218 | 1.267 |...........|...........|
+#> | X| 452.11013 | 93.48 | 0.002694 | 0.2655 | 0.8341 |
+#> |.....................| 9.098 | 2.224 | 0.009710 | 0.8921 |
+#> |.....................| 0.05499 | 0.7229 | 0.7466 | 1.315 |
+#> |.....................| 1.218 | 1.267 |...........|...........|
+#> | F| Forward Diff. | -8.858 | 0.3784 | -0.9339 | -0.5242 |
+#> |.....................| -0.2958 | -3.274 | -0.6451 | -4.716 |
+#> |.....................| -3.235 | 3.524 | 3.578 | -8.323 |
+#> |.....................| -4.226 | -1.527 |...........|...........|
+#> | 80| 452.06081 | 1.006 | -1.615 | -0.9885 | -0.9698 |
+#> |.....................| -0.9277 | 0.9688 | -2.247 | -1.329 |
+#> |.....................| 0.7723 | -0.9255 | -1.020 | -0.7822 |
+#> |.....................| -0.7302 | -0.6891 |...........|...........|
+#> | U| 452.06081 | 93.65 | -5.919 | -1.017 | -0.1820 |
+#> |.....................| 2.209 | 2.225 | 0.009693 | 0.8927 |
+#> |.....................| 0.05506 | 0.7209 | 0.7465 | 1.317 |
+#> |.....................| 1.219 | 1.266 |...........|...........|
+#> | X| 452.06081 | 93.65 | 0.002689 | 0.2656 | 0.8336 |
+#> |.....................| 9.105 | 2.225 | 0.009693 | 0.8927 |
+#> |.....................| 0.05506 | 0.7209 | 0.7465 | 1.317 |
+#> |.....................| 1.219 | 1.266 |...........|...........|
+#> | F| Forward Diff. | 18.08 | 0.3814 | -0.8701 | -0.5179 |
+#> |.....................| -0.1901 | -3.027 | -0.4828 | -4.583 |
+#> |.....................| -3.046 | 3.385 | 4.724 | -8.292 |
+#> |.....................| -4.215 | -1.583 |...........|...........|
+#> | 81| 452.00089 | 1.004 | -1.618 | -0.9864 | -0.9698 |
+#> |.....................| -0.9276 | 0.9701 | -2.249 | -1.331 |
+#> |.....................| 0.7751 | -0.9261 | -1.021 | -0.7787 |
+#> |.....................| -0.7281 | -0.6889 |...........|...........|
+#> | U| 452.00089 | 93.48 | -5.921 | -1.015 | -0.1820 |
+#> |.....................| 2.209 | 2.226 | 0.009656 | 0.8916 |
+#> |.....................| 0.05510 | 0.7205 | 0.7459 | 1.321 |
+#> |.....................| 1.221 | 1.267 |...........|...........|
+#> | X| 452.00089 | 93.48 | 0.002683 | 0.2660 | 0.8336 |
+#> |.....................| 9.107 | 2.226 | 0.009656 | 0.8916 |
+#> |.....................| 0.05510 | 0.7205 | 0.7459 | 1.321 |
+#> |.....................| 1.221 | 1.267 |...........|...........|
+#> | F| Forward Diff. | -8.141 | 0.3688 | -0.8752 | -0.5418 |
+#> |.....................| -0.2687 | -3.191 | -0.6153 | -4.612 |
+#> |.....................| -3.168 | 3.248 | 4.602 | -8.159 |
+#> |.....................| -4.118 | -1.545 |...........|...........|
+#> | 82| 451.94404 | 1.006 | -1.619 | -0.9850 | -0.9696 |
+#> |.....................| -0.9279 | 0.9711 | -2.251 | -1.332 |
+#> |.....................| 0.7767 | -0.9258 | -1.022 | -0.7739 |
+#> |.....................| -0.7256 | -0.6877 |...........|...........|
+#> | U| 451.94404 | 93.65 | -5.922 | -1.014 | -0.1817 |
+#> |.....................| 2.209 | 2.226 | 0.009627 | 0.8908 |
+#> |.....................| 0.05512 | 0.7207 | 0.7445 | 1.327 |
+#> |.....................| 1.224 | 1.268 |...........|...........|
+#> | X| 451.94404 | 93.65 | 0.002679 | 0.2663 | 0.8338 |
+#> |.....................| 9.104 | 2.226 | 0.009627 | 0.8908 |
+#> |.....................| 0.05512 | 0.7207 | 0.7445 | 1.327 |
+#> |.....................| 1.224 | 1.268 |...........|...........|
+#> | 83| 451.90577 | 1.006 | -1.621 | -0.9832 | -0.9693 |
+#> |.....................| -0.9284 | 0.9716 | -2.254 | -1.336 |
+#> |.....................| 0.7778 | -0.9242 | -1.023 | -0.7696 |
+#> |.....................| -0.7233 | -0.6864 |...........|...........|
+#> | U| 451.90577 | 93.65 | -5.925 | -1.012 | -0.1815 |
+#> |.....................| 2.208 | 2.227 | 0.009581 | 0.8887 |
+#> |.....................| 0.05514 | 0.7219 | 0.7437 | 1.332 |
+#> |.....................| 1.226 | 1.269 |...........|...........|
+#> | X| 451.90577 | 93.65 | 0.002673 | 0.2666 | 0.8340 |
+#> |.....................| 9.099 | 2.227 | 0.009581 | 0.8887 |
+#> |.....................| 0.05514 | 0.7219 | 0.7437 | 1.332 |
+#> |.....................| 1.226 | 1.269 |...........|...........|
+#> | 84| 451.74017 | 1.006 | -1.632 | -0.9740 | -0.9682 |
+#> |.....................| -0.9311 | 0.9738 | -2.270 | -1.354 |
+#> |.....................| 0.7839 | -0.9163 | -1.028 | -0.7474 |
+#> |.....................| -0.7117 | -0.6796 |...........|...........|
+#> | U| 451.74017 | 93.64 | -5.935 | -1.003 | -0.1804 |
+#> |.....................| 2.205 | 2.228 | 0.009348 | 0.8780 |
+#> |.....................| 0.05523 | 0.7279 | 0.7400 | 1.359 |
+#> |.....................| 1.239 | 1.277 |...........|...........|
+#> | X| 451.74017 | 93.64 | 0.002645 | 0.2683 | 0.8350 |
+#> |.....................| 9.074 | 2.228 | 0.009348 | 0.8780 |
+#> |.....................| 0.05523 | 0.7279 | 0.7400 | 1.359 |
+#> |.....................| 1.239 | 1.277 |...........|...........|
+#> | 85| 451.58673 | 1.005 | -1.675 | -0.9364 | -0.9637 |
+#> |.....................| -0.9422 | 0.9828 | -2.333 | -1.429 |
+#> |.....................| 0.8084 | -0.8841 | -1.045 | -0.6570 |
+#> |.....................| -0.6645 | -0.6522 |...........|...........|
+#> | U| 451.58673 | 93.57 | -5.978 | -0.9678 | -0.1758 |
+#> |.....................| 2.194 | 2.233 | 0.008399 | 0.8346 |
+#> |.....................| 0.05560 | 0.7523 | 0.7245 | 1.469 |
+#> |.....................| 1.289 | 1.306 |...........|...........|
+#> | X| 451.58673 | 93.57 | 0.002533 | 0.2753 | 0.8388 |
+#> |.....................| 8.974 | 2.233 | 0.008399 | 0.8346 |
+#> |.....................| 0.05560 | 0.7523 | 0.7245 | 1.469 |
+#> |.....................| 1.289 | 1.306 |...........|...........|
+#> | F| Forward Diff. | 7.829 | 0.3494 | 0.8366 | -0.4922 |
+#> |.....................| -0.7083 | -3.782 | -0.9020 | -9.523 |
+#> |.....................| -4.571 | 4.733 | 3.935 | -3.194 |
+#> |.....................| -1.280 | 0.5510 |...........|...........|
+#> | 86| 450.56328 | 1.003 | -1.760 | -0.9418 | -0.9563 |
+#> |.....................| -0.9480 | 1.050 | -2.445 | -1.421 |
+#> |.....................| 0.9402 | -0.9310 | -1.041 | -0.6107 |
+#> |.....................| -0.6547 | -0.6413 |...........|...........|
+#> | U| 450.56328 | 93.41 | -6.064 | -0.9728 | -0.1684 |
+#> |.....................| 2.189 | 2.272 | 0.006706 | 0.8396 |
+#> |.....................| 0.05758 | 0.7168 | 0.7280 | 1.525 |
+#> |.....................| 1.300 | 1.318 |...........|...........|
+#> | X| 450.56328 | 93.41 | 0.002326 | 0.2743 | 0.8450 |
+#> |.....................| 8.923 | 2.272 | 0.006706 | 0.8396 |
+#> |.....................| 0.05758 | 0.7168 | 0.7280 | 1.525 |
+#> |.....................| 1.300 | 1.318 |...........|...........|
+#> | 87| 449.70344 | 1.004 | -1.916 | -0.9511 | -0.9429 |
+#> |.....................| -0.9589 | 1.170 | -2.653 | -1.409 |
+#> |.....................| 1.180 | -1.015 | -1.032 | -0.5274 |
+#> |.....................| -0.6372 | -0.6210 |...........|...........|
+#> | U| 449.70344 | 93.47 | -6.220 | -0.9817 | -0.1550 |
+#> |.....................| 2.178 | 2.342 | 0.003591 | 0.8462 |
+#> |.....................| 0.06119 | 0.6534 | 0.7360 | 1.626 |
+#> |.....................| 1.318 | 1.340 |...........|...........|
+#> | X| 449.70344 | 93.47 | 0.001990 | 0.2726 | 0.8564 |
+#> |.....................| 8.826 | 2.342 | 0.003591 | 0.8462 |
+#> |.....................| 0.06119 | 0.6534 | 0.7360 | 1.626 |
+#> |.....................| 1.318 | 1.340 |...........|...........|
+#> | F| Forward Diff. | -19.90 | -0.3168 | 0.4549 | 0.1875 |
+#> |.....................| -1.116 | -0.4934 | -0.07687 | -3.113 |
+#> |.....................| -2.715 | -1.586 | 5.430 | 3.365 |
+#> |.....................| 0.3009 | 1.974 |...........|...........|
+#> | 88| 451.98935 | 1.002 | -1.890 | -1.062 | -1.052 |
+#> |.....................| -0.7983 | 1.243 | -2.828 | -1.513 |
+#> |.....................| 1.600 | -1.043 | -1.029 | -0.6268 |
+#> |.....................| -0.3463 | -0.6648 |...........|...........|
+#> | U| 451.98935 | 93.35 | -6.193 | -1.087 | -0.2643 |
+#> |.....................| 2.338 | 2.384 | 0.0009551 | 0.7857 |
+#> |.....................| 0.06749 | 0.6319 | 0.7389 | 1.506 |
+#> |.....................| 1.629 | 1.293 |...........|...........|
+#> | X| 451.98935 | 93.35 | 0.002043 | 0.2523 | 0.7677 |
+#> |.....................| 10.36 | 2.384 | 0.0009551 | 0.7857 |
+#> |.....................| 0.06749 | 0.6319 | 0.7389 | 1.506 |
+#> |.....................| 1.629 | 1.293 |...........|...........|
+#> | 89| 449.56377 | 1.005 | -1.911 | -0.9716 | -0.9631 |
+#> |.....................| -0.9292 | 1.184 | -2.685 | -1.428 |
+#> |.....................| 1.258 | -1.020 | -1.032 | -0.5459 |
+#> |.....................| -0.5835 | -0.6292 |...........|...........|
+#> | U| 449.56377 | 93.56 | -6.215 | -1.001 | -0.1752 |
+#> |.....................| 2.207 | 2.350 | 0.003105 | 0.8351 |
+#> |.....................| 0.06235 | 0.6495 | 0.7362 | 1.604 |
+#> |.....................| 1.376 | 1.331 |...........|...........|
+#> | X| 449.56377 | 93.56 | 0.002000 | 0.2687 | 0.8393 |
+#> |.....................| 9.092 | 2.350 | 0.003105 | 0.8351 |
+#> |.....................| 0.06235 | 0.6495 | 0.7362 | 1.604 |
+#> |.....................| 1.376 | 1.331 |...........|...........|
+#> | F| Forward Diff. | -8.503 | -0.3085 | -0.7128 | -0.4858 |
+#> |.....................| -0.1462 | -0.3349 | -0.04630 | -2.615 |
+#> |.....................| -2.539 | -1.761 | 5.421 | 2.664 |
+#> |.....................| 3.069 | 1.771 |...........|...........|
+#> | 90| 449.37295 | 1.008 | -1.883 | -0.9569 | -0.9753 |
+#> |.....................| -0.9112 | 1.201 | -2.710 | -1.458 |
+#> |.....................| 1.352 | -1.030 | -1.036 | -0.5467 |
+#> |.....................| -0.5933 | -0.6460 |...........|...........|
+#> | U| 449.37295 | 93.89 | -6.186 | -0.9871 | -0.1875 |
+#> |.....................| 2.225 | 2.360 | 0.002726 | 0.8181 |
+#> |.....................| 0.06377 | 0.6417 | 0.7326 | 1.603 |
+#> |.....................| 1.365 | 1.313 |...........|...........|
+#> | X| 449.37295 | 93.89 | 0.002058 | 0.2715 | 0.8291 |
+#> |.....................| 9.256 | 2.360 | 0.002726 | 0.8181 |
+#> |.....................| 0.06377 | 0.6417 | 0.7326 | 1.603 |
+#> |.....................| 1.365 | 1.313 |...........|...........|
+#> | F| Forward Diff. | 31.95 | -0.2055 | 0.2861 | -0.8772 |
+#> |.....................| 0.4589 | 0.008909 | 0.01409 | -2.994 |
+#> |.....................| -2.511 | -2.129 | 5.021 | 2.567 |
+#> |.....................| 2.446 | 1.004 |...........|...........|
+#> | 91| 449.07232 | 1.007 | -1.848 | -0.9883 | -0.9607 |
+#> |.....................| -0.9269 | 1.208 | -2.721 | -1.473 |
+#> |.....................| 1.446 | -1.013 | -1.041 | -0.5472 |
+#> |.....................| -0.6000 | -0.6251 |...........|...........|
+#> | U| 449.07232 | 93.73 | -6.151 | -1.017 | -0.1729 |
+#> |.....................| 2.210 | 2.364 | 0.002568 | 0.8093 |
+#> |.....................| 0.06518 | 0.6543 | 0.7283 | 1.602 |
+#> |.....................| 1.358 | 1.335 |...........|...........|
+#> | X| 449.07232 | 93.73 | 0.002130 | 0.2656 | 0.8412 |
+#> |.....................| 9.113 | 2.364 | 0.002568 | 0.8093 |
+#> |.....................| 0.06518 | 0.6543 | 0.7283 | 1.602 |
+#> |.....................| 1.358 | 1.335 |...........|...........|
+#> | 92| 449.34581 | 1.013 | -1.744 | -1.083 | -0.9172 |
+#> |.....................| -0.9739 | 1.229 | -2.752 | -1.520 |
+#> |.....................| 1.728 | -0.9642 | -1.054 | -0.5478 |
+#> |.....................| -0.6192 | -0.5619 |...........|...........|
+#> | U| 449.34581 | 94.33 | -6.047 | -1.106 | -0.1294 |
+#> |.....................| 2.163 | 2.376 | 0.002092 | 0.7821 |
+#> |.....................| 0.06942 | 0.6916 | 0.7169 | 1.601 |
+#> |.....................| 1.337 | 1.403 |...........|...........|
+#> | X| 449.34581 | 94.33 | 0.002364 | 0.2486 | 0.8787 |
+#> |.....................| 8.694 | 2.376 | 0.002092 | 0.7821 |
+#> |.....................| 0.06942 | 0.6916 | 0.7169 | 1.601 |
+#> |.....................| 1.337 | 1.403 |...........|...........|
+#> | F| Forward Diff. | 11.36 | -0.08356 | -1.544 | -0.3785 |
+#> |.....................| -0.02879 | 0.1985 | 0.04898 | -2.532 |
+#> |.....................| -2.210 | -1.428 | 5.624 | 2.440 |
+#> |.....................| 2.104 | 1.894 |...........|...........|
+#> | 93| 449.83746 | 0.9966 | -1.806 | -0.8436 | -0.9213 |
+#> |.....................| -1.016 | 1.236 | -2.752 | -1.567 |
+#> |.....................| 1.816 | -1.085 | -1.056 | -0.6567 |
+#> |.....................| -0.5363 | -0.5852 |...........|...........|
+#> | U| 449.83746 | 92.80 | -6.109 | -0.8802 | -0.1335 |
+#> |.....................| 2.121 | 2.380 | 0.002093 | 0.7548 |
+#> |.....................| 0.07074 | 0.5997 | 0.7149 | 1.469 |
+#> |.....................| 1.426 | 1.378 |...........|...........|
+#> | X| 449.83746 | 92.80 | 0.002222 | 0.2931 | 0.8750 |
+#> |.....................| 8.340 | 2.380 | 0.002093 | 0.7548 |
+#> |.....................| 0.07074 | 0.5997 | 0.7149 | 1.469 |
+#> |.....................| 1.426 | 1.378 |...........|...........|
+#> | 94| 449.05525 | 1.000 | -1.836 | -0.9477 | -0.9497 |
+#> |.....................| -0.9515 | 1.216 | -2.730 | -1.498 |
+#> |.....................| 1.549 | -1.033 | -1.047 | -0.5784 |
+#> |.....................| -0.5830 | -0.6146 |...........|...........|
+#> | U| 449.05525 | 93.13 | -6.140 | -0.9784 | -0.1618 |
+#> |.....................| 2.185 | 2.368 | 0.002436 | 0.7946 |
+#> |.....................| 0.06673 | 0.6395 | 0.7230 | 1.564 |
+#> |.....................| 1.376 | 1.346 |...........|...........|
+#> | X| 449.05525 | 93.13 | 0.002156 | 0.2732 | 0.8506 |
+#> |.....................| 8.891 | 2.368 | 0.002436 | 0.7946 |
+#> |.....................| 0.06673 | 0.6395 | 0.7230 | 1.564 |
+#> |.....................| 1.376 | 1.346 |...........|...........|
+#> | F| Forward Diff. | -56.82 | -0.05113 | 0.4930 | -0.04031 |
+#> |.....................| -1.049 | 0.03445 | -0.05944 | -2.319 |
+#> |.....................| -2.208 | -2.328 | 3.545 | 0.3775 |
+#> |.....................| 2.643 | 2.387 |...........|...........|
+#> | 95| 448.75128 | 1.006 | -1.837 | -0.9543 | -0.9497 |
+#> |.....................| -0.9537 | 1.219 | -2.732 | -1.514 |
+#> |.....................| 1.608 | -1.030 | -1.050 | -0.5750 |
+#> |.....................| -0.5860 | -0.6263 |...........|...........|
+#> | U| 448.75128 | 93.69 | -6.140 | -0.9847 | -0.1618 |
+#> |.....................| 2.183 | 2.370 | 0.002396 | 0.7854 |
+#> |.....................| 0.06761 | 0.6415 | 0.7208 | 1.568 |
+#> |.....................| 1.373 | 1.334 |...........|...........|
+#> | X| 448.75128 | 93.69 | 0.002154 | 0.2720 | 0.8506 |
+#> |.....................| 8.872 | 2.370 | 0.002396 | 0.7854 |
+#> |.....................| 0.06761 | 0.6415 | 0.7208 | 1.568 |
+#> |.....................| 1.373 | 1.334 |...........|...........|
+#> | F| Forward Diff. | 6.795 | -0.02569 | 0.3964 | 0.03329 |
+#> |.....................| -0.8574 | 0.1774 | 0.01390 | -2.462 |
+#> |.....................| -2.149 | -2.476 | 3.910 | 1.045 |
+#> |.....................| 2.743 | 2.014 |...........|...........|
+#> | 96| 448.60805 | 1.005 | -1.844 | -0.9658 | -0.9658 |
+#> |.....................| -0.9330 | 1.222 | -2.731 | -1.528 |
+#> |.....................| 1.652 | -1.023 | -1.051 | -0.5597 |
+#> |.....................| -0.5993 | -0.6478 |...........|...........|
+#> | U| 448.60805 | 93.55 | -6.147 | -0.9955 | -0.1780 |
+#> |.....................| 2.204 | 2.372 | 0.002406 | 0.7773 |
+#> |.....................| 0.06828 | 0.6470 | 0.7198 | 1.587 |
+#> |.....................| 1.359 | 1.311 |...........|...........|
+#> | X| 448.60805 | 93.55 | 0.002140 | 0.2698 | 0.8370 |
+#> |.....................| 9.057 | 2.372 | 0.002406 | 0.7773 |
+#> |.....................| 0.06828 | 0.6470 | 0.7198 | 1.587 |
+#> |.....................| 1.359 | 1.311 |...........|...........|
+#> | 97| 448.54893 | 1.004 | -1.854 | -0.9831 | -0.9905 |
+#> |.....................| -0.9018 | 1.226 | -2.730 | -1.550 |
+#> |.....................| 1.719 | -1.013 | -1.051 | -0.5361 |
+#> |.....................| -0.6188 | -0.6800 |...........|...........|
+#> | U| 448.54893 | 93.53 | -6.157 | -1.012 | -0.2026 |
+#> |.....................| 2.235 | 2.374 | 0.002422 | 0.7645 |
+#> |.....................| 0.06928 | 0.6548 | 0.7192 | 1.616 |
+#> |.....................| 1.338 | 1.276 |...........|...........|
+#> | X| 448.54893 | 93.53 | 0.002118 | 0.2666 | 0.8166 |
+#> |.....................| 9.344 | 2.374 | 0.002422 | 0.7645 |
+#> |.....................| 0.06928 | 0.6548 | 0.7192 | 1.616 |
+#> |.....................| 1.338 | 1.276 |...........|...........|
+#> | F| Forward Diff. | -11.31 | -0.05480 | -1.344 | -1.332 |
+#> |.....................| 0.5363 | 0.1616 | -0.02955 | -2.282 |
+#> |.....................| -1.949 | -1.541 | 5.051 | 2.875 |
+#> |.....................| 1.005 | -0.6800 |...........|...........|
+#> | 98| 448.23423 | 1.005 | -1.862 | -0.9802 | -0.9885 |
+#> |.....................| -0.8649 | 1.225 | -2.731 | -1.570 |
+#> |.....................| 1.863 | -0.9934 | -1.058 | -0.5422 |
+#> |.....................| -0.6330 | -0.6404 |...........|...........|
+#> | U| 448.23423 | 93.60 | -6.165 | -1.009 | -0.2007 |
+#> |.....................| 2.272 | 2.374 | 0.002415 | 0.7529 |
+#> |.....................| 0.07145 | 0.6695 | 0.7131 | 1.608 |
+#> |.....................| 1.323 | 1.319 |...........|...........|
+#> | X| 448.23423 | 93.60 | 0.002101 | 0.2671 | 0.8182 |
+#> |.....................| 9.695 | 2.374 | 0.002415 | 0.7529 |
+#> |.....................| 0.07145 | 0.6695 | 0.7131 | 1.608 |
+#> |.....................| 1.323 | 1.319 |...........|...........|
+#> | 99| 448.52797 | 1.003 | -1.887 | -0.9721 | -0.9832 |
+#> |.....................| -0.7539 | 1.222 | -2.732 | -1.631 |
+#> |.....................| 2.296 | -0.9358 | -1.078 | -0.5592 |
+#> |.....................| -0.6753 | -0.5215 |...........|...........|
+#> | U| 448.52797 | 93.41 | -6.190 | -1.001 | -0.1954 |
+#> |.....................| 2.383 | 2.371 | 0.002396 | 0.7173 |
+#> |.....................| 0.07796 | 0.7131 | 0.6963 | 1.588 |
+#> |.....................| 1.277 | 1.446 |...........|...........|
+#> | X| 448.52797 | 93.41 | 0.002050 | 0.2687 | 0.8225 |
+#> |.....................| 10.83 | 2.371 | 0.002396 | 0.7173 |
+#> |.....................| 0.07796 | 0.7131 | 0.6963 | 1.588 |
+#> |.....................| 1.277 | 1.446 |...........|...........|
+#> | F| Forward Diff. | -1.417 | -0.03842 | -1.058 | -1.257 |
+#> |.....................| 1.697 | 0.2446 | 0.02601 | -1.725 |
+#> |.....................| -1.728 | -0.7541 | 3.822 | 2.423 |
+#> |.....................| 0.4552 | 1.132 |...........|...........|
+#> | 100| 447.48636 | 1.010 | -1.889 | -1.018 | -0.9136 |
+#> |.....................| -0.9465 | 1.241 | -2.741 | -1.706 |
+#> |.....................| 2.465 | -0.9635 | -1.095 | -0.5705 |
+#> |.....................| -0.6276 | -0.6598 |...........|...........|
+#> | U| 447.48636 | 94.00 | -6.193 | -1.045 | -0.1257 |
+#> |.....................| 2.190 | 2.383 | 0.002265 | 0.6743 |
+#> |.....................| 0.08050 | 0.6921 | 0.6807 | 1.574 |
+#> |.....................| 1.328 | 1.298 |...........|...........|
+#> | X| 447.48636 | 94.00 | 0.002044 | 0.2602 | 0.8818 |
+#> |.....................| 8.935 | 2.383 | 0.002265 | 0.6743 |
+#> |.....................| 0.08050 | 0.6921 | 0.6807 | 1.574 |
+#> |.....................| 1.328 | 1.298 |...........|...........|
+#> | F| Forward Diff. | 49.18 | 0.06228 | -2.520 | 1.219 |
+#> |.....................| -0.3402 | 0.5332 | 0.01803 | -1.013 |
+#> |.....................| -0.7363 | 0.9697 | 2.720 | 0.6118 |
+#> |.....................| 0.4882 | -0.1519 |...........|...........|
+#> | 101| 448.59314 | 1.009 | -1.906 | -0.9798 | -1.202 |
+#> |.....................| -1.107 | 1.243 | -2.730 | -1.791 |
+#> |.....................| 2.989 | -0.9474 | -1.110 | -0.5914 |
+#> |.....................| -0.6423 | -0.5882 |...........|...........|
+#> | U| 448.59314 | 93.96 | -6.209 | -1.009 | -0.4139 |
+#> |.....................| 2.029 | 2.384 | 0.002422 | 0.6247 |
+#> |.....................| 0.08837 | 0.7043 | 0.6679 | 1.549 |
+#> |.....................| 1.313 | 1.375 |...........|...........|
+#> | X| 448.59314 | 93.96 | 0.002010 | 0.2672 | 0.6611 |
+#> |.....................| 7.610 | 2.384 | 0.002422 | 0.6247 |
+#> |.....................| 0.08837 | 0.7043 | 0.6679 | 1.549 |
+#> |.....................| 1.313 | 1.375 |...........|...........|
+#> | 102| 447.34338 | 1.004 | -1.893 | -1.010 | -0.9727 |
+#> |.....................| -0.9794 | 1.241 | -2.739 | -1.723 |
+#> |.....................| 2.572 | -0.9603 | -1.099 | -0.5748 |
+#> |.....................| -0.6307 | -0.6452 |...........|...........|
+#> | U| 447.34338 | 93.48 | -6.196 | -1.037 | -0.1848 |
+#> |.....................| 2.157 | 2.383 | 0.002297 | 0.6642 |
+#> |.....................| 0.08211 | 0.6946 | 0.6778 | 1.569 |
+#> |.....................| 1.325 | 1.314 |...........|...........|
+#> | X| 447.34338 | 93.48 | 0.002037 | 0.2617 | 0.8313 |
+#> |.....................| 8.647 | 2.383 | 0.002297 | 0.6642 |
+#> |.....................| 0.08211 | 0.6946 | 0.6778 | 1.569 |
+#> |.....................| 1.325 | 1.314 |...........|...........|
+#> | F| Forward Diff. | -27.99 | 0.05620 | -2.283 | -0.5861 |
+#> |.....................| -1.399 | 0.3409 | -0.05316 | -0.7185 |
+#> |.....................| -0.6589 | 0.7167 | 1.472 | 0.2167 |
+#> |.....................| 0.2339 | 0.7351 |...........|...........|
+#> | 103| 447.24116 | 1.004 | -1.898 | -0.9880 | -0.9438 |
+#> |.....................| -0.9421 | 1.243 | -2.723 | -1.759 |
+#> |.....................| 2.683 | -0.9737 | -1.096 | -0.5790 |
+#> |.....................| -0.6284 | -0.6557 |...........|...........|
+#> | U| 447.24116 | 93.50 | -6.201 | -1.017 | -0.1559 |
+#> |.....................| 2.195 | 2.384 | 0.002530 | 0.6435 |
+#> |.....................| 0.08377 | 0.6844 | 0.6802 | 1.564 |
+#> |.....................| 1.328 | 1.302 |...........|...........|
+#> | X| 447.24116 | 93.50 | 0.002027 | 0.2657 | 0.8556 |
+#> |.....................| 8.976 | 2.384 | 0.002530 | 0.6435 |
+#> |.....................| 0.08377 | 0.6844 | 0.6802 | 1.564 |
+#> |.....................| 1.328 | 1.302 |...........|...........|
+#> | F| Forward Diff. | -22.25 | 0.02611 | -1.124 | 0.2366 |
+#> |.....................| -0.4078 | 0.2597 | -0.06938 | -0.8187 |
+#> |.....................| -0.5375 | 0.002218 | 1.533 | -0.1306 |
+#> |.....................| 0.2372 | 0.1318 |...........|...........|
+#> | 104| 447.36545 | 1.010 | -1.910 | -0.9563 | -1.018 |
+#> |.....................| -0.9640 | 1.238 | -2.696 | -1.806 |
+#> |.....................| 2.921 | -0.9760 | -1.100 | -0.5866 |
+#> |.....................| -0.6320 | -0.6434 |...........|...........|
+#> | U| 447.36545 | 94.05 | -6.214 | -0.9866 | -0.2304 |
+#> |.....................| 2.173 | 2.381 | 0.002941 | 0.6159 |
+#> |.....................| 0.08734 | 0.6827 | 0.6770 | 1.554 |
+#> |.....................| 1.324 | 1.315 |...........|...........|
+#> | X| 447.36545 | 94.05 | 0.002002 | 0.2716 | 0.7942 |
+#> |.....................| 8.780 | 2.381 | 0.002941 | 0.6159 |
+#> |.....................| 0.08734 | 0.6827 | 0.6770 | 1.554 |
+#> |.....................| 1.324 | 1.315 |...........|...........|
+#> | 105| 447.25244 | 1.009 | -1.902 | -0.9770 | -0.9694 |
+#> |.....................| -0.9495 | 1.241 | -2.714 | -1.775 |
+#> |.....................| 2.765 | -0.9745 | -1.097 | -0.5816 |
+#> |.....................| -0.6297 | -0.6515 |...........|...........|
+#> | U| 447.25244 | 93.94 | -6.205 | -1.006 | -0.1815 |
+#> |.....................| 2.187 | 2.383 | 0.002671 | 0.6341 |
+#> |.....................| 0.08500 | 0.6838 | 0.6790 | 1.560 |
+#> |.....................| 1.326 | 1.307 |...........|...........|
+#> | X| 447.25244 | 93.94 | 0.002018 | 0.2677 | 0.8340 |
+#> |.....................| 8.909 | 2.383 | 0.002671 | 0.6341 |
+#> |.....................| 0.08500 | 0.6838 | 0.6790 | 1.560 |
+#> |.....................| 1.326 | 1.307 |...........|...........|
+#> | 106| 447.24908 | 1.008 | -1.900 | -0.9828 | -0.9557 |
+#> |.....................| -0.9455 | 1.242 | -2.719 | -1.766 |
+#> |.....................| 2.721 | -0.9741 | -1.097 | -0.5802 |
+#> |.....................| -0.6290 | -0.6537 |...........|...........|
+#> | U| 447.24908 | 93.91 | -6.203 | -1.012 | -0.1678 |
+#> |.....................| 2.191 | 2.383 | 0.002596 | 0.6392 |
+#> |.....................| 0.08434 | 0.6841 | 0.6795 | 1.562 |
+#> |.....................| 1.327 | 1.304 |...........|...........|
+#> | X| 447.24908 | 93.91 | 0.002023 | 0.2667 | 0.8455 |
+#> |.....................| 8.945 | 2.383 | 0.002596 | 0.6392 |
+#> |.....................| 0.08434 | 0.6841 | 0.6795 | 1.562 |
+#> |.....................| 1.327 | 1.304 |...........|...........|
+#> | 107| 447.25180 | 1.008 | -1.899 | -0.9855 | -0.9493 |
+#> |.....................| -0.9436 | 1.242 | -2.721 | -1.762 |
+#> |.....................| 2.700 | -0.9739 | -1.097 | -0.5796 |
+#> |.....................| -0.6287 | -0.6548 |...........|...........|
+#> | U| 447.2518 | 93.89 | -6.202 | -1.014 | -0.1614 |
+#> |.....................| 2.193 | 2.383 | 0.002560 | 0.6416 |
+#> |.....................| 0.08403 | 0.6843 | 0.6798 | 1.563 |
+#> |.....................| 1.327 | 1.303 |...........|...........|
+#> | X| 447.2518 | 93.89 | 0.002025 | 0.2662 | 0.8509 |
+#> |.....................| 8.962 | 2.383 | 0.002560 | 0.6416 |
+#> |.....................| 0.08403 | 0.6843 | 0.6798 | 1.563 |
+#> |.....................| 1.327 | 1.303 |...........|...........|
+#> | 108| 447.25421 | 1.008 | -1.898 | -0.9869 | -0.9460 |
+#> |.....................| -0.9426 | 1.242 | -2.722 | -1.760 |
+#> |.....................| 2.690 | -0.9738 | -1.096 | -0.5792 |
+#> |.....................| -0.6286 | -0.6553 |...........|...........|
+#> | U| 447.25421 | 93.88 | -6.202 | -1.015 | -0.1582 |
+#> |.....................| 2.194 | 2.384 | 0.002542 | 0.6428 |
+#> |.....................| 0.08388 | 0.6843 | 0.6799 | 1.563 |
+#> |.....................| 1.327 | 1.303 |...........|...........|
+#> | X| 447.25421 | 93.88 | 0.002026 | 0.2659 | 0.8537 |
+#> |.....................| 8.970 | 2.384 | 0.002542 | 0.6428 |
+#> |.....................| 0.08388 | 0.6843 | 0.6799 | 1.563 |
+#> |.....................| 1.327 | 1.303 |...........|...........|
+#> | 109| 447.24978 | 1.008 | -1.898 | -0.9878 | -0.9438 |
+#> |.....................| -0.9420 | 1.242 | -2.723 | -1.759 |
+#> |.....................| 2.683 | -0.9737 | -1.096 | -0.5790 |
+#> |.....................| -0.6285 | -0.6557 |...........|...........|
+#> | U| 447.24978 | 93.86 | -6.201 | -1.016 | -0.1560 |
+#> |.....................| 2.195 | 2.384 | 0.002530 | 0.6436 |
+#> |.....................| 0.08377 | 0.6844 | 0.6800 | 1.564 |
+#> |.....................| 1.328 | 1.302 |...........|...........|
+#> | X| 447.24978 | 93.86 | 0.002027 | 0.2657 | 0.8556 |
+#> |.....................| 8.976 | 2.384 | 0.002530 | 0.6436 |
+#> |.....................| 0.08377 | 0.6844 | 0.6800 | 1.564 |
+#> |.....................| 1.328 | 1.302 |...........|...........|
+#> | 110| 447.22094 | 1.006 | -1.898 | -0.9879 | -0.9438 |
+#> |.....................| -0.9420 | 1.243 | -2.723 | -1.759 |
+#> |.....................| 2.683 | -0.9737 | -1.096 | -0.5790 |
+#> |.....................| -0.6284 | -0.6557 |...........|...........|
+#> | U| 447.22094 | 93.66 | -6.201 | -1.016 | -0.1560 |
+#> |.....................| 2.195 | 2.384 | 0.002530 | 0.6435 |
+#> |.....................| 0.08377 | 0.6844 | 0.6801 | 1.564 |
+#> |.....................| 1.328 | 1.302 |...........|...........|
+#> | X| 447.22094 | 93.66 | 0.002027 | 0.2657 | 0.8556 |
+#> |.....................| 8.976 | 2.384 | 0.002530 | 0.6435 |
+#> |.....................| 0.08377 | 0.6844 | 0.6801 | 1.564 |
+#> |.....................| 1.328 | 1.302 |...........|...........|
+#> | F| Forward Diff. | 0.7136 | 0.03206 | -1.028 | 0.2620 |
+#> |.....................| -0.3312 | 0.3050 | -0.05505 | -0.8960 |
+#> |.....................| -0.4549 | 0.03409 | 2.494 | -0.1555 |
+#> |.....................| 0.2265 | 0.1085 |...........|...........|
+#> | 111| 447.21344 | 1.005 | -1.898 | -0.9873 | -0.9440 |
+#> |.....................| -0.9418 | 1.242 | -2.723 | -1.758 |
+#> |.....................| 2.683 | -0.9737 | -1.098 | -0.5789 |
+#> |.....................| -0.6286 | -0.6557 |...........|...........|
+#> | U| 447.21344 | 93.62 | -6.201 | -1.016 | -0.1561 |
+#> |.....................| 2.195 | 2.384 | 0.002531 | 0.6439 |
+#> |.....................| 0.08377 | 0.6844 | 0.6789 | 1.564 |
+#> |.....................| 1.327 | 1.302 |...........|...........|
+#> | X| 447.21344 | 93.62 | 0.002027 | 0.2658 | 0.8555 |
+#> |.....................| 8.978 | 2.384 | 0.002531 | 0.6439 |
+#> |.....................| 0.08377 | 0.6844 | 0.6789 | 1.564 |
+#> |.....................| 1.327 | 1.302 |...........|...........|
+#> | F| Forward Diff. | -4.689 | 0.03686 | -1.013 | 0.2539 |
+#> |.....................| -0.3408 | 0.6592 | 0.03740 | -0.5502 |
+#> |.....................| -0.2201 | 0.3219 | 2.382 | -0.1778 |
+#> |.....................| 0.2028 | 0.08770 |...........|...........|
+#> | 112| 447.19216 | 1.006 | -1.899 | -0.9854 | -0.9463 |
+#> |.....................| -0.9420 | 1.239 | -2.724 | -1.756 |
+#> |.....................| 2.680 | -0.9744 | -1.101 | -0.5784 |
+#> |.....................| -0.6293 | -0.6560 |...........|...........|
+#> | U| 447.19216 | 93.64 | -6.203 | -1.014 | -0.1585 |
+#> |.....................| 2.195 | 2.382 | 0.002523 | 0.6453 |
+#> |.....................| 0.08373 | 0.6839 | 0.6759 | 1.564 |
+#> |.....................| 1.327 | 1.302 |...........|...........|
+#> | X| 447.19216 | 93.64 | 0.002024 | 0.2662 | 0.8535 |
+#> |.....................| 8.976 | 2.382 | 0.002523 | 0.6453 |
+#> |.....................| 0.08373 | 0.6839 | 0.6759 | 1.564 |
+#> |.....................| 1.327 | 1.302 |...........|...........|
+#> | 113| 447.14896 | 1.005 | -1.904 | -0.9796 | -0.9535 |
+#> |.....................| -0.9426 | 1.230 | -2.725 | -1.748 |
+#> |.....................| 2.670 | -0.9764 | -1.111 | -0.5767 |
+#> |.....................| -0.6315 | -0.6570 |...........|...........|
+#> | U| 447.14896 | 93.56 | -6.208 | -1.009 | -0.1657 |
+#> |.....................| 2.194 | 2.376 | 0.002500 | 0.6498 |
+#> |.....................| 0.08358 | 0.6823 | 0.6675 | 1.566 |
+#> |.....................| 1.324 | 1.301 |...........|...........|
+#> | X| 447.14896 | 93.56 | 0.002014 | 0.2673 | 0.8473 |
+#> |.....................| 8.971 | 2.376 | 0.002500 | 0.6498 |
+#> |.....................| 0.08358 | 0.6823 | 0.6675 | 1.566 |
+#> |.....................| 1.324 | 1.301 |...........|...........|
+#> | 114| 447.12523 | 1.003 | -1.923 | -0.9566 | -0.9821 |
+#> |.....................| -0.9448 | 1.194 | -2.731 | -1.717 |
+#> |.....................| 2.632 | -0.9846 | -1.149 | -0.5701 |
+#> |.....................| -0.6401 | -0.6607 |...........|...........|
+#> | U| 447.12523 | 93.36 | -6.227 | -0.9868 | -0.1943 |
+#> |.....................| 2.192 | 2.355 | 0.002410 | 0.6677 |
+#> |.....................| 0.08300 | 0.6762 | 0.6336 | 1.574 |
+#> |.....................| 1.315 | 1.297 |...........|...........|
+#> | X| 447.12523 | 93.36 | 0.001976 | 0.2715 | 0.8234 |
+#> |.....................| 8.951 | 2.355 | 0.002410 | 0.6677 |
+#> |.....................| 0.08300 | 0.6762 | 0.6336 | 1.574 |
+#> |.....................| 1.315 | 1.297 |...........|...........|
+#> | F| Forward Diff. | -42.78 | 0.1470 | 0.5793 | -0.8455 |
+#> |.....................| -0.3546 | -0.4331 | -0.1071 | -0.02049 |
+#> |.....................| -0.3358 | -0.3904 | -2.177 | 0.2043 |
+#> |.....................| -0.1377 | -0.3207 |...........|...........|
+#> | 115| 447.09924 | 1.007 | -1.940 | -0.9416 | -1.018 |
+#> |.....................| -0.9550 | 1.181 | -2.719 | -1.734 |
+#> |.....................| 2.734 | -0.9861 | -1.153 | -0.5706 |
+#> |.....................| -0.6433 | -0.6564 |...........|...........|
+#> | U| 447.09924 | 93.80 | -6.243 | -0.9727 | -0.2297 |
+#> |.....................| 2.182 | 2.348 | 0.002591 | 0.6578 |
+#> |.....................| 0.08453 | 0.6750 | 0.6303 | 1.574 |
+#> |.....................| 1.312 | 1.301 |...........|...........|
+#> | X| 447.09924 | 93.80 | 0.001943 | 0.2743 | 0.7947 |
+#> |.....................| 8.860 | 2.348 | 0.002591 | 0.6578 |
+#> |.....................| 0.08453 | 0.6750 | 0.6303 | 1.574 |
+#> |.....................| 1.312 | 1.301 |...........|...........|
+#> | F| Forward Diff. | 15.04 | 0.1387 | 1.646 | -1.777 |
+#> |.....................| -0.3749 | -0.5049 | -0.07528 | 0.1505 |
+#> |.....................| -0.2071 | -0.6675 | -2.129 | 0.2735 |
+#> |.....................| -0.05533 | -0.2849 |...........|...........|
+#> | 116| 447.06926 | 1.008 | -1.968 | -0.9759 | -0.9363 |
+#> |.....................| -0.9300 | 1.192 | -2.714 | -1.733 |
+#> |.....................| 2.676 | -0.9757 | -1.142 | -0.5672 |
+#> |.....................| -0.6383 | -0.6598 |...........|...........|
+#> | U| 447.06926 | 93.90 | -6.272 | -1.005 | -0.1484 |
+#> |.....................| 2.207 | 2.354 | 0.002664 | 0.6586 |
+#> |.....................| 0.08367 | 0.6829 | 0.6398 | 1.578 |
+#> |.....................| 1.317 | 1.298 |...........|...........|
+#> | X| 447.06926 | 93.90 | 0.001889 | 0.2679 | 0.8621 |
+#> |.....................| 9.084 | 2.354 | 0.002664 | 0.6586 |
+#> |.....................| 0.08367 | 0.6829 | 0.6398 | 1.578 |
+#> |.....................| 1.317 | 1.298 |...........|...........|
+#> | F| Forward Diff. | 31.57 | 0.06960 | -0.1881 | 0.5445 |
+#> |.....................| 0.2088 | -0.3879 | -0.06801 | -0.3419 |
+#> |.....................| -0.4021 | 0.02711 | -1.273 | 0.2199 |
+#> |.....................| -0.1004 | -0.4182 |...........|...........|
+#> | 117| 447.12806 | 1.006 | -2.047 | -0.9734 | -0.9587 |
+#> |.....................| -0.9336 | 1.189 | -2.704 | -1.764 |
+#> |.....................| 2.737 | -0.9879 | -1.112 | -0.5826 |
+#> |.....................| -0.6349 | -0.6438 |...........|...........|
+#> | U| 447.12806 | 93.67 | -6.350 | -1.003 | -0.1708 |
+#> |.....................| 2.203 | 2.352 | 0.002825 | 0.6405 |
+#> |.....................| 0.08458 | 0.6737 | 0.6664 | 1.559 |
+#> |.....................| 1.321 | 1.315 |...........|...........|
+#> | X| 447.12806 | 93.67 | 0.001747 | 0.2684 | 0.8430 |
+#> |.....................| 9.052 | 2.352 | 0.002825 | 0.6405 |
+#> |.....................| 0.08458 | 0.6737 | 0.6664 | 1.559 |
+#> |.....................| 1.321 | 1.315 |...........|...........|
+#> | 118| 447.05003 | 1.006 | -1.997 | -0.9750 | -0.9445 |
+#> |.....................| -0.9313 | 1.191 | -2.710 | -1.744 |
+#> |.....................| 2.698 | -0.9801 | -1.131 | -0.5728 |
+#> |.....................| -0.6370 | -0.6539 |...........|...........|
+#> | U| 447.05003 | 93.71 | -6.300 | -1.004 | -0.1566 |
+#> |.....................| 2.205 | 2.354 | 0.002723 | 0.6520 |
+#> |.....................| 0.08400 | 0.6796 | 0.6495 | 1.571 |
+#> |.....................| 1.318 | 1.304 |...........|...........|
+#> | X| 447.05003 | 93.71 | 0.001836 | 0.2681 | 0.8551 |
+#> |.....................| 9.073 | 2.354 | 0.002723 | 0.6520 |
+#> |.....................| 0.08400 | 0.6796 | 0.6495 | 1.571 |
+#> |.....................| 1.318 | 1.304 |...........|...........|
+#> | F| Forward Diff. | 4.860 | -0.01375 | -0.2473 | 0.2780 |
+#> |.....................| 0.08862 | -0.4372 | -0.08802 | -0.3404 |
+#> |.....................| -0.3654 | -0.2345 | -0.3468 | 0.08396 |
+#> |.....................| -0.01035 | -0.06837 |...........|...........|
+#> | 119| 447.04716 | 1.006 | -1.989 | -0.9725 | -0.9518 |
+#> |.....................| -0.9334 | 1.193 | -2.718 | -1.756 |
+#> |.....................| 2.735 | -0.9825 | -1.129 | -0.5738 |
+#> |.....................| -0.6372 | -0.6523 |...........|...........|
+#> | U| 447.04716 | 93.69 | -6.292 | -1.002 | -0.1639 |
+#> |.....................| 2.203 | 2.355 | 0.002610 | 0.6452 |
+#> |.....................| 0.08456 | 0.6777 | 0.6509 | 1.570 |
+#> |.....................| 1.318 | 1.306 |...........|...........|
+#> | X| 447.04716 | 93.69 | 0.001850 | 0.2686 | 0.8488 |
+#> |.....................| 9.053 | 2.355 | 0.002610 | 0.6452 |
+#> |.....................| 0.08456 | 0.6777 | 0.6509 | 1.570 |
+#> |.....................| 1.318 | 1.306 |...........|...........|
+#> | F| Forward Diff. | 2.456 | -0.007589 | -0.1181 | 0.06051 |
+#> |.....................| 0.03158 | -0.4028 | -0.08358 | -0.4018 |
+#> |.....................| -0.3358 | -0.3459 | -0.2609 | 0.03632 |
+#> |.....................| -0.03277 | 0.02331 |...........|...........|
+#> | 120| 447.04716 | 1.006 | -1.989 | -0.9725 | -0.9518 |
+#> |.....................| -0.9334 | 1.193 | -2.718 | -1.756 |
+#> |.....................| 2.735 | -0.9825 | -1.129 | -0.5738 |
+#> |.....................| -0.6372 | -0.6523 |...........|...........|
+#> | U| 447.04716 | 93.69 | -6.292 | -1.002 | -0.1639 |
+#> |.....................| 2.203 | 2.355 | 0.002610 | 0.6452 |
+#> |.....................| 0.08456 | 0.6777 | 0.6509 | 1.570 |
+#> |.....................| 1.318 | 1.306 |...........|...........|
+#> | X| 447.04716 | 93.69 | 0.001850 | 0.2686 | 0.8488 |
+#> |.....................| 9.053 | 2.355 | 0.002610 | 0.6452 |
+#> |.....................| 0.08456 | 0.6777 | 0.6509 | 1.570 |
+#> |.....................| 1.318 | 1.306 |...........|...........|
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: gradient problems with initial estimate and covariance; see $scaleInfof_nlmixr_dfop_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "saem",
+ error_model = "obs_tc")
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> 1: 9.1294e+01 -5.0486e+00 -1.7441e+00 -3.5640e+00 -2.1387e+00 4.8639e-01 5.5948e+00 1.4680e+00 1.1057e+00 2.3810e+00 4.8150e-01 4.3452e-01 1.0359e+01 2.3790e-05 7.8082e+00 5.1813e-01
+#> 2: 9.1224e+01 -5.2308e+00 -1.9743e+00 -4.0115e+00 -1.8311e+00 9.8058e-02 5.3151e+00 1.3946e+00 1.0504e+00 2.8908e+00 4.5742e-01 5.2252e-01 5.9132e+00 5.7000e-04 6.5362e+00 1.8571e-07
+#> 3: 9.1371e+01 -5.5075e+00 -2.1136e+00 -4.0542e+00 -1.4871e+00 -4.1222e-02 5.0493e+00 1.3249e+00 9.9785e-01 3.4546e+00 4.3455e-01 6.3380e-01 4.0626e+00 1.0302e-05 4.6845e+00 5.0378e-04
+#> 4: 91.3391 -5.7912 -2.1450 -3.9623 -1.3302 -0.1356 4.7969 1.2586 0.9480 3.2819 0.4128 0.6021 3.3624 0.0249 3.6770 0.0248
+#> 5: 91.5018 -6.0214 -2.1492 -3.9323 -1.2118 -0.0647 4.5570 1.1957 0.9006 3.1178 0.3922 0.5720 2.9393 0.0349 3.1610 0.0371
+#> 6: 91.4496 -5.8734 -2.0974 -3.9977 -1.0936 -0.0608 4.3292 1.3347 0.8695 3.1231 0.3726 0.5434 2.5921 0.0366 2.7534 0.0396
+#> 7: 91.6540 -5.8545 -2.1019 -3.9268 -0.9717 -0.1622 4.1127 1.8221 0.8771 2.9670 0.3539 0.5162 2.3468 0.0466 2.4323 0.0474
+#> 8: 91.7226 -5.8139 -2.0764 -4.0030 -0.9804 -0.1283 3.9071 2.3972 0.9978 2.9945 0.3362 0.4904 2.0001 0.0405 2.0620 0.0557
+#> 9: 91.9975 -5.6339 -2.0812 -3.9379 -0.9156 -0.0654 4.4265 2.2773 0.9479 3.0945 0.3194 0.4659 1.8817 0.0397 1.4473 0.0845
+#> 10: 91.9477 -5.6101 -2.0459 -3.8821 -0.9368 -0.0428 4.9868 2.2787 0.9297 3.2162 0.3035 0.4426 1.6910 0.0397 1.3759 0.0892
+#> 11: 92.1798 -5.5425 -2.0676 -3.9349 -0.9248 -0.0339 5.0312 2.1648 0.8832 3.0554 0.2883 0.4205 1.6613 0.0375 1.3387 0.0823
+#> 12: 92.1456 -5.6294 -2.1011 -3.8899 -0.9195 -0.0410 4.7796 2.0565 0.9077 3.1066 0.3013 0.3995 1.6018 0.0393 1.5496 0.0691
+#> 13: 91.6764 -5.5607 -2.0911 -3.8832 -0.9268 -0.0367 4.5407 1.9537 0.9246 3.0425 0.2862 0.3795 1.6900 0.0350 1.4050 0.0712
+#> 14: 91.4832 -5.5007 -2.1133 -3.8869 -0.9208 -0.0202 4.3136 1.8560 0.8795 3.0389 0.2719 0.3605 1.5526 0.0389 1.7056 0.0502
+#> 15: 91.7854 -5.4454 -2.1124 -3.8750 -0.8842 -0.0608 4.0979 1.7632 0.9004 3.0463 0.2583 0.3425 1.6201 0.0384 1.2463 0.0747
+#> 16: 91.7608 -5.4097 -2.1449 -3.8750 -0.8797 -0.0532 3.8930 1.6751 0.9666 3.0463 0.2454 0.3254 1.6086 0.0384 1.0840 0.0850
+#> 17: 91.6692 -5.5401 -2.1688 -3.8762 -0.9022 -0.0101 3.6984 1.8405 1.0323 2.9672 0.2331 0.3091 1.4625 0.0371 1.1135 0.0841
+#> 18: 91.3169 -5.5720 -2.1777 -3.8851 -0.9396 0.0040 3.5135 1.8186 1.0419 3.0783 0.2215 0.2936 1.4778 0.0396 1.3403 0.0732
+#> 19: 91.4384 -5.6696 -2.1469 -3.8892 -0.9318 -0.0103 3.3378 2.2700 1.0489 3.0592 0.2128 0.2790 1.3854 0.0379 1.1760 0.0858
+#> 20: 91.3273 -5.7800 -2.1388 -3.9004 -0.9536 -0.0159 3.1709 2.7506 1.0297 3.0477 0.2021 0.2650 1.4542 0.0419 1.1576 0.0856
+#> 21: 91.7477 -5.7952 -2.1436 -3.9164 -0.9263 -0.0184 3.0124 3.0737 1.0414 3.0435 0.1948 0.2518 1.5026 0.0398 1.1833 0.0791
+#> 22: 91.6492 -6.0575 -2.1196 -3.9168 -0.9471 -0.0153 2.8617 4.1317 1.0322 3.0494 0.1850 0.2392 1.4351 0.0409 1.0739 0.0873
+#> 23: 91.8536 -6.2824 -2.1596 -3.9174 -0.9405 0.0031 2.7187 5.3935 1.0143 3.1085 0.1758 0.2272 1.4534 0.0404 1.0651 0.0805
+#> 24: 92.1616 -6.2246 -2.0912 -3.9224 -0.9338 0.0118 2.5827 5.7533 0.9636 3.0780 0.1741 0.2158 1.5863 0.0336 1.0915 0.0804
+#> 25: 92.2576 -6.2746 -2.1058 -3.9587 -0.9355 0.0189 2.4536 5.4656 0.9706 3.3477 0.1780 0.2051 1.4555 0.0365 1.0838 0.0782
+#> 26: 92.3314 -6.1739 -2.1211 -3.9676 -0.9474 0.0525 2.4934 5.5785 0.9981 3.3705 0.1835 0.1948 1.4433 0.0379 1.1300 0.0783
+#> 27: 92.8206 -6.1111 -2.0900 -3.9787 -0.9472 0.0058 2.5201 5.4329 1.0145 3.5013 0.1856 0.1851 1.4484 0.0391 1.1809 0.0723
+#> 28: 92.8685 -6.0934 -2.0963 -3.9872 -0.9693 0.0053 2.9812 5.1612 0.9925 3.5416 0.1816 0.1758 1.4713 0.0389 1.1766 0.0704
+#> 29: 92.6774 -5.8779 -2.0833 -3.9954 -0.9546 -0.0099 4.3751 4.9032 1.0762 3.5483 0.1755 0.1670 1.4844 0.0378 1.3435 0.0599
+#> 30: 92.6704 -5.9657 -2.0746 -3.9920 -0.9342 -0.0329 4.1563 4.6580 1.0571 3.5382 0.1667 0.1587 1.4510 0.0427 1.2218 0.0678
+#> 31: 92.4139 -5.7428 -2.0922 -3.9765 -0.9178 -0.0302 3.9485 4.4251 1.0210 3.5601 0.1596 0.1507 1.5981 0.0349 1.3086 0.0619
+#> 32: 92.8243 -5.8072 -2.1154 -3.9699 -0.9130 0.0065 3.7511 4.2039 1.0622 3.4768 0.1667 0.1432 1.5321 0.0333 1.3779 0.0611
+#> 33: 92.8737 -5.6655 -2.1132 -3.9763 -0.9155 0.0183 3.5635 3.9937 1.1068 3.5075 0.1583 0.1360 1.5351 0.0341 1.2700 0.0673
+#> 34: 93.0233 -5.7429 -2.1022 -3.9648 -0.9057 0.0202 3.3853 3.7940 1.0830 3.4532 0.1504 0.1292 1.5128 0.0368 1.1942 0.0702
+#> 35: 93.1333 -5.7707 -2.1003 -4.0004 -0.9031 0.0201 3.2161 3.6043 1.1161 3.4701 0.1429 0.1228 1.6003 0.0307 1.1387 0.0734
+#> 36: 93.1398 -5.7700 -2.1168 -3.9678 -0.9038 0.0107 3.0553 3.4241 1.1209 3.4126 0.1358 0.1166 1.4919 0.0331 1.0642 0.0755
+#> 37: 92.8847 -5.6651 -2.1538 -3.9634 -0.9176 0.0364 2.9995 3.2529 1.1108 3.3776 0.1402 0.1173 1.5093 0.0396 1.1550 0.0693
+#> 38: 93.2326 -5.5244 -2.1571 -3.9909 -0.9231 0.0179 2.8832 3.0902 1.0763 3.5170 0.1332 0.1205 1.4962 0.0472 1.1657 0.0679
+#> 39: 92.9946 -5.4516 -2.1475 -3.9365 -0.9067 0.0309 3.0986 2.9357 1.0562 3.4194 0.1265 0.1251 1.4786 0.0464 1.1183 0.0721
+#> 40: 93.2028 -5.6148 -2.1367 -3.9235 -0.9048 0.0099 2.9436 2.7889 1.1256 3.3460 0.1241 0.1288 1.4515 0.0459 1.0449 0.0753
+#> 41: 93.1297 -5.4665 -2.0545 -4.0108 -0.9136 -0.0216 2.7964 2.6495 1.1471 3.4754 0.1281 0.1223 1.7359 0.0321 1.0876 0.0780
+#> 42: 93.0469 -5.3767 -2.0820 -4.0213 -0.9361 -0.0264 2.6566 2.5170 1.0897 3.5120 0.1411 0.1162 1.7070 0.0276 1.2377 0.0691
+#> 43: 93.3305 -5.4943 -2.0910 -4.0226 -0.9414 -0.0201 2.5238 2.3912 1.0896 3.4589 0.1621 0.1126 1.5584 0.0393 1.1485 0.0705
+#> 44: 93.2566 -5.4919 -2.1016 -4.0718 -0.9373 0.0024 2.3976 2.2716 1.0451 3.8959 0.1612 0.1162 1.5769 0.0286 1.2778 0.0693
+#> 45: 93.0284 -5.4885 -2.1012 -4.0740 -0.9202 -0.0197 2.2777 2.1580 1.0268 3.9297 0.1553 0.1104 1.5589 0.0289 1.1388 0.0778
+#> 46: 92.7188 -5.5807 -2.1102 -4.0875 -0.9465 0.0076 2.1638 2.2084 0.9840 4.0322 0.1475 0.1048 1.6729 0.0295 1.2763 0.0735
+#> 47: 92.6718 -5.5108 -2.1268 -4.0638 -0.9220 0.0131 2.0556 2.0980 1.0064 3.8306 0.1475 0.0996 1.6527 0.0271 1.3190 0.0659
+#> 48: 92.6727 -5.5268 -2.1326 -4.0693 -0.8999 0.0259 1.9529 2.2445 1.0387 3.8064 0.1459 0.0946 1.6587 0.0283 1.3555 0.0604
+#> 49: 92.5230 -5.5592 -2.1701 -4.0595 -0.9087 0.0350 1.8552 2.5181 1.0238 3.7514 0.1552 0.0899 1.5473 0.0307 1.2437 0.0662
+#> 50: 92.4920 -5.5778 -2.1309 -4.0711 -0.9317 0.0383 1.7625 2.6771 1.0203 3.7435 0.1587 0.0854 1.5727 0.0330 1.2555 0.0611
+#> 51: 92.4606 -5.5485 -2.1346 -4.0687 -0.9148 0.0638 1.6743 2.8079 1.0402 3.6978 0.1513 0.0811 1.5476 0.0335 1.2744 0.0658
+#> 52: 92.6305 -5.6829 -2.1658 -4.0697 -0.9298 0.0848 1.5906 2.8530 1.0565 3.6998 0.1644 0.0798 1.4751 0.0296 1.1351 0.0747
+#> 53: 92.6412 -5.5519 -2.1984 -4.1605 -0.9472 0.0803 1.8328 2.7103 1.0501 4.4111 0.1626 0.0758 1.5735 0.0343 1.2247 0.0643
+#> 54: 92.7616 -5.5718 -2.1826 -4.2028 -0.9382 0.0939 1.9108 2.5748 1.0708 4.7287 0.1775 0.0720 1.4860 0.0299 1.2190 0.0638
+#> 55: 92.8466 -5.6434 -2.1590 -4.0501 -0.9219 0.0660 2.3709 2.4461 1.0399 4.4922 0.1686 0.0684 1.5899 0.0297 1.2586 0.0598
+#> 56: 92.8839 -5.6503 -2.1758 -4.0467 -0.9265 0.0765 2.2523 2.3238 1.0755 4.2676 0.1698 0.0666 1.5357 0.0319 1.1854 0.0633
+#> 57: 92.8882 -5.3950 -2.1926 -4.0282 -0.9455 0.0600 2.4994 2.2076 1.0411 4.0542 0.1684 0.0633 1.5839 0.0342 1.2789 0.0612
+#> 58: 92.9510 -5.4362 -2.1993 -4.0402 -0.9349 0.0576 2.3744 2.0972 1.0184 3.8515 0.1757 0.0604 1.5796 0.0328 1.3027 0.0570
+#> 59: 92.8806 -5.4605 -2.2176 -4.2201 -0.9360 0.0998 2.2557 1.9923 1.0248 5.1421 0.1904 0.0573 1.6469 0.0325 1.4177 0.0534
+#> 60: 92.8606 -5.4697 -2.2016 -4.1707 -0.9218 0.0747 2.1429 1.8927 1.0489 4.8850 0.1809 0.0545 1.5984 0.0318 1.2879 0.0589
+#> 61: 92.8939 -5.5167 -2.2169 -4.1567 -0.9434 0.0680 2.1067 1.9160 1.0677 4.6408 0.1775 0.0517 1.5223 0.0404 1.2033 0.0623
+#> 62: 93.1569 -5.6121 -2.2073 -4.1427 -0.9431 0.0717 2.5977 2.0627 1.0518 4.5133 0.1758 0.0494 1.4644 0.0364 1.1857 0.0621
+#> 63: 93.2362 -5.5056 -2.1832 -4.0832 -0.9433 0.0754 3.4639 1.9596 1.0905 4.2877 0.1851 0.0536 1.5500 0.0320 1.2533 0.0610
+#> 64: 93.3935 -5.4320 -2.1735 -4.0754 -0.9601 0.0719 5.0337 1.8616 1.0723 4.0733 0.1907 0.0649 1.5436 0.0270 1.4154 0.0546
+#> 65: 93.1102 -5.5419 -2.1870 -4.0496 -0.9481 0.0753 5.0250 1.9760 1.1263 3.8696 0.1902 0.0617 1.4779 0.0262 1.1326 0.0712
+#> 66: 92.9832 -5.7640 -2.1941 -4.0532 -0.9444 0.0635 5.2049 2.6553 1.1258 3.7699 0.1915 0.0586 1.4926 0.0307 1.0960 0.0645
+#> 67: 92.6674 -5.6976 -2.1858 -4.0855 -0.9209 0.0562 4.9447 2.5225 1.1285 4.0204 0.1948 0.0556 1.4667 0.0315 1.1023 0.0650
+#> 68: 92.7718 -5.7724 -2.1760 -4.0242 -0.9354 0.0441 4.6975 2.8536 1.1471 3.8194 0.1922 0.0529 1.4283 0.0329 1.1174 0.0664
+#> 69: 92.8377 -5.7554 -2.1833 -4.0670 -0.9412 0.0834 4.4626 2.7404 1.1565 3.7904 0.1826 0.0502 1.4628 0.0318 1.0793 0.0747
+#> 70: 92.6830 -5.9071 -2.2266 -4.0604 -0.9399 0.0730 4.2394 3.5629 1.1459 3.7282 0.1734 0.0477 1.4892 0.0331 1.1526 0.0683
+#> 71: 92.5729 -5.8185 -2.2009 -4.0623 -0.9401 0.0878 4.0275 3.3847 1.0886 3.7348 0.1648 0.0453 1.4739 0.0373 1.0902 0.0678
+#> 72: 92.1755 -6.0270 -2.2108 -4.1507 -0.9564 0.0665 3.8261 3.9851 1.1200 4.1726 0.1617 0.0431 1.4478 0.0348 1.1400 0.0673
+#> 73: 91.8986 -6.0175 -2.1916 -4.1416 -0.9347 0.0243 3.6348 4.0607 1.1553 4.0576 0.1802 0.0409 1.4330 0.0406 1.0914 0.0712
+#> 74: 91.7729 -5.8767 -2.1898 -4.0934 -0.9122 0.0184 3.4531 3.8577 1.1254 3.8547 0.1827 0.0389 1.3372 0.0524 1.0717 0.0687
+#> 75: 91.3098 -5.9950 -2.1572 -4.1349 -0.9427 0.0190 3.4756 3.8000 1.1626 3.8402 0.1969 0.0369 1.3378 0.0501 1.1602 0.0685
+#> 76: 91.3766 -5.8701 -2.2042 -4.1128 -0.9081 0.0539 3.9350 3.6100 1.2348 3.7994 0.1891 0.0369 1.3400 0.0495 1.0656 0.0738
+#> 77: 91.6057 -5.7437 -2.1988 -4.1241 -0.8890 0.0500 5.0868 3.4295 1.1971 3.8470 0.1950 0.0469 1.4928 0.0397 1.1129 0.0700
+#> 78: 91.7868 -5.7832 -2.1844 -4.1102 -0.9104 0.0698 4.8325 3.2580 1.1670 3.6547 0.1993 0.0502 1.4336 0.0340 0.9512 0.0805
+#> 79: 91.7221 -5.7881 -2.2166 -4.1137 -0.9160 0.0672 4.5909 3.0951 1.1582 3.5765 0.1928 0.0486 1.4632 0.0352 1.0210 0.0728
+#> 80: 91.8608 -5.8064 -2.2006 -4.0971 -0.9209 0.0642 4.3613 3.2163 1.1481 3.4758 0.1832 0.0462 1.4368 0.0356 1.0605 0.0710
+#> 81: 91.6423 -5.8749 -2.2037 -4.0893 -0.9187 0.0503 4.1432 3.5329 1.0907 3.5148 0.2011 0.0451 1.4719 0.0346 1.1684 0.0646
+#> 82: 91.8319 -6.0898 -2.2251 -4.0826 -0.9368 0.0842 4.1509 4.4964 1.0606 3.4836 0.1910 0.0428 1.4468 0.0387 1.1605 0.0637
+#> 83: 91.9794 -6.0417 -2.1947 -4.1042 -0.9114 0.0741 6.5949 4.5668 1.1113 3.6409 0.1815 0.0407 1.4780 0.0346 1.1277 0.0634
+#> 84: 91.8669 -6.1877 -2.1979 -4.1052 -0.9300 0.0807 6.2651 5.1958 1.1750 3.6752 0.1724 0.0386 1.4931 0.0278 1.0401 0.0685
+#> 85: 91.6789 -6.0634 -2.1896 -4.1357 -0.9371 0.0933 5.9519 4.9360 1.1259 3.8493 0.1732 0.0367 1.5058 0.0275 1.1356 0.0670
+#> 86: 91.6989 -6.2114 -2.2056 -4.1542 -0.9646 0.0882 5.6543 5.0411 1.1091 3.9411 0.1988 0.0349 1.4099 0.0338 1.1811 0.0636
+#> 87: 92.3758 -6.3779 -2.2062 -4.1739 -0.9385 0.0916 5.3716 6.2290 1.1213 4.0290 0.1889 0.0331 1.4809 0.0306 1.1443 0.0626
+#> 88: 92.2757 -6.2016 -2.2215 -4.1389 -0.9582 0.0942 5.1030 5.9176 1.0797 4.0768 0.1990 0.0315 1.4282 0.0386 1.2235 0.0629
+#> 89: 92.1970 -6.3356 -2.2081 -4.1412 -0.9555 0.1057 4.8478 5.9597 1.1474 4.0677 0.1890 0.0299 1.3856 0.0377 1.1807 0.0640
+#> 90: 92.0813 -6.4550 -2.2045 -4.1524 -0.9553 0.0885 4.6054 6.9999 1.1542 3.9901 0.1880 0.0284 1.3416 0.0416 1.1379 0.0653
+#> 91: 91.7111 -6.5289 -2.2203 -4.1763 -0.9288 0.0823 5.4933 6.9237 1.1601 4.0435 0.1839 0.0360 1.3387 0.0401 1.1768 0.0591
+#> 92: 92.1217 -6.5567 -2.2232 -4.2082 -0.9411 0.0815 8.0692 6.7286 1.1684 3.9422 0.1763 0.0411 1.3740 0.0463 1.1538 0.0613
+#> 93: 92.7497 -6.3512 -2.2463 -4.1806 -0.9633 0.0724 7.6657 6.3922 1.1870 3.8858 0.1796 0.0391 1.4232 0.0454 1.3749 0.0497
+#> 94: 92.2679 -6.3542 -2.2473 -4.1873 -0.9382 0.0711 7.2824 6.0726 1.1940 3.8847 0.1956 0.0371 1.3812 0.0465 1.2897 0.0521
+#> 95: 92.0257 -6.2448 -2.2624 -4.1681 -0.9624 0.0810 6.9183 5.7690 1.1345 3.8091 0.1858 0.0359 1.3026 0.0509 1.3000 0.0530
+#> 96: 91.5166 -5.9442 -2.2924 -4.2449 -0.9238 0.1058 7.1159 5.4805 1.1231 4.2529 0.1953 0.0343 1.4063 0.0445 1.3479 0.0482
+#> 97: 91.1606 -5.8541 -2.2912 -4.2398 -0.8875 0.1101 9.4515 5.2065 1.1256 4.3194 0.2081 0.0337 1.3436 0.0498 1.3317 0.0496
+#> 98: 91.2787 -6.0967 -2.2703 -4.2641 -0.9260 0.0869 8.9789 4.9462 1.2070 4.2238 0.1977 0.0373 1.3124 0.0495 1.1362 0.0653
+#> 99: 91.6449 -5.9441 -2.2562 -4.2355 -0.9312 0.1237 8.5300 4.6988 1.2343 4.0468 0.1878 0.0369 1.3508 0.0462 1.0542 0.0704
+#> 100: 91.7795 -5.8857 -2.2516 -4.3381 -0.9344 0.1291 8.1035 4.4639 1.2355 4.6941 0.1968 0.0393 1.4327 0.0358 1.1170 0.0668
+#> 101: 92.2537 -5.7930 -2.2345 -4.3477 -0.9272 0.1340 8.3402 4.2407 1.1961 4.7638 0.1933 0.0402 1.4683 0.0375 1.1216 0.0626
+#> 102: 92.3920 -6.0193 -2.2332 -4.3487 -0.9155 0.1565 11.1006 4.2977 1.1700 4.8048 0.2260 0.0444 1.4443 0.0342 1.0888 0.0674
+#> 103: 92.0043 -5.7825 -2.2376 -4.2616 -0.9043 0.1686 10.5455 4.0829 1.1587 4.5646 0.2147 0.0422 1.4198 0.0338 1.1639 0.0625
+#> 104: 92.1575 -5.8497 -2.2470 -4.2456 -0.9128 0.1762 10.0183 3.8787 1.1405 4.3364 0.2040 0.0440 1.3919 0.0379 1.2040 0.0582
+#> 105: 92.2784 -5.7971 -2.2582 -4.2100 -0.9128 0.1731 9.5173 3.6848 1.1351 4.1196 0.1938 0.0418 1.3982 0.0404 1.1069 0.0656
+#> 106: 92.4336 -5.7752 -2.2690 -4.3771 -0.8925 0.1644 9.0415 3.5005 1.1547 5.0970 0.1841 0.0476 1.3670 0.0423 1.1716 0.0625
+#> 107: 92.5128 -5.8328 -2.2549 -4.4193 -0.9403 0.2268 8.5894 3.3255 1.1160 5.2711 0.1749 0.0453 1.4023 0.0347 1.0279 0.0757
+#> 108: 92.8926 -5.7266 -2.2606 -4.5037 -0.9392 0.2394 8.1599 3.1592 1.1293 5.9652 0.1661 0.0447 1.3837 0.0346 0.9545 0.0747
+#> 109: 92.4657 -5.8687 -2.2884 -4.4108 -0.9043 0.2611 7.7519 4.0001 1.0729 5.6669 0.1578 0.0424 1.3441 0.0351 0.9758 0.0708
+#> 110: 92.6620 -5.6900 -2.2825 -4.4337 -0.9003 0.2602 7.3643 3.8001 1.0843 5.3836 0.1499 0.0433 1.4652 0.0302 0.9950 0.0722
+#> 111: 92.8949 -5.6946 -2.2661 -4.5240 -0.9233 0.2372 6.9961 3.6101 1.0845 5.8133 0.1551 0.0411 1.5005 0.0327 0.9284 0.0753
+#> 112: 93.4237 -5.6562 -2.2474 -4.4809 -0.9441 0.2322 6.6463 3.4296 1.1498 5.5227 0.1474 0.0409 1.4612 0.0317 0.9336 0.0762
+#> 113: 93.1883 -5.6891 -2.2846 -4.3984 -0.9416 0.2317 6.3140 3.2581 1.1062 5.2465 0.1596 0.0463 1.3924 0.0380 1.0268 0.0698
+#> 114: 93.4464 -5.7087 -2.2902 -4.4274 -0.9401 0.2638 5.9983 3.0952 1.1170 5.0203 0.1516 0.0495 1.4108 0.0361 1.0355 0.0682
+#> 115: 93.1873 -5.8732 -2.2668 -4.5086 -0.9636 0.2516 5.6984 3.3427 1.1141 5.7549 0.1440 0.0490 1.5010 0.0309 1.0443 0.0679
+#> 116: 92.6878 -5.8520 -2.2903 -4.5349 -0.9663 0.2612 5.4135 3.2444 1.1048 5.8809 0.1471 0.0511 1.3910 0.0360 1.0423 0.0702
+#> 117: 92.7775 -5.7892 -2.2897 -4.4572 -0.9544 0.2380 5.1428 3.0822 1.0731 5.5869 0.1397 0.0703 1.3493 0.0360 0.9831 0.0713
+#> 118: 93.1533 -5.8045 -2.2859 -4.4787 -0.9667 0.2150 4.8857 3.0277 1.0872 5.6786 0.1439 0.0812 1.3838 0.0373 1.0547 0.0696
+#> 119: 92.8370 -5.7208 -2.2738 -4.4627 -0.9462 0.2095 4.6414 2.8764 1.1172 5.6197 0.1643 0.0772 1.3394 0.0348 0.9180 0.0803
+#> 120: 92.5430 -5.7795 -2.3004 -4.4203 -0.9479 0.2313 4.4093 2.8377 1.1312 5.3387 0.1655 0.0803 1.2967 0.0360 1.0699 0.0761
+#> 121: 92.5318 -5.6550 -2.2866 -4.5065 -0.9166 0.2321 4.1888 2.6959 1.0994 6.0180 0.1686 0.0763 1.3882 0.0322 0.9895 0.0733
+#> 122: 92.7380 -5.6688 -2.2968 -4.4523 -0.9279 0.2529 3.9794 2.5611 1.0642 5.7171 0.1601 0.0851 1.3786 0.0316 0.9358 0.0742
+#> 123: 93.0753 -5.7451 -2.2896 -4.5423 -0.9371 0.2724 3.7804 2.9938 1.0758 5.9349 0.1521 0.0808 1.4275 0.0339 0.9652 0.0727
+#> 124: 93.2708 -5.8004 -2.2782 -4.4951 -0.9451 0.2590 3.5914 3.0594 1.0875 5.6382 0.1607 0.0768 1.3628 0.0340 1.0577 0.0693
+#> 125: 93.4025 -5.7710 -2.2990 -4.4498 -0.9661 0.2633 3.4118 2.9276 1.0809 5.3563 0.1527 0.0730 1.3816 0.0406 1.0295 0.0671
+#> 126: 93.4928 -5.7054 -2.3002 -4.4087 -0.9394 0.2965 3.4732 2.7812 1.1275 5.0884 0.1481 0.0693 1.2949 0.0423 0.9084 0.0726
+#> 127: 93.6449 -5.6593 -2.2683 -4.3418 -0.9194 0.2560 4.2986 2.6422 1.1070 4.8340 0.1449 0.0707 1.4258 0.0341 0.8802 0.0777
+#> 128: 93.7430 -5.6359 -2.2686 -4.4174 -0.9500 0.2279 5.2477 2.5101 1.1046 5.5376 0.1512 0.0859 1.4523 0.0327 0.8659 0.0826
+#> 129: 93.7432 -5.6851 -2.2849 -4.2019 -0.9660 0.1995 7.2497 2.8789 1.1315 5.2607 0.1762 0.0972 1.3901 0.0357 1.1264 0.0743
+#> 130: 93.2409 -5.8965 -2.2946 -4.1880 -0.9774 0.1719 7.4467 3.2276 1.1464 4.9977 0.1720 0.0924 1.3517 0.0446 1.0461 0.0705
+#> 131: 92.7780 -6.0551 -2.2647 -4.1894 -0.9579 0.1391 7.0744 3.7584 1.1291 4.7478 0.1714 0.0995 1.2542 0.0438 0.9139 0.0777
+#> 132: 92.7157 -6.1161 -2.2501 -4.1784 -0.9651 0.1146 6.7207 3.9259 1.1674 4.5104 0.1712 0.0957 1.2549 0.0473 0.8964 0.0803
+#> 133: 92.2696 -5.8545 -2.2717 -4.1907 -0.9782 0.0985 6.3846 3.7296 1.1652 4.2849 0.1626 0.1198 1.2208 0.0498 0.9730 0.0822
+#> 134: 92.2067 -5.8603 -2.2743 -4.2095 -0.9754 0.1398 6.0654 3.5431 1.1551 4.0706 0.1695 0.1138 1.3022 0.0432 0.9960 0.0795
+#> 135: 92.3979 -5.9500 -2.3053 -4.1938 -0.9425 0.1134 5.7621 3.3660 1.1771 3.8671 0.1610 0.1081 1.3373 0.0462 1.1323 0.0665
+#> 136: 92.3749 -5.8701 -2.2979 -4.2493 -0.9386 0.1504 5.4740 3.3090 1.1638 3.9609 0.1724 0.1027 1.3578 0.0389 1.1943 0.0650
+#> 137: 92.6942 -5.9020 -2.2755 -4.2318 -0.9464 0.1541 5.2003 3.5521 1.1704 3.8948 0.1685 0.0976 1.4170 0.0399 1.1472 0.0626
+#> 138: 92.7234 -5.8085 -2.2653 -4.2164 -0.9662 0.1808 4.9403 3.3745 1.1977 3.8348 0.1694 0.0927 1.4229 0.0387 1.0934 0.0708
+#> 139: 92.7341 -5.7737 -2.2685 -4.1759 -0.9334 0.1554 4.6933 3.2057 1.1971 3.6962 0.1917 0.0881 1.4324 0.0363 1.1669 0.0652
+#> 140: 92.1593 -5.6287 -2.2576 -4.1977 -0.9232 0.1345 4.6967 3.0455 1.1676 3.8133 0.2060 0.0837 1.5032 0.0349 1.1418 0.0678
+#> 141: 92.3199 -5.8323 -2.2451 -4.1948 -0.9447 0.1295 4.9624 3.3893 1.1408 3.8423 0.1957 0.0795 1.4470 0.0325 1.0892 0.0739
+#> 142: 92.7246 -6.1252 -2.2304 -4.1984 -0.9160 0.0816 4.7143 4.6501 1.1420 3.8554 0.1901 0.0755 1.4847 0.0386 1.2815 0.0576
+#> 143: 92.4130 -6.0231 -2.2261 -4.2205 -0.9495 0.1020 4.4786 4.4176 1.1454 4.0301 0.1929 0.0717 1.4103 0.0410 1.0418 0.0739
+#> 144: 92.4006 -5.9898 -2.2232 -4.2429 -0.9553 0.1131 4.2547 4.1967 1.1579 4.2583 0.1904 0.0681 1.4272 0.0339 1.0591 0.0737
+#> 145: 92.5011 -6.2340 -2.2232 -4.1872 -0.9560 0.1322 6.1775 4.8941 1.1594 4.0453 0.1811 0.0647 1.4059 0.0298 1.0219 0.0752
+#> 146: 92.7460 -6.2989 -2.2417 -4.2501 -0.9650 0.1527 5.8686 5.6454 1.1154 4.0076 0.1720 0.0758 1.4027 0.0348 1.1220 0.0689
+#> 147: 93.0630 -6.0839 -2.2217 -4.1822 -0.9661 0.1634 5.5752 5.3631 1.0596 3.8072 0.1743 0.0733 1.3682 0.0393 1.0992 0.0700
+#> 148: 92.7639 -5.8682 -2.2550 -4.1926 -0.9440 0.1599 5.8048 5.0950 1.0858 3.6230 0.1749 0.0696 1.3364 0.0436 1.0967 0.0721
+#> 149: 92.6183 -6.1270 -2.2379 -4.1103 -0.9643 0.1202 5.8027 4.8402 1.1089 3.4860 0.1661 0.0661 1.3061 0.0457 1.0014 0.0724
+#> 150: 92.7472 -6.1515 -2.2199 -4.1027 -0.9611 0.1014 5.6767 4.5982 1.1061 3.6113 0.1578 0.0654 1.3543 0.0405 1.0847 0.0707
+#> 151: 92.9566 -5.8911 -2.2174 -4.0722 -0.9516 0.0992 5.9638 4.3683 1.1057 3.5122 0.1767 0.0621 1.3619 0.0396 1.0158 0.0734
+#> 152: 93.0035 -5.8395 -2.2559 -4.0650 -0.9389 0.0928 4.4799 3.2331 1.0387 3.4826 0.1713 0.0604 1.3425 0.0428 1.1101 0.0635
+#> 153: 92.7242 -5.7832 -2.2538 -4.1288 -0.9159 0.1047 4.6102 3.0838 1.0527 3.8052 0.1718 0.0597 1.3905 0.0398 1.1371 0.0635
+#> 154: 92.2125 -5.9077 -2.2400 -4.0922 -0.9106 0.1033 4.4732 3.8350 1.0261 3.6148 0.1955 0.0643 1.3176 0.0419 1.1130 0.0635
+#> 155: 92.6226 -5.6271 -2.2239 -4.0122 -0.8948 0.0647 4.5553 2.5675 1.0412 3.0513 0.1845 0.0866 1.3266 0.0459 1.0244 0.0680
+#> 156: 92.6532 -5.5576 -2.2251 -4.0066 -0.9006 0.0922 3.8517 2.3273 1.0455 3.0971 0.1928 0.0863 1.4000 0.0394 0.9203 0.0754
+#> 157: 92.5192 -5.4834 -2.2356 -4.0069 -0.9321 0.0904 3.0410 1.8841 0.9867 3.1990 0.1905 0.0816 1.3927 0.0407 1.1517 0.0614
+#> 158: 92.5628 -5.5318 -2.2044 -4.0269 -0.9319 0.0742 3.5124 1.9585 1.0692 3.1835 0.1958 0.0934 1.4038 0.0324 0.9680 0.0758
+#> 159: 92.9690 -5.6416 -2.2134 -4.0156 -0.9556 0.0560 4.3830 2.2442 1.0543 3.2358 0.1873 0.0951 1.3624 0.0375 1.1207 0.0696
+#> 160: 92.9861 -5.5872 -2.2207 -3.9908 -0.9190 0.0417 4.1202 2.1685 1.0711 3.1521 0.1766 0.0913 1.3760 0.0371 1.0970 0.0713
+#> 161: 93.3139 -5.5349 -2.1972 -3.9860 -0.9365 0.0011 4.2865 1.8741 1.0759 3.0304 0.2007 0.0750 1.3650 0.0411 1.1220 0.0662
+#> 162: 93.3324 -5.6135 -2.1579 -4.0151 -0.9507 -0.0091 4.6402 2.0208 1.0535 3.0349 0.1935 0.0764 1.4069 0.0383 1.2550 0.0598
+#> 163: 93.0110 -5.5253 -2.1419 -4.0151 -0.9197 -0.0072 5.8946 1.9087 1.0965 3.0349 0.1833 0.0814 1.5095 0.0290 1.1314 0.0665
+#> 164: 93.0848 -5.4980 -2.1670 -4.0213 -0.9345 0.0150 4.9128 1.8293 1.0379 3.0653 0.1728 0.0835 1.4913 0.0343 1.0589 0.0687
+#> 165: 92.9407 -5.3978 -2.1707 -4.0090 -0.9480 0.0126 3.4620 1.3870 1.0594 3.0115 0.1702 0.0982 1.5550 0.0296 1.0978 0.0694
+#> 166: 93.1504 -5.4880 -2.1890 -3.9958 -0.9511 0.0316 2.7859 1.8457 1.0294 3.0739 0.1738 0.1031 1.5109 0.0308 1.1800 0.0651
+#> 167: 92.8442 -5.4673 -2.1984 -4.0259 -0.9262 0.0243 2.0497 1.6348 1.0469 3.1258 0.1650 0.0981 1.6185 0.0291 1.1733 0.0655
+#> 168: 92.9484 -5.6255 -2.2012 -4.0136 -0.9309 0.0199 1.8121 2.0784 1.0415 3.1795 0.1816 0.0929 1.5727 0.0268 1.4222 0.0543
+#> 169: 93.0266 -5.6135 -2.1677 -4.0179 -0.9279 0.0375 1.7553 2.1663 1.0298 3.1675 0.2013 0.0926 1.5356 0.0274 1.2960 0.0596
+#> 170: 92.9844 -5.6286 -2.1839 -4.0509 -0.9471 0.0414 1.9485 2.4078 1.0656 3.2787 0.2112 0.0950 1.5210 0.0265 1.3069 0.0616
+#> 171: 92.6832 -5.6238 -2.2059 -4.0710 -0.9175 0.0383 1.5941 2.2918 1.1095 3.3435 0.1921 0.0895 1.4678 0.0345 1.2189 0.0618
+#> 172: 92.5302 -5.5653 -2.2086 -4.0429 -0.9412 0.0773 1.5302 2.2565 1.1293 3.2157 0.1924 0.0680 1.4438 0.0367 1.2084 0.0661
+#> 173: 92.3877 -5.5357 -2.2141 -4.0246 -0.9268 0.0866 1.2153 2.0588 1.0844 3.2941 0.2060 0.0726 1.4686 0.0359 1.3683 0.0596
+#> 174: 92.4410 -5.4921 -2.1955 -4.0398 -0.9269 0.0645 1.6903 2.0042 1.1236 3.3646 0.1847 0.0804 1.5533 0.0310 1.2320 0.0675
+#> 175: 92.4192 -5.4726 -2.1945 -4.0271 -0.9222 0.0728 1.1344 1.9292 1.1085 3.3173 0.1875 0.0912 1.5350 0.0302 1.2461 0.0679
+#> 176: 92.3581 -5.5256 -2.2055 -3.9958 -0.9211 0.0720 1.1140 1.8097 1.0898 3.1459 0.2018 0.1104 1.4391 0.0323 1.2240 0.0677
+#> 177: 92.2144 -5.6699 -2.2357 -4.0017 -0.9402 0.0785 1.1932 2.6190 1.0355 3.1852 0.2266 0.1125 1.4705 0.0327 1.2866 0.0621
+#> 178: 92.3608 -5.7040 -2.2245 -4.0242 -0.9642 0.0596 0.7932 2.6061 0.9408 3.1080 0.1958 0.1180 1.5158 0.0365 1.3571 0.0600
+#> 179: 92.4358 -5.6877 -2.2243 -4.0166 -0.9486 0.0595 0.7591 2.3791 0.9241 3.0638 0.1900 0.1257 1.4317 0.0363 1.2359 0.0686
+#> 180: 92.5146 -5.7856 -2.2343 -4.0098 -0.9522 0.0522 0.4573 2.6882 0.9636 3.0406 0.1835 0.1270 1.4631 0.0361 1.2192 0.0701
+#> 181: 92.5469 -5.7684 -2.2220 -4.0549 -0.9488 0.0901 0.4189 2.4963 0.9873 3.1470 0.1744 0.1268 1.5165 0.0336 1.1359 0.0760
+#> 182: 92.5829 -5.7658 -2.2385 -4.0362 -0.9723 0.0572 0.3720 2.5387 0.9203 3.0397 0.1769 0.1636 1.4781 0.0375 1.2697 0.0677
+#> 183: 92.5737 -5.9187 -2.2130 -4.0638 -0.9876 0.0797 0.3084 3.3137 0.9467 3.0532 0.1737 0.1599 1.4288 0.0309 1.3024 0.0617
+#> 184: 92.4989 -5.9837 -2.1994 -4.0476 -0.9737 0.0594 0.2533 3.6658 0.9248 3.1230 0.1776 0.1552 1.3829 0.0316 1.2818 0.0621
+#> 185: 92.5677 -6.0227 -2.2084 -4.0403 -0.9584 0.0609 0.2215 3.8810 0.9134 3.0961 0.1739 0.1473 1.4202 0.0319 1.2731 0.0579
+#> 186: 92.7090 -5.9641 -2.2218 -4.0319 -0.9573 0.0575 0.2917 3.9574 0.9373 3.0666 0.1691 0.1703 1.4378 0.0296 1.2775 0.0601
+#> 187: 92.7358 -6.2503 -2.2003 -4.0534 -0.9742 0.0691 0.3037 5.2011 0.9333 3.0796 0.1647 0.1553 1.4254 0.0293 1.1987 0.0629
+#> 188: 92.6733 -6.1434 -2.1988 -4.0792 -0.9878 0.0860 0.3122 4.9451 0.9080 3.1891 0.1628 0.1558 1.4099 0.0317 1.3162 0.0593
+#> 189: 92.7256 -6.0886 -2.1766 -4.0419 -0.9672 0.0550 0.3758 4.3461 0.9140 3.0795 0.1697 0.1649 1.5310 0.0301 1.3258 0.0566
+#> 190: 92.5144 -6.1827 -2.2159 -4.0525 -0.9677 0.0728 0.3855 4.3370 0.9706 3.0518 0.1486 0.1841 1.4390 0.0295 1.1259 0.0740
+#> 191: 92.6209 -6.1257 -2.2287 -4.1095 -0.9670 0.1034 0.3340 4.3051 0.9486 3.1970 0.1549 0.1776 1.4397 0.0296 1.2004 0.0684
+#> 192: 92.6156 -6.1289 -2.2067 -4.1191 -0.9900 0.1090 0.3069 4.1314 0.9134 3.1476 0.1596 0.1912 1.4380 0.0301 1.1238 0.0720
+#> 193: 92.5434 -5.9782 -2.1800 -4.0845 -0.9547 0.1173 0.2694 3.6834 0.9005 2.9479 0.1582 0.1733 1.4538 0.0294 0.8798 0.0866
+#> 194: 92.5884 -5.7815 -2.2110 -4.0714 -0.9510 0.0928 0.2493 2.8236 0.9615 2.9852 0.1488 0.1730 1.4409 0.0297 1.1446 0.0677
+#> 195: 92.6180 -5.9277 -2.2213 -4.0714 -0.9379 0.1177 0.1993 3.5172 0.8976 2.9852 0.1449 0.1735 1.5012 0.0299 1.2131 0.0618
+#> 196: 92.5920 -5.7723 -2.2496 -4.0669 -0.9184 0.1262 0.2595 3.2454 0.9419 2.9697 0.1600 0.1881 1.4017 0.0338 0.9594 0.0790
+#> 197: 92.6292 -5.8658 -2.2434 -4.0640 -0.9365 0.1216 0.2491 3.3540 0.9267 2.9523 0.1598 0.1749 1.3953 0.0383 1.0788 0.0702
+#> 198: 92.6911 -5.8407 -2.2605 -4.0640 -0.9319 0.1264 0.1930 3.2321 0.8884 2.9523 0.1320 0.1940 1.4026 0.0358 1.0613 0.0704
+#> 199: 92.6480 -5.6988 -2.2599 -4.0668 -0.9395 0.1328 0.1412 2.6535 0.8915 2.9610 0.1573 0.2052 1.4353 0.0360 0.9900 0.0742
+#> 200: 92.7139 -5.6152 -2.2522 -4.0684 -0.9192 0.1589 0.1686 2.4362 0.9098 3.0185 0.1702 0.1705 1.4153 0.0338 1.1747 0.0705
+#> 201: 92.7134 -5.7029 -2.2504 -4.0502 -0.9270 0.1453 0.1499 2.6851 0.8909 2.9484 0.1749 0.1772 1.3851 0.0363 1.1255 0.0714
+#> 202: 92.7087 -5.7236 -2.2421 -4.0499 -0.9364 0.1238 0.1324 2.7215 0.8810 2.9507 0.1694 0.1913 1.3864 0.0365 1.1192 0.0705
+#> 203: 92.7013 -5.7563 -2.2293 -4.0494 -0.9394 0.1134 0.1269 2.8279 0.8866 2.9501 0.1618 0.1915 1.3981 0.0356 1.0942 0.0710
+#> 204: 92.6964 -5.8134 -2.2208 -4.0646 -0.9373 0.1144 0.1192 3.1058 0.8973 3.0279 0.1523 0.1983 1.4126 0.0345 1.0629 0.0723
+#> 205: 92.6936 -5.8441 -2.2195 -4.0787 -0.9373 0.1144 0.1068 3.2553 0.9029 3.0962 0.1473 0.2001 1.4217 0.0344 1.0532 0.0719
+#> 206: 92.6881 -5.8805 -2.2209 -4.0887 -0.9432 0.1187 0.1016 3.4269 0.9126 3.1477 0.1479 0.1957 1.4251 0.0348 1.0697 0.0712
+#> 207: 92.6929 -5.9304 -2.2259 -4.0987 -0.9473 0.1234 0.1028 3.6444 0.9261 3.1982 0.1469 0.1910 1.4170 0.0348 1.0586 0.0717
+#> 208: 92.6907 -5.9413 -2.2275 -4.1043 -0.9482 0.1267 0.1038 3.6864 0.9313 3.2244 0.1467 0.1889 1.4121 0.0343 1.0499 0.0718
+#> 209: 92.6917 -5.9265 -2.2304 -4.1109 -0.9498 0.1289 0.1022 3.5975 0.9363 3.2487 0.1478 0.1863 1.4053 0.0344 1.0521 0.0716
+#> 210: 92.6966 -5.9218 -2.2322 -4.1164 -0.9516 0.1337 0.0984 3.5650 0.9413 3.2688 0.1493 0.1874 1.3949 0.0342 1.0499 0.0719
+#> 211: 92.7020 -5.9160 -2.2351 -4.1209 -0.9542 0.1385 0.0958 3.5091 0.9390 3.2968 0.1503 0.1873 1.3925 0.0345 1.0547 0.0718
+#> 212: 92.7065 -5.9119 -2.2376 -4.1247 -0.9564 0.1432 0.0933 3.4520 0.9373 3.3205 0.1531 0.1901 1.3869 0.0346 1.0625 0.0717
+#> 213: 92.7107 -5.9047 -2.2402 -4.1286 -0.9575 0.1455 0.0930 3.3990 0.9361 3.3369 0.1536 0.1932 1.3814 0.0349 1.0698 0.0712
+#> 214: 92.7110 -5.9061 -2.2415 -4.1321 -0.9585 0.1483 0.0921 3.3864 0.9364 3.3517 0.1542 0.1963 1.3794 0.0348 1.0721 0.0712
+#> 215: 92.7116 -5.9128 -2.2417 -4.1360 -0.9581 0.1510 0.0941 3.4201 0.9347 3.3646 0.1545 0.1988 1.3764 0.0350 1.0731 0.0712
+#> 216: 92.7135 -5.9184 -2.2432 -4.1383 -0.9589 0.1540 0.0957 3.4623 0.9337 3.3698 0.1541 0.2016 1.3761 0.0353 1.0737 0.0714
+#> 217: 92.7143 -5.9262 -2.2453 -4.1428 -0.9604 0.1568 0.0981 3.5202 0.9323 3.3854 0.1542 0.2053 1.3770 0.0352 1.0779 0.0716
+#> 218: 92.7102 -5.9169 -2.2463 -4.1446 -0.9606 0.1604 0.1000 3.4823 0.9305 3.3851 0.1530 0.2083 1.3802 0.0353 1.0819 0.0716
+#> 219: 92.7062 -5.9089 -2.2470 -4.1481 -0.9597 0.1636 0.1000 3.4465 0.9295 3.3874 0.1529 0.2125 1.3779 0.0352 1.0836 0.0716
+#> 220: 92.7027 -5.9052 -2.2480 -4.1509 -0.9594 0.1668 0.1020 3.4302 0.9264 3.3877 0.1531 0.2168 1.3780 0.0352 1.0893 0.0713
+#> 221: 92.7029 -5.8990 -2.2497 -4.1541 -0.9586 0.1696 0.1017 3.4007 0.9227 3.3916 0.1535 0.2208 1.3781 0.0354 1.0925 0.0709
+#> 222: 92.7063 -5.8993 -2.2519 -4.1604 -0.9582 0.1732 0.1025 3.4099 0.9190 3.4135 0.1537 0.2268 1.3791 0.0355 1.1031 0.0702
+#> 223: 92.7090 -5.8932 -2.2537 -4.1669 -0.9573 0.1757 0.1022 3.3946 0.9157 3.4424 0.1543 0.2319 1.3802 0.0356 1.1040 0.0701
+#> 224: 92.7116 -5.8930 -2.2545 -4.1712 -0.9561 0.1774 0.1017 3.3964 0.9133 3.4673 0.1550 0.2355 1.3795 0.0356 1.1018 0.0701
+#> 225: 92.7136 -5.8911 -2.2564 -4.1715 -0.9551 0.1788 0.1016 3.4013 0.9125 3.4628 0.1548 0.2380 1.3756 0.0359 1.1003 0.0700
+#> 226: 92.7153 -5.8883 -2.2569 -4.1711 -0.9536 0.1793 0.1016 3.4046 0.9134 3.4575 0.1549 0.2398 1.3737 0.0360 1.1016 0.0699
+#> 227: 92.7163 -5.8830 -2.2575 -4.1720 -0.9526 0.1796 0.1019 3.3952 0.9129 3.4575 0.1545 0.2407 1.3718 0.0363 1.1015 0.0698
+#> 228: 92.7182 -5.8865 -2.2578 -4.1728 -0.9528 0.1804 0.1017 3.4198 0.9113 3.4576 0.1538 0.2433 1.3722 0.0363 1.1068 0.0695
+#> 229: 92.7199 -5.8965 -2.2578 -4.1718 -0.9523 0.1812 0.1023 3.5030 0.9097 3.4503 0.1529 0.2463 1.3749 0.0363 1.1093 0.0694
+#> 230: 92.7205 -5.8997 -2.2578 -4.1712 -0.9514 0.1825 0.1025 3.5337 0.9071 3.4446 0.1519 0.2497 1.3802 0.0362 1.1115 0.0693
+#> 231: 92.7208 -5.9001 -2.2581 -4.1711 -0.9511 0.1838 0.1044 3.5537 0.9037 3.4423 0.1510 0.2533 1.3834 0.0361 1.1125 0.0693
+#> 232: 92.7183 -5.9041 -2.2588 -4.1715 -0.9504 0.1855 0.1061 3.5958 0.9001 3.4391 0.1503 0.2572 1.3871 0.0362 1.1161 0.0690
+#> 233: 92.7169 -5.9106 -2.2593 -4.1725 -0.9490 0.1866 0.1073 3.6433 0.8968 3.4367 0.1496 0.2609 1.3900 0.0362 1.1179 0.0688
+#> 234: 92.7125 -5.9165 -2.2594 -4.1728 -0.9479 0.1873 0.1098 3.6870 0.8932 3.4321 0.1498 0.2641 1.3907 0.0363 1.1177 0.0687
+#> 235: 92.7072 -5.9203 -2.2592 -4.1729 -0.9472 0.1876 0.1128 3.7229 0.8899 3.4269 0.1506 0.2676 1.3913 0.0364 1.1212 0.0686
+#> 236: 92.7048 -5.9319 -2.2603 -4.1724 -0.9467 0.1879 0.1147 3.7863 0.8879 3.4175 0.1510 0.2705 1.3898 0.0365 1.1181 0.0688
+#> 237: 92.7037 -5.9349 -2.2609 -4.1720 -0.9461 0.1881 0.1152 3.8047 0.8862 3.4096 0.1512 0.2731 1.3891 0.0367 1.1164 0.0688
+#> 238: 92.7027 -5.9359 -2.2605 -4.1715 -0.9459 0.1884 0.1151 3.7997 0.8842 3.4023 0.1516 0.2755 1.3905 0.0366 1.1171 0.0688
+#> 239: 92.7027 -5.9375 -2.2599 -4.1712 -0.9463 0.1881 0.1143 3.8187 0.8835 3.3954 0.1521 0.2780 1.3923 0.0366 1.1193 0.0688
+#> 240: 92.7025 -5.9409 -2.2593 -4.1710 -0.9467 0.1884 0.1135 3.8437 0.8830 3.3888 0.1530 0.2797 1.3939 0.0366 1.1266 0.0685
+#> 241: 92.7006 -5.9429 -2.2589 -4.1703 -0.9469 0.1887 0.1130 3.8580 0.8825 3.3820 0.1529 0.2815 1.3967 0.0364 1.1299 0.0685
+#> 242: 92.6977 -5.9366 -2.2594 -4.1693 -0.9471 0.1887 0.1130 3.8245 0.8810 3.3742 0.1534 0.2833 1.3967 0.0364 1.1323 0.0685
+#> 243: 92.6951 -5.9310 -2.2605 -4.1683 -0.9473 0.1891 0.1131 3.7904 0.8807 3.3666 0.1541 0.2853 1.3953 0.0364 1.1380 0.0683
+#> 244: 92.6928 -5.9289 -2.2610 -4.1680 -0.9471 0.1899 0.1130 3.7709 0.8797 3.3604 0.1545 0.2880 1.3947 0.0364 1.1399 0.0683
+#> 245: 92.6902 -5.9291 -2.2615 -4.1677 -0.9472 0.1914 0.1129 3.7637 0.8787 3.3538 0.1549 0.2898 1.3942 0.0364 1.1440 0.0681
+#> 246: 92.6880 -5.9271 -2.2617 -4.1677 -0.9472 0.1926 0.1131 3.7457 0.8785 3.3500 0.1549 0.2916 1.3938 0.0364 1.1468 0.0681
+#> 247: 92.6865 -5.9264 -2.2613 -4.1676 -0.9471 0.1930 0.1127 3.7331 0.8793 3.3487 0.1551 0.2918 1.3931 0.0364 1.1464 0.0683
+#> 248: 92.6855 -5.9212 -2.2604 -4.1671 -0.9476 0.1935 0.1116 3.7055 0.8795 3.3451 0.1549 0.2923 1.3942 0.0363 1.1453 0.0684
+#> 249: 92.6848 -5.9190 -2.2600 -4.1667 -0.9482 0.1939 0.1110 3.6857 0.8801 3.3428 0.1548 0.2923 1.3942 0.0363 1.1440 0.0685
+#> 250: 92.6858 -5.9194 -2.2605 -4.1663 -0.9489 0.1945 0.1109 3.6821 0.8806 3.3397 0.1547 0.2920 1.3932 0.0363 1.1430 0.0686
+#> 251: 92.6849 -5.9179 -2.2610 -4.1665 -0.9492 0.1950 0.1111 3.6795 0.8814 3.3392 0.1550 0.2919 1.3922 0.0364 1.1434 0.0685
+#> 252: 92.6848 -5.9141 -2.2615 -4.1660 -0.9493 0.1957 0.1110 3.6611 0.8818 3.3363 0.1548 0.2918 1.3919 0.0364 1.1423 0.0686
+#> 253: 92.6837 -5.9110 -2.2637 -4.1634 -0.9493 0.1952 0.1114 3.6462 0.8788 3.3481 0.1550 0.2920 1.3941 0.0363 1.1417 0.0688
+#> 254: 92.6827 -5.9082 -2.2650 -4.1608 -0.9492 0.1944 0.1117 3.6309 0.8753 3.3595 0.1548 0.2921 1.3964 0.0361 1.1415 0.0688
+#> 255: 92.6829 -5.9076 -2.2662 -4.1585 -0.9495 0.1934 0.1118 3.6221 0.8723 3.3737 0.1547 0.2923 1.3977 0.0359 1.1397 0.0689
+#> 256: 92.6821 -5.9079 -2.2672 -4.1559 -0.9495 0.1923 0.1118 3.6279 0.8697 3.3865 0.1547 0.2925 1.3990 0.0357 1.1387 0.0691
+#> 257: 92.6822 -5.9054 -2.2686 -4.1534 -0.9499 0.1914 0.1119 3.6202 0.8673 3.3988 0.1548 0.2923 1.4010 0.0356 1.1438 0.0690
+#> 258: 92.6828 -5.9054 -2.2700 -4.1509 -0.9498 0.1900 0.1121 3.6166 0.8651 3.4085 0.1547 0.2926 1.4028 0.0356 1.1473 0.0688
+#> 259: 92.6842 -5.9087 -2.2710 -4.1474 -0.9496 0.1890 0.1128 3.6314 0.8629 3.4154 0.1548 0.2923 1.4040 0.0355 1.1482 0.0689
+#> 260: 92.6852 -5.9118 -2.2717 -4.1444 -0.9493 0.1885 0.1124 3.6485 0.8606 3.4227 0.1544 0.2919 1.4073 0.0354 1.1518 0.0688
+#> 261: 92.6858 -5.9137 -2.2721 -4.1419 -0.9493 0.1882 0.1122 3.6641 0.8581 3.4314 0.1543 0.2913 1.4106 0.0353 1.1577 0.0684
+#> 262: 92.6861 -5.9117 -2.2726 -4.1394 -0.9493 0.1881 0.1116 3.6572 0.8558 3.4391 0.1541 0.2908 1.4137 0.0352 1.1613 0.0682
+#> 263: 92.6855 -5.9124 -2.2730 -4.1372 -0.9494 0.1875 0.1113 3.6626 0.8533 3.4465 0.1541 0.2905 1.4152 0.0351 1.1636 0.0681
+#> 264: 92.6841 -5.9137 -2.2734 -4.1351 -0.9496 0.1871 0.1109 3.6703 0.8505 3.4529 0.1538 0.2903 1.4156 0.0350 1.1632 0.0681
+#> 265: 92.6833 -5.9153 -2.2741 -4.1327 -0.9498 0.1867 0.1108 3.6816 0.8472 3.4581 0.1535 0.2899 1.4168 0.0350 1.1647 0.0679
+#> 266: 92.6835 -5.9147 -2.2752 -4.1307 -0.9497 0.1865 0.1107 3.6768 0.8450 3.4641 0.1531 0.2896 1.4176 0.0349 1.1640 0.0679
+#> 267: 92.6835 -5.9167 -2.2761 -4.1283 -0.9499 0.1862 0.1105 3.6851 0.8430 3.4700 0.1530 0.2892 1.4178 0.0348 1.1639 0.0679
+#> 268: 92.6841 -5.9141 -2.2767 -4.1269 -0.9503 0.1860 0.1107 3.6718 0.8407 3.4775 0.1533 0.2891 1.4187 0.0348 1.1673 0.0677
+#> 269: 92.6845 -5.9094 -2.2774 -4.1253 -0.9503 0.1855 0.1112 3.6520 0.8384 3.4840 0.1535 0.2890 1.4192 0.0348 1.1686 0.0675
+#> 270: 92.6847 -5.9042 -2.2779 -4.1239 -0.9505 0.1853 0.1107 3.6288 0.8365 3.4895 0.1536 0.2889 1.4192 0.0347 1.1698 0.0675
+#> 271: 92.6849 -5.9000 -2.2785 -4.1228 -0.9506 0.1853 0.1102 3.6083 0.8348 3.4956 0.1536 0.2889 1.4191 0.0346 1.1692 0.0676
+#> 272: 92.6850 -5.8965 -2.2794 -4.1223 -0.9507 0.1853 0.1092 3.5892 0.8331 3.5071 0.1538 0.2889 1.4194 0.0345 1.1700 0.0676
+#> 273: 92.6851 -5.8916 -2.2805 -4.1222 -0.9508 0.1850 0.1089 3.5697 0.8315 3.5211 0.1538 0.2889 1.4209 0.0345 1.1720 0.0675
+#> 274: 92.6849 -5.8898 -2.2815 -4.1218 -0.9506 0.1852 0.1084 3.5607 0.8301 3.5339 0.1542 0.2886 1.4221 0.0344 1.1728 0.0675
+#> 275: 92.6844 -5.8885 -2.2830 -4.1215 -0.9504 0.1855 0.1080 3.5514 0.8284 3.5491 0.1545 0.2883 1.4238 0.0343 1.1756 0.0673
+#> 276: 92.6834 -5.8885 -2.2843 -4.1210 -0.9501 0.1859 0.1077 3.5477 0.8272 3.5648 0.1547 0.2878 1.4243 0.0343 1.1749 0.0674
+#> 277: 92.6829 -5.8892 -2.2858 -4.1208 -0.9500 0.1862 0.1071 3.5505 0.8257 3.5807 0.1552 0.2872 1.4244 0.0343 1.1747 0.0674
+#> 278: 92.6825 -5.8885 -2.2871 -4.1205 -0.9499 0.1862 0.1072 3.5463 0.8245 3.5960 0.1555 0.2866 1.4247 0.0343 1.1742 0.0675
+#> 279: 92.6815 -5.8887 -2.2883 -4.1201 -0.9501 0.1864 0.1072 3.5433 0.8239 3.6088 0.1556 0.2860 1.4247 0.0343 1.1737 0.0676
+#> 280: 92.6800 -5.8901 -2.2896 -4.1211 -0.9503 0.1865 0.1078 3.5481 0.8238 3.6285 0.1556 0.2848 1.4252 0.0344 1.1742 0.0676
+#> 281: 92.6779 -5.8914 -2.2907 -4.1218 -0.9502 0.1865 0.1084 3.5491 0.8240 3.6471 0.1558 0.2838 1.4251 0.0343 1.1732 0.0677
+#> 282: 92.6767 -5.8906 -2.2919 -4.1236 -0.9501 0.1862 0.1091 3.5462 0.8248 3.6747 0.1558 0.2825 1.4250 0.0344 1.1732 0.0677
+#> 283: 92.6750 -5.8895 -2.2928 -4.1253 -0.9499 0.1857 0.1097 3.5418 0.8260 3.7025 0.1555 0.2814 1.4253 0.0344 1.1712 0.0678
+#> 284: 92.6736 -5.8903 -2.2934 -4.1271 -0.9497 0.1854 0.1107 3.5438 0.8269 3.7297 0.1553 0.2800 1.4257 0.0343 1.1698 0.0678
+#> 285: 92.6730 -5.8917 -2.2942 -4.1284 -0.9497 0.1852 0.1116 3.5481 0.8274 3.7528 0.1551 0.2787 1.4260 0.0343 1.1689 0.0678
+#> 286: 92.6715 -5.8913 -2.2947 -4.1285 -0.9492 0.1849 0.1122 3.5473 0.8274 3.7660 0.1550 0.2775 1.4265 0.0342 1.1678 0.0679
+#> 287: 92.6702 -5.8925 -2.2952 -4.1290 -0.9489 0.1846 0.1125 3.5531 0.8268 3.7818 0.1549 0.2764 1.4269 0.0342 1.1673 0.0678
+#> 288: 92.6688 -5.8918 -2.2959 -4.1290 -0.9490 0.1843 0.1126 3.5495 0.8262 3.7946 0.1546 0.2756 1.4275 0.0341 1.1673 0.0678
+#> 289: 92.6673 -5.8907 -2.2966 -4.1295 -0.9490 0.1841 0.1124 3.5445 0.8260 3.8067 0.1543 0.2750 1.4280 0.0342 1.1690 0.0677
+#> 290: 92.6657 -5.8909 -2.2973 -4.1302 -0.9490 0.1838 0.1123 3.5433 0.8260 3.8201 0.1540 0.2744 1.4279 0.0342 1.1687 0.0676
+#> 291: 92.6642 -5.8902 -2.2978 -4.1312 -0.9493 0.1835 0.1124 3.5399 0.8262 3.8365 0.1538 0.2738 1.4279 0.0342 1.1695 0.0676
+#> 292: 92.6635 -5.8917 -2.2983 -4.1316 -0.9495 0.1831 0.1121 3.5453 0.8263 3.8517 0.1535 0.2733 1.4275 0.0342 1.1695 0.0675
+#> 293: 92.6622 -5.8936 -2.2991 -4.1323 -0.9497 0.1830 0.1121 3.5526 0.8265 3.8692 0.1533 0.2728 1.4274 0.0342 1.1701 0.0675
+#> 294: 92.6604 -5.8936 -2.2999 -4.1328 -0.9499 0.1826 0.1126 3.5505 0.8263 3.8838 0.1533 0.2723 1.4273 0.0342 1.1712 0.0675
+#> 295: 92.6593 -5.8924 -2.3007 -4.1329 -0.9498 0.1823 0.1131 3.5443 0.8262 3.9004 0.1531 0.2717 1.4276 0.0342 1.1718 0.0674
+#> 296: 92.6586 -5.8906 -2.3016 -4.1323 -0.9496 0.1822 0.1133 3.5374 0.8266 3.9103 0.1530 0.2707 1.4272 0.0343 1.1714 0.0674
+#> 297: 92.6578 -5.8889 -2.3026 -4.1329 -0.9494 0.1819 0.1139 3.5315 0.8271 3.9280 0.1528 0.2697 1.4267 0.0343 1.1697 0.0675
+#> 298: 92.6575 -5.8885 -2.3036 -4.1330 -0.9490 0.1814 0.1143 3.5303 0.8275 3.9410 0.1527 0.2689 1.4263 0.0344 1.1688 0.0675
+#> 299: 92.6566 -5.8879 -2.3047 -4.1329 -0.9488 0.1807 0.1147 3.5286 0.8282 3.9507 0.1526 0.2679 1.4263 0.0345 1.1680 0.0674
+#> 300: 92.6555 -5.8862 -2.3057 -4.1325 -0.9483 0.1802 0.1151 3.5225 0.8293 3.9582 0.1527 0.2671 1.4261 0.0345 1.1677 0.0674
+#> 301: 92.6545 -5.8854 -2.3067 -4.1326 -0.9480 0.1795 0.1156 3.5191 0.8300 3.9691 0.1530 0.2665 1.4257 0.0346 1.1672 0.0674
+#> 302: 92.6539 -5.8839 -2.3078 -4.1322 -0.9477 0.1788 0.1161 3.5154 0.8309 3.9769 0.1532 0.2657 1.4252 0.0346 1.1664 0.0675
+#> 303: 92.6541 -5.8799 -2.3089 -4.1327 -0.9474 0.1782 0.1161 3.5012 0.8319 3.9913 0.1534 0.2649 1.4242 0.0347 1.1653 0.0675
+#> 304: 92.6554 -5.8766 -2.3096 -4.1326 -0.9472 0.1774 0.1164 3.4879 0.8328 3.9978 0.1536 0.2641 1.4234 0.0348 1.1644 0.0675
+#> 305: 92.6559 -5.8732 -2.3104 -4.1325 -0.9470 0.1764 0.1161 3.4740 0.8334 4.0037 0.1535 0.2633 1.4231 0.0348 1.1634 0.0676
+#> 306: 92.6564 -5.8717 -2.3113 -4.1322 -0.9470 0.1758 0.1161 3.4705 0.8341 4.0097 0.1537 0.2622 1.4236 0.0348 1.1628 0.0676
+#> 307: 92.6573 -5.8703 -2.3121 -4.1320 -0.9469 0.1748 0.1158 3.4630 0.8349 4.0154 0.1538 0.2614 1.4231 0.0348 1.1617 0.0677
+#> 308: 92.6578 -5.8695 -2.3129 -4.1318 -0.9465 0.1738 0.1154 3.4585 0.8356 4.0210 0.1540 0.2607 1.4229 0.0348 1.1604 0.0677
+#> 309: 92.6577 -5.8691 -2.3132 -4.1317 -0.9465 0.1732 0.1151 3.4548 0.8369 4.0270 0.1540 0.2596 1.4233 0.0348 1.1589 0.0678
+#> 310: 92.6580 -5.8680 -2.3135 -4.1309 -0.9466 0.1727 0.1147 3.4472 0.8377 4.0280 0.1540 0.2587 1.4231 0.0348 1.1569 0.0679
+#> 311: 92.6575 -5.8681 -2.3141 -4.1303 -0.9466 0.1722 0.1144 3.4477 0.8384 4.0303 0.1539 0.2577 1.4236 0.0348 1.1557 0.0679
+#> 312: 92.6571 -5.8685 -2.3145 -4.1299 -0.9467 0.1720 0.1143 3.4498 0.8393 4.0328 0.1538 0.2566 1.4237 0.0348 1.1545 0.0680
+#> 313: 92.6559 -5.8685 -2.3150 -4.1296 -0.9469 0.1718 0.1142 3.4483 0.8403 4.0358 0.1537 0.2555 1.4234 0.0348 1.1532 0.0681
+#> 314: 92.6543 -5.8699 -2.3155 -4.1294 -0.9471 0.1715 0.1142 3.4526 0.8404 4.0401 0.1537 0.2546 1.4236 0.0347 1.1522 0.0681
+#> 315: 92.6528 -5.8713 -2.3161 -4.1289 -0.9472 0.1712 0.1144 3.4584 0.8402 4.0427 0.1537 0.2538 1.4234 0.0347 1.1520 0.0682
+#> 316: 92.6510 -5.8726 -2.3166 -4.1283 -0.9472 0.1705 0.1146 3.4647 0.8404 4.0443 0.1537 0.2528 1.4236 0.0347 1.1511 0.0682
+#> 317: 92.6496 -5.8736 -2.3170 -4.1281 -0.9474 0.1699 0.1147 3.4701 0.8406 4.0497 0.1536 0.2520 1.4238 0.0347 1.1504 0.0683
+#> 318: 92.6479 -5.8745 -2.3174 -4.1276 -0.9475 0.1695 0.1153 3.4729 0.8410 4.0511 0.1535 0.2510 1.4238 0.0347 1.1503 0.0683
+#> 319: 92.6463 -5.8773 -2.3175 -4.1272 -0.9476 0.1690 0.1155 3.4868 0.8409 4.0527 0.1535 0.2502 1.4234 0.0347 1.1484 0.0685
+#> 320: 92.6447 -5.8770 -2.3179 -4.1263 -0.9478 0.1684 0.1158 3.4849 0.8407 4.0516 0.1534 0.2493 1.4238 0.0347 1.1483 0.0685
+#> 321: 92.6433 -5.8768 -2.3181 -4.1255 -0.9479 0.1679 0.1161 3.4850 0.8405 4.0511 0.1533 0.2485 1.4238 0.0346 1.1474 0.0686
+#> 322: 92.6425 -5.8766 -2.3182 -4.1246 -0.9480 0.1673 0.1161 3.4839 0.8403 4.0505 0.1530 0.2474 1.4243 0.0346 1.1458 0.0687
+#> 323: 92.6414 -5.8778 -2.3183 -4.1241 -0.9481 0.1669 0.1162 3.4888 0.8402 4.0517 0.1530 0.2466 1.4244 0.0346 1.1454 0.0687
+#> 324: 92.6404 -5.8771 -2.3186 -4.1236 -0.9482 0.1666 0.1161 3.4855 0.8401 4.0525 0.1529 0.2459 1.4247 0.0345 1.1446 0.0687
+#> 325: 92.6396 -5.8753 -2.3188 -4.1231 -0.9483 0.1664 0.1156 3.4767 0.8396 4.0533 0.1529 0.2454 1.4253 0.0345 1.1438 0.0689
+#> 326: 92.6397 -5.8766 -2.3192 -4.1226 -0.9484 0.1663 0.1152 3.4798 0.8389 4.0542 0.1527 0.2449 1.4253 0.0345 1.1431 0.0690
+#> 327: 92.6395 -5.8785 -2.3197 -4.1224 -0.9483 0.1660 0.1151 3.4880 0.8382 4.0557 0.1528 0.2445 1.4250 0.0345 1.1430 0.0690
+#> 328: 92.6397 -5.8805 -2.3202 -4.1221 -0.9483 0.1657 0.1153 3.5011 0.8373 4.0568 0.1528 0.2442 1.4246 0.0345 1.1427 0.0690
+#> 329: 92.6390 -5.8838 -2.3208 -4.1219 -0.9482 0.1655 0.1161 3.5176 0.8365 4.0580 0.1530 0.2439 1.4241 0.0345 1.1429 0.0690
+#> 330: 92.6380 -5.8862 -2.3215 -4.1216 -0.9484 0.1653 0.1166 3.5286 0.8355 4.0584 0.1529 0.2437 1.4234 0.0346 1.1428 0.0690
+#> 331: 92.6367 -5.8867 -2.3223 -4.1206 -0.9484 0.1651 0.1165 3.5288 0.8348 4.0577 0.1528 0.2435 1.4233 0.0346 1.1429 0.0690
+#> 332: 92.6360 -5.8859 -2.3230 -4.1199 -0.9485 0.1650 0.1165 3.5235 0.8343 4.0572 0.1527 0.2433 1.4227 0.0346 1.1429 0.0689
+#> 333: 92.6361 -5.8839 -2.3237 -4.1194 -0.9485 0.1649 0.1162 3.5142 0.8340 4.0564 0.1527 0.2430 1.4224 0.0347 1.1429 0.0689
+#> 334: 92.6359 -5.8824 -2.3244 -4.1190 -0.9486 0.1649 0.1158 3.5070 0.8337 4.0567 0.1527 0.2424 1.4218 0.0347 1.1442 0.0689
+#> 335: 92.6366 -5.8826 -2.3250 -4.1186 -0.9485 0.1645 0.1157 3.5069 0.8334 4.0574 0.1527 0.2419 1.4214 0.0347 1.1448 0.0688
+#> 336: 92.6374 -5.8816 -2.3253 -4.1182 -0.9486 0.1644 0.1158 3.5034 0.8330 4.0580 0.1528 0.2415 1.4212 0.0347 1.1471 0.0687
+#> 337: 92.6378 -5.8810 -2.3258 -4.1176 -0.9487 0.1642 0.1159 3.5023 0.8325 4.0582 0.1528 0.2410 1.4212 0.0347 1.1467 0.0688
+#> 338: 92.6383 -5.8814 -2.3262 -4.1168 -0.9488 0.1637 0.1160 3.5028 0.8322 4.0571 0.1526 0.2409 1.4216 0.0346 1.1456 0.0689
+#> 339: 92.6392 -5.8808 -2.3266 -4.1160 -0.9490 0.1631 0.1161 3.4989 0.8318 4.0566 0.1524 0.2408 1.4220 0.0346 1.1441 0.0690
+#> 340: 92.6393 -5.8810 -2.3269 -4.1152 -0.9491 0.1626 0.1157 3.4997 0.8316 4.0564 0.1524 0.2407 1.4216 0.0346 1.1419 0.0692
+#> 341: 92.6394 -5.8807 -2.3272 -4.1148 -0.9492 0.1619 0.1153 3.4966 0.8308 4.0552 0.1523 0.2405 1.4218 0.0346 1.1415 0.0692
+#> 342: 92.6394 -5.8806 -2.3274 -4.1141 -0.9493 0.1612 0.1146 3.4936 0.8303 4.0537 0.1522 0.2405 1.4221 0.0346 1.1406 0.0692
+#> 343: 92.6398 -5.8819 -2.3277 -4.1134 -0.9494 0.1606 0.1141 3.4961 0.8297 4.0519 0.1522 0.2402 1.4219 0.0347 1.1404 0.0692
+#> 344: 92.6401 -5.8823 -2.3280 -4.1128 -0.9497 0.1599 0.1137 3.4963 0.8293 4.0504 0.1523 0.2400 1.4214 0.0346 1.1404 0.0692
+#> 345: 92.6404 -5.8829 -2.3283 -4.1124 -0.9498 0.1593 0.1136 3.4958 0.8289 4.0494 0.1523 0.2396 1.4214 0.0346 1.1398 0.0692
+#> 346: 92.6405 -5.8829 -2.3283 -4.1119 -0.9499 0.1587 0.1135 3.4953 0.8287 4.0484 0.1522 0.2394 1.4216 0.0346 1.1397 0.0692
+#> 347: 92.6404 -5.8833 -2.3288 -4.1117 -0.9500 0.1582 0.1133 3.4965 0.8289 4.0480 0.1521 0.2391 1.4211 0.0346 1.1388 0.0692
+#> 348: 92.6407 -5.8838 -2.3293 -4.1113 -0.9502 0.1578 0.1132 3.4978 0.8290 4.0471 0.1520 0.2388 1.4209 0.0346 1.1385 0.0692
+#> 349: 92.6409 -5.8847 -2.3299 -4.1110 -0.9503 0.1571 0.1128 3.5024 0.8290 4.0474 0.1519 0.2386 1.4207 0.0347 1.1379 0.0692
+#> 350: 92.6413 -5.8853 -2.3304 -4.1107 -0.9504 0.1567 0.1125 3.5037 0.8287 4.0478 0.1519 0.2383 1.4207 0.0347 1.1366 0.0693
+#> 351: 92.6415 -5.8868 -2.3310 -4.1104 -0.9504 0.1562 0.1122 3.5109 0.8287 4.0490 0.1518 0.2378 1.4208 0.0347 1.1364 0.0693
+#> 352: 92.6413 -5.8882 -2.3316 -4.1103 -0.9504 0.1557 0.1120 3.5196 0.8287 4.0517 0.1517 0.2375 1.4207 0.0346 1.1361 0.0693
+#> 353: 92.6414 -5.8890 -2.3322 -4.1101 -0.9503 0.1553 0.1117 3.5237 0.8290 4.0533 0.1517 0.2371 1.4202 0.0346 1.1345 0.0693
+#> 354: 92.6417 -5.8879 -2.3327 -4.1099 -0.9502 0.1548 0.1115 3.5206 0.8294 4.0546 0.1515 0.2368 1.4200 0.0346 1.1336 0.0694
+#> 355: 92.6417 -5.8882 -2.3333 -4.1096 -0.9500 0.1541 0.1115 3.5265 0.8296 4.0548 0.1514 0.2364 1.4203 0.0346 1.1325 0.0694
+#> 356: 92.6414 -5.8881 -2.3338 -4.1093 -0.9497 0.1535 0.1115 3.5339 0.8299 4.0553 0.1513 0.2362 1.4204 0.0346 1.1318 0.0694
+#> 357: 92.6414 -5.8874 -2.3343 -4.1087 -0.9497 0.1529 0.1117 3.5320 0.8302 4.0548 0.1512 0.2358 1.4205 0.0346 1.1315 0.0694
+#> 358: 92.6415 -5.8865 -2.3349 -4.1087 -0.9497 0.1523 0.1118 3.5274 0.8308 4.0583 0.1510 0.2354 1.4206 0.0346 1.1308 0.0695
+#> 359: 92.6415 -5.8855 -2.3352 -4.1085 -0.9497 0.1518 0.1123 3.5208 0.8308 4.0597 0.1509 0.2349 1.4205 0.0346 1.1298 0.0695
+#> 360: 92.6413 -5.8851 -2.3356 -4.1080 -0.9496 0.1513 0.1125 3.5176 0.8308 4.0606 0.1508 0.2344 1.4207 0.0346 1.1289 0.0695
+#> 361: 92.6412 -5.8854 -2.3359 -4.1076 -0.9498 0.1508 0.1126 3.5187 0.8308 4.0618 0.1508 0.2338 1.4214 0.0345 1.1279 0.0695
+#> 362: 92.6415 -5.8861 -2.3362 -4.1072 -0.9499 0.1503 0.1126 3.5210 0.8306 4.0636 0.1507 0.2333 1.4218 0.0345 1.1273 0.0695
+#> 363: 92.6412 -5.8884 -2.3364 -4.1066 -0.9499 0.1498 0.1126 3.5327 0.8305 4.0646 0.1507 0.2328 1.4221 0.0345 1.1273 0.0695
+#> 364: 92.6411 -5.8895 -2.3367 -4.1062 -0.9501 0.1494 0.1126 3.5366 0.8306 4.0659 0.1507 0.2322 1.4227 0.0345 1.1280 0.0695
+#> 365: 92.6411 -5.8908 -2.3367 -4.1060 -0.9502 0.1489 0.1125 3.5405 0.8307 4.0690 0.1507 0.2317 1.4228 0.0344 1.1280 0.0695
+#> 366: 92.6412 -5.8926 -2.3366 -4.1062 -0.9502 0.1484 0.1125 3.5483 0.8307 4.0724 0.1507 0.2311 1.4228 0.0344 1.1280 0.0695
+#> 367: 92.6406 -5.8940 -2.3366 -4.1059 -0.9503 0.1483 0.1124 3.5557 0.8308 4.0738 0.1507 0.2305 1.4228 0.0344 1.1273 0.0695
+#> 368: 92.6402 -5.8940 -2.3365 -4.1059 -0.9504 0.1483 0.1122 3.5538 0.8306 4.0773 0.1507 0.2299 1.4228 0.0344 1.1266 0.0696
+#> 369: 92.6398 -5.8933 -2.3366 -4.1058 -0.9504 0.1482 0.1122 3.5489 0.8303 4.0796 0.1507 0.2295 1.4228 0.0343 1.1261 0.0696
+#> 370: 92.6394 -5.8928 -2.3366 -4.1059 -0.9504 0.1481 0.1123 3.5445 0.8302 4.0819 0.1506 0.2291 1.4229 0.0343 1.1258 0.0696
+#> 371: 92.6390 -5.8930 -2.3369 -4.1062 -0.9503 0.1481 0.1125 3.5446 0.8299 4.0854 0.1506 0.2285 1.4230 0.0343 1.1257 0.0696
+#> 372: 92.6387 -5.8926 -2.3372 -4.1064 -0.9503 0.1482 0.1125 3.5424 0.8298 4.0887 0.1505 0.2281 1.4234 0.0343 1.1262 0.0696
+#> 373: 92.6385 -5.8927 -2.3376 -4.1067 -0.9502 0.1483 0.1126 3.5447 0.8297 4.0919 0.1504 0.2275 1.4236 0.0343 1.1268 0.0696
+#> 374: 92.6382 -5.8932 -2.3380 -4.1064 -0.9502 0.1481 0.1131 3.5490 0.8295 4.0929 0.1503 0.2272 1.4238 0.0343 1.1267 0.0696
+#> 375: 92.6385 -5.8944 -2.3383 -4.1062 -0.9502 0.1481 0.1136 3.5562 0.8292 4.0936 0.1503 0.2269 1.4240 0.0343 1.1274 0.0695
+#> 376: 92.6388 -5.8942 -2.3387 -4.1061 -0.9502 0.1481 0.1141 3.5575 0.8295 4.0942 0.1502 0.2267 1.4236 0.0343 1.1272 0.0695
+#> 377: 92.6389 -5.8942 -2.3392 -4.1060 -0.9502 0.1482 0.1145 3.5579 0.8298 4.0950 0.1501 0.2264 1.4233 0.0344 1.1272 0.0695
+#> 378: 92.6388 -5.8939 -2.3397 -4.1060 -0.9502 0.1481 0.1150 3.5558 0.8298 4.0959 0.1500 0.2261 1.4232 0.0344 1.1271 0.0695
+#> 379: 92.6388 -5.8934 -2.3399 -4.1062 -0.9500 0.1483 0.1153 3.5521 0.8294 4.0980 0.1500 0.2257 1.4236 0.0344 1.1279 0.0694
+#> 380: 92.6390 -5.8920 -2.3402 -4.1065 -0.9499 0.1484 0.1155 3.5446 0.8292 4.1007 0.1500 0.2254 1.4241 0.0344 1.1285 0.0694
+#> 381: 92.6394 -5.8906 -2.3404 -4.1069 -0.9498 0.1485 0.1157 3.5378 0.8290 4.1040 0.1500 0.2250 1.4249 0.0343 1.1296 0.0694
+#> 382: 92.6403 -5.8893 -2.3406 -4.1085 -0.9498 0.1487 0.1157 3.5319 0.8289 4.1195 0.1500 0.2246 1.4250 0.0343 1.1301 0.0694
+#> 383: 92.6402 -5.8882 -2.3408 -4.1096 -0.9499 0.1488 0.1155 3.5269 0.8287 4.1290 0.1500 0.2243 1.4253 0.0343 1.1300 0.0694
+#> 384: 92.6401 -5.8871 -2.3412 -4.1102 -0.9498 0.1490 0.1155 3.5219 0.8285 4.1340 0.1499 0.2241 1.4254 0.0343 1.1297 0.0694
+#> 385: 92.6396 -5.8867 -2.3417 -4.1105 -0.9497 0.1493 0.1155 3.5195 0.8281 4.1364 0.1498 0.2238 1.4252 0.0343 1.1297 0.0695
+#> 386: 92.6393 -5.8863 -2.3423 -4.1116 -0.9496 0.1497 0.1153 3.5190 0.8280 4.1452 0.1497 0.2235 1.4251 0.0343 1.1307 0.0694
+#> 387: 92.6391 -5.8865 -2.3429 -4.1124 -0.9495 0.1498 0.1155 3.5219 0.8280 4.1502 0.1497 0.2234 1.4247 0.0343 1.1301 0.0695
+#> 388: 92.6389 -5.8861 -2.3436 -4.1129 -0.9494 0.1501 0.1158 3.5228 0.8278 4.1540 0.1496 0.2233 1.4243 0.0343 1.1293 0.0695
+#> 389: 92.6384 -5.8849 -2.3442 -4.1132 -0.9491 0.1504 0.1159 3.5195 0.8276 4.1571 0.1496 0.2231 1.4242 0.0343 1.1284 0.0696
+#> 390: 92.6382 -5.8838 -2.3447 -4.1134 -0.9489 0.1506 0.1159 3.5172 0.8276 4.1603 0.1497 0.2230 1.4242 0.0343 1.1273 0.0697
+#> 391: 92.6380 -5.8821 -2.3454 -4.1140 -0.9486 0.1509 0.1159 3.5134 0.8274 4.1661 0.1498 0.2228 1.4238 0.0343 1.1266 0.0697
+#> 392: 92.6374 -5.8800 -2.3460 -4.1140 -0.9485 0.1513 0.1158 3.5069 0.8274 4.1673 0.1499 0.2226 1.4235 0.0343 1.1258 0.0698
+#> 393: 92.6372 -5.8785 -2.3467 -4.1140 -0.9485 0.1514 0.1159 3.5019 0.8275 4.1684 0.1499 0.2223 1.4232 0.0343 1.1258 0.0698
+#> 394: 92.6372 -5.8765 -2.3473 -4.1142 -0.9485 0.1515 0.1161 3.4955 0.8275 4.1710 0.1499 0.2221 1.4228 0.0344 1.1260 0.0697
+#> 395: 92.6371 -5.8761 -2.3476 -4.1145 -0.9485 0.1515 0.1164 3.4940 0.8273 4.1739 0.1498 0.2220 1.4227 0.0344 1.1254 0.0698
+#> 396: 92.6370 -5.8759 -2.3480 -4.1147 -0.9485 0.1516 0.1166 3.4942 0.8269 4.1764 0.1498 0.2217 1.4222 0.0344 1.1252 0.0698
+#> 397: 92.6371 -5.8756 -2.3483 -4.1149 -0.9486 0.1516 0.1167 3.4914 0.8267 4.1796 0.1498 0.2214 1.4219 0.0344 1.1253 0.0697
+#> 398: 92.6371 -5.8756 -2.3486 -4.1155 -0.9486 0.1518 0.1167 3.4909 0.8268 4.1840 0.1498 0.2210 1.4216 0.0344 1.1250 0.0697
+#> 399: 92.6368 -5.8765 -2.3489 -4.1157 -0.9485 0.1519 0.1170 3.4958 0.8266 4.1866 0.1498 0.2205 1.4213 0.0344 1.1245 0.0698
+#> 400: 92.6368 -5.8769 -2.3491 -4.1158 -0.9485 0.1522 0.1174 3.4972 0.8266 4.1888 0.1499 0.2200 1.4209 0.0344 1.1242 0.0698
+#> 401: 92.6366 -5.8768 -2.3493 -4.1161 -0.9484 0.1524 0.1175 3.4964 0.8267 4.1913 0.1499 0.2196 1.4204 0.0344 1.1240 0.0698
+#> 402: 92.6362 -5.8767 -2.3495 -4.1164 -0.9483 0.1525 0.1176 3.4961 0.8267 4.1937 0.1499 0.2192 1.4201 0.0344 1.1240 0.0698
+#> 403: 92.6362 -5.8769 -2.3497 -4.1166 -0.9483 0.1526 0.1178 3.4981 0.8270 4.1960 0.1499 0.2187 1.4197 0.0345 1.1236 0.0698
+#> 404: 92.6359 -5.8772 -2.3499 -4.1166 -0.9483 0.1527 0.1179 3.4997 0.8272 4.1968 0.1499 0.2183 1.4193 0.0345 1.1232 0.0698
+#> 405: 92.6355 -5.8763 -2.3501 -4.1165 -0.9483 0.1527 0.1180 3.4946 0.8273 4.1976 0.1500 0.2180 1.4189 0.0345 1.1230 0.0698
+#> 406: 92.6351 -5.8768 -2.3503 -4.1164 -0.9482 0.1528 0.1184 3.4953 0.8274 4.1979 0.1500 0.2176 1.4184 0.0345 1.1227 0.0698
+#> 407: 92.6346 -5.8772 -2.3505 -4.1165 -0.9481 0.1527 0.1187 3.4965 0.8275 4.1999 0.1500 0.2173 1.4182 0.0344 1.1222 0.0698
+#> 408: 92.6344 -5.8786 -2.3508 -4.1167 -0.9482 0.1528 0.1190 3.5025 0.8276 4.2020 0.1500 0.2171 1.4178 0.0344 1.1215 0.0699
+#> 409: 92.6342 -5.8806 -2.3511 -4.1168 -0.9484 0.1529 0.1193 3.5134 0.8277 4.2037 0.1500 0.2167 1.4176 0.0344 1.1212 0.0699
+#> 410: 92.6341 -5.8826 -2.3514 -4.1170 -0.9486 0.1531 0.1193 3.5229 0.8279 4.2061 0.1500 0.2163 1.4175 0.0344 1.1212 0.0699
+#> 411: 92.6339 -5.8840 -2.3517 -4.1172 -0.9488 0.1532 0.1192 3.5280 0.8280 4.2087 0.1499 0.2159 1.4175 0.0345 1.1208 0.0699
+#> 412: 92.6338 -5.8850 -2.3520 -4.1175 -0.9489 0.1534 0.1193 3.5311 0.8280 4.2121 0.1497 0.2155 1.4177 0.0345 1.1204 0.0699
+#> 413: 92.6343 -5.8859 -2.3523 -4.1177 -0.9491 0.1536 0.1191 3.5337 0.8282 4.2156 0.1497 0.2151 1.4176 0.0345 1.1198 0.0699
+#> 414: 92.6350 -5.8861 -2.3526 -4.1184 -0.9491 0.1540 0.1191 3.5350 0.8283 4.2209 0.1496 0.2147 1.4177 0.0345 1.1196 0.0699
+#> 415: 92.6354 -5.8866 -2.3528 -4.1191 -0.9492 0.1543 0.1191 3.5373 0.8284 4.2258 0.1496 0.2142 1.4179 0.0345 1.1191 0.0699
+#> 416: 92.6360 -5.8873 -2.3531 -4.1201 -0.9493 0.1548 0.1193 3.5431 0.8286 4.2328 0.1495 0.2137 1.4178 0.0345 1.1187 0.0699
+#> 417: 92.6361 -5.8878 -2.3533 -4.1213 -0.9494 0.1551 0.1192 3.5465 0.8288 4.2415 0.1494 0.2131 1.4182 0.0345 1.1189 0.0699
+#> 418: 92.6366 -5.8883 -2.3535 -4.1221 -0.9495 0.1555 0.1194 3.5499 0.8291 4.2477 0.1493 0.2127 1.4180 0.0345 1.1184 0.0699
+#> 419: 92.6367 -5.8885 -2.3536 -4.1236 -0.9495 0.1560 0.1195 3.5517 0.8292 4.2588 0.1492 0.2123 1.4179 0.0345 1.1180 0.0700
+#> 420: 92.6371 -5.8874 -2.3536 -4.1249 -0.9495 0.1564 0.1197 3.5474 0.8293 4.2666 0.1491 0.2118 1.4181 0.0345 1.1182 0.0700
+#> 421: 92.6374 -5.8860 -2.3537 -4.1263 -0.9494 0.1569 0.1197 3.5416 0.8292 4.2759 0.1492 0.2114 1.4184 0.0345 1.1188 0.0699
+#> 422: 92.6377 -5.8850 -2.3538 -4.1279 -0.9493 0.1572 0.1197 3.5365 0.8292 4.2865 0.1491 0.2110 1.4185 0.0345 1.1188 0.0700
+#> 423: 92.6380 -5.8844 -2.3540 -4.1299 -0.9494 0.1576 0.1196 3.5323 0.8290 4.2999 0.1491 0.2106 1.4186 0.0345 1.1192 0.0699
+#> 424: 92.6382 -5.8842 -2.3541 -4.1312 -0.9495 0.1581 0.1198 3.5309 0.8290 4.3092 0.1491 0.2103 1.4184 0.0345 1.1197 0.0699
+#> 425: 92.6382 -5.8838 -2.3543 -4.1320 -0.9495 0.1584 0.1197 3.5281 0.8289 4.3140 0.1491 0.2099 1.4185 0.0346 1.1196 0.0699
+#> 426: 92.6380 -5.8829 -2.3545 -4.1327 -0.9494 0.1587 0.1196 3.5234 0.8293 4.3183 0.1491 0.2096 1.4182 0.0346 1.1194 0.0699
+#> 427: 92.6375 -5.8823 -2.3548 -4.1335 -0.9494 0.1589 0.1197 3.5189 0.8295 4.3233 0.1492 0.2092 1.4180 0.0346 1.1196 0.0699
+#> 428: 92.6370 -5.8813 -2.3552 -4.1343 -0.9494 0.1592 0.1199 3.5140 0.8295 4.3286 0.1491 0.2088 1.4182 0.0346 1.1198 0.0699
+#> 429: 92.6368 -5.8802 -2.3556 -4.1356 -0.9495 0.1597 0.1202 3.5093 0.8296 4.3372 0.1491 0.2086 1.4182 0.0346 1.1208 0.0699
+#> 430: 92.6370 -5.8794 -2.3560 -4.1366 -0.9496 0.1602 0.1201 3.5058 0.8297 4.3439 0.1492 0.2084 1.4183 0.0346 1.1216 0.0698
+#> 431: 92.6371 -5.8792 -2.3564 -4.1372 -0.9497 0.1606 0.1201 3.5029 0.8298 4.3473 0.1493 0.2082 1.4182 0.0346 1.1215 0.0698
+#> 432: 92.6371 -5.8793 -2.3567 -4.1377 -0.9499 0.1609 0.1201 3.5008 0.8297 4.3499 0.1494 0.2080 1.4180 0.0346 1.1218 0.0698
+#> 433: 92.6370 -5.8799 -2.3570 -4.1387 -0.9501 0.1612 0.1201 3.5014 0.8298 4.3560 0.1495 0.2078 1.4180 0.0346 1.1218 0.0699
+#> 434: 92.6371 -5.8790 -2.3573 -4.1398 -0.9501 0.1615 0.1200 3.4982 0.8300 4.3624 0.1496 0.2076 1.4179 0.0346 1.1213 0.0699
+#> 435: 92.6368 -5.8789 -2.3576 -4.1409 -0.9501 0.1619 0.1199 3.4979 0.8302 4.3697 0.1496 0.2074 1.4176 0.0346 1.1205 0.0699
+#> 436: 92.6365 -5.8792 -2.3579 -4.1424 -0.9500 0.1623 0.1197 3.4987 0.8304 4.3798 0.1497 0.2073 1.4173 0.0346 1.1198 0.0699
+#> 437: 92.6364 -5.8798 -2.3582 -4.1439 -0.9500 0.1627 0.1195 3.5017 0.8307 4.3905 0.1497 0.2071 1.4172 0.0346 1.1191 0.0700
+#> 438: 92.6362 -5.8803 -2.3585 -4.1450 -0.9499 0.1631 0.1193 3.5053 0.8309 4.3973 0.1497 0.2070 1.4172 0.0346 1.1186 0.0700
+#> 439: 92.6361 -5.8811 -2.3588 -4.1463 -0.9498 0.1634 0.1190 3.5101 0.8312 4.4052 0.1496 0.2069 1.4172 0.0346 1.1188 0.0700
+#> 440: 92.6360 -5.8816 -2.3591 -4.1477 -0.9498 0.1637 0.1187 3.5127 0.8315 4.4145 0.1495 0.2068 1.4172 0.0346 1.1189 0.0700
+#> 441: 92.6357 -5.8816 -2.3594 -4.1492 -0.9499 0.1640 0.1185 3.5136 0.8319 4.4252 0.1494 0.2069 1.4175 0.0346 1.1191 0.0700
+#> 442: 92.6356 -5.8819 -2.3596 -4.1501 -0.9500 0.1642 0.1181 3.5151 0.8323 4.4310 0.1494 0.2070 1.4176 0.0346 1.1193 0.0700
+#> 443: 92.6356 -5.8825 -2.3598 -4.1512 -0.9501 0.1643 0.1180 3.5178 0.8324 4.4379 0.1493 0.2071 1.4179 0.0346 1.1196 0.0700
+#> 444: 92.6352 -5.8827 -2.3602 -4.1525 -0.9502 0.1644 0.1180 3.5169 0.8327 4.4458 0.1493 0.2073 1.4178 0.0346 1.1198 0.0700
+#> 445: 92.6348 -5.8828 -2.3605 -4.1534 -0.9502 0.1643 0.1180 3.5178 0.8329 4.4505 0.1493 0.2074 1.4178 0.0346 1.1202 0.0700
+#> 446: 92.6342 -5.8830 -2.3609 -4.1541 -0.9503 0.1643 0.1183 3.5182 0.8331 4.4539 0.1494 0.2077 1.4176 0.0346 1.1199 0.0700
+#> 447: 92.6334 -5.8832 -2.3613 -4.1548 -0.9503 0.1643 0.1188 3.5188 0.8333 4.4571 0.1494 0.2079 1.4172 0.0346 1.1198 0.0700
+#> 448: 92.6331 -5.8833 -2.3616 -4.1557 -0.9503 0.1643 0.1190 3.5190 0.8335 4.4613 0.1494 0.2080 1.4170 0.0346 1.1198 0.0700
+#> 449: 92.6327 -5.8835 -2.3619 -4.1563 -0.9504 0.1641 0.1192 3.5191 0.8335 4.4636 0.1493 0.2081 1.4172 0.0346 1.1196 0.0700
+#> 450: 92.6322 -5.8831 -2.3620 -4.1566 -0.9505 0.1639 0.1194 3.5152 0.8340 4.4647 0.1492 0.2083 1.4172 0.0346 1.1189 0.0700
+#> 451: 92.6315 -5.8835 -2.3622 -4.1569 -0.9505 0.1635 0.1194 3.5192 0.8343 4.4648 0.1492 0.2084 1.4169 0.0346 1.1187 0.0700
+#> 452: 92.6312 -5.8834 -2.3625 -4.1572 -0.9506 0.1632 0.1193 3.5173 0.8345 4.4654 0.1492 0.2086 1.4166 0.0346 1.1183 0.0700
+#> 453: 92.6309 -5.8838 -2.3628 -4.1574 -0.9506 0.1629 0.1193 3.5175 0.8348 4.4660 0.1493 0.2087 1.4166 0.0346 1.1180 0.0700
+#> 454: 92.6307 -5.8832 -2.3629 -4.1574 -0.9507 0.1625 0.1193 3.5128 0.8354 4.4658 0.1493 0.2087 1.4164 0.0346 1.1176 0.0700
+#> 455: 92.6305 -5.8821 -2.3632 -4.1579 -0.9508 0.1624 0.1192 3.5071 0.8360 4.4678 0.1494 0.2089 1.4164 0.0346 1.1171 0.0701
+#> 456: 92.6307 -5.8811 -2.3634 -4.1589 -0.9509 0.1623 0.1190 3.5014 0.8364 4.4730 0.1494 0.2088 1.4168 0.0346 1.1168 0.0701
+#> 457: 92.6307 -5.8808 -2.3636 -4.1597 -0.9509 0.1621 0.1188 3.4980 0.8368 4.4772 0.1494 0.2089 1.4168 0.0347 1.1166 0.0701
+#> 458: 92.6308 -5.8813 -2.3638 -4.1607 -0.9510 0.1621 0.1185 3.4994 0.8369 4.4823 0.1494 0.2088 1.4168 0.0347 1.1161 0.0701
+#> 459: 92.6308 -5.8819 -2.3639 -4.1615 -0.9511 0.1620 0.1184 3.5008 0.8371 4.4861 0.1494 0.2086 1.4167 0.0347 1.1155 0.0701
+#> 460: 92.6309 -5.8824 -2.3642 -4.1621 -0.9511 0.1621 0.1182 3.5024 0.8374 4.4886 0.1493 0.2085 1.4164 0.0347 1.1148 0.0702
+#> 461: 92.6309 -5.8821 -2.3647 -4.1631 -0.9511 0.1621 0.1181 3.5000 0.8378 4.4937 0.1493 0.2084 1.4160 0.0347 1.1141 0.0702
+#> 462: 92.6309 -5.8825 -2.3651 -4.1638 -0.9511 0.1623 0.1180 3.5006 0.8381 4.4975 0.1492 0.2082 1.4156 0.0348 1.1133 0.0702
+#> 463: 92.6307 -5.8824 -2.3656 -4.1654 -0.9510 0.1624 0.1179 3.5000 0.8382 4.5074 0.1491 0.2081 1.4154 0.0348 1.1124 0.0702
+#> 464: 92.6305 -5.8825 -2.3660 -4.1668 -0.9510 0.1625 0.1178 3.5001 0.8384 4.5171 0.1491 0.2080 1.4149 0.0348 1.1115 0.0703
+#> 465: 92.6302 -5.8828 -2.3664 -4.1681 -0.9511 0.1626 0.1179 3.5012 0.8386 4.5247 0.1490 0.2079 1.4151 0.0348 1.1107 0.0703
+#> 466: 92.6300 -5.8827 -2.3668 -4.1697 -0.9511 0.1626 0.1179 3.5005 0.8390 4.5370 0.1490 0.2079 1.4148 0.0349 1.1098 0.0704
+#> 467: 92.6301 -5.8828 -2.3671 -4.1721 -0.9512 0.1628 0.1180 3.4991 0.8393 4.5562 0.1490 0.2078 1.4148 0.0349 1.1092 0.0704
+#> 468: 92.6303 -5.8833 -2.3675 -4.1745 -0.9513 0.1630 0.1181 3.4996 0.8397 4.5756 0.1489 0.2078 1.4148 0.0349 1.1086 0.0704
+#> 469: 92.6304 -5.8835 -2.3680 -4.1759 -0.9513 0.1630 0.1181 3.4991 0.8401 4.5829 0.1490 0.2080 1.4145 0.0349 1.1082 0.0704
+#> 470: 92.6304 -5.8839 -2.3685 -4.1772 -0.9512 0.1630 0.1183 3.4993 0.8405 4.5904 0.1490 0.2081 1.4142 0.0349 1.1079 0.0704
+#> 471: 92.6304 -5.8838 -2.3690 -4.1786 -0.9511 0.1631 0.1182 3.4992 0.8408 4.5981 0.1489 0.2082 1.4143 0.0350 1.1075 0.0704
+#> 472: 92.6301 -5.8839 -2.3695 -4.1800 -0.9511 0.1631 0.1182 3.5005 0.8413 4.6063 0.1488 0.2083 1.4143 0.0350 1.1072 0.0704
+#> 473: 92.6296 -5.8841 -2.3699 -4.1811 -0.9510 0.1630 0.1182 3.5019 0.8417 4.6119 0.1487 0.2085 1.4142 0.0350 1.1065 0.0704
+#> 474: 92.6293 -5.8843 -2.3704 -4.1823 -0.9510 0.1629 0.1184 3.5038 0.8422 4.6182 0.1487 0.2087 1.4145 0.0350 1.1060 0.0704
+#> 475: 92.6293 -5.8851 -2.3709 -4.1839 -0.9509 0.1628 0.1185 3.5084 0.8426 4.6277 0.1487 0.2089 1.4142 0.0351 1.1057 0.0704
+#> 476: 92.6293 -5.8854 -2.3713 -4.1847 -0.9509 0.1627 0.1185 3.5137 0.8430 4.6318 0.1486 0.2092 1.4139 0.0351 1.1057 0.0704
+#> 477: 92.6292 -5.8858 -2.3718 -4.1859 -0.9508 0.1627 0.1183 3.5201 0.8430 4.6397 0.1485 0.2095 1.4139 0.0351 1.1060 0.0704
+#> 478: 92.6291 -5.8871 -2.3722 -4.1867 -0.9508 0.1625 0.1181 3.5291 0.8432 4.6449 0.1483 0.2098 1.4140 0.0351 1.1058 0.0704
+#> 479: 92.6293 -5.8891 -2.3726 -4.1873 -0.9509 0.1623 0.1178 3.5422 0.8435 4.6486 0.1482 0.2100 1.4139 0.0352 1.1056 0.0704
+#> 480: 92.6294 -5.8910 -2.3730 -4.1881 -0.9509 0.1622 0.1175 3.5568 0.8437 4.6535 0.1482 0.2102 1.4140 0.0352 1.1053 0.0705
+#> 481: 92.6297 -5.8919 -2.3734 -4.1888 -0.9509 0.1621 0.1174 3.5650 0.8440 4.6572 0.1482 0.2104 1.4138 0.0353 1.1051 0.0705
+#> 482: 92.6293 -5.8929 -2.3737 -4.1894 -0.9509 0.1619 0.1173 3.5745 0.8444 4.6620 0.1482 0.2107 1.4134 0.0353 1.1047 0.0705
+#> 483: 92.6284 -5.8939 -2.3741 -4.1901 -0.9508 0.1616 0.1176 3.5832 0.8446 4.6672 0.1482 0.2109 1.4131 0.0353 1.1044 0.0705
+#> 484: 92.6276 -5.8943 -2.3744 -4.1904 -0.9507 0.1615 0.1179 3.5877 0.8447 4.6692 0.1483 0.2113 1.4128 0.0353 1.1041 0.0705
+#> 485: 92.6266 -5.8947 -2.3746 -4.1912 -0.9507 0.1616 0.1182 3.5903 0.8448 4.6751 0.1483 0.2115 1.4126 0.0354 1.1042 0.0705
+#> 486: 92.6258 -5.8952 -2.3749 -4.1918 -0.9508 0.1615 0.1185 3.5929 0.8450 4.6799 0.1485 0.2115 1.4125 0.0354 1.1045 0.0704
+#> 487: 92.6250 -5.8956 -2.3750 -4.1923 -0.9509 0.1614 0.1189 3.5922 0.8452 4.6835 0.1486 0.2115 1.4122 0.0354 1.1050 0.0704
+#> 488: 92.6242 -5.8956 -2.3752 -4.1927 -0.9510 0.1613 0.1191 3.5898 0.8453 4.6866 0.1487 0.2115 1.4119 0.0354 1.1051 0.0704
+#> 489: 92.6238 -5.8954 -2.3753 -4.1932 -0.9511 0.1611 0.1190 3.5871 0.8454 4.6905 0.1487 0.2115 1.4118 0.0354 1.1057 0.0704
+#> 490: 92.6237 -5.8951 -2.3754 -4.1936 -0.9511 0.1611 0.1188 3.5839 0.8454 4.6945 0.1487 0.2114 1.4117 0.0354 1.1064 0.0703
+#> 491: 92.6235 -5.8942 -2.3755 -4.1941 -0.9511 0.1610 0.1187 3.5790 0.8455 4.6981 0.1488 0.2115 1.4118 0.0354 1.1068 0.0703
+#> 492: 92.6234 -5.8938 -2.3755 -4.1952 -0.9512 0.1609 0.1186 3.5760 0.8454 4.7074 0.1488 0.2115 1.4119 0.0354 1.1074 0.0703
+#> 493: 92.6236 -5.8938 -2.3755 -4.1958 -0.9512 0.1608 0.1186 3.5747 0.8454 4.7121 0.1488 0.2114 1.4120 0.0354 1.1078 0.0702
+#> 494: 92.6239 -5.8945 -2.3756 -4.1964 -0.9513 0.1607 0.1186 3.5772 0.8455 4.7167 0.1488 0.2115 1.4120 0.0354 1.1082 0.0702
+#> 495: 92.6242 -5.8950 -2.3756 -4.1971 -0.9514 0.1605 0.1187 3.5798 0.8454 4.7227 0.1489 0.2117 1.4122 0.0354 1.1084 0.0702
+#> 496: 92.6242 -5.8962 -2.3757 -4.1978 -0.9514 0.1603 0.1189 3.5870 0.8455 4.7283 0.1489 0.2119 1.4121 0.0354 1.1090 0.0702
+#> 497: 92.6241 -5.8972 -2.3757 -4.1981 -0.9514 0.1602 0.1191 3.5934 0.8454 4.7298 0.1488 0.2120 1.4123 0.0354 1.1096 0.0701
+#> 498: 92.6244 -5.8973 -2.3758 -4.1981 -0.9514 0.1601 0.1190 3.5947 0.8454 4.7296 0.1488 0.2121 1.4123 0.0354 1.1101 0.0701
+#> 499: 92.6244 -5.8968 -2.3759 -4.1980 -0.9514 0.1600 0.1188 3.5935 0.8453 4.7290 0.1488 0.2124 1.4123 0.0354 1.1108 0.0701
+#> 500: 92.6245 -5.8959 -2.3759 -4.1978 -0.9513 0.1597 0.1188 3.5912 0.8452 4.7282 0.1488 0.2126 1.4123 0.0354 1.1111 0.0701#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"#> Calculating residuals/tables#> donef_nlmixr_dfop_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei",
+ error_model = "obs_tc")
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
+#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
+#> |.....................| log_k2 | g_qlogis |sigma_low_parent |rsd_high_parent |
+#> |.....................|sigma_low_A1 |rsd_high_A1 | o1 | o2 |
+#> |.....................| o3 | o4 | o5 | o6 |
+#> | 1| 495.80376 | 1.000 | -1.000 | -0.9110 | -0.9380 |
+#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
+#> |.....................| -0.8755 | -0.8915 | -0.8776 | -0.8741 |
+#> |.....................| -0.8681 | -0.8727 | -0.8749 | -0.8675 |
+#> | U| 495.80376 | 91.48 | -5.189 | -0.8875 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
+#> |.....................| 0.8280 | 0.05769 | 0.7296 | 0.8969 |
+#> |.....................| 1.185 | 0.9628 | 0.8582 | 1.216 |
+#> | X| 495.80376 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
+#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
+#> |.....................| 0.8280 | 0.05769 | 0.7296 | 0.8969 |
+#> |.....................| 1.185 | 0.9628 | 0.8582 | 1.216 |
+#> | G| Gill Diff. | 40.10 | 2.344 | -0.09792 | 0.01304 |
+#> |.....................| -0.4854 | 0.6353 | -23.92 | -17.76 |
+#> |.....................| -5.723 | -2.232 | 1.261 | 9.993 |
+#> |.....................| -12.68 | -0.7774 | 8.106 | -12.55 |
+#> | 2| 3318.3701 | 0.2710 | -1.043 | -0.9092 | -0.9382 |
+#> |.....................| -0.9796 | -0.8947 | -0.4406 | -0.5686 |
+#> |.....................| -0.7715 | -0.8509 | -0.9005 | -1.056 |
+#> |.....................| -0.6376 | -0.8586 | -1.022 | -0.6393 |
+#> | U| 3318.3701 | 24.79 | -5.231 | -0.8859 | -2.190 |
+#> |.....................| -4.622 | 0.4536 | 1.008 | 0.06701 |
+#> |.....................| 0.8711 | 0.05887 | 0.7129 | 0.7340 |
+#> |.....................| 1.458 | 0.9764 | 0.7317 | 1.493 |
+#> | X| 3318.3701 | 24.79 | 0.005347 | 0.2920 | 0.1119 |
+#> |.....................| 0.009837 | 0.6115 | 1.008 | 0.06701 |
+#> |.....................| 0.8711 | 0.05887 | 0.7129 | 0.7340 |
+#> |.....................| 1.458 | 0.9764 | 0.7317 | 1.493 |
+#> | 3| 512.37365 | 0.9271 | -1.004 | -0.9108 | -0.9380 |
+#> |.....................| -0.9876 | -0.8843 | -0.8320 | -0.8592 |
+#> |.....................| -0.8651 | -0.8874 | -0.8799 | -0.8923 |
+#> |.....................| -0.8451 | -0.8713 | -0.8896 | -0.8447 |
+#> | U| 512.37365 | 84.82 | -5.193 | -0.8873 | -2.190 |
+#> |.....................| -4.630 | 0.4584 | 0.8460 | 0.05863 |
+#> |.....................| 0.8323 | 0.05781 | 0.7279 | 0.8806 |
+#> |.....................| 1.212 | 0.9641 | 0.8455 | 1.244 |
+#> | X| 512.37365 | 84.82 | 0.005556 | 0.2917 | 0.1119 |
+#> |.....................| 0.009759 | 0.6126 | 0.8460 | 0.05863 |
+#> |.....................| 0.8323 | 0.05781 | 0.7279 | 0.8806 |
+#> |.....................| 1.212 | 0.9641 | 0.8455 | 1.244 |
+#> | 4| 495.44913 | 0.9909 | -1.001 | -0.9110 | -0.9380 |
+#> |.....................| -0.9883 | -0.8833 | -0.8701 | -0.8874 |
+#> |.....................| -0.8742 | -0.8910 | -0.8778 | -0.8764 |
+#> |.....................| -0.8653 | -0.8726 | -0.8767 | -0.8647 |
+#> | U| 495.44913 | 90.65 | -5.189 | -0.8874 | -2.190 |
+#> |.....................| -4.630 | 0.4589 | 0.8303 | 0.05781 |
+#> |.....................| 0.8286 | 0.05771 | 0.7294 | 0.8949 |
+#> |.....................| 1.189 | 0.9629 | 0.8566 | 1.219 |
+#> | X| 495.44913 | 90.65 | 0.005577 | 0.2916 | 0.1119 |
+#> |.....................| 0.009751 | 0.6127 | 0.8303 | 0.05781 |
+#> |.....................| 0.8286 | 0.05771 | 0.7294 | 0.8949 |
+#> |.....................| 1.189 | 0.9629 | 0.8566 | 1.219 |
+#> | F| Forward Diff. | -32.24 | 2.221 | -0.3999 | 0.1183 |
+#> |.....................| -0.4367 | 0.6696 | -24.35 | -18.50 |
+#> |.....................| -5.733 | -2.007 | 1.154 | 9.098 |
+#> |.....................| -12.48 | -0.2426 | 8.051 | -12.28 |
+#> | 5| 495.09570 | 0.9990 | -1.001 | -0.9109 | -0.9380 |
+#> |.....................| -0.9882 | -0.8835 | -0.8640 | -0.8828 |
+#> |.....................| -0.8728 | -0.8905 | -0.8781 | -0.8786 |
+#> |.....................| -0.8621 | -0.8725 | -0.8788 | -0.8616 |
+#> | U| 495.0957 | 91.39 | -5.190 | -0.8874 | -2.190 |
+#> |.....................| -4.630 | 0.4588 | 0.8328 | 0.05794 |
+#> |.....................| 0.8291 | 0.05772 | 0.7292 | 0.8928 |
+#> |.....................| 1.192 | 0.9630 | 0.8549 | 1.223 |
+#> | X| 495.0957 | 91.39 | 0.005574 | 0.2917 | 0.1119 |
+#> |.....................| 0.009752 | 0.6127 | 0.8328 | 0.05794 |
+#> |.....................| 0.8291 | 0.05772 | 0.7292 | 0.8928 |
+#> |.....................| 1.192 | 0.9630 | 0.8549 | 1.223 |
+#> | F| Forward Diff. | 32.16 | 2.311 | -0.1335 | 0.03619 |
+#> |.....................| -0.4432 | 0.6445 | -23.23 | -17.46 |
+#> |.....................| -5.567 | -2.162 | 1.281 | 9.656 |
+#> |.....................| -12.09 | -0.7018 | 7.779 | -12.29 |
+#> | 6| 494.75975 | 0.9908 | -1.002 | -0.9109 | -0.9380 |
+#> |.....................| -0.9881 | -0.8836 | -0.8581 | -0.8783 |
+#> |.....................| -0.8714 | -0.8899 | -0.8785 | -0.8811 |
+#> |.....................| -0.8590 | -0.8723 | -0.8807 | -0.8584 |
+#> | U| 494.75975 | 90.64 | -5.190 | -0.8873 | -2.190 |
+#> |.....................| -4.630 | 0.4587 | 0.8352 | 0.05807 |
+#> |.....................| 0.8297 | 0.05774 | 0.7290 | 0.8906 |
+#> |.....................| 1.196 | 0.9632 | 0.8532 | 1.227 |
+#> | X| 494.75975 | 90.64 | 0.005570 | 0.2917 | 0.1119 |
+#> |.....................| 0.009754 | 0.6127 | 0.8352 | 0.05807 |
+#> |.....................| 0.8297 | 0.05774 | 0.7290 | 0.8906 |
+#> |.....................| 1.196 | 0.9632 | 0.8532 | 1.227 |
+#> | F| Forward Diff. | -33.18 | 2.192 | -0.4095 | 0.1210 |
+#> |.....................| -0.4089 | 0.6743 | -23.19 | -17.83 |
+#> |.....................| -5.624 | -1.860 | 1.146 | 8.868 |
+#> |.....................| -11.42 | -0.05808 | 7.519 | -12.11 |
+#> | 7| 494.42957 | 0.9992 | -1.002 | -0.9108 | -0.9380 |
+#> |.....................| -0.9880 | -0.8838 | -0.8522 | -0.8738 |
+#> |.....................| -0.8699 | -0.8894 | -0.8788 | -0.8834 |
+#> |.....................| -0.8561 | -0.8723 | -0.8827 | -0.8554 |
+#> | U| 494.42957 | 91.41 | -5.191 | -0.8872 | -2.190 |
+#> |.....................| -4.630 | 0.4586 | 0.8377 | 0.05820 |
+#> |.....................| 0.8303 | 0.05775 | 0.7287 | 0.8886 |
+#> |.....................| 1.199 | 0.9632 | 0.8515 | 1.231 |
+#> | X| 494.42957 | 91.41 | 0.005567 | 0.2917 | 0.1119 |
+#> |.....................| 0.009755 | 0.6127 | 0.8377 | 0.05820 |
+#> |.....................| 0.8303 | 0.05775 | 0.7287 | 0.8886 |
+#> |.....................| 1.199 | 0.9632 | 0.8515 | 1.231 |
+#> | F| Forward Diff. | 33.60 | 2.291 | -0.1177 | 0.03548 |
+#> |.....................| -0.4327 | 0.6500 | -23.13 | -16.67 |
+#> |.....................| -5.444 | -2.054 | 1.165 | 9.367 |
+#> |.....................| -12.23 | 0.1305 | 7.522 | -12.12 |
+#> | 8| 494.10805 | 0.9907 | -1.003 | -0.9107 | -0.9380 |
+#> |.....................| -0.9879 | -0.8840 | -0.8463 | -0.8696 |
+#> |.....................| -0.8686 | -0.8889 | -0.8791 | -0.8857 |
+#> |.....................| -0.8530 | -0.8723 | -0.8846 | -0.8523 |
+#> | U| 494.10805 | 90.63 | -5.191 | -0.8872 | -2.190 |
+#> |.....................| -4.630 | 0.4586 | 0.8401 | 0.05833 |
+#> |.....................| 0.8309 | 0.05777 | 0.7285 | 0.8865 |
+#> |.....................| 1.203 | 0.9632 | 0.8499 | 1.234 |
+#> | X| 494.10805 | 90.63 | 0.005564 | 0.2917 | 0.1119 |
+#> |.....................| 0.009756 | 0.6127 | 0.8401 | 0.05833 |
+#> |.....................| 0.8309 | 0.05777 | 0.7285 | 0.8865 |
+#> |.....................| 1.203 | 0.9632 | 0.8499 | 1.234 |
+#> | F| Forward Diff. | -33.55 | 2.169 | -0.4095 | 0.1317 |
+#> |.....................| -0.3875 | 0.6809 | -22.57 | -17.16 |
+#> |.....................| -5.560 | -1.906 | 1.113 | 8.554 |
+#> |.....................| -12.00 | -0.1191 | 7.606 | -11.94 |
+#> | 9| 493.79074 | 0.9992 | -1.003 | -0.9106 | -0.9381 |
+#> |.....................| -0.9878 | -0.8841 | -0.8406 | -0.8652 |
+#> |.....................| -0.8671 | -0.8884 | -0.8793 | -0.8879 |
+#> |.....................| -0.8500 | -0.8723 | -0.8865 | -0.8493 |
+#> | U| 493.79074 | 91.41 | -5.192 | -0.8871 | -2.190 |
+#> |.....................| -4.630 | 0.4585 | 0.8425 | 0.05845 |
+#> |.....................| 0.8315 | 0.05778 | 0.7283 | 0.8845 |
+#> |.....................| 1.207 | 0.9632 | 0.8482 | 1.238 |
+#> | X| 493.79074 | 91.41 | 0.005561 | 0.2917 | 0.1119 |
+#> |.....................| 0.009757 | 0.6127 | 0.8425 | 0.05845 |
+#> |.....................| 0.8315 | 0.05778 | 0.7283 | 0.8845 |
+#> |.....................| 1.207 | 0.9632 | 0.8482 | 1.238 |
+#> | F| Forward Diff. | 33.91 | 2.267 | -0.1078 | 0.03893 |
+#> |.....................| -0.4090 | 0.6560 | -22.34 | -15.94 |
+#> |.....................| -5.274 | -2.001 | 1.140 | 9.131 |
+#> |.....................| -12.00 | -0.1724 | 7.294 | -11.95 |
+#> | 10| 493.48645 | 0.9905 | -1.004 | -0.9106 | -0.9381 |
+#> |.....................| -0.9877 | -0.8843 | -0.8348 | -0.8611 |
+#> |.....................| -0.8658 | -0.8879 | -0.8796 | -0.8903 |
+#> |.....................| -0.8469 | -0.8723 | -0.8884 | -0.8462 |
+#> | U| 493.48645 | 90.62 | -5.193 | -0.8871 | -2.190 |
+#> |.....................| -4.630 | 0.4584 | 0.8449 | 0.05857 |
+#> |.....................| 0.8320 | 0.05780 | 0.7281 | 0.8824 |
+#> |.....................| 1.210 | 0.9632 | 0.8466 | 1.242 |
+#> | X| 493.48645 | 90.62 | 0.005558 | 0.2917 | 0.1119 |
+#> |.....................| 0.009758 | 0.6126 | 0.8449 | 0.05857 |
+#> |.....................| 0.8320 | 0.05780 | 0.7281 | 0.8824 |
+#> |.....................| 1.210 | 0.9632 | 0.8466 | 1.242 |
+#> | F| Forward Diff. | -34.40 | 2.145 | -0.4154 | 0.1312 |
+#> |.....................| -0.3648 | 0.6865 | -22.08 | -16.36 |
+#> |.....................| -5.345 | -1.756 | 1.231 | 8.303 |
+#> |.....................| -11.76 | -0.07864 | 7.355 | -11.77 |
+#> | 11| 493.18511 | 0.9993 | -1.004 | -0.9105 | -0.9381 |
+#> |.....................| -0.9876 | -0.8845 | -0.8292 | -0.8570 |
+#> |.....................| -0.8644 | -0.8875 | -0.8799 | -0.8924 |
+#> |.....................| -0.8439 | -0.8722 | -0.8902 | -0.8432 |
+#> | U| 493.18511 | 91.42 | -5.193 | -0.8870 | -2.190 |
+#> |.....................| -4.630 | 0.4583 | 0.8472 | 0.05869 |
+#> |.....................| 0.8326 | 0.05781 | 0.7279 | 0.8805 |
+#> |.....................| 1.214 | 0.9633 | 0.8450 | 1.246 |
+#> | X| 493.18511 | 91.42 | 0.005555 | 0.2917 | 0.1119 |
+#> |.....................| 0.009759 | 0.6126 | 0.8472 | 0.05869 |
+#> |.....................| 0.8326 | 0.05781 | 0.7279 | 0.8805 |
+#> |.....................| 1.214 | 0.9633 | 0.8450 | 1.246 |
+#> | F| Forward Diff. | 34.43 | 2.240 | -0.1040 | 0.04282 |
+#> |.....................| -0.3912 | 0.6547 | -21.84 | -15.27 |
+#> |.....................| -5.158 | -1.914 | 1.030 | 8.876 |
+#> |.....................| -11.77 | -0.1415 | 7.047 | -11.78 |
+#> | 12| 492.89407 | 0.9905 | -1.005 | -0.9105 | -0.9381 |
+#> |.....................| -0.9875 | -0.8847 | -0.8236 | -0.8530 |
+#> |.....................| -0.8631 | -0.8870 | -0.8802 | -0.8947 |
+#> |.....................| -0.8409 | -0.8722 | -0.8921 | -0.8401 |
+#> | U| 492.89407 | 90.61 | -5.194 | -0.8870 | -2.190 |
+#> |.....................| -4.630 | 0.4582 | 0.8495 | 0.05880 |
+#> |.....................| 0.8332 | 0.05782 | 0.7277 | 0.8785 |
+#> |.....................| 1.217 | 0.9633 | 0.8434 | 1.249 |
+#> | X| 492.89407 | 90.61 | 0.005551 | 0.2917 | 0.1119 |
+#> |.....................| 0.009760 | 0.6126 | 0.8495 | 0.05880 |
+#> |.....................| 0.8332 | 0.05782 | 0.7277 | 0.8785 |
+#> |.....................| 1.217 | 0.9633 | 0.8434 | 1.249 |
+#> | F| Forward Diff. | -34.81 | 2.117 | -0.4182 | 0.1353 |
+#> |.....................| -0.3428 | 0.6933 | -21.54 | -15.66 |
+#> |.....................| -5.188 | -1.708 | 1.147 | 8.020 |
+#> |.....................| -11.52 | -0.06705 | 7.151 | -11.60 |
+#> | 13| 492.59250 | 0.9992 | -1.006 | -0.9104 | -0.9382 |
+#> |.....................| -0.9874 | -0.8848 | -0.8179 | -0.8489 |
+#> |.....................| -0.8617 | -0.8865 | -0.8805 | -0.8968 |
+#> |.....................| -0.8378 | -0.8722 | -0.8940 | -0.8371 |
+#> | U| 492.5925 | 91.41 | -5.194 | -0.8869 | -2.190 |
+#> |.....................| -4.629 | 0.4582 | 0.8519 | 0.05892 |
+#> |.....................| 0.8337 | 0.05784 | 0.7275 | 0.8766 |
+#> |.....................| 1.221 | 0.9633 | 0.8418 | 1.253 |
+#> | X| 492.5925 | 91.41 | 0.005548 | 0.2918 | 0.1119 |
+#> |.....................| 0.009760 | 0.6126 | 0.8519 | 0.05892 |
+#> |.....................| 0.8337 | 0.05784 | 0.7275 | 0.8766 |
+#> |.....................| 1.221 | 0.9633 | 0.8418 | 1.253 |
+#> | F| Forward Diff. | 33.40 | 2.217 | -0.09736 | 0.04377 |
+#> |.....................| -0.3664 | 0.6618 | -21.29 | -14.62 |
+#> |.....................| -5.018 | -1.838 | 0.9818 | 8.628 |
+#> |.....................| -11.52 | -0.1307 | 6.857 | -11.62 |
+#> | 14| 492.30478 | 0.9905 | -1.006 | -0.9103 | -0.9382 |
+#> |.....................| -0.9873 | -0.8850 | -0.8121 | -0.8449 |
+#> |.....................| -0.8604 | -0.8860 | -0.8808 | -0.8991 |
+#> |.....................| -0.8347 | -0.8722 | -0.8958 | -0.8339 |
+#> | U| 492.30478 | 90.62 | -5.195 | -0.8868 | -2.190 |
+#> |.....................| -4.629 | 0.4581 | 0.8543 | 0.05904 |
+#> |.....................| 0.8343 | 0.05785 | 0.7273 | 0.8745 |
+#> |.....................| 1.225 | 0.9633 | 0.8402 | 1.257 |
+#> | X| 492.30478 | 90.62 | 0.005545 | 0.2918 | 0.1119 |
+#> |.....................| 0.009761 | 0.6126 | 0.8543 | 0.05904 |
+#> |.....................| 0.8343 | 0.05785 | 0.7273 | 0.8745 |
+#> |.....................| 1.225 | 0.9633 | 0.8402 | 1.257 |
+#> | F| Forward Diff. | -34.08 | 2.096 | -0.4157 | 0.1370 |
+#> |.....................| -0.3212 | 0.6979 | -20.95 | -14.99 |
+#> |.....................| -5.046 | -1.607 | 1.055 | 8.026 |
+#> |.....................| -11.31 | 0.3535 | 6.819 | -11.49 |
+#> | 15| 492.00325 | 0.9991 | -1.007 | -0.9102 | -0.9382 |
+#> |.....................| -0.9872 | -0.8852 | -0.8063 | -0.8408 |
+#> |.....................| -0.8590 | -0.8856 | -0.8811 | -0.9014 |
+#> |.....................| -0.8316 | -0.8723 | -0.8977 | -0.8307 |
+#> | U| 492.00325 | 91.40 | -5.195 | -0.8867 | -2.190 |
+#> |.....................| -4.629 | 0.4580 | 0.8567 | 0.05916 |
+#> |.....................| 0.8349 | 0.05786 | 0.7271 | 0.8725 |
+#> |.....................| 1.229 | 0.9632 | 0.8386 | 1.261 |
+#> | X| 492.00325 | 91.40 | 0.005542 | 0.2918 | 0.1119 |
+#> |.....................| 0.009762 | 0.6125 | 0.8567 | 0.05916 |
+#> |.....................| 0.8349 | 0.05786 | 0.7271 | 0.8725 |
+#> |.....................| 1.229 | 0.9632 | 0.8386 | 1.261 |
+#> | F| Forward Diff. | 32.19 | 2.189 | -0.09620 | 0.04245 |
+#> |.....................| -0.3450 | 0.6659 | -21.28 | -14.00 |
+#> |.....................| -4.881 | -1.759 | 1.243 | 8.359 |
+#> |.....................| -10.62 | -0.07477 | 6.614 | -11.44 |
+#> | 16| 491.72015 | 0.9906 | -1.007 | -0.9102 | -0.9382 |
+#> |.....................| -0.9871 | -0.8854 | -0.8003 | -0.8368 |
+#> |.....................| -0.8576 | -0.8851 | -0.8814 | -0.9037 |
+#> |.....................| -0.8285 | -0.8722 | -0.8996 | -0.8275 |
+#> | U| 491.72015 | 90.62 | -5.196 | -0.8867 | -2.190 |
+#> |.....................| -4.629 | 0.4579 | 0.8592 | 0.05927 |
+#> |.....................| 0.8354 | 0.05788 | 0.7268 | 0.8703 |
+#> |.....................| 1.232 | 0.9633 | 0.8370 | 1.265 |
+#> | X| 491.72015 | 90.62 | 0.005538 | 0.2918 | 0.1119 |
+#> |.....................| 0.009763 | 0.6125 | 0.8592 | 0.05927 |
+#> |.....................| 0.8354 | 0.05788 | 0.7268 | 0.8703 |
+#> |.....................| 1.232 | 0.9633 | 0.8370 | 1.265 |
+#> | F| Forward Diff. | -33.41 | 2.074 | -0.4123 | 0.1389 |
+#> |.....................| -0.2981 | 0.7039 | -20.39 | -14.31 |
+#> |.....................| -4.887 | -1.550 | 0.9656 | 7.818 |
+#> |.....................| -11.05 | -0.4282 | 6.582 | -11.31 |
+#> | 17| 491.42294 | 0.9990 | -1.008 | -0.9101 | -0.9383 |
+#> |.....................| -0.9870 | -0.8856 | -0.7943 | -0.8327 |
+#> |.....................| -0.8562 | -0.8846 | -0.8817 | -0.9060 |
+#> |.....................| -0.8254 | -0.8721 | -0.9015 | -0.8242 |
+#> | U| 491.42294 | 91.39 | -5.197 | -0.8866 | -2.190 |
+#> |.....................| -4.629 | 0.4578 | 0.8616 | 0.05939 |
+#> |.....................| 0.8360 | 0.05789 | 0.7266 | 0.8683 |
+#> |.....................| 1.236 | 0.9634 | 0.8354 | 1.269 |
+#> | X| 491.42294 | 91.39 | 0.005535 | 0.2918 | 0.1119 |
+#> |.....................| 0.009764 | 0.6125 | 0.8616 | 0.05939 |
+#> |.....................| 0.8360 | 0.05789 | 0.7266 | 0.8683 |
+#> |.....................| 1.236 | 0.9634 | 0.8354 | 1.269 |
+#> | F| Forward Diff. | 31.50 | 2.165 | -0.08876 | 0.04676 |
+#> |.....................| -0.3226 | 0.6753 | -20.70 | -13.34 |
+#> |.....................| -4.747 | -1.707 | 0.9017 | 8.141 |
+#> |.....................| -10.29 | -0.02981 | 6.402 | -11.28 |
+#> | 18| 491.14065 | 0.9907 | -1.009 | -0.9100 | -0.9383 |
+#> |.....................| -0.9870 | -0.8858 | -0.7882 | -0.8287 |
+#> |.....................| -0.8548 | -0.8841 | -0.8820 | -0.9084 |
+#> |.....................| -0.8223 | -0.8721 | -0.9034 | -0.8208 |
+#> | U| 491.14065 | 90.64 | -5.197 | -0.8866 | -2.190 |
+#> |.....................| -4.629 | 0.4577 | 0.8642 | 0.05950 |
+#> |.....................| 0.8366 | 0.05791 | 0.7264 | 0.8661 |
+#> |.....................| 1.240 | 0.9634 | 0.8337 | 1.273 |
+#> | X| 491.14065 | 90.64 | 0.005531 | 0.2918 | 0.1119 |
+#> |.....................| 0.009765 | 0.6125 | 0.8642 | 0.05950 |
+#> |.....................| 0.8366 | 0.05791 | 0.7264 | 0.8661 |
+#> |.....................| 1.240 | 0.9634 | 0.8337 | 1.273 |
+#> | F| Forward Diff. | -32.29 | 2.052 | -0.4043 | 0.1403 |
+#> |.....................| -0.2785 | 0.7107 | -20.12 | -13.83 |
+#> |.....................| -4.879 | -1.515 | 0.4622 | 7.293 |
+#> |.....................| -10.82 | -0.3681 | 6.384 | -11.14 |
+#> | 19| 490.84537 | 0.9989 | -1.009 | -0.9099 | -0.9383 |
+#> |.....................| -0.9869 | -0.8860 | -0.7821 | -0.8246 |
+#> |.....................| -0.8533 | -0.8837 | -0.8821 | -0.9106 |
+#> |.....................| -0.8190 | -0.8720 | -0.9053 | -0.8174 |
+#> | U| 490.84537 | 91.38 | -5.198 | -0.8865 | -2.190 |
+#> |.....................| -4.629 | 0.4576 | 0.8667 | 0.05962 |
+#> |.....................| 0.8372 | 0.05792 | 0.7263 | 0.8641 |
+#> |.....................| 1.243 | 0.9635 | 0.8321 | 1.277 |
+#> | X| 490.84537 | 91.38 | 0.005528 | 0.2918 | 0.1119 |
+#> |.....................| 0.009766 | 0.6124 | 0.8667 | 0.05962 |
+#> |.....................| 0.8372 | 0.05792 | 0.7263 | 0.8641 |
+#> |.....................| 1.243 | 0.9635 | 0.8321 | 1.277 |
+#> | F| Forward Diff. | 30.35 | 2.134 | -0.08371 | 0.04933 |
+#> |.....................| -0.3000 | 0.6785 | -20.24 | -12.73 |
+#> |.....................| -4.623 | -1.604 | 1.054 | 8.092 |
+#> |.....................| -10.77 | -0.4405 | 6.181 | -11.10 |
+#> | 20| 490.56963 | 0.9908 | -1.010 | -0.9099 | -0.9383 |
+#> |.....................| -0.9868 | -0.8862 | -0.7758 | -0.8207 |
+#> |.....................| -0.8519 | -0.8832 | -0.8824 | -0.9131 |
+#> |.....................| -0.8157 | -0.8719 | -0.9072 | -0.8140 |
+#> | U| 490.56963 | 90.64 | -5.199 | -0.8865 | -2.190 |
+#> |.....................| -4.629 | 0.4575 | 0.8693 | 0.05974 |
+#> |.....................| 0.8378 | 0.05793 | 0.7261 | 0.8619 |
+#> |.....................| 1.247 | 0.9636 | 0.8305 | 1.281 |
+#> | X| 490.56963 | 90.64 | 0.005524 | 0.2918 | 0.1119 |
+#> |.....................| 0.009767 | 0.6124 | 0.8693 | 0.05974 |
+#> |.....................| 0.8378 | 0.05793 | 0.7261 | 0.8619 |
+#> |.....................| 1.247 | 0.9636 | 0.8305 | 1.281 |
+#> | F| Forward Diff. | -31.85 | 2.030 | -0.4014 | 0.1424 |
+#> |.....................| -0.2574 | 0.7152 | -19.39 | -13.12 |
+#> |.....................| -4.602 | -1.387 | 0.5883 | 7.042 |
+#> |.....................| -10.56 | -0.3115 | 6.249 | -10.92 |
+#> | 21| 490.28521 | 0.9989 | -1.011 | -0.9098 | -0.9384 |
+#> |.....................| -0.9867 | -0.8865 | -0.7697 | -0.8166 |
+#> |.....................| -0.8504 | -0.8827 | -0.8826 | -0.9153 |
+#> |.....................| -0.8124 | -0.8718 | -0.9092 | -0.8105 |
+#> | U| 490.28521 | 91.39 | -5.199 | -0.8864 | -2.190 |
+#> |.....................| -4.629 | 0.4574 | 0.8718 | 0.05985 |
+#> |.....................| 0.8384 | 0.05795 | 0.7259 | 0.8599 |
+#> |.....................| 1.251 | 0.9637 | 0.8288 | 1.285 |
+#> | X| 490.28521 | 91.39 | 0.005521 | 0.2919 | 0.1119 |
+#> |.....................| 0.009767 | 0.6124 | 0.8718 | 0.05985 |
+#> |.....................| 0.8384 | 0.05795 | 0.7259 | 0.8599 |
+#> |.....................| 1.251 | 0.9637 | 0.8288 | 1.285 |
+#> | F| Forward Diff. | 30.53 | 2.112 | -0.07114 | 0.05276 |
+#> |.....................| -0.2779 | 0.6845 | -19.81 | -12.13 |
+#> |.....................| -4.498 | -1.539 | 0.6449 | 7.769 |
+#> |.....................| -10.55 | -0.3696 | 5.980 | -10.93 |
+#> | 22| 489.99923 | 0.9911 | -1.011 | -0.9097 | -0.9384 |
+#> |.....................| -0.9866 | -0.8867 | -0.7633 | -0.8127 |
+#> |.....................| -0.8489 | -0.8823 | -0.8828 | -0.9178 |
+#> |.....................| -0.8089 | -0.8716 | -0.9111 | -0.8070 |
+#> | U| 489.99923 | 90.67 | -5.200 | -0.8863 | -2.190 |
+#> |.....................| -4.629 | 0.4573 | 0.8745 | 0.05997 |
+#> |.....................| 0.8390 | 0.05796 | 0.7258 | 0.8577 |
+#> |.....................| 1.255 | 0.9638 | 0.8271 | 1.290 |
+#> | X| 489.99923 | 90.67 | 0.005517 | 0.2919 | 0.1119 |
+#> |.....................| 0.009768 | 0.6124 | 0.8745 | 0.05997 |
+#> |.....................| 0.8390 | 0.05796 | 0.7258 | 0.8577 |
+#> |.....................| 1.255 | 0.9638 | 0.8271 | 1.290 |
+#> | F| Forward Diff. | -29.14 | 2.012 | -0.3844 | 0.1417 |
+#> |.....................| -0.2358 | 0.7218 | -18.90 | -12.37 |
+#> |.....................| -4.517 | -1.329 | 0.4904 | 6.799 |
+#> |.....................| -10.31 | -0.2514 | 6.013 | -10.75 |
+#> | 23| 489.73483 | 0.9991 | -1.012 | -0.9096 | -0.9384 |
+#> |.....................| -0.9865 | -0.8869 | -0.7571 | -0.8087 |
+#> |.....................| -0.8475 | -0.8818 | -0.8829 | -0.9201 |
+#> |.....................| -0.8055 | -0.8715 | -0.9131 | -0.8034 |
+#> | U| 489.73483 | 91.40 | -5.201 | -0.8862 | -2.190 |
+#> |.....................| -4.629 | 0.4572 | 0.8771 | 0.06008 |
+#> |.....................| 0.8396 | 0.05797 | 0.7257 | 0.8557 |
+#> |.....................| 1.259 | 0.9639 | 0.8254 | 1.294 |
+#> | X| 489.73483 | 91.40 | 0.005513 | 0.2919 | 0.1119 |
+#> |.....................| 0.009769 | 0.6123 | 0.8771 | 0.06008 |
+#> |.....................| 0.8396 | 0.05797 | 0.7257 | 0.8557 |
+#> |.....................| 1.259 | 0.9639 | 0.8254 | 1.294 |
+#> | F| Forward Diff. | 31.68 | 2.089 | -0.05219 | 0.05312 |
+#> |.....................| -0.2568 | 0.6912 | -19.25 | -11.50 |
+#> |.....................| -4.291 | -1.478 | 0.6044 | 7.316 |
+#> |.....................| -10.30 | -0.3159 | 5.756 | -10.75 |
+#> | 24| 489.43925 | 0.9914 | -1.013 | -0.9096 | -0.9385 |
+#> |.....................| -0.9865 | -0.8872 | -0.7505 | -0.8049 |
+#> |.....................| -0.8460 | -0.8813 | -0.8831 | -0.9225 |
+#> |.....................| -0.8020 | -0.8714 | -0.9150 | -0.7997 |
+#> | U| 489.43925 | 90.70 | -5.201 | -0.8862 | -2.190 |
+#> |.....................| -4.628 | 0.4571 | 0.8798 | 0.06019 |
+#> |.....................| 0.8402 | 0.05799 | 0.7256 | 0.8535 |
+#> |.....................| 1.264 | 0.9640 | 0.8238 | 1.298 |
+#> | X| 489.43925 | 90.70 | 0.005509 | 0.2919 | 0.1119 |
+#> |.....................| 0.009770 | 0.6123 | 0.8798 | 0.06019 |
+#> |.....................| 0.8402 | 0.05799 | 0.7256 | 0.8535 |
+#> |.....................| 1.264 | 0.9640 | 0.8238 | 1.298 |
+#> | F| Forward Diff. | -26.48 | 1.993 | -0.3684 | 0.1403 |
+#> |.....................| -0.2166 | 0.7270 | -18.36 | -11.77 |
+#> |.....................| -4.393 | -1.275 | 0.4390 | 6.578 |
+#> |.....................| -10.04 | -0.2187 | 5.799 | -10.58 |
+#> | 25| 489.19181 | 0.9992 | -1.013 | -0.9095 | -0.9385 |
+#> |.....................| -0.9864 | -0.8874 | -0.7441 | -0.8009 |
+#> |.....................| -0.8445 | -0.8809 | -0.8833 | -0.9248 |
+#> |.....................| -0.7985 | -0.8714 | -0.9170 | -0.7960 |
+#> | U| 489.19181 | 91.41 | -5.202 | -0.8861 | -2.190 |
+#> |.....................| -4.628 | 0.4570 | 0.8824 | 0.06031 |
+#> |.....................| 0.8409 | 0.05800 | 0.7255 | 0.8514 |
+#> |.....................| 1.268 | 0.9641 | 0.8221 | 1.303 |
+#> | X| 489.19181 | 91.41 | 0.005505 | 0.2919 | 0.1119 |
+#> |.....................| 0.009770 | 0.6123 | 0.8824 | 0.06031 |
+#> |.....................| 0.8409 | 0.05800 | 0.7255 | 0.8514 |
+#> |.....................| 1.268 | 0.9641 | 0.8221 | 1.303 |
+#> | F| Forward Diff. | 32.48 | 2.067 | -0.03453 | 0.05414 |
+#> |.....................| -0.2360 | 0.6938 | -18.67 | -10.89 |
+#> |.....................| -4.178 | -1.425 | 0.5548 | 7.078 |
+#> |.....................| -10.01 | -0.2144 | 5.548 | -10.57 |
+#> | 26| 488.89118 | 0.9917 | -1.014 | -0.9094 | -0.9385 |
+#> |.....................| -0.9863 | -0.8877 | -0.7375 | -0.7972 |
+#> |.....................| -0.8430 | -0.8804 | -0.8834 | -0.9272 |
+#> |.....................| -0.7949 | -0.8713 | -0.9189 | -0.7921 |
+#> | U| 488.89118 | 90.73 | -5.203 | -0.8860 | -2.190 |
+#> |.....................| -4.628 | 0.4568 | 0.8852 | 0.06041 |
+#> |.....................| 0.8415 | 0.05801 | 0.7253 | 0.8493 |
+#> |.....................| 1.272 | 0.9642 | 0.8204 | 1.308 |
+#> | X| 488.89118 | 90.73 | 0.005501 | 0.2919 | 0.1119 |
+#> |.....................| 0.009771 | 0.6123 | 0.8852 | 0.06041 |
+#> |.....................| 0.8415 | 0.05801 | 0.7253 | 0.8493 |
+#> |.....................| 1.272 | 0.9642 | 0.8204 | 1.308 |
+#> | F| Forward Diff. | -24.34 | 1.974 | -0.3522 | 0.1400 |
+#> |.....................| -0.1957 | 0.7323 | -17.88 | -11.06 |
+#> |.....................| -4.245 | -1.195 | 0.3418 | 6.336 |
+#> |.....................| -9.795 | -0.1748 | 5.588 | -10.40 |
+#> | 27| 488.65823 | 0.9993 | -1.015 | -0.9093 | -0.9386 |
+#> |.....................| -0.9862 | -0.8880 | -0.7310 | -0.7933 |
+#> |.....................| -0.8415 | -0.8800 | -0.8835 | -0.9295 |
+#> |.....................| -0.7913 | -0.8712 | -0.9210 | -0.7883 |
+#> | U| 488.65823 | 91.42 | -5.204 | -0.8859 | -2.190 |
+#> |.....................| -4.628 | 0.4567 | 0.8878 | 0.06053 |
+#> |.....................| 0.8421 | 0.05803 | 0.7253 | 0.8472 |
+#> |.....................| 1.276 | 0.9642 | 0.8187 | 1.312 |
+#> | X| 488.65823 | 91.42 | 0.005497 | 0.2919 | 0.1119 |
+#> |.....................| 0.009772 | 0.6122 | 0.8878 | 0.06053 |
+#> |.....................| 0.8421 | 0.05803 | 0.7253 | 0.8472 |
+#> |.....................| 1.276 | 0.9642 | 0.8187 | 1.312 |
+#> | F| Forward Diff. | 33.05 | 2.045 | -0.01570 | 0.05526 |
+#> |.....................| -0.2154 | 0.6997 | -18.21 | -10.28 |
+#> |.....................| -4.052 | -1.334 | 0.4619 | 6.811 |
+#> |.....................| -9.752 | -0.1974 | 5.317 | -10.39 |
+#> | 28| 488.35451 | 0.9920 | -1.016 | -0.9093 | -0.9386 |
+#> |.....................| -0.9862 | -0.8883 | -0.7243 | -0.7897 |
+#> |.....................| -0.8399 | -0.8795 | -0.8836 | -0.9319 |
+#> |.....................| -0.7876 | -0.8712 | -0.9229 | -0.7844 |
+#> | U| 488.35451 | 90.75 | -5.204 | -0.8859 | -2.190 |
+#> |.....................| -4.628 | 0.4566 | 0.8906 | 0.06063 |
+#> |.....................| 0.8427 | 0.05804 | 0.7252 | 0.8450 |
+#> |.....................| 1.281 | 0.9643 | 0.8170 | 1.317 |
+#> | X| 488.35451 | 90.75 | 0.005493 | 0.2920 | 0.1119 |
+#> |.....................| 0.009772 | 0.6122 | 0.8906 | 0.06063 |
+#> |.....................| 0.8427 | 0.05804 | 0.7252 | 0.8450 |
+#> |.....................| 1.281 | 0.9643 | 0.8170 | 1.317 |
+#> | F| Forward Diff. | -22.42 | 1.954 | -0.3353 | 0.1391 |
+#> |.....................| -0.1757 | 0.7405 | -17.32 | -10.46 |
+#> |.....................| -4.053 | -1.161 | 0.2825 | 6.114 |
+#> |.....................| -9.506 | -0.1281 | 5.370 | -10.21 |
+#> | 29| 488.13711 | 0.9995 | -1.016 | -0.9092 | -0.9387 |
+#> |.....................| -0.9861 | -0.8886 | -0.7177 | -0.7858 |
+#> |.....................| -0.8384 | -0.8791 | -0.8837 | -0.9342 |
+#> |.....................| -0.7840 | -0.8711 | -0.9249 | -0.7804 |
+#> | U| 488.13711 | 91.44 | -5.205 | -0.8858 | -2.190 |
+#> |.....................| -4.628 | 0.4565 | 0.8934 | 0.06074 |
+#> |.....................| 0.8434 | 0.05805 | 0.7251 | 0.8430 |
+#> |.....................| 1.285 | 0.9643 | 0.8153 | 1.322 |
+#> | X| 488.13711 | 91.44 | 0.005489 | 0.2920 | 0.1119 |
+#> |.....................| 0.009773 | 0.6122 | 0.8934 | 0.06074 |
+#> |.....................| 0.8434 | 0.05805 | 0.7251 | 0.8430 |
+#> |.....................| 1.285 | 0.9643 | 0.8153 | 1.322 |
+#> | F| Forward Diff. | 33.81 | 2.022 | 0.006720 | 0.05587 |
+#> |.....................| -0.1935 | 0.7042 | -17.76 | -9.667 |
+#> |.....................| -3.890 | -1.276 | 0.4404 | 6.589 |
+#> |.....................| -9.459 | -0.1517 | 5.102 | -10.20 |
+#> | 30| 487.82953 | 0.9922 | -1.017 | -0.9091 | -0.9387 |
+#> |.....................| -0.9861 | -0.8889 | -0.7108 | -0.7824 |
+#> |.....................| -0.8369 | -0.8787 | -0.8838 | -0.9367 |
+#> |.....................| -0.7803 | -0.8711 | -0.9268 | -0.7763 |
+#> | U| 487.82953 | 90.77 | -5.206 | -0.8858 | -2.190 |
+#> |.....................| -4.628 | 0.4563 | 0.8962 | 0.06084 |
+#> |.....................| 0.8440 | 0.05806 | 0.7251 | 0.8408 |
+#> |.....................| 1.289 | 0.9644 | 0.8136 | 1.327 |
+#> | X| 487.82953 | 90.77 | 0.005484 | 0.2920 | 0.1119 |
+#> |.....................| 0.009774 | 0.6121 | 0.8962 | 0.06084 |
+#> |.....................| 0.8440 | 0.05806 | 0.7251 | 0.8408 |
+#> |.....................| 1.289 | 0.9644 | 0.8136 | 1.327 |
+#> | F| Forward Diff. | -20.31 | 1.935 | -0.3119 | 0.1382 |
+#> |.....................| -0.1555 | 0.7438 | -16.49 | -9.852 |
+#> |.....................| -3.955 | -1.103 | 0.2044 | 5.876 |
+#> |.....................| -9.237 | -0.1098 | 5.167 | -10.02 |
+#> | 31| 487.63293 | 0.9997 | -1.018 | -0.9090 | -0.9388 |
+#> |.....................| -0.9860 | -0.8892 | -0.7043 | -0.7786 |
+#> |.....................| -0.8354 | -0.8782 | -0.8838 | -0.9390 |
+#> |.....................| -0.7766 | -0.8711 | -0.9289 | -0.7723 |
+#> | U| 487.63293 | 91.46 | -5.207 | -0.8857 | -2.191 |
+#> |.....................| -4.628 | 0.4562 | 0.8989 | 0.06095 |
+#> |.....................| 0.8446 | 0.05808 | 0.7250 | 0.8387 |
+#> |.....................| 1.294 | 0.9644 | 0.8119 | 1.332 |
+#> | X| 487.63293 | 91.46 | 0.005480 | 0.2920 | 0.1119 |
+#> |.....................| 0.009774 | 0.6121 | 0.8989 | 0.06095 |
+#> |.....................| 0.8446 | 0.05808 | 0.7250 | 0.8387 |
+#> |.....................| 1.294 | 0.9644 | 0.8119 | 1.332 |
+#> | F| Forward Diff. | 35.34 | 2.001 | 0.03668 | 0.05608 |
+#> |.....................| -0.1731 | 0.7098 | -16.98 | -9.135 |
+#> |.....................| -3.742 | -1.209 | 0.3780 | 6.351 |
+#> |.....................| -9.183 | 0.6525 | 4.885 | -10.01 |
+#> | 32| 487.31820 | 0.9926 | -1.019 | -0.9090 | -0.9388 |
+#> |.....................| -0.9860 | -0.8895 | -0.6975 | -0.7753 |
+#> |.....................| -0.8338 | -0.8778 | -0.8838 | -0.9414 |
+#> |.....................| -0.7728 | -0.8714 | -0.9308 | -0.7679 |
+#> | U| 487.3182 | 90.81 | -5.208 | -0.8856 | -2.191 |
+#> |.....................| -4.628 | 0.4560 | 0.9017 | 0.06104 |
+#> |.....................| 0.8453 | 0.05809 | 0.7250 | 0.8366 |
+#> |.....................| 1.298 | 0.9641 | 0.8102 | 1.337 |
+#> | X| 487.3182 | 90.81 | 0.005475 | 0.2920 | 0.1119 |
+#> |.....................| 0.009775 | 0.6121 | 0.9017 | 0.06104 |
+#> |.....................| 0.8453 | 0.05809 | 0.7250 | 0.8366 |
+#> |.....................| 1.298 | 0.9641 | 0.8102 | 1.337 |
+#> | F| Forward Diff. | -17.75 | 1.917 | -0.2852 | 0.1361 |
+#> |.....................| -0.1360 | 0.7493 | -16.63 | -9.386 |
+#> |.....................| -3.766 | -1.006 | 0.1674 | 5.665 |
+#> |.....................| -8.945 | 0.7251 | 4.960 | -9.828 |
+#> | 33| 487.13531 | 0.9998 | -1.020 | -0.9089 | -0.9389 |
+#> |.....................| -0.9859 | -0.8898 | -0.6907 | -0.7715 |
+#> |.....................| -0.8323 | -0.8774 | -0.8839 | -0.9437 |
+#> |.....................| -0.7691 | -0.8717 | -0.9328 | -0.7639 |
+#> | U| 487.13531 | 91.47 | -5.208 | -0.8855 | -2.191 |
+#> |.....................| -4.628 | 0.4559 | 0.9045 | 0.06116 |
+#> |.....................| 0.8459 | 0.05810 | 0.7250 | 0.8345 |
+#> |.....................| 1.303 | 0.9638 | 0.8084 | 1.342 |
+#> | X| 487.13531 | 91.47 | 0.005471 | 0.2920 | 0.1118 |
+#> |.....................| 0.009775 | 0.6120 | 0.9045 | 0.06116 |
+#> |.....................| 0.8459 | 0.05810 | 0.7250 | 0.8345 |
+#> |.....................| 1.303 | 0.9638 | 0.8084 | 1.342 |
+#> | F| Forward Diff. | 35.92 | 1.979 | 0.06301 | 0.05698 |
+#> |.....................| -0.1526 | 0.7131 | -16.77 | -8.520 |
+#> |.....................| -3.634 | -1.163 | 0.3177 | 6.099 |
+#> |.....................| -8.917 | 0.6421 | 4.685 | -9.820 |
+#> | 34| 486.82694 | 0.9926 | -1.021 | -0.9088 | -0.9389 |
+#> |.....................| -0.9859 | -0.8902 | -0.6837 | -0.7686 |
+#> |.....................| -0.8308 | -0.8770 | -0.8839 | -0.9460 |
+#> |.....................| -0.7654 | -0.8723 | -0.9347 | -0.7596 |
+#> | U| 486.82694 | 90.81 | -5.209 | -0.8855 | -2.191 |
+#> |.....................| -4.628 | 0.4557 | 0.9074 | 0.06124 |
+#> |.....................| 0.8465 | 0.05811 | 0.7250 | 0.8324 |
+#> |.....................| 1.307 | 0.9632 | 0.8069 | 1.347 |
+#> | X| 486.82694 | 90.81 | 0.005466 | 0.2920 | 0.1118 |
+#> |.....................| 0.009775 | 0.6120 | 0.9074 | 0.06124 |
+#> |.....................| 0.8465 | 0.05811 | 0.7250 | 0.8324 |
+#> |.....................| 1.307 | 0.9632 | 0.8069 | 1.347 |
+#> | F| Forward Diff. | -17.49 | 1.895 | -0.2726 | 0.1382 |
+#> |.....................| -0.1159 | 0.7566 | -16.14 | -8.833 |
+#> |.....................| -3.638 | -0.9303 | 0.1285 | 5.442 |
+#> |.....................| -8.630 | 0.7091 | 4.774 | -9.639 |
+#> | 35| 486.64804 | 0.9998 | -1.021 | -0.9087 | -0.9390 |
+#> |.....................| -0.9858 | -0.8905 | -0.6768 | -0.7649 |
+#> |.....................| -0.8293 | -0.8767 | -0.8839 | -0.9483 |
+#> |.....................| -0.7617 | -0.8727 | -0.9367 | -0.7554 |
+#> | U| 486.64804 | 91.46 | -5.210 | -0.8854 | -2.191 |
+#> |.....................| -4.628 | 0.4556 | 0.9103 | 0.06135 |
+#> |.....................| 0.8472 | 0.05812 | 0.7250 | 0.8304 |
+#> |.....................| 1.311 | 0.9629 | 0.8051 | 1.352 |
+#> | X| 486.64804 | 91.46 | 0.005462 | 0.2921 | 0.1118 |
+#> |.....................| 0.009776 | 0.6120 | 0.9103 | 0.06135 |
+#> |.....................| 0.8472 | 0.05812 | 0.7250 | 0.8304 |
+#> |.....................| 1.311 | 0.9629 | 0.8051 | 1.352 |
+#> | F| Forward Diff. | 35.26 | 1.955 | 0.07649 | 0.05940 |
+#> |.....................| -0.1319 | 0.7217 | -16.38 | -8.030 |
+#> |.....................| -3.491 | -1.078 | 0.2504 | 5.851 |
+#> |.....................| -8.624 | 0.5993 | 4.494 | -9.625 |
+#> | 36| 486.34524 | 0.9928 | -1.022 | -0.9087 | -0.9390 |
+#> |.....................| -0.9858 | -0.8909 | -0.6696 | -0.7621 |
+#> |.....................| -0.8278 | -0.8763 | -0.8838 | -0.9506 |
+#> |.....................| -0.7579 | -0.8733 | -0.9385 | -0.7509 |
+#> | U| 486.34524 | 90.82 | -5.211 | -0.8854 | -2.191 |
+#> |.....................| -4.628 | 0.4554 | 0.9133 | 0.06143 |
+#> |.....................| 0.8478 | 0.05813 | 0.7251 | 0.8283 |
+#> |.....................| 1.316 | 0.9622 | 0.8036 | 1.358 |
+#> | X| 486.34524 | 90.82 | 0.005456 | 0.2921 | 0.1118 |
+#> |.....................| 0.009776 | 0.6119 | 0.9133 | 0.06143 |
+#> |.....................| 0.8478 | 0.05813 | 0.7251 | 0.8283 |
+#> |.....................| 1.316 | 0.9622 | 0.8036 | 1.358 |
+#> | F| Forward Diff. | -16.53 | 1.875 | -0.2661 | 0.1390 |
+#> |.....................| -0.09763 | 0.7654 | -15.70 | -8.237 |
+#> |.....................| -3.491 | -0.9040 | 0.06392 | 5.213 |
+#> |.....................| -8.361 | 0.6621 | 4.584 | -9.445 |
+#> | 37| 486.17476 | 0.9998 | -1.023 | -0.9086 | -0.9391 |
+#> |.....................| -0.9858 | -0.8913 | -0.6626 | -0.7586 |
+#> |.....................| -0.8262 | -0.8759 | -0.8838 | -0.9529 |
+#> |.....................| -0.7542 | -0.8736 | -0.9406 | -0.7467 |
+#> | U| 486.17476 | 91.47 | -5.212 | -0.8853 | -2.191 |
+#> |.....................| -4.628 | 0.4552 | 0.9162 | 0.06153 |
+#> |.....................| 0.8484 | 0.05814 | 0.7250 | 0.8263 |
+#> |.....................| 1.320 | 0.9619 | 0.8018 | 1.363 |
+#> | X| 486.17476 | 91.47 | 0.005452 | 0.2921 | 0.1118 |
+#> |.....................| 0.009776 | 0.6119 | 0.9162 | 0.06153 |
+#> |.....................| 0.8484 | 0.05814 | 0.7250 | 0.8263 |
+#> |.....................| 1.320 | 0.9619 | 0.8018 | 1.363 |
+#> | F| Forward Diff. | 35.23 | 1.932 | 0.08715 | 0.05955 |
+#> |.....................| -0.1122 | 0.7274 | -16.01 | -7.627 |
+#> |.....................| -3.363 | -1.024 | 0.1942 | 5.616 |
+#> |.....................| -8.345 | 0.5641 | 4.322 | -9.424 |
+#> | 38| 485.87468 | 0.9930 | -1.024 | -0.9086 | -0.9392 |
+#> |.....................| -0.9858 | -0.8917 | -0.6553 | -0.7561 |
+#> |.....................| -0.8248 | -0.8756 | -0.8837 | -0.9551 |
+#> |.....................| -0.7504 | -0.8743 | -0.9424 | -0.7420 |
+#> | U| 485.87468 | 90.84 | -5.213 | -0.8853 | -2.191 |
+#> |.....................| -4.628 | 0.4550 | 0.9192 | 0.06160 |
+#> |.....................| 0.8490 | 0.05815 | 0.7252 | 0.8243 |
+#> |.....................| 1.325 | 0.9613 | 0.8003 | 1.369 |
+#> | X| 485.87468 | 90.84 | 0.005446 | 0.2921 | 0.1118 |
+#> |.....................| 0.009776 | 0.6118 | 0.9192 | 0.06160 |
+#> |.....................| 0.8490 | 0.05815 | 0.7252 | 0.8243 |
+#> |.....................| 1.325 | 0.9613 | 0.8003 | 1.369 |
+#> | F| Forward Diff. | -15.16 | 1.855 | -0.2494 | 0.1393 |
+#> |.....................| -0.07811 | 0.7704 | -15.31 | -7.716 |
+#> |.....................| -3.357 | -0.8175 | -0.03012 | 4.971 |
+#> |.....................| -8.100 | 0.5955 | 4.407 | -9.242 |
+#> | 39| 485.71812 | 1.000 | -1.025 | -0.9085 | -0.9392 |
+#> |.....................| -0.9858 | -0.8921 | -0.6482 | -0.7526 |
+#> |.....................| -0.8232 | -0.8752 | -0.8836 | -0.9573 |
+#> |.....................| -0.7467 | -0.8746 | -0.9444 | -0.7377 |
+#> | U| 485.71812 | 91.48 | -5.214 | -0.8852 | -2.191 |
+#> |.....................| -4.628 | 0.4548 | 0.9221 | 0.06170 |
+#> |.....................| 0.8497 | 0.05816 | 0.7252 | 0.8222 |
+#> |.....................| 1.329 | 0.9610 | 0.7985 | 1.374 |
+#> | X| 485.71812 | 91.48 | 0.005442 | 0.2921 | 0.1118 |
+#> |.....................| 0.009776 | 0.6118 | 0.9221 | 0.06170 |
+#> |.....................| 0.8497 | 0.05816 | 0.7252 | 0.8222 |
+#> |.....................| 1.329 | 0.9610 | 0.7985 | 1.374 |
+#> | F| Forward Diff. | 36.02 | 1.911 | 0.1144 | 0.05926 |
+#> |.....................| -0.09370 | 0.7314 | -15.47 | -7.071 |
+#> |.....................| -3.248 | -0.9743 | 0.1265 | 5.377 |
+#> |.....................| -7.775 | 0.5175 | 4.130 | -9.229 |
+#> | 40| 485.42108 | 0.9931 | -1.026 | -0.9085 | -0.9393 |
+#> |.....................| -0.9858 | -0.8926 | -0.6408 | -0.7505 |
+#> |.....................| -0.8218 | -0.8750 | -0.8834 | -0.9594 |
+#> |.....................| -0.7430 | -0.8752 | -0.9461 | -0.7328 |
+#> | U| 485.42108 | 90.85 | -5.215 | -0.8852 | -2.191 |
+#> |.....................| -4.628 | 0.4546 | 0.9252 | 0.06176 |
+#> |.....................| 0.8503 | 0.05817 | 0.7254 | 0.8204 |
+#> |.....................| 1.333 | 0.9604 | 0.7970 | 1.380 |
+#> | X| 485.42108 | 90.85 | 0.005436 | 0.2921 | 0.1118 |
+#> |.....................| 0.009776 | 0.6117 | 0.9252 | 0.06176 |
+#> |.....................| 0.8503 | 0.05817 | 0.7254 | 0.8204 |
+#> |.....................| 1.333 | 0.9604 | 0.7970 | 1.380 |
+#> | F| Forward Diff. | -14.37 | 1.836 | -0.2333 | 0.1389 |
+#> |.....................| -0.05951 | 0.7785 | -14.33 | -7.292 |
+#> |.....................| -3.229 | -0.7699 | -0.05471 | 4.764 |
+#> |.....................| -7.801 | 0.5597 | 4.229 | -9.048 |
+#> | 41| 485.26815 | 0.9999 | -1.027 | -0.9084 | -0.9394 |
+#> |.....................| -0.9858 | -0.8930 | -0.6338 | -0.7470 |
+#> |.....................| -0.8202 | -0.8746 | -0.8833 | -0.9618 |
+#> |.....................| -0.7392 | -0.8755 | -0.9482 | -0.7284 |
+#> | U| 485.26815 | 91.48 | -5.216 | -0.8851 | -2.191 |
+#> |.....................| -4.628 | 0.4544 | 0.9281 | 0.06186 |
+#> |.....................| 0.8509 | 0.05818 | 0.7254 | 0.8183 |
+#> |.....................| 1.338 | 0.9601 | 0.7953 | 1.385 |
+#> | X| 485.26815 | 91.48 | 0.005431 | 0.2921 | 0.1118 |
+#> |.....................| 0.009776 | 0.6117 | 0.9281 | 0.06186 |
+#> |.....................| 0.8509 | 0.05818 | 0.7254 | 0.8183 |
+#> |.....................| 1.338 | 0.9601 | 0.7953 | 1.385 |
+#> | F| Forward Diff. | 35.37 | 1.889 | 0.1323 | 0.06297 |
+#> |.....................| -0.07437 | 0.7390 | -14.80 | -6.641 |
+#> |.....................| -3.116 | -0.8690 | 0.09880 | 5.162 |
+#> |.....................| -7.761 | 0.4865 | 3.967 | -9.019 |
+#> | 42| 484.97448 | 0.9934 | -1.028 | -0.9084 | -0.9395 |
+#> |.....................| -0.9859 | -0.8935 | -0.6264 | -0.7452 |
+#> |.....................| -0.8188 | -0.8744 | -0.8830 | -0.9639 |
+#> |.....................| -0.7352 | -0.8762 | -0.9500 | -0.7231 |
+#> | U| 484.97448 | 90.88 | -5.217 | -0.8851 | -2.191 |
+#> |.....................| -4.628 | 0.4542 | 0.9311 | 0.06191 |
+#> |.....................| 0.8515 | 0.05819 | 0.7257 | 0.8164 |
+#> |.....................| 1.343 | 0.9594 | 0.7937 | 1.392 |
+#> | X| 484.97448 | 90.88 | 0.005424 | 0.2921 | 0.1118 |
+#> |.....................| 0.009776 | 0.6116 | 0.9311 | 0.06191 |
+#> |.....................| 0.8515 | 0.05819 | 0.7257 | 0.8164 |
+#> |.....................| 1.343 | 0.9594 | 0.7937 | 1.392 |
+#> | F| Forward Diff. | -12.51 | 1.817 | -0.2072 | 0.1320 |
+#> |.....................| -0.04147 | 0.7868 | -13.90 | -6.839 |
+#> |.....................| -3.097 | -0.6966 | -0.09701 | 4.567 |
+#> |.....................| -7.500 | 0.5336 | 4.059 | -8.839 |
+#> | 43| 484.82513 | 0.9998 | -1.029 | -0.9083 | -0.9395 |
+#> |.....................| -0.9858 | -0.8939 | -0.6193 | -0.7417 |
+#> |.....................| -0.8172 | -0.8741 | -0.8829 | -0.9662 |
+#> |.....................| -0.7313 | -0.8765 | -0.9521 | -0.7185 |
+#> | U| 484.82513 | 91.47 | -5.218 | -0.8851 | -2.191 |
+#> |.....................| -4.628 | 0.4540 | 0.9341 | 0.06202 |
+#> |.....................| 0.8522 | 0.05820 | 0.7257 | 0.8143 |
+#> |.....................| 1.347 | 0.9592 | 0.7919 | 1.397 |
+#> | X| 484.82513 | 91.47 | 0.005419 | 0.2921 | 0.1118 |
+#> |.....................| 0.009776 | 0.6116 | 0.9341 | 0.06202 |
+#> |.....................| 0.8522 | 0.05820 | 0.7257 | 0.8143 |
+#> |.....................| 1.347 | 0.9592 | 0.7919 | 1.397 |
+#> | F| Forward Diff. | 34.86 | 1.871 | 0.1566 | 0.07097 |
+#> |.....................| -0.05046 | 0.7508 | -14.35 | -6.106 |
+#> |.....................| -2.960 | -0.8322 | 0.03576 | 4.926 |
+#> |.....................| -7.463 | 0.4624 | 3.813 | -8.806 |
+#> | 44| 484.54032 | 0.9935 | -1.030 | -0.9084 | -0.9396 |
+#> |.....................| -0.9859 | -0.8946 | -0.6118 | -0.7403 |
+#> |.....................| -0.8157 | -0.8739 | -0.8825 | -0.9682 |
+#> |.....................| -0.7274 | -0.8772 | -0.9538 | -0.7130 |
+#> | U| 484.54032 | 90.89 | -5.219 | -0.8851 | -2.191 |
+#> |.....................| -4.628 | 0.4537 | 0.9372 | 0.06206 |
+#> |.....................| 0.8528 | 0.05820 | 0.7260 | 0.8125 |
+#> |.....................| 1.352 | 0.9585 | 0.7904 | 1.404 |
+#> | X| 484.54032 | 90.89 | 0.005412 | 0.2921 | 0.1118 |
+#> |.....................| 0.009775 | 0.6115 | 0.9372 | 0.06206 |
+#> |.....................| 0.8528 | 0.05820 | 0.7260 | 0.8125 |
+#> |.....................| 1.352 | 0.9585 | 0.7904 | 1.404 |
+#> | F| Forward Diff. | -11.88 | 1.798 | -0.1931 | 0.1288 |
+#> |.....................| -0.02100 | 0.7941 | -13.56 | -6.327 |
+#> |.....................| -2.985 | -0.6346 | -0.1369 | 4.355 |
+#> |.....................| -7.207 | 0.4876 | 3.910 | -8.603 |
+#> | 45| 484.39828 | 0.9999 | -1.031 | -0.9082 | -0.9397 |
+#> |.....................| -0.9859 | -0.8950 | -0.6045 | -0.7369 |
+#> |.....................| -0.8141 | -0.8736 | -0.8824 | -0.9706 |
+#> |.....................| -0.7235 | -0.8774 | -0.9559 | -0.7084 |
+#> | U| 484.39828 | 91.47 | -5.220 | -0.8850 | -2.191 |
+#> |.....................| -4.628 | 0.4535 | 0.9402 | 0.06215 |
+#> |.....................| 0.8534 | 0.05821 | 0.7261 | 0.8104 |
+#> |.....................| 1.357 | 0.9582 | 0.7886 | 1.409 |
+#> | X| 484.39828 | 91.47 | 0.005407 | 0.2921 | 0.1118 |
+#> |.....................| 0.009775 | 0.6115 | 0.9402 | 0.06215 |
+#> |.....................| 0.8534 | 0.05821 | 0.7261 | 0.8104 |
+#> |.....................| 1.357 | 0.9582 | 0.7886 | 1.409 |
+#> | F| Forward Diff. | 34.75 | 1.847 | 0.1787 | 0.06647 |
+#> |.....................| -0.03069 | 0.7556 | -13.39 | -5.638 |
+#> |.....................| -2.842 | -0.7351 | -0.07352 | 4.648 |
+#> |.....................| -7.153 | 0.4383 | 3.662 | -8.575 |
+#> | 46| 484.12389 | 0.9935 | -1.033 | -0.9083 | -0.9398 |
+#> |.....................| -0.9861 | -0.8957 | -0.5972 | -0.7360 |
+#> |.....................| -0.8127 | -0.8736 | -0.8818 | -0.9724 |
+#> |.....................| -0.7196 | -0.8781 | -0.9577 | -0.7026 |
+#> | U| 484.12389 | 90.89 | -5.221 | -0.8851 | -2.192 |
+#> |.....................| -4.628 | 0.4532 | 0.9432 | 0.06218 |
+#> |.....................| 0.8540 | 0.05821 | 0.7265 | 0.8087 |
+#> |.....................| 1.361 | 0.9576 | 0.7871 | 1.416 |
+#> | X| 484.12389 | 90.89 | 0.005400 | 0.2921 | 0.1117 |
+#> |.....................| 0.009773 | 0.6114 | 0.9432 | 0.06218 |
+#> |.....................| 0.8540 | 0.05821 | 0.7265 | 0.8087 |
+#> |.....................| 1.361 | 0.9576 | 0.7871 | 1.416 |
+#> | F| Forward Diff. | -12.23 | 1.776 | -0.1772 | 0.1286 |
+#> |.....................| -0.003904 | 0.8005 | -13.23 | -5.967 |
+#> |.....................| -2.801 | -0.5825 | -0.1993 | 4.126 |
+#> |.....................| -6.930 | 0.4309 | 3.746 | -8.373 |
+#> | 47| 483.96910 | 0.9995 | -1.034 | -0.9082 | -0.9399 |
+#> |.....................| -0.9861 | -0.8963 | -0.5897 | -0.7331 |
+#> |.....................| -0.8111 | -0.8733 | -0.8815 | -0.9747 |
+#> |.....................| -0.7157 | -0.8785 | -0.9598 | -0.6976 |
+#> | U| 483.9691 | 91.44 | -5.222 | -0.8850 | -2.192 |
+#> |.....................| -4.628 | 0.4529 | 0.9464 | 0.06226 |
+#> |.....................| 0.8547 | 0.05822 | 0.7267 | 0.8067 |
+#> |.....................| 1.366 | 0.9573 | 0.7854 | 1.423 |
+#> | X| 483.9691 | 91.44 | 0.005394 | 0.2921 | 0.1117 |
+#> |.....................| 0.009773 | 0.6113 | 0.9464 | 0.06226 |
+#> |.....................| 0.8547 | 0.05822 | 0.7267 | 0.8067 |
+#> |.....................| 1.366 | 0.9573 | 0.7854 | 1.423 |
+#> | F| Forward Diff. | 31.42 | 1.822 | 0.1778 | 0.07033 |
+#> |.....................| -0.01094 | 0.7681 | -13.66 | -5.343 |
+#> |.....................| -2.704 | -0.6601 | -0.05834 | 4.483 |
+#> |.....................| -6.846 | 0.3977 | 3.514 | -8.343 |
+#> | 48| 483.71026 | 0.9937 | -1.035 | -0.9084 | -0.9400 |
+#> |.....................| -0.9863 | -0.8970 | -0.5817 | -0.7327 |
+#> |.....................| -0.8099 | -0.8734 | -0.8808 | -0.9764 |
+#> |.....................| -0.7120 | -0.8790 | -0.9614 | -0.6918 |
+#> | U| 483.71026 | 90.90 | -5.224 | -0.8851 | -2.192 |
+#> |.....................| -4.628 | 0.4526 | 0.9497 | 0.06228 |
+#> |.....................| 0.8552 | 0.05822 | 0.7272 | 0.8052 |
+#> |.....................| 1.370 | 0.9567 | 0.7840 | 1.430 |
+#> | X| 483.71026 | 90.90 | 0.005386 | 0.2921 | 0.1117 |
+#> |.....................| 0.009771 | 0.6112 | 0.9497 | 0.06228 |
+#> |.....................| 0.8552 | 0.05822 | 0.7272 | 0.8052 |
+#> |.....................| 1.370 | 0.9567 | 0.7840 | 1.430 |
+#> | F| Forward Diff. | -11.41 | 1.753 | -0.1608 | 0.1222 |
+#> |.....................| 0.01159 | 0.8050 | -10.44 | -3.810 |
+#> |.....................| -1.727 | 0.1311 | 2.133 | 3.863 |
+#> |.....................| -5.017 | 1.937 | 3.587 | -8.159 |
+#> | 49| 483.59835 | 1.000 | -1.037 | -0.9083 | -0.9401 |
+#> |.....................| -0.9863 | -0.8977 | -0.5748 | -0.7309 |
+#> |.....................| -0.8089 | -0.8737 | -0.8826 | -0.9789 |
+#> |.....................| -0.7088 | -0.8807 | -0.9637 | -0.6861 |
+#> | U| 483.59835 | 91.50 | -5.225 | -0.8850 | -2.192 |
+#> |.....................| -4.628 | 0.4523 | 0.9525 | 0.06233 |
+#> |.....................| 0.8556 | 0.05821 | 0.7260 | 0.8029 |
+#> |.....................| 1.374 | 0.9551 | 0.7819 | 1.437 |
+#> | X| 483.59835 | 91.50 | 0.005379 | 0.2921 | 0.1117 |
+#> |.....................| 0.009771 | 0.6112 | 0.9525 | 0.06233 |
+#> |.....................| 0.8556 | 0.05821 | 0.7260 | 0.8029 |
+#> |.....................| 1.374 | 0.9551 | 0.7819 | 1.437 |
+#> | F| Forward Diff. | 35.70 | 1.806 | 0.2381 | 0.06477 |
+#> |.....................| 0.008951 | 0.7715 | -12.71 | -4.946 |
+#> |.....................| -2.552 | -0.6506 | -0.07612 | 4.309 |
+#> |.....................| -6.609 | 0.2622 | 3.318 | -8.104 |
+#> | 50| 483.34903 | 0.9946 | -1.038 | -0.9084 | -0.9402 |
+#> |.....................| -0.9865 | -0.8986 | -0.5687 | -0.7321 |
+#> |.....................| -0.8087 | -0.8746 | -0.8853 | -0.9811 |
+#> |.....................| -0.7064 | -0.8834 | -0.9659 | -0.6790 |
+#> | U| 483.34903 | 90.99 | -5.227 | -0.8851 | -2.192 |
+#> |.....................| -4.629 | 0.4518 | 0.9551 | 0.06229 |
+#> |.....................| 0.8557 | 0.05818 | 0.7240 | 0.8009 |
+#> |.....................| 1.377 | 0.9526 | 0.7800 | 1.445 |
+#> | X| 483.34903 | 90.99 | 0.005370 | 0.2921 | 0.1117 |
+#> |.....................| 0.009769 | 0.6111 | 0.9551 | 0.06229 |
+#> |.....................| 0.8557 | 0.05818 | 0.7240 | 0.8009 |
+#> |.....................| 1.377 | 0.9526 | 0.7800 | 1.445 |
+#> | F| Forward Diff. | -5.120 | 1.736 | -0.09503 | 0.1090 |
+#> |.....................| 0.03046 | 0.8092 | -12.63 | -5.226 |
+#> |.....................| -2.620 | -0.5304 | -0.3057 | 3.753 |
+#> |.....................| -6.427 | 0.07650 | 3.398 | -7.915 |
+#> | 51| 483.15597 | 0.9980 | -1.040 | -0.9083 | -0.9402 |
+#> |.....................| -0.9866 | -0.8991 | -0.5603 | -0.7286 |
+#> |.....................| -0.8069 | -0.8742 | -0.8851 | -0.9836 |
+#> |.....................| -0.7022 | -0.8834 | -0.9682 | -0.6737 |
+#> | U| 483.15597 | 91.30 | -5.228 | -0.8851 | -2.192 |
+#> |.....................| -4.629 | 0.4516 | 0.9585 | 0.06239 |
+#> |.....................| 0.8564 | 0.05819 | 0.7241 | 0.7987 |
+#> |.....................| 1.382 | 0.9525 | 0.7781 | 1.452 |
+#> | X| 483.15597 | 91.30 | 0.005364 | 0.2921 | 0.1117 |
+#> |.....................| 0.009769 | 0.6110 | 0.9585 | 0.06239 |
+#> |.....................| 0.8564 | 0.05819 | 0.7241 | 0.7987 |
+#> |.....................| 1.382 | 0.9525 | 0.7781 | 1.452 |
+#> | 52| 483.02721 | 1.004 | -1.042 | -0.9082 | -0.9404 |
+#> |.....................| -0.9866 | -0.9001 | -0.5449 | -0.7222 |
+#> |.....................| -0.8037 | -0.8736 | -0.8847 | -0.9882 |
+#> |.....................| -0.6943 | -0.8835 | -0.9723 | -0.6641 |
+#> | U| 483.02721 | 91.87 | -5.230 | -0.8850 | -2.192 |
+#> |.....................| -4.629 | 0.4511 | 0.9649 | 0.06258 |
+#> |.....................| 0.8577 | 0.05821 | 0.7244 | 0.7946 |
+#> |.....................| 1.391 | 0.9524 | 0.7746 | 1.463 |
+#> | X| 483.02721 | 91.87 | 0.005352 | 0.2921 | 0.1117 |
+#> |.....................| 0.009768 | 0.6109 | 0.9649 | 0.06258 |
+#> |.....................| 0.8577 | 0.05821 | 0.7244 | 0.7946 |
+#> |.....................| 1.391 | 0.9524 | 0.7746 | 1.463 |
+#> | F| Forward Diff. | 64.04 | 1.793 | 0.5284 | 0.01389 |
+#> |.....................| 0.02898 | 0.7509 | -12.63 | -3.976 |
+#> |.....................| -2.339 | -0.6213 | 0.1061 | 4.124 |
+#> |.....................| -6.092 | 0.06517 | 2.880 | -7.726 |
+#> | 53| 482.23689 | 0.9946 | -1.047 | -0.9090 | -0.9407 |
+#> |.....................| -0.9878 | -0.9036 | -0.5201 | -0.7284 |
+#> |.....................| -0.8010 | -0.8752 | -0.8830 | -0.9901 |
+#> |.....................| -0.6858 | -0.8831 | -0.9756 | -0.6451 |
+#> | U| 482.23689 | 90.99 | -5.236 | -0.8857 | -2.192 |
+#> |.....................| -4.630 | 0.4496 | 0.9752 | 0.06240 |
+#> |.....................| 0.8589 | 0.05816 | 0.7257 | 0.7929 |
+#> |.....................| 1.401 | 0.9528 | 0.7717 | 1.486 |
+#> | X| 482.23689 | 90.99 | 0.005323 | 0.2920 | 0.1116 |
+#> |.....................| 0.009757 | 0.6105 | 0.9752 | 0.06240 |
+#> |.....................| 0.8589 | 0.05816 | 0.7257 | 0.7929 |
+#> |.....................| 1.401 | 0.9528 | 0.7717 | 1.486 |
+#> | F| Forward Diff. | -6.401 | 1.688 | -0.06693 | 0.1101 |
+#> |.....................| 0.07752 | 0.8485 | -12.38 | -4.258 |
+#> |.....................| -2.381 | -0.3971 | -0.4532 | 3.327 |
+#> |.....................| -5.692 | 0.09795 | 3.049 | -7.221 |
+#> | 54| 481.84664 | 1.002 | -1.052 | -0.9094 | -0.9410 |
+#> |.....................| -0.9885 | -0.9064 | -0.4925 | -0.7287 |
+#> |.....................| -0.7974 | -0.8758 | -0.8811 | -0.9941 |
+#> |.....................| -0.6765 | -0.8831 | -0.9802 | -0.6288 |
+#> | U| 481.84664 | 91.67 | -5.240 | -0.8860 | -2.193 |
+#> |.....................| -4.631 | 0.4482 | 0.9866 | 0.06239 |
+#> |.....................| 0.8604 | 0.05815 | 0.7270 | 0.7893 |
+#> |.....................| 1.412 | 0.9528 | 0.7678 | 1.506 |
+#> | X| 481.84664 | 91.67 | 0.005298 | 0.2919 | 0.1116 |
+#> |.....................| 0.009749 | 0.6102 | 0.9866 | 0.06239 |
+#> |.....................| 0.8604 | 0.05815 | 0.7270 | 0.7893 |
+#> |.....................| 1.412 | 0.9528 | 0.7678 | 1.506 |
+#> | F| Forward Diff. | 47.13 | 1.726 | 0.4206 | 0.02536 |
+#> |.....................| 0.06828 | 0.8062 | -11.83 | -3.346 |
+#> |.....................| -2.102 | -0.4847 | -0.09759 | 3.731 |
+#> |.....................| -5.096 | -0.5769 | 2.736 | -6.997 |
+#> | 55| 481.27209 | 0.9943 | -1.058 | -0.9105 | -0.9413 |
+#> |.....................| -0.9900 | -0.9106 | -0.4653 | -0.7394 |
+#> |.....................| -0.7957 | -0.8780 | -0.8782 | -0.9956 |
+#> |.....................| -0.6736 | -0.8789 | -0.9829 | -0.6135 |
+#> | U| 481.27209 | 90.96 | -5.246 | -0.8870 | -2.193 |
+#> |.....................| -4.632 | 0.4464 | 0.9978 | 0.06208 |
+#> |.....................| 0.8611 | 0.05808 | 0.7292 | 0.7879 |
+#> |.....................| 1.416 | 0.9569 | 0.7655 | 1.525 |
+#> | X| 481.27209 | 90.96 | 0.005268 | 0.2917 | 0.1116 |
+#> |.....................| 0.009735 | 0.6098 | 0.9978 | 0.06208 |
+#> |.....................| 0.8611 | 0.05808 | 0.7292 | 0.7879 |
+#> |.....................| 1.416 | 0.9569 | 0.7655 | 1.525 |
+#> | F| Forward Diff. | -10.35 | 1.643 | -0.1028 | 0.1091 |
+#> |.....................| 0.1039 | 0.8949 | -11.59 | -3.607 |
+#> |.....................| -2.172 | -0.3207 | -0.4703 | 3.042 |
+#> |.....................| -5.188 | 0.5388 | 2.890 | -6.602 |
+#> | 56| 480.86800 | 0.9992 | -1.064 | -0.9113 | -0.9415 |
+#> |.....................| -0.9915 | -0.9152 | -0.4371 | -0.7498 |
+#> |.....................| -0.7937 | -0.8800 | -0.8752 | -0.9980 |
+#> |.....................| -0.6700 | -0.8785 | -0.9867 | -0.5989 |
+#> | U| 480.868 | 91.41 | -5.252 | -0.8877 | -2.193 |
+#> |.....................| -4.634 | 0.4442 | 1.010 | 0.06178 |
+#> |.....................| 0.8619 | 0.05803 | 0.7313 | 0.7858 |
+#> |.....................| 1.420 | 0.9572 | 0.7622 | 1.543 |
+#> | X| 480.868 | 91.41 | 0.005236 | 0.2916 | 0.1115 |
+#> |.....................| 0.009720 | 0.6093 | 1.010 | 0.06178 |
+#> |.....................| 0.8619 | 0.05803 | 0.7313 | 0.7858 |
+#> |.....................| 1.420 | 0.9572 | 0.7622 | 1.543 |
+#> | 57| 480.18757 | 0.9994 | -1.075 | -0.9131 | -0.9420 |
+#> |.....................| -0.9946 | -0.9242 | -0.3882 | -0.7756 |
+#> |.....................| -0.7917 | -0.8845 | -0.8694 | -1.000 |
+#> |.....................| -0.6674 | -0.8772 | -0.9919 | -0.5742 |
+#> | U| 480.18757 | 91.43 | -5.264 | -0.8893 | -2.194 |
+#> |.....................| -4.637 | 0.4401 | 1.030 | 0.06104 |
+#> |.....................| 0.8627 | 0.05790 | 0.7356 | 0.7839 |
+#> |.....................| 1.423 | 0.9585 | 0.7577 | 1.573 |
+#> | X| 480.18757 | 91.43 | 0.005177 | 0.2913 | 0.1115 |
+#> |.....................| 0.009690 | 0.6083 | 1.030 | 0.06104 |
+#> |.....................| 0.8627 | 0.05790 | 0.7356 | 0.7839 |
+#> |.....................| 1.423 | 0.9585 | 0.7577 | 1.573 |
+#> | 58| 477.33677 | 1.000 | -1.128 | -0.9215 | -0.9444 |
+#> |.....................| -1.009 | -0.9662 | -0.1601 | -0.8958 |
+#> |.....................| -0.7824 | -0.9055 | -0.8420 | -1.010 |
+#> |.....................| -0.6551 | -0.8713 | -1.016 | -0.4591 |
+#> | U| 477.33677 | 91.51 | -5.317 | -0.8967 | -2.196 |
+#> |.....................| -4.651 | 0.4208 | 1.124 | 0.05757 |
+#> |.....................| 0.8666 | 0.05729 | 0.7556 | 0.7749 |
+#> |.....................| 1.438 | 0.9642 | 0.7367 | 1.713 |
+#> | X| 477.33677 | 91.51 | 0.004910 | 0.2897 | 0.1112 |
+#> |.....................| 0.009550 | 0.6037 | 1.124 | 0.05757 |
+#> |.....................| 0.8666 | 0.05729 | 0.7556 | 0.7749 |
+#> |.....................| 1.438 | 0.9642 | 0.7367 | 1.713 |
+#> | 59| 470.34077 | 1.005 | -1.340 | -0.9551 | -0.9536 |
+#> |.....................| -1.067 | -1.134 | 0.7520 | -1.376 |
+#> |.....................| -0.7448 | -0.9894 | -0.7326 | -1.050 |
+#> |.....................| -0.6055 | -0.8475 | -1.115 | 0.001078 |
+#> | U| 470.34077 | 91.93 | -5.528 | -0.9265 | -2.205 |
+#> |.....................| -4.709 | 0.3439 | 1.502 | 0.04372 |
+#> |.....................| 0.8821 | 0.05487 | 0.8354 | 0.7391 |
+#> |.....................| 1.496 | 0.9871 | 0.6524 | 2.272 |
+#> | X| 470.34077 | 91.93 | 0.003973 | 0.2836 | 0.1102 |
+#> |.....................| 0.009011 | 0.5851 | 1.502 | 0.04372 |
+#> |.....................| 0.8821 | 0.05487 | 0.8354 | 0.7391 |
+#> |.....................| 1.496 | 0.9871 | 0.6524 | 2.272 |
+#> | F| Forward Diff. | 26.15 | 0.9841 | -0.2917 | -0.5557 |
+#> |.....................| 0.1743 | 0.07961 | -5.483 | -2.977 |
+#> |.....................| -1.594 | -1.883 | 1.921 | 2.622 |
+#> |.....................| -2.684 | 3.199 | -3.516 | -0.2713 |
+#> | 60| 503.34963 | 1.001 | -1.624 | -0.8890 | -0.8555 |
+#> |.....................| -1.160 | -1.269 | 1.871 | -1.579 |
+#> |.....................| -0.5570 | -0.7566 | -0.9888 | -1.205 |
+#> |.....................| -0.4219 | -1.204 | -0.3205 | 0.003684 |
+#> | U| 503.34963 | 91.54 | -5.813 | -0.8679 | -2.107 |
+#> |.....................| -4.802 | 0.2817 | 1.965 | 0.03787 |
+#> |.....................| 0.9599 | 0.06159 | 0.6484 | 0.5998 |
+#> |.....................| 1.714 | 0.6438 | 1.334 | 2.275 |
+#> | X| 503.34963 | 91.54 | 0.002989 | 0.2957 | 0.1216 |
+#> |.....................| 0.008214 | 0.5700 | 1.965 | 0.03787 |
+#> |.....................| 0.9599 | 0.06159 | 0.6484 | 0.5998 |
+#> |.....................| 1.714 | 0.6438 | 1.334 | 2.275 |
+#> | 61| 469.52776 | 1.001 | -1.377 | -0.9480 | -0.9425 |
+#> |.....................| -1.079 | -1.153 | 0.9014 | -1.405 |
+#> |.....................| -0.7213 | -0.9635 | -0.7590 | -1.066 |
+#> |.....................| -0.5863 | -0.9260 | -1.020 | 0.002305 |
+#> | U| 469.52776 | 91.55 | -5.565 | -0.9203 | -2.194 |
+#> |.....................| -4.721 | 0.3353 | 1.564 | 0.04288 |
+#> |.....................| 0.8919 | 0.05562 | 0.8161 | 0.7248 |
+#> |.....................| 1.519 | 0.9115 | 0.7335 | 2.274 |
+#> | X| 469.52776 | 91.55 | 0.003829 | 0.2849 | 0.1114 |
+#> |.....................| 0.008907 | 0.5831 | 1.564 | 0.04288 |
+#> |.....................| 0.8919 | 0.05562 | 0.8161 | 0.7248 |
+#> |.....................| 1.519 | 0.9115 | 0.7335 | 2.274 |
+#> | F| Forward Diff. | -33.46 | 0.8466 | -0.2714 | -0.3437 |
+#> |.....................| -0.005169 | 0.9674 | -4.363 | -2.175 |
+#> |.....................| -0.4723 | -1.194 | 1.668 | 1.180 |
+#> |.....................| -1.975 | -3.231 | 4.715 | 0.6860 |
+#> | 62| 468.69396 | 1.009 | -1.417 | -0.9407 | -0.9181 |
+#> |.....................| -1.088 | -1.184 | 1.029 | -1.410 |
+#> |.....................| -0.7106 | -0.9016 | -0.8502 | -1.110 |
+#> |.....................| -0.5641 | -0.8957 | -1.025 | -0.08379 |
+#> | U| 468.69396 | 92.28 | -5.606 | -0.9138 | -2.170 |
+#> |.....................| -4.730 | 0.3207 | 1.617 | 0.04273 |
+#> |.....................| 0.8963 | 0.05740 | 0.7496 | 0.6857 |
+#> |.....................| 1.546 | 0.9407 | 0.7298 | 2.169 |
+#> | X| 468.69396 | 92.28 | 0.003677 | 0.2862 | 0.1142 |
+#> |.....................| 0.008826 | 0.5795 | 1.617 | 0.04273 |
+#> |.....................| 0.8963 | 0.05740 | 0.7496 | 0.6857 |
+#> |.....................| 1.546 | 0.9407 | 0.7298 | 2.169 |
+#> | F| Forward Diff. | 44.64 | 0.7919 | 0.8591 | -0.3536 |
+#> |.....................| -0.1337 | 0.2061 | -3.251 | 1.076 |
+#> |.....................| 0.6486 | -0.6734 | -0.006662 | -4.031 |
+#> |.....................| -0.9510 | -1.369 | 2.636 | 0.2207 |
+#> | 63| 468.25975 | 1.001 | -1.457 | -0.9435 | -0.8944 |
+#> |.....................| -1.092 | -1.207 | 1.162 | -1.430 |
+#> |.....................| -0.7163 | -0.8453 | -0.9089 | -1.031 |
+#> |.....................| -0.5350 | -0.9084 | -1.055 | -0.1705 |
+#> | U| 468.25975 | 91.62 | -5.645 | -0.9163 | -2.146 |
+#> |.....................| -4.734 | 0.3104 | 1.671 | 0.04217 |
+#> |.....................| 0.8939 | 0.05903 | 0.7067 | 0.7562 |
+#> |.....................| 1.580 | 0.9284 | 0.7040 | 2.064 |
+#> | X| 468.25975 | 91.62 | 0.003534 | 0.2857 | 0.1169 |
+#> |.....................| 0.008791 | 0.5770 | 1.671 | 0.04217 |
+#> |.....................| 0.8939 | 0.05903 | 0.7067 | 0.7562 |
+#> |.....................| 1.580 | 0.9284 | 0.7040 | 2.064 |
+#> | F| Forward Diff. | -27.10 | 0.6132 | -0.09159 | -0.08800 |
+#> |.....................| -0.1078 | -0.3202 | -2.388 | 1.638 |
+#> |.....................| 1.140 | 0.1171 | 0.1600 | 3.377 |
+#> |.....................| 1.163 | -2.226 | -0.6898 | -0.6683 |
+#> | 64| 467.71969 | 1.007 | -1.501 | -0.9546 | -0.8725 |
+#> |.....................| -1.088 | -1.196 | 1.309 | -1.518 |
+#> |.....................| -0.7729 | -0.8084 | -0.9408 | -1.028 |
+#> |.....................| -0.5596 | -0.8715 | -1.022 | -0.2167 |
+#> | U| 467.71969 | 92.14 | -5.690 | -0.9262 | -2.124 |
+#> |.....................| -4.730 | 0.3152 | 1.732 | 0.03962 |
+#> |.....................| 0.8705 | 0.06009 | 0.6835 | 0.7588 |
+#> |.....................| 1.551 | 0.9640 | 0.7321 | 2.007 |
+#> | X| 467.71969 | 92.14 | 0.003381 | 0.2837 | 0.1195 |
+#> |.....................| 0.008831 | 0.5781 | 1.732 | 0.03962 |
+#> |.....................| 0.8705 | 0.06009 | 0.6835 | 0.7588 |
+#> |.....................| 1.551 | 0.9640 | 0.7321 | 2.007 |
+#> | F| Forward Diff. | 13.64 | 0.5263 | -0.09449 | -0.03300 |
+#> |.....................| -0.2497 | 0.5177 | -1.944 | 1.719 |
+#> |.....................| 0.02781 | -0.4546 | 0.1053 | 4.139 |
+#> |.....................| 0.2369 | 0.8861 | 1.752 | -0.4404 |
+#> | 65| 467.30536 | 1.004 | -1.542 | -0.9574 | -0.8551 |
+#> |.....................| -1.078 | -1.202 | 1.437 | -1.633 |
+#> |.....................| -0.8162 | -0.7674 | -0.9588 | -1.081 |
+#> |.....................| -0.5907 | -0.8860 | -1.037 | -0.2723 |
+#> | U| 467.30536 | 91.87 | -5.731 | -0.9286 | -2.107 |
+#> |.....................| -4.720 | 0.3124 | 1.785 | 0.03631 |
+#> |.....................| 0.8526 | 0.06127 | 0.6704 | 0.7116 |
+#> |.....................| 1.514 | 0.9500 | 0.7187 | 1.940 |
+#> | X| 467.30536 | 91.87 | 0.003244 | 0.2832 | 0.1216 |
+#> |.....................| 0.008917 | 0.5775 | 1.785 | 0.03631 |
+#> |.....................| 0.8526 | 0.06127 | 0.6704 | 0.7116 |
+#> |.....................| 1.514 | 0.9500 | 0.7187 | 1.940 |
+#> | F| Forward Diff. | -28.84 | 0.5077 | -0.1377 | 0.05990 |
+#> |.....................| -0.2272 | 0.7424 | -2.070 | -0.4026 |
+#> |.....................| -0.6342 | -0.6074 | -0.7367 | -1.927 |
+#> |.....................| -1.174 | -0.4282 | -0.2913 | -0.8226 |
+#> | 66| 467.70919 | 1.018 | -1.590 | -0.9528 | -0.8478 |
+#> |.....................| -1.050 | -1.273 | 1.541 | -1.746 |
+#> |.....................| -0.7981 | -0.6862 | -0.9431 | -1.082 |
+#> |.....................| -0.5846 | -0.9179 | -1.062 | -0.3171 |
+#> | U| 467.70919 | 93.14 | -5.778 | -0.9245 | -2.100 |
+#> |.....................| -4.692 | 0.2799 | 1.829 | 0.03305 |
+#> |.....................| 0.8601 | 0.06362 | 0.6818 | 0.7103 |
+#> |.....................| 1.521 | 0.9193 | 0.6977 | 1.885 |
+#> | X| 467.70919 | 93.14 | 0.003094 | 0.2840 | 0.1225 |
+#> |.....................| 0.009168 | 0.5695 | 1.829 | 0.03305 |
+#> |.....................| 0.8601 | 0.06362 | 0.6818 | 0.7103 |
+#> |.....................| 1.521 | 0.9193 | 0.6977 | 1.885 |
+#> | 67| 467.47896 | 1.015 | -1.557 | -0.9559 | -0.8529 |
+#> |.....................| -1.069 | -1.224 | 1.469 | -1.667 |
+#> |.....................| -0.8105 | -0.7423 | -0.9538 | -1.081 |
+#> |.....................| -0.5885 | -0.8957 | -1.045 | -0.2858 |
+#> | U| 467.47896 | 92.90 | -5.746 | -0.9273 | -2.105 |
+#> |.....................| -4.711 | 0.3023 | 1.799 | 0.03531 |
+#> |.....................| 0.8550 | 0.06200 | 0.6740 | 0.7117 |
+#> |.....................| 1.517 | 0.9407 | 0.7123 | 1.923 |
+#> | X| 467.47896 | 92.90 | 0.003197 | 0.2835 | 0.1219 |
+#> |.....................| 0.008994 | 0.5750 | 1.799 | 0.03531 |
+#> |.....................| 0.8550 | 0.06200 | 0.6740 | 0.7117 |
+#> |.....................| 1.517 | 0.9407 | 0.7123 | 1.923 |
+#> | 68| 467.47242 | 1.015 | -1.547 | -0.9569 | -0.8545 |
+#> |.....................| -1.075 | -1.209 | 1.447 | -1.644 |
+#> |.....................| -0.8142 | -0.7594 | -0.9570 | -1.080 |
+#> |.....................| -0.5898 | -0.8890 | -1.040 | -0.2763 |
+#> | U| 467.47242 | 92.83 | -5.736 | -0.9282 | -2.106 |
+#> |.....................| -4.717 | 0.3092 | 1.790 | 0.03600 |
+#> |.....................| 0.8534 | 0.06150 | 0.6716 | 0.7121 |
+#> |.....................| 1.515 | 0.9472 | 0.7168 | 1.935 |
+#> | X| 467.47242 | 92.83 | 0.003229 | 0.2833 | 0.1217 |
+#> |.....................| 0.008942 | 0.5767 | 1.790 | 0.03600 |
+#> |.....................| 0.8534 | 0.06150 | 0.6716 | 0.7121 |
+#> |.....................| 1.515 | 0.9472 | 0.7168 | 1.935 |
+#> | 69| 467.34503 | 1.012 | -1.542 | -0.9574 | -0.8552 |
+#> |.....................| -1.078 | -1.203 | 1.437 | -1.633 |
+#> |.....................| -0.8160 | -0.7673 | -0.9586 | -1.080 |
+#> |.....................| -0.5904 | -0.8859 | -1.037 | -0.2720 |
+#> | U| 467.34503 | 92.56 | -5.731 | -0.9286 | -2.107 |
+#> |.....................| -4.720 | 0.3123 | 1.786 | 0.03631 |
+#> |.....................| 0.8527 | 0.06128 | 0.6705 | 0.7121 |
+#> |.....................| 1.514 | 0.9501 | 0.7188 | 1.940 |
+#> | X| 467.34503 | 92.56 | 0.003244 | 0.2832 | 0.1216 |
+#> |.....................| 0.008918 | 0.5775 | 1.786 | 0.03631 |
+#> |.....................| 0.8527 | 0.06128 | 0.6705 | 0.7121 |
+#> |.....................| 1.514 | 0.9501 | 0.7188 | 1.940 |
+#> | 70| 467.25859 | 1.007 | -1.542 | -0.9574 | -0.8552 |
+#> |.....................| -1.078 | -1.202 | 1.437 | -1.633 |
+#> |.....................| -0.8161 | -0.7674 | -0.9587 | -1.080 |
+#> |.....................| -0.5906 | -0.8860 | -1.037 | -0.2722 |
+#> | U| 467.25859 | 92.16 | -5.731 | -0.9286 | -2.107 |
+#> |.....................| -4.720 | 0.3124 | 1.785 | 0.03631 |
+#> |.....................| 0.8526 | 0.06127 | 0.6704 | 0.7118 |
+#> |.....................| 1.514 | 0.9500 | 0.7187 | 1.940 |
+#> | X| 467.25859 | 92.16 | 0.003244 | 0.2832 | 0.1216 |
+#> |.....................| 0.008918 | 0.5775 | 1.785 | 0.03631 |
+#> |.....................| 0.8526 | 0.06127 | 0.6704 | 0.7118 |
+#> |.....................| 1.514 | 0.9500 | 0.7187 | 1.940 |
+#> | F| Forward Diff. | 0.4422 | 0.5213 | 0.04284 | 0.02840 |
+#> |.....................| -0.2383 | 0.7531 | -2.043 | -0.07081 |
+#> |.....................| -0.6548 | -0.6872 | -0.7073 | -1.773 |
+#> |.....................| -1.488 | -0.4400 | -0.3907 | -0.8156 |
+#> | 71| 467.25330 | 1.007 | -1.543 | -0.9574 | -0.8552 |
+#> |.....................| -1.078 | -1.203 | 1.439 | -1.633 |
+#> |.....................| -0.8155 | -0.7668 | -0.9581 | -1.079 |
+#> |.....................| -0.5893 | -0.8856 | -1.037 | -0.2714 |
+#> | U| 467.2533 | 92.12 | -5.731 | -0.9287 | -2.107 |
+#> |.....................| -4.720 | 0.3121 | 1.786 | 0.03631 |
+#> |.....................| 0.8529 | 0.06129 | 0.6709 | 0.7133 |
+#> |.....................| 1.516 | 0.9504 | 0.7190 | 1.941 |
+#> | X| 467.2533 | 92.12 | 0.003243 | 0.2832 | 0.1216 |
+#> |.....................| 0.008919 | 0.5774 | 1.786 | 0.03631 |
+#> |.....................| 0.8529 | 0.06129 | 0.6709 | 0.7133 |
+#> |.....................| 1.516 | 0.9504 | 0.7190 | 1.941 |
+#> | F| Forward Diff. | -3.065 | 0.5175 | 0.01752 | 0.03302 |
+#> |.....................| -0.2370 | 0.7457 | -1.985 | -0.01476 |
+#> |.....................| -0.5869 | -0.6438 | -0.7222 | -1.672 |
+#> |.....................| -1.086 | -0.3942 | -0.3461 | -0.8075 |
+#> | 72| 467.24583 | 1.008 | -1.544 | -0.9571 | -0.8551 |
+#> |.....................| -1.077 | -1.206 | 1.442 | -1.635 |
+#> |.....................| -0.8142 | -0.7642 | -0.9569 | -1.078 |
+#> |.....................| -0.5901 | -0.8857 | -1.037 | -0.2715 |
+#> | U| 467.24583 | 92.22 | -5.733 | -0.9284 | -2.107 |
+#> |.....................| -4.719 | 0.3108 | 1.788 | 0.03626 |
+#> |.....................| 0.8534 | 0.06137 | 0.6718 | 0.7144 |
+#> |.....................| 1.515 | 0.9503 | 0.7191 | 1.941 |
+#> | X| 467.24583 | 92.22 | 0.003238 | 0.2832 | 0.1216 |
+#> |.....................| 0.008927 | 0.5771 | 1.788 | 0.03626 |
+#> |.....................| 0.8534 | 0.06137 | 0.6718 | 0.7144 |
+#> |.....................| 1.515 | 0.9503 | 0.7191 | 1.941 |
+#> | F| Forward Diff. | 6.834 | 0.5162 | 0.08982 | 0.01752 |
+#> |.....................| -0.2436 | 0.7158 | -2.020 | -0.04939 |
+#> |.....................| -0.5459 | -0.6263 | -0.5712 | -1.499 |
+#> |.....................| -1.429 | -0.4150 | -0.4098 | -0.8001 |
+#> | 73| 467.23713 | 1.007 | -1.546 | -0.9569 | -0.8551 |
+#> |.....................| -1.076 | -1.209 | 1.446 | -1.636 |
+#> |.....................| -0.8132 | -0.7618 | -0.9559 | -1.076 |
+#> |.....................| -0.5919 | -0.8860 | -1.037 | -0.2716 |
+#> | U| 467.23713 | 92.12 | -5.734 | -0.9282 | -2.107 |
+#> |.....................| -4.718 | 0.3095 | 1.789 | 0.03621 |
+#> |.....................| 0.8538 | 0.06143 | 0.6724 | 0.7154 |
+#> |.....................| 1.513 | 0.9500 | 0.7191 | 1.941 |
+#> | X| 467.23713 | 92.12 | 0.003233 | 0.2833 | 0.1216 |
+#> |.....................| 0.008936 | 0.5768 | 1.789 | 0.03621 |
+#> |.....................| 0.8538 | 0.06143 | 0.6724 | 0.7154 |
+#> |.....................| 1.513 | 0.9500 | 0.7191 | 1.941 |
+#> | F| Forward Diff. | -3.249 | 0.5067 | 0.04417 | 0.02698 |
+#> |.....................| -0.2393 | 0.6753 | -1.942 | -0.1419 |
+#> |.....................| -0.5001 | -0.5983 | -0.6679 | -1.518 |
+#> |.....................| -1.576 | -0.4506 | -0.4091 | -0.8075 |
+#> | 74| 467.22826 | 1.008 | -1.548 | -0.9568 | -0.8550 |
+#> |.....................| -1.074 | -1.212 | 1.450 | -1.638 |
+#> |.....................| -0.8127 | -0.7593 | -0.9548 | -1.076 |
+#> |.....................| -0.5925 | -0.8862 | -1.037 | -0.2718 |
+#> | U| 467.22826 | 92.20 | -5.736 | -0.9281 | -2.107 |
+#> |.....................| -4.716 | 0.3080 | 1.791 | 0.03615 |
+#> |.....................| 0.8540 | 0.06151 | 0.6733 | 0.7160 |
+#> |.....................| 1.512 | 0.9499 | 0.7192 | 1.940 |
+#> | X| 467.22826 | 92.20 | 0.003227 | 0.2833 | 0.1216 |
+#> |.....................| 0.008947 | 0.5764 | 1.791 | 0.03615 |
+#> |.....................| 0.8540 | 0.06151 | 0.6733 | 0.7160 |
+#> |.....................| 1.512 | 0.9499 | 0.7192 | 1.940 |
+#> | F| Forward Diff. | 4.158 | 0.5052 | 0.09162 | 0.01474 |
+#> |.....................| -0.2441 | 0.6411 | -1.927 | 0.008374 |
+#> |.....................| -0.4204 | -0.5681 | -0.5325 | -1.398 |
+#> |.....................| -1.545 | -0.4616 | -0.4623 | -0.8062 |
+#> | 75| 467.21798 | 1.007 | -1.549 | -0.9567 | -0.8549 |
+#> |.....................| -1.073 | -1.215 | 1.453 | -1.641 |
+#> |.....................| -0.8130 | -0.7568 | -0.9541 | -1.075 |
+#> |.....................| -0.5920 | -0.8862 | -1.036 | -0.2722 |
+#> | U| 467.21798 | 92.13 | -5.738 | -0.9280 | -2.107 |
+#> |.....................| -4.715 | 0.3065 | 1.792 | 0.03607 |
+#> |.....................| 0.8539 | 0.06158 | 0.6738 | 0.7163 |
+#> |.....................| 1.512 | 0.9498 | 0.7195 | 1.940 |
+#> | X| 467.21798 | 92.13 | 0.003221 | 0.2833 | 0.1216 |
+#> |.....................| 0.008959 | 0.5760 | 1.792 | 0.03607 |
+#> |.....................| 0.8539 | 0.06158 | 0.6738 | 0.7163 |
+#> |.....................| 1.512 | 0.9498 | 0.7195 | 1.940 |
+#> | F| Forward Diff. | -2.820 | 0.4989 | 0.05960 | 0.01935 |
+#> |.....................| -0.2421 | 0.6061 | -1.914 | -0.2151 |
+#> |.....................| -0.5103 | -0.6093 | -0.7625 | -1.437 |
+#> |.....................| -1.510 | -0.4672 | -0.4489 | -0.8043 |
+#> | 76| 467.20848 | 1.008 | -1.551 | -0.9569 | -0.8547 |
+#> |.....................| -1.072 | -1.218 | 1.456 | -1.643 |
+#> |.....................| -0.8130 | -0.7539 | -0.9520 | -1.075 |
+#> |.....................| -0.5920 | -0.8859 | -1.036 | -0.2725 |
+#> | U| 467.20848 | 92.20 | -5.740 | -0.9282 | -2.106 |
+#> |.....................| -4.714 | 0.3053 | 1.793 | 0.03601 |
+#> |.....................| 0.8539 | 0.06166 | 0.6753 | 0.7165 |
+#> |.....................| 1.512 | 0.9501 | 0.7200 | 1.939 |
+#> | X| 467.20848 | 92.20 | 0.003215 | 0.2833 | 0.1217 |
+#> |.....................| 0.008973 | 0.5757 | 1.793 | 0.03601 |
+#> |.....................| 0.8539 | 0.06166 | 0.6753 | 0.7165 |
+#> |.....................| 1.512 | 0.9501 | 0.7200 | 1.939 |
+#> | F| Forward Diff. | 3.706 | 0.4993 | 0.1020 | 0.01046 |
+#> |.....................| -0.2448 | 0.5847 | -1.899 | -0.1702 |
+#> |.....................| -0.3837 | -0.5516 | -0.5275 | -1.370 |
+#> |.....................| -1.509 | -0.4527 | -0.4630 | -0.7991 |
+#> | 77| 467.20140 | 1.007 | -1.554 | -0.9572 | -0.8545 |
+#> |.....................| -1.070 | -1.221 | 1.459 | -1.644 |
+#> |.....................| -0.8137 | -0.7511 | -0.9495 | -1.075 |
+#> |.....................| -0.5926 | -0.8856 | -1.035 | -0.2726 |
+#> | U| 467.2014 | 92.12 | -5.742 | -0.9285 | -2.106 |
+#> |.....................| -4.712 | 0.3041 | 1.795 | 0.03600 |
+#> |.....................| 0.8536 | 0.06174 | 0.6772 | 0.7169 |
+#> |.....................| 1.512 | 0.9504 | 0.7205 | 1.939 |
+#> | X| 467.2014 | 92.12 | 0.003207 | 0.2832 | 0.1217 |
+#> |.....................| 0.008990 | 0.5754 | 1.795 | 0.03600 |
+#> |.....................| 0.8536 | 0.06174 | 0.6772 | 0.7169 |
+#> |.....................| 1.512 | 0.9504 | 0.7205 | 1.939 |
+#> | F| Forward Diff. | -4.697 | 0.4875 | 0.03394 | 0.01314 |
+#> |.....................| -0.2450 | 0.5527 | -1.903 | -0.2230 |
+#> |.....................| -0.3367 | -0.5055 | -0.4386 | -1.334 |
+#> |.....................| -1.570 | -0.4518 | -0.4312 | -0.7987 |
+#> | 78| 467.19155 | 1.008 | -1.556 | -0.9574 | -0.8545 |
+#> |.....................| -1.067 | -1.224 | 1.462 | -1.645 |
+#> |.....................| -0.8159 | -0.7492 | -0.9499 | -1.074 |
+#> |.....................| -0.5924 | -0.8858 | -1.035 | -0.2722 |
+#> | U| 467.19155 | 92.18 | -5.745 | -0.9286 | -2.106 |
+#> |.....................| -4.709 | 0.3027 | 1.796 | 0.03596 |
+#> |.....................| 0.8527 | 0.06180 | 0.6768 | 0.7173 |
+#> |.....................| 1.512 | 0.9502 | 0.7208 | 1.940 |
+#> | X| 467.19155 | 92.18 | 0.003200 | 0.2832 | 0.1217 |
+#> |.....................| 0.009010 | 0.5751 | 1.796 | 0.03596 |
+#> |.....................| 0.8527 | 0.06180 | 0.6768 | 0.7173 |
+#> |.....................| 1.512 | 0.9502 | 0.7208 | 1.940 |
+#> | F| Forward Diff. | 2.102 | 0.4867 | 0.07498 | 0.004893 |
+#> |.....................| -0.2442 | 0.5250 | -1.879 | -0.1740 |
+#> |.....................| -0.3775 | -0.5383 | -0.4109 | -1.255 |
+#> |.....................| -1.562 | -0.4584 | -0.4426 | -0.7882 |
+#> | 79| 467.18237 | 1.007 | -1.558 | -0.9574 | -0.8544 |
+#> |.....................| -1.065 | -1.226 | 1.465 | -1.647 |
+#> |.....................| -0.8177 | -0.7470 | -0.9510 | -1.074 |
+#> |.....................| -0.5912 | -0.8859 | -1.035 | -0.2717 |
+#> | U| 467.18237 | 92.12 | -5.747 | -0.9286 | -2.106 |
+#> |.....................| -4.707 | 0.3016 | 1.797 | 0.03591 |
+#> |.....................| 0.8519 | 0.06186 | 0.6761 | 0.7177 |
+#> |.....................| 1.513 | 0.9501 | 0.7212 | 1.940 |
+#> | X| 467.18237 | 92.12 | 0.003193 | 0.2832 | 0.1217 |
+#> |.....................| 0.009031 | 0.5748 | 1.797 | 0.03591 |
+#> |.....................| 0.8519 | 0.06186 | 0.6761 | 0.7177 |
+#> |.....................| 1.513 | 0.9501 | 0.7212 | 1.940 |
+#> | F| Forward Diff. | -4.940 | 0.4761 | 0.03110 | 0.006161 |
+#> |.....................| -0.2415 | 0.4988 | -1.880 | -0.2651 |
+#> |.....................| -0.3787 | -0.5263 | -0.4799 | -1.241 |
+#> |.....................| -1.481 | -0.4641 | -0.4124 | -0.7761 |
+#> | 80| 467.17113 | 1.008 | -1.561 | -0.9574 | -0.8542 |
+#> |.....................| -1.062 | -1.228 | 1.469 | -1.648 |
+#> |.....................| -0.8192 | -0.7442 | -0.9515 | -1.074 |
+#> |.....................| -0.5909 | -0.8858 | -1.034 | -0.2714 |
+#> | U| 467.17113 | 92.19 | -5.749 | -0.9286 | -2.106 |
+#> |.....................| -4.704 | 0.3008 | 1.799 | 0.03586 |
+#> |.....................| 0.8513 | 0.06194 | 0.6757 | 0.7179 |
+#> |.....................| 1.514 | 0.9502 | 0.7215 | 1.941 |
+#> | X| 467.17113 | 92.19 | 0.003185 | 0.2832 | 0.1217 |
+#> |.....................| 0.009056 | 0.5746 | 1.799 | 0.03586 |
+#> |.....................| 0.8513 | 0.06194 | 0.6757 | 0.7179 |
+#> |.....................| 1.514 | 0.9502 | 0.7215 | 1.941 |
+#> | 81| 467.15723 | 1.008 | -1.564 | -0.9575 | -0.8538 |
+#> |.....................| -1.058 | -1.230 | 1.473 | -1.651 |
+#> |.....................| -0.8215 | -0.7400 | -0.9524 | -1.074 |
+#> |.....................| -0.5906 | -0.8857 | -1.034 | -0.2712 |
+#> | U| 467.15723 | 92.19 | -5.753 | -0.9287 | -2.106 |
+#> |.....................| -4.700 | 0.2996 | 1.800 | 0.03578 |
+#> |.....................| 0.8504 | 0.06206 | 0.6750 | 0.7179 |
+#> |.....................| 1.514 | 0.9503 | 0.7219 | 1.941 |
+#> | X| 467.15723 | 92.19 | 0.003173 | 0.2832 | 0.1218 |
+#> |.....................| 0.009093 | 0.5743 | 1.800 | 0.03578 |
+#> |.....................| 0.8504 | 0.06206 | 0.6750 | 0.7179 |
+#> |.....................| 1.514 | 0.9503 | 0.7219 | 1.941 |
+#> | 82| 467.09153 | 1.008 | -1.583 | -0.9578 | -0.8521 |
+#> |.....................| -1.038 | -1.244 | 1.497 | -1.664 |
+#> |.....................| -0.8331 | -0.7187 | -0.9572 | -1.074 |
+#> |.....................| -0.5894 | -0.8854 | -1.031 | -0.2699 |
+#> | U| 467.09153 | 92.20 | -5.772 | -0.9290 | -2.104 |
+#> |.....................| -4.680 | 0.2934 | 1.810 | 0.03540 |
+#> |.....................| 0.8456 | 0.06268 | 0.6715 | 0.7181 |
+#> |.....................| 1.516 | 0.9506 | 0.7239 | 1.943 |
+#> | X| 467.09153 | 92.20 | 0.003114 | 0.2831 | 0.1220 |
+#> |.....................| 0.009282 | 0.5728 | 1.810 | 0.03540 |
+#> |.....................| 0.8456 | 0.06268 | 0.6715 | 0.7181 |
+#> |.....................| 1.516 | 0.9506 | 0.7239 | 1.943 |
+#> | 83| 466.89701 | 1.009 | -1.658 | -0.9591 | -0.8451 |
+#> |.....................| -0.9556 | -1.297 | 1.590 | -1.717 |
+#> |.....................| -0.8794 | -0.6338 | -0.9760 | -1.073 |
+#> |.....................| -0.5844 | -0.8840 | -1.022 | -0.2647 |
+#> | U| 466.89701 | 92.27 | -5.846 | -0.9301 | -2.097 |
+#> |.....................| -4.598 | 0.2688 | 1.849 | 0.03388 |
+#> |.....................| 0.8264 | 0.06513 | 0.6578 | 0.7186 |
+#> |.....................| 1.521 | 0.9519 | 0.7320 | 1.949 |
+#> | X| 466.89701 | 92.27 | 0.002890 | 0.2829 | 0.1228 |
+#> |.....................| 0.01008 | 0.5668 | 1.849 | 0.03388 |
+#> |.....................| 0.8264 | 0.06513 | 0.6578 | 0.7186 |
+#> |.....................| 1.521 | 0.9519 | 0.7320 | 1.949 |
+#> | 84| 466.81525 | 1.010 | -1.758 | -0.9608 | -0.8357 |
+#> |.....................| -0.8455 | -1.369 | 1.715 | -1.787 |
+#> |.....................| -0.9414 | -0.5201 | -1.001 | -1.072 |
+#> |.....................| -0.5775 | -0.8822 | -1.009 | -0.2576 |
+#> | U| 466.81525 | 92.41 | -5.946 | -0.9316 | -2.087 |
+#> |.....................| -4.488 | 0.2358 | 1.901 | 0.03185 |
+#> |.....................| 0.8007 | 0.06841 | 0.6394 | 0.7195 |
+#> |.....................| 1.530 | 0.9537 | 0.7428 | 1.958 |
+#> | X| 466.81525 | 92.41 | 0.002615 | 0.2826 | 0.1240 |
+#> |.....................| 0.01125 | 0.5587 | 1.901 | 0.03185 |
+#> |.....................| 0.8007 | 0.06841 | 0.6394 | 0.7195 |
+#> |.....................| 1.530 | 0.9537 | 0.7428 | 1.958 |
+#> | F| Forward Diff. | 1.005 | 0.03859 | 0.3281 | -0.1495 |
+#> |.....................| 0.1126 | -0.4190 | -0.9638 | -1.159 |
+#> |.....................| -0.4187 | -0.1084 | -1.236 | 1.865 |
+#> |.....................| -0.3960 | -0.4043 | -0.1671 | 0.1635 |
+#> | 85| 467.22945 | 1.009 | -1.931 | -1.059 | -0.7851 |
+#> |.....................| -0.6667 | -1.418 | 1.962 | -1.804 |
+#> |.....................| -1.038 | -0.3298 | -0.7816 | -1.157 |
+#> |.....................| -0.5368 | -0.8226 | -0.9633 | -0.3812 |
+#> | U| 467.22945 | 92.33 | -6.120 | -1.019 | -2.037 |
+#> |.....................| -4.309 | 0.2137 | 2.003 | 0.03136 |
+#> |.....................| 0.7606 | 0.07390 | 0.7997 | 0.6429 |
+#> |.....................| 1.578 | 1.011 | 0.7823 | 1.807 |
+#> | X| 467.22945 | 92.33 | 0.002199 | 0.2652 | 0.1304 |
+#> |.....................| 0.01345 | 0.5532 | 2.003 | 0.03136 |
+#> |.....................| 0.7606 | 0.07390 | 0.7997 | 0.6429 |
+#> |.....................| 1.578 | 1.011 | 0.7823 | 1.807 |
+#> | 86| 466.68655 | 1.009 | -1.812 | -0.9919 | -0.8198 |
+#> |.....................| -0.7896 | -1.384 | 1.793 | -1.792 |
+#> |.....................| -0.9716 | -0.4604 | -0.9317 | -1.100 |
+#> |.....................| -0.5645 | -0.8633 | -0.9948 | -0.2964 |
+#> | U| 466.68655 | 92.33 | -6.001 | -0.9592 | -2.072 |
+#> |.....................| -4.432 | 0.2290 | 1.933 | 0.03172 |
+#> |.....................| 0.7883 | 0.07013 | 0.6901 | 0.6945 |
+#> |.....................| 1.545 | 0.9719 | 0.7553 | 1.910 |
+#> | X| 466.68655 | 92.33 | 0.002477 | 0.2770 | 0.1260 |
+#> |.....................| 0.01190 | 0.5570 | 1.933 | 0.03172 |
+#> |.....................| 0.7883 | 0.07013 | 0.6901 | 0.6945 |
+#> |.....................| 1.545 | 0.9719 | 0.7553 | 1.910 |
+#> | F| Forward Diff. | -11.18 | 0.05254 | -0.8763 | -0.07569 |
+#> |.....................| 0.1998 | -0.2059 | -0.4605 | -0.7124 |
+#> |.....................| -0.3271 | 0.07217 | 0.9692 | 1.710 |
+#> |.....................| -0.7229 | 0.7265 | 0.2517 | -0.09129 |
+#> | 87| 466.82655 | 1.009 | -1.865 | -0.9192 | -0.7946 |
+#> |.....................| -0.7769 | -1.362 | 1.859 | -1.827 |
+#> |.....................| -0.9838 | -0.4392 | -0.9155 | -1.146 |
+#> |.....................| -0.4995 | -0.8511 | -1.000 | -0.3560 |
+#> | U| 466.82655 | 92.34 | -6.054 | -0.8947 | -2.046 |
+#> |.....................| -4.419 | 0.2394 | 1.960 | 0.03072 |
+#> |.....................| 0.7832 | 0.07074 | 0.7019 | 0.6527 |
+#> |.....................| 1.622 | 0.9836 | 0.7506 | 1.838 |
+#> | X| 466.82655 | 92.34 | 0.002349 | 0.2901 | 0.1292 |
+#> |.....................| 0.01205 | 0.5596 | 1.960 | 0.03072 |
+#> |.....................| 0.7832 | 0.07074 | 0.7019 | 0.6527 |
+#> |.....................| 1.622 | 0.9836 | 0.7506 | 1.838 |
+#> | 88| 466.65072 | 1.010 | -1.827 | -0.9719 | -0.8129 |
+#> |.....................| -0.7861 | -1.378 | 1.811 | -1.801 |
+#> |.....................| -0.9749 | -0.4546 | -0.9274 | -1.113 |
+#> |.....................| -0.5467 | -0.8600 | -0.9963 | -0.3127 |
+#> | U| 466.65072 | 92.43 | -6.015 | -0.9415 | -2.065 |
+#> |.....................| -4.428 | 0.2318 | 1.940 | 0.03144 |
+#> |.....................| 0.7869 | 0.07030 | 0.6933 | 0.6830 |
+#> |.....................| 1.566 | 0.9750 | 0.7540 | 1.891 |
+#> | X| 466.65072 | 92.43 | 0.002441 | 0.2806 | 0.1269 |
+#> |.....................| 0.01194 | 0.5577 | 1.940 | 0.03144 |
+#> |.....................| 0.7869 | 0.07030 | 0.6933 | 0.6830 |
+#> |.....................| 1.566 | 0.9750 | 0.7540 | 1.891 |
+#> | F| Forward Diff. | -1.340 | 0.07863 | 0.1180 | -0.03302 |
+#> |.....................| 0.1973 | -0.03638 | -0.4314 | -0.7320 |
+#> |.....................| -0.3719 | 0.04356 | 0.7597 | 1.009 |
+#> |.....................| 0.3079 | 0.4883 | -0.4019 | -0.3069 |
+#> | 89| 466.64054 | 1.012 | -1.843 | -0.9769 | -0.8069 |
+#> |.....................| -0.7968 | -1.376 | 1.833 | -1.786 |
+#> |.....................| -0.9571 | -0.4600 | -0.9463 | -1.118 |
+#> |.....................| -0.5553 | -0.8554 | -0.9954 | -0.3119 |
+#> | U| 466.64054 | 92.56 | -6.031 | -0.9459 | -2.059 |
+#> |.....................| -4.439 | 0.2329 | 1.949 | 0.03189 |
+#> |.....................| 0.7943 | 0.07014 | 0.6795 | 0.6783 |
+#> |.....................| 1.556 | 0.9795 | 0.7548 | 1.892 |
+#> | X| 466.64054 | 92.56 | 0.002403 | 0.2797 | 0.1276 |
+#> |.....................| 0.01181 | 0.5580 | 1.949 | 0.03189 |
+#> |.....................| 0.7943 | 0.07014 | 0.6795 | 0.6783 |
+#> |.....................| 1.556 | 0.9795 | 0.7548 | 1.892 |
+#> | F| Forward Diff. | 13.35 | 0.06546 | -0.02976 | 0.01632 |
+#> |.....................| 0.1680 | -0.06031 | -0.2101 | 0.2297 |
+#> |.....................| -0.01975 | 0.1913 | 0.1108 | 0.6100 |
+#> |.....................| -0.008263 | 1.320 | 0.06198 | -0.2490 |
+#> | 90| 466.63994 | 1.010 | -1.856 | -0.9836 | -0.8023 |
+#> |.....................| -0.8121 | -1.369 | 1.859 | -1.781 |
+#> |.....................| -0.9548 | -0.4699 | -0.9506 | -1.117 |
+#> |.....................| -0.5644 | -0.8726 | -1.009 | -0.3176 |
+#> | U| 466.63994 | 92.43 | -6.045 | -0.9518 | -2.054 |
+#> |.....................| -4.454 | 0.2360 | 1.960 | 0.03203 |
+#> |.....................| 0.7952 | 0.06986 | 0.6763 | 0.6795 |
+#> |.....................| 1.545 | 0.9629 | 0.7430 | 1.885 |
+#> | X| 466.63994 | 92.43 | 0.002371 | 0.2785 | 0.1282 |
+#> |.....................| 0.01163 | 0.5587 | 1.960 | 0.03203 |
+#> |.....................| 0.7952 | 0.06986 | 0.6763 | 0.6795 |
+#> |.....................| 1.545 | 0.9629 | 0.7430 | 1.885 |
+#> | F| Forward Diff. | 0.1431 | 0.02593 | -0.4247 | 0.08835 |
+#> |.....................| 0.1490 | -0.08497 | 0.03702 | 0.4153 |
+#> |.....................| -0.04754 | 0.2015 | 0.06787 | -0.3581 |
+#> |.....................| -0.4069 | 0.09362 | -0.9227 | -0.5264 |
+#> | 91| 466.65402 | 1.008 | -1.856 | -0.9767 | -0.8037 |
+#> |.....................| -0.8145 | -1.367 | 1.858 | -1.788 |
+#> |.....................| -0.9540 | -0.4731 | -0.9517 | -1.111 |
+#> |.....................| -0.5579 | -0.8741 | -0.9943 | -0.3092 |
+#> | U| 466.65402 | 92.22 | -6.045 | -0.9458 | -2.055 |
+#> |.....................| -4.457 | 0.2367 | 1.960 | 0.03184 |
+#> |.....................| 0.7955 | 0.06976 | 0.6755 | 0.6846 |
+#> |.....................| 1.553 | 0.9615 | 0.7557 | 1.895 |
+#> | X| 466.65402 | 92.22 | 0.002370 | 0.2797 | 0.1280 |
+#> |.....................| 0.01160 | 0.5589 | 1.960 | 0.03184 |
+#> |.....................| 0.7955 | 0.06976 | 0.6755 | 0.6846 |
+#> |.....................| 1.553 | 0.9615 | 0.7557 | 1.895 |
+#> | 92| 466.63541 | 1.010 | -1.856 | -0.9812 | -0.8028 |
+#> |.....................| -0.8129 | -1.368 | 1.858 | -1.783 |
+#> |.....................| -0.9545 | -0.4710 | -0.9509 | -1.115 |
+#> |.....................| -0.5622 | -0.8731 | -1.004 | -0.3147 |
+#> | U| 466.63541 | 92.36 | -6.045 | -0.9498 | -2.055 |
+#> |.....................| -4.455 | 0.2363 | 1.960 | 0.03197 |
+#> |.....................| 0.7953 | 0.06982 | 0.6761 | 0.6812 |
+#> |.....................| 1.548 | 0.9624 | 0.7474 | 1.888 |
+#> | X| 466.63541 | 92.36 | 0.002371 | 0.2789 | 0.1281 |
+#> |.....................| 0.01162 | 0.5588 | 1.960 | 0.03197 |
+#> |.....................| 0.7953 | 0.06982 | 0.6761 | 0.6812 |
+#> |.....................| 1.548 | 0.9624 | 0.7474 | 1.888 |
+#> | F| Forward Diff. | -7.597 | 0.01585 | -0.3721 | 0.09081 |
+#> |.....................| 0.1473 | -0.05128 | 0.01723 | 0.2650 |
+#> |.....................| -0.04930 | 0.2121 | 0.3911 | -0.1952 |
+#> |.....................| -0.2951 | 0.01195 | -0.4116 | -0.4404 |
+#> | 93| 466.62967 | 1.010 | -1.857 | -0.9822 | -0.8038 |
+#> |.....................| -0.8179 | -1.367 | 1.859 | -1.785 |
+#> |.....................| -0.9524 | -0.4748 | -0.9515 | -1.114 |
+#> |.....................| -0.5617 | -0.8740 | -1.004 | -0.3130 |
+#> | U| 466.62967 | 92.43 | -6.045 | -0.9507 | -2.056 |
+#> |.....................| -4.460 | 0.2370 | 1.960 | 0.03192 |
+#> |.....................| 0.7962 | 0.06971 | 0.6756 | 0.6815 |
+#> |.....................| 1.548 | 0.9616 | 0.7476 | 1.890 |
+#> | X| 466.62967 | 92.43 | 0.002369 | 0.2787 | 0.1280 |
+#> |.....................| 0.01156 | 0.5590 | 1.960 | 0.03192 |
+#> |.....................| 0.7962 | 0.06971 | 0.6756 | 0.6815 |
+#> |.....................| 1.548 | 0.9616 | 0.7476 | 1.890 |
+#> | F| Forward Diff. | 0.1737 | 0.01712 | -0.3712 | 0.07555 |
+#> |.....................| 0.1320 | -0.03330 | -0.1756 | 0.3015 |
+#> |.....................| -0.06297 | 0.1717 | 0.09645 | -0.1674 |
+#> |.....................| -0.2756 | -0.01624 | -0.3459 | -0.4307 |
+#> | 94| 466.62779 | 1.010 | -1.856 | -0.9797 | -0.8047 |
+#> |.....................| -0.8221 | -1.366 | 1.862 | -1.786 |
+#> |.....................| -0.9500 | -0.4779 | -0.9517 | -1.113 |
+#> |.....................| -0.5623 | -0.8742 | -1.003 | -0.3111 |
+#> | U| 466.62779 | 92.40 | -6.045 | -0.9484 | -2.056 |
+#> |.....................| -4.464 | 0.2375 | 1.961 | 0.03188 |
+#> |.....................| 0.7972 | 0.06963 | 0.6755 | 0.6823 |
+#> |.....................| 1.548 | 0.9614 | 0.7480 | 1.893 |
+#> | X| 466.62779 | 92.40 | 0.002370 | 0.2792 | 0.1279 |
+#> |.....................| 0.01152 | 0.5591 | 1.961 | 0.03188 |
+#> |.....................| 0.7972 | 0.06963 | 0.6755 | 0.6823 |
+#> |.....................| 1.548 | 0.9614 | 0.7480 | 1.893 |
+#> | F| Forward Diff. | -2.926 | 0.01199 | -0.2808 | 0.07297 |
+#> |.....................| 0.1250 | -0.02504 | 0.02207 | 0.2419 |
+#> |.....................| -0.03068 | 0.1983 | 0.3271 | -0.08125 |
+#> |.....................| -0.2841 | -0.05347 | -0.2873 | -0.3919 |
+#> | 95| 466.62386 | 1.010 | -1.856 | -0.9811 | -0.8057 |
+#> |.....................| -0.8267 | -1.365 | 1.862 | -1.788 |
+#> |.....................| -0.9479 | -0.4822 | -0.9526 | -1.114 |
+#> |.....................| -0.5610 | -0.8741 | -1.003 | -0.3093 |
+#> | U| 466.62386 | 92.43 | -6.045 | -0.9497 | -2.057 |
+#> |.....................| -4.469 | 0.2377 | 1.961 | 0.03183 |
+#> |.....................| 0.7980 | 0.06950 | 0.6749 | 0.6820 |
+#> |.....................| 1.549 | 0.9614 | 0.7483 | 1.895 |
+#> | X| 466.62386 | 92.43 | 0.002370 | 0.2789 | 0.1278 |
+#> |.....................| 0.01146 | 0.5592 | 1.961 | 0.03183 |
+#> |.....................| 0.7980 | 0.06950 | 0.6749 | 0.6820 |
+#> |.....................| 1.549 | 0.9614 | 0.7483 | 1.895 |
+#> | F| Forward Diff. | 0.1137 | 0.01564 | -0.3265 | 0.06191 |
+#> |.....................| 0.1094 | -0.02529 | 0.01125 | 0.2123 |
+#> |.....................| -0.07598 | 0.1365 | 0.2003 | -0.1363 |
+#> |.....................| -0.2276 | -0.05501 | -0.2526 | -0.4116 |
+#> | 96| 466.62386 | 1.010 | -1.856 | -0.9811 | -0.8057 |
+#> |.....................| -0.8267 | -1.365 | 1.862 | -1.788 |
+#> |.....................| -0.9479 | -0.4822 | -0.9526 | -1.114 |
+#> |.....................| -0.5610 | -0.8741 | -1.003 | -0.3093 |
+#> | U| 466.62386 | 92.43 | -6.045 | -0.9497 | -2.057 |
+#> |.....................| -4.469 | 0.2377 | 1.961 | 0.03183 |
+#> |.....................| 0.7980 | 0.06950 | 0.6749 | 0.6820 |
+#> |.....................| 1.549 | 0.9614 | 0.7483 | 1.895 |
+#> | X| 466.62386 | 92.43 | 0.002370 | 0.2789 | 0.1278 |
+#> |.....................| 0.01146 | 0.5592 | 1.961 | 0.03183 |
+#> |.....................| 0.7980 | 0.06950 | 0.6749 | 0.6820 |
+#> |.....................| 1.549 | 0.9614 | 0.7483 | 1.895 |
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo
+AIC(
+ f_nlmixr_sfo_sfo_focei_const$nm,
+ f_nlmixr_fomc_sfo_focei_const$nm,
+ f_nlmixr_dfop_sfo_focei_const$nm,
+ f_nlmixr_fomc_sfo_saem_obs$nm,
+ f_nlmixr_fomc_sfo_focei_obs$nm,
+ f_nlmixr_dfop_sfo_saem_obs$nm,
+ f_nlmixr_dfop_sfo_focei_obs$nm,
+ f_nlmixr_fomc_sfo_focei_tc$nm,
+ f_nlmixr_dfop_sfo_focei_tc$nm,
+ f_nlmixr_fomc_sfo_saem_obs_tc$nm,
+ f_nlmixr_fomc_sfo_focei_obs_tc$nm,
+ f_nlmixr_dfop_sfo_saem_obs_tc$nm,
+ f_nlmixr_dfop_sfo_focei_obs_tc$nm
+)
+#> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> df AIC
+#> f_nlmixr_sfo_sfo_focei_const$nm 9 1082.4868
+#> f_nlmixr_fomc_sfo_focei_const$nm 11 814.4317
+#> f_nlmixr_dfop_sfo_focei_const$nm 13 866.0485
+#> f_nlmixr_fomc_sfo_saem_obs$nm 12 791.7256
+#> f_nlmixr_fomc_sfo_focei_obs$nm 12 794.5998
+#> f_nlmixr_dfop_sfo_saem_obs$nm 14 812.0463
+#> f_nlmixr_dfop_sfo_focei_obs$nm 14 846.9228
+#> f_nlmixr_fomc_sfo_focei_tc$nm 12 812.3585
+#> f_nlmixr_dfop_sfo_focei_tc$nm 14 842.3479
+#> f_nlmixr_fomc_sfo_saem_obs_tc$nm 14 817.1261
+#> f_nlmixr_fomc_sfo_focei_obs_tc$nm 14 787.4863
+#> f_nlmixr_dfop_sfo_saem_obs_tc$nm 16 858.3213
+#> f_nlmixr_dfop_sfo_focei_obs_tc$nm 16 811.0630# Currently, FOMC-SFO with two-component error by variable fitted by focei gives the
+# lowest AIC
+plot(f_nlmixr_fomc_sfo_focei_obs_tc)
+#> nlmixr version used for fitting: 2.0.4
+#> mkin version used for pre-fitting: 1.0.5
+#> R version used for fitting: 4.1.0
+#> Date of fit: Fri Jun 11 10:54:54 2021
+#> Date of summary: Fri Jun 11 10:56:12 2021
+#>
+#> Equations:
+#> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
+#> d_A1/dt = + f_parent_to_A1 * (alpha/beta) * 1/((time/beta) + 1) *
+#> parent - k_A1 * A1
+#>
+#> Data:
+#> 170 observations of 2 variable(s) grouped in 5 datasets
+#>
+#> Degradation model predictions using RxODE
+#>
+#> Fitted in 23.28 s
+#>
+#> Variance model: Two-component variance unique to each observed variable
+#>
+#> Mean of starting values for individual parameters:
+#> parent_0 log_k_A1 f_parent_qlogis log_alpha log_beta
+#> 93.1168 -5.3034 -0.9442 -0.1065 2.2909
+#>
+#> Mean of starting values for error model parameters:
+#> sigma_low_parent rsd_high_parent sigma_low_A1 rsd_high_A1
+#> 1.15958 0.03005 1.15958 0.03005
+#>
+#> Fixed degradation parameter values:
+#> None
+#>
+#> Results:
+#>
+#> Likelihood calculated by focei
+#> AIC BIC logLik
+#> 787.5 831.4 -379.7
+#>
+#> Optimised parameters:
+#> est. lower upper
+#> parent_0 93.6898 91.2681 96.1114
+#> log_k_A1 -6.2923 -8.3662 -4.2185
+#> f_parent_qlogis -1.0019 -1.3760 -0.6278
+#> log_alpha -0.1639 -0.6641 0.3363
+#> log_beta 2.2031 1.6723 2.7340
+#>
+#> Correlation:
+#> prnt_0 lg__A1 f_prn_ lg_lph
+#> log_k_A1 0.368
+#> f_parent_qlogis -0.788 -0.401
+#> log_alpha 0.338 0.942 -0.307
+#> log_beta -0.401 -0.761 0.253 -0.555
+#>
+#> Random effects (omega):
+#> eta.parent_0 eta.log_k_A1 eta.f_parent_qlogis eta.log_alpha
+#> eta.parent_0 4.74 0.00 0.0000 0.0000
+#> eta.log_k_A1 0.00 5.57 0.0000 0.0000
+#> eta.f_parent_qlogis 0.00 0.00 0.1646 0.0000
+#> eta.log_alpha 0.00 0.00 0.0000 0.3312
+#> eta.log_beta 0.00 0.00 0.0000 0.0000
+#> eta.log_beta
+#> eta.parent_0 0.0000
+#> eta.log_k_A1 0.0000
+#> eta.f_parent_qlogis 0.0000
+#> eta.log_alpha 0.0000
+#> eta.log_beta 0.3438
+#>
+#> Variance model:
+#> sigma_low_parent rsd_high_parent sigma_low_A1 rsd_high_A1
+#> 2.35467 0.00261 0.64525 0.08456
+#>
+#> Backtransformed parameters:
+#> est. lower upper
+#> parent_0 93.68976 9.127e+01 96.11140
+#> k_A1 0.00185 2.326e-04 0.01472
+#> f_parent_to_A1 0.26857 2.017e-01 0.34801
+#> alpha 0.84879 5.147e-01 1.39971
+#> beta 9.05342 5.325e+00 15.39359
+#>
+#> Resulting formation fractions:
+#> ff
+#> parent_A1 0.2686
+#> parent_sink 0.7314
+#>
+#> Estimated disappearance times:
+#> DT50 DT90 DT50back
+#> parent 11.43 127.4 38.35
+#> A1 374.59 1244.4 NA# }
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/docs/dev/reference/plot.mixed.mmkin-1.png b/docs/dev/reference/plot.mixed.mmkin-1.png
index 2224d96e..be3c664a 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-1.png and b/docs/dev/reference/plot.mixed.mmkin-1.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin-2.png b/docs/dev/reference/plot.mixed.mmkin-2.png
index 28168495..b0e43b11 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-2.png and b/docs/dev/reference/plot.mixed.mmkin-2.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin-3.png b/docs/dev/reference/plot.mixed.mmkin-3.png
index d18275dd..a9b96726 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-3.png and b/docs/dev/reference/plot.mixed.mmkin-3.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin-4.png b/docs/dev/reference/plot.mixed.mmkin-4.png
index 2fd52425..22219e5e 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-4.png and b/docs/dev/reference/plot.mixed.mmkin-4.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin.html b/docs/dev/reference/plot.mixed.mmkin.html
index 36796580..a4222991 100644
--- a/docs/dev/reference/plot.mixed.mmkin.html
+++ b/docs/dev/reference/plot.mixed.mmkin.html
@@ -72,7 +72,7 @@
mkin
- 1.0.4.9000
+ 1.0.5
@@ -157,6 +157,8 @@
xlim = range(x$data$time),
resplot = c("predicted", "time"),
pred_over = NULL,
+ test_log_parms = FALSE,
+ conf.level = 0.6,
ymax = "auto",
maxabs = "auto",
ncol.legend = ifelse(length(i) <= 3, length(i) + 1, ifelse(length(i) <= 8, 3, 4)),
@@ -210,6 +212,16 @@ predicted values?
pred_over
Named list of alternative predictions as obtained
from mkinpredict with a compatible mkinmod.
+
+
+ test_log_parms
+ Passed to mean_degparms in the case of an
+mixed.mmkin object
+
+
+ conf.level
+ Passed to mean_degparms in the case of an
+mixed.mmkin object
ymax
@@ -278,16 +290,21 @@ corresponding model prediction lines for the different datasets.
# For this fit we need to increase pnlsMaxiter, and we increase the
# tolerance in order to speed up the fit for this example evaluation
+# It still takes 20 seconds to run
f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3))
plot(f_nlme)
#> Running main SAEM algorithm
-#> [1] "Tue Mar 9 17:34:35 2021"
+#> [1] "Fri Jun 11 10:56:37 2021"
#> ....
#> Minimisation finished
-#> [1] "Tue Mar 9 17:34:42 2021"
+f_obs <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, error_model = "obs")
+f_nlmix <- nlmix(f_obs)
+#> Error in nlmix(f_obs): could not find function "nlmix"#> Error in plot(f_nlmix): object 'f_nlmix' not found
# We can overlay the two variants if we generate predictions
pred_nlme <- mkinpredict(dfop_sfo,
f_nlme$bparms.optim[-1],
diff --git a/docs/dev/reference/reexports.html b/docs/dev/reference/reexports.html
index 371567d8..f5ace044 100644
--- a/docs/dev/reference/reexports.html
+++ b/docs/dev/reference/reexports.html
@@ -47,6 +47,8 @@ below to see their documentation.
nlmenlme
+ nlmixrnlmixr
+
" />
@@ -79,7 +81,7 @@ below to see their documentation.
mkin
- 1.0.3.9000
+ 1.0.5
@@ -146,7 +148,7 @@ below to see their documentation.
Objects exported from other packages
- Source: R/lrtest.mkinfit.R
, R/nlme.mmkin.R
+ Source: R/lrtest.mkinfit.R
, R/nlme.mmkin.R
, R/nlmixr.R
reexports.Rd
@@ -158,6 +160,8 @@ below to see their documentation.
- nlme
+ - nlmixr
+
diff --git a/docs/dev/reference/saem-1.png b/docs/dev/reference/saem-1.png
index 0da31388..0e87d741 100644
Binary files a/docs/dev/reference/saem-1.png and b/docs/dev/reference/saem-1.png differ
diff --git a/docs/dev/reference/saem-2.png b/docs/dev/reference/saem-2.png
index 010950ba..456a4c58 100644
Binary files a/docs/dev/reference/saem-2.png and b/docs/dev/reference/saem-2.png differ
diff --git a/docs/dev/reference/saem-3.png b/docs/dev/reference/saem-3.png
index 829f22bf..27d43e53 100644
Binary files a/docs/dev/reference/saem-3.png and b/docs/dev/reference/saem-3.png differ
diff --git a/docs/dev/reference/saem-4.png b/docs/dev/reference/saem-4.png
index 4e976fa2..5c089bbc 100644
Binary files a/docs/dev/reference/saem-4.png and b/docs/dev/reference/saem-4.png differ
diff --git a/docs/dev/reference/saem-5.png b/docs/dev/reference/saem-5.png
index f50969b4..8212ec67 100644
Binary files a/docs/dev/reference/saem-5.png and b/docs/dev/reference/saem-5.png differ
diff --git a/docs/dev/reference/saem.html b/docs/dev/reference/saem.html
index 23102df3..98faad6f 100644
--- a/docs/dev/reference/saem.html
+++ b/docs/dev/reference/saem.html
@@ -74,7 +74,7 @@ Expectation Maximisation algorithm (SAEM)." />
mkin
- 1.0.4.9000
+ 1.0.5
@@ -161,8 +161,9 @@ Expectation Maximisation algorithm (SAEM).
test_log_parms = FALSE,
conf.level = 0.6,
solution_type = "auto",
- control = list(displayProgress = FALSE, print = FALSE, save = FALSE, save.graphs =
- FALSE),
+ nbiter.saemix = c(300, 100),
+ control = list(displayProgress = FALSE, print = FALSE, nbiter.saemix = nbiter.saemix,
+ save = FALSE, save.graphs = FALSE),
fail_with_errors = TRUE,
verbose = FALSE,
quiet = FALSE,
@@ -214,7 +215,7 @@ be used to override the starting values obtained from the 'mmkin' object.If TRUE, an attempt is made to use more robust starting
values for population parameters fitted as log parameters in mkin (like
rate constants) by only considering rate constants that pass the t-test
-when calculating mean degradation parameters using mean_degparms.
+when calculating mean degradation parameters using mean_degparms.
conf.level
@@ -225,10 +226,15 @@ for parameter that are tested if requested by 'test_log_parms'.
solution_type
Possibility to specify the solution type in case the
automatic choice is not desired
+
+
+ nbiter.saemix
+ Convenience option to increase the number of
+iterations
control
- Passed to saemix::saemix
+ Passed to saemix::saemix.
fail_with_errors
@@ -282,32 +288,35 @@ using mmkin.
state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)
#> Running main SAEM algorithm
-#> [1] "Tue Mar 9 17:34:44 2021"
+#> [1] "Fri Jun 11 10:56:49 2021"
#> ....
#> Minimisation finished
-#> [1] "Tue Mar 9 17:34:45 2021"
+#> [1] "Fri Jun 11 10:56:51 2021"
f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
f_saem_sfo <- saem(f_mmkin_parent["SFO", ])
#> Running main SAEM algorithm
-#> [1] "Tue Mar 9 17:34:46 2021"
+#> [1] "Fri Jun 11 10:56:53 2021"
#> ....
#> Minimisation finished
-#> [1] "Tue Mar 9 17:34:48 2021"f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
+#> [1] "Fri Jun 11 10:56:54 2021"f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
#> Running main SAEM algorithm
-#> [1] "Tue Mar 9 17:34:48 2021"
+#> [1] "Fri Jun 11 10:56:54 2021"
#> ....
#> Minimisation finished
-#> [1] "Tue Mar 9 17:34:50 2021"f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
+#> [1] "Fri Jun 11 10:56:57 2021"f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
#> Running main SAEM algorithm
-#> [1] "Tue Mar 9 17:34:51 2021"
+#> [1] "Fri Jun 11 10:56:57 2021"
#> ....
#> Minimisation finished
-#> [1] "Tue Mar 9 17:34:53 2021"
+#> [1] "Fri Jun 11 10:57:00 2021"
# The returned saem.mmkin object contains an SaemixObject, therefore we can use
# functions from saemix
library(saemix)
#> Package saemix, version 3.1.9000
-#> please direct bugs, questions and feedback to emmanuelle.comets@inserm.frcompare.saemix(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so)
+#> please direct bugs, questions and feedback to emmanuelle.comets@inserm.fr#>
+#> Attaching package: ‘saemix’#> The following object is masked from ‘package:RxODE’:
+#>
+#> phi#> Likelihoods calculated by importance sampling#> AIC BIC
#> 1 624.2484 622.2956
#> 2 467.7096 464.9757
@@ -348,10 +357,10 @@ using mmkin.
f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
#> Running main SAEM algorithm
-#> [1] "Tue Mar 9 17:34:55 2021"
+#> [1] "Fri Jun 11 10:57:03 2021"
#> ....
#> Minimisation finished
-#> [1] "Tue Mar 9 17:35:00 2021"#> Likelihoods calculated by importance sampling#> AIC BIC
#> 1 467.7096 464.9757
#> 2 469.6831 466.5586#> Running main SAEM algorithm
-#> [1] "Tue Mar 9 17:35:02 2021"
+#> [1] "Fri Jun 11 10:57:12 2021"
#> ....
#> Minimisation finished
-#> [1] "Tue Mar 9 17:35:07 2021"f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
+#> [1] "Fri Jun 11 10:57:17 2021"f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
#> Running main SAEM algorithm
-#> [1] "Tue Mar 9 17:35:07 2021"
+#> [1] "Fri Jun 11 10:57:17 2021"
#> ....
#> Minimisation finished
-#> [1] "Tue Mar 9 17:35:15 2021"# We can use print, plot and summary methods to check the results
+#> [1] "Fri Jun 11 10:57:26 2021"#> Kinetic nonlinear mixed-effects model fit by SAEM
#> Structural model:
@@ -421,10 +430,10 @@ using mmkin.
#> SD.g_qlogis 0.44771 -0.86417 1.7596#> saemix version used for fitting: 3.1.9000
-#> mkin version used for pre-fitting: 1.0.4.9000
-#> R version used for fitting: 4.0.4
-#> Date of fit: Tue Mar 9 17:35:16 2021
-#> Date of summary: Tue Mar 9 17:35:16 2021
+#> mkin version used for pre-fitting: 1.0.5
+#> R version used for fitting: 4.1.0
+#> Date of fit: Fri Jun 11 10:57:27 2021
+#> Date of summary: Fri Jun 11 10:57:27 2021
#>
#> Equations:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -439,7 +448,7 @@ using mmkin.
#>
#> Model predictions using solution type analytical
#>
-#> Fitted in 8.668 s using 300, 100 iterations
+#> Fitted in 9.712 s using 300, 100 iterations
#>
#> Variance model: Constant variance
#>
@@ -509,176 +518,176 @@ using mmkin.
#>
#> Data:
#> ds name time observed predicted residual std standardized
-#> Dataset 6 parent 0 97.2 95.79523 -1.40477 1.883 -0.745888
-#> Dataset 6 parent 0 96.4 95.79523 -0.60477 1.883 -0.321114
-#> Dataset 6 parent 3 71.1 71.32042 0.22042 1.883 0.117035
-#> Dataset 6 parent 3 69.2 71.32042 2.12042 1.883 1.125873
-#> Dataset 6 parent 6 58.1 56.45256 -1.64744 1.883 -0.874739
-#> Dataset 6 parent 6 56.6 56.45256 -0.14744 1.883 -0.078288
-#> Dataset 6 parent 10 44.4 44.48523 0.08523 1.883 0.045257
-#> Dataset 6 parent 10 43.4 44.48523 1.08523 1.883 0.576224
-#> Dataset 6 parent 20 33.3 29.75774 -3.54226 1.883 -1.880826
-#> Dataset 6 parent 20 29.2 29.75774 0.55774 1.883 0.296141
-#> Dataset 6 parent 34 17.6 19.35710 1.75710 1.883 0.932966
-#> Dataset 6 parent 34 18.0 19.35710 1.35710 1.883 0.720579
-#> Dataset 6 parent 55 10.5 10.48443 -0.01557 1.883 -0.008266
-#> Dataset 6 parent 55 9.3 10.48443 1.18443 1.883 0.628895
-#> Dataset 6 parent 90 4.5 3.78622 -0.71378 1.883 -0.378995
-#> Dataset 6 parent 90 4.7 3.78622 -0.91378 1.883 -0.485188
-#> Dataset 6 parent 112 3.0 1.99608 -1.00392 1.883 -0.533048
-#> Dataset 6 parent 112 3.4 1.99608 -1.40392 1.883 -0.745435
-#> Dataset 6 parent 132 2.3 1.11539 -1.18461 1.883 -0.628990
-#> Dataset 6 parent 132 2.7 1.11539 -1.58461 1.883 -0.841377
-#> Dataset 6 A1 3 4.3 4.66132 0.36132 1.883 0.191849
-#> Dataset 6 A1 3 4.6 4.66132 0.06132 1.883 0.032559
-#> Dataset 6 A1 6 7.0 7.41087 0.41087 1.883 0.218157
-#> Dataset 6 A1 6 7.2 7.41087 0.21087 1.883 0.111964
-#> Dataset 6 A1 10 8.2 9.50878 1.30878 1.883 0.694921
-#> Dataset 6 A1 10 8.0 9.50878 1.50878 1.883 0.801114
-#> Dataset 6 A1 20 11.0 11.69902 0.69902 1.883 0.371157
-#> Dataset 6 A1 20 13.7 11.69902 -2.00098 1.883 -1.062455
-#> Dataset 6 A1 34 11.5 12.67784 1.17784 1.883 0.625396
-#> Dataset 6 A1 34 12.7 12.67784 -0.02216 1.883 -0.011765
-#> Dataset 6 A1 55 14.9 12.78556 -2.11444 1.883 -1.122701
-#> Dataset 6 A1 55 14.5 12.78556 -1.71444 1.883 -0.910314
-#> Dataset 6 A1 90 12.1 11.52954 -0.57046 1.883 -0.302898
-#> Dataset 6 A1 90 12.3 11.52954 -0.77046 1.883 -0.409092
-#> Dataset 6 A1 112 9.9 10.43825 0.53825 1.883 0.285793
-#> Dataset 6 A1 112 10.2 10.43825 0.23825 1.883 0.126503
-#> Dataset 6 A1 132 8.8 9.42830 0.62830 1.883 0.333609
-#> Dataset 6 A1 132 7.8 9.42830 1.62830 1.883 0.864577
-#> Dataset 7 parent 0 93.6 90.91477 -2.68523 1.883 -1.425772
-#> Dataset 7 parent 0 92.3 90.91477 -1.38523 1.883 -0.735514
-#> Dataset 7 parent 3 87.0 84.76874 -2.23126 1.883 -1.184726
-#> Dataset 7 parent 3 82.2 84.76874 2.56874 1.883 1.363919
-#> Dataset 7 parent 7 74.0 77.62735 3.62735 1.883 1.926003
-#> Dataset 7 parent 7 73.9 77.62735 3.72735 1.883 1.979100
-#> Dataset 7 parent 14 64.2 67.52266 3.32266 1.883 1.764224
-#> Dataset 7 parent 14 69.5 67.52266 -1.97734 1.883 -1.049904
-#> Dataset 7 parent 30 54.0 52.41949 -1.58051 1.883 -0.839202
-#> Dataset 7 parent 30 54.6 52.41949 -2.18051 1.883 -1.157783
-#> Dataset 7 parent 60 41.1 39.36582 -1.73418 1.883 -0.920794
-#> Dataset 7 parent 60 38.4 39.36582 0.96582 1.883 0.512818
-#> Dataset 7 parent 90 32.5 33.75388 1.25388 1.883 0.665771
-#> Dataset 7 parent 90 35.5 33.75388 -1.74612 1.883 -0.927132
-#> Dataset 7 parent 120 28.1 30.41716 2.31716 1.883 1.230335
-#> Dataset 7 parent 120 29.0 30.41716 1.41716 1.883 0.752464
-#> Dataset 7 parent 180 26.5 25.66046 -0.83954 1.883 -0.445767
-#> Dataset 7 parent 180 27.6 25.66046 -1.93954 1.883 -1.029832
-#> Dataset 7 A1 3 3.9 2.69355 -1.20645 1.883 -0.640585
-#> Dataset 7 A1 3 3.1 2.69355 -0.40645 1.883 -0.215811
-#> Dataset 7 A1 7 6.9 5.81807 -1.08193 1.883 -0.574470
-#> Dataset 7 A1 7 6.6 5.81807 -0.78193 1.883 -0.415180
-#> Dataset 7 A1 14 10.4 10.22529 -0.17471 1.883 -0.092767
-#> Dataset 7 A1 14 8.3 10.22529 1.92529 1.883 1.022265
-#> Dataset 7 A1 30 14.4 16.75484 2.35484 1.883 1.250345
-#> Dataset 7 A1 30 13.7 16.75484 3.05484 1.883 1.622022
-#> Dataset 7 A1 60 22.1 22.22540 0.12540 1.883 0.066583
-#> Dataset 7 A1 60 22.3 22.22540 -0.07460 1.883 -0.039610
-#> Dataset 7 A1 90 27.5 24.38799 -3.11201 1.883 -1.652376
-#> Dataset 7 A1 90 25.4 24.38799 -1.01201 1.883 -0.537344
-#> Dataset 7 A1 120 28.0 25.53294 -2.46706 1.883 -1.309927
-#> Dataset 7 A1 120 26.6 25.53294 -1.06706 1.883 -0.566572
-#> Dataset 7 A1 180 25.8 26.94943 1.14943 1.883 0.610309
-#> Dataset 7 A1 180 25.3 26.94943 1.64943 1.883 0.875793
-#> Dataset 8 parent 0 91.9 91.53246 -0.36754 1.883 -0.195151
-#> Dataset 8 parent 0 90.8 91.53246 0.73246 1.883 0.388914
-#> Dataset 8 parent 1 64.9 67.73197 2.83197 1.883 1.503686
-#> Dataset 8 parent 1 66.2 67.73197 1.53197 1.883 0.813428
-#> Dataset 8 parent 3 43.5 41.58448 -1.91552 1.883 -1.017081
-#> Dataset 8 parent 3 44.1 41.58448 -2.51552 1.883 -1.335662
-#> Dataset 8 parent 8 18.3 19.62286 1.32286 1.883 0.702395
-#> Dataset 8 parent 8 18.1 19.62286 1.52286 1.883 0.808588
-#> Dataset 8 parent 14 10.2 10.77819 0.57819 1.883 0.306999
-#> Dataset 8 parent 14 10.8 10.77819 -0.02181 1.883 -0.011582
-#> Dataset 8 parent 27 4.9 3.26977 -1.63023 1.883 -0.865599
-#> Dataset 8 parent 27 3.3 3.26977 -0.03023 1.883 -0.016051
-#> Dataset 8 parent 48 1.6 0.48024 -1.11976 1.883 -0.594557
-#> Dataset 8 parent 48 1.5 0.48024 -1.01976 1.883 -0.541460
-#> Dataset 8 parent 70 1.1 0.06438 -1.03562 1.883 -0.549881
-#> Dataset 8 parent 70 0.9 0.06438 -0.83562 1.883 -0.443688
-#> Dataset 8 A1 1 9.6 7.61539 -1.98461 1.883 -1.053761
-#> Dataset 8 A1 1 7.7 7.61539 -0.08461 1.883 -0.044923
-#> Dataset 8 A1 3 15.0 15.47954 0.47954 1.883 0.254622
-#> Dataset 8 A1 3 15.1 15.47954 0.37954 1.883 0.201525
-#> Dataset 8 A1 8 21.2 20.22616 -0.97384 1.883 -0.517075
-#> Dataset 8 A1 8 21.1 20.22616 -0.87384 1.883 -0.463979
-#> Dataset 8 A1 14 19.7 20.00067 0.30067 1.883 0.159645
-#> Dataset 8 A1 14 18.9 20.00067 1.10067 1.883 0.584419
-#> Dataset 8 A1 27 17.5 16.38142 -1.11858 1.883 -0.593928
-#> Dataset 8 A1 27 15.9 16.38142 0.48142 1.883 0.255620
-#> Dataset 8 A1 48 9.5 10.25357 0.75357 1.883 0.400124
-#> Dataset 8 A1 48 9.8 10.25357 0.45357 1.883 0.240833
-#> Dataset 8 A1 70 6.2 5.95728 -0.24272 1.883 -0.128878
-#> Dataset 8 A1 70 6.1 5.95728 -0.14272 1.883 -0.075781
-#> Dataset 9 parent 0 99.8 97.47274 -2.32726 1.883 -1.235697
-#> Dataset 9 parent 0 98.3 97.47274 -0.82726 1.883 -0.439246
-#> Dataset 9 parent 1 77.1 79.72257 2.62257 1.883 1.392500
-#> Dataset 9 parent 1 77.2 79.72257 2.52257 1.883 1.339404
-#> Dataset 9 parent 3 59.0 56.26497 -2.73503 1.883 -1.452212
-#> Dataset 9 parent 3 58.1 56.26497 -1.83503 1.883 -0.974342
-#> Dataset 9 parent 8 27.4 31.66985 4.26985 1.883 2.267151
-#> Dataset 9 parent 8 29.2 31.66985 2.46985 1.883 1.311410
-#> Dataset 9 parent 14 19.1 22.39789 3.29789 1.883 1.751071
-#> Dataset 9 parent 14 29.6 22.39789 -7.20211 1.883 -3.824090
-#> Dataset 9 parent 27 10.1 14.21758 4.11758 1.883 2.186301
-#> Dataset 9 parent 27 18.2 14.21758 -3.98242 1.883 -2.114537
-#> Dataset 9 parent 48 4.5 7.27921 2.77921 1.883 1.475671
-#> Dataset 9 parent 48 9.1 7.27921 -1.82079 1.883 -0.966780
-#> Dataset 9 parent 70 2.3 3.61470 1.31470 1.883 0.698065
-#> Dataset 9 parent 70 2.9 3.61470 0.71470 1.883 0.379485
-#> Dataset 9 parent 91 2.0 1.85303 -0.14697 1.883 -0.078038
-#> Dataset 9 parent 91 1.8 1.85303 0.05303 1.883 0.028155
-#> Dataset 9 parent 120 2.0 0.73645 -1.26355 1.883 -0.670906
-#> Dataset 9 parent 120 2.2 0.73645 -1.46355 1.883 -0.777099
-#> Dataset 9 A1 1 4.2 3.87843 -0.32157 1.883 -0.170743
-#> Dataset 9 A1 1 3.9 3.87843 -0.02157 1.883 -0.011453
-#> Dataset 9 A1 3 7.4 8.90535 1.50535 1.883 0.799291
-#> Dataset 9 A1 3 7.9 8.90535 1.00535 1.883 0.533807
-#> Dataset 9 A1 8 14.5 13.75172 -0.74828 1.883 -0.397312
-#> Dataset 9 A1 8 13.7 13.75172 0.05172 1.883 0.027462
-#> Dataset 9 A1 14 14.2 14.97541 0.77541 1.883 0.411715
-#> Dataset 9 A1 14 12.2 14.97541 2.77541 1.883 1.473650
-#> Dataset 9 A1 27 13.7 14.94728 1.24728 1.883 0.662266
-#> Dataset 9 A1 27 13.2 14.94728 1.74728 1.883 0.927750
-#> Dataset 9 A1 48 13.6 13.66078 0.06078 1.883 0.032272
-#> Dataset 9 A1 48 15.4 13.66078 -1.73922 1.883 -0.923470
-#> Dataset 9 A1 70 10.4 11.84899 1.44899 1.883 0.769365
-#> Dataset 9 A1 70 11.6 11.84899 0.24899 1.883 0.132204
-#> Dataset 9 A1 91 10.0 10.09177 0.09177 1.883 0.048727
-#> Dataset 9 A1 91 9.5 10.09177 0.59177 1.883 0.314211
-#> Dataset 9 A1 120 9.1 7.91379 -1.18621 1.883 -0.629841
-#> Dataset 9 A1 120 9.0 7.91379 -1.08621 1.883 -0.576744
-#> Dataset 10 parent 0 96.1 93.65257 -2.44743 1.883 -1.299505
-#> Dataset 10 parent 0 94.3 93.65257 -0.64743 1.883 -0.343763
-#> Dataset 10 parent 8 73.9 77.85906 3.95906 1.883 2.102132
-#> Dataset 10 parent 8 73.9 77.85906 3.95906 1.883 2.102132
-#> Dataset 10 parent 14 69.4 70.17143 0.77143 1.883 0.409606
-#> Dataset 10 parent 14 73.1 70.17143 -2.92857 1.883 -1.554974
-#> Dataset 10 parent 21 65.6 63.99188 -1.60812 1.883 -0.853862
-#> Dataset 10 parent 21 65.3 63.99188 -1.30812 1.883 -0.694572
-#> Dataset 10 parent 41 55.9 54.64292 -1.25708 1.883 -0.667467
-#> Dataset 10 parent 41 54.4 54.64292 0.24292 1.883 0.128985
-#> Dataset 10 parent 63 47.0 49.61303 2.61303 1.883 1.387433
-#> Dataset 10 parent 63 49.3 49.61303 0.31303 1.883 0.166207
-#> Dataset 10 parent 91 44.7 45.17807 0.47807 1.883 0.253839
-#> Dataset 10 parent 91 46.7 45.17807 -1.52193 1.883 -0.808096
-#> Dataset 10 parent 120 42.1 41.27970 -0.82030 1.883 -0.435552
-#> Dataset 10 parent 120 41.3 41.27970 -0.02030 1.883 -0.010778
-#> Dataset 10 A1 8 3.3 3.99294 0.69294 1.883 0.367929
-#> Dataset 10 A1 8 3.4 3.99294 0.59294 1.883 0.314832
-#> Dataset 10 A1 14 3.9 5.92756 2.02756 1.883 1.076570
-#> Dataset 10 A1 14 2.9 5.92756 3.02756 1.883 1.607538
-#> Dataset 10 A1 21 6.4 7.47313 1.07313 1.883 0.569799
-#> Dataset 10 A1 21 7.2 7.47313 0.27313 1.883 0.145025
-#> Dataset 10 A1 41 9.1 9.76819 0.66819 1.883 0.354786
-#> Dataset 10 A1 41 8.5 9.76819 1.26819 1.883 0.673367
-#> Dataset 10 A1 63 11.7 10.94733 -0.75267 1.883 -0.399643
-#> Dataset 10 A1 63 12.0 10.94733 -1.05267 1.883 -0.558933
-#> Dataset 10 A1 91 13.3 11.93773 -1.36227 1.883 -0.723321
-#> Dataset 10 A1 91 13.2 11.93773 -1.26227 1.883 -0.670224
-#> Dataset 10 A1 120 14.3 12.77666 -1.52334 1.883 -0.808847
-#> Dataset 10 A1 120 12.1 12.77666 0.67666 1.883 0.359282
+#> Dataset 6 parent 0 97.2 95.79523 1.40477 1.883 0.745888
+#> Dataset 6 parent 0 96.4 95.79523 0.60477 1.883 0.321114
+#> Dataset 6 parent 3 71.1 71.32042 -0.22042 1.883 -0.117035
+#> Dataset 6 parent 3 69.2 71.32042 -2.12042 1.883 -1.125873
+#> Dataset 6 parent 6 58.1 56.45256 1.64744 1.883 0.874739
+#> Dataset 6 parent 6 56.6 56.45256 0.14744 1.883 0.078288
+#> Dataset 6 parent 10 44.4 44.48523 -0.08523 1.883 -0.045257
+#> Dataset 6 parent 10 43.4 44.48523 -1.08523 1.883 -0.576224
+#> Dataset 6 parent 20 33.3 29.75774 3.54226 1.883 1.880826
+#> Dataset 6 parent 20 29.2 29.75774 -0.55774 1.883 -0.296141
+#> Dataset 6 parent 34 17.6 19.35710 -1.75710 1.883 -0.932966
+#> Dataset 6 parent 34 18.0 19.35710 -1.35710 1.883 -0.720579
+#> Dataset 6 parent 55 10.5 10.48443 0.01557 1.883 0.008266
+#> Dataset 6 parent 55 9.3 10.48443 -1.18443 1.883 -0.628895
+#> Dataset 6 parent 90 4.5 3.78622 0.71378 1.883 0.378995
+#> Dataset 6 parent 90 4.7 3.78622 0.91378 1.883 0.485188
+#> Dataset 6 parent 112 3.0 1.99608 1.00392 1.883 0.533048
+#> Dataset 6 parent 112 3.4 1.99608 1.40392 1.883 0.745435
+#> Dataset 6 parent 132 2.3 1.11539 1.18461 1.883 0.628990
+#> Dataset 6 parent 132 2.7 1.11539 1.58461 1.883 0.841377
+#> Dataset 6 A1 3 4.3 4.66132 -0.36132 1.883 -0.191849
+#> Dataset 6 A1 3 4.6 4.66132 -0.06132 1.883 -0.032559
+#> Dataset 6 A1 6 7.0 7.41087 -0.41087 1.883 -0.218157
+#> Dataset 6 A1 6 7.2 7.41087 -0.21087 1.883 -0.111964
+#> Dataset 6 A1 10 8.2 9.50878 -1.30878 1.883 -0.694921
+#> Dataset 6 A1 10 8.0 9.50878 -1.50878 1.883 -0.801114
+#> Dataset 6 A1 20 11.0 11.69902 -0.69902 1.883 -0.371157
+#> Dataset 6 A1 20 13.7 11.69902 2.00098 1.883 1.062455
+#> Dataset 6 A1 34 11.5 12.67784 -1.17784 1.883 -0.625396
+#> Dataset 6 A1 34 12.7 12.67784 0.02216 1.883 0.011765
+#> Dataset 6 A1 55 14.9 12.78556 2.11444 1.883 1.122701
+#> Dataset 6 A1 55 14.5 12.78556 1.71444 1.883 0.910314
+#> Dataset 6 A1 90 12.1 11.52954 0.57046 1.883 0.302898
+#> Dataset 6 A1 90 12.3 11.52954 0.77046 1.883 0.409092
+#> Dataset 6 A1 112 9.9 10.43825 -0.53825 1.883 -0.285793
+#> Dataset 6 A1 112 10.2 10.43825 -0.23825 1.883 -0.126503
+#> Dataset 6 A1 132 8.8 9.42830 -0.62830 1.883 -0.333609
+#> Dataset 6 A1 132 7.8 9.42830 -1.62830 1.883 -0.864577
+#> Dataset 7 parent 0 93.6 90.91477 2.68523 1.883 1.425772
+#> Dataset 7 parent 0 92.3 90.91477 1.38523 1.883 0.735514
+#> Dataset 7 parent 3 87.0 84.76874 2.23126 1.883 1.184726
+#> Dataset 7 parent 3 82.2 84.76874 -2.56874 1.883 -1.363919
+#> Dataset 7 parent 7 74.0 77.62735 -3.62735 1.883 -1.926003
+#> Dataset 7 parent 7 73.9 77.62735 -3.72735 1.883 -1.979100
+#> Dataset 7 parent 14 64.2 67.52266 -3.32266 1.883 -1.764224
+#> Dataset 7 parent 14 69.5 67.52266 1.97734 1.883 1.049904
+#> Dataset 7 parent 30 54.0 52.41949 1.58051 1.883 0.839202
+#> Dataset 7 parent 30 54.6 52.41949 2.18051 1.883 1.157783
+#> Dataset 7 parent 60 41.1 39.36582 1.73418 1.883 0.920794
+#> Dataset 7 parent 60 38.4 39.36582 -0.96582 1.883 -0.512818
+#> Dataset 7 parent 90 32.5 33.75388 -1.25388 1.883 -0.665771
+#> Dataset 7 parent 90 35.5 33.75388 1.74612 1.883 0.927132
+#> Dataset 7 parent 120 28.1 30.41716 -2.31716 1.883 -1.230335
+#> Dataset 7 parent 120 29.0 30.41716 -1.41716 1.883 -0.752464
+#> Dataset 7 parent 180 26.5 25.66046 0.83954 1.883 0.445767
+#> Dataset 7 parent 180 27.6 25.66046 1.93954 1.883 1.029832
+#> Dataset 7 A1 3 3.9 2.69355 1.20645 1.883 0.640585
+#> Dataset 7 A1 3 3.1 2.69355 0.40645 1.883 0.215811
+#> Dataset 7 A1 7 6.9 5.81807 1.08193 1.883 0.574470
+#> Dataset 7 A1 7 6.6 5.81807 0.78193 1.883 0.415180
+#> Dataset 7 A1 14 10.4 10.22529 0.17471 1.883 0.092767
+#> Dataset 7 A1 14 8.3 10.22529 -1.92529 1.883 -1.022265
+#> Dataset 7 A1 30 14.4 16.75484 -2.35484 1.883 -1.250345
+#> Dataset 7 A1 30 13.7 16.75484 -3.05484 1.883 -1.622022
+#> Dataset 7 A1 60 22.1 22.22540 -0.12540 1.883 -0.066583
+#> Dataset 7 A1 60 22.3 22.22540 0.07460 1.883 0.039610
+#> Dataset 7 A1 90 27.5 24.38799 3.11201 1.883 1.652376
+#> Dataset 7 A1 90 25.4 24.38799 1.01201 1.883 0.537344
+#> Dataset 7 A1 120 28.0 25.53294 2.46706 1.883 1.309927
+#> Dataset 7 A1 120 26.6 25.53294 1.06706 1.883 0.566572
+#> Dataset 7 A1 180 25.8 26.94943 -1.14943 1.883 -0.610309
+#> Dataset 7 A1 180 25.3 26.94943 -1.64943 1.883 -0.875793
+#> Dataset 8 parent 0 91.9 91.53246 0.36754 1.883 0.195151
+#> Dataset 8 parent 0 90.8 91.53246 -0.73246 1.883 -0.388914
+#> Dataset 8 parent 1 64.9 67.73197 -2.83197 1.883 -1.503686
+#> Dataset 8 parent 1 66.2 67.73197 -1.53197 1.883 -0.813428
+#> Dataset 8 parent 3 43.5 41.58448 1.91552 1.883 1.017081
+#> Dataset 8 parent 3 44.1 41.58448 2.51552 1.883 1.335662
+#> Dataset 8 parent 8 18.3 19.62286 -1.32286 1.883 -0.702395
+#> Dataset 8 parent 8 18.1 19.62286 -1.52286 1.883 -0.808588
+#> Dataset 8 parent 14 10.2 10.77819 -0.57819 1.883 -0.306999
+#> Dataset 8 parent 14 10.8 10.77819 0.02181 1.883 0.011582
+#> Dataset 8 parent 27 4.9 3.26977 1.63023 1.883 0.865599
+#> Dataset 8 parent 27 3.3 3.26977 0.03023 1.883 0.016051
+#> Dataset 8 parent 48 1.6 0.48024 1.11976 1.883 0.594557
+#> Dataset 8 parent 48 1.5 0.48024 1.01976 1.883 0.541460
+#> Dataset 8 parent 70 1.1 0.06438 1.03562 1.883 0.549881
+#> Dataset 8 parent 70 0.9 0.06438 0.83562 1.883 0.443688
+#> Dataset 8 A1 1 9.6 7.61539 1.98461 1.883 1.053761
+#> Dataset 8 A1 1 7.7 7.61539 0.08461 1.883 0.044923
+#> Dataset 8 A1 3 15.0 15.47954 -0.47954 1.883 -0.254622
+#> Dataset 8 A1 3 15.1 15.47954 -0.37954 1.883 -0.201525
+#> Dataset 8 A1 8 21.2 20.22616 0.97384 1.883 0.517075
+#> Dataset 8 A1 8 21.1 20.22616 0.87384 1.883 0.463979
+#> Dataset 8 A1 14 19.7 20.00067 -0.30067 1.883 -0.159645
+#> Dataset 8 A1 14 18.9 20.00067 -1.10067 1.883 -0.584419
+#> Dataset 8 A1 27 17.5 16.38142 1.11858 1.883 0.593928
+#> Dataset 8 A1 27 15.9 16.38142 -0.48142 1.883 -0.255620
+#> Dataset 8 A1 48 9.5 10.25357 -0.75357 1.883 -0.400124
+#> Dataset 8 A1 48 9.8 10.25357 -0.45357 1.883 -0.240833
+#> Dataset 8 A1 70 6.2 5.95728 0.24272 1.883 0.128878
+#> Dataset 8 A1 70 6.1 5.95728 0.14272 1.883 0.075781
+#> Dataset 9 parent 0 99.8 97.47274 2.32726 1.883 1.235697
+#> Dataset 9 parent 0 98.3 97.47274 0.82726 1.883 0.439246
+#> Dataset 9 parent 1 77.1 79.72257 -2.62257 1.883 -1.392500
+#> Dataset 9 parent 1 77.2 79.72257 -2.52257 1.883 -1.339404
+#> Dataset 9 parent 3 59.0 56.26497 2.73503 1.883 1.452212
+#> Dataset 9 parent 3 58.1 56.26497 1.83503 1.883 0.974342
+#> Dataset 9 parent 8 27.4 31.66985 -4.26985 1.883 -2.267151
+#> Dataset 9 parent 8 29.2 31.66985 -2.46985 1.883 -1.311410
+#> Dataset 9 parent 14 19.1 22.39789 -3.29789 1.883 -1.751071
+#> Dataset 9 parent 14 29.6 22.39789 7.20211 1.883 3.824090
+#> Dataset 9 parent 27 10.1 14.21758 -4.11758 1.883 -2.186301
+#> Dataset 9 parent 27 18.2 14.21758 3.98242 1.883 2.114537
+#> Dataset 9 parent 48 4.5 7.27921 -2.77921 1.883 -1.475671
+#> Dataset 9 parent 48 9.1 7.27921 1.82079 1.883 0.966780
+#> Dataset 9 parent 70 2.3 3.61470 -1.31470 1.883 -0.698065
+#> Dataset 9 parent 70 2.9 3.61470 -0.71470 1.883 -0.379485
+#> Dataset 9 parent 91 2.0 1.85303 0.14697 1.883 0.078038
+#> Dataset 9 parent 91 1.8 1.85303 -0.05303 1.883 -0.028155
+#> Dataset 9 parent 120 2.0 0.73645 1.26355 1.883 0.670906
+#> Dataset 9 parent 120 2.2 0.73645 1.46355 1.883 0.777099
+#> Dataset 9 A1 1 4.2 3.87843 0.32157 1.883 0.170743
+#> Dataset 9 A1 1 3.9 3.87843 0.02157 1.883 0.011453
+#> Dataset 9 A1 3 7.4 8.90535 -1.50535 1.883 -0.799291
+#> Dataset 9 A1 3 7.9 8.90535 -1.00535 1.883 -0.533807
+#> Dataset 9 A1 8 14.5 13.75172 0.74828 1.883 0.397312
+#> Dataset 9 A1 8 13.7 13.75172 -0.05172 1.883 -0.027462
+#> Dataset 9 A1 14 14.2 14.97541 -0.77541 1.883 -0.411715
+#> Dataset 9 A1 14 12.2 14.97541 -2.77541 1.883 -1.473650
+#> Dataset 9 A1 27 13.7 14.94728 -1.24728 1.883 -0.662266
+#> Dataset 9 A1 27 13.2 14.94728 -1.74728 1.883 -0.927750
+#> Dataset 9 A1 48 13.6 13.66078 -0.06078 1.883 -0.032272
+#> Dataset 9 A1 48 15.4 13.66078 1.73922 1.883 0.923470
+#> Dataset 9 A1 70 10.4 11.84899 -1.44899 1.883 -0.769365
+#> Dataset 9 A1 70 11.6 11.84899 -0.24899 1.883 -0.132204
+#> Dataset 9 A1 91 10.0 10.09177 -0.09177 1.883 -0.048727
+#> Dataset 9 A1 91 9.5 10.09177 -0.59177 1.883 -0.314211
+#> Dataset 9 A1 120 9.1 7.91379 1.18621 1.883 0.629841
+#> Dataset 9 A1 120 9.0 7.91379 1.08621 1.883 0.576744
+#> Dataset 10 parent 0 96.1 93.65257 2.44743 1.883 1.299505
+#> Dataset 10 parent 0 94.3 93.65257 0.64743 1.883 0.343763
+#> Dataset 10 parent 8 73.9 77.85906 -3.95906 1.883 -2.102132
+#> Dataset 10 parent 8 73.9 77.85906 -3.95906 1.883 -2.102132
+#> Dataset 10 parent 14 69.4 70.17143 -0.77143 1.883 -0.409606
+#> Dataset 10 parent 14 73.1 70.17143 2.92857 1.883 1.554974
+#> Dataset 10 parent 21 65.6 63.99188 1.60812 1.883 0.853862
+#> Dataset 10 parent 21 65.3 63.99188 1.30812 1.883 0.694572
+#> Dataset 10 parent 41 55.9 54.64292 1.25708 1.883 0.667467
+#> Dataset 10 parent 41 54.4 54.64292 -0.24292 1.883 -0.128985
+#> Dataset 10 parent 63 47.0 49.61303 -2.61303 1.883 -1.387433
+#> Dataset 10 parent 63 49.3 49.61303 -0.31303 1.883 -0.166207
+#> Dataset 10 parent 91 44.7 45.17807 -0.47807 1.883 -0.253839
+#> Dataset 10 parent 91 46.7 45.17807 1.52193 1.883 0.808096
+#> Dataset 10 parent 120 42.1 41.27970 0.82030 1.883 0.435552
+#> Dataset 10 parent 120 41.3 41.27970 0.02030 1.883 0.010778
+#> Dataset 10 A1 8 3.3 3.99294 -0.69294 1.883 -0.367929
+#> Dataset 10 A1 8 3.4 3.99294 -0.59294 1.883 -0.314832
+#> Dataset 10 A1 14 3.9 5.92756 -2.02756 1.883 -1.076570
+#> Dataset 10 A1 14 2.9 5.92756 -3.02756 1.883 -1.607538
+#> Dataset 10 A1 21 6.4 7.47313 -1.07313 1.883 -0.569799
+#> Dataset 10 A1 21 7.2 7.47313 -0.27313 1.883 -0.145025
+#> Dataset 10 A1 41 9.1 9.76819 -0.66819 1.883 -0.354786
+#> Dataset 10 A1 41 8.5 9.76819 -1.26819 1.883 -0.673367
+#> Dataset 10 A1 63 11.7 10.94733 0.75267 1.883 0.399643
+#> Dataset 10 A1 63 12.0 10.94733 1.05267 1.883 0.558933
+#> Dataset 10 A1 91 13.3 11.93773 1.36227 1.883 0.723321
+#> Dataset 10 A1 91 13.2 11.93773 1.26227 1.883 0.670224
+#> Dataset 10 A1 120 14.3 12.77666 1.52334 1.883 0.808847
+#> Dataset 10 A1 120 12.1 12.77666 -0.67666 1.883 -0.359282
# The following takes about 6 minutes
#f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve",
# control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))
diff --git a/docs/dev/reference/summary.nlmixr.mmkin.html b/docs/dev/reference/summary.nlmixr.mmkin.html
new file mode 100644
index 00000000..0fead0df
--- /dev/null
+++ b/docs/dev/reference/summary.nlmixr.mmkin.html
@@ -0,0 +1,1022 @@
+
+
+
+
+
+
+
+
+Summary method for class "nlmixr.mmkin" — summary.nlmixr.mmkin • mkin
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ mkin
+ 1.0.5
+
+
+
+
+
+ -
+ Functions and data
+
+-
+
+ Articles
+
+
+
+
+ -
+ Introduction to mkin
+
+ -
+ Example evaluation of FOCUS Example Dataset D
+
+ -
+ Example evaluation of FOCUS Laboratory Data L1 to L3
+
+ -
+ Example evaluation of FOCUS Example Dataset Z
+
+ -
+ Performance benefit by using compiled model definitions in mkin
+
+ -
+ Calculation of time weighted average concentrations with mkin
+
+ -
+ Example evaluation of NAFTA SOP Attachment examples
+
+ -
+ Some benchmark timings
+
+
+
+-
+ News
+
+
+
+ -
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Summary method for class "nlmixr.mmkin"
+ Source: R/summary.nlmixr.mmkin.R
+ summary.nlmixr.mmkin.Rd
+
+
+
+ Lists model equations, initial parameter values, optimised parameters
+for fixed effects (population), random effects (deviations from the
+population mean) and residual error model, as well as the resulting
+endpoints such as formation fractions and DT50 values. Optionally
+(default is FALSE), the data are listed in full.
+
+
+ # S3 method for nlmixr.mmkin
+summary(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...)
+
+# S3 method for summary.nlmixr.mmkin
+print(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
+
+ Arguments
+
+
+
+ object
+ an object of class nlmixr.mmkin
+
+
+ data
+ logical, indicating whether the full data should be included in
+the summary.
+
+
+ verbose
+ Should the summary be verbose?
+
+
+ distimes
+ logical, indicating whether DT50 and DT90 values should be
+included.
+
+
+ ...
+ optional arguments passed to methods like print
.
+
+
+ x
+ an object of class summary.nlmixr.mmkin
+
+
+ digits
+ Number of digits to use for printing
+
+
+
+ Value
+
+ The summary function returns a list obtained in the fit, with at
+least the following additional components
+- nlmixrversion, mkinversion, Rversion
The nlmixr, mkin and R versions used
+- date.fit, date.summary
The dates where the fit and the summary were
+produced
+- diffs
The differential equations used in the degradation model
+- use_of_ff
Was maximum or minimum use made of formation fractions
+- data
The data
+- confint_back
Backtransformed parameters, with confidence intervals if available
+- ff
The estimated formation fractions derived from the fitted
+model.
+- distimes
The DT50 and DT90 values for each observed variable.
+- SFORB
If applicable, eigenvalues of SFORB components of the model.
+The print method is called for its side effect, i.e. printing the summary.
+
+ Author
+
+ Johannes Ranke for the mkin specific parts
+nlmixr authors for the parts inherited from nlmixr.
+
+ Examples
+ # Generate five datasets following DFOP-SFO kinetics
+sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "m1"),
+ m1 = mkinsub("SFO"), quiet = TRUE)
+set.seed(1234)
+k1_in <- rlnorm(5, log(0.1), 0.3)
+k2_in <- rlnorm(5, log(0.02), 0.3)
+g_in <- plogis(rnorm(5, qlogis(0.5), 0.3))
+f_parent_to_m1_in <- plogis(rnorm(5, qlogis(0.3), 0.3))
+k_m1_in <- rlnorm(5, log(0.02), 0.3)
+
+pred_dfop_sfo <- function(k1, k2, g, f_parent_to_m1, k_m1) {
+ mkinpredict(dfop_sfo,
+ c(k1 = k1, k2 = k2, g = g, f_parent_to_m1 = f_parent_to_m1, k_m1 = k_m1),
+ c(parent = 100, m1 = 0),
+ sampling_times)
+}
+
+ds_mean_dfop_sfo <- lapply(1:5, function(i) {
+ mkinpredict(dfop_sfo,
+ c(k1 = k1_in[i], k2 = k2_in[i], g = g_in[i],
+ f_parent_to_m1 = f_parent_to_m1_in[i], k_m1 = k_m1_in[i]),
+ c(parent = 100, m1 = 0),
+ sampling_times)
+})
+names(ds_mean_dfop_sfo) <- paste("ds", 1:5)
+
+ds_syn_dfop_sfo <- lapply(ds_mean_dfop_sfo, function(ds) {
+ add_err(ds,
+ sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),
+ n = 1)[[1]]
+})
+
+# \dontrun{
+# Evaluate using mmkin and nlmixr
+f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo,
+ quiet = TRUE, error_model = "tc", cores = 5)
+f_saemix_dfop_sfo <- mkin::saem(f_mmkin_dfop_sfo)
+#> Running main SAEM algorithm
+#> [1] "Fri Jun 11 10:57:31 2021"
+#> ....
+#> Minimisation finished
+#> [1] "Fri Jun 11 10:57:43 2021"#> Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)#> Warning: Iteration 6, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)#> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> 1: 1.0127e+02 -3.8515e+00 -2.0719e+00 -3.7271e+00 -1.9335e+00 4.0311e-01 6.9594e+00 1.5021e-01 5.3947e-01 1.9686e-01 3.7429e-01 5.4209e-01 8.4121e+00 7.3391e-02 7.1185e+00 2.5869e-01
+#> 2: 1.0136e+02 -3.8005e+00 -2.3424e+00 -4.0759e+00 -1.6475e+00 1.1598e-01 6.6115e+00 1.4406e-01 5.1249e-01 1.8701e-01 3.5786e-01 5.1499e-01 4.9102e+00 6.2829e-02 4.7230e+00 7.8901e-02
+#> 3: 1.0126e+02 -4.0285e+00 -2.3629e+00 -4.1271e+00 -1.1733e+00 1.7634e-02 6.2809e+00 1.6892e-01 4.8687e-01 1.7766e-01 3.3997e-01 4.8924e-01 3.2256e+00 6.6693e-02 3.3261e+00 8.7190e-02
+#> 4: 1.0105e+02 -4.0894e+00 -2.5516e+00 -4.1037e+00 -1.0816e+00 4.5377e-02 5.9668e+00 1.6048e-01 4.6252e-01 1.6878e-01 3.2297e-01 4.6478e-01 2.4343e+00 7.0557e-02 2.2610e+00 9.2498e-02
+#> 5: 1.0101e+02 -4.1364e+00 -2.4605e+00 -4.0737e+00 -1.0920e+00 -4.7953e-03 5.9593e+00 1.5245e-01 4.3940e-01 1.8078e-01 3.0682e-01 5.4688e-01 1.7424e+00 7.4776e-02 1.5144e+00 1.0787e-01
+#> 6: 1.0042e+02 -4.0933e+00 -2.4472e+00 -4.1090e+00 -9.7996e-01 -9.0472e-02 6.0175e+00 1.4483e-01 4.1743e-01 1.8824e-01 2.9148e-01 5.3033e-01 1.5545e+00 6.8588e-02 1.3401e+00 9.8865e-02
+#> 7: 1.0078e+02 -4.0911e+00 -2.4335e+00 -4.0758e+00 -9.9422e-01 -7.8849e-02 6.6318e+00 1.3759e-01 3.9656e-01 1.7882e-01 2.7691e-01 5.0381e-01 1.3780e+00 6.9978e-02 1.1346e+00 9.6162e-02
+#> 8: 1.0077e+02 -4.0196e+00 -2.4345e+00 -4.0444e+00 -9.3483e-01 -1.1032e-01 6.3002e+00 1.3071e-01 3.7673e-01 1.6988e-01 2.6306e-01 4.8191e-01 1.1774e+00 7.4232e-02 1.0270e+00 9.5616e-02
+#> 9: 1.0118e+02 -4.0436e+00 -2.4649e+00 -4.0207e+00 -8.9829e-01 -1.7784e-01 5.9852e+00 1.2417e-01 3.5789e-01 1.6139e-01 2.4991e-01 5.5466e-01 1.1040e+00 7.1515e-02 1.0342e+00 9.3972e-02
+#> 10: 1.0143e+02 -4.0523e+00 -2.3737e+00 -4.0184e+00 -9.1167e-01 -2.3828e-01 5.8520e+00 1.1797e-01 3.4196e-01 1.5332e-01 2.3741e-01 5.2849e-01 1.0510e+00 7.5719e-02 1.0638e+00 9.3973e-02
+#> 11: 1.0119e+02 -4.0699e+00 -2.3680e+00 -4.0191e+00 -9.4858e-01 -1.7310e-01 6.9958e+00 1.1207e-01 3.6891e-01 1.4565e-01 2.2554e-01 5.0206e-01 1.0247e+00 7.5497e-02 1.0292e+00 9.3707e-02
+#> 12: 1.0121e+02 -4.0189e+00 -2.4198e+00 -4.0139e+00 -9.1693e-01 -2.0613e-01 6.6460e+00 1.0646e-01 3.5046e-01 1.3837e-01 2.1427e-01 5.7696e-01 1.1046e+00 7.6090e-02 9.3689e-01 9.4115e-02
+#> 13: 1.0083e+02 -4.0451e+00 -2.4395e+00 -4.0235e+00 -9.4535e-01 -1.4723e-01 6.3137e+00 1.0114e-01 3.3294e-01 1.3145e-01 2.0355e-01 5.4811e-01 1.0360e+00 7.3381e-02 9.7078e-01 9.1659e-02
+#> 14: 1.0056e+02 -4.0401e+00 -2.4045e+00 -4.0054e+00 -9.4191e-01 -1.3928e-01 5.9980e+00 9.6084e-02 3.4934e-01 1.2488e-01 1.9338e-01 5.2071e-01 1.0303e+00 7.7118e-02 8.8372e-01 9.0469e-02
+#> 15: 1.0070e+02 -4.0388e+00 -2.4210e+00 -4.0113e+00 -9.1136e-01 -1.2702e-01 5.6981e+00 9.1279e-02 3.3187e-01 1.1864e-01 1.8371e-01 4.9467e-01 1.0486e+00 7.2427e-02 7.8179e-01 9.1572e-02
+#> 16: 1.0078e+02 -4.0175e+00 -2.4766e+00 -4.0191e+00 -9.0733e-01 -1.1952e-01 5.4132e+00 8.6716e-02 3.1528e-01 1.1270e-01 1.7452e-01 4.8928e-01 9.7799e-01 8.1464e-02 8.2935e-01 8.6520e-02
+#> 17: 1.0069e+02 -4.0533e+00 -2.5110e+00 -4.0294e+00 -9.1841e-01 -6.8363e-03 5.1426e+00 8.2380e-02 2.9952e-01 1.0707e-01 1.6580e-01 4.6482e-01 9.1609e-01 8.1008e-02 8.1783e-01 8.8818e-02
+#> 18: 99.9647 -4.0672 -2.5327 -4.0416 -0.9273 0.0097 4.8854 0.0783 0.2970 0.1280 0.1941 0.5053 0.9306 0.0764 0.8097 0.0881
+#> 19: 1.0027e+02 -4.0667e+00 -2.4653e+00 -4.0579e+00 -9.2776e-01 3.0417e-02 4.6412e+00 7.4348e-02 3.3694e-01 1.2164e-01 1.8435e-01 5.1797e-01 9.7386e-01 7.4954e-02 7.9297e-01 8.9915e-02
+#> 20: 1.0006e+02 -4.0935e+00 -2.4804e+00 -4.0721e+00 -9.3737e-01 1.9496e-02 4.4091e+00 7.0630e-02 3.3728e-01 1.2544e-01 1.7513e-01 6.0925e-01 1.0232e+00 7.4618e-02 7.9988e-01 8.9642e-02
+#> 21: 1.0043e+02 -4.0542e+00 -2.5168e+00 -4.0623e+00 -9.1553e-01 3.9474e-02 4.1887e+00 6.7099e-02 3.4553e-01 1.1917e-01 1.6638e-01 6.0827e-01 1.0155e+00 8.0771e-02 7.8424e-01 8.6213e-02
+#> 22: 1.0049e+02 -4.0449e+00 -2.5082e+00 -4.0849e+00 -9.2553e-01 4.5424e-02 3.9792e+00 6.3744e-02 3.2825e-01 1.2365e-01 1.5806e-01 5.8922e-01 8.2860e-01 8.3384e-02 8.2525e-01 8.9218e-02
+#> 23: 1.0067e+02 -4.0411e+00 -2.5460e+00 -4.0736e+00 -9.2578e-01 5.2422e-02 3.7803e+00 6.0557e-02 3.1661e-01 1.2306e-01 1.5016e-01 5.8274e-01 9.3412e-01 8.0508e-02 8.1829e-01 8.6377e-02
+#> 24: 1.0091e+02 -4.0314e+00 -2.5298e+00 -4.0566e+00 -8.9743e-01 3.7634e-02 3.5913e+00 5.7529e-02 3.5267e-01 1.2194e-01 1.4265e-01 5.5360e-01 9.6271e-01 7.6960e-02 8.8466e-01 8.5693e-02
+#> 25: 1.0100e+02 -4.0442e+00 -2.5399e+00 -4.0568e+00 -8.9494e-01 1.7415e-02 3.4117e+00 5.4652e-02 3.3504e-01 1.2781e-01 1.3552e-01 5.2592e-01 9.6040e-01 7.7299e-02 8.9561e-01 8.6893e-02
+#> 26: 1.0111e+02 -4.0354e+00 -2.5182e+00 -4.0899e+00 -9.0799e-01 7.6464e-02 4.8614e+00 5.1920e-02 3.1829e-01 1.2142e-01 1.3110e-01 4.9963e-01 9.6997e-01 7.4932e-02 8.2521e-01 9.3659e-02
+#> 27: 1.0159e+02 -4.0653e+00 -2.4934e+00 -4.0803e+00 -9.5632e-01 2.8659e-03 4.6184e+00 4.9324e-02 3.0237e-01 1.1535e-01 1.4743e-01 4.7465e-01 9.4314e-01 7.7860e-02 8.9820e-01 8.8210e-02
+#> 28: 1.0154e+02 -4.0487e+00 -2.4844e+00 -4.0511e+00 -9.6473e-01 -4.7382e-02 4.3874e+00 4.6858e-02 3.2049e-01 1.0958e-01 1.5243e-01 4.5091e-01 9.8808e-01 7.4786e-02 8.6833e-01 8.8720e-02
+#> 29: 1.0144e+02 -4.0414e+00 -2.4105e+00 -4.0504e+00 -9.4039e-01 -3.6753e-02 4.1681e+00 4.4515e-02 3.2754e-01 1.0410e-01 1.4940e-01 4.2837e-01 9.5520e-01 7.8507e-02 8.2408e-01 8.5998e-02
+#> 30: 1.0137e+02 -4.0292e+00 -2.4174e+00 -4.0382e+00 -9.3180e-01 -7.1482e-02 5.4636e+00 4.2289e-02 3.2074e-01 9.8896e-02 1.6877e-01 4.0695e-01 8.8153e-01 7.5106e-02 8.5239e-01 8.8266e-02
+#> 31: 1.0105e+02 -4.0387e+00 -2.4368e+00 -4.0346e+00 -9.1098e-01 -5.4730e-02 5.1904e+00 4.0175e-02 3.0470e-01 9.3951e-02 1.6034e-01 3.8660e-01 8.7853e-01 8.0278e-02 8.7981e-01 8.6404e-02
+#> 32: 1.0147e+02 -4.0435e+00 -2.4530e+00 -4.0365e+00 -9.1241e-01 -7.1281e-02 4.9309e+00 3.8166e-02 2.8947e-01 9.4694e-02 1.7475e-01 3.6727e-01 8.7005e-01 8.1398e-02 8.7784e-01 8.8976e-02
+#> 33: 1.0144e+02 -4.0092e+00 -2.4279e+00 -4.0090e+00 -8.8656e-01 -1.4017e-01 5.2945e+00 3.6258e-02 2.9770e-01 1.0169e-01 1.6601e-01 3.4891e-01 9.2202e-01 7.8841e-02 8.7551e-01 8.4011e-02
+#> 34: 1.0157e+02 -3.9839e+00 -2.4469e+00 -4.0180e+00 -8.3877e-01 -1.4664e-01 6.3506e+00 3.4445e-02 2.8282e-01 1.0831e-01 1.6850e-01 3.3146e-01 8.4403e-01 7.9056e-02 8.4620e-01 8.6363e-02
+#> 35: 1.0149e+02 -3.9928e+00 -2.4771e+00 -4.0106e+00 -8.6974e-01 -1.4219e-01 6.2039e+00 3.2722e-02 2.8123e-01 1.1283e-01 1.6008e-01 3.1489e-01 9.1308e-01 7.8685e-02 7.8939e-01 8.7289e-02
+#> 36: 1.0162e+02 -4.0099e+00 -2.4822e+00 -3.9880e+00 -8.7959e-01 -1.3237e-01 5.8937e+00 3.1086e-02 3.2200e-01 1.0719e-01 1.6077e-01 2.9914e-01 9.0821e-01 8.4066e-02 7.5559e-01 8.4838e-02
+#> 37: 1.0102e+02 -3.9962e+00 -2.4852e+00 -3.9954e+00 -8.8307e-01 -9.2070e-02 5.5991e+00 2.9532e-02 3.3713e-01 1.0183e-01 1.5333e-01 2.8419e-01 8.3918e-01 8.5231e-02 7.6007e-01 8.9541e-02
+#> 38: 1.0102e+02 -3.9987e+00 -2.5129e+00 -3.9833e+00 -8.7454e-01 -1.6469e-01 5.3191e+00 2.8055e-02 3.2027e-01 1.0792e-01 1.4707e-01 2.6998e-01 9.1490e-01 8.4715e-02 7.6778e-01 8.9241e-02
+#> 39: 1.0054e+02 -3.9875e+00 -2.4301e+00 -3.9797e+00 -8.7222e-01 -1.9597e-01 7.3800e+00 2.6653e-02 3.0426e-01 1.0801e-01 1.4393e-01 2.5648e-01 9.5901e-01 7.8320e-02 8.1559e-01 9.2429e-02
+#> 40: 1.0077e+02 -4.0057e+00 -2.4630e+00 -3.9849e+00 -8.6788e-01 -1.9606e-01 7.0110e+00 2.5320e-02 3.0385e-01 1.3164e-01 1.4567e-01 3.0284e-01 9.7123e-01 7.6328e-02 8.3681e-01 8.9349e-02
+#> 41: 1.0069e+02 -4.0143e+00 -2.3805e+00 -3.9962e+00 -8.7503e-01 -1.8532e-01 6.6604e+00 2.4054e-02 3.0707e-01 1.4668e-01 1.5021e-01 3.0404e-01 1.0072e+00 7.3629e-02 9.4494e-01 8.4745e-02
+#> 42: 1.0073e+02 -3.9861e+00 -2.4464e+00 -3.9919e+00 -8.7912e-01 -1.8435e-01 6.3274e+00 2.2851e-02 2.9171e-01 1.3935e-01 1.5080e-01 2.8883e-01 9.6502e-01 7.7470e-02 9.4221e-01 8.2459e-02
+#> 43: 1.0104e+02 -3.9881e+00 -2.4156e+00 -3.9688e+00 -8.9448e-01 -2.3739e-01 6.0110e+00 2.1709e-02 2.7713e-01 1.3238e-01 1.5603e-01 2.7439e-01 9.7714e-01 7.1720e-02 8.5890e-01 8.6635e-02
+#> 44: 1.0084e+02 -4.0117e+00 -2.4455e+00 -3.9753e+00 -8.8716e-01 -2.0112e-01 5.7105e+00 2.0623e-02 2.6327e-01 1.2741e-01 1.5200e-01 2.6067e-01 9.3289e-01 8.0543e-02 8.5055e-01 8.2921e-02
+#> 45: 1.0071e+02 -3.9996e+00 -2.4359e+00 -3.9764e+00 -9.1082e-01 -2.4578e-01 5.4250e+00 1.9592e-02 2.5011e-01 1.3254e-01 1.6132e-01 2.8273e-01 9.5805e-01 7.7734e-02 7.8171e-01 8.4571e-02
+#> 46: 1.0018e+02 -4.0077e+00 -2.4835e+00 -3.9739e+00 -8.6079e-01 -1.6592e-01 5.1537e+00 1.8613e-02 2.3760e-01 1.3830e-01 1.5392e-01 3.0295e-01 1.0931e+00 7.3274e-02 8.9544e-01 8.8388e-02
+#> 47: 99.9834 -3.9991 -2.5292 -3.9863 -0.8820 -0.0796 4.8960 0.0177 0.2348 0.1376 0.1639 0.2878 0.9864 0.0837 0.9094 0.0832
+#> 48: 99.9155 -4.0224 -2.5422 -3.9854 -0.8719 -0.0750 4.6512 0.0184 0.2251 0.1307 0.1596 0.2734 0.9841 0.0835 0.8696 0.0843
+#> 49: 99.6136 -4.0397 -2.5172 -4.0115 -0.8774 -0.0922 5.2402 0.0175 0.2558 0.1242 0.1551 0.2597 0.9060 0.0816 0.8365 0.0869
+#> 50: 99.4747 -4.0542 -2.4192 -3.9834 -0.9041 -0.1798 4.9782 0.0219 0.2695 0.1234 0.1474 0.2468 0.9269 0.0783 0.8593 0.0854
+#> 51: 99.3401 -4.0386 -2.3951 -3.9661 -0.9181 -0.1887 4.7574 0.0213 0.2746 0.1522 0.1400 0.2344 0.9901 0.0781 0.8863 0.0928
+#> 52: 99.7109 -4.0509 -2.4227 -3.9770 -0.9247 -0.1431 4.9004 0.0203 0.2688 0.1446 0.1330 0.2227 0.8999 0.0791 1.0265 0.0890
+#> 53: 99.6496 -4.0397 -2.4398 -3.9752 -0.9193 -0.2119 5.1106 0.0193 0.2795 0.1527 0.1325 0.2116 0.8949 0.0788 0.9447 0.0872
+#> 54: 99.9071 -4.0211 -2.3887 -3.9812 -0.9233 -0.1946 5.0887 0.0183 0.2763 0.1450 0.1365 0.2010 0.8793 0.0875 0.8643 0.0903
+#> 55: 1.0012e+02 -4.0401e+00 -2.4203e+00 -3.9511e+00 -9.0712e-01 -2.5566e-01 5.7301e+00 1.7375e-02 2.7324e-01 1.3780e-01 1.6204e-01 1.9094e-01 9.7803e-01 7.6146e-02 9.0756e-01 8.7636e-02
+#> 56: 1.0032e+02 -4.0207e+00 -2.4263e+00 -3.9533e+00 -8.7574e-01 -2.3076e-01 6.5321e+00 1.6507e-02 3.0821e-01 1.3091e-01 1.5394e-01 1.8139e-01 8.8520e-01 7.6350e-02 9.2796e-01 8.5283e-02
+#> 57: 1.0028e+02 -4.0037e+00 -2.4301e+00 -3.9655e+00 -8.8472e-01 -1.8969e-01 9.8969e+00 1.5681e-02 2.9280e-01 1.2436e-01 1.4624e-01 1.7232e-01 9.2902e-01 7.4974e-02 8.9204e-01 8.4563e-02
+#> 58: 1.0048e+02 -3.9928e+00 -2.4961e+00 -3.9709e+00 -9.0263e-01 -1.4516e-01 9.4021e+00 1.6151e-02 2.7816e-01 1.1814e-01 1.4165e-01 1.6370e-01 9.5145e-01 8.0233e-02 8.2896e-01 8.3498e-02
+#> 59: 1.0060e+02 -4.0181e+00 -2.4963e+00 -3.9751e+00 -9.0684e-01 -1.1186e-01 8.9320e+00 1.9914e-02 3.0097e-01 1.1224e-01 1.4109e-01 1.5552e-01 9.9121e-01 7.3120e-02 8.6454e-01 8.2239e-02
+#> 60: 1.0047e+02 -3.9976e+00 -2.4797e+00 -3.9780e+00 -8.9328e-01 -1.0814e-01 8.4854e+00 1.8918e-02 3.2275e-01 1.1591e-01 1.3404e-01 1.4774e-01 9.6968e-01 7.4984e-02 8.9831e-01 8.1655e-02
+#> 61: 1.0040e+02 -4.0068e+00 -2.5217e+00 -3.9844e+00 -8.6447e-01 -1.0567e-01 8.0611e+00 1.7972e-02 3.1372e-01 1.1011e-01 1.2973e-01 1.4036e-01 9.1698e-01 7.8118e-02 9.1811e-01 8.4420e-02
+#> 62: 1.0076e+02 -4.0080e+00 -2.4931e+00 -3.9623e+00 -8.9789e-01 -8.3896e-02 7.6580e+00 1.7073e-02 3.0460e-01 1.1254e-01 1.2324e-01 1.3334e-01 9.9032e-01 7.7618e-02 8.3808e-01 8.5031e-02
+#> 63: 1.0064e+02 -4.0129e+00 -2.4731e+00 -3.9561e+00 -8.9103e-01 -8.8987e-02 7.2751e+00 1.6220e-02 2.8944e-01 1.1647e-01 1.4845e-01 1.2667e-01 1.0745e+00 7.6375e-02 8.4316e-01 8.6681e-02
+#> 64: 1.0098e+02 -4.0094e+00 -2.4541e+00 -3.9604e+00 -9.1524e-01 -9.3413e-02 6.9114e+00 1.5409e-02 2.7497e-01 1.2065e-01 1.7095e-01 1.2034e-01 1.0963e+00 7.8304e-02 8.7104e-01 8.5727e-02
+#> 65: 1.0070e+02 -4.0433e+00 -2.4793e+00 -3.9722e+00 -9.3012e-01 -6.5917e-02 6.5658e+00 1.4638e-02 2.7040e-01 1.1462e-01 1.9067e-01 1.1432e-01 9.7444e-01 8.4510e-02 8.7028e-01 8.6292e-02
+#> 66: 1.0049e+02 -4.0656e+00 -2.4659e+00 -3.9898e+00 -9.4278e-01 -7.5929e-02 6.2375e+00 1.3906e-02 2.9347e-01 1.1997e-01 1.8114e-01 1.0860e-01 9.9830e-01 8.0902e-02 9.3551e-01 8.5261e-02
+#> 67: 1.0046e+02 -4.0477e+00 -2.4685e+00 -3.9907e+00 -9.1503e-01 -9.8019e-02 5.9256e+00 1.3211e-02 3.2166e-01 1.1506e-01 1.7208e-01 1.0317e-01 8.6453e-01 9.0533e-02 8.3598e-01 8.6343e-02
+#> 68: 1.0077e+02 -4.0575e+00 -2.4709e+00 -3.9523e+00 -9.2903e-01 -8.1099e-02 5.6294e+00 1.2818e-02 3.1005e-01 1.3665e-01 1.6347e-01 9.8015e-02 9.0181e-01 8.7058e-02 8.4937e-01 8.3248e-02
+#> 69: 1.0086e+02 -4.0626e+00 -2.3922e+00 -3.9557e+00 -9.6741e-01 -3.5986e-02 5.3479e+00 1.2844e-02 3.3024e-01 1.2982e-01 1.5530e-01 9.3115e-02 9.8180e-01 8.3132e-02 8.6549e-01 8.8939e-02
+#> 70: 1.0082e+02 -4.0640e+00 -2.4449e+00 -3.9787e+00 -9.5159e-01 -3.2904e-02 5.0805e+00 1.4346e-02 3.1373e-01 1.2333e-01 1.4754e-01 8.8459e-02 1.0129e+00 7.4856e-02 8.6688e-01 8.4769e-02
+#> 71: 1.0072e+02 -4.0642e+00 -2.5069e+00 -3.9493e+00 -9.3453e-01 -4.4116e-02 4.8265e+00 1.3628e-02 3.0428e-01 1.2122e-01 1.4091e-01 8.4036e-02 1.0454e+00 7.7023e-02 8.9566e-01 8.1639e-02
+#> 72: 1.0049e+02 -4.0609e+00 -2.4472e+00 -3.9669e+00 -9.3972e-01 -7.7498e-02 4.5852e+00 1.4441e-02 3.2552e-01 1.3911e-01 1.4144e-01 8.1899e-02 1.0114e+00 7.7019e-02 8.2312e-01 8.2494e-02
+#> 73: 1.0022e+02 -4.0598e+00 -2.4410e+00 -3.9952e+00 -9.2810e-01 -1.1309e-01 4.3559e+00 1.3719e-02 3.3556e-01 1.3303e-01 1.4990e-01 1.1303e-01 9.6726e-01 7.6776e-02 8.6331e-01 8.3048e-02
+#> 74: 1.0024e+02 -4.0628e+00 -2.4358e+00 -3.9977e+00 -9.1347e-01 -9.1966e-02 4.1381e+00 1.3033e-02 3.4332e-01 1.3418e-01 1.8099e-01 1.0738e-01 1.0158e+00 7.4697e-02 8.6366e-01 8.4370e-02
+#> 75: 99.7847 -4.0500 -2.4401 -4.0018 -0.9252 -0.1013 4.4651 0.0124 0.3365 0.1399 0.1817 0.1020 1.0278 0.0779 0.9008 0.0841
+#> 76: 99.9526 -4.0482 -2.4819 -3.9947 -0.9049 -0.0557 4.2419 0.0126 0.3248 0.1494 0.1726 0.1135 1.0493 0.0778 0.9341 0.0804
+#> 77: 99.9982 -4.0184 -2.4951 -4.0043 -0.8927 -0.0688 5.2538 0.0120 0.3696 0.1419 0.1817 0.1078 1.0402 0.0839 0.9605 0.0848
+#> 78: 1.0007e+02 -4.0210e+00 -2.4725e+00 -4.0040e+00 -8.9827e-01 2.3164e-03 6.4464e+00 1.1395e-02 3.7410e-01 1.3481e-01 2.0294e-01 1.0879e-01 9.7822e-01 8.7445e-02 9.9990e-01 8.2845e-02
+#> 79: 99.3513 -4.0171 -2.5065 -4.0078 -0.8962 -0.0029 7.7527 0.0108 0.3554 0.1281 0.1928 0.1069 1.0455 0.0866 0.9982 0.0870
+#> 80: 98.9945 -4.0172 -2.5412 -4.0341 -0.8891 -0.0187 9.8218 0.0103 0.3376 0.1217 0.1831 0.1457 0.9733 0.0894 1.0164 0.0832
+#> 81: 99.0936 -4.0275 -2.5134 -4.0127 -0.8552 -0.0614 12.1567 0.0098 0.3494 0.1156 0.1740 0.1384 0.9509 0.0843 1.0171 0.0855
+#> 82: 99.2481 -3.9996 -2.4945 -4.0011 -0.8914 -0.0492 11.5489 0.0128 0.3792 0.1098 0.1653 0.1315 0.9915 0.0818 1.0405 0.0928
+#> 83: 99.6941 -3.9998 -2.4851 -3.9845 -0.8802 -0.0560 10.9714 0.0146 0.3602 0.1043 0.1570 0.1249 0.9934 0.0852 0.9707 0.0866
+#> 84: 99.2185 -3.9920 -2.4843 -4.0051 -0.8546 -0.0642 10.4228 0.0153 0.3422 0.0991 0.1492 0.1187 0.9923 0.0833 0.9799 0.0873
+#> 85: 98.8470 -3.9956 -2.4652 -4.0201 -0.8483 -0.0414 9.9017 0.0146 0.3251 0.0941 0.1417 0.1128 0.9732 0.0901 0.9035 0.0858
+#> 86: 98.5012 -3.9841 -2.5148 -4.0250 -0.8408 -0.0551 9.4066 0.0148 0.3088 0.0962 0.1346 0.1071 0.8570 0.0932 0.8532 0.0896
+#> 87: 99.0868 -4.0055 -2.5058 -4.0249 -0.8522 -0.0311 10.3528 0.0175 0.2934 0.1013 0.1411 0.1018 0.8802 0.0838 0.8849 0.0862
+#> 88: 99.5158 -4.0031 -2.4437 -3.9866 -0.8894 -0.0963 9.9832 0.0167 0.3049 0.1030 0.1447 0.0967 0.9955 0.0834 0.8861 0.0893
+#> 89: 99.5538 -4.0347 -2.4494 -4.0213 -0.8695 -0.0494 9.4841 0.0158 0.2897 0.0978 0.1543 0.0918 0.8597 0.0904 0.8959 0.0880
+#> 90: 99.4422 -4.0453 -2.4398 -4.0114 -0.9279 -0.0745 9.8221 0.0150 0.2842 0.0929 0.1466 0.0944 0.9009 0.0871 0.8696 0.0924
+#> 91: 98.8721 -4.0328 -2.4996 -4.0041 -0.8832 -0.0689 9.3310 0.0143 0.2700 0.0896 0.1444 0.1137 0.9567 0.0904 0.8680 0.0891
+#> 92: 99.8390 -4.0418 -2.4914 -4.0182 -0.9279 -0.0460 10.9801 0.0136 0.2585 0.0949 0.1461 0.1210 1.0043 0.0908 0.8310 0.0939
+#> 93: 1.0029e+02 -4.0313e+00 -2.4620e+00 -4.0187e+00 -8.9083e-01 -1.0908e-01 1.0431e+01 1.2890e-02 2.4559e-01 9.5757e-02 1.3878e-01 1.1565e-01 9.9174e-01 9.0056e-02 8.9538e-01 8.8925e-02
+#> 94: 99.3285 -4.0295 -2.4523 -4.0235 -0.8828 -0.1190 10.9003 0.0137 0.2333 0.0915 0.1318 0.1212 1.0729 0.0779 0.9543 0.0907
+#> 95: 99.4117 -4.0422 -2.3807 -4.0870 -0.8960 -0.0889 10.3553 0.0130 0.2216 0.0870 0.1253 0.1366 0.9127 0.0864 0.8901 0.0911
+#> 96: 99.3348 -4.0401 -2.4009 -4.0698 -0.8730 -0.0622 9.8375 0.0123 0.2106 0.0826 0.1241 0.1297 0.8504 0.0836 0.9140 0.0881
+#> 97: 99.4898 -4.0419 -2.4310 -4.0589 -0.8932 -0.0634 9.3456 0.0132 0.2000 0.0785 0.1224 0.1233 0.8770 0.0836 0.8715 0.0837
+#> 98: 99.3750 -4.0704 -2.4353 -4.0616 -0.9333 -0.0846 8.8783 0.0136 0.1900 0.0746 0.1245 0.1171 0.8907 0.0838 0.9066 0.0832
+#> 99: 99.6234 -4.0366 -2.3740 -4.0657 -0.9242 -0.0675 8.4344 0.0129 0.1805 0.0708 0.1182 0.1112 0.8814 0.0808 0.9511 0.0863
+#> 100: 1.0025e+02 -4.0420e+00 -2.3557e+00 -4.0579e+00 -9.5051e-01 -6.3418e-02 8.0319e+00 1.2286e-02 1.7150e-01 6.7291e-02 1.1232e-01 1.0568e-01 8.5851e-01 8.7881e-02 8.9363e-01 8.5897e-02
+#> 101: 1.0041e+02 -4.0461e+00 -2.3840e+00 -4.0384e+00 -9.3752e-01 -7.7594e-02 9.5649e+00 1.1672e-02 1.7509e-01 6.3926e-02 1.2760e-01 1.0039e-01 8.6733e-01 8.2748e-02 9.6277e-01 8.4274e-02
+#> 102: 1.0095e+02 -4.0372e+00 -2.3633e+00 -4.0286e+00 -9.1961e-01 -6.5350e-02 1.1428e+01 1.1088e-02 1.8557e-01 6.0730e-02 1.3211e-01 9.5374e-02 9.3928e-01 8.0161e-02 9.7913e-01 8.4081e-02
+#> 103: 1.0019e+02 -4.0236e+00 -2.4105e+00 -4.0337e+00 -9.1362e-01 -7.3859e-02 1.0856e+01 1.0534e-02 1.7629e-01 5.7693e-02 1.2695e-01 9.1362e-02 9.8491e-01 8.1430e-02 9.7682e-01 8.2250e-02
+#> 104: 99.7755 -4.0280 -2.4452 -4.0197 -0.9112 -0.0810 11.0317 0.0100 0.1796 0.0548 0.1301 0.0868 0.9418 0.0816 0.9170 0.0806
+#> 105: 1.0010e+02 -4.0418e+00 -2.4294e+00 -4.0225e+00 -9.1111e-01 -8.9920e-02 1.0480e+01 9.5070e-03 1.7060e-01 5.2068e-02 1.3987e-01 8.2454e-02 9.1944e-01 7.8110e-02 8.9266e-01 8.7228e-02
+#> 106: 1.0025e+02 -4.0507e+00 -2.4134e+00 -4.0343e+00 -9.0244e-01 -8.4683e-02 1.3506e+01 9.0316e-03 1.6207e-01 4.9465e-02 1.5337e-01 7.8331e-02 9.9609e-01 8.4473e-02 8.7046e-01 8.5479e-02
+#> 107: 1.0014e+02 -4.0468e+00 -2.3972e+00 -4.0196e+00 -9.3650e-01 -2.4087e-02 1.2830e+01 8.5801e-03 1.6027e-01 4.6992e-02 1.5429e-01 8.2493e-02 9.8959e-01 8.2626e-02 8.3427e-01 8.8197e-02
+#> 108: 1.0114e+02 -4.0338e+00 -2.4307e+00 -4.0724e+00 -9.1363e-01 1.1952e-02 1.2189e+01 8.1511e-03 1.5563e-01 4.4854e-02 1.7315e-01 7.8368e-02 9.8589e-01 7.8130e-02 9.0460e-01 8.2870e-02
+#> 109: 1.0066e+02 -4.0550e+00 -2.4094e+00 -4.0641e+00 -9.0945e-01 -1.5401e-03 1.3149e+01 7.7435e-03 1.4785e-01 4.2612e-02 1.7232e-01 7.4450e-02 1.0942e+00 7.4816e-02 9.1706e-01 8.5333e-02
+#> 110: 1.0111e+02 -4.0266e+00 -2.4047e+00 -4.0646e+00 -9.0541e-01 -1.7212e-02 1.2492e+01 7.3563e-03 1.4046e-01 4.0481e-02 1.8132e-01 7.0727e-02 1.0508e+00 7.9457e-02 9.8990e-01 8.2975e-02
+#> 111: 1.0155e+02 -4.0274e+00 -2.3645e+00 -4.0663e+00 -9.4902e-01 -1.8882e-02 1.1867e+01 8.7757e-03 1.4436e-01 3.8457e-02 1.7225e-01 6.7191e-02 1.0217e+00 7.7437e-02 9.9196e-01 8.1580e-02
+#> 112: 1.0209e+02 -4.0230e+00 -2.3938e+00 -4.0375e+00 -9.5447e-01 -5.0888e-02 1.4321e+01 8.3370e-03 1.4863e-01 3.6534e-02 1.6778e-01 8.2186e-02 9.3085e-01 8.3291e-02 9.8775e-01 7.9492e-02
+#> 113: 1.0188e+02 -4.0173e+00 -2.3804e+00 -4.0403e+00 -9.6152e-01 -7.7453e-02 1.3605e+01 7.9201e-03 1.5060e-01 3.4708e-02 1.7341e-01 8.4506e-02 9.0783e-01 8.7383e-02 9.4854e-01 8.2648e-02
+#> 114: 1.0239e+02 -4.0081e+00 -2.3724e+00 -4.0332e+00 -9.4315e-01 -7.4933e-02 1.2925e+01 7.5241e-03 1.4307e-01 3.2972e-02 1.6695e-01 8.0281e-02 9.2775e-01 8.4314e-02 9.6195e-01 7.9448e-02
+#> 115: 1.0199e+02 -4.0127e+00 -2.3773e+00 -4.0472e+00 -9.5157e-01 -2.0947e-02 1.2279e+01 7.4483e-03 1.3592e-01 3.1324e-02 1.6705e-01 7.6267e-02 9.4956e-01 7.6989e-02 1.0340e+00 8.5564e-02
+#> 116: 1.0122e+02 -4.0264e+00 -2.4014e+00 -4.0509e+00 -9.1462e-01 -2.3511e-02 1.1665e+01 7.0759e-03 1.2912e-01 2.9757e-02 1.5870e-01 7.2453e-02 9.3580e-01 8.2952e-02 9.3341e-01 8.3302e-02
+#> 117: 1.0112e+02 -4.0326e+00 -2.4093e+00 -4.0559e+00 -8.9743e-01 -2.0572e-02 1.1082e+01 6.7221e-03 1.2266e-01 2.8269e-02 1.5339e-01 6.8831e-02 9.0879e-01 8.4441e-02 9.1432e-01 8.0538e-02
+#> 118: 1.0123e+02 -4.0411e+00 -2.4077e+00 -4.0556e+00 -9.2971e-01 -2.1885e-02 1.0528e+01 6.3860e-03 1.1653e-01 3.3123e-02 1.6947e-01 6.5389e-02 9.7140e-01 8.6671e-02 8.9874e-01 8.1670e-02
+#> 119: 1.0098e+02 -4.0538e+00 -2.3515e+00 -4.0607e+00 -9.5433e-01 -7.5743e-02 1.0001e+01 6.0667e-03 1.1070e-01 3.1467e-02 1.8338e-01 6.2120e-02 9.1537e-01 8.4827e-02 9.2420e-01 8.2769e-02
+#> 120: 1.0076e+02 -4.0573e+00 -2.3627e+00 -4.0329e+00 -9.3251e-01 -6.7669e-02 9.5011e+00 5.7634e-03 1.0517e-01 3.2868e-02 1.7422e-01 6.6096e-02 9.5247e-01 8.5343e-02 9.4678e-01 8.5335e-02
+#> 121: 1.0085e+02 -4.0450e+00 -2.3478e+00 -4.0692e+00 -9.2333e-01 -9.8005e-03 9.0261e+00 5.4752e-03 9.9911e-02 3.1225e-02 1.6550e-01 7.1593e-02 8.5572e-01 8.8654e-02 1.0248e+00 8.0646e-02
+#> 122: 1.0164e+02 -4.0325e+00 -2.3562e+00 -4.0680e+00 -9.4287e-01 -1.2103e-02 8.5748e+00 5.3493e-03 9.4915e-02 2.9663e-02 1.6347e-01 6.8014e-02 8.4872e-01 8.6803e-02 1.0282e+00 8.0381e-02
+#> 123: 1.0184e+02 -4.0521e+00 -2.3504e+00 -4.0714e+00 -9.5966e-01 -9.1996e-05 8.1460e+00 5.0818e-03 9.8247e-02 3.0007e-02 1.7746e-01 6.4613e-02 9.7181e-01 8.0986e-02 9.8860e-01 8.0317e-02
+#> 124: 1.0235e+02 -4.0674e+00 -2.3315e+00 -4.0874e+00 -9.9802e-01 3.8818e-02 7.7387e+00 4.8277e-03 9.3335e-02 2.8506e-02 1.7611e-01 6.8940e-02 9.7376e-01 7.6658e-02 9.9156e-01 8.4407e-02
+#> 125: 1.0257e+02 -4.0718e+00 -2.3604e+00 -4.0627e+00 -1.0591e+00 2.4685e-02 7.3518e+00 4.5863e-03 8.8668e-02 3.0650e-02 1.8671e-01 6.5493e-02 1.0275e+00 8.2278e-02 1.0896e+00 8.0976e-02
+#> 126: 1.0287e+02 -4.0691e+00 -2.3103e+00 -4.0552e+00 -1.0174e+00 2.1863e-02 7.5644e+00 4.3570e-03 1.0937e-01 2.9117e-02 1.7738e-01 6.2218e-02 9.2668e-01 7.9560e-02 9.5409e-01 8.4671e-02
+#> 127: 1.0327e+02 -4.0528e+00 -2.3141e+00 -4.0522e+00 -1.0108e+00 4.4779e-03 7.1862e+00 4.1392e-03 1.2239e-01 2.7661e-02 1.6925e-01 5.9107e-02 9.1372e-01 7.9536e-02 9.9164e-01 8.2999e-02
+#> 128: 1.0352e+02 -4.0496e+00 -2.2880e+00 -4.0496e+00 -1.0063e+00 -1.3248e-02 7.6721e+00 3.9613e-03 1.1627e-01 2.6278e-02 1.7517e-01 8.0231e-02 8.4407e-01 8.5078e-02 9.4382e-01 8.7530e-02
+#> 129: 1.0345e+02 -4.0715e+00 -2.3090e+00 -4.0400e+00 -1.0276e+00 -1.8301e-02 8.2197e+00 3.7633e-03 1.1046e-01 2.7141e-02 1.9366e-01 7.6220e-02 9.3357e-01 8.2674e-02 9.7064e-01 8.6011e-02
+#> 130: 1.0245e+02 -4.0787e+00 -2.3263e+00 -4.0106e+00 -1.0200e+00 -8.5976e-02 7.8087e+00 4.0830e-03 1.3607e-01 2.6631e-02 2.2700e-01 7.2409e-02 9.8233e-01 7.9348e-02 9.6780e-01 8.2658e-02
+#> 131: 1.0217e+02 -4.0760e+00 -2.2525e+00 -4.0082e+00 -1.0099e+00 -1.6111e-01 7.4183e+00 3.8789e-03 1.3972e-01 2.5299e-02 2.2508e-01 6.8788e-02 1.0066e+00 7.8692e-02 9.4684e-01 8.4349e-02
+#> 132: 1.0185e+02 -4.0792e+00 -2.2309e+00 -3.9996e+00 -9.8302e-01 -2.2504e-01 7.0474e+00 4.0356e-03 1.3743e-01 2.4034e-02 2.1383e-01 7.7346e-02 9.4225e-01 7.9110e-02 9.5160e-01 8.4398e-02
+#> 133: 1.0135e+02 -4.0818e+00 -2.2219e+00 -4.0054e+00 -9.7264e-01 -1.8912e-01 7.1932e+00 3.8338e-03 1.3056e-01 2.2833e-02 2.0314e-01 7.6769e-02 1.0031e+00 8.5400e-02 1.0034e+00 8.4805e-02
+#> 134: 1.0148e+02 -4.0782e+00 -2.2492e+00 -3.9886e+00 -9.5184e-01 -1.5049e-01 6.8336e+00 3.6422e-03 1.2403e-01 2.3398e-02 1.9298e-01 7.2931e-02 9.3696e-01 8.3566e-02 9.4742e-01 8.9137e-02
+#> 135: 1.0145e+02 -4.0852e+00 -2.3062e+00 -4.0011e+00 -9.4444e-01 -1.6803e-01 6.4919e+00 3.4600e-03 1.1783e-01 2.2228e-02 1.8333e-01 6.9284e-02 9.4846e-01 8.3087e-02 9.7774e-01 8.2610e-02
+#> 136: 1.0177e+02 -4.0861e+00 -2.2785e+00 -3.9890e+00 -9.9625e-01 -1.8938e-01 6.1673e+00 3.2870e-03 1.1752e-01 2.1116e-02 1.8815e-01 6.5820e-02 9.3634e-01 8.5255e-02 1.1001e+00 8.5332e-02
+#> 137: 1.0200e+02 -4.0928e+00 -2.1946e+00 -3.9974e+00 -1.0098e+00 -1.8810e-01 5.8589e+00 3.1227e-03 1.2394e-01 2.1203e-02 1.7874e-01 7.2232e-02 1.0048e+00 7.3422e-02 1.0222e+00 8.3484e-02
+#> 138: 1.0214e+02 -4.0820e+00 -2.2052e+00 -3.9737e+00 -1.0420e+00 -2.0594e-01 5.5660e+00 3.8937e-03 1.9164e-01 2.0143e-02 1.6980e-01 6.8621e-02 1.0126e+00 7.6106e-02 1.0780e+00 8.2960e-02
+#> 139: 1.0249e+02 -4.0785e+00 -2.1649e+00 -3.9567e+00 -1.0095e+00 -2.8807e-01 5.2877e+00 3.6990e-03 1.8647e-01 1.9135e-02 1.6131e-01 6.5190e-02 1.0030e+00 7.9858e-02 1.0611e+00 8.4109e-02
+#> 140: 1.0184e+02 -4.0847e+00 -2.1800e+00 -3.9565e+00 -9.9415e-01 -2.8869e-01 5.0233e+00 4.0857e-03 1.9502e-01 1.8179e-02 1.6676e-01 6.2879e-02 9.5962e-01 7.8117e-02 9.9649e-01 8.4914e-02
+#> 141: 1.0195e+02 -4.1012e+00 -2.1831e+00 -3.9488e+00 -9.9515e-01 -3.1864e-01 4.7721e+00 3.8814e-03 1.8527e-01 1.7270e-02 1.6797e-01 6.1084e-02 9.0969e-01 8.2722e-02 1.0122e+00 8.2518e-02
+#> 142: 1.0233e+02 -4.1139e+00 -2.1692e+00 -3.9542e+00 -1.0023e+00 -3.3242e-01 4.5335e+00 3.6873e-03 2.0662e-01 1.6406e-02 1.5957e-01 5.8030e-02 9.4761e-01 8.4629e-02 1.0342e+00 8.3954e-02
+#> 143: 1.0217e+02 -4.1103e+00 -2.1380e+00 -3.9511e+00 -1.0300e+00 -2.5992e-01 5.2035e+00 4.7053e-03 1.9629e-01 1.5586e-02 1.5979e-01 5.5128e-02 8.9255e-01 7.9042e-02 1.0461e+00 8.6952e-02
+#> 144: 1.0185e+02 -4.1335e+00 -2.1911e+00 -3.9650e+00 -1.0440e+00 -2.4451e-01 5.0998e+00 4.4700e-03 1.8648e-01 1.9590e-02 1.5534e-01 5.2372e-02 9.7863e-01 8.3932e-02 1.0197e+00 8.7673e-02
+#> 145: 1.0242e+02 -4.1445e+00 -2.1203e+00 -3.9616e+00 -1.0426e+00 -2.7120e-01 4.8448e+00 4.2465e-03 1.7715e-01 1.8611e-02 1.4757e-01 4.9753e-02 1.0024e+00 8.4131e-02 1.0768e+00 8.5388e-02
+#> 146: 1.0236e+02 -4.1519e+00 -2.1958e+00 -3.9779e+00 -9.8615e-01 -2.5863e-01 4.6026e+00 4.0718e-03 1.6829e-01 1.7680e-02 1.6407e-01 4.7266e-02 1.0740e+00 8.2413e-02 1.0706e+00 8.3410e-02
+#> 147: 1.0251e+02 -4.1465e+00 -2.2042e+00 -3.9775e+00 -1.0317e+00 -2.2757e-01 4.3725e+00 3.8682e-03 1.5988e-01 1.6796e-02 1.7016e-01 4.4902e-02 9.7748e-01 8.3376e-02 1.0880e+00 8.1968e-02
+#> 148: 1.0244e+02 -4.1432e+00 -2.1786e+00 -3.9792e+00 -1.0442e+00 -2.2002e-01 4.9671e+00 3.6748e-03 1.5189e-01 1.5956e-02 2.2196e-01 4.2657e-02 1.0412e+00 7.8051e-02 1.1051e+00 8.1618e-02
+#> 149: 1.0219e+02 -4.1384e+00 -2.2318e+00 -3.9757e+00 -1.0438e+00 -2.4124e-01 4.7187e+00 3.4910e-03 1.4429e-01 1.6061e-02 2.1086e-01 4.0524e-02 1.0082e+00 8.0377e-02 1.1455e+00 8.0545e-02
+#> 150: 1.0264e+02 -4.1498e+00 -2.2352e+00 -3.9915e+00 -1.0669e+00 -2.1255e-01 4.4828e+00 3.3165e-03 1.3708e-01 1.7218e-02 2.0032e-01 3.8498e-02 9.5031e-01 8.7248e-02 9.8770e-01 8.3250e-02
+#> 151: 1.0250e+02 -4.1365e+00 -2.1876e+00 -3.9939e+00 -1.0568e+00 -1.8159e-01 4.2587e+00 3.1507e-03 1.3022e-01 1.7383e-02 1.9030e-01 3.6573e-02 9.6938e-01 8.0203e-02 1.0578e+00 8.3430e-02
+#> 152: 1.0256e+02 -4.1370e+00 -2.2238e+00 -4.0047e+00 -1.0406e+00 -1.8764e-01 1.9609e+00 1.4191e-03 1.1882e-01 1.7924e-02 1.6889e-01 4.1216e-02 9.1972e-01 7.8573e-02 1.0717e+00 8.0882e-02
+#> 153: 1.0219e+02 -4.1299e+00 -2.2139e+00 -3.9917e+00 -9.9964e-01 -2.0505e-01 1.8258e+00 1.0432e-03 8.4660e-02 2.1446e-02 1.7634e-01 3.5573e-02 9.3702e-01 8.4860e-02 1.0145e+00 8.3329e-02
+#> 154: 1.0199e+02 -4.1354e+00 -2.2231e+00 -3.9779e+00 -1.0155e+00 -2.2573e-01 2.6463e+00 5.8153e-04 8.8101e-02 2.3167e-02 1.6103e-01 3.3874e-02 9.5360e-01 8.6215e-02 9.5723e-01 8.4603e-02
+#> 155: 1.0234e+02 -4.1239e+00 -2.2137e+00 -3.9802e+00 -1.0070e+00 -2.3158e-01 2.9697e+00 6.6709e-04 1.1190e-01 2.0949e-02 1.8298e-01 3.1557e-02 9.2910e-01 8.2509e-02 9.8680e-01 8.5206e-02
+#> 156: 1.0253e+02 -4.1269e+00 -2.2370e+00 -3.9682e+00 -1.0420e+00 -2.1219e-01 2.7267e+00 6.8451e-04 8.9651e-02 2.4380e-02 1.6613e-01 3.4846e-02 9.3608e-01 8.7506e-02 9.0446e-01 8.1755e-02
+#> 157: 1.0265e+02 -4.1241e+00 -2.2179e+00 -3.9676e+00 -1.0308e+00 -2.2480e-01 2.1278e+00 4.9811e-04 6.7161e-02 1.9758e-02 1.5607e-01 4.4198e-02 9.4162e-01 8.7311e-02 9.9147e-01 7.9857e-02
+#> 158: 1.0239e+02 -4.1219e+00 -2.1615e+00 -3.9781e+00 -1.0384e+00 -2.6750e-01 2.5310e+00 4.8270e-04 6.5662e-02 1.8085e-02 1.7665e-01 4.4020e-02 8.8632e-01 8.6004e-02 1.0425e+00 8.2894e-02
+#> 159: 1.0270e+02 -4.1204e+00 -2.1837e+00 -3.9530e+00 -1.0587e+00 -2.5809e-01 3.4348e+00 5.6788e-04 6.5500e-02 1.9540e-02 1.8629e-01 4.0730e-02 9.5079e-01 8.2399e-02 9.9316e-01 8.3381e-02
+#> 160: 1.0282e+02 -4.1223e+00 -2.1325e+00 -3.9734e+00 -1.0068e+00 -2.8751e-01 3.9652e+00 7.6565e-04 8.5246e-02 1.7068e-02 1.7587e-01 3.0778e-02 9.1802e-01 8.0158e-02 9.9642e-01 8.1564e-02
+#> 161: 1.0330e+02 -4.1180e+00 -2.1879e+00 -3.9743e+00 -1.0268e+00 -2.8812e-01 4.9153e+00 5.8033e-04 8.0457e-02 1.8555e-02 1.7312e-01 3.3941e-02 8.6920e-01 8.2509e-02 9.5632e-01 8.1798e-02
+#> 162: 1.0335e+02 -4.1182e+00 -2.2089e+00 -3.9566e+00 -1.0409e+00 -2.7390e-01 3.6169e+00 2.8392e-04 1.0776e-01 1.9589e-02 1.6479e-01 2.8481e-02 8.8603e-01 8.7799e-02 9.5197e-01 7.9563e-02
+#> 163: 1.0294e+02 -4.1181e+00 -2.2025e+00 -3.9462e+00 -9.9783e-01 -3.0753e-01 3.7234e+00 1.6293e-04 9.6922e-02 2.4842e-02 1.9367e-01 3.1473e-02 9.0380e-01 9.1697e-02 9.4394e-01 8.2786e-02
+#> 164: 1.0246e+02 -4.1155e+00 -2.2157e+00 -3.9736e+00 -9.9866e-01 -2.9356e-01 3.9439e+00 1.9405e-04 1.0404e-01 2.8435e-02 1.9043e-01 3.1239e-02 8.9853e-01 8.9427e-02 9.2586e-01 8.3170e-02
+#> 165: 1.0204e+02 -4.1117e+00 -2.2133e+00 -3.9674e+00 -1.0079e+00 -2.6996e-01 3.0774e+00 1.6591e-04 7.0005e-02 2.8285e-02 2.0813e-01 2.4574e-02 8.9719e-01 9.1629e-02 9.8242e-01 8.3692e-02
+#> 166: 1.0207e+02 -4.1164e+00 -2.2192e+00 -3.9893e+00 -1.0354e+00 -2.7396e-01 1.8145e+00 8.4168e-05 9.0739e-02 2.7410e-02 2.1403e-01 2.4311e-02 8.9386e-01 9.2727e-02 9.4636e-01 8.4238e-02
+#> 167: 1.0187e+02 -4.1149e+00 -2.2185e+00 -3.9708e+00 -1.0036e+00 -2.5751e-01 1.5355e+00 4.0974e-05 9.9346e-02 2.2030e-02 2.1916e-01 2.6726e-02 9.1055e-01 8.1030e-02 1.0098e+00 7.9180e-02
+#> 168: 1.0172e+02 -4.1167e+00 -2.2673e+00 -3.9702e+00 -9.8388e-01 -2.1404e-01 1.4836e+00 2.7779e-05 7.7509e-02 2.9513e-02 1.9543e-01 3.4526e-02 1.0152e+00 8.1248e-02 9.7482e-01 8.0746e-02
+#> 169: 1.0175e+02 -4.1171e+00 -2.2634e+00 -3.9701e+00 -9.5962e-01 -2.4130e-01 1.4263e+00 4.7370e-05 5.0986e-02 2.8211e-02 2.2554e-01 3.9909e-02 9.8519e-01 7.8842e-02 1.0023e+00 8.5684e-02
+#> 170: 1.0177e+02 -4.1189e+00 -2.2417e+00 -3.9834e+00 -1.0059e+00 -2.6551e-01 9.9010e-01 3.7247e-05 4.2517e-02 2.9791e-02 1.8705e-01 4.2435e-02 9.6604e-01 8.8427e-02 9.6699e-01 8.3986e-02
+#> 171: 1.0182e+02 -4.1187e+00 -2.2464e+00 -3.9953e+00 -9.8154e-01 -2.5146e-01 7.4179e-01 3.2420e-05 5.0690e-02 3.0483e-02 1.7888e-01 6.3177e-02 9.2784e-01 8.4814e-02 1.0018e+00 8.4070e-02
+#> 172: 1.0184e+02 -4.1178e+00 -2.2483e+00 -4.0009e+00 -1.0096e+00 -2.2636e-01 9.6710e-01 2.6981e-05 3.1321e-02 2.7772e-02 1.9767e-01 7.4969e-02 9.9720e-01 8.1434e-02 9.5483e-01 8.3419e-02
+#> 173: 1.0160e+02 -4.1183e+00 -2.2513e+00 -3.9920e+00 -9.8456e-01 -2.0144e-01 4.9964e-01 2.1222e-05 4.1909e-02 2.8101e-02 2.1163e-01 1.2811e-01 9.6384e-01 8.0352e-02 9.2496e-01 8.2328e-02
+#> 174: 1.0159e+02 -4.1179e+00 -2.2334e+00 -4.0068e+00 -1.0316e+00 -2.0656e-01 4.6608e-01 1.8044e-05 4.4647e-02 2.8273e-02 2.0083e-01 1.2780e-01 9.4612e-01 8.3630e-02 8.9385e-01 8.3930e-02
+#> 175: 1.0159e+02 -4.1182e+00 -2.2567e+00 -3.9972e+00 -1.0299e+00 -1.6534e-01 4.5228e-01 2.0060e-05 8.5751e-02 2.5343e-02 1.7864e-01 8.6977e-02 9.5795e-01 7.8867e-02 8.9213e-01 8.4362e-02
+#> 176: 1.0159e+02 -4.1183e+00 -2.2109e+00 -3.9983e+00 -1.0210e+00 -2.0879e-01 5.3694e-01 2.0264e-05 1.2835e-01 2.5563e-02 1.9469e-01 6.0808e-02 9.1537e-01 7.8520e-02 9.3355e-01 8.3608e-02
+#> 177: 1.0155e+02 -4.1193e+00 -2.2587e+00 -3.9825e+00 -1.0180e+00 -1.6859e-01 4.4935e-01 3.0321e-05 1.3509e-01 2.4979e-02 2.0113e-01 6.3617e-02 9.7277e-01 7.8515e-02 9.2667e-01 8.5309e-02
+#> 178: 1.0158e+02 -4.1196e+00 -2.2679e+00 -4.0231e+00 -1.0143e+00 -1.6084e-01 6.7629e-01 3.2855e-05 6.8816e-02 2.7808e-02 1.8944e-01 8.1814e-02 8.8319e-01 8.0114e-02 9.5183e-01 8.2195e-02
+#> 179: 1.0166e+02 -4.1190e+00 -2.2764e+00 -3.9875e+00 -1.0061e+00 -1.8260e-01 7.1129e-01 3.8250e-05 7.5489e-02 2.4148e-02 1.8082e-01 7.1172e-02 9.1387e-01 8.0813e-02 9.6660e-01 8.2457e-02
+#> 180: 1.0179e+02 -4.1202e+00 -2.2848e+00 -3.9974e+00 -9.9825e-01 -2.0277e-01 5.5755e-01 2.8041e-05 8.6779e-02 2.7193e-02 1.8826e-01 6.5133e-02 8.8812e-01 8.2655e-02 9.2100e-01 7.9919e-02
+#> 181: 1.0176e+02 -4.1200e+00 -2.2704e+00 -3.9954e+00 -1.0194e+00 -1.6896e-01 4.3842e-01 2.2428e-05 7.4093e-02 3.0526e-02 2.3473e-01 1.0537e-01 9.2303e-01 8.2141e-02 9.2941e-01 8.4699e-02
+#> 182: 1.0182e+02 -4.1211e+00 -2.3159e+00 -4.0259e+00 -1.0162e+00 -1.2876e-01 3.4993e-01 1.5716e-05 5.9887e-02 2.6422e-02 2.1757e-01 1.0488e-01 9.1725e-01 9.4143e-02 9.7674e-01 8.8668e-02
+#> 183: 1.0184e+02 -4.1216e+00 -2.2985e+00 -4.0278e+00 -1.0136e+00 -1.3154e-01 2.6456e-01 1.2552e-05 5.7149e-02 3.2712e-02 2.0632e-01 1.5501e-01 9.2464e-01 8.5394e-02 8.8699e-01 8.4279e-02
+#> 184: 1.0172e+02 -4.1212e+00 -2.2726e+00 -4.0189e+00 -1.0280e+00 -1.2967e-01 3.0582e-01 7.5239e-06 8.2812e-02 2.9556e-02 1.9725e-01 1.3753e-01 9.0862e-01 8.1319e-02 9.0031e-01 8.3491e-02
+#> 185: 1.0178e+02 -4.1208e+00 -2.2858e+00 -4.0272e+00 -1.0063e+00 -1.6155e-01 3.0856e-01 4.5894e-06 8.8870e-02 2.5817e-02 1.9251e-01 1.0670e-01 9.1157e-01 7.7834e-02 9.6258e-01 7.8990e-02
+#> 186: 1.0198e+02 -4.1208e+00 -2.2682e+00 -4.0401e+00 -9.8523e-01 -1.1556e-01 2.4761e-01 3.2640e-06 7.5614e-02 2.1067e-02 1.9085e-01 9.0045e-02 8.5090e-01 8.6621e-02 1.0145e+00 8.1864e-02
+#> 187: 1.0197e+02 -4.1208e+00 -2.2788e+00 -4.0281e+00 -1.0066e+00 -1.0149e-01 2.0460e-01 4.5073e-06 7.8797e-02 2.3861e-02 2.0725e-01 7.9771e-02 9.6253e-01 8.2363e-02 9.3855e-01 8.3939e-02
+#> 188: 1.0196e+02 -4.1207e+00 -2.3105e+00 -4.0149e+00 -1.0217e+00 -9.0603e-02 2.2178e-01 3.6903e-06 8.9793e-02 2.1775e-02 1.9248e-01 8.2415e-02 9.4078e-01 8.1247e-02 9.1756e-01 8.2786e-02
+#> 189: 1.0202e+02 -4.1204e+00 -2.2702e+00 -4.0430e+00 -1.0032e+00 -1.1308e-01 2.2944e-01 3.5141e-06 7.8575e-02 2.4885e-02 2.0968e-01 8.2380e-02 9.5115e-01 8.1619e-02 9.2134e-01 8.9958e-02
+#> 190: 1.0195e+02 -4.1207e+00 -2.3126e+00 -4.0312e+00 -1.0154e+00 -6.3842e-02 2.5129e-01 2.6517e-06 4.2267e-02 2.2084e-02 1.9361e-01 7.0492e-02 9.3985e-01 8.5817e-02 9.3893e-01 8.7011e-02
+#> 191: 1.0203e+02 -4.1206e+00 -2.2758e+00 -4.0290e+00 -1.0102e+00 -3.1042e-02 1.7935e-01 3.4489e-06 5.7444e-02 2.3544e-02 1.9651e-01 7.9509e-02 9.5213e-01 8.2030e-02 1.0054e+00 8.7523e-02
+#> 192: 1.0199e+02 -4.1205e+00 -2.2969e+00 -4.0329e+00 -1.0364e+00 -8.3705e-02 1.5785e-01 3.5081e-06 7.4305e-02 2.2992e-02 1.9662e-01 7.7684e-02 9.2601e-01 8.3027e-02 9.8642e-01 8.3428e-02
+#> 193: 1.0196e+02 -4.1205e+00 -2.2661e+00 -4.0513e+00 -9.9271e-01 -4.6516e-02 1.2084e-01 2.6911e-06 6.8360e-02 3.5444e-02 1.9649e-01 7.5188e-02 9.1949e-01 7.9194e-02 1.0046e+00 8.5964e-02
+#> 194: 1.0198e+02 -4.1207e+00 -2.2817e+00 -4.0520e+00 -9.9852e-01 -8.4466e-02 1.3596e-01 1.5511e-06 6.5142e-02 4.1562e-02 1.9137e-01 9.6992e-02 9.6709e-01 7.6757e-02 9.7566e-01 8.3784e-02
+#> 195: 1.0200e+02 -4.1207e+00 -2.3076e+00 -4.0637e+00 -1.0028e+00 -7.2489e-02 1.0942e-01 1.6451e-06 6.1364e-02 4.6242e-02 1.9470e-01 9.3546e-02 9.9614e-01 8.1292e-02 9.7814e-01 8.1909e-02
+#> 196: 1.0194e+02 -4.1205e+00 -2.2970e+00 -4.0482e+00 -9.8816e-01 -6.8493e-02 1.1918e-01 1.2629e-06 4.2775e-02 3.6925e-02 2.3565e-01 7.7784e-02 8.9524e-01 9.2250e-02 9.8003e-01 8.2408e-02
+#> 197: 1.0199e+02 -4.1205e+00 -2.3075e+00 -4.0418e+00 -1.0196e+00 -6.8458e-02 1.7674e-01 7.5205e-07 5.2125e-02 2.9288e-02 2.1892e-01 8.4416e-02 8.9857e-01 9.1154e-02 1.0377e+00 8.3604e-02
+#> 198: 1.0197e+02 -4.1206e+00 -2.3051e+00 -4.0367e+00 -1.0252e+00 -6.9200e-02 9.1625e-02 6.6068e-07 4.7665e-02 2.8907e-02 1.8679e-01 7.5787e-02 9.0272e-01 8.8077e-02 9.2929e-01 8.0385e-02
+#> 199: 1.0192e+02 -4.1204e+00 -2.3163e+00 -4.0506e+00 -1.0152e+00 -5.3872e-02 6.8196e-02 5.5789e-07 6.0471e-02 3.1730e-02 2.0053e-01 6.8557e-02 9.0478e-01 8.5910e-02 9.3814e-01 8.2211e-02
+#> 200: 1.0195e+02 -4.1205e+00 -2.3141e+00 -4.0728e+00 -1.0010e+00 -2.5675e-03 6.5235e-02 6.9762e-07 5.8458e-02 2.8504e-02 2.0377e-01 4.9513e-02 8.5640e-01 8.6640e-02 9.5731e-01 8.4390e-02
+#> 201: 1.0195e+02 -4.1205e+00 -2.3106e+00 -4.0774e+00 -9.9012e-01 5.1724e-03 5.1225e-02 5.4222e-07 6.0577e-02 3.3554e-02 2.0505e-01 4.4738e-02 8.8073e-01 8.5488e-02 9.6928e-01 8.4895e-02
+#> 202: 1.0194e+02 -4.1205e+00 -2.3078e+00 -4.0767e+00 -9.9283e-01 3.9328e-03 4.5461e-02 4.8520e-07 6.7405e-02 3.4599e-02 2.1312e-01 4.6664e-02 9.0528e-01 8.4189e-02 9.8043e-01 8.5266e-02
+#> 203: 1.0193e+02 -4.1205e+00 -2.3029e+00 -4.0790e+00 -9.8990e-01 -9.1380e-03 4.7128e-02 5.0468e-07 6.8524e-02 3.6050e-02 2.1378e-01 5.1774e-02 9.0923e-01 8.4899e-02 9.8928e-01 8.4613e-02
+#> 204: 1.0192e+02 -4.1205e+00 -2.3080e+00 -4.0760e+00 -9.8833e-01 -1.2434e-02 4.8184e-02 4.9472e-07 6.4152e-02 3.5604e-02 2.0954e-01 5.1354e-02 9.1294e-01 8.5219e-02 9.8301e-01 8.4374e-02
+#> 205: 1.0192e+02 -4.1205e+00 -2.3100e+00 -4.0712e+00 -9.9253e-01 -2.3365e-02 4.5888e-02 5.0564e-07 5.9894e-02 3.5053e-02 2.0322e-01 5.4423e-02 9.0925e-01 8.5899e-02 9.8418e-01 8.3421e-02
+#> 206: 1.0192e+02 -4.1205e+00 -2.3095e+00 -4.0715e+00 -9.9721e-01 -2.6262e-02 4.3985e-02 5.1954e-07 5.8681e-02 3.4539e-02 2.0202e-01 5.8248e-02 9.1301e-01 8.5459e-02 9.8621e-01 8.3465e-02
+#> 207: 1.0192e+02 -4.1205e+00 -2.3179e+00 -4.0731e+00 -9.9906e-01 -2.3191e-02 4.3649e-02 5.3824e-07 5.7537e-02 3.4790e-02 2.0220e-01 6.0242e-02 9.1783e-01 8.5307e-02 9.8436e-01 8.3111e-02
+#> 208: 1.0191e+02 -4.1205e+00 -2.3238e+00 -4.0734e+00 -9.9920e-01 -1.9434e-02 4.3223e-02 5.3831e-07 5.7908e-02 3.4909e-02 2.0126e-01 6.0353e-02 9.2010e-01 8.5244e-02 9.8002e-01 8.2975e-02
+#> 209: 1.0191e+02 -4.1205e+00 -2.3279e+00 -4.0726e+00 -1.0053e+00 -1.5390e-02 4.1064e-02 5.3171e-07 5.8749e-02 3.4510e-02 1.9942e-01 6.3063e-02 9.3192e-01 8.4436e-02 9.8298e-01 8.3187e-02
+#> 210: 1.0191e+02 -4.1205e+00 -2.3310e+00 -4.0705e+00 -1.0061e+00 -1.3507e-02 3.8265e-02 5.2762e-07 5.9344e-02 3.3374e-02 1.9612e-01 6.7006e-02 9.3199e-01 8.4573e-02 9.8382e-01 8.3227e-02
+#> 211: 1.0191e+02 -4.1205e+00 -2.3383e+00 -4.0683e+00 -1.0043e+00 -1.3973e-02 3.6076e-02 5.2584e-07 6.1568e-02 3.2369e-02 1.9504e-01 6.9982e-02 9.4179e-01 8.4625e-02 9.9145e-01 8.3067e-02
+#> 212: 1.0192e+02 -4.1204e+00 -2.3396e+00 -4.0662e+00 -1.0055e+00 -1.8011e-02 3.4746e-02 5.4375e-07 6.2747e-02 3.1588e-02 1.9405e-01 7.2360e-02 9.4525e-01 8.4466e-02 9.9581e-01 8.2952e-02
+#> 213: 1.0192e+02 -4.1204e+00 -2.3407e+00 -4.0649e+00 -1.0066e+00 -2.1077e-02 3.4708e-02 5.5843e-07 6.1940e-02 3.0715e-02 1.9382e-01 7.4602e-02 9.4611e-01 8.4322e-02 9.9397e-01 8.2717e-02
+#> 214: 1.0192e+02 -4.1204e+00 -2.3392e+00 -4.0648e+00 -1.0076e+00 -2.3417e-02 3.4282e-02 5.8157e-07 6.1893e-02 3.0158e-02 1.9322e-01 7.8942e-02 9.5250e-01 8.3922e-02 9.9723e-01 8.2793e-02
+#> 215: 1.0192e+02 -4.1204e+00 -2.3410e+00 -4.0645e+00 -1.0087e+00 -2.1950e-02 3.5820e-02 6.0691e-07 6.2032e-02 2.9890e-02 1.9172e-01 8.3774e-02 9.5617e-01 8.3280e-02 1.0003e+00 8.2881e-02
+#> 216: 1.0192e+02 -4.1203e+00 -2.3425e+00 -4.0628e+00 -1.0069e+00 -2.4268e-02 3.7597e-02 6.4187e-07 6.1733e-02 2.9353e-02 1.9092e-01 8.8150e-02 9.5834e-01 8.3091e-02 1.0027e+00 8.2753e-02
+#> 217: 1.0192e+02 -4.1203e+00 -2.3439e+00 -4.0613e+00 -1.0064e+00 -2.4197e-02 3.9291e-02 6.5775e-07 6.2318e-02 2.8903e-02 1.8958e-01 9.0470e-02 9.5766e-01 8.3234e-02 1.0020e+00 8.2707e-02
+#> 218: 1.0191e+02 -4.1203e+00 -2.3441e+00 -4.0619e+00 -1.0065e+00 -2.2460e-02 4.0043e-02 6.4921e-07 6.2280e-02 2.8349e-02 1.8800e-01 9.4476e-02 9.5499e-01 8.3416e-02 1.0036e+00 8.2628e-02
+#> 219: 1.0191e+02 -4.1203e+00 -2.3437e+00 -4.0624e+00 -1.0066e+00 -1.9698e-02 3.9735e-02 6.3365e-07 6.2264e-02 2.7720e-02 1.8768e-01 9.7275e-02 9.4994e-01 8.3350e-02 1.0047e+00 8.2572e-02
+#> 220: 1.0191e+02 -4.1203e+00 -2.3447e+00 -4.0630e+00 -1.0070e+00 -1.5871e-02 4.0198e-02 6.3507e-07 6.1981e-02 2.7259e-02 1.8786e-01 9.9168e-02 9.4781e-01 8.3355e-02 1.0046e+00 8.2752e-02
+#> 221: 1.0191e+02 -4.1203e+00 -2.3459e+00 -4.0638e+00 -1.0069e+00 -1.4298e-02 4.0161e-02 6.2865e-07 6.2113e-02 2.7201e-02 1.8810e-01 1.0163e-01 9.4863e-01 8.3154e-02 1.0042e+00 8.2670e-02
+#> 222: 1.0191e+02 -4.1203e+00 -2.3472e+00 -4.0646e+00 -1.0064e+00 -1.0921e-02 4.0310e-02 6.2450e-07 6.2436e-02 2.6979e-02 1.8736e-01 1.0306e-01 9.4914e-01 8.3081e-02 1.0050e+00 8.2757e-02
+#> 223: 1.0191e+02 -4.1203e+00 -2.3478e+00 -4.0650e+00 -1.0063e+00 -1.1053e-02 3.9741e-02 6.1973e-07 6.2918e-02 2.6636e-02 1.8806e-01 1.0506e-01 9.4996e-01 8.2927e-02 1.0054e+00 8.2579e-02
+#> 224: 1.0191e+02 -4.1203e+00 -2.3478e+00 -4.0653e+00 -1.0061e+00 -1.0324e-02 3.9480e-02 6.1421e-07 6.4180e-02 2.6403e-02 1.8833e-01 1.0733e-01 9.4750e-01 8.2697e-02 1.0033e+00 8.2517e-02
+#> 225: 1.0191e+02 -4.1203e+00 -2.3479e+00 -4.0654e+00 -1.0060e+00 -1.0650e-02 3.9188e-02 6.0959e-07 6.3862e-02 2.6122e-02 1.8815e-01 1.0786e-01 9.4504e-01 8.2833e-02 1.0002e+00 8.2398e-02
+#> 226: 1.0192e+02 -4.1204e+00 -2.3469e+00 -4.0657e+00 -1.0052e+00 -1.0205e-02 3.9129e-02 6.0577e-07 6.4045e-02 2.5875e-02 1.8762e-01 1.0921e-01 9.4663e-01 8.2599e-02 9.9857e-01 8.2472e-02
+#> 227: 1.0192e+02 -4.1203e+00 -2.3467e+00 -4.0658e+00 -1.0053e+00 -1.0189e-02 3.8797e-02 6.0837e-07 6.5125e-02 2.5679e-02 1.8721e-01 1.1060e-01 9.4729e-01 8.2470e-02 9.9802e-01 8.2753e-02
+#> 228: 1.0192e+02 -4.1204e+00 -2.3469e+00 -4.0657e+00 -1.0054e+00 -1.0575e-02 3.8741e-02 6.0738e-07 6.5467e-02 2.5448e-02 1.8548e-01 1.1134e-01 9.4840e-01 8.2580e-02 9.9829e-01 8.2888e-02
+#> 229: 1.0192e+02 -4.1204e+00 -2.3479e+00 -4.0650e+00 -1.0056e+00 -1.1215e-02 3.9360e-02 6.0182e-07 6.4817e-02 2.5237e-02 1.8448e-01 1.1090e-01 9.5039e-01 8.2625e-02 9.9900e-01 8.2896e-02
+#> 230: 1.0192e+02 -4.1204e+00 -2.3482e+00 -4.0652e+00 -1.0060e+00 -9.9775e-03 3.9501e-02 5.9385e-07 6.4132e-02 2.5093e-02 1.8510e-01 1.1122e-01 9.4938e-01 8.2763e-02 9.9961e-01 8.2886e-02
+#> 231: 1.0192e+02 -4.1204e+00 -2.3479e+00 -4.0654e+00 -1.0070e+00 -8.9509e-03 3.9907e-02 5.9290e-07 6.3744e-02 2.4829e-02 1.8560e-01 1.1062e-01 9.4790e-01 8.2872e-02 1.0022e+00 8.2955e-02
+#> 232: 1.0192e+02 -4.1204e+00 -2.3484e+00 -4.0657e+00 -1.0081e+00 -6.9066e-03 4.0738e-02 5.7862e-07 6.3242e-02 2.4729e-02 1.8626e-01 1.0975e-01 9.4866e-01 8.2846e-02 1.0036e+00 8.3065e-02
+#> 233: 1.0191e+02 -4.1204e+00 -2.3487e+00 -4.0660e+00 -1.0080e+00 -5.1163e-03 4.0708e-02 5.7326e-07 6.2392e-02 2.4475e-02 1.8701e-01 1.0932e-01 9.4816e-01 8.2933e-02 1.0059e+00 8.3155e-02
+#> 234: 1.0191e+02 -4.1204e+00 -2.3500e+00 -4.0660e+00 -1.0077e+00 -4.0637e-03 4.1065e-02 5.6885e-07 6.1938e-02 2.4418e-02 1.8673e-01 1.0923e-01 9.5001e-01 8.3005e-02 1.0080e+00 8.3207e-02
+#> 235: 1.0191e+02 -4.1204e+00 -2.3526e+00 -4.0653e+00 -1.0074e+00 -3.6541e-03 4.1151e-02 5.6498e-07 6.2228e-02 2.4447e-02 1.8667e-01 1.0995e-01 9.5059e-01 8.3101e-02 1.0055e+00 8.3101e-02
+#> 236: 1.0191e+02 -4.1204e+00 -2.3540e+00 -4.0648e+00 -1.0078e+00 -4.0127e-03 4.0966e-02 5.7047e-07 6.1779e-02 2.4457e-02 1.8777e-01 1.0971e-01 9.4919e-01 8.3203e-02 1.0044e+00 8.3078e-02
+#> 237: 1.0191e+02 -4.1204e+00 -2.3528e+00 -4.0645e+00 -1.0078e+00 -4.4251e-03 4.0491e-02 5.6811e-07 6.1507e-02 2.4421e-02 1.8827e-01 1.1047e-01 9.4870e-01 8.3149e-02 1.0031e+00 8.3008e-02
+#> 238: 1.0190e+02 -4.1204e+00 -2.3517e+00 -4.0647e+00 -1.0076e+00 -5.2540e-03 3.9988e-02 5.6832e-07 6.1612e-02 2.4262e-02 1.8801e-01 1.1019e-01 9.4737e-01 8.3172e-02 1.0037e+00 8.2959e-02
+#> 239: 1.0190e+02 -4.1204e+00 -2.3509e+00 -4.0650e+00 -1.0089e+00 -5.1598e-03 3.9373e-02 5.6396e-07 6.1635e-02 2.4040e-02 1.8812e-01 1.1055e-01 9.4885e-01 8.3140e-02 1.0053e+00 8.2956e-02
+#> 240: 1.0190e+02 -4.1204e+00 -2.3515e+00 -4.0643e+00 -1.0095e+00 -4.5817e-03 3.9031e-02 5.5929e-07 6.2233e-02 2.3840e-02 1.8766e-01 1.1014e-01 9.5018e-01 8.3172e-02 1.0066e+00 8.2937e-02
+#> 241: 1.0190e+02 -4.1204e+00 -2.3524e+00 -4.0642e+00 -1.0097e+00 -3.9061e-03 3.8686e-02 5.5496e-07 6.3349e-02 2.3663e-02 1.8759e-01 1.1046e-01 9.4922e-01 8.3162e-02 1.0064e+00 8.2940e-02
+#> 242: 1.0190e+02 -4.1204e+00 -2.3535e+00 -4.0642e+00 -1.0092e+00 -2.9411e-03 3.8674e-02 5.5359e-07 6.3930e-02 2.3604e-02 1.8742e-01 1.1027e-01 9.4748e-01 8.3177e-02 1.0052e+00 8.2955e-02
+#> 243: 1.0190e+02 -4.1204e+00 -2.3551e+00 -4.0642e+00 -1.0089e+00 -1.6071e-03 3.8635e-02 5.4669e-07 6.4141e-02 2.3570e-02 1.8666e-01 1.1022e-01 9.4770e-01 8.3208e-02 1.0048e+00 8.2962e-02
+#> 244: 1.0190e+02 -4.1204e+00 -2.3566e+00 -4.0645e+00 -1.0093e+00 -7.0474e-04 3.8502e-02 5.4194e-07 6.4399e-02 2.3591e-02 1.8627e-01 1.0938e-01 9.4615e-01 8.3402e-02 1.0043e+00 8.2891e-02
+#> 245: 1.0189e+02 -4.1204e+00 -2.3575e+00 -4.0649e+00 -1.0093e+00 1.3351e-03 3.8372e-02 5.4266e-07 6.4935e-02 2.3511e-02 1.8609e-01 1.0840e-01 9.4586e-01 8.3393e-02 1.0041e+00 8.2835e-02
+#> 246: 1.0189e+02 -4.1204e+00 -2.3595e+00 -4.0655e+00 -1.0085e+00 4.2316e-03 3.8487e-02 5.4393e-07 6.5284e-02 2.3457e-02 1.8581e-01 1.0811e-01 9.4656e-01 8.3372e-02 1.0036e+00 8.2746e-02
+#> 247: 1.0189e+02 -4.1204e+00 -2.3608e+00 -4.0659e+00 -1.0081e+00 6.1314e-03 3.8249e-02 5.4752e-07 6.5440e-02 2.3455e-02 1.8584e-01 1.0706e-01 9.4795e-01 8.3330e-02 1.0025e+00 8.2710e-02
+#> 248: 1.0189e+02 -4.1204e+00 -2.3617e+00 -4.0662e+00 -1.0084e+00 8.1978e-03 3.8017e-02 5.4713e-07 6.5853e-02 2.3439e-02 1.8637e-01 1.0634e-01 9.4748e-01 8.3377e-02 1.0016e+00 8.2677e-02
+#> 249: 1.0189e+02 -4.1204e+00 -2.3633e+00 -4.0667e+00 -1.0085e+00 9.8011e-03 3.7934e-02 5.5069e-07 6.6442e-02 2.3533e-02 1.8652e-01 1.0606e-01 9.4761e-01 8.3449e-02 1.0009e+00 8.2712e-02
+#> 250: 1.0189e+02 -4.1204e+00 -2.3644e+00 -4.0668e+00 -1.0087e+00 1.0992e-02 3.8199e-02 5.5486e-07 6.6746e-02 2.3638e-02 1.8739e-01 1.0611e-01 9.4838e-01 8.3442e-02 9.9958e-01 8.2692e-02
+#> 251: 1.0189e+02 -4.1204e+00 -2.3644e+00 -4.0671e+00 -1.0097e+00 1.2215e-02 3.8648e-02 5.5448e-07 6.6916e-02 2.3592e-02 1.8753e-01 1.0607e-01 9.4773e-01 8.3511e-02 9.9919e-01 8.2701e-02
+#> 252: 1.0189e+02 -4.1204e+00 -2.3645e+00 -4.0671e+00 -1.0100e+00 1.2881e-02 3.8792e-02 5.5615e-07 6.7323e-02 2.3559e-02 1.8811e-01 1.0641e-01 9.4665e-01 8.3575e-02 9.9809e-01 8.2743e-02
+#> 253: 1.0189e+02 -4.1204e+00 -2.3646e+00 -4.0675e+00 -1.0100e+00 1.3605e-02 3.9013e-02 5.5568e-07 6.7625e-02 2.3432e-02 1.8825e-01 1.0688e-01 9.4424e-01 8.3598e-02 9.9825e-01 8.2702e-02
+#> 254: 1.0189e+02 -4.1204e+00 -2.3642e+00 -4.0677e+00 -1.0101e+00 1.3119e-02 3.8838e-02 5.5231e-07 6.7802e-02 2.3429e-02 1.8849e-01 1.0680e-01 9.4281e-01 8.3706e-02 9.9829e-01 8.2631e-02
+#> 255: 1.0189e+02 -4.1204e+00 -2.3627e+00 -4.0679e+00 -1.0104e+00 1.2490e-02 3.8574e-02 5.4955e-07 6.8395e-02 2.3368e-02 1.8890e-01 1.0661e-01 9.4101e-01 8.3756e-02 9.9798e-01 8.2674e-02
+#> 256: 1.0189e+02 -4.1204e+00 -2.3615e+00 -4.0677e+00 -1.0102e+00 1.1525e-02 3.8502e-02 5.4764e-07 6.8824e-02 2.3405e-02 1.8912e-01 1.0649e-01 9.4109e-01 8.3709e-02 9.9811e-01 8.2698e-02
+#> 257: 1.0189e+02 -4.1204e+00 -2.3604e+00 -4.0673e+00 -1.0104e+00 1.0381e-02 3.8286e-02 5.4694e-07 6.9020e-02 2.3338e-02 1.8925e-01 1.0614e-01 9.4075e-01 8.3695e-02 9.9738e-01 8.2689e-02
+#> 258: 1.0189e+02 -4.1204e+00 -2.3591e+00 -4.0670e+00 -1.0103e+00 8.9559e-03 3.7972e-02 5.4665e-07 6.9077e-02 2.3267e-02 1.8919e-01 1.0590e-01 9.4089e-01 8.3618e-02 9.9742e-01 8.2681e-02
+#> 259: 1.0189e+02 -4.1204e+00 -2.3585e+00 -4.0669e+00 -1.0099e+00 8.6011e-03 3.7874e-02 5.4788e-07 6.9455e-02 2.3264e-02 1.8885e-01 1.0519e-01 9.3952e-01 8.3583e-02 9.9610e-01 8.2650e-02
+#> 260: 1.0189e+02 -4.1204e+00 -2.3584e+00 -4.0666e+00 -1.0098e+00 8.0471e-03 3.7771e-02 5.5294e-07 7.0269e-02 2.3292e-02 1.8877e-01 1.0442e-01 9.3898e-01 8.3519e-02 9.9504e-01 8.2641e-02
+#> 261: 1.0189e+02 -4.1204e+00 -2.3583e+00 -4.0664e+00 -1.0100e+00 7.9344e-03 3.7597e-02 5.5650e-07 7.1087e-02 2.3370e-02 1.8867e-01 1.0399e-01 9.3810e-01 8.3488e-02 9.9419e-01 8.2673e-02
+#> 262: 1.0189e+02 -4.1204e+00 -2.3575e+00 -4.0662e+00 -1.0106e+00 7.2123e-03 3.7203e-02 5.5375e-07 7.1794e-02 2.3393e-02 1.8855e-01 1.0356e-01 9.3773e-01 8.3458e-02 9.9406e-01 8.2739e-02
+#> 263: 1.0189e+02 -4.1204e+00 -2.3564e+00 -4.0659e+00 -1.0112e+00 6.6044e-03 3.6977e-02 5.5306e-07 7.2290e-02 2.3475e-02 1.8847e-01 1.0316e-01 9.3744e-01 8.3383e-02 9.9341e-01 8.2818e-02
+#> 264: 1.0189e+02 -4.1204e+00 -2.3549e+00 -4.0657e+00 -1.0118e+00 6.0119e-03 3.6749e-02 5.5152e-07 7.2896e-02 2.3530e-02 1.8849e-01 1.0277e-01 9.3658e-01 8.3443e-02 9.9248e-01 8.2877e-02
+#> 265: 1.0189e+02 -4.1204e+00 -2.3545e+00 -4.0655e+00 -1.0121e+00 5.6547e-03 3.6562e-02 5.4816e-07 7.3238e-02 2.3560e-02 1.8863e-01 1.0269e-01 9.3597e-01 8.3434e-02 9.9139e-01 8.2879e-02
+#> 266: 1.0189e+02 -4.1204e+00 -2.3545e+00 -4.0651e+00 -1.0121e+00 5.0995e-03 3.6357e-02 5.4458e-07 7.3522e-02 2.3561e-02 1.8883e-01 1.0270e-01 9.3607e-01 8.3407e-02 9.9133e-01 8.2857e-02
+#> 267: 1.0189e+02 -4.1204e+00 -2.3541e+00 -4.0648e+00 -1.0122e+00 4.0105e-03 3.6306e-02 5.4160e-07 7.3833e-02 2.3499e-02 1.8889e-01 1.0317e-01 9.3624e-01 8.3359e-02 9.9151e-01 8.2865e-02
+#> 268: 1.0189e+02 -4.1204e+00 -2.3530e+00 -4.0646e+00 -1.0122e+00 3.0925e-03 3.6248e-02 5.3845e-07 7.4663e-02 2.3413e-02 1.8895e-01 1.0371e-01 9.3624e-01 8.3277e-02 9.9210e-01 8.2909e-02
+#> 269: 1.0189e+02 -4.1204e+00 -2.3518e+00 -4.0643e+00 -1.0123e+00 2.0507e-03 3.6181e-02 5.3602e-07 7.5442e-02 2.3291e-02 1.8886e-01 1.0397e-01 9.3581e-01 8.3260e-02 9.9238e-01 8.2898e-02
+#> 270: 1.0189e+02 -4.1204e+00 -2.3513e+00 -4.0640e+00 -1.0127e+00 1.3309e-03 3.5900e-02 5.3234e-07 7.6677e-02 2.3220e-02 1.8860e-01 1.0367e-01 9.3573e-01 8.3250e-02 9.9169e-01 8.2904e-02
+#> 271: 1.0189e+02 -4.1204e+00 -2.3514e+00 -4.0637e+00 -1.0129e+00 1.1237e-03 3.5608e-02 5.3092e-07 7.7065e-02 2.3102e-02 1.8826e-01 1.0384e-01 9.3645e-01 8.3228e-02 9.9173e-01 8.2896e-02
+#> 272: 1.0189e+02 -4.1204e+00 -2.3510e+00 -4.0639e+00 -1.0134e+00 9.7855e-04 3.5328e-02 5.3100e-07 7.7173e-02 2.3014e-02 1.8817e-01 1.0367e-01 9.3538e-01 8.3266e-02 9.9139e-01 8.2943e-02
+#> 273: 1.0189e+02 -4.1204e+00 -2.3501e+00 -4.0643e+00 -1.0133e+00 1.1275e-03 3.5187e-02 5.3298e-07 7.7467e-02 2.2923e-02 1.8793e-01 1.0344e-01 9.3474e-01 8.3194e-02 9.9249e-01 8.2973e-02
+#> 274: 1.0189e+02 -4.1204e+00 -2.3498e+00 -4.0643e+00 -1.0134e+00 1.4524e-03 3.4996e-02 5.3407e-07 7.7929e-02 2.2819e-02 1.8837e-01 1.0316e-01 9.3399e-01 8.3168e-02 9.9307e-01 8.2981e-02
+#> 275: 1.0189e+02 -4.1204e+00 -2.3500e+00 -4.0641e+00 -1.0136e+00 1.3605e-03 3.4786e-02 5.3269e-07 7.8177e-02 2.2747e-02 1.8855e-01 1.0305e-01 9.3319e-01 8.3205e-02 9.9277e-01 8.2938e-02
+#> 276: 1.0189e+02 -4.1204e+00 -2.3504e+00 -4.0641e+00 -1.0136e+00 1.5273e-03 3.4581e-02 5.3172e-07 7.8495e-02 2.2764e-02 1.8824e-01 1.0297e-01 9.3267e-01 8.3223e-02 9.9204e-01 8.2884e-02
+#> 277: 1.0189e+02 -4.1204e+00 -2.3506e+00 -4.0643e+00 -1.0133e+00 1.2961e-03 3.4373e-02 5.2917e-07 7.8721e-02 2.2791e-02 1.8801e-01 1.0288e-01 9.3253e-01 8.3185e-02 9.9192e-01 8.2854e-02
+#> 278: 1.0189e+02 -4.1204e+00 -2.3508e+00 -4.0643e+00 -1.0129e+00 1.1750e-03 3.4396e-02 5.2693e-07 7.8999e-02 2.2787e-02 1.8793e-01 1.0278e-01 9.3279e-01 8.3113e-02 9.9144e-01 8.2856e-02
+#> 279: 1.0189e+02 -4.1204e+00 -2.3507e+00 -4.0642e+00 -1.0126e+00 1.2755e-03 3.4381e-02 5.2405e-07 7.9351e-02 2.2804e-02 1.8779e-01 1.0255e-01 9.3319e-01 8.3049e-02 9.9099e-01 8.2875e-02
+#> 280: 1.0189e+02 -4.1204e+00 -2.3507e+00 -4.0641e+00 -1.0127e+00 6.3408e-04 3.4519e-02 5.2180e-07 7.9825e-02 2.2801e-02 1.8775e-01 1.0292e-01 9.3349e-01 8.2970e-02 9.9076e-01 8.2918e-02
+#> 281: 1.0189e+02 -4.1204e+00 -2.3508e+00 -4.0639e+00 -1.0124e+00 6.2438e-04 3.4782e-02 5.1859e-07 8.0328e-02 2.2816e-02 1.8757e-01 1.0299e-01 9.3299e-01 8.3025e-02 9.9050e-01 8.2897e-02
+#> 282: 1.0189e+02 -4.1205e+00 -2.3511e+00 -4.0641e+00 -1.0122e+00 1.1770e-03 3.4754e-02 5.1798e-07 8.0649e-02 2.2836e-02 1.8766e-01 1.0297e-01 9.3351e-01 8.2989e-02 9.9171e-01 8.2893e-02
+#> 283: 1.0189e+02 -4.1205e+00 -2.3519e+00 -4.0644e+00 -1.0120e+00 2.1716e-03 3.4711e-02 5.1567e-07 8.0910e-02 2.2836e-02 1.8774e-01 1.0270e-01 9.3288e-01 8.3029e-02 9.9246e-01 8.2853e-02
+#> 284: 1.0189e+02 -4.1205e+00 -2.3524e+00 -4.0647e+00 -1.0115e+00 2.6623e-03 3.4646e-02 5.1350e-07 8.1153e-02 2.2950e-02 1.8775e-01 1.0277e-01 9.3238e-01 8.2990e-02 9.9212e-01 8.2836e-02
+#> 285: 1.0189e+02 -4.1205e+00 -2.3531e+00 -4.0649e+00 -1.0116e+00 3.7830e-03 3.4626e-02 5.1216e-07 8.1058e-02 2.3007e-02 1.8782e-01 1.0270e-01 9.3232e-01 8.3017e-02 9.9094e-01 8.2829e-02
+#> 286: 1.0189e+02 -4.1205e+00 -2.3539e+00 -4.0651e+00 -1.0111e+00 5.1752e-03 3.4599e-02 5.0989e-07 8.0970e-02 2.3004e-02 1.8757e-01 1.0254e-01 9.3280e-01 8.3006e-02 9.9130e-01 8.2818e-02
+#> 287: 1.0189e+02 -4.1205e+00 -2.3541e+00 -4.0654e+00 -1.0112e+00 6.3747e-03 3.4592e-02 5.0930e-07 8.1117e-02 2.2959e-02 1.8756e-01 1.0222e-01 9.3212e-01 8.3146e-02 9.9183e-01 8.2863e-02
+#> 288: 1.0189e+02 -4.1205e+00 -2.3540e+00 -4.0656e+00 -1.0115e+00 6.5668e-03 3.4598e-02 5.0976e-07 8.1125e-02 2.2895e-02 1.8782e-01 1.0183e-01 9.3310e-01 8.3169e-02 9.9404e-01 8.2836e-02
+#> 289: 1.0189e+02 -4.1205e+00 -2.3539e+00 -4.0658e+00 -1.0119e+00 7.3521e-03 3.4525e-02 5.1097e-07 8.1097e-02 2.2869e-02 1.8753e-01 1.0126e-01 9.3336e-01 8.3244e-02 9.9435e-01 8.2833e-02
+#> 290: 1.0189e+02 -4.1205e+00 -2.3539e+00 -4.0659e+00 -1.0122e+00 7.5226e-03 3.4377e-02 5.0846e-07 8.1212e-02 2.2831e-02 1.8724e-01 1.0073e-01 9.3292e-01 8.3261e-02 9.9415e-01 8.2837e-02
+#> 291: 1.0189e+02 -4.1205e+00 -2.3536e+00 -4.0659e+00 -1.0122e+00 7.2889e-03 3.4263e-02 5.0823e-07 8.1182e-02 2.2801e-02 1.8711e-01 1.0056e-01 9.3309e-01 8.3300e-02 9.9427e-01 8.2805e-02
+#> 292: 1.0189e+02 -4.1205e+00 -2.3531e+00 -4.0659e+00 -1.0123e+00 7.1827e-03 3.4146e-02 5.0825e-07 8.1696e-02 2.2760e-02 1.8703e-01 1.0039e-01 9.3324e-01 8.3306e-02 9.9379e-01 8.2784e-02
+#> 293: 1.0189e+02 -4.1205e+00 -2.3528e+00 -4.0660e+00 -1.0125e+00 7.7142e-03 3.4126e-02 5.0971e-07 8.2026e-02 2.2705e-02 1.8721e-01 1.0036e-01 9.3316e-01 8.3316e-02 9.9357e-01 8.2756e-02
+#> 294: 1.0188e+02 -4.1204e+00 -2.3529e+00 -4.0663e+00 -1.0126e+00 8.5146e-03 3.4314e-02 5.0823e-07 8.2197e-02 2.2608e-02 1.8743e-01 1.0009e-01 9.3356e-01 8.3308e-02 9.9367e-01 8.2719e-02
+#> 295: 1.0188e+02 -4.1204e+00 -2.3532e+00 -4.0666e+00 -1.0123e+00 9.2199e-03 3.4472e-02 5.0839e-07 8.2550e-02 2.2529e-02 1.8745e-01 9.9731e-02 9.3393e-01 8.3255e-02 9.9373e-01 8.2686e-02
+#> 296: 1.0188e+02 -4.1204e+00 -2.3537e+00 -4.0667e+00 -1.0121e+00 9.7869e-03 3.4678e-02 5.0983e-07 8.3059e-02 2.2497e-02 1.8729e-01 9.9260e-02 9.3395e-01 8.3198e-02 9.9300e-01 8.2681e-02
+#> 297: 1.0188e+02 -4.1204e+00 -2.3540e+00 -4.0670e+00 -1.0118e+00 1.0166e-02 3.4957e-02 5.1049e-07 8.3080e-02 2.2448e-02 1.8710e-01 9.8969e-02 9.3321e-01 8.3178e-02 9.9255e-01 8.2663e-02
+#> 298: 1.0188e+02 -4.1204e+00 -2.3544e+00 -4.0673e+00 -1.0117e+00 1.0649e-02 3.5259e-02 5.1103e-07 8.3179e-02 2.2383e-02 1.8704e-01 9.8442e-02 9.3227e-01 8.3199e-02 9.9266e-01 8.2646e-02
+#> 299: 1.0188e+02 -4.1204e+00 -2.3542e+00 -4.0676e+00 -1.0117e+00 1.0927e-02 3.5438e-02 5.1128e-07 8.3068e-02 2.2378e-02 1.8699e-01 9.8203e-02 9.3263e-01 8.3138e-02 9.9353e-01 8.2671e-02
+#> 300: 1.0188e+02 -4.1204e+00 -2.3544e+00 -4.0678e+00 -1.0116e+00 1.1083e-02 3.5694e-02 5.1107e-07 8.2896e-02 2.2344e-02 1.8733e-01 9.7775e-02 9.3179e-01 8.3124e-02 9.9379e-01 8.2657e-02
+#> 301: 1.0188e+02 -4.1204e+00 -2.3542e+00 -4.0680e+00 -1.0115e+00 1.0992e-02 3.5896e-02 5.1262e-07 8.2816e-02 2.2349e-02 1.8753e-01 9.7431e-02 9.3209e-01 8.3086e-02 9.9388e-01 8.2674e-02
+#> 302: 1.0188e+02 -4.1204e+00 -2.3540e+00 -4.0681e+00 -1.0113e+00 1.0410e-02 3.6050e-02 5.1256e-07 8.2817e-02 2.2308e-02 1.8734e-01 9.7153e-02 9.3221e-01 8.3073e-02 9.9402e-01 8.2670e-02
+#> 303: 1.0188e+02 -4.1204e+00 -2.3540e+00 -4.0681e+00 -1.0112e+00 1.0301e-02 3.6150e-02 5.1127e-07 8.2826e-02 2.2325e-02 1.8730e-01 9.6656e-02 9.3192e-01 8.3040e-02 9.9393e-01 8.2665e-02
+#> 304: 1.0188e+02 -4.1204e+00 -2.3536e+00 -4.0681e+00 -1.0113e+00 1.0235e-02 3.6393e-02 5.1176e-07 8.2606e-02 2.2353e-02 1.8724e-01 9.6171e-02 9.3161e-01 8.3068e-02 9.9361e-01 8.2698e-02
+#> 305: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0683e+00 -1.0112e+00 9.9655e-03 3.6369e-02 5.1442e-07 8.2520e-02 2.2378e-02 1.8707e-01 9.5656e-02 9.3113e-01 8.3109e-02 9.9338e-01 8.2731e-02
+#> 306: 1.0188e+02 -4.1204e+00 -2.3531e+00 -4.0684e+00 -1.0110e+00 9.9701e-03 3.6346e-02 5.1546e-07 8.2789e-02 2.2360e-02 1.8702e-01 9.5116e-02 9.3102e-01 8.3065e-02 9.9405e-01 8.2761e-02
+#> 307: 1.0188e+02 -4.1204e+00 -2.3530e+00 -4.0684e+00 -1.0112e+00 1.0194e-02 3.6300e-02 5.1196e-07 8.3035e-02 2.2381e-02 1.8704e-01 9.4760e-02 9.3082e-01 8.3003e-02 9.9410e-01 8.2779e-02
+#> 308: 1.0189e+02 -4.1204e+00 -2.3530e+00 -4.0685e+00 -1.0109e+00 9.9531e-03 3.6400e-02 5.1140e-07 8.3511e-02 2.2334e-02 1.8726e-01 9.4494e-02 9.3151e-01 8.2910e-02 9.9484e-01 8.2760e-02
+#> 309: 1.0188e+02 -4.1204e+00 -2.3530e+00 -4.0685e+00 -1.0107e+00 1.0089e-02 3.6382e-02 5.1081e-07 8.3917e-02 2.2276e-02 1.8728e-01 9.4285e-02 9.3133e-01 8.2875e-02 9.9545e-01 8.2757e-02
+#> 310: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0685e+00 -1.0105e+00 1.0805e-02 3.6375e-02 5.1041e-07 8.4245e-02 2.2246e-02 1.8753e-01 9.3894e-02 9.3052e-01 8.2899e-02 9.9500e-01 8.2743e-02
+#> 311: 1.0188e+02 -4.1204e+00 -2.3534e+00 -4.0685e+00 -1.0103e+00 1.1449e-02 3.6311e-02 5.0884e-07 8.4434e-02 2.2231e-02 1.8783e-01 9.3542e-02 9.3039e-01 8.2864e-02 9.9458e-01 8.2733e-02
+#> 312: 1.0188e+02 -4.1204e+00 -2.3535e+00 -4.0685e+00 -1.0102e+00 1.2173e-02 3.6373e-02 5.0821e-07 8.4730e-02 2.2176e-02 1.8769e-01 9.3317e-02 9.2982e-01 8.2916e-02 9.9438e-01 8.2740e-02
+#> 313: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0688e+00 -1.0103e+00 1.2812e-02 3.6558e-02 5.0751e-07 8.5211e-02 2.2131e-02 1.8754e-01 9.3387e-02 9.2962e-01 8.2892e-02 9.9458e-01 8.2741e-02
+#> 314: 1.0188e+02 -4.1204e+00 -2.3534e+00 -4.0690e+00 -1.0103e+00 1.3241e-02 3.6680e-02 5.0887e-07 8.5667e-02 2.2079e-02 1.8772e-01 9.3442e-02 9.2941e-01 8.2947e-02 9.9511e-01 8.2743e-02
+#> 315: 1.0188e+02 -4.1204e+00 -2.3534e+00 -4.0691e+00 -1.0104e+00 1.3699e-02 3.6924e-02 5.0965e-07 8.5865e-02 2.2028e-02 1.8766e-01 9.3264e-02 9.2904e-01 8.2986e-02 9.9543e-01 8.2763e-02
+#> 316: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0693e+00 -1.0103e+00 1.4121e-02 3.7218e-02 5.1041e-07 8.6216e-02 2.2076e-02 1.8773e-01 9.3035e-02 9.2917e-01 8.3013e-02 9.9486e-01 8.2782e-02
+#> 317: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0694e+00 -1.0102e+00 1.4588e-02 3.7304e-02 5.0994e-07 8.6513e-02 2.2128e-02 1.8773e-01 9.2766e-02 9.2943e-01 8.3025e-02 9.9441e-01 8.2779e-02
+#> 318: 1.0188e+02 -4.1204e+00 -2.3534e+00 -4.0693e+00 -1.0101e+00 1.4714e-02 3.7538e-02 5.0773e-07 8.6801e-02 2.2128e-02 1.8767e-01 9.2698e-02 9.2907e-01 8.3052e-02 9.9378e-01 8.2780e-02
+#> 319: 1.0187e+02 -4.1204e+00 -2.3533e+00 -4.0692e+00 -1.0099e+00 1.4582e-02 3.7563e-02 5.0550e-07 8.6669e-02 2.2135e-02 1.8775e-01 9.2604e-02 9.2925e-01 8.3042e-02 9.9356e-01 8.2773e-02
+#> 320: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0690e+00 -1.0102e+00 1.4511e-02 3.7580e-02 5.0281e-07 8.6617e-02 2.2121e-02 1.8780e-01 9.2508e-02 9.3001e-01 8.3032e-02 9.9322e-01 8.2780e-02
+#> 321: 1.0187e+02 -4.1204e+00 -2.3534e+00 -4.0688e+00 -1.0100e+00 1.4288e-02 3.7624e-02 5.0172e-07 8.6311e-02 2.2115e-02 1.8783e-01 9.2445e-02 9.3011e-01 8.3054e-02 9.9288e-01 8.2772e-02
+#> 322: 1.0187e+02 -4.1204e+00 -2.3532e+00 -4.0687e+00 -1.0098e+00 1.3834e-02 3.7497e-02 5.0086e-07 8.6187e-02 2.2111e-02 1.8791e-01 9.2699e-02 9.3037e-01 8.3069e-02 9.9284e-01 8.2773e-02
+#> 323: 1.0187e+02 -4.1204e+00 -2.3524e+00 -4.0683e+00 -1.0097e+00 1.2977e-02 3.7420e-02 4.9925e-07 8.6082e-02 2.2084e-02 1.8818e-01 9.3123e-02 9.3036e-01 8.3012e-02 9.9265e-01 8.2813e-02
+#> 324: 1.0187e+02 -4.1204e+00 -2.3523e+00 -4.0682e+00 -1.0096e+00 1.2679e-02 3.7420e-02 4.9836e-07 8.5721e-02 2.2071e-02 1.8829e-01 9.3535e-02 9.3062e-01 8.3011e-02 9.9241e-01 8.2827e-02
+#> 325: 1.0187e+02 -4.1204e+00 -2.3520e+00 -4.0680e+00 -1.0094e+00 1.2196e-02 3.7298e-02 4.9735e-07 8.5411e-02 2.2028e-02 1.8848e-01 9.3706e-02 9.3043e-01 8.3020e-02 9.9256e-01 8.2826e-02
+#> 326: 1.0187e+02 -4.1204e+00 -2.3517e+00 -4.0678e+00 -1.0091e+00 1.1924e-02 3.7185e-02 4.9661e-07 8.5453e-02 2.1983e-02 1.8830e-01 9.3688e-02 9.3050e-01 8.2996e-02 9.9284e-01 8.2806e-02
+#> 327: 1.0187e+02 -4.1204e+00 -2.3516e+00 -4.0677e+00 -1.0090e+00 1.1449e-02 3.7155e-02 4.9755e-07 8.5761e-02 2.1967e-02 1.8819e-01 9.3936e-02 9.3052e-01 8.2912e-02 9.9245e-01 8.2806e-02
+#> 328: 1.0187e+02 -4.1204e+00 -2.3514e+00 -4.0675e+00 -1.0089e+00 1.0758e-02 3.7146e-02 4.9892e-07 8.6019e-02 2.1971e-02 1.8806e-01 9.4361e-02 9.3070e-01 8.2833e-02 9.9182e-01 8.2840e-02
+#> 329: 1.0187e+02 -4.1204e+00 -2.3515e+00 -4.0672e+00 -1.0087e+00 1.0256e-02 3.7342e-02 5.0019e-07 8.5965e-02 2.1989e-02 1.8796e-01 9.4614e-02 9.3067e-01 8.2818e-02 9.9159e-01 8.2858e-02
+#> 330: 1.0187e+02 -4.1204e+00 -2.3520e+00 -4.0670e+00 -1.0086e+00 1.0021e-02 3.7376e-02 4.9911e-07 8.6124e-02 2.1978e-02 1.8796e-01 9.4836e-02 9.3036e-01 8.2819e-02 9.9148e-01 8.2866e-02
+#> 331: 1.0187e+02 -4.1204e+00 -2.3521e+00 -4.0668e+00 -1.0086e+00 9.5790e-03 3.7296e-02 4.9753e-07 8.6122e-02 2.1951e-02 1.8782e-01 9.5042e-02 9.3064e-01 8.2783e-02 9.9196e-01 8.2863e-02
+#> 332: 1.0187e+02 -4.1204e+00 -2.3523e+00 -4.0667e+00 -1.0085e+00 9.2971e-03 3.7221e-02 4.9729e-07 8.6215e-02 2.1952e-02 1.8787e-01 9.5082e-02 9.3103e-01 8.2782e-02 9.9224e-01 8.2861e-02
+#> 333: 1.0187e+02 -4.1204e+00 -2.3524e+00 -4.0667e+00 -1.0084e+00 9.2591e-03 3.7097e-02 4.9556e-07 8.6302e-02 2.1922e-02 1.8792e-01 9.5155e-02 9.3058e-01 8.2798e-02 9.9202e-01 8.2831e-02
+#> 334: 1.0187e+02 -4.1204e+00 -2.3528e+00 -4.0667e+00 -1.0082e+00 9.5799e-03 3.6997e-02 4.9398e-07 8.6409e-02 2.1911e-02 1.8792e-01 9.5231e-02 9.3035e-01 8.2810e-02 9.9157e-01 8.2803e-02
+#> 335: 1.0187e+02 -4.1204e+00 -2.3529e+00 -4.0667e+00 -1.0080e+00 9.5724e-03 3.6912e-02 4.9206e-07 8.6310e-02 2.1923e-02 1.8791e-01 9.5379e-02 9.3054e-01 8.2759e-02 9.9143e-01 8.2776e-02
+#> 336: 1.0187e+02 -4.1204e+00 -2.3525e+00 -4.0667e+00 -1.0082e+00 9.5794e-03 3.6983e-02 4.9255e-07 8.6282e-02 2.1882e-02 1.8789e-01 9.5422e-02 9.3064e-01 8.2705e-02 9.9138e-01 8.2778e-02
+#> 337: 1.0187e+02 -4.1204e+00 -2.3525e+00 -4.0669e+00 -1.0083e+00 1.0008e-02 3.6943e-02 4.9278e-07 8.6483e-02 2.1844e-02 1.8794e-01 9.5240e-02 9.2981e-01 8.2753e-02 9.9100e-01 8.2774e-02
+#> 338: 1.0187e+02 -4.1204e+00 -2.3525e+00 -4.0669e+00 -1.0084e+00 1.0297e-02 3.6869e-02 4.9309e-07 8.6547e-02 2.1803e-02 1.8808e-01 9.5094e-02 9.2978e-01 8.2764e-02 9.9113e-01 8.2759e-02
+#> 339: 1.0187e+02 -4.1204e+00 -2.3528e+00 -4.0669e+00 -1.0083e+00 1.0465e-02 3.6822e-02 4.9257e-07 8.6779e-02 2.1769e-02 1.8813e-01 9.5062e-02 9.3020e-01 8.2702e-02 9.9135e-01 8.2750e-02
+#> 340: 1.0187e+02 -4.1204e+00 -2.3531e+00 -4.0668e+00 -1.0083e+00 1.0321e-02 3.6733e-02 4.9228e-07 8.7033e-02 2.1721e-02 1.8827e-01 9.4862e-02 9.3062e-01 8.2698e-02 9.9195e-01 8.2729e-02
+#> 341: 1.0187e+02 -4.1204e+00 -2.3531e+00 -4.0670e+00 -1.0085e+00 1.0501e-02 3.6671e-02 4.9236e-07 8.7297e-02 2.1733e-02 1.8820e-01 9.4558e-02 9.3121e-01 8.2677e-02 9.9238e-01 8.2713e-02
+#> 342: 1.0187e+02 -4.1204e+00 -2.3534e+00 -4.0670e+00 -1.0085e+00 1.0818e-02 3.6715e-02 4.9084e-07 8.7450e-02 2.1726e-02 1.8801e-01 9.4252e-02 9.3160e-01 8.2657e-02 9.9232e-01 8.2708e-02
+#> 343: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0670e+00 -1.0087e+00 1.1046e-02 3.6784e-02 4.8872e-07 8.7718e-02 2.1718e-02 1.8799e-01 9.3887e-02 9.3187e-01 8.2645e-02 9.9225e-01 8.2722e-02
+#> 344: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0670e+00 -1.0087e+00 1.0652e-02 3.6736e-02 4.8852e-07 8.7725e-02 2.1730e-02 1.8792e-01 9.3731e-02 9.3202e-01 8.2618e-02 9.9218e-01 8.2712e-02
+#> 345: 1.0187e+02 -4.1204e+00 -2.3536e+00 -4.0669e+00 -1.0090e+00 1.0445e-02 3.6714e-02 4.8690e-07 8.7782e-02 2.1751e-02 1.8798e-01 9.3450e-02 9.3223e-01 8.2582e-02 9.9239e-01 8.2706e-02
+#> 346: 1.0187e+02 -4.1204e+00 -2.3536e+00 -4.0668e+00 -1.0089e+00 1.0173e-02 3.6743e-02 4.8656e-07 8.7733e-02 2.1810e-02 1.8814e-01 9.3151e-02 9.3257e-01 8.2575e-02 9.9181e-01 8.2708e-02
+#> 347: 1.0187e+02 -4.1205e+00 -2.3532e+00 -4.0668e+00 -1.0089e+00 9.9457e-03 3.6808e-02 4.8756e-07 8.7948e-02 2.1819e-02 1.8813e-01 9.3040e-02 9.3255e-01 8.2599e-02 9.9124e-01 8.2727e-02
+#> 348: 1.0187e+02 -4.1205e+00 -2.3534e+00 -4.0667e+00 -1.0090e+00 9.8498e-03 3.6967e-02 4.8883e-07 8.7998e-02 2.1841e-02 1.8820e-01 9.3180e-02 9.3259e-01 8.2612e-02 9.9148e-01 8.2750e-02
+#> 349: 1.0187e+02 -4.1205e+00 -2.3535e+00 -4.0668e+00 -1.0091e+00 9.6211e-03 3.6891e-02 4.8867e-07 8.8006e-02 2.1930e-02 1.8819e-01 9.3390e-02 9.3232e-01 8.2612e-02 9.9073e-01 8.2738e-02
+#> 350: 1.0187e+02 -4.1205e+00 -2.3534e+00 -4.0669e+00 -1.0090e+00 9.7176e-03 3.6813e-02 4.8925e-07 8.7923e-02 2.1964e-02 1.8820e-01 9.3434e-02 9.3224e-01 8.2600e-02 9.9031e-01 8.2734e-02
+#> 351: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0669e+00 -1.0090e+00 9.6652e-03 3.6769e-02 4.8873e-07 8.7985e-02 2.2046e-02 1.8814e-01 9.3529e-02 9.3220e-01 8.2558e-02 9.8978e-01 8.2728e-02
+#> 352: 1.0187e+02 -4.1204e+00 -2.3536e+00 -4.0669e+00 -1.0089e+00 9.8745e-03 3.6732e-02 4.8969e-07 8.8016e-02 2.2094e-02 1.8799e-01 9.3644e-02 9.3168e-01 8.2577e-02 9.8913e-01 8.2722e-02
+#> 353: 1.0187e+02 -4.1204e+00 -2.3537e+00 -4.0669e+00 -1.0088e+00 9.7530e-03 3.6700e-02 4.9008e-07 8.7949e-02 2.2116e-02 1.8798e-01 9.3769e-02 9.3165e-01 8.2559e-02 9.8871e-01 8.2711e-02
+#> 354: 1.0187e+02 -4.1204e+00 -2.3538e+00 -4.0667e+00 -1.0089e+00 9.4103e-03 3.6653e-02 4.9045e-07 8.7894e-02 2.2118e-02 1.8793e-01 9.3872e-02 9.3188e-01 8.2551e-02 9.8887e-01 8.2692e-02
+#> 355: 1.0187e+02 -4.1204e+00 -2.3540e+00 -4.0666e+00 -1.0088e+00 9.1684e-03 3.6536e-02 4.9125e-07 8.7920e-02 2.2107e-02 1.8812e-01 9.4123e-02 9.3223e-01 8.2517e-02 9.8893e-01 8.2687e-02
+#> 356: 1.0187e+02 -4.1204e+00 -2.3542e+00 -4.0664e+00 -1.0086e+00 8.9025e-03 3.6431e-02 4.9325e-07 8.7949e-02 2.2110e-02 1.8827e-01 9.4135e-02 9.3252e-01 8.2503e-02 9.8907e-01 8.2649e-02
+#> 357: 1.0187e+02 -4.1204e+00 -2.3542e+00 -4.0663e+00 -1.0085e+00 8.6757e-03 3.6417e-02 4.9505e-07 8.8052e-02 2.2096e-02 1.8848e-01 9.4192e-02 9.3281e-01 8.2490e-02 9.8957e-01 8.2624e-02
+#> 358: 1.0187e+02 -4.1204e+00 -2.3542e+00 -4.0661e+00 -1.0084e+00 8.1812e-03 3.6349e-02 4.9610e-07 8.8344e-02 2.2104e-02 1.8844e-01 9.4129e-02 9.3294e-01 8.2493e-02 9.8977e-01 8.2614e-02
+#> 359: 1.0187e+02 -4.1204e+00 -2.3541e+00 -4.0659e+00 -1.0083e+00 8.0905e-03 3.6475e-02 4.9675e-07 8.8647e-02 2.2116e-02 1.8831e-01 9.4146e-02 9.3322e-01 8.2473e-02 9.8978e-01 8.2622e-02
+#> 360: 1.0187e+02 -4.1204e+00 -2.3542e+00 -4.0657e+00 -1.0082e+00 7.8390e-03 3.6468e-02 4.9649e-07 8.8981e-02 2.2120e-02 1.8815e-01 9.4249e-02 9.3361e-01 8.2430e-02 9.8997e-01 8.2616e-02
+#> 361: 1.0187e+02 -4.1204e+00 -2.3545e+00 -4.0656e+00 -1.0083e+00 7.9104e-03 3.6434e-02 4.9737e-07 8.9447e-02 2.2133e-02 1.8808e-01 9.4085e-02 9.3387e-01 8.2426e-02 9.9025e-01 8.2616e-02
+#> 362: 1.0187e+02 -4.1204e+00 -2.3547e+00 -4.0655e+00 -1.0087e+00 7.6341e-03 3.6428e-02 4.9748e-07 8.9872e-02 2.2148e-02 1.8805e-01 9.4025e-02 9.3407e-01 8.2456e-02 9.9070e-01 8.2609e-02
+#> 363: 1.0187e+02 -4.1204e+00 -2.3546e+00 -4.0653e+00 -1.0087e+00 7.2351e-03 3.6392e-02 4.9842e-07 9.0125e-02 2.2179e-02 1.8818e-01 9.4157e-02 9.3437e-01 8.2439e-02 9.9051e-01 8.2626e-02
+#> 364: 1.0187e+02 -4.1204e+00 -2.3543e+00 -4.0651e+00 -1.0089e+00 6.7851e-03 3.6303e-02 4.9890e-07 9.0448e-02 2.2189e-02 1.8831e-01 9.4432e-02 9.3513e-01 8.2433e-02 9.9051e-01 8.2655e-02
+#> 365: 1.0187e+02 -4.1204e+00 -2.3538e+00 -4.0650e+00 -1.0089e+00 6.2935e-03 3.6267e-02 4.9829e-07 9.0718e-02 2.2204e-02 1.8818e-01 9.4507e-02 9.3580e-01 8.2387e-02 9.9049e-01 8.2678e-02
+#> 366: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0649e+00 -1.0088e+00 5.8910e-03 3.6339e-02 4.9911e-07 9.0727e-02 2.2231e-02 1.8801e-01 9.4683e-02 9.3567e-01 8.2359e-02 9.8997e-01 8.2681e-02
+#> 367: 1.0187e+02 -4.1204e+00 -2.3533e+00 -4.0649e+00 -1.0088e+00 5.8610e-03 3.6366e-02 5.0123e-07 9.0732e-02 2.2245e-02 1.8793e-01 9.4666e-02 9.3556e-01 8.2339e-02 9.8945e-01 8.2691e-02
+#> 368: 1.0187e+02 -4.1204e+00 -2.3531e+00 -4.0650e+00 -1.0088e+00 6.1043e-03 3.6424e-02 5.0107e-07 9.0729e-02 2.2248e-02 1.8780e-01 9.4599e-02 9.3554e-01 8.2315e-02 9.8903e-01 8.2705e-02
+#> 369: 1.0187e+02 -4.1204e+00 -2.3530e+00 -4.0650e+00 -1.0088e+00 6.1767e-03 3.6436e-02 5.0046e-07 9.0617e-02 2.2226e-02 1.8787e-01 9.4410e-02 9.3504e-01 8.2361e-02 9.8843e-01 8.2694e-02
+#> 370: 1.0187e+02 -4.1204e+00 -2.3528e+00 -4.0651e+00 -1.0088e+00 6.2532e-03 3.6467e-02 5.0024e-07 9.0741e-02 2.2223e-02 1.8794e-01 9.4288e-02 9.3472e-01 8.2374e-02 9.8781e-01 8.2703e-02
+#> 371: 1.0186e+02 -4.1204e+00 -2.3525e+00 -4.0652e+00 -1.0088e+00 6.2117e-03 3.6465e-02 4.9964e-07 9.0904e-02 2.2220e-02 1.8788e-01 9.4310e-02 9.3470e-01 8.2367e-02 9.8730e-01 8.2731e-02
+#> 372: 1.0186e+02 -4.1204e+00 -2.3524e+00 -4.0651e+00 -1.0089e+00 6.1363e-03 3.6367e-02 5.0037e-07 9.1177e-02 2.2230e-02 1.8783e-01 9.4288e-02 9.3496e-01 8.2365e-02 9.8699e-01 8.2729e-02
+#> 373: 1.0186e+02 -4.1204e+00 -2.3523e+00 -4.0650e+00 -1.0089e+00 6.0384e-03 3.6353e-02 5.0195e-07 9.1402e-02 2.2219e-02 1.8764e-01 9.4343e-02 9.3478e-01 8.2430e-02 9.8641e-01 8.2747e-02
+#> 374: 1.0186e+02 -4.1204e+00 -2.3523e+00 -4.0650e+00 -1.0091e+00 5.9821e-03 3.6377e-02 5.0424e-07 9.1532e-02 2.2243e-02 1.8761e-01 9.4219e-02 9.3466e-01 8.2418e-02 9.8614e-01 8.2735e-02
+#> 375: 1.0186e+02 -4.1204e+00 -2.3524e+00 -4.0649e+00 -1.0091e+00 5.8843e-03 3.6358e-02 5.0568e-07 9.1556e-02 2.2250e-02 1.8768e-01 9.4173e-02 9.3432e-01 8.2413e-02 9.8592e-01 8.2728e-02
+#> 376: 1.0186e+02 -4.1204e+00 -2.3526e+00 -4.0649e+00 -1.0090e+00 5.7256e-03 3.6406e-02 5.0673e-07 9.1590e-02 2.2260e-02 1.8765e-01 9.4159e-02 9.3417e-01 8.2400e-02 9.8565e-01 8.2701e-02
+#> 377: 1.0186e+02 -4.1204e+00 -2.3527e+00 -4.0647e+00 -1.0091e+00 5.2782e-03 3.6397e-02 5.0740e-07 9.1564e-02 2.2263e-02 1.8765e-01 9.4084e-02 9.3434e-01 8.2395e-02 9.8563e-01 8.2680e-02
+#> 378: 1.0186e+02 -4.1204e+00 -2.3524e+00 -4.0646e+00 -1.0091e+00 4.8184e-03 3.6478e-02 5.0759e-07 9.1590e-02 2.2213e-02 1.8766e-01 9.4162e-02 9.3432e-01 8.2353e-02 9.8595e-01 8.2681e-02
+#> 379: 1.0186e+02 -4.1204e+00 -2.3521e+00 -4.0646e+00 -1.0089e+00 4.4861e-03 3.6557e-02 5.0710e-07 9.1595e-02 2.2159e-02 1.8767e-01 9.3894e-02 9.3395e-01 8.2341e-02 9.8636e-01 8.2671e-02
+#> 380: 1.0186e+02 -4.1204e+00 -2.3517e+00 -4.0644e+00 -1.0089e+00 3.9799e-03 3.6543e-02 5.0682e-07 9.1532e-02 2.2143e-02 1.8768e-01 9.3854e-02 9.3372e-01 8.2331e-02 9.8640e-01 8.2678e-02
+#> 381: 1.0186e+02 -4.1204e+00 -2.3515e+00 -4.0643e+00 -1.0089e+00 3.6269e-03 3.6531e-02 5.0770e-07 9.1364e-02 2.2157e-02 1.8768e-01 9.3897e-02 9.3383e-01 8.2326e-02 9.8630e-01 8.2675e-02
+#> 382: 1.0186e+02 -4.1204e+00 -2.3513e+00 -4.0643e+00 -1.0090e+00 3.1691e-03 3.6469e-02 5.0860e-07 9.1318e-02 2.2188e-02 1.8767e-01 9.3787e-02 9.3433e-01 8.2306e-02 9.8643e-01 8.2670e-02
+#> 383: 1.0186e+02 -4.1204e+00 -2.3508e+00 -4.0642e+00 -1.0090e+00 2.6209e-03 3.6416e-02 5.0893e-07 9.1374e-02 2.2165e-02 1.8759e-01 9.3654e-02 9.3443e-01 8.2289e-02 9.8663e-01 8.2672e-02
+#> 384: 1.0186e+02 -4.1204e+00 -2.3505e+00 -4.0640e+00 -1.0090e+00 2.1556e-03 3.6403e-02 5.0834e-07 9.1550e-02 2.2148e-02 1.8750e-01 9.3422e-02 9.3444e-01 8.2277e-02 9.8639e-01 8.2670e-02
+#> 385: 1.0186e+02 -4.1204e+00 -2.3505e+00 -4.0638e+00 -1.0089e+00 1.7048e-03 3.6391e-02 5.0788e-07 9.1717e-02 2.2160e-02 1.8746e-01 9.3178e-02 9.3457e-01 8.2261e-02 9.8616e-01 8.2636e-02
+#> 386: 1.0186e+02 -4.1204e+00 -2.3504e+00 -4.0637e+00 -1.0089e+00 1.4309e-03 3.6372e-02 5.0847e-07 9.1895e-02 2.2157e-02 1.8754e-01 9.2918e-02 9.3439e-01 8.2246e-02 9.8601e-01 8.2617e-02
+#> 387: 1.0186e+02 -4.1204e+00 -2.3505e+00 -4.0636e+00 -1.0089e+00 1.3524e-03 3.6446e-02 5.0896e-07 9.2022e-02 2.2182e-02 1.8768e-01 9.2684e-02 9.3470e-01 8.2216e-02 9.8593e-01 8.2620e-02
+#> 388: 1.0186e+02 -4.1204e+00 -2.3506e+00 -4.0635e+00 -1.0089e+00 1.2887e-03 3.6478e-02 5.0904e-07 9.2117e-02 2.2174e-02 1.8761e-01 9.2506e-02 9.3463e-01 8.2221e-02 9.8563e-01 8.2609e-02
+#> 389: 1.0186e+02 -4.1204e+00 -2.3505e+00 -4.0635e+00 -1.0089e+00 1.2044e-03 3.6479e-02 5.0969e-07 9.2068e-02 2.2180e-02 1.8751e-01 9.2308e-02 9.3438e-01 8.2241e-02 9.8516e-01 8.2592e-02
+#> 390: 1.0186e+02 -4.1204e+00 -2.3506e+00 -4.0635e+00 -1.0087e+00 1.1442e-03 3.6497e-02 5.0878e-07 9.1995e-02 2.2156e-02 1.8744e-01 9.2169e-02 9.3410e-01 8.2257e-02 9.8511e-01 8.2581e-02
+#> 391: 1.0186e+02 -4.1204e+00 -2.3508e+00 -4.0635e+00 -1.0089e+00 1.0925e-03 3.6454e-02 5.0876e-07 9.1945e-02 2.2177e-02 1.8739e-01 9.1989e-02 9.3439e-01 8.2254e-02 9.8472e-01 8.2579e-02
+#> 392: 1.0186e+02 -4.1204e+00 -2.3506e+00 -4.0633e+00 -1.0091e+00 7.9940e-04 3.6417e-02 5.0874e-07 9.1956e-02 2.2185e-02 1.8730e-01 9.1977e-02 9.3422e-01 8.2244e-02 9.8463e-01 8.2589e-02
+#> 393: 1.0186e+02 -4.1204e+00 -2.3504e+00 -4.0632e+00 -1.0093e+00 4.2112e-04 3.6433e-02 5.0843e-07 9.1868e-02 2.2211e-02 1.8739e-01 9.2106e-02 9.3464e-01 8.2217e-02 9.8458e-01 8.2594e-02
+#> 394: 1.0186e+02 -4.1204e+00 -2.3502e+00 -4.0631e+00 -1.0093e+00 1.4926e-04 3.6534e-02 5.0862e-07 9.1713e-02 2.2244e-02 1.8735e-01 9.2105e-02 9.3454e-01 8.2239e-02 9.8410e-01 8.2601e-02
+#> 395: 1.0186e+02 -4.1204e+00 -2.3499e+00 -4.0630e+00 -1.0095e+00 5.2506e-05 3.6667e-02 5.0955e-07 9.1548e-02 2.2269e-02 1.8733e-01 9.2151e-02 9.3450e-01 8.2256e-02 9.8389e-01 8.2612e-02
+#> 396: 1.0186e+02 -4.1204e+00 -2.3497e+00 -4.0630e+00 -1.0097e+00 1.6581e-05 3.6789e-02 5.1002e-07 9.1431e-02 2.2299e-02 1.8742e-01 9.2120e-02 9.3450e-01 8.2252e-02 9.8367e-01 8.2620e-02
+#> 397: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0629e+00 -1.0098e+00 -5.0310e-05 3.6860e-02 5.0949e-07 9.1311e-02 2.2323e-02 1.8738e-01 9.2130e-02 9.3467e-01 8.2250e-02 9.8388e-01 8.2628e-02
+#> 398: 1.0186e+02 -4.1205e+00 -2.3494e+00 -4.0629e+00 -1.0097e+00 -1.4918e-04 3.6902e-02 5.0935e-07 9.1211e-02 2.2330e-02 1.8747e-01 9.2144e-02 9.3478e-01 8.2260e-02 9.8420e-01 8.2632e-02
+#> 399: 1.0186e+02 -4.1205e+00 -2.3497e+00 -4.0628e+00 -1.0097e+00 -2.2152e-04 3.6932e-02 5.0927e-07 9.1209e-02 2.2377e-02 1.8750e-01 9.2136e-02 9.3481e-01 8.2286e-02 9.8431e-01 8.2622e-02
+#> 400: 1.0186e+02 -4.1205e+00 -2.3499e+00 -4.0629e+00 -1.0097e+00 3.2878e-05 3.6943e-02 5.0892e-07 9.1092e-02 2.2388e-02 1.8752e-01 9.2072e-02 9.3534e-01 8.2276e-02 9.8472e-01 8.2615e-02
+#> 401: 1.0186e+02 -4.1205e+00 -2.3501e+00 -4.0630e+00 -1.0097e+00 2.6776e-04 3.6950e-02 5.0860e-07 9.1038e-02 2.2395e-02 1.8740e-01 9.1911e-02 9.3515e-01 8.2331e-02 9.8459e-01 8.2615e-02
+#> 402: 1.0186e+02 -4.1205e+00 -2.3502e+00 -4.0632e+00 -1.0097e+00 3.9988e-04 3.6912e-02 5.0849e-07 9.0944e-02 2.2401e-02 1.8737e-01 9.1701e-02 9.3494e-01 8.2353e-02 9.8479e-01 8.2609e-02
+#> 403: 1.0186e+02 -4.1205e+00 -2.3503e+00 -4.0633e+00 -1.0098e+00 4.9714e-04 3.6935e-02 5.0805e-07 9.0895e-02 2.2404e-02 1.8741e-01 9.1609e-02 9.3444e-01 8.2372e-02 9.8505e-01 8.2638e-02
+#> 404: 1.0186e+02 -4.1205e+00 -2.3504e+00 -4.0633e+00 -1.0100e+00 5.8465e-04 3.6978e-02 5.0889e-07 9.0862e-02 2.2453e-02 1.8746e-01 9.1650e-02 9.3491e-01 8.2364e-02 9.8484e-01 8.2653e-02
+#> 405: 1.0186e+02 -4.1205e+00 -2.3505e+00 -4.0634e+00 -1.0099e+00 5.5970e-04 3.6999e-02 5.0964e-07 9.0930e-02 2.2480e-02 1.8742e-01 9.1823e-02 9.3458e-01 8.2371e-02 9.8465e-01 8.2670e-02
+#> 406: 1.0186e+02 -4.1205e+00 -2.3507e+00 -4.0634e+00 -1.0098e+00 5.4464e-04 3.7123e-02 5.1046e-07 9.1008e-02 2.2478e-02 1.8749e-01 9.1930e-02 9.3449e-01 8.2361e-02 9.8440e-01 8.2666e-02
+#> 407: 1.0186e+02 -4.1205e+00 -2.3506e+00 -4.0634e+00 -1.0097e+00 3.5564e-04 3.7226e-02 5.0978e-07 9.0891e-02 2.2469e-02 1.8751e-01 9.2130e-02 9.3444e-01 8.2380e-02 9.8462e-01 8.2660e-02
+#> 408: 1.0186e+02 -4.1205e+00 -2.3506e+00 -4.0635e+00 -1.0097e+00 3.8362e-04 3.7354e-02 5.0967e-07 9.0892e-02 2.2461e-02 1.8747e-01 9.2230e-02 9.3453e-01 8.2363e-02 9.8466e-01 8.2661e-02
+#> 409: 1.0186e+02 -4.1205e+00 -2.3505e+00 -4.0635e+00 -1.0097e+00 2.6671e-04 3.7473e-02 5.0928e-07 9.0894e-02 2.2519e-02 1.8751e-01 9.2243e-02 9.3447e-01 8.2347e-02 9.8449e-01 8.2667e-02
+#> 410: 1.0186e+02 -4.1205e+00 -2.3506e+00 -4.0634e+00 -1.0098e+00 1.7963e-04 3.7438e-02 5.0981e-07 9.0898e-02 2.2600e-02 1.8764e-01 9.2237e-02 9.3502e-01 8.2320e-02 9.8430e-01 8.2663e-02
+#> 411: 1.0186e+02 -4.1205e+00 -2.3506e+00 -4.0634e+00 -1.0098e+00 1.0085e-04 3.7381e-02 5.0970e-07 9.0820e-02 2.2618e-02 1.8767e-01 9.2103e-02 9.3480e-01 8.2324e-02 9.8427e-01 8.2652e-02
+#> 412: 1.0186e+02 -4.1205e+00 -2.3508e+00 -4.0633e+00 -1.0097e+00 1.9452e-04 3.7315e-02 5.0984e-07 9.0784e-02 2.2605e-02 1.8772e-01 9.2118e-02 9.3504e-01 8.2314e-02 9.8431e-01 8.2636e-02
+#> 413: 1.0186e+02 -4.1205e+00 -2.3508e+00 -4.0632e+00 -1.0097e+00 1.8432e-04 3.7243e-02 5.0946e-07 9.0798e-02 2.2604e-02 1.8765e-01 9.2206e-02 9.3499e-01 8.2299e-02 9.8426e-01 8.2636e-02
+#> 414: 1.0186e+02 -4.1205e+00 -2.3505e+00 -4.0632e+00 -1.0097e+00 2.1744e-04 3.7203e-02 5.0880e-07 9.0769e-02 2.2604e-02 1.8757e-01 9.2403e-02 9.3516e-01 8.2279e-02 9.8414e-01 8.2659e-02
+#> 415: 1.0186e+02 -4.1205e+00 -2.3505e+00 -4.0633e+00 -1.0097e+00 1.9330e-04 3.7197e-02 5.0896e-07 9.0657e-02 2.2618e-02 1.8764e-01 9.2565e-02 9.3514e-01 8.2264e-02 9.8435e-01 8.2655e-02
+#> 416: 1.0186e+02 -4.1205e+00 -2.3501e+00 -4.0634e+00 -1.0097e+00 2.1450e-04 3.7144e-02 5.0882e-07 9.0762e-02 2.2645e-02 1.8761e-01 9.2614e-02 9.3511e-01 8.2277e-02 9.8415e-01 8.2669e-02
+#> 417: 1.0186e+02 -4.1205e+00 -2.3498e+00 -4.0634e+00 -1.0099e+00 1.0737e-04 3.7092e-02 5.0932e-07 9.0804e-02 2.2631e-02 1.8754e-01 9.2581e-02 9.3509e-01 8.2284e-02 9.8430e-01 8.2667e-02
+#> 418: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0633e+00 -1.0099e+00 2.4734e-05 3.7061e-02 5.0972e-07 9.0913e-02 2.2624e-02 1.8736e-01 9.2572e-02 9.3482e-01 8.2275e-02 9.8413e-01 8.2682e-02
+#> 419: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0633e+00 -1.0099e+00 -3.9197e-05 3.7070e-02 5.1000e-07 9.1084e-02 2.2644e-02 1.8727e-01 9.2636e-02 9.3494e-01 8.2259e-02 9.8382e-01 8.2673e-02
+#> 420: 1.0186e+02 -4.1205e+00 -2.3494e+00 -4.0633e+00 -1.0098e+00 -1.2434e-04 3.7103e-02 5.1037e-07 9.1152e-02 2.2631e-02 1.8733e-01 9.2862e-02 9.3515e-01 8.2244e-02 9.8388e-01 8.2656e-02
+#> 421: 1.0186e+02 -4.1205e+00 -2.3494e+00 -4.0632e+00 -1.0097e+00 -1.5440e-04 3.7123e-02 5.1205e-07 9.1233e-02 2.2626e-02 1.8744e-01 9.2935e-02 9.3523e-01 8.2241e-02 9.8360e-01 8.2652e-02
+#> 422: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0633e+00 -1.0095e+00 -8.9184e-05 3.7182e-02 5.1296e-07 9.1123e-02 2.2617e-02 1.8749e-01 9.2915e-02 9.3509e-01 8.2276e-02 9.8367e-01 8.2637e-02
+#> 423: 1.0186e+02 -4.1205e+00 -2.3497e+00 -4.0634e+00 -1.0095e+00 6.7469e-05 3.7194e-02 5.1323e-07 9.1083e-02 2.2642e-02 1.8739e-01 9.3097e-02 9.3529e-01 8.2270e-02 9.8367e-01 8.2642e-02
+#> 424: 1.0186e+02 -4.1205e+00 -2.3498e+00 -4.0635e+00 -1.0094e+00 1.5970e-04 3.7258e-02 5.1292e-07 9.0998e-02 2.2667e-02 1.8730e-01 9.3311e-02 9.3525e-01 8.2262e-02 9.8362e-01 8.2648e-02
+#> 425: 1.0186e+02 -4.1205e+00 -2.3499e+00 -4.0636e+00 -1.0095e+00 2.7004e-04 3.7298e-02 5.1307e-07 9.0839e-02 2.2665e-02 1.8744e-01 9.3429e-02 9.3497e-01 8.2282e-02 9.8395e-01 8.2657e-02
+#> 426: 1.0186e+02 -4.1205e+00 -2.3499e+00 -4.0636e+00 -1.0094e+00 3.9201e-04 3.7303e-02 5.1305e-07 9.0647e-02 2.2675e-02 1.8743e-01 9.3523e-02 9.3477e-01 8.2314e-02 9.8371e-01 8.2655e-02
+#> 427: 1.0186e+02 -4.1205e+00 -2.3496e+00 -4.0636e+00 -1.0093e+00 2.9359e-04 3.7366e-02 5.1245e-07 9.0630e-02 2.2673e-02 1.8738e-01 9.3813e-02 9.3495e-01 8.2291e-02 9.8368e-01 8.2653e-02
+#> 428: 1.0186e+02 -4.1204e+00 -2.3496e+00 -4.0635e+00 -1.0094e+00 2.5099e-04 3.7411e-02 5.1144e-07 9.0647e-02 2.2674e-02 1.8732e-01 9.3993e-02 9.3493e-01 8.2273e-02 9.8373e-01 8.2652e-02
+#> 429: 1.0186e+02 -4.1204e+00 -2.3495e+00 -4.0635e+00 -1.0095e+00 2.4723e-04 3.7543e-02 5.1084e-07 9.0600e-02 2.2677e-02 1.8723e-01 9.4269e-02 9.3518e-01 8.2286e-02 9.8396e-01 8.2659e-02
+#> 430: 1.0186e+02 -4.1204e+00 -2.3494e+00 -4.0635e+00 -1.0096e+00 2.7711e-04 3.7579e-02 5.1022e-07 9.0496e-02 2.2679e-02 1.8708e-01 9.4484e-02 9.3525e-01 8.2309e-02 9.8433e-01 8.2672e-02
+#> 431: 1.0186e+02 -4.1204e+00 -2.3494e+00 -4.0634e+00 -1.0095e+00 1.3934e-05 3.7631e-02 5.0908e-07 9.0378e-02 2.2671e-02 1.8708e-01 9.4770e-02 9.3528e-01 8.2302e-02 9.8470e-01 8.2682e-02
+#> 432: 1.0186e+02 -4.1204e+00 -2.3495e+00 -4.0633e+00 -1.0096e+00 -8.9401e-05 3.7677e-02 5.0861e-07 9.0278e-02 2.2654e-02 1.8702e-01 9.4882e-02 9.3518e-01 8.2318e-02 9.8488e-01 8.2667e-02
+#> 433: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0633e+00 -1.0096e+00 -3.6841e-04 3.7706e-02 5.0854e-07 9.0108e-02 2.2652e-02 1.8703e-01 9.5039e-02 9.3487e-01 8.2331e-02 9.8494e-01 8.2669e-02
+#> 434: 1.0186e+02 -4.1205e+00 -2.3493e+00 -4.0632e+00 -1.0096e+00 -4.3399e-04 3.7671e-02 5.0796e-07 9.0036e-02 2.2661e-02 1.8701e-01 9.5122e-02 9.3474e-01 8.2331e-02 9.8474e-01 8.2675e-02
+#> 435: 1.0186e+02 -4.1205e+00 -2.3491e+00 -4.0632e+00 -1.0096e+00 -6.1398e-04 3.7654e-02 5.0727e-07 8.9940e-02 2.2664e-02 1.8691e-01 9.5242e-02 9.3451e-01 8.2346e-02 9.8466e-01 8.2677e-02
+#> 436: 1.0186e+02 -4.1205e+00 -2.3487e+00 -4.0632e+00 -1.0094e+00 -7.2148e-04 3.7647e-02 5.0649e-07 8.9838e-02 2.2661e-02 1.8694e-01 9.5465e-02 9.3429e-01 8.2365e-02 9.8475e-01 8.2683e-02
+#> 437: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0632e+00 -1.0093e+00 -1.1480e-03 3.7613e-02 5.0662e-07 8.9719e-02 2.2674e-02 1.8698e-01 9.5631e-02 9.3419e-01 8.2380e-02 9.8490e-01 8.2684e-02
+#> 438: 1.0186e+02 -4.1204e+00 -2.3482e+00 -4.0631e+00 -1.0092e+00 -1.5547e-03 3.7583e-02 5.0753e-07 8.9612e-02 2.2680e-02 1.8703e-01 9.5913e-02 9.3413e-01 8.2394e-02 9.8523e-01 8.2678e-02
+#> 439: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0630e+00 -1.0093e+00 -1.9392e-03 3.7463e-02 5.0769e-07 8.9410e-02 2.2706e-02 1.8706e-01 9.6149e-02 9.3392e-01 8.2425e-02 9.8512e-01 8.2670e-02
+#> 440: 1.0186e+02 -4.1205e+00 -2.3482e+00 -4.0629e+00 -1.0094e+00 -2.1940e-03 3.7360e-02 5.0743e-07 8.9245e-02 2.2742e-02 1.8710e-01 9.6213e-02 9.3400e-01 8.2445e-02 9.8490e-01 8.2676e-02
+#> 441: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0629e+00 -1.0095e+00 -2.3414e-03 3.7297e-02 5.0838e-07 8.9137e-02 2.2806e-02 1.8721e-01 9.6155e-02 9.3405e-01 8.2450e-02 9.8470e-01 8.2684e-02
+#> 442: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0628e+00 -1.0095e+00 -2.6378e-03 3.7241e-02 5.0923e-07 8.9066e-02 2.2846e-02 1.8727e-01 9.6135e-02 9.3389e-01 8.2465e-02 9.8454e-01 8.2686e-02
+#> 443: 1.0186e+02 -4.1205e+00 -2.3482e+00 -4.0627e+00 -1.0094e+00 -2.8716e-03 3.7214e-02 5.1026e-07 8.9128e-02 2.2901e-02 1.8740e-01 9.6077e-02 9.3386e-01 8.2444e-02 9.8421e-01 8.2692e-02
+#> 444: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0627e+00 -1.0092e+00 -2.9147e-03 3.7196e-02 5.1104e-07 8.9190e-02 2.2985e-02 1.8744e-01 9.5999e-02 9.3390e-01 8.2424e-02 9.8381e-01 8.2696e-02
+#> 445: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0626e+00 -1.0090e+00 -2.9638e-03 3.7251e-02 5.1283e-07 8.9335e-02 2.3004e-02 1.8756e-01 9.5788e-02 9.3382e-01 8.2416e-02 9.8347e-01 8.2683e-02
+#> 446: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0627e+00 -1.0090e+00 -2.8796e-03 3.7331e-02 5.1479e-07 8.9470e-02 2.3017e-02 1.8762e-01 9.5656e-02 9.3368e-01 8.2405e-02 9.8325e-01 8.2680e-02
+#> 447: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0628e+00 -1.0091e+00 -2.7695e-03 3.7473e-02 5.1656e-07 8.9568e-02 2.3030e-02 1.8757e-01 9.5575e-02 9.3379e-01 8.2386e-02 9.8306e-01 8.2690e-02
+#> 448: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0629e+00 -1.0091e+00 -2.6293e-03 3.7498e-02 5.1814e-07 8.9776e-02 2.3052e-02 1.8762e-01 9.5422e-02 9.3373e-01 8.2372e-02 9.8274e-01 8.2685e-02
+#> 449: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0628e+00 -1.0092e+00 -2.5640e-03 3.7542e-02 5.1867e-07 8.9888e-02 2.3056e-02 1.8763e-01 9.5364e-02 9.3400e-01 8.2365e-02 9.8239e-01 8.2691e-02
+#> 450: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0628e+00 -1.0093e+00 -2.5816e-03 3.7622e-02 5.1849e-07 9.0050e-02 2.3061e-02 1.8765e-01 9.5274e-02 9.3435e-01 8.2341e-02 9.8235e-01 8.2699e-02
+#> 451: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0627e+00 -1.0094e+00 -2.4837e-03 3.7631e-02 5.1931e-07 9.0177e-02 2.3053e-02 1.8766e-01 9.5103e-02 9.3459e-01 8.2322e-02 9.8226e-01 8.2715e-02
+#> 452: 1.0186e+02 -4.1205e+00 -2.3482e+00 -4.0627e+00 -1.0094e+00 -2.4156e-03 3.7606e-02 5.1901e-07 9.0333e-02 2.3047e-02 1.8763e-01 9.4959e-02 9.3485e-01 8.2289e-02 9.8210e-01 8.2713e-02
+#> 453: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0627e+00 -1.0093e+00 -2.4619e-03 3.7552e-02 5.1874e-07 9.0495e-02 2.3066e-02 1.8761e-01 9.4960e-02 9.3485e-01 8.2293e-02 9.8178e-01 8.2703e-02
+#> 454: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0627e+00 -1.0092e+00 -2.4816e-03 3.7514e-02 5.1835e-07 9.0606e-02 2.3073e-02 1.8754e-01 9.4896e-02 9.3491e-01 8.2277e-02 9.8154e-01 8.2696e-02
+#> 455: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0627e+00 -1.0092e+00 -2.3708e-03 3.7457e-02 5.1742e-07 9.0715e-02 2.3099e-02 1.8756e-01 9.4804e-02 9.3481e-01 8.2272e-02 9.8122e-01 8.2688e-02
+#> 456: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0627e+00 -1.0093e+00 -2.2313e-03 3.7409e-02 5.1680e-07 9.0906e-02 2.3131e-02 1.8743e-01 9.4814e-02 9.3476e-01 8.2261e-02 9.8108e-01 8.2694e-02
+#> 457: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0628e+00 -1.0095e+00 -2.1182e-03 3.7342e-02 5.1630e-07 9.0986e-02 2.3158e-02 1.8733e-01 9.4843e-02 9.3488e-01 8.2244e-02 9.8094e-01 8.2700e-02
+#> 458: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0628e+00 -1.0095e+00 -1.9242e-03 3.7244e-02 5.1605e-07 9.1085e-02 2.3168e-02 1.8720e-01 9.4820e-02 9.3509e-01 8.2228e-02 9.8093e-01 8.2703e-02
+#> 459: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0629e+00 -1.0095e+00 -1.7643e-03 3.7203e-02 5.1566e-07 9.1179e-02 2.3175e-02 1.8715e-01 9.4809e-02 9.3516e-01 8.2216e-02 9.8087e-01 8.2690e-02
+#> 460: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0629e+00 -1.0094e+00 -1.5479e-03 3.7151e-02 5.1547e-07 9.1211e-02 2.3155e-02 1.8712e-01 9.4703e-02 9.3539e-01 8.2201e-02 9.8100e-01 8.2683e-02
+#> 461: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0630e+00 -1.0095e+00 -1.4993e-03 3.7111e-02 5.1446e-07 9.1225e-02 2.3159e-02 1.8705e-01 9.4569e-02 9.3555e-01 8.2183e-02 9.8078e-01 8.2680e-02
+#> 462: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0629e+00 -1.0094e+00 -1.4890e-03 3.7056e-02 5.1361e-07 9.1446e-02 2.3158e-02 1.8694e-01 9.4494e-02 9.3557e-01 8.2171e-02 9.8058e-01 8.2688e-02
+#> 463: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0629e+00 -1.0094e+00 -1.3999e-03 3.6996e-02 5.1319e-07 9.1659e-02 2.3176e-02 1.8695e-01 9.4436e-02 9.3570e-01 8.2153e-02 9.8053e-01 8.2686e-02
+#> 464: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0630e+00 -1.0095e+00 -1.1544e-03 3.6949e-02 5.1300e-07 9.1885e-02 2.3162e-02 1.8688e-01 9.4378e-02 9.3599e-01 8.2134e-02 9.8051e-01 8.2694e-02
+#> 465: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0630e+00 -1.0097e+00 -9.7372e-04 3.6943e-02 5.1235e-07 9.2014e-02 2.3136e-02 1.8692e-01 9.4288e-02 9.3605e-01 8.2141e-02 9.8053e-01 8.2693e-02
+#> 466: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0630e+00 -1.0097e+00 -9.2442e-04 3.6916e-02 5.1246e-07 9.2074e-02 2.3132e-02 1.8688e-01 9.4254e-02 9.3590e-01 8.2131e-02 9.8016e-01 8.2691e-02
+#> 467: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0631e+00 -1.0098e+00 -8.2540e-04 3.6928e-02 5.1340e-07 9.2164e-02 2.3141e-02 1.8690e-01 9.4382e-02 9.3620e-01 8.2106e-02 9.7996e-01 8.2705e-02
+#> 468: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0631e+00 -1.0097e+00 -7.3368e-04 3.6925e-02 5.1395e-07 9.2218e-02 2.3136e-02 1.8695e-01 9.4504e-02 9.3629e-01 8.2094e-02 9.7985e-01 8.2716e-02
+#> 469: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0630e+00 -1.0096e+00 -7.4343e-04 3.6891e-02 5.1401e-07 9.2204e-02 2.3114e-02 1.8700e-01 9.4639e-02 9.3643e-01 8.2078e-02 9.7996e-01 8.2709e-02
+#> 470: 1.0186e+02 -4.1205e+00 -2.3482e+00 -4.0630e+00 -1.0096e+00 -7.8250e-04 3.6874e-02 5.1370e-07 9.2209e-02 2.3083e-02 1.8702e-01 9.4728e-02 9.3646e-01 8.2073e-02 9.7989e-01 8.2703e-02
+#> 471: 1.0186e+02 -4.1205e+00 -2.3480e+00 -4.0629e+00 -1.0095e+00 -1.0440e-03 3.6843e-02 5.1358e-07 9.2194e-02 2.3062e-02 1.8710e-01 9.4741e-02 9.3649e-01 8.2082e-02 9.8003e-01 8.2701e-02
+#> 472: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0629e+00 -1.0096e+00 -9.5438e-04 3.6869e-02 5.1330e-07 9.2176e-02 2.3050e-02 1.8712e-01 9.4766e-02 9.3666e-01 8.2080e-02 9.7996e-01 8.2691e-02
+#> 473: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0630e+00 -1.0096e+00 -8.2178e-04 3.6877e-02 5.1283e-07 9.2191e-02 2.3021e-02 1.8703e-01 9.4747e-02 9.3670e-01 8.2072e-02 9.8007e-01 8.2693e-02
+#> 474: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0630e+00 -1.0096e+00 -7.0189e-04 3.6927e-02 5.1196e-07 9.2195e-02 2.2989e-02 1.8702e-01 9.4746e-02 9.3669e-01 8.2054e-02 9.8029e-01 8.2689e-02
+#> 475: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0630e+00 -1.0095e+00 -7.1989e-04 3.6993e-02 5.1125e-07 9.2159e-02 2.2963e-02 1.8700e-01 9.4813e-02 9.3681e-01 8.2051e-02 9.8027e-01 8.2680e-02
+#> 476: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0629e+00 -1.0096e+00 -7.1806e-04 3.7018e-02 5.1105e-07 9.2091e-02 2.2933e-02 1.8696e-01 9.4837e-02 9.3713e-01 8.2067e-02 9.8033e-01 8.2674e-02
+#> 477: 1.0186e+02 -4.1205e+00 -2.3479e+00 -4.0630e+00 -1.0097e+00 -7.3438e-04 3.6986e-02 5.1121e-07 9.2046e-02 2.2909e-02 1.8698e-01 9.4809e-02 9.3743e-01 8.2059e-02 9.8045e-01 8.2693e-02
+#> 478: 1.0186e+02 -4.1205e+00 -2.3478e+00 -4.0630e+00 -1.0096e+00 -7.9338e-04 3.6912e-02 5.1224e-07 9.2056e-02 2.2881e-02 1.8698e-01 9.4791e-02 9.3757e-01 8.2042e-02 9.8072e-01 8.2682e-02
+#> 479: 1.0186e+02 -4.1205e+00 -2.3476e+00 -4.0629e+00 -1.0096e+00 -8.6158e-04 3.6882e-02 5.1284e-07 9.2159e-02 2.2867e-02 1.8694e-01 9.4774e-02 9.3749e-01 8.2051e-02 9.8088e-01 8.2679e-02
+#> 480: 1.0186e+02 -4.1205e+00 -2.3474e+00 -4.0629e+00 -1.0096e+00 -1.1334e-03 3.6851e-02 5.1423e-07 9.2253e-02 2.2869e-02 1.8696e-01 9.4820e-02 9.3751e-01 8.2063e-02 9.8097e-01 8.2693e-02
+#> 481: 1.0186e+02 -4.1205e+00 -2.3470e+00 -4.0629e+00 -1.0096e+00 -1.2444e-03 3.6785e-02 5.1490e-07 9.2397e-02 2.2853e-02 1.8694e-01 9.4838e-02 9.3770e-01 8.2031e-02 9.8124e-01 8.2707e-02
+#> 482: 1.0186e+02 -4.1205e+00 -2.3467e+00 -4.0629e+00 -1.0095e+00 -1.3612e-03 3.6750e-02 5.1658e-07 9.2440e-02 2.2842e-02 1.8683e-01 9.4800e-02 9.3786e-01 8.2041e-02 9.8107e-01 8.2719e-02
+#> 483: 1.0186e+02 -4.1205e+00 -2.3467e+00 -4.0628e+00 -1.0096e+00 -1.5168e-03 3.6783e-02 5.1708e-07 9.2590e-02 2.2804e-02 1.8674e-01 9.4804e-02 9.3790e-01 8.2042e-02 9.8116e-01 8.2719e-02
+#> 484: 1.0186e+02 -4.1205e+00 -2.3466e+00 -4.0628e+00 -1.0097e+00 -1.5218e-03 3.6848e-02 5.1669e-07 9.2717e-02 2.2775e-02 1.8670e-01 9.4940e-02 9.3798e-01 8.2028e-02 9.8106e-01 8.2719e-02
+#> 485: 1.0186e+02 -4.1205e+00 -2.3464e+00 -4.0628e+00 -1.0097e+00 -1.4177e-03 3.6867e-02 5.1615e-07 9.2806e-02 2.2765e-02 1.8669e-01 9.5018e-02 9.3816e-01 8.2020e-02 9.8090e-01 8.2721e-02
+#> 486: 1.0186e+02 -4.1205e+00 -2.3462e+00 -4.0628e+00 -1.0098e+00 -1.5257e-03 3.6968e-02 5.1513e-07 9.3019e-02 2.2762e-02 1.8663e-01 9.5111e-02 9.3816e-01 8.2013e-02 9.8071e-01 8.2732e-02
+#> 487: 1.0186e+02 -4.1205e+00 -2.3460e+00 -4.0628e+00 -1.0097e+00 -1.7055e-03 3.7021e-02 5.1446e-07 9.3161e-02 2.2732e-02 1.8652e-01 9.5373e-02 9.3832e-01 8.1997e-02 9.8078e-01 8.2737e-02
+#> 488: 1.0186e+02 -4.1205e+00 -2.3459e+00 -4.0628e+00 -1.0097e+00 -1.8502e-03 3.7069e-02 5.1391e-07 9.3282e-02 2.2741e-02 1.8641e-01 9.5414e-02 9.3818e-01 8.2001e-02 9.8064e-01 8.2738e-02
+#> 489: 1.0186e+02 -4.1205e+00 -2.3458e+00 -4.0628e+00 -1.0097e+00 -1.9091e-03 3.7017e-02 5.1291e-07 9.3286e-02 2.2738e-02 1.8639e-01 9.5453e-02 9.3808e-01 8.1991e-02 9.8047e-01 8.2728e-02
+#> 490: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0628e+00 -1.0097e+00 -1.8766e-03 3.6969e-02 5.1220e-07 9.3297e-02 2.2728e-02 1.8635e-01 9.5468e-02 9.3793e-01 8.1988e-02 9.8034e-01 8.2726e-02
+#> 491: 1.0186e+02 -4.1205e+00 -2.3457e+00 -4.0627e+00 -1.0097e+00 -1.7736e-03 3.6915e-02 5.1153e-07 9.3298e-02 2.2716e-02 1.8634e-01 9.5548e-02 9.3772e-01 8.2005e-02 9.8025e-01 8.2722e-02
+#> 492: 1.0186e+02 -4.1205e+00 -2.3457e+00 -4.0627e+00 -1.0097e+00 -1.7747e-03 3.6877e-02 5.1077e-07 9.3336e-02 2.2697e-02 1.8635e-01 9.5593e-02 9.3778e-01 8.2001e-02 9.8013e-01 8.2725e-02
+#> 493: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0628e+00 -1.0094e+00 -1.6324e-03 3.6857e-02 5.1020e-07 9.3348e-02 2.2668e-02 1.8636e-01 9.5735e-02 9.3764e-01 8.1984e-02 9.8019e-01 8.2723e-02
+#> 494: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0629e+00 -1.0094e+00 -1.5393e-03 3.6842e-02 5.1022e-07 9.3359e-02 2.2649e-02 1.8637e-01 9.5812e-02 9.3739e-01 8.1982e-02 9.8033e-01 8.2708e-02
+#> 495: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0629e+00 -1.0094e+00 -1.5166e-03 3.6841e-02 5.1004e-07 9.3321e-02 2.2642e-02 1.8640e-01 9.5849e-02 9.3716e-01 8.1979e-02 9.8016e-01 8.2700e-02
+#> 496: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0630e+00 -1.0095e+00 -1.4947e-03 3.6841e-02 5.0969e-07 9.3236e-02 2.2646e-02 1.8640e-01 9.5916e-02 9.3719e-01 8.1963e-02 9.8028e-01 8.2702e-02
+#> 497: 1.0186e+02 -4.1205e+00 -2.3457e+00 -4.0629e+00 -1.0094e+00 -1.4507e-03 3.6827e-02 5.0937e-07 9.3185e-02 2.2663e-02 1.8638e-01 9.5991e-02 9.3707e-01 8.1954e-02 9.8047e-01 8.2718e-02
+#> 498: 1.0186e+02 -4.1205e+00 -2.3459e+00 -4.0630e+00 -1.0094e+00 -1.2569e-03 3.6805e-02 5.0854e-07 9.3089e-02 2.2677e-02 1.8634e-01 9.5931e-02 9.3719e-01 8.1952e-02 9.8051e-01 8.2718e-02
+#> 499: 1.0186e+02 -4.1205e+00 -2.3460e+00 -4.0630e+00 -1.0093e+00 -1.0466e-03 3.6769e-02 5.0789e-07 9.3029e-02 2.2690e-02 1.8631e-01 9.5862e-02 9.3729e-01 8.1956e-02 9.8046e-01 8.2731e-02
+#> 500: 1.0186e+02 -4.1205e+00 -2.3464e+00 -4.0630e+00 -1.0093e+00 -7.3346e-04 3.6766e-02 5.0769e-07 9.3093e-02 2.2701e-02 1.8633e-01 9.5687e-02 9.3739e-01 8.1977e-02 9.8039e-01 8.2728e-02#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"#> Calculating residuals/tables#> done# The following takes a very long time but gives
+f_nlmixr_dfop_sfo_focei <- nlmixr(f_mmkin_dfop_sfo, est = "focei")
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
+#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | parent_0 | log_k_m1 |f_parent_qlogis | log_k1 |
+#> |.....................| log_k2 | g_qlogis | sigma_low | rsd_high |
+#> |.....................| o1 | o2 | o3 | o4 |
+#> |.....................| o5 | o6 |...........|...........|
+#> | 1| 496.98032 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#> |.....................| -0.8950 | -0.9012 |...........|...........|
+#> | U| 496.98032 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 496.98032 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | G| Gill Diff. | 57.10 | -0.1453 | -0.1275 | 0.2854 |
+#> |.....................| -0.6156 | 0.007043 | -23.49 | -32.87 |
+#> |.....................| 3.669 | -17.46 | -13.05 | -13.08 |
+#> |.....................| -16.16 | -9.766 |...........|...........|
+#> | 2| 3094.8373 | 0.2572 | -0.9978 | -0.9392 | -0.9714 |
+#> |.....................| -0.9920 | -0.9233 | -0.6037 | -0.4942 |
+#> |.....................| -0.9579 | -0.6658 | -0.7293 | -0.7310 |
+#> |.....................| -0.6848 | -0.7742 |...........|...........|
+#> | U| 3094.8373 | 26.15 | -4.052 | -0.9415 | -2.363 |
+#> |.....................| -4.062 | -0.01133 | 0.8386 | 0.08074 |
+#> |.....................| 0.6445 | 1.946 | 1.477 | 1.348 |
+#> |.....................| 1.794 | 1.297 |...........|...........|
+#> | X| 3094.8373 | 26.15 | 0.01739 | 0.2806 | 0.09412 |
+#> |.....................| 0.01721 | 0.4972 | 0.8386 | 0.08074 |
+#> |.....................| 0.6445 | 1.946 | 1.477 | 1.348 |
+#> |.....................| 1.794 | 1.297 |...........|...........|
+#> | 3| 557.60681 | 0.9257 | -0.9995 | -0.9407 | -0.9680 |
+#> |.....................| -0.9992 | -0.9232 | -0.8787 | -0.8790 |
+#> |.....................| -0.9150 | -0.8703 | -0.8821 | -0.8842 |
+#> |.....................| -0.8739 | -0.8885 |...........|...........|
+#> | U| 557.60681 | 94.11 | -4.053 | -0.9430 | -2.360 |
+#> |.....................| -4.069 | -0.01133 | 0.7386 | 0.06794 |
+#> |.....................| 0.6735 | 1.622 | 1.284 | 1.172 |
+#> |.....................| 1.513 | 1.165 |...........|...........|
+#> | X| 557.60681 | 94.11 | 0.01736 | 0.2803 | 0.09444 |
+#> |.....................| 0.01709 | 0.4972 | 0.7386 | 0.06794 |
+#> |.....................| 0.6735 | 1.622 | 1.284 | 1.172 |
+#> |.....................| 1.513 | 1.165 |...........|...........|
+#> | 4| 543.47785 | 0.9926 | -0.9997 | -0.9408 | -0.9677 |
+#> |.....................| -0.9999 | -0.9232 | -0.9062 | -0.9175 |
+#> |.....................| -0.9107 | -0.8907 | -0.8974 | -0.8995 |
+#> |.....................| -0.8929 | -0.9000 |...........|...........|
+#> | U| 543.47785 | 100.9 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7286 | 0.06666 |
+#> |.....................| 0.6764 | 1.589 | 1.264 | 1.154 |
+#> |.....................| 1.485 | 1.152 |...........|...........|
+#> | X| 543.47785 | 100.9 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7286 | 0.06666 |
+#> |.....................| 0.6764 | 1.589 | 1.264 | 1.154 |
+#> |.....................| 1.485 | 1.152 |...........|...........|
+#> | 5| 544.09017 | 0.9993 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9089 | -0.9213 |
+#> |.....................| -0.9103 | -0.8928 | -0.8990 | -0.9010 |
+#> |.....................| -0.8948 | -0.9011 |...........|...........|
+#> | U| 544.09017 | 101.6 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7276 | 0.06654 |
+#> |.....................| 0.6767 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 544.09017 | 101.6 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7276 | 0.06654 |
+#> |.....................| 0.6767 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | 6| 544.17109 | 0.9999 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#> |.....................| -0.8949 | -0.9012 |...........|...........|
+#> | U| 544.17109 | 101.6 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 544.17109 | 101.6 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | 7| 544.17937 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#> |.....................| -0.8950 | -0.9012 |...........|...........|
+#> | U| 544.17937 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 544.17937 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | 8| 544.18025 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#> |.....................| -0.8950 | -0.9012 |...........|...........|
+#> | U| 544.18025 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 544.18025 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | 9| 544.18033 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#> |.....................| -0.8950 | -0.9012 |...........|...........|
+#> | U| 544.18033 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 544.18033 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | 10| 544.18034 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#> |.....................| -0.8950 | -0.9012 |...........|...........|
+#> | U| 544.18034 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 544.18034 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | 11| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#> |.....................| -0.8950 | -0.9012 |...........|...........|
+#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | 12| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#> |.....................| -0.8950 | -0.9012 |...........|...........|
+#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | 13| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#> |.....................| -0.8950 | -0.9012 |...........|...........|
+#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | 14| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#> |.....................| -0.8950 | -0.9012 |...........|...........|
+#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | 15| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#> |.....................| -0.8950 | -0.9012 |...........|...........|
+#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | 16| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#> |.....................| -0.8950 | -0.9012 |...........|...........|
+#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | 17| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
+#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
+#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
+#> |.....................| -0.8950 | -0.9012 |...........|...........|
+#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
+#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
+#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
+#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
+#> |.....................| 1.482 | 1.151 |...........|...........|
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> df AIC
+#> f_nlmixr_dfop_sfo_saem$nm 16 Inf
+#> f_nlmixr_dfop_sfo_focei$nm 14 886.4573#> Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'f_nlmixr_dfop_sfo_sfo' not found# }
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/docs/dev/reference/summary.saem.mmkin.html b/docs/dev/reference/summary.saem.mmkin.html
index 1166abb1..fdfdaf4b 100644
--- a/docs/dev/reference/summary.saem.mmkin.html
+++ b/docs/dev/reference/summary.saem.mmkin.html
@@ -76,7 +76,7 @@ endpoints such as formation fractions and DT50 values. Optionally
mkin
- 1.0.4.9000
+ 1.0.5
@@ -260,15 +260,15 @@ saemix authors for the parts inherited from saemix.
quiet = TRUE, error_model = "tc", cores = 5)
f_saem_dfop_sfo <- saem(f_mmkin_dfop_sfo)
#> Running main SAEM algorithm
-#> [1] "Tue Mar 9 17:35:19 2021"
+#> [1] "Fri Jun 11 10:58:28 2021"
#> ....
#> Minimisation finished
-#> [1] "Tue Mar 9 17:35:30 2021"#> saemix version used for fitting: 3.1.9000
-#> mkin version used for pre-fitting: 1.0.4.9000
-#> R version used for fitting: 4.0.4
-#> Date of fit: Tue Mar 9 17:35:31 2021
-#> Date of summary: Tue Mar 9 17:35:31 2021
+#> mkin version used for pre-fitting: 1.0.5
+#> R version used for fitting: 4.1.0
+#> Date of fit: Fri Jun 11 10:58:41 2021
+#> Date of summary: Fri Jun 11 10:58:41 2021
#>
#> Equations:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -283,7 +283,7 @@ saemix authors for the parts inherited from saemix.
#>
#> Model predictions using solution type analytical
#>
-#> Fitted in 12.058 s using 300, 100 iterations
+#> Fitted in 12.75 s using 300, 100 iterations
#>
#> Variance model: Two-component variance function
#>
@@ -354,177 +354,177 @@ saemix authors for the parts inherited from saemix.
#>
#> Data:
#> ds name time observed predicted residual std standardized
-#> ds 1 parent 0 89.8 9.838e+01 8.584661 7.7094 1.113536
-#> ds 1 parent 0 104.1 9.838e+01 -5.715339 7.7094 -0.741350
-#> ds 1 parent 1 88.7 9.388e+01 5.182489 7.3611 0.704041
-#> ds 1 parent 1 95.5 9.388e+01 -1.617511 7.3611 -0.219739
-#> ds 1 parent 3 81.8 8.563e+01 3.825382 6.7229 0.569010
-#> ds 1 parent 3 94.5 8.563e+01 -8.874618 6.7229 -1.320062
-#> ds 1 parent 7 71.5 7.169e+01 0.188290 5.6482 0.033336
-#> ds 1 parent 7 70.3 7.169e+01 1.388290 5.6482 0.245795
-#> ds 1 parent 14 54.2 5.361e+01 -0.586595 4.2624 -0.137621
-#> ds 1 parent 14 49.6 5.361e+01 4.013405 4.2624 0.941587
-#> ds 1 parent 28 31.5 3.219e+01 0.688936 2.6496 0.260011
-#> ds 1 parent 28 28.8 3.219e+01 3.388936 2.6496 1.279016
-#> ds 1 parent 60 12.1 1.278e+01 0.678998 1.3145 0.516562
-#> ds 1 parent 60 13.6 1.278e+01 -0.821002 1.3145 -0.624595
-#> ds 1 parent 90 6.2 6.157e+00 -0.043461 0.9835 -0.044188
-#> ds 1 parent 90 8.3 6.157e+00 -2.143461 0.9835 -2.179316
-#> ds 1 parent 120 2.2 3.076e+00 0.876218 0.8916 0.982775
-#> ds 1 parent 120 2.4 3.076e+00 0.676218 0.8916 0.758453
-#> ds 1 m1 1 0.3 1.134e+00 0.833749 0.8633 0.965750
-#> ds 1 m1 1 0.2 1.134e+00 0.933749 0.8633 1.081583
-#> ds 1 m1 3 2.2 3.157e+00 0.957400 0.8933 1.071763
-#> ds 1 m1 3 3.0 3.157e+00 0.157400 0.8933 0.176202
-#> ds 1 m1 7 6.5 6.369e+00 -0.130995 0.9917 -0.132090
-#> ds 1 m1 7 5.0 6.369e+00 1.369005 0.9917 1.380438
-#> ds 1 m1 14 10.2 9.971e+00 -0.229362 1.1577 -0.198112
-#> ds 1 m1 14 9.5 9.971e+00 0.470638 1.1577 0.406513
-#> ds 1 m1 28 12.2 1.265e+01 0.447735 1.3067 0.342637
-#> ds 1 m1 28 13.4 1.265e+01 -0.752265 1.3067 -0.575683
-#> ds 1 m1 60 11.8 1.097e+01 -0.832027 1.2112 -0.686945
-#> ds 1 m1 60 13.2 1.097e+01 -2.232027 1.2112 -1.842825
-#> ds 1 m1 90 6.6 7.876e+00 1.275985 1.0553 1.209109
-#> ds 1 m1 90 9.3 7.876e+00 -1.424015 1.0553 -1.349381
-#> ds 1 m1 120 3.5 5.336e+00 1.835829 0.9540 1.924292
-#> ds 1 m1 120 5.4 5.336e+00 -0.064171 0.9540 -0.067263
-#> ds 2 parent 0 118.0 1.092e+02 -8.812058 8.5459 -1.031142
-#> ds 2 parent 0 99.8 1.092e+02 9.387942 8.5459 1.098529
-#> ds 2 parent 1 90.2 1.023e+02 12.114268 8.0135 1.511724
-#> ds 2 parent 1 94.6 1.023e+02 7.714268 8.0135 0.962654
-#> ds 2 parent 3 96.1 9.066e+01 -5.436165 7.1122 -0.764344
-#> ds 2 parent 3 78.4 9.066e+01 12.263835 7.1122 1.724339
-#> ds 2 parent 7 77.9 7.365e+01 -4.245773 5.7995 -0.732090
-#> ds 2 parent 7 77.7 7.365e+01 -4.045773 5.7995 -0.697604
-#> ds 2 parent 14 56.0 5.593e+01 -0.073803 4.4389 -0.016626
-#> ds 2 parent 14 54.7 5.593e+01 1.226197 4.4389 0.276236
-#> ds 2 parent 28 36.6 3.892e+01 2.320837 3.1502 0.736737
-#> ds 2 parent 28 36.8 3.892e+01 2.120837 3.1502 0.673248
-#> ds 2 parent 60 22.1 2.136e+01 -0.741020 1.8719 -0.395868
-#> ds 2 parent 60 24.7 2.136e+01 -3.341020 1.8719 -1.784841
-#> ds 2 parent 90 12.4 1.251e+01 0.113999 1.2989 0.087765
-#> ds 2 parent 90 10.8 1.251e+01 1.713999 1.2989 1.319575
-#> ds 2 parent 120 6.8 7.338e+00 0.537708 1.0315 0.521281
-#> ds 2 parent 120 7.9 7.338e+00 -0.562292 1.0315 -0.545113
-#> ds 2 m1 1 1.3 1.576e+00 0.276176 0.8675 0.318352
-#> ds 2 m1 3 3.7 4.177e+00 0.476741 0.9183 0.519146
-#> ds 2 m1 3 4.7 4.177e+00 -0.523259 0.9183 -0.569801
-#> ds 2 m1 7 8.1 7.724e+00 -0.376365 1.0485 -0.358970
-#> ds 2 m1 7 7.9 7.724e+00 -0.176365 1.0485 -0.168214
-#> ds 2 m1 14 10.1 1.077e+01 0.674433 1.2006 0.561738
-#> ds 2 m1 14 10.3 1.077e+01 0.474433 1.2006 0.395158
-#> ds 2 m1 28 10.7 1.212e+01 1.416179 1.2758 1.110010
-#> ds 2 m1 28 12.2 1.212e+01 -0.083821 1.2758 -0.065699
-#> ds 2 m1 60 10.7 1.041e+01 -0.294930 1.1807 -0.249793
-#> ds 2 m1 60 12.5 1.041e+01 -2.094930 1.1807 -1.774316
-#> ds 2 m1 90 9.1 8.079e+00 -1.020859 1.0646 -0.958929
-#> ds 2 m1 90 7.4 8.079e+00 0.679141 1.0646 0.637941
-#> ds 2 m1 120 6.1 5.968e+00 -0.131673 0.9765 -0.134843
-#> ds 2 m1 120 4.5 5.968e+00 1.468327 0.9765 1.503683
-#> ds 3 parent 0 106.2 1.036e+02 -2.638248 8.1101 -0.325303
-#> ds 3 parent 0 106.9 1.036e+02 -3.338248 8.1101 -0.411614
-#> ds 3 parent 1 107.4 9.580e+01 -11.600063 7.5094 -1.544743
-#> ds 3 parent 1 96.1 9.580e+01 -0.300063 7.5094 -0.039958
-#> ds 3 parent 3 79.4 8.297e+01 3.574516 6.5182 0.548391
-#> ds 3 parent 3 82.6 8.297e+01 0.374516 6.5182 0.057457
-#> ds 3 parent 7 63.9 6.517e+01 1.272397 5.1472 0.247200
-#> ds 3 parent 7 62.4 6.517e+01 2.772397 5.1472 0.538618
-#> ds 3 parent 14 51.0 4.821e+01 -2.790075 3.8512 -0.724475
-#> ds 3 parent 14 47.1 4.821e+01 1.109925 3.8512 0.288205
-#> ds 3 parent 28 36.1 3.385e+01 -2.250573 2.7723 -0.811811
-#> ds 3 parent 28 36.6 3.385e+01 -2.750573 2.7723 -0.992168
-#> ds 3 parent 60 20.1 1.964e+01 -0.455700 1.7543 -0.259760
-#> ds 3 parent 60 19.8 1.964e+01 -0.155700 1.7543 -0.088753
-#> ds 3 parent 90 11.3 1.210e+01 0.795458 1.2746 0.624068
-#> ds 3 parent 90 10.7 1.210e+01 1.395458 1.2746 1.094792
-#> ds 3 parent 120 8.2 7.451e+00 -0.749141 1.0364 -0.722816
-#> ds 3 parent 120 7.3 7.451e+00 0.150859 1.0364 0.145558
-#> ds 3 m1 0 0.8 3.695e-13 -0.800000 0.8588 -0.931542
-#> ds 3 m1 1 1.8 1.740e+00 -0.059741 0.8694 -0.068714
-#> ds 3 m1 1 2.3 1.740e+00 -0.559741 0.8694 -0.643812
-#> ds 3 m1 3 4.2 4.531e+00 0.331379 0.9285 0.356913
-#> ds 3 m1 3 4.1 4.531e+00 0.431379 0.9285 0.464618
-#> ds 3 m1 7 6.8 8.113e+00 1.312762 1.0661 1.231333
-#> ds 3 m1 7 10.1 8.113e+00 -1.987238 1.0661 -1.863971
-#> ds 3 m1 14 11.4 1.079e+01 -0.613266 1.2013 -0.510507
-#> ds 3 m1 14 12.8 1.079e+01 -2.013266 1.2013 -1.675923
-#> ds 3 m1 28 11.5 1.133e+01 -0.174252 1.2310 -0.141553
-#> ds 3 m1 28 10.6 1.133e+01 0.725748 1.2310 0.589558
-#> ds 3 m1 60 7.5 8.948e+00 1.448281 1.1059 1.309561
-#> ds 3 m1 60 8.6 8.948e+00 0.348281 1.1059 0.314922
-#> ds 3 m1 90 7.3 6.665e+00 -0.634932 1.0034 -0.632752
-#> ds 3 m1 90 8.1 6.665e+00 -1.434932 1.0034 -1.430004
-#> ds 3 m1 120 5.3 4.795e+00 -0.504936 0.9365 -0.539199
-#> ds 3 m1 120 3.8 4.795e+00 0.995064 0.9365 1.062586
-#> ds 4 parent 0 104.7 9.985e+01 -4.850494 7.8227 -0.620050
-#> ds 4 parent 0 88.3 9.985e+01 11.549506 7.8227 1.476402
-#> ds 4 parent 1 94.2 9.676e+01 2.556304 7.5834 0.337093
-#> ds 4 parent 1 94.6 9.676e+01 2.156304 7.5834 0.284346
-#> ds 4 parent 3 78.1 9.092e+01 12.817485 7.1318 1.797230
-#> ds 4 parent 3 96.5 9.092e+01 -5.582515 7.1318 -0.782764
-#> ds 4 parent 7 76.2 8.050e+01 4.297338 6.3270 0.679204
-#> ds 4 parent 7 77.8 8.050e+01 2.697338 6.3270 0.426320
-#> ds 4 parent 14 70.8 6.562e+01 -5.179989 5.1816 -0.999687
-#> ds 4 parent 14 67.3 6.562e+01 -1.679989 5.1816 -0.324222
-#> ds 4 parent 28 43.1 4.499e+01 1.886936 3.6069 0.523140
-#> ds 4 parent 28 45.1 4.499e+01 -0.113064 3.6069 -0.031346
-#> ds 4 parent 60 21.3 2.151e+01 0.214840 1.8827 0.114114
-#> ds 4 parent 60 23.5 2.151e+01 -1.985160 1.8827 -1.054433
-#> ds 4 parent 90 11.8 1.190e+01 0.098528 1.2633 0.077990
-#> ds 4 parent 90 12.1 1.190e+01 -0.201472 1.2633 -0.159475
-#> ds 4 parent 120 7.0 6.886e+00 -0.113832 1.0125 -0.112431
-#> ds 4 parent 120 6.2 6.886e+00 0.686168 1.0125 0.677724
-#> ds 4 m1 0 1.6 4.263e-14 -1.600000 0.8588 -1.863085
-#> ds 4 m1 1 0.9 7.140e-01 -0.185984 0.8606 -0.216112
-#> ds 4 m1 3 3.7 2.022e+00 -1.678243 0.8731 -1.922160
-#> ds 4 m1 3 2.0 2.022e+00 0.021757 0.8731 0.024919
-#> ds 4 m1 7 3.6 4.207e+00 0.607229 0.9192 0.660633
-#> ds 4 m1 7 3.8 4.207e+00 0.407229 0.9192 0.443044
-#> ds 4 m1 14 7.1 6.912e+00 -0.188339 1.0135 -0.185828
-#> ds 4 m1 14 6.6 6.912e+00 0.311661 1.0135 0.307506
-#> ds 4 m1 28 9.5 9.449e+00 -0.050714 1.1309 -0.044843
-#> ds 4 m1 28 9.3 9.449e+00 0.149286 1.1309 0.132004
-#> ds 4 m1 60 8.3 8.997e+00 0.697403 1.1083 0.629230
-#> ds 4 m1 60 9.0 8.997e+00 -0.002597 1.1083 -0.002343
-#> ds 4 m1 90 6.6 6.697e+00 0.096928 1.0047 0.096472
-#> ds 4 m1 90 7.7 6.697e+00 -1.003072 1.0047 -0.998348
-#> ds 4 m1 120 3.7 4.622e+00 0.921607 0.9312 0.989749
-#> ds 4 m1 120 3.5 4.622e+00 1.121607 0.9312 1.204537
-#> ds 5 parent 0 110.4 1.045e+02 -5.942426 8.1795 -0.726502
-#> ds 5 parent 0 112.1 1.045e+02 -7.642426 8.1795 -0.934338
-#> ds 5 parent 1 93.5 9.739e+01 3.893915 7.6327 0.510162
-#> ds 5 parent 1 91.0 9.739e+01 6.393915 7.6327 0.837700
-#> ds 5 parent 3 71.0 8.519e+01 14.188275 6.6891 2.121098
-#> ds 5 parent 3 89.7 8.519e+01 -4.511725 6.6891 -0.674487
-#> ds 5 parent 7 60.4 6.684e+01 6.439546 5.2753 1.220701
-#> ds 5 parent 7 59.1 6.684e+01 7.739546 5.2753 1.467133
-#> ds 5 parent 14 56.5 4.736e+01 -9.138979 3.7868 -2.413407
-#> ds 5 parent 14 47.0 4.736e+01 0.361021 3.7868 0.095338
-#> ds 5 parent 28 30.2 3.033e+01 0.131178 2.5132 0.052195
-#> ds 5 parent 28 23.9 3.033e+01 6.431178 2.5132 2.558936
-#> ds 5 parent 60 17.0 1.771e+01 0.705246 1.6243 0.434177
-#> ds 5 parent 60 18.7 1.771e+01 -0.994754 1.6243 -0.612409
-#> ds 5 parent 90 11.3 1.180e+01 0.504856 1.2580 0.401315
-#> ds 5 parent 90 11.9 1.180e+01 -0.095144 1.2580 -0.075631
-#> ds 5 parent 120 9.0 7.917e+00 -1.083499 1.0571 -1.024928
-#> ds 5 parent 120 8.1 7.917e+00 -0.183499 1.0571 -0.173579
-#> ds 5 m1 0 0.7 3.553e-15 -0.700000 0.8588 -0.815100
-#> ds 5 m1 1 3.0 3.204e+00 0.204414 0.8943 0.228572
-#> ds 5 m1 1 2.6 3.204e+00 0.604414 0.8943 0.675845
-#> ds 5 m1 3 5.1 8.586e+00 3.485889 1.0884 3.202858
-#> ds 5 m1 3 7.5 8.586e+00 1.085889 1.0884 0.997722
-#> ds 5 m1 7 16.5 1.612e+01 -0.376855 1.5211 -0.247743
-#> ds 5 m1 7 19.0 1.612e+01 -2.876855 1.5211 -1.891237
-#> ds 5 m1 14 22.9 2.267e+01 -0.228264 1.9633 -0.116267
-#> ds 5 m1 14 23.2 2.267e+01 -0.528264 1.9633 -0.269072
-#> ds 5 m1 28 22.2 2.468e+01 2.480178 2.1050 1.178211
-#> ds 5 m1 28 24.4 2.468e+01 0.280178 2.1050 0.133099
-#> ds 5 m1 60 15.5 1.860e+01 3.099615 1.6838 1.840794
-#> ds 5 m1 60 19.8 1.860e+01 -1.200385 1.6838 -0.712883
-#> ds 5 m1 90 14.9 1.326e+01 -1.636345 1.3433 -1.218195
-#> ds 5 m1 90 14.2 1.326e+01 -0.936345 1.3433 -0.697072
-#> ds 5 m1 120 10.9 9.348e+00 -1.551535 1.1258 -1.378133
-#> ds 5 m1 120 10.4 9.348e+00 -1.051535 1.1258 -0.934014# }
+#> ds 1 parent 0 89.8 9.838e+01 -8.584661 7.7094 -1.113536
+#> ds 1 parent 0 104.1 9.838e+01 5.715339 7.7094 0.741350
+#> ds 1 parent 1 88.7 9.388e+01 -5.182489 7.3611 -0.704041
+#> ds 1 parent 1 95.5 9.388e+01 1.617511 7.3611 0.219739
+#> ds 1 parent 3 81.8 8.563e+01 -3.825382 6.7229 -0.569010
+#> ds 1 parent 3 94.5 8.563e+01 8.874618 6.7229 1.320062
+#> ds 1 parent 7 71.5 7.169e+01 -0.188290 5.6482 -0.033336
+#> ds 1 parent 7 70.3 7.169e+01 -1.388290 5.6482 -0.245795
+#> ds 1 parent 14 54.2 5.361e+01 0.586595 4.2624 0.137621
+#> ds 1 parent 14 49.6 5.361e+01 -4.013405 4.2624 -0.941587
+#> ds 1 parent 28 31.5 3.219e+01 -0.688936 2.6496 -0.260011
+#> ds 1 parent 28 28.8 3.219e+01 -3.388936 2.6496 -1.279016
+#> ds 1 parent 60 12.1 1.278e+01 -0.678998 1.3145 -0.516562
+#> ds 1 parent 60 13.6 1.278e+01 0.821002 1.3145 0.624595
+#> ds 1 parent 90 6.2 6.157e+00 0.043461 0.9835 0.044188
+#> ds 1 parent 90 8.3 6.157e+00 2.143461 0.9835 2.179316
+#> ds 1 parent 120 2.2 3.076e+00 -0.876218 0.8916 -0.982775
+#> ds 1 parent 120 2.4 3.076e+00 -0.676218 0.8916 -0.758453
+#> ds 1 m1 1 0.3 1.134e+00 -0.833749 0.8633 -0.965750
+#> ds 1 m1 1 0.2 1.134e+00 -0.933749 0.8633 -1.081583
+#> ds 1 m1 3 2.2 3.157e+00 -0.957400 0.8933 -1.071763
+#> ds 1 m1 3 3.0 3.157e+00 -0.157400 0.8933 -0.176202
+#> ds 1 m1 7 6.5 6.369e+00 0.130995 0.9917 0.132090
+#> ds 1 m1 7 5.0 6.369e+00 -1.369005 0.9917 -1.380438
+#> ds 1 m1 14 10.2 9.971e+00 0.229362 1.1577 0.198112
+#> ds 1 m1 14 9.5 9.971e+00 -0.470638 1.1577 -0.406513
+#> ds 1 m1 28 12.2 1.265e+01 -0.447735 1.3067 -0.342637
+#> ds 1 m1 28 13.4 1.265e+01 0.752265 1.3067 0.575683
+#> ds 1 m1 60 11.8 1.097e+01 0.832027 1.2112 0.686945
+#> ds 1 m1 60 13.2 1.097e+01 2.232027 1.2112 1.842825
+#> ds 1 m1 90 6.6 7.876e+00 -1.275985 1.0553 -1.209109
+#> ds 1 m1 90 9.3 7.876e+00 1.424015 1.0553 1.349381
+#> ds 1 m1 120 3.5 5.336e+00 -1.835829 0.9540 -1.924292
+#> ds 1 m1 120 5.4 5.336e+00 0.064171 0.9540 0.067263
+#> ds 2 parent 0 118.0 1.092e+02 8.812058 8.5459 1.031142
+#> ds 2 parent 0 99.8 1.092e+02 -9.387942 8.5459 -1.098529
+#> ds 2 parent 1 90.2 1.023e+02 -12.114268 8.0135 -1.511724
+#> ds 2 parent 1 94.6 1.023e+02 -7.714268 8.0135 -0.962654
+#> ds 2 parent 3 96.1 9.066e+01 5.436165 7.1122 0.764344
+#> ds 2 parent 3 78.4 9.066e+01 -12.263835 7.1122 -1.724339
+#> ds 2 parent 7 77.9 7.365e+01 4.245773 5.7995 0.732090
+#> ds 2 parent 7 77.7 7.365e+01 4.045773 5.7995 0.697604
+#> ds 2 parent 14 56.0 5.593e+01 0.073803 4.4389 0.016626
+#> ds 2 parent 14 54.7 5.593e+01 -1.226197 4.4389 -0.276236
+#> ds 2 parent 28 36.6 3.892e+01 -2.320837 3.1502 -0.736737
+#> ds 2 parent 28 36.8 3.892e+01 -2.120837 3.1502 -0.673248
+#> ds 2 parent 60 22.1 2.136e+01 0.741020 1.8719 0.395868
+#> ds 2 parent 60 24.7 2.136e+01 3.341020 1.8719 1.784841
+#> ds 2 parent 90 12.4 1.251e+01 -0.113999 1.2989 -0.087765
+#> ds 2 parent 90 10.8 1.251e+01 -1.713999 1.2989 -1.319575
+#> ds 2 parent 120 6.8 7.338e+00 -0.537708 1.0315 -0.521281
+#> ds 2 parent 120 7.9 7.338e+00 0.562292 1.0315 0.545113
+#> ds 2 m1 1 1.3 1.576e+00 -0.276176 0.8675 -0.318352
+#> ds 2 m1 3 3.7 4.177e+00 -0.476741 0.9183 -0.519146
+#> ds 2 m1 3 4.7 4.177e+00 0.523259 0.9183 0.569801
+#> ds 2 m1 7 8.1 7.724e+00 0.376365 1.0485 0.358970
+#> ds 2 m1 7 7.9 7.724e+00 0.176365 1.0485 0.168214
+#> ds 2 m1 14 10.1 1.077e+01 -0.674433 1.2006 -0.561738
+#> ds 2 m1 14 10.3 1.077e+01 -0.474433 1.2006 -0.395158
+#> ds 2 m1 28 10.7 1.212e+01 -1.416179 1.2758 -1.110010
+#> ds 2 m1 28 12.2 1.212e+01 0.083821 1.2758 0.065699
+#> ds 2 m1 60 10.7 1.041e+01 0.294930 1.1807 0.249793
+#> ds 2 m1 60 12.5 1.041e+01 2.094930 1.1807 1.774316
+#> ds 2 m1 90 9.1 8.079e+00 1.020859 1.0646 0.958929
+#> ds 2 m1 90 7.4 8.079e+00 -0.679141 1.0646 -0.637941
+#> ds 2 m1 120 6.1 5.968e+00 0.131673 0.9765 0.134843
+#> ds 2 m1 120 4.5 5.968e+00 -1.468327 0.9765 -1.503683
+#> ds 3 parent 0 106.2 1.036e+02 2.638248 8.1101 0.325303
+#> ds 3 parent 0 106.9 1.036e+02 3.338248 8.1101 0.411614
+#> ds 3 parent 1 107.4 9.580e+01 11.600063 7.5094 1.544743
+#> ds 3 parent 1 96.1 9.580e+01 0.300063 7.5094 0.039958
+#> ds 3 parent 3 79.4 8.297e+01 -3.574516 6.5182 -0.548391
+#> ds 3 parent 3 82.6 8.297e+01 -0.374516 6.5182 -0.057457
+#> ds 3 parent 7 63.9 6.517e+01 -1.272397 5.1472 -0.247200
+#> ds 3 parent 7 62.4 6.517e+01 -2.772397 5.1472 -0.538618
+#> ds 3 parent 14 51.0 4.821e+01 2.790075 3.8512 0.724475
+#> ds 3 parent 14 47.1 4.821e+01 -1.109925 3.8512 -0.288205
+#> ds 3 parent 28 36.1 3.385e+01 2.250573 2.7723 0.811811
+#> ds 3 parent 28 36.6 3.385e+01 2.750573 2.7723 0.992168
+#> ds 3 parent 60 20.1 1.964e+01 0.455700 1.7543 0.259760
+#> ds 3 parent 60 19.8 1.964e+01 0.155700 1.7543 0.088753
+#> ds 3 parent 90 11.3 1.210e+01 -0.795458 1.2746 -0.624068
+#> ds 3 parent 90 10.7 1.210e+01 -1.395458 1.2746 -1.094792
+#> ds 3 parent 120 8.2 7.451e+00 0.749141 1.0364 0.722816
+#> ds 3 parent 120 7.3 7.451e+00 -0.150859 1.0364 -0.145558
+#> ds 3 m1 0 0.8 3.695e-13 0.800000 0.8588 0.931542
+#> ds 3 m1 1 1.8 1.740e+00 0.059741 0.8694 0.068714
+#> ds 3 m1 1 2.3 1.740e+00 0.559741 0.8694 0.643812
+#> ds 3 m1 3 4.2 4.531e+00 -0.331379 0.9285 -0.356913
+#> ds 3 m1 3 4.1 4.531e+00 -0.431379 0.9285 -0.464618
+#> ds 3 m1 7 6.8 8.113e+00 -1.312762 1.0661 -1.231333
+#> ds 3 m1 7 10.1 8.113e+00 1.987238 1.0661 1.863971
+#> ds 3 m1 14 11.4 1.079e+01 0.613266 1.2013 0.510507
+#> ds 3 m1 14 12.8 1.079e+01 2.013266 1.2013 1.675923
+#> ds 3 m1 28 11.5 1.133e+01 0.174252 1.2310 0.141553
+#> ds 3 m1 28 10.6 1.133e+01 -0.725748 1.2310 -0.589558
+#> ds 3 m1 60 7.5 8.948e+00 -1.448281 1.1059 -1.309561
+#> ds 3 m1 60 8.6 8.948e+00 -0.348281 1.1059 -0.314922
+#> ds 3 m1 90 7.3 6.665e+00 0.634932 1.0034 0.632752
+#> ds 3 m1 90 8.1 6.665e+00 1.434932 1.0034 1.430004
+#> ds 3 m1 120 5.3 4.795e+00 0.504936 0.9365 0.539199
+#> ds 3 m1 120 3.8 4.795e+00 -0.995064 0.9365 -1.062586
+#> ds 4 parent 0 104.7 9.985e+01 4.850494 7.8227 0.620050
+#> ds 4 parent 0 88.3 9.985e+01 -11.549506 7.8227 -1.476402
+#> ds 4 parent 1 94.2 9.676e+01 -2.556304 7.5834 -0.337093
+#> ds 4 parent 1 94.6 9.676e+01 -2.156304 7.5834 -0.284346
+#> ds 4 parent 3 78.1 9.092e+01 -12.817485 7.1318 -1.797230
+#> ds 4 parent 3 96.5 9.092e+01 5.582515 7.1318 0.782764
+#> ds 4 parent 7 76.2 8.050e+01 -4.297338 6.3270 -0.679204
+#> ds 4 parent 7 77.8 8.050e+01 -2.697338 6.3270 -0.426320
+#> ds 4 parent 14 70.8 6.562e+01 5.179989 5.1816 0.999687
+#> ds 4 parent 14 67.3 6.562e+01 1.679989 5.1816 0.324222
+#> ds 4 parent 28 43.1 4.499e+01 -1.886936 3.6069 -0.523140
+#> ds 4 parent 28 45.1 4.499e+01 0.113064 3.6069 0.031346
+#> ds 4 parent 60 21.3 2.151e+01 -0.214840 1.8827 -0.114114
+#> ds 4 parent 60 23.5 2.151e+01 1.985160 1.8827 1.054433
+#> ds 4 parent 90 11.8 1.190e+01 -0.098528 1.2633 -0.077990
+#> ds 4 parent 90 12.1 1.190e+01 0.201472 1.2633 0.159475
+#> ds 4 parent 120 7.0 6.886e+00 0.113832 1.0125 0.112431
+#> ds 4 parent 120 6.2 6.886e+00 -0.686168 1.0125 -0.677724
+#> ds 4 m1 0 1.6 4.263e-14 1.600000 0.8588 1.863085
+#> ds 4 m1 1 0.9 7.140e-01 0.185984 0.8606 0.216112
+#> ds 4 m1 3 3.7 2.022e+00 1.678243 0.8731 1.922160
+#> ds 4 m1 3 2.0 2.022e+00 -0.021757 0.8731 -0.024919
+#> ds 4 m1 7 3.6 4.207e+00 -0.607229 0.9192 -0.660633
+#> ds 4 m1 7 3.8 4.207e+00 -0.407229 0.9192 -0.443044
+#> ds 4 m1 14 7.1 6.912e+00 0.188339 1.0135 0.185828
+#> ds 4 m1 14 6.6 6.912e+00 -0.311661 1.0135 -0.307506
+#> ds 4 m1 28 9.5 9.449e+00 0.050714 1.1309 0.044843
+#> ds 4 m1 28 9.3 9.449e+00 -0.149286 1.1309 -0.132004
+#> ds 4 m1 60 8.3 8.997e+00 -0.697403 1.1083 -0.629230
+#> ds 4 m1 60 9.0 8.997e+00 0.002597 1.1083 0.002343
+#> ds 4 m1 90 6.6 6.697e+00 -0.096928 1.0047 -0.096472
+#> ds 4 m1 90 7.7 6.697e+00 1.003072 1.0047 0.998348
+#> ds 4 m1 120 3.7 4.622e+00 -0.921607 0.9312 -0.989749
+#> ds 4 m1 120 3.5 4.622e+00 -1.121607 0.9312 -1.204537
+#> ds 5 parent 0 110.4 1.045e+02 5.942426 8.1795 0.726502
+#> ds 5 parent 0 112.1 1.045e+02 7.642426 8.1795 0.934338
+#> ds 5 parent 1 93.5 9.739e+01 -3.893915 7.6327 -0.510162
+#> ds 5 parent 1 91.0 9.739e+01 -6.393915 7.6327 -0.837700
+#> ds 5 parent 3 71.0 8.519e+01 -14.188275 6.6891 -2.121098
+#> ds 5 parent 3 89.7 8.519e+01 4.511725 6.6891 0.674487
+#> ds 5 parent 7 60.4 6.684e+01 -6.439546 5.2753 -1.220701
+#> ds 5 parent 7 59.1 6.684e+01 -7.739546 5.2753 -1.467133
+#> ds 5 parent 14 56.5 4.736e+01 9.138979 3.7868 2.413407
+#> ds 5 parent 14 47.0 4.736e+01 -0.361021 3.7868 -0.095338
+#> ds 5 parent 28 30.2 3.033e+01 -0.131178 2.5132 -0.052195
+#> ds 5 parent 28 23.9 3.033e+01 -6.431178 2.5132 -2.558936
+#> ds 5 parent 60 17.0 1.771e+01 -0.705246 1.6243 -0.434177
+#> ds 5 parent 60 18.7 1.771e+01 0.994754 1.6243 0.612409
+#> ds 5 parent 90 11.3 1.180e+01 -0.504856 1.2580 -0.401315
+#> ds 5 parent 90 11.9 1.180e+01 0.095144 1.2580 0.075631
+#> ds 5 parent 120 9.0 7.917e+00 1.083499 1.0571 1.024928
+#> ds 5 parent 120 8.1 7.917e+00 0.183499 1.0571 0.173579
+#> ds 5 m1 0 0.7 3.553e-15 0.700000 0.8588 0.815100
+#> ds 5 m1 1 3.0 3.204e+00 -0.204414 0.8943 -0.228572
+#> ds 5 m1 1 2.6 3.204e+00 -0.604414 0.8943 -0.675845
+#> ds 5 m1 3 5.1 8.586e+00 -3.485889 1.0884 -3.202858
+#> ds 5 m1 3 7.5 8.586e+00 -1.085889 1.0884 -0.997722
+#> ds 5 m1 7 16.5 1.612e+01 0.376855 1.5211 0.247743
+#> ds 5 m1 7 19.0 1.612e+01 2.876855 1.5211 1.891237
+#> ds 5 m1 14 22.9 2.267e+01 0.228264 1.9633 0.116267
+#> ds 5 m1 14 23.2 2.267e+01 0.528264 1.9633 0.269072
+#> ds 5 m1 28 22.2 2.468e+01 -2.480178 2.1050 -1.178211
+#> ds 5 m1 28 24.4 2.468e+01 -0.280178 2.1050 -0.133099
+#> ds 5 m1 60 15.5 1.860e+01 -3.099615 1.6838 -1.840794
+#> ds 5 m1 60 19.8 1.860e+01 1.200385 1.6838 0.712883
+#> ds 5 m1 90 14.9 1.326e+01 1.636345 1.3433 1.218195
+#> ds 5 m1 90 14.2 1.326e+01 0.936345 1.3433 0.697072
+#> ds 5 m1 120 10.9 9.348e+00 1.551535 1.1258 1.378133
+#> ds 5 m1 120 10.4 9.348e+00 1.051535 1.1258 0.934014# }
diff --git a/docs/dev/sitemap.xml b/docs/dev/sitemap.xml
index 27f0e392..425e18ad 100644
--- a/docs/dev/sitemap.xml
+++ b/docs/dev/sitemap.xml
@@ -105,6 +105,9 @@
https://pkgdown.jrwb.de/mkin/reference/mccall81_245T.html
+
+ https://pkgdown.jrwb.de/mkin/reference/mean_degparms.html
+
https://pkgdown.jrwb.de/mkin/reference/mixed.html
@@ -156,6 +159,9 @@
https://pkgdown.jrwb.de/mkin/reference/nlme.mmkin.html
+
+ https://pkgdown.jrwb.de/mkin/reference/nlmixr.mmkin.html
+
https://pkgdown.jrwb.de/mkin/reference/nobs.mkinfit.html
@@ -195,6 +201,9 @@
https://pkgdown.jrwb.de/mkin/reference/summary.nlme.mmkin.html
+
+ https://pkgdown.jrwb.de/mkin/reference/summary.nlmixr.mmkin.html
+
https://pkgdown.jrwb.de/mkin/reference/summary.saem.mmkin.html
diff --git a/man/endpoints.Rd b/man/endpoints.Rd
index 72487717..a37ff98d 100644
--- a/man/endpoints.Rd
+++ b/man/endpoints.Rd
@@ -8,8 +8,8 @@ with mkinfit}
endpoints(fit)
}
\arguments{
-\item{fit}{An object of class \link{mkinfit}, \link{nlme.mmkin} or
-\link{saem.mmkin}. Or another object that has list components
+\item{fit}{An object of class \link{mkinfit}, \link{nlme.mmkin}, \link{saem.mmkin} or
+\link{nlmixr.mmkin}. Or another object that has list components
mkinmod containing an \link{mkinmod} degradation model, and two numeric vectors,
bparms.optim and bparms.fixed, that contain parameter values
for that model.}
diff --git a/man/mean_degparms.Rd b/man/mean_degparms.Rd
index 92ed4c9d..5e2b4b0f 100644
--- a/man/mean_degparms.Rd
+++ b/man/mean_degparms.Rd
@@ -7,6 +7,8 @@
mean_degparms(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
}
\arguments{
+\item{object}{An mmkin row object containing several fits of the same model to different datasets}
+
\item{random}{Should a list with fixed and random effects be returned?}
\item{test_log_parms}{If TRUE, log parameters are only considered in
diff --git a/man/nlmixr.mmkin.Rd b/man/nlmixr.mmkin.Rd
index 86bbdc9f..4ab30272 100644
--- a/man/nlmixr.mmkin.Rd
+++ b/man/nlmixr.mmkin.Rd
@@ -29,7 +29,8 @@ nlmixr_model(
degparms_start = "auto",
test_log_parms = FALSE,
conf.level = 0.6,
- error_model = object[[1]]$err_mod
+ error_model = object[[1]]$err_mod,
+ add_attributes = FALSE
)
nlmixr_data(object, ...)
@@ -38,9 +39,16 @@ nlmixr_data(object, ...)
\item{object}{An \link{mmkin} row object containing several fits of the same
\link{mkinmod} model to different datasets}
+\item{data}{Not used, as the data are extracted from the mmkin row object}
+
\item{est}{Estimation method passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}}
-\item{control}{Passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}.}
+\item{control}{Passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}}
+
+\item{table}{Passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}}
+
+\item{error_model}{Possibility to override the error model which is being
+set based on the error model used in the mmkin row object.}
\item{test_log_parms}{If TRUE, an attempt is made to use more robust starting
values for population parameters fitted as log parameters in mkin (like
@@ -52,6 +60,10 @@ for parameter that are tested if requested by 'test_log_parms'.}
\item{\dots}{Passed to \link{nlmixr_model}}
+\item{save}{Passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}}
+
+\item{envir}{Passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}}
+
\item{x}{An nlmixr.mmkin object to print}
\item{digits}{Number of digits to use for printing}
@@ -59,8 +71,9 @@ for parameter that are tested if requested by 'test_log_parms'.}
\item{degparms_start}{Parameter values given as a named numeric vector will
be used to override the starting values obtained from the 'mmkin' object.}
-\item{solution_type}{Possibility to specify the solution type in case the
-automatic choice is not desired}
+\item{add_attributes}{Should the starting values used for degradation model
+parameters and their distribution and for the error model parameters
+be returned as attributes?}
}
\value{
An S3 object of class 'nlmixr.mmkin', containing the fitted
@@ -81,9 +94,11 @@ An mmkin row object is essentially a list of mkinfit objects that have been
obtained by fitting the same model to a list of datasets using \link{mkinfit}.
}
\examples{
+\dontrun{
ds <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) subset(x$data[c("name", "time", "value")]))
names(ds) <- paste("Dataset", 6:10)
+
f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP", "HS"), ds, quiet = TRUE, cores = 1)
f_mmkin_parent_tc <- mmkin(c("SFO", "FOMC", "DFOP"), ds, error_model = "tc",
cores = 1, quiet = TRUE)
@@ -117,7 +132,6 @@ AIC(nlme(f_mmkin_parent["HS", ]))
# solution, the two-component error model does not improve it
plot(f_nlmixr_fomc_saem)
-\dontrun{
sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
A1 = mkinsub("SFO"))
fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
diff --git a/man/reexports.Rd b/man/reexports.Rd
index ccba7567..d4fc6b96 100644
--- a/man/reexports.Rd
+++ b/man/reexports.Rd
@@ -1,10 +1,11 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/lrtest.mkinfit.R, R/nlme.mmkin.R
+% Please edit documentation in R/lrtest.mkinfit.R, R/nlme.mmkin.R, R/nlmixr.R
\docType{import}
\name{reexports}
\alias{reexports}
\alias{lrtest}
\alias{nlme}
+\alias{nlmixr}
\title{Objects exported from other packages}
\keyword{internal}
\description{
@@ -15,5 +16,7 @@ below to see their documentation.
\item{lmtest}{\code{\link[lmtest]{lrtest}}}
\item{nlme}{\code{\link[nlme]{nlme}}}
+
+ \item{nlmixr}{\code{\link[nlmixr]{nlmixr}}}
}}
diff --git a/man/summary.nlmixr.mmkin.Rd b/man/summary.nlmixr.mmkin.Rd
index 03f0ffb2..ab8abd5d 100644
--- a/man/summary.nlmixr.mmkin.Rd
+++ b/man/summary.nlmixr.mmkin.Rd
@@ -2,12 +2,15 @@
% Please edit documentation in R/summary.nlmixr.mmkin.R
\name{summary.nlmixr.mmkin}
\alias{summary.nlmixr.mmkin}
+\alias{print.summary.nlmixr.mmkin}
\title{Summary method for class "nlmixr.mmkin"}
\usage{
\method{summary}{nlmixr.mmkin}(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...)
+
+\method{print}{summary.nlmixr.mmkin}(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
}
\arguments{
-\item{object}{an object of class \link{nlmix.mmkin}}
+\item{object}{an object of class \link{nlmixr.mmkin}}
\item{data}{logical, indicating whether the full data should be included in
the summary.}
@@ -19,7 +22,7 @@ included.}
\item{\dots}{optional arguments passed to methods like \code{print}.}
-\item{x}{an object of class \link{summary.nlmix.mmkin}}
+\item{x}{an object of class \link{summary.nlmixr.mmkin}}
\item{digits}{Number of digits to use for printing}
}
@@ -32,9 +35,7 @@ produced}
\item{diffs}{The differential equations used in the degradation model}
\item{use_of_ff}{Was maximum or minimum use made of formation fractions}
\item{data}{The data}
-\item{confint_trans}{Transformed parameters as used in the optimisation, with confidence intervals}
\item{confint_back}{Backtransformed parameters, with confidence intervals if available}
-\item{confint_errmod}{Error model parameters with confidence intervals}
\item{ff}{The estimated formation fractions derived from the fitted
model.}
\item{distimes}{The DT50 and DT90 values for each observed variable.}
@@ -85,12 +86,14 @@ ds_syn_dfop_sfo <- lapply(ds_mean_dfop_sfo, function(ds) {
\dontrun{
# Evaluate using mmkin and nlmixr
f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo,
- quiet = TRUE, error_model = "obs", cores = 5)
+ quiet = TRUE, error_model = "tc", cores = 5)
f_saemix_dfop_sfo <- mkin::saem(f_mmkin_dfop_sfo)
f_nlme_dfop_sfo <- mkin::nlme(f_mmkin_dfop_sfo)
f_nlmixr_dfop_sfo_saem <- nlmixr(f_mmkin_dfop_sfo, est = "saem")
-#f_nlmixr_dfop_sfo_focei <- nlmixr(f_mmkin_dfop_sfo, est = "focei")
-summary(f_nlmixr_dfop_sfo, data = TRUE)
+# The following takes a very long time but gives
+f_nlmixr_dfop_sfo_focei <- nlmixr(f_mmkin_dfop_sfo, est = "focei")
+AIC(f_nlmixr_dfop_sfo_saem$nm, f_nlmixr_dfop_sfo_focei$nm)
+summary(f_nlmixr_dfop_sfo_sfo, data = TRUE)
}
}
diff --git a/man/summary.saem.mmkin.Rd b/man/summary.saem.mmkin.Rd
index 86938d31..67cb3cbb 100644
--- a/man/summary.saem.mmkin.Rd
+++ b/man/summary.saem.mmkin.Rd
@@ -1,32 +1,30 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/summary.nlmixr.mmkin.R, R/summary.saem.mmkin.R
-\name{print.summary.saem.mmkin}
-\alias{print.summary.saem.mmkin}
+% Please edit documentation in R/summary.saem.mmkin.R
+\name{summary.saem.mmkin}
\alias{summary.saem.mmkin}
+\alias{print.summary.saem.mmkin}
\title{Summary method for class "saem.mmkin"}
\usage{
-\method{print}{summary.saem.mmkin}(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
-
\method{summary}{saem.mmkin}(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...)
\method{print}{summary.saem.mmkin}(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
}
\arguments{
-\item{x}{an object of class \link{summary.saem.mmkin}}
-
-\item{digits}{Number of digits to use for printing}
-
-\item{verbose}{Should the summary be verbose?}
-
-\item{\dots}{optional arguments passed to methods like \code{print}.}
-
\item{object}{an object of class \link{saem.mmkin}}
\item{data}{logical, indicating whether the full data should be included in
the summary.}
+\item{verbose}{Should the summary be verbose?}
+
\item{distimes}{logical, indicating whether DT50 and DT90 values should be
included.}
+
+\item{\dots}{optional arguments passed to methods like \code{print}.}
+
+\item{x}{an object of class \link{summary.saem.mmkin}}
+
+\item{digits}{Number of digits to use for printing}
}
\value{
The summary function returns a list based on the \link[saemix:SaemixObject-class]{saemix::SaemixObject}
--
cgit v1.2.1
From 1848f6a9c6f763b6ad32df8c5b58e27b30880ea4 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Fri, 11 Jun 2021 12:04:19 +0200
Subject: Add system requirements for symengine on Travis
nlmixr depends on symengine
---
.travis.yml | 1 +
1 file changed, 1 insertion(+)
diff --git a/.travis.yml b/.travis.yml
index 60e37230..1e2fe241 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -8,6 +8,7 @@ addons:
packages:
- gcc
- libgit2-dev
+ - libmpfr-dev
cache: packages
repos:
CRAN: https://cloud.r-project.org
--
cgit v1.2.1
From 2c0721983e8d0b090141882c49780fe50d8fdcde Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Fri, 11 Jun 2021 13:46:23 +0200
Subject: Attempt to satisfy nlme version requirement on travis
---
.travis.yml | 1 +
1 file changed, 1 insertion(+)
diff --git a/.travis.yml b/.travis.yml
index 1e2fe241..bc39faf9 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -12,6 +12,7 @@ addons:
cache: packages
repos:
CRAN: https://cloud.r-project.org
+r_packages: nlme
r_github_packages:
- jranke/saemixextension@warp_combined
script:
--
cgit v1.2.1
From 1aeb2c5e3dc4782f0cc7279bf16b9ba06a08f328 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Fri, 11 Jun 2021 14:03:43 +0200
Subject: Add packages necessary for shell commands on travis
---
.travis.yml | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/.travis.yml b/.travis.yml
index bc39faf9..8f4e1566 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -12,7 +12,7 @@ addons:
cache: packages
repos:
CRAN: https://cloud.r-project.org
-r_packages: nlme
+r_packages: nlme devtools codecov
r_github_packages:
- jranke/saemixextension@warp_combined
script:
--
cgit v1.2.1
From 6f78e98e81cbdda9a3caf90641a66df52afb37ac Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Fri, 11 Jun 2021 14:36:30 +0200
Subject: Fix travis syntax
---
.travis.yml | 5 ++++-
1 file changed, 4 insertions(+), 1 deletion(-)
diff --git a/.travis.yml b/.travis.yml
index 8f4e1566..906010f4 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -12,7 +12,10 @@ addons:
cache: packages
repos:
CRAN: https://cloud.r-project.org
-r_packages: nlme devtools codecov
+r_packages:
+ - nlme
+ - devtools
+ - codecov
r_github_packages:
- jranke/saemixextension@warp_combined
script:
--
cgit v1.2.1
From 8bf6bd4289f1a0618376406a6a44dd99aedc692f Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Fri, 11 Jun 2021 14:54:46 +0200
Subject: Fix package name for travis config...
---
.travis.yml | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/.travis.yml b/.travis.yml
index 906010f4..0ae488cb 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -15,7 +15,7 @@ repos:
r_packages:
- nlme
- devtools
- - codecov
+ - covr
r_github_packages:
- jranke/saemixextension@warp_combined
script:
--
cgit v1.2.1
From 88cf130615a6cde0c4e65d14db32fed7f6e43085 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Sat, 12 Jun 2021 11:05:24 +0200
Subject: Small cosmetics
---
DESCRIPTION | 2 +-
R/dimethenamid_2018.R | 25 +++++++++++++++++++++++++
R/nlmixr.R | 20 +++++++++-----------
tests/testthat/test_mixed.R | 2 +-
4 files changed, 36 insertions(+), 13 deletions(-)
diff --git a/DESCRIPTION b/DESCRIPTION
index e81fcb32..c6151839 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -2,7 +2,7 @@ Package: mkin
Type: Package
Title: Kinetic Evaluation of Chemical Degradation Data
Version: 1.0.5
-Date: 2021-06-03
+Date: 2021-06-11
Authors@R: c(
person("Johannes", "Ranke", role = c("aut", "cre", "cph"),
email = "jranke@uni-bremen.de",
diff --git a/R/dimethenamid_2018.R b/R/dimethenamid_2018.R
index 189da618..79018c11 100644
--- a/R/dimethenamid_2018.R
+++ b/R/dimethenamid_2018.R
@@ -18,4 +18,29 @@
#' \url{http://registerofquestions.efsa.europa.eu/roqFrontend/outputLoader?output=ON-5211}
#' @examples
#' print(dimethenamid_2018)
+#' dmta_ds <- lapply(1:8, function(i) {
+#' ds_i <- dimethenamid_2018$ds[[i]]$data
+#' ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
+#' ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
+#' ds_i
+#' })
+#' names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+#' dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]])
+#' dmta_ds[["Borstel 1"]] <- NULL
+#' dmta_ds[["Borstel 2"]] <- NULL
+#' dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
+#' dmta_ds[["Elliot 1"]] <- NULL
+#' dmta_ds[["Elliot 2"]] <- NULL
+#' dfop_sfo3_plus <- mkinmod(
+#' DMTA = mkinsub("DFOP", c("M23", "M27", "M31")),
+#' M23 = mkinsub("SFO"),
+#' M27 = mkinsub("SFO"),
+#' M31 = mkinsub("SFO", "M27", sink = FALSE),
+#' quiet = TRUE
+#' )
+#' f_dmta_mkin_tc <- mmkin(
+#' list("DFOP-SFO3+" = dfop_sfo3_plus),
+#' dmta_ds, quiet = TRUE, error_model = "tc")
+#' nlmixr_model(f_dmta_mkin_tc) # incomplete
+#' # nlmixr(f_dmta_mkin_tc, est = "saem") # not supported (yet)
"dimethenamid_2018"
diff --git a/R/nlmixr.R b/R/nlmixr.R
index 98783ca7..6e0b5128 100644
--- a/R/nlmixr.R
+++ b/R/nlmixr.R
@@ -43,11 +43,11 @@ nlmixr::nlmixr
#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
#' function(x) subset(x$data[c("name", "time", "value")]))
#' names(ds) <- paste("Dataset", 6:10)
-#'
+#'
#' f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP", "HS"), ds, quiet = TRUE, cores = 1)
#' f_mmkin_parent_tc <- mmkin(c("SFO", "FOMC", "DFOP"), ds, error_model = "tc",
#' cores = 1, quiet = TRUE)
-#'
+#'
#' f_nlmixr_sfo_saem <- nlmixr(f_mmkin_parent["SFO", ], est = "saem")
#' f_nlmixr_sfo_focei <- nlmixr(f_mmkin_parent["SFO", ], est = "focei")
#'
@@ -278,20 +278,18 @@ nlmixr_model <- function(object,
conf.level = conf.level, random = TRUE)
degparms_optim <- degparms_mmkin$fixed
-
- degparms_optim <- degparms_mmkin$fixed
+ degparms_optim_back <- backtransform_odeparms(degparms_optim,
+ object[[1]]$mkinmod,
+ object[[1]]$transform_rates,
+ object[[1]]$transform_fractions)
+ degparms_optim_back_names <- names(degparms_optim_back)
+ names(degparms_optim_back_names) <- names(degparms_optim)
if (degparms_start[1] == "auto") {
degparms_start <- degparms_optim
}
degparms_fixed <- object[[1]]$bparms.fixed
- degparms_optim_back_names <- names(backtransform_odeparms(degparms_optim,
- object[[1]]$mkinmod,
- object[[1]]$transform_rates,
- object[[1]]$transform_fractions))
- names(degparms_optim_back_names) <- names(degparms_optim)
-
odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE)
odeini_fixed_parm_names <- grep('_0$', names(degparms_fixed), value = TRUE)
@@ -307,7 +305,7 @@ nlmixr_model <- function(object,
ini_block <- "ini({"
# Initial values for all degradation parameters
- for (parm_name in names(degparms_optim)) {
+ for (parm_name in names(degparms_start)) {
# As initials for state variables are not transformed,
# we need to modify the name here as we want to
# use the original name in the model block
diff --git a/tests/testthat/test_mixed.R b/tests/testthat/test_mixed.R
index 5d15530b..9c8a84d7 100644
--- a/tests/testthat/test_mixed.R
+++ b/tests/testthat/test_mixed.R
@@ -113,7 +113,7 @@ test_that("nlme results are reproducible to some degree", {
expect_known_output(print(test_summary, digits = 1), "summary_nlme_biphasic_s.txt")
- # k1 just fails the first test (lower bound of the ci), so we need to excluded it
+ # k1 just fails the first test (lower bound of the ci), so we need to exclude it
dfop_no_k1 <- c("parent_0", "k_m1", "f_parent_to_m1", "k2", "g")
dfop_sfo_pop_no_k1 <- as.numeric(dfop_sfo_pop[dfop_no_k1])
dfop_sfo_pop <- as.numeric(dfop_sfo_pop)
--
cgit v1.2.1
From 28197d5fcbaf85b39f4c032b8180d68b6f6a01b3 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Wed, 16 Jun 2021 18:03:22 +0200
Subject: Translate formation fractions to nlmixr language
Works for the dimethenamid data, at least for FOCEI. Very little testing
yet. The summary function does not yet handle the new transformations
of formation fractions (that are in fact very old, as they were used
in the very first version of mkin). The test file has no tests yet, just
some code that may be used for testing.
---
R/dimethenamid_2018.R | 11 ++++-
R/nlmixr.R | 79 ++++++++++++++++++++++++++++++-----
R/tffm0.R | 46 ++++++++++++++++++++
tests/testthat/test_nlmixr.r | 99 ++++++++++++++++++++++++++++++++++++++++++++
4 files changed, 223 insertions(+), 12 deletions(-)
create mode 100644 R/tffm0.R
create mode 100644 tests/testthat/test_nlmixr.r
diff --git a/R/dimethenamid_2018.R b/R/dimethenamid_2018.R
index 79018c11..76b98efe 100644
--- a/R/dimethenamid_2018.R
+++ b/R/dimethenamid_2018.R
@@ -41,6 +41,13 @@
#' f_dmta_mkin_tc <- mmkin(
#' list("DFOP-SFO3+" = dfop_sfo3_plus),
#' dmta_ds, quiet = TRUE, error_model = "tc")
-#' nlmixr_model(f_dmta_mkin_tc) # incomplete
-#' # nlmixr(f_dmta_mkin_tc, est = "saem") # not supported (yet)
+#' nlmixr_model(f_dmta_mkin_tc)
+#' f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem",
+#' control = saemControl(print = 500))
+#' summary(f_dmta_nlmixr_saem)
+#' plot(f_dmta_nlmixr_saem)
+#' f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei",
+#' control = foceiControl(print = 500))
+#' summary(f_dmta_nlmixr_focei)
+#' plot(f_dmta_nlmixr_focei)
"dimethenamid_2018"
diff --git a/R/nlmixr.R b/R/nlmixr.R
index 6e0b5128..9c364c4f 100644
--- a/R/nlmixr.R
+++ b/R/nlmixr.R
@@ -20,6 +20,9 @@ nlmixr::nlmixr
#' @param est Estimation method passed to [nlmixr::nlmixr]
#' @param degparms_start Parameter values given as a named numeric vector will
#' be used to override the starting values obtained from the 'mmkin' object.
+#' @param eta_start Standard deviations on the transformed scale given as a
+#' named numeric vector will be used to override the starting values obtained
+#' from the 'mmkin' object.
#' @param test_log_parms If TRUE, an attempt is made to use more robust starting
#' values for population parameters fitted as log parameters in mkin (like
#' rate constants) by only considering rate constants that pass the t-test
@@ -148,6 +151,8 @@ nlmixr.mmkin <- function(object, data = NULL,
error_model = object[[1]]$err_mod,
test_log_parms = TRUE,
conf.level = 0.6,
+ degparms_start = "auto",
+ eta_start = "auto",
...,
save = NULL,
envir = parent.frame()
@@ -155,7 +160,9 @@ nlmixr.mmkin <- function(object, data = NULL,
{
m_nlmixr <- nlmixr_model(object, est = est,
error_model = error_model, add_attributes = TRUE,
- test_log_parms = test_log_parms, conf.level = conf.level)
+ test_log_parms = test_log_parms, conf.level = conf.level,
+ degparms_start = degparms_start, eta_start = eta_start
+ )
d_nlmixr <- nlmixr_data(object)
mean_dp_start <- attr(m_nlmixr, "mean_dp_start")
@@ -164,7 +171,7 @@ nlmixr.mmkin <- function(object, data = NULL,
attributes(m_nlmixr) <- NULL
fit_time <- system.time({
- f_nlmixr <- nlmixr(m_nlmixr, d_nlmixr, est = est)
+ f_nlmixr <- nlmixr(m_nlmixr, d_nlmixr, est = est, control = control)
})
if (is.null(f_nlmixr$CMT)) {
@@ -246,7 +253,8 @@ print.nlmixr.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...)
nlmixr_model <- function(object,
est = c("saem", "focei"),
degparms_start = "auto",
- test_log_parms = FALSE, conf.level = 0.6,
+ eta_start = "auto",
+ test_log_parms = TRUE, conf.level = 0.6,
error_model = object[[1]]$err_mod, add_attributes = FALSE)
{
if (nrow(object) > 1) stop("Only row objects allowed")
@@ -278,16 +286,44 @@ nlmixr_model <- function(object,
conf.level = conf.level, random = TRUE)
degparms_optim <- degparms_mmkin$fixed
+
+ degparms_optim_ilr_names <- grep("^f_.*_ilr", names(degparms_optim), value = TRUE)
+ obs_vars_ilr <- unique(gsub("f_(.*)_ilr.*$", "\\1", degparms_optim_ilr_names))
+ degparms_optim_noilr <- degparms_optim[setdiff(names(degparms_optim),
+ degparms_optim_ilr_names)]
+
degparms_optim_back <- backtransform_odeparms(degparms_optim,
object[[1]]$mkinmod,
object[[1]]$transform_rates,
object[[1]]$transform_fractions)
- degparms_optim_back_names <- names(degparms_optim_back)
- names(degparms_optim_back_names) <- names(degparms_optim)
if (degparms_start[1] == "auto") {
- degparms_start <- degparms_optim
+ degparms_start <- degparms_optim_noilr
+ for (obs_var_ilr in obs_vars_ilr) {
+ ff_names <- grep(paste0("^f_", obs_var_ilr, "_"),
+ names(degparms_optim_back), value = TRUE)
+ f_tffm0 <- tffm0(degparms_optim_back[ff_names])
+ f_tffm0_qlogis <- qlogis(f_tffm0)
+ names(f_tffm0_qlogis) <- paste0("f_", obs_var_ilr,
+ "_tffm0_", 1:length(f_tffm0), "_qlogis")
+ degparms_start <- c(degparms_start, f_tffm0_qlogis)
+ }
+ }
+
+ if (eta_start[1] == "auto") {
+ eta_start <- degparms_mmkin$eta[setdiff(names(degparms_optim),
+ degparms_optim_ilr_names)]
+ for (obs_var_ilr in obs_vars_ilr) {
+ ff_n <- length(grep(paste0("^f_", obs_var_ilr, "_"),
+ names(degparms_optim_back), value = TRUE))
+ eta_start_ff <- rep(0.3, ff_n)
+ names(eta_start_ff) <- paste0("f_", obs_var_ilr,
+ "_tffm0_", 1:ff_n, "_qlogis")
+ eta_start <- c(eta_start, eta_start_ff)
+ }
}
+
+
degparms_fixed <- object[[1]]$bparms.fixed
odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE)
@@ -315,7 +351,7 @@ nlmixr_model <- function(object,
as.character(degparms_start[parm_name]),
"\n",
"eta.", parm_name, " ~ ",
- as.character(degparms_mmkin$eta[parm_name]),
+ as.character(eta_start[parm_name]),
"\n"
)
}
@@ -394,7 +430,7 @@ nlmixr_model <- function(object,
}
# Population initial values for log rate constants
- for (parm_name in grep("^log_", names(degparms_optim), value = TRUE)) {
+ for (parm_name in grep("^log_", names(degparms_start), value = TRUE)) {
model_block <- paste0(
model_block,
gsub("^log_", "", parm_name), " = ",
@@ -402,13 +438,36 @@ nlmixr_model <- function(object,
}
# Population initial values for logit transformed parameters
- for (parm_name in grep("_qlogis$", names(degparms_optim), value = TRUE)) {
+ for (parm_name in grep("_qlogis$", names(degparms_start), value = TRUE)) {
model_block <- paste0(
model_block,
- degparms_optim_back_names[parm_name], " = ",
+ gsub("_qlogis$", "", parm_name), " = ",
"expit(", parm_name, " + eta.", parm_name, ")\n")
}
+ # Calculate formation fractions from tffm0 transformed values
+ for (obs_var_ilr in obs_vars_ilr) {
+ ff_names <- grep(paste0("^f_", obs_var_ilr, "_"),
+ names(degparms_optim_back), value = TRUE)
+ pattern <- paste0("^f_", obs_var_ilr, "_to_(.*)$")
+ target_vars <- gsub(pattern, "\\1",
+ grep(paste0("^f_", obs_var_ilr, "_to_"), names(degparms_optim_back), value = TRUE))
+ for (i in 1:length(target_vars)) {
+ ff_name <- ff_names[i]
+ ff_line <- paste0(ff_name, " = f_", obs_var_ilr, "_tffm0_", i)
+ if (i > 1) {
+ for (j in (i - 1):1) {
+ ff_line <- paste0(ff_line, " * (1 - f_", obs_var_ilr, "_tffm0_", j , ")")
+ }
+ }
+ model_block <- paste0(
+ model_block,
+ ff_line,
+ "\n"
+ )
+ }
+ }
+
# Differential equations
model_block <- paste0(
model_block,
diff --git a/R/tffm0.R b/R/tffm0.R
new file mode 100644
index 00000000..25787962
--- /dev/null
+++ b/R/tffm0.R
@@ -0,0 +1,46 @@
+#' Transform formation fractions as in the first published mkin version
+#'
+#' The transformed fractions can be restricted between 0 and 1 in model
+#' optimisations. Therefore this transformation was used originally in mkin. It
+#' was later replaced by the [ilr] transformation because the ilr transformed
+#' fractions can assumed to follow normal distribution. As the ilr
+#' transformation is not available in [RxODE] and can therefore not be used in
+#' the nlmixr modelling language, this transformation is currently used for
+#' translating mkin models with formation fractions to more than one target
+#' compartment for fitting with nlmixr in [nlmixr_model]. However,
+#' this implementation cannot be used there, as it is not accessible
+#' from RxODE.
+#'
+#' @param ff Vector of untransformed formation fractions. The sum
+#' must be smaller or equal to one
+#' @param ff_trans
+#' @return A vector of the transformed formation fractions
+#' @export
+#' @examples
+#' ff_example <- c(
+#' 0.10983681, 0.09035905, 0.08399383
+#' )
+#' ff_example_trans <- tffm0(ff_example)
+#' invtffm0(ff_example_trans)
+tffm0 <- function(ff) {
+ n <- length(ff)
+ res <- numeric(n)
+ f_remaining <- 1
+ for (i in 1:n) {
+ res[i] <- ff[i]/f_remaining
+ f_remaining <- f_remaining - ff[i]
+ }
+ return(res)
+}
+#' @rdname tffm0
+#' @return
+invtffm0 <- function(ff_trans) {
+ n <- length(ff_trans)
+ res <- numeric(n)
+ f_remaining <- 1
+ for (i in 1:n) {
+ res[i] <- ff_trans[i] * f_remaining
+ f_remaining <- f_remaining - res[i]
+ }
+ return(res)
+}
diff --git a/tests/testthat/test_nlmixr.r b/tests/testthat/test_nlmixr.r
new file mode 100644
index 00000000..e3bd3d66
--- /dev/null
+++ b/tests/testthat/test_nlmixr.r
@@ -0,0 +1,99 @@
+
+
+dmta_ds <- lapply(1:8, function(i) {
+ ds_i <- dimethenamid_2018$ds[[i]]$data
+ ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
+ ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
+ ds_i
+})
+names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]])
+dmta_ds[["Borstel 1"]] <- NULL
+dmta_ds[["Borstel 2"]] <- NULL
+dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
+dmta_ds[["Elliot 1"]] <- NULL
+dmta_ds[["Elliot 2"]] <- NULL
+dfop_sfo3_plus <- mkinmod(
+ DMTA = mkinsub("DFOP", c("M23", "M27", "M31")),
+ M23 = mkinsub("SFO"),
+ M27 = mkinsub("SFO"),
+ M31 = mkinsub("SFO", "M27", sink = FALSE),
+ quiet = TRUE
+)
+f_dmta_mkin_tc <- mmkin(
+ list("DFOP-SFO3+" = dfop_sfo3_plus),
+ dmta_ds, quiet = TRUE, error_model = "tc")
+
+d_dmta_nlmixr <- nlmixr_data(f_dmta_mkin_tc)
+m_dmta_nlmixr <- function ()
+{
+ ini({
+ DMTA_0 = 98.7697627680706
+ eta.DMTA_0 ~ 2.35171765917765
+ log_k_M23 = -3.92162409637283
+ eta.log_k_M23 ~ 0.549278519419884
+ log_k_M27 = -4.33774620773911
+ eta.log_k_M27 ~ 0.864474956685295
+ log_k_M31 = -4.24767627688461
+ eta.log_k_M31 ~ 0.750297149164171
+ f_DMTA_tffm0_1_qlogis = -2.092409
+ eta.f_DMTA_tffm0_1_qlogis ~ 0.3
+ f_DMTA_tffm0_2_qlogis = -2.180576
+ eta.f_DMTA_tffm0_2_qlogis ~ 0.3
+ f_DMTA_tffm0_3_qlogis = -2.142672
+ eta.f_DMTA_tffm0_3_qlogis ~ 0.3
+ log_k1 = -2.2341008812259
+ eta.log_k1 ~ 0.902976221565793
+ log_k2 = -3.7762779983269
+ eta.log_k2 ~ 1.57684519529298
+ g_qlogis = 0.450175725479389
+ eta.g_qlogis ~ 3.0851335687675
+ sigma_low_DMTA = 0.697933852349996
+ rsd_high_DMTA = 0.0257724286053519
+ sigma_low_M23 = 0.697933852349996
+ rsd_high_M23 = 0.0257724286053519
+ sigma_low_M27 = 0.697933852349996
+ rsd_high_M27 = 0.0257724286053519
+ sigma_low_M31 = 0.697933852349996
+ rsd_high_M31 = 0.0257724286053519
+ })
+ model({
+ DMTA_0_model = DMTA_0 + eta.DMTA_0
+ DMTA(0) = DMTA_0_model
+ k_M23 = exp(log_k_M23 + eta.log_k_M23)
+ k_M27 = exp(log_k_M27 + eta.log_k_M27)
+ k_M31 = exp(log_k_M31 + eta.log_k_M31)
+ k1 = exp(log_k1 + eta.log_k1)
+ k2 = exp(log_k2 + eta.log_k2)
+ g = expit(g_qlogis + eta.g_qlogis)
+ f_DMTA_tffm0_1 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis)
+ f_DMTA_tffm0_2 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis)
+ f_DMTA_tffm0_3 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis)
+ f_DMTA_to_M23 = f_DMTA_tffm0_1
+ f_DMTA_to_M27 = (1 - f_DMTA_tffm0_1) * f_DMTA_tffm0_2
+ f_DMTA_to_M31 = (1 - f_DMTA_tffm0_1) * (1 - f_DMTA_tffm0_2) * f_DMTA_tffm0_3
+ d/dt(DMTA) = -((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time))/(g * exp(-k1 * time) + (1 -
+ g) * exp(-k2 * time))) * DMTA
+ d/dt(M23) = +f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) +
+ k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
+ (1 - g) * exp(-k2 * time))) * DMTA - k_M23 * M23
+ d/dt(M27) = +f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) +
+ k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
+ (1 - g) * exp(-k2 * time))) * DMTA - k_M27 * M27 +
+ k_M31 * M31
+ d/dt(M31) = +f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) +
+ k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
+ (1 - g) * exp(-k2 * time))) * DMTA - k_M31 * M31
+ DMTA ~ add(sigma_low_DMTA) + prop(rsd_high_DMTA)
+ M23 ~ add(sigma_low_M23) + prop(rsd_high_M23)
+ M27 ~ add(sigma_low_M27) + prop(rsd_high_M27)
+ M31 ~ add(sigma_low_M31) + prop(rsd_high_M31)
+ })
+}
+m_dmta_nlmixr_mkin <- nlmixr_model(f_dmta_mkin_tc, test_log_parms = TRUE)
+f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem", control = saemControl(print = 250))
+f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei", control = foceiControl(print = 250))
+plot(f_dmta_nlmixr_saem)
+plot(f_dmta_nlmixr_focei)
+
--
cgit v1.2.1
From 05baf3bf92cba127fd2319b779db78be86170e5e Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Thu, 17 Jun 2021 13:58:34 +0200
Subject: Let backtransform_odeparms handle nlmixr formation fractions
Also adapt summary.nlmixr.mmkin to correctly handle the way
formation fractions are translated to nlmixr
---
NAMESPACE | 2 +
R/dimethenamid_2018.R | 14 ++--
R/summary.nlmixr.mmkin.R | 14 ++--
R/tffm0.R | 6 +-
R/transform_odeparms.R | 13 ++-
check.log | 11 +--
man/dimethenamid_2018.Rd | 36 ++++++++
man/nlmixr.mmkin.Rd | 15 +++-
man/tffm0.Rd | 42 ++++++++++
test.log | 45 +++++-----
tests/testthat/test_nlmixr.r | 194 +++++++++++++++++++++----------------------
11 files changed, 243 insertions(+), 149 deletions(-)
create mode 100644 man/tffm0.Rd
diff --git a/NAMESPACE b/NAMESPACE
index 0f61396d..aa40b570 100644
--- a/NAMESPACE
+++ b/NAMESPACE
@@ -62,6 +62,7 @@ export(f_time_norm_focus)
export(get_deg_func)
export(ilr)
export(invilr)
+export(invtffm0)
export(loftest)
export(logistic.solution)
export(lrtest)
@@ -101,6 +102,7 @@ export(saem)
export(saemix_data)
export(saemix_model)
export(sigma_twocomp)
+export(tffm0)
export(transform_odeparms)
import(deSolve)
import(graphics)
diff --git a/R/dimethenamid_2018.R b/R/dimethenamid_2018.R
index 76b98efe..6e0bda0c 100644
--- a/R/dimethenamid_2018.R
+++ b/R/dimethenamid_2018.R
@@ -31,6 +31,7 @@
#' dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
#' dmta_ds[["Elliot 1"]] <- NULL
#' dmta_ds[["Elliot 2"]] <- NULL
+#' \dontrun{
#' dfop_sfo3_plus <- mkinmod(
#' DMTA = mkinsub("DFOP", c("M23", "M27", "M31")),
#' M23 = mkinsub("SFO"),
@@ -42,12 +43,15 @@
#' list("DFOP-SFO3+" = dfop_sfo3_plus),
#' dmta_ds, quiet = TRUE, error_model = "tc")
#' nlmixr_model(f_dmta_mkin_tc)
-#' f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem",
-#' control = saemControl(print = 500))
-#' summary(f_dmta_nlmixr_saem)
-#' plot(f_dmta_nlmixr_saem)
#' f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei",
-#' control = foceiControl(print = 500))
+#' control = nlmixr::foceiControl(print = 500))
#' summary(f_dmta_nlmixr_focei)
#' plot(f_dmta_nlmixr_focei)
+#' # saem has a problem with this model/data combination, maybe because of the
+#' # overparameterised error model, to be investigated
+#' #f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem",
+#' # control = saemControl(print = 500))
+#' #summary(f_dmta_nlmixr_saem)
+#' #plot(f_dmta_nlmixr_saem)
+#' }
"dimethenamid_2018"
diff --git a/R/summary.nlmixr.mmkin.R b/R/summary.nlmixr.mmkin.R
index f2d7c607..a023f319 100644
--- a/R/summary.nlmixr.mmkin.R
+++ b/R/summary.nlmixr.mmkin.R
@@ -85,11 +85,11 @@ summary.nlmixr.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes
mod_vars <- names(object$mkinmod$diffs)
- pnames <- names(object$mean_dp_start)
- np <- length(pnames)
-
conf.int <- confint(object$nm)
- confint_trans <- as.matrix(conf.int[pnames, c(1, 3, 4)])
+ dpnames <- setdiff(rownames(conf.int), names(object$mean_ep_start))
+ ndp <- length(dpnames)
+
+ confint_trans <- as.matrix(conf.int[dpnames, c(1, 3, 4)])
colnames(confint_trans) <- c("est.", "lower", "upper")
bp <- backtransform_odeparms(confint_trans[, "est."], object$mkinmod,
@@ -100,7 +100,7 @@ summary.nlmixr.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes
# with the exception of sets of formation fractions (single fractions are OK).
f_names_skip <- character(0)
for (box in mod_vars) { # Figure out sets of fractions to skip
- f_names <- grep(paste("^f", box, sep = "_"), pnames, value = TRUE)
+ f_names <- grep(paste("^f", box, sep = "_"), dpnames, value = TRUE)
n_paths <- length(f_names)
if (n_paths > 1) f_names_skip <- c(f_names_skip, f_names)
}
@@ -109,7 +109,7 @@ summary.nlmixr.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes
dimnames = list(bpnames, colnames(confint_trans)))
confint_back[, "est."] <- bp
- for (pname in pnames) {
+ for (pname in dpnames) {
if (!pname %in% f_names_skip) {
par.lower <- confint_trans[pname, "lower"]
par.upper <- confint_trans[pname, "upper"]
@@ -131,7 +131,7 @@ summary.nlmixr.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes
object$corFixed <- array(
t(varFix/stdFix)/stdFix,
dim(varFix),
- list(pnames, pnames))
+ list(dpnames, dpnames))
object$confint_trans <- confint_trans
object$confint_back <- confint_back
diff --git a/R/tffm0.R b/R/tffm0.R
index 25787962..bb5f4cf5 100644
--- a/R/tffm0.R
+++ b/R/tffm0.R
@@ -13,7 +13,8 @@
#'
#' @param ff Vector of untransformed formation fractions. The sum
#' must be smaller or equal to one
-#' @param ff_trans
+#' @param ff_trans Vector of transformed formation fractions that can be
+#' restricted to the interval from 0 to 1
#' @return A vector of the transformed formation fractions
#' @export
#' @examples
@@ -33,7 +34,8 @@ tffm0 <- function(ff) {
return(res)
}
#' @rdname tffm0
-#' @return
+#' @export
+#' @return A vector of backtransformed formation fractions for natural use in degradation models
invtffm0 <- function(ff_trans) {
n <- length(ff_trans)
res <- numeric(n)
diff --git a/R/transform_odeparms.R b/R/transform_odeparms.R
index 4fe4e5c2..174e7c2d 100644
--- a/R/transform_odeparms.R
+++ b/R/transform_odeparms.R
@@ -229,13 +229,18 @@ backtransform_odeparms <- function(transparms, mkinmod,
if (length(trans_f) > 0) {
if(transform_fractions) {
if (any(grepl("qlogis", names(trans_f)))) {
- parms[f_names] <- plogis(trans_f)
+ f_tmp <- plogis(trans_f)
+ if (any(grepl("_tffm0_.*_qlogis$", names(f_tmp)))) {
+ parms[f_names] <- invtffm0(f_tmp)
+ } else {
+ parms[f_names] <- f_tmp
+ }
} else {
- f <- invilr(trans_f)
+ f_tmp <- invilr(trans_f)
if (spec[[box]]$sink) {
- parms[f_names] <- f[1:length(f)-1]
+ parms[f_names] <- f_tmp[1:length(f_tmp)-1]
} else {
- parms[f_names] <- f
+ parms[f_names] <- f_tmp
}
}
} else {
diff --git a/check.log b/check.log
index 2627695d..df344926 100644
--- a/check.log
+++ b/check.log
@@ -57,10 +57,7 @@ Maintainer: ‘Johannes Ranke ’
* checking data for ASCII and uncompressed saves ... OK
* checking installed files from ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
-* checking examples ... NOTE
-Examples with CPU (user + system) or elapsed time > 5s
- user system elapsed
-nlmixr.mmkin 8.129 0.375 5.384
+* checking examples ... OK
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ... SKIPPED
* checking for unstated dependencies in vignettes ... OK
@@ -71,9 +68,5 @@ nlmixr.mmkin 8.129 0.375 5.384
* checking for detritus in the temp directory ... OK
* DONE
-Status: 1 NOTE
-See
- ‘/home/jranke/git/mkin/mkin.Rcheck/00check.log’
-for details.
-
+Status: OK
diff --git a/man/dimethenamid_2018.Rd b/man/dimethenamid_2018.Rd
index b6f761e8..93fcad26 100644
--- a/man/dimethenamid_2018.Rd
+++ b/man/dimethenamid_2018.Rd
@@ -31,5 +31,41 @@ specific pieces of information in the comments.
}
\examples{
print(dimethenamid_2018)
+dmta_ds <- lapply(1:8, function(i) {
+ ds_i <- dimethenamid_2018$ds[[i]]$data
+ ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
+ ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
+ ds_i
+})
+names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]])
+dmta_ds[["Borstel 1"]] <- NULL
+dmta_ds[["Borstel 2"]] <- NULL
+dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
+dmta_ds[["Elliot 1"]] <- NULL
+dmta_ds[["Elliot 2"]] <- NULL
+\dontrun{
+dfop_sfo3_plus <- mkinmod(
+ DMTA = mkinsub("DFOP", c("M23", "M27", "M31")),
+ M23 = mkinsub("SFO"),
+ M27 = mkinsub("SFO"),
+ M31 = mkinsub("SFO", "M27", sink = FALSE),
+ quiet = TRUE
+)
+f_dmta_mkin_tc <- mmkin(
+ list("DFOP-SFO3+" = dfop_sfo3_plus),
+ dmta_ds, quiet = TRUE, error_model = "tc")
+nlmixr_model(f_dmta_mkin_tc)
+f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei",
+ control = nlmixr::foceiControl(print = 500))
+summary(f_dmta_nlmixr_focei)
+plot(f_dmta_nlmixr_focei)
+# saem has a problem with this model/data combination, maybe because of the
+# overparameterised error model, to be investigated
+#f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem",
+# control = saemControl(print = 500))
+#summary(f_dmta_nlmixr_saem)
+#plot(f_dmta_nlmixr_saem)
+}
}
\keyword{datasets}
diff --git a/man/nlmixr.mmkin.Rd b/man/nlmixr.mmkin.Rd
index 4ab30272..0f4f41a2 100644
--- a/man/nlmixr.mmkin.Rd
+++ b/man/nlmixr.mmkin.Rd
@@ -16,6 +16,8 @@
error_model = object[[1]]$err_mod,
test_log_parms = TRUE,
conf.level = 0.6,
+ degparms_start = "auto",
+ eta_start = "auto",
...,
save = NULL,
envir = parent.frame()
@@ -27,7 +29,8 @@ nlmixr_model(
object,
est = c("saem", "focei"),
degparms_start = "auto",
- test_log_parms = FALSE,
+ eta_start = "auto",
+ test_log_parms = TRUE,
conf.level = 0.6,
error_model = object[[1]]$err_mod,
add_attributes = FALSE
@@ -58,6 +61,13 @@ when calculating mean degradation parameters using \link{mean_degparms}.}
\item{conf.level}{Possibility to adjust the required confidence level
for parameter that are tested if requested by 'test_log_parms'.}
+\item{degparms_start}{Parameter values given as a named numeric vector will
+be used to override the starting values obtained from the 'mmkin' object.}
+
+\item{eta_start}{Standard deviations on the transformed scale given as a
+named numeric vector will be used to override the starting values obtained
+from the 'mmkin' object.}
+
\item{\dots}{Passed to \link{nlmixr_model}}
\item{save}{Passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}}
@@ -68,9 +78,6 @@ for parameter that are tested if requested by 'test_log_parms'.}
\item{digits}{Number of digits to use for printing}
-\item{degparms_start}{Parameter values given as a named numeric vector will
-be used to override the starting values obtained from the 'mmkin' object.}
-
\item{add_attributes}{Should the starting values used for degradation model
parameters and their distribution and for the error model parameters
be returned as attributes?}
diff --git a/man/tffm0.Rd b/man/tffm0.Rd
new file mode 100644
index 00000000..46978d5e
--- /dev/null
+++ b/man/tffm0.Rd
@@ -0,0 +1,42 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/tffm0.R
+\name{tffm0}
+\alias{tffm0}
+\alias{invtffm0}
+\title{Transform formation fractions as in the first published mkin version}
+\usage{
+tffm0(ff)
+
+invtffm0(ff_trans)
+}
+\arguments{
+\item{ff}{Vector of untransformed formation fractions. The sum
+must be smaller or equal to one}
+
+\item{ff_trans}{Vector of transformed formation fractions that can be
+restricted to the interval from 0 to 1}
+}
+\value{
+A vector of the transformed formation fractions
+
+A vector of backtransformed formation fractions for natural use in degradation models
+}
+\description{
+The transformed fractions can be restricted between 0 and 1 in model
+optimisations. Therefore this transformation was used originally in mkin. It
+was later replaced by the \link{ilr} transformation because the ilr transformed
+fractions can assumed to follow normal distribution. As the ilr
+transformation is not available in \link{RxODE} and can therefore not be used in
+the nlmixr modelling language, this transformation is currently used for
+translating mkin models with formation fractions to more than one target
+compartment for fitting with nlmixr in \link{nlmixr_model}. However,
+this implementation cannot be used there, as it is not accessible
+from RxODE.
+}
+\examples{
+ff_example <- c(
+ 0.10983681, 0.09035905, 0.08399383
+)
+ff_example_trans <- tffm0(ff_example)
+invtffm0(ff_example_trans)
+}
diff --git a/test.log b/test.log
index f2a60729..6ef8191f 100644
--- a/test.log
+++ b/test.log
@@ -3,17 +3,17 @@ Loading required package: parallel
ℹ Testing mkin
✔ | OK F W S | Context
✔ | 5 | AIC calculation
-✔ | 5 | Analytical solutions for coupled models [3.3 s]
+✔ | 5 | Analytical solutions for coupled models [3.5 s]
✔ | 5 | Calculation of Akaike weights
✔ | 2 | Export dataset for reading into CAKE
-✔ | 12 | Confidence intervals and p-values [1.3 s]
+✔ | 12 | Confidence intervals and p-values [1.0 s]
✔ | 14 | Error model fitting [4.7 s]
✔ | 5 | Time step normalisation
-✔ | 4 | Calculation of FOCUS chi2 error levels [0.5 s]
+✔ | 4 | Calculation of FOCUS chi2 error levels [0.6 s]
✔ | 14 | Results for FOCUS D established in expertise for UBA (Ranke 2014) [0.8 s]
✔ | 4 | Test fitting the decline of metabolites from their maximum [0.3 s]
✔ | 1 | Fitting the logistic model [0.2 s]
-✔ | 35 1 | Nonlinear mixed-effects models [27.1 s]
+✔ | 35 1 | Nonlinear mixed-effects models [26.9 s]
────────────────────────────────────────────────────────────────────────────────
Skip (test_mixed.R:161:3): saem results are reproducible for biphasic fits
Reason: Fitting with saemix takes around 10 minutes when using deSolve
@@ -21,33 +21,36 @@ Reason: Fitting with saemix takes around 10 minutes when using deSolve
✔ | 2 | Test dataset classes mkinds and mkindsg
✔ | 10 | Special cases of mkinfit calls [0.4 s]
✔ | 1 | mkinfit features [0.3 s]
-✔ | 8 | mkinmod model generation and printing [0.3 s]
+✔ | 8 | mkinmod model generation and printing [0.2 s]
✔ | 3 | Model predictions with mkinpredict [0.3 s]
-✔ | 16 | Evaluations according to 2015 NAFTA guidance [1.7 s]
-✔ | 9 | Nonlinear mixed-effects models with nlme [8.1 s]
-✖ | 14 2 | Plotting [1.9 s]
+✔ | 14 2 | Evaluations according to 2015 NAFTA guidance [1.3 s]
────────────────────────────────────────────────────────────────────────────────
-Failure (test_plot.R:40:5): Plotting mkinfit, mmkin and mixed model objects is reproducible
-Figures don't match: mixed-model-fit-for-saem-object-with-saemix-transformations.svg
-
-
-Failure (test_plot.R:55:5): Plotting mkinfit, mmkin and mixed model objects is reproducible
-Figures don't match: mixed-model-fit-for-saem-object-with-mkin-transformations.svg
+Skip (test_nafta.R:25:5): Test data from Appendix B are correctly evaluated
+Reason: getRversion() >= "4.1.0" is TRUE
+Skip (test_nafta.R:53:5): Test data from Appendix D are correctly evaluated
+Reason: getRversion() >= "4.1.0" is TRUE
+────────────────────────────────────────────────────────────────────────────────
+✔ | 9 | Nonlinear mixed-effects models with nlme [8.1 s]
+✔ | 0 1 | Plotting [0.8 s]
+────────────────────────────────────────────────────────────────────────────────
+Skip (test_plot.R:18:3): Plotting mkinfit, mmkin and mixed model objects is reproducible
+Reason: getRversion() >= "4.1.0" is TRUE
────────────────────────────────────────────────────────────────────────────────
✔ | 4 | Residuals extracted from mkinfit models
✔ | 2 | Complex test case from Schaefer et al. (2007) Piacenza paper [1.5 s]
-✔ | 7 | Fitting the SFORB model [3.9 s]
+✔ | 7 | Fitting the SFORB model [3.8 s]
✔ | 1 | Summaries of old mkinfit objects
✔ | 4 | Summary [0.1 s]
-✔ | 4 | Results for synthetic data established in expertise for UBA (Ranke 2014) [2.2 s]
-✔ | 9 | Hypothesis tests [8.2 s]
-✔ | 4 | Calculation of maximum time weighted average concentrations (TWAs) [2.4 s]
+✔ | 4 | Results for synthetic data established in expertise for UBA (Ranke 2014) [2.3 s]
+✔ | 9 | Hypothesis tests [8.5 s]
+✔ | 4 | Calculation of maximum time weighted average concentrations (TWAs) [2.2 s]
══ Results ═════════════════════════════════════════════════════════════════════
-Duration: 70.0 s
+Duration: 68.2 s
── Skipped tests ──────────────────────────────────────────────────────────────
-● Fitting with saemix takes around 10 minutes when using deSolve (1)
+• Fitting with saemix takes around 10 minutes when using deSolve (1)
+• getRversion() >= "4.1.0" is TRUE (3)
-[ FAIL 2 | WARN 0 | SKIP 1 | PASS 204 ]
+[ FAIL 0 | WARN 0 | SKIP 4 | PASS 188 ]
diff --git a/tests/testthat/test_nlmixr.r b/tests/testthat/test_nlmixr.r
index e3bd3d66..dcbb50ac 100644
--- a/tests/testthat/test_nlmixr.r
+++ b/tests/testthat/test_nlmixr.r
@@ -1,99 +1,99 @@
-dmta_ds <- lapply(1:8, function(i) {
- ds_i <- dimethenamid_2018$ds[[i]]$data
- ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
- ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
- ds_i
-})
-names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
-dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]])
-dmta_ds[["Borstel 1"]] <- NULL
-dmta_ds[["Borstel 2"]] <- NULL
-dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
-dmta_ds[["Elliot 1"]] <- NULL
-dmta_ds[["Elliot 2"]] <- NULL
-dfop_sfo3_plus <- mkinmod(
- DMTA = mkinsub("DFOP", c("M23", "M27", "M31")),
- M23 = mkinsub("SFO"),
- M27 = mkinsub("SFO"),
- M31 = mkinsub("SFO", "M27", sink = FALSE),
- quiet = TRUE
-)
-f_dmta_mkin_tc <- mmkin(
- list("DFOP-SFO3+" = dfop_sfo3_plus),
- dmta_ds, quiet = TRUE, error_model = "tc")
-
-d_dmta_nlmixr <- nlmixr_data(f_dmta_mkin_tc)
-m_dmta_nlmixr <- function ()
-{
- ini({
- DMTA_0 = 98.7697627680706
- eta.DMTA_0 ~ 2.35171765917765
- log_k_M23 = -3.92162409637283
- eta.log_k_M23 ~ 0.549278519419884
- log_k_M27 = -4.33774620773911
- eta.log_k_M27 ~ 0.864474956685295
- log_k_M31 = -4.24767627688461
- eta.log_k_M31 ~ 0.750297149164171
- f_DMTA_tffm0_1_qlogis = -2.092409
- eta.f_DMTA_tffm0_1_qlogis ~ 0.3
- f_DMTA_tffm0_2_qlogis = -2.180576
- eta.f_DMTA_tffm0_2_qlogis ~ 0.3
- f_DMTA_tffm0_3_qlogis = -2.142672
- eta.f_DMTA_tffm0_3_qlogis ~ 0.3
- log_k1 = -2.2341008812259
- eta.log_k1 ~ 0.902976221565793
- log_k2 = -3.7762779983269
- eta.log_k2 ~ 1.57684519529298
- g_qlogis = 0.450175725479389
- eta.g_qlogis ~ 3.0851335687675
- sigma_low_DMTA = 0.697933852349996
- rsd_high_DMTA = 0.0257724286053519
- sigma_low_M23 = 0.697933852349996
- rsd_high_M23 = 0.0257724286053519
- sigma_low_M27 = 0.697933852349996
- rsd_high_M27 = 0.0257724286053519
- sigma_low_M31 = 0.697933852349996
- rsd_high_M31 = 0.0257724286053519
- })
- model({
- DMTA_0_model = DMTA_0 + eta.DMTA_0
- DMTA(0) = DMTA_0_model
- k_M23 = exp(log_k_M23 + eta.log_k_M23)
- k_M27 = exp(log_k_M27 + eta.log_k_M27)
- k_M31 = exp(log_k_M31 + eta.log_k_M31)
- k1 = exp(log_k1 + eta.log_k1)
- k2 = exp(log_k2 + eta.log_k2)
- g = expit(g_qlogis + eta.g_qlogis)
- f_DMTA_tffm0_1 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis)
- f_DMTA_tffm0_2 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis)
- f_DMTA_tffm0_3 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis)
- f_DMTA_to_M23 = f_DMTA_tffm0_1
- f_DMTA_to_M27 = (1 - f_DMTA_tffm0_1) * f_DMTA_tffm0_2
- f_DMTA_to_M31 = (1 - f_DMTA_tffm0_1) * (1 - f_DMTA_tffm0_2) * f_DMTA_tffm0_3
- d/dt(DMTA) = -((k1 * g * exp(-k1 * time) + k2 * (1 -
- g) * exp(-k2 * time))/(g * exp(-k1 * time) + (1 -
- g) * exp(-k2 * time))) * DMTA
- d/dt(M23) = +f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) +
- k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
- (1 - g) * exp(-k2 * time))) * DMTA - k_M23 * M23
- d/dt(M27) = +f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) +
- k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
- (1 - g) * exp(-k2 * time))) * DMTA - k_M27 * M27 +
- k_M31 * M31
- d/dt(M31) = +f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) +
- k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
- (1 - g) * exp(-k2 * time))) * DMTA - k_M31 * M31
- DMTA ~ add(sigma_low_DMTA) + prop(rsd_high_DMTA)
- M23 ~ add(sigma_low_M23) + prop(rsd_high_M23)
- M27 ~ add(sigma_low_M27) + prop(rsd_high_M27)
- M31 ~ add(sigma_low_M31) + prop(rsd_high_M31)
- })
-}
-m_dmta_nlmixr_mkin <- nlmixr_model(f_dmta_mkin_tc, test_log_parms = TRUE)
-f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem", control = saemControl(print = 250))
-f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei", control = foceiControl(print = 250))
-plot(f_dmta_nlmixr_saem)
-plot(f_dmta_nlmixr_focei)
-
+# dmta_ds <- lapply(1:8, function(i) {
+# ds_i <- dimethenamid_2018$ds[[i]]$data
+# ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
+# ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
+# ds_i
+# })
+# names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+# dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]])
+# dmta_ds[["Borstel 1"]] <- NULL
+# dmta_ds[["Borstel 2"]] <- NULL
+# dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
+# dmta_ds[["Elliot 1"]] <- NULL
+# dmta_ds[["Elliot 2"]] <- NULL
+# dfop_sfo3_plus <- mkinmod(
+# DMTA = mkinsub("DFOP", c("M23", "M27", "M31")),
+# M23 = mkinsub("SFO"),
+# M27 = mkinsub("SFO"),
+# M31 = mkinsub("SFO", "M27", sink = FALSE),
+# quiet = TRUE
+# )
+# f_dmta_mkin_tc <- mmkin(
+# list("DFOP-SFO3+" = dfop_sfo3_plus),
+# dmta_ds, quiet = TRUE, error_model = "tc")
+#
+# d_dmta_nlmixr <- nlmixr_data(f_dmta_mkin_tc)
+# m_dmta_nlmixr <- function ()
+# {
+# ini({
+# DMTA_0 = 98.7697627680706
+# eta.DMTA_0 ~ 2.35171765917765
+# log_k_M23 = -3.92162409637283
+# eta.log_k_M23 ~ 0.549278519419884
+# log_k_M27 = -4.33774620773911
+# eta.log_k_M27 ~ 0.864474956685295
+# log_k_M31 = -4.24767627688461
+# eta.log_k_M31 ~ 0.750297149164171
+# f_DMTA_tffm0_1_qlogis = -2.092409
+# eta.f_DMTA_tffm0_1_qlogis ~ 0.3
+# f_DMTA_tffm0_2_qlogis = -2.180576
+# eta.f_DMTA_tffm0_2_qlogis ~ 0.3
+# f_DMTA_tffm0_3_qlogis = -2.142672
+# eta.f_DMTA_tffm0_3_qlogis ~ 0.3
+# log_k1 = -2.2341008812259
+# eta.log_k1 ~ 0.902976221565793
+# log_k2 = -3.7762779983269
+# eta.log_k2 ~ 1.57684519529298
+# g_qlogis = 0.450175725479389
+# eta.g_qlogis ~ 3.0851335687675
+# sigma_low_DMTA = 0.697933852349996
+# rsd_high_DMTA = 0.0257724286053519
+# sigma_low_M23 = 0.697933852349996
+# rsd_high_M23 = 0.0257724286053519
+# sigma_low_M27 = 0.697933852349996
+# rsd_high_M27 = 0.0257724286053519
+# sigma_low_M31 = 0.697933852349996
+# rsd_high_M31 = 0.0257724286053519
+# })
+# model({
+# DMTA_0_model = DMTA_0 + eta.DMTA_0
+# DMTA(0) = DMTA_0_model
+# k_M23 = exp(log_k_M23 + eta.log_k_M23)
+# k_M27 = exp(log_k_M27 + eta.log_k_M27)
+# k_M31 = exp(log_k_M31 + eta.log_k_M31)
+# k1 = exp(log_k1 + eta.log_k1)
+# k2 = exp(log_k2 + eta.log_k2)
+# g = expit(g_qlogis + eta.g_qlogis)
+# f_DMTA_tffm0_1 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis)
+# f_DMTA_tffm0_2 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis)
+# f_DMTA_tffm0_3 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis)
+# f_DMTA_to_M23 = f_DMTA_tffm0_1
+# f_DMTA_to_M27 = (1 - f_DMTA_tffm0_1) * f_DMTA_tffm0_2
+# f_DMTA_to_M31 = (1 - f_DMTA_tffm0_1) * (1 - f_DMTA_tffm0_2) * f_DMTA_tffm0_3
+# d/dt(DMTA) = -((k1 * g * exp(-k1 * time) + k2 * (1 -
+# g) * exp(-k2 * time))/(g * exp(-k1 * time) + (1 -
+# g) * exp(-k2 * time))) * DMTA
+# d/dt(M23) = +f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) +
+# k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
+# (1 - g) * exp(-k2 * time))) * DMTA - k_M23 * M23
+# d/dt(M27) = +f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) +
+# k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
+# (1 - g) * exp(-k2 * time))) * DMTA - k_M27 * M27 +
+# k_M31 * M31
+# d/dt(M31) = +f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) +
+# k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
+# (1 - g) * exp(-k2 * time))) * DMTA - k_M31 * M31
+# DMTA ~ add(sigma_low_DMTA) + prop(rsd_high_DMTA)
+# M23 ~ add(sigma_low_M23) + prop(rsd_high_M23)
+# M27 ~ add(sigma_low_M27) + prop(rsd_high_M27)
+# M31 ~ add(sigma_low_M31) + prop(rsd_high_M31)
+# })
+# }
+# m_dmta_nlmixr_mkin <- nlmixr_model(f_dmta_mkin_tc, test_log_parms = TRUE)
+# f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem", control = saemControl(print = 250))
+# f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei", control = foceiControl(print = 250))
+# plot(f_dmta_nlmixr_saem)
+# plot(f_dmta_nlmixr_focei)
+#
--
cgit v1.2.1
From 255430279d65bfe92093d48c9a586b062a38303d Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Tue, 22 Jun 2021 15:15:02 +0200
Subject: Update development version of online docs
---
_pkgdown.yml | 1 +
docs/dev/pkgdown.yml | 2 +-
docs/dev/reference/dimethenamid_2018-1.png | Bin 0 -> 264364 bytes
docs/dev/reference/dimethenamid_2018.html | 288 +-
docs/dev/reference/index.html | 6 +
docs/dev/reference/nlmixr.mmkin.html | 9782 ++--------------------------
docs/dev/reference/tffm0.html | 226 +
docs/dev/sitemap.xml | 3 +
8 files changed, 1019 insertions(+), 9289 deletions(-)
create mode 100644 docs/dev/reference/dimethenamid_2018-1.png
create mode 100644 docs/dev/reference/tffm0.html
diff --git a/_pkgdown.yml b/_pkgdown.yml
index 50c0685f..f0a95468 100644
--- a/_pkgdown.yml
+++ b/_pkgdown.yml
@@ -87,6 +87,7 @@ reference:
- mkinpredict
- transform_odeparms
- ilr
+ - tffm0
- logLik.mkinfit
- residuals.mkinfit
- nobs.mkinfit
diff --git a/docs/dev/pkgdown.yml b/docs/dev/pkgdown.yml
index 0b01e008..b2c50e79 100644
--- a/docs/dev/pkgdown.yml
+++ b/docs/dev/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
web_only/NAFTA_examples: NAFTA_examples.html
web_only/benchmarks: benchmarks.html
web_only/compiled_models: compiled_models.html
-last_built: 2021-06-11T09:09Z
+last_built: 2021-06-17T12:41Z
urls:
reference: https://pkgdown.jrwb.de/mkin/reference
article: https://pkgdown.jrwb.de/mkin/articles
diff --git a/docs/dev/reference/dimethenamid_2018-1.png b/docs/dev/reference/dimethenamid_2018-1.png
new file mode 100644
index 00000000..52b8a2be
Binary files /dev/null and b/docs/dev/reference/dimethenamid_2018-1.png differ
diff --git a/docs/dev/reference/dimethenamid_2018.html b/docs/dev/reference/dimethenamid_2018.html
index a06599df..e255765e 100644
--- a/docs/dev/reference/dimethenamid_2018.html
+++ b/docs/dev/reference/dimethenamid_2018.html
@@ -77,7 +77,7 @@ constrained by data protection regulations." />
mkin
- 1.0.3.9000
+ 1.0.5
@@ -203,7 +203,291 @@ specific pieces of information in the comments.
#> Elliot 2 0.75 33.37 23
#> Flaach 0.40 NA 20
#> BBA 2.2 0.40 NA 20
-#> BBA 2.3 0.40 NA 20
+#> BBA 2.3 0.40 NA 20dmta_ds <- lapply(1:8, function(i) {
+ ds_i <- dimethenamid_2018$ds[[i]]$data
+ ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
+ ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
+ ds_i
+})
+names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]])
+dmta_ds[["Borstel 1"]] <- NULL
+dmta_ds[["Borstel 2"]] <- NULL
+dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
+dmta_ds[["Elliot 1"]] <- NULL
+dmta_ds[["Elliot 2"]] <- NULL
+# \dontrun{
+dfop_sfo3_plus <- mkinmod(
+ DMTA = mkinsub("DFOP", c("M23", "M27", "M31")),
+ M23 = mkinsub("SFO"),
+ M27 = mkinsub("SFO"),
+ M31 = mkinsub("SFO", "M27", sink = FALSE),
+ quiet = TRUE
+)
+f_dmta_mkin_tc <- mmkin(
+ list("DFOP-SFO3+" = dfop_sfo3_plus),
+ dmta_ds, quiet = TRUE, error_model = "tc")
+nlmixr_model(f_dmta_mkin_tc)
+#> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)#> function ()
+#> {
+#> ini({
+#> DMTA_0 = 98.7697627680706
+#> eta.DMTA_0 ~ 2.35171765917765
+#> log_k_M23 = -3.92162409637283
+#> eta.log_k_M23 ~ 0.549278519419884
+#> log_k_M27 = -4.33774620773911
+#> eta.log_k_M27 ~ 0.864474956685295
+#> log_k_M31 = -4.24767627688461
+#> eta.log_k_M31 ~ 0.750297149164171
+#> log_k1 = -2.2341008812259
+#> eta.log_k1 ~ 0.902976221565793
+#> log_k2 = -3.7762779983269
+#> eta.log_k2 ~ 1.57684519529298
+#> g_qlogis = 0.450175725479389
+#> eta.g_qlogis ~ 3.0851335687675
+#> f_DMTA_tffm0_1_qlogis = -2.09240906629456
+#> eta.f_DMTA_tffm0_1_qlogis ~ 0.3
+#> f_DMTA_tffm0_2_qlogis = -2.18057573598794
+#> eta.f_DMTA_tffm0_2_qlogis ~ 0.3
+#> f_DMTA_tffm0_3_qlogis = -2.14267187609763
+#> eta.f_DMTA_tffm0_3_qlogis ~ 0.3
+#> sigma_low_DMTA = 0.697933852349996
+#> rsd_high_DMTA = 0.0257724286053519
+#> sigma_low_M23 = 0.697933852349996
+#> rsd_high_M23 = 0.0257724286053519
+#> sigma_low_M27 = 0.697933852349996
+#> rsd_high_M27 = 0.0257724286053519
+#> sigma_low_M31 = 0.697933852349996
+#> rsd_high_M31 = 0.0257724286053519
+#> })
+#> model({
+#> DMTA_0_model = DMTA_0 + eta.DMTA_0
+#> DMTA(0) = DMTA_0_model
+#> k_M23 = exp(log_k_M23 + eta.log_k_M23)
+#> k_M27 = exp(log_k_M27 + eta.log_k_M27)
+#> k_M31 = exp(log_k_M31 + eta.log_k_M31)
+#> k1 = exp(log_k1 + eta.log_k1)
+#> k2 = exp(log_k2 + eta.log_k2)
+#> g = expit(g_qlogis + eta.g_qlogis)
+#> f_DMTA_tffm0_1 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis)
+#> f_DMTA_tffm0_2 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis)
+#> f_DMTA_tffm0_3 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis)
+#> f_DMTA_to_M23 = f_DMTA_tffm0_1
+#> f_DMTA_to_M27 = f_DMTA_tffm0_2 * (1 - f_DMTA_tffm0_1)
+#> f_DMTA_to_M31 = f_DMTA_tffm0_3 * (1 - f_DMTA_tffm0_2) *
+#> (1 - f_DMTA_tffm0_1)
+#> d/dt(DMTA) = -((k1 * g * exp(-k1 * time) + k2 * (1 -
+#> g) * exp(-k2 * time))/(g * exp(-k1 * time) + (1 -
+#> g) * exp(-k2 * time))) * DMTA
+#> d/dt(M23) = +f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) +
+#> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
+#> (1 - g) * exp(-k2 * time))) * DMTA - k_M23 * M23
+#> d/dt(M27) = +f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) +
+#> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
+#> (1 - g) * exp(-k2 * time))) * DMTA - k_M27 * M27 +
+#> k_M31 * M31
+#> d/dt(M31) = +f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) +
+#> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
+#> (1 - g) * exp(-k2 * time))) * DMTA - k_M31 * M31
+#> DMTA ~ add(sigma_low_DMTA) + prop(rsd_high_DMTA)
+#> M23 ~ add(sigma_low_M23) + prop(rsd_high_M23)
+#> M27 ~ add(sigma_low_M27) + prop(rsd_high_M27)
+#> M31 ~ add(sigma_low_M31) + prop(rsd_high_M31)
+#> })
+#> }
+#> <environment: 0x555559c2bd78>f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei",
+ control = nlmixr::foceiControl(print = 500))
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> [====|====|====|====|====|====|====|====|====|====] 0:00:02
+#> #> → calculate sensitivities#> [====|====|====|====|====|====|====|====|====|====] 0:00:04
+#> #> → calculate ∂(f)/∂(η)#> [====|====|====|====|====|====|====|====|====|====] 0:00:01
+#> #> → calculate ∂(R²)/∂(η)#> [====|====|====|====|====|====|====|====|====|====] 0:00:08
+#> #> → finding duplicate expressions in inner model...#> [====|====|====|====|====|====|====|====|====|====] 0:00:07
+#> #> → optimizing duplicate expressions in inner model...#> [====|====|====|====|====|====|====|====|====|====] 0:00:07
+#> #> → finding duplicate expressions in EBE model...#> [====|====|====|====|====|====|====|====|====|====] 0:00:00
+#> #> → optimizing duplicate expressions in EBE model...#> [====|====|====|====|====|====|====|====|====|====] 0:00:00
+#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"#> RxODE 1.1.0 using 8 threads (see ?getRxThreads)
+#> no cache: create with `rxCreateCache()`#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#> F: Forward difference gradient approximation
+#> C: Central difference gradient approximation
+#> M: Mixed forward and central difference gradient approximation
+#> Unscaled parameters for Omegas=chol(solve(omega));
+#> Diagonals are transformed, as specified by foceiControl(diagXform=)
+#> |-----+---------------+-----------+-----------+-----------+-----------|
+#> | #| Objective Fun | DMTA_0 | log_k_M23 | log_k_M27 | log_k_M31 |
+#> |.....................| log_k1 | log_k2 | g_qlogis |f_DMTA_tffm0_1_qlogis |
+#> |.....................|f_DMTA_tffm0_2_qlogis |f_DMTA_tffm0_3_qlogis | sigma_low | rsd_high |
+#> |.....................| o1 | o2 | o3 | o4 |
+#> |.....................| o5 | o6 | o7 | o8 |
+#> |.....................| o9 | o10 |...........|...........|
+#> calculating covariance matrix
+#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: S matrix non-positive definite#> Warning: using R matrix to calculate covariance#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> nlmixr version used for fitting: 2.0.4
+#> mkin version used for pre-fitting: 1.0.5
+#> R version used for fitting: 4.1.0
+#> Date of fit: Thu Jun 17 14:04:58 2021
+#> Date of summary: Thu Jun 17 14:04:58 2021
+#>
+#> Equations:
+#> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+#> time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+#> * DMTA
+#> d_M23/dt = + f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
+#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+#> exp(-k2 * time))) * DMTA - k_M23 * M23
+#> d_M27/dt = + f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
+#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+#> exp(-k2 * time))) * DMTA - k_M27 * M27 + k_M31 * M31
+#> d_M31/dt = + f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
+#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+#> exp(-k2 * time))) * DMTA - k_M31 * M31
+#>
+#> Data:
+#> 568 observations of 4 variable(s) grouped in 6 datasets
+#>
+#> Degradation model predictions using RxODE
+#>
+#> Fitted in 242.937 s
+#>
+#> Variance model: Two-component variance function
+#>
+#> Mean of starting values for individual parameters:
+#> DMTA_0 log_k_M23 log_k_M27 log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2
+#> 98.7698 -3.9216 -4.3377 -4.2477 0.1380 0.1393
+#> f_DMTA_ilr_3 log_k1 log_k2 g_qlogis
+#> -1.7571 -2.2341 -3.7763 0.4502
+#>
+#> Mean of starting values for error model parameters:
+#> sigma_low rsd_high
+#> 0.69793 0.02577
+#>
+#> Fixed degradation parameter values:
+#> None
+#>
+#> Results:
+#>
+#> Likelihood calculated by focei
+#> AIC BIC logLik
+#> 1936 2031 -945.9
+#>
+#> Optimised parameters:
+#> est. lower upper
+#> DMTA_0 98.7698 98.7356 98.8039
+#> log_k_M23 -3.9216 -3.9235 -3.9197
+#> log_k_M27 -4.3377 -4.3398 -4.3357
+#> log_k_M31 -4.2477 -4.2497 -4.2457
+#> log_k1 -2.2341 -2.2353 -2.2329
+#> log_k2 -3.7763 -3.7781 -3.7744
+#> g_qlogis 0.4502 0.4496 0.4507
+#> f_DMTA_tffm0_1_qlogis -2.0924 -2.0936 -2.0912
+#> f_DMTA_tffm0_2_qlogis -2.1806 -2.1818 -2.1794
+#> f_DMTA_tffm0_3_qlogis -2.1427 -2.1439 -2.1415
+#>
+#> Correlation:
+#> DMTA_0 l__M23 l__M27 l__M31 log_k1 log_k2 g_qlgs
+#> log_k_M23 0
+#> log_k_M27 0 0
+#> log_k_M31 0 0 0
+#> log_k1 0 0 0 0
+#> log_k2 0 0 0 0 0
+#> g_qlogis 0 0 0 0 0 0
+#> f_DMTA_tffm0_1_qlogis 0 0 0 0 0 0 0
+#> f_DMTA_tffm0_2_qlogis 0 0 0 0 0 0 0
+#> f_DMTA_tffm0_3_qlogis 0 0 0 0 0 0 0
+#> f_DMTA_0_1 f_DMTA_0_2
+#> log_k_M23
+#> log_k_M27
+#> log_k_M31
+#> log_k1
+#> log_k2
+#> g_qlogis
+#> f_DMTA_tffm0_1_qlogis
+#> f_DMTA_tffm0_2_qlogis 0
+#> f_DMTA_tffm0_3_qlogis 0 0
+#>
+#> Random effects (omega):
+#> eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31
+#> eta.DMTA_0 2.352 0.0000 0.0000 0.0000
+#> eta.log_k_M23 0.000 0.5493 0.0000 0.0000
+#> eta.log_k_M27 0.000 0.0000 0.8645 0.0000
+#> eta.log_k_M31 0.000 0.0000 0.0000 0.7503
+#> eta.log_k1 0.000 0.0000 0.0000 0.0000
+#> eta.log_k2 0.000 0.0000 0.0000 0.0000
+#> eta.g_qlogis 0.000 0.0000 0.0000 0.0000
+#> eta.f_DMTA_tffm0_1_qlogis 0.000 0.0000 0.0000 0.0000
+#> eta.f_DMTA_tffm0_2_qlogis 0.000 0.0000 0.0000 0.0000
+#> eta.f_DMTA_tffm0_3_qlogis 0.000 0.0000 0.0000 0.0000
+#> eta.log_k1 eta.log_k2 eta.g_qlogis
+#> eta.DMTA_0 0.000 0.000 0.000
+#> eta.log_k_M23 0.000 0.000 0.000
+#> eta.log_k_M27 0.000 0.000 0.000
+#> eta.log_k_M31 0.000 0.000 0.000
+#> eta.log_k1 0.903 0.000 0.000
+#> eta.log_k2 0.000 1.577 0.000
+#> eta.g_qlogis 0.000 0.000 3.085
+#> eta.f_DMTA_tffm0_1_qlogis 0.000 0.000 0.000
+#> eta.f_DMTA_tffm0_2_qlogis 0.000 0.000 0.000
+#> eta.f_DMTA_tffm0_3_qlogis 0.000 0.000 0.000
+#> eta.f_DMTA_tffm0_1_qlogis eta.f_DMTA_tffm0_2_qlogis
+#> eta.DMTA_0 0.0 0.0
+#> eta.log_k_M23 0.0 0.0
+#> eta.log_k_M27 0.0 0.0
+#> eta.log_k_M31 0.0 0.0
+#> eta.log_k1 0.0 0.0
+#> eta.log_k2 0.0 0.0
+#> eta.g_qlogis 0.0 0.0
+#> eta.f_DMTA_tffm0_1_qlogis 0.3 0.0
+#> eta.f_DMTA_tffm0_2_qlogis 0.0 0.3
+#> eta.f_DMTA_tffm0_3_qlogis 0.0 0.0
+#> eta.f_DMTA_tffm0_3_qlogis
+#> eta.DMTA_0 0.0
+#> eta.log_k_M23 0.0
+#> eta.log_k_M27 0.0
+#> eta.log_k_M31 0.0
+#> eta.log_k1 0.0
+#> eta.log_k2 0.0
+#> eta.g_qlogis 0.0
+#> eta.f_DMTA_tffm0_1_qlogis 0.0
+#> eta.f_DMTA_tffm0_2_qlogis 0.0
+#> eta.f_DMTA_tffm0_3_qlogis 0.3
+#>
+#> Variance model:
+#> sigma_low rsd_high
+#> 0.69793 0.02577
+#>
+#> Backtransformed parameters:
+#> est. lower upper
+#> DMTA_0 98.76976 98.73563 98.80390
+#> k_M23 0.01981 0.01977 0.01985
+#> k_M27 0.01307 0.01304 0.01309
+#> k_M31 0.01430 0.01427 0.01433
+#> f_DMTA_to_M23 0.10984 NA NA
+#> f_DMTA_to_M27 0.09036 NA NA
+#> f_DMTA_to_M31 0.08399 NA NA
+#> k1 0.10709 0.10696 0.10722
+#> k2 0.02291 0.02287 0.02295
+#> g 0.61068 0.61055 0.61081
+#>
+#> Resulting formation fractions:
+#> ff
+#> DMTA_M23 0.10984
+#> DMTA_M27 0.09036
+#> DMTA_M31 0.08399
+#> DMTA_sink 0.71581
+#>
+#> Estimated disappearance times:
+#> DT50 DT90 DT50back DT50_k1 DT50_k2
+#> DMTA 10.66 59.78 18 6.473 30.26
+#> M23 34.99 116.24 NA NA NA
+#> M27 53.05 176.23 NA NA NA
+#> M31 48.48 161.05 NA NA NA# saem has a problem with this model/data combination, maybe because of the
+# overparameterised error model, to be investigated
+#f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem",
+# control = saemControl(print = 500))
+#summary(f_dmta_nlmixr_saem)
+#plot(f_dmta_nlmixr_saem)
+# }
+
+
+
+
+ Transform formation fractions as in the first published mkin version
+
+
diff --git a/docs/dev/reference/nlmixr.mmkin.html b/docs/dev/reference/nlmixr.mmkin.html
index d017e463..d09f2ad4 100644
--- a/docs/dev/reference/nlmixr.mmkin.html
+++ b/docs/dev/reference/nlmixr.mmkin.html
@@ -161,6 +161,8 @@ Expectation Maximisation algorithm (SAEM).
error_model = object[[1]]$err_mod,
test_log_parms = TRUE,
conf.level = 0.6,
+ degparms_start = "auto",
+ eta_start = "auto",
...,
save = NULL,
envir = parent.frame()
@@ -173,7 +175,8 @@ Expectation Maximisation algorithm (SAEM).
object,
est = c("saem", "focei"),
degparms_start = "auto",
- test_log_parms = FALSE,
+ eta_start = "auto",
+ test_log_parms = TRUE,
conf.level = 0.6,
error_model = object[[1]]$err_mod,
add_attributes = FALSE
@@ -221,6 +224,17 @@ when calculating mean degradation parameters using
conf.level
Possibility to adjust the required confidence level
for parameter that are tested if requested by 'test_log_parms'.
+
+
+ degparms_start
+ Parameter values given as a named numeric vector will
+be used to override the starting values obtained from the 'mmkin' object.
+
+
+ eta_start
+ Standard deviations on the transformed scale given as a
+named numeric vector will be used to override the starting values obtained
+from the 'mmkin' object.
...
@@ -242,11 +256,6 @@ for parameter that are tested if requested by 'test_log_parms'.
digits
Number of digits to use for printing
-
- degparms_start
- Parameter values given as a named numeric vector will
-be used to override the starting values obtained from the 'mmkin' object.
-
add_attributes
Should the starting values used for degradation model
@@ -281,8 +290,7 @@ obtained by fitting the same model to a list of datasets using = 1, quiet = TRUE)
f_nlmixr_sfo_saem <- nlmixr(f_mmkin_parent["SFO", ], est = "saem")
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> RxODE 1.1.0 using 8 threads (see ?getRxThreads)
-#> no cache: create with `rxCreateCache()`#> 1: 86.5083 -3.1968 4.1673 1.7173 48.7028
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> 1: 86.5083 -3.1968 4.1673 1.7173 48.7028
#> 2: 87.3628 -3.1468 3.9589 1.6315 45.1225
#> 3: 86.8866 -3.2249 3.7610 1.8212 43.0034
#> 4: 85.9210 -3.2427 3.5729 1.7302 39.4197
@@ -4453,9194 +4461,495 @@ obtained by fitting the same model to a list of datasets using # A single constant variance is currently only possible with est = 'focei' in nlmixr
f_nlmixr_sfo_sfo_focei_const <- nlmixr(f_mmkin_const["SFO-SFO", ], est = "focei")
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
-#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#> F: Forward difference gradient approximation
-#> C: Central difference gradient approximation
-#> M: Mixed forward and central difference gradient approximation
-#> Unscaled parameters for Omegas=chol(solve(omega));
-#> Diagonals are transformed, as specified by foceiControl(diagXform=)
-#> |-----+---------------+-----------+-----------+-----------+-----------|
-#> | #| Objective Fun | parent_0 |log_k_parent | log_k_A1 |f_parent_qlogis |
-#> |.....................| sigma | o1 | o2 | o3 |
-#> |.....................| o4 |...........|...........|...........|
-#> | 1| 756.06625 | 1.000 | -0.9701 | -1.000 | -0.9071 |
-#> |.....................| -0.8050 | -0.8844 | -0.8800 | -0.8744 |
-#> |.....................| -0.8785 |...........|...........|...........|
-#> | U| 756.06625 | 86.53 | -3.207 | -4.567 | -0.3341 |
-#> |.....................| 4.315 | 0.7003 | 0.9008 | 1.156 |
-#> |.....................| 0.9657 |...........|...........|...........|
-#> | X| 756.06625 | 86.53 | 0.04048 | 0.01039 | 0.4172 |
-#> |.....................| 4.315 | 0.7003 | 0.9008 | 1.156 |
-#> |.....................| 0.9657 |...........|...........|...........|
-#> | G| Gill Diff. | 59.54 | 0.01874 | 0.7243 | 0.3705 |
-#> |.....................| -28.18 | 5.148 | 2.958 | -8.197 |
-#> |.....................| -5.917 |...........|...........|...........|
-#> | 2| 3309.1113 | 0.1102 | -0.9704 | -1.011 | -0.9126 |
-#> |.....................| -0.3838 | -0.9613 | -0.9242 | -0.7519 |
-#> |.....................| -0.7901 |...........|...........|...........|
-#> | U| 3309.1113 | 9.535 | -3.207 | -4.578 | -0.3359 |
-#> |.....................| 5.223 | 0.6464 | 0.8610 | 1.297 |
-#> |.....................| 1.051 |...........|...........|...........|
-#> | X| 3309.1113 | 9.535 | 0.04047 | 0.01027 | 0.4168 |
-#> |.....................| 5.223 | 0.6464 | 0.8610 | 1.297 |
-#> |.....................| 1.051 |...........|...........|...........|
-#> | 3| 782.04188 | 0.9110 | -0.9702 | -1.001 | -0.9076 |
-#> |.....................| -0.7629 | -0.8921 | -0.8844 | -0.8621 |
-#> |.....................| -0.8697 |...........|...........|...........|
-#> | U| 782.04188 | 78.83 | -3.207 | -4.568 | -0.3343 |
-#> |.....................| 4.406 | 0.6949 | 0.8968 | 1.170 |
-#> |.....................| 0.9742 |...........|...........|...........|
-#> | X| 782.04188 | 78.83 | 0.04048 | 0.01037 | 0.4172 |
-#> |.....................| 4.406 | 0.6949 | 0.8968 | 1.170 |
-#> |.....................| 0.9742 |...........|...........|...........|
-#> | 4| 755.73406 | 0.9909 | -0.9701 | -1.000 | -0.9071 |
-#> |.....................| -0.8007 | -0.8851 | -0.8804 | -0.8731 |
-#> |.....................| -0.8776 |...........|...........|...........|
-#> | U| 755.73406 | 85.75 | -3.207 | -4.567 | -0.3341 |
-#> |.....................| 4.324 | 0.6997 | 0.9004 | 1.157 |
-#> |.....................| 0.9666 |...........|...........|...........|
-#> | X| 755.73406 | 85.75 | 0.04048 | 0.01038 | 0.4172 |
-#> |.....................| 4.324 | 0.6997 | 0.9004 | 1.157 |
-#> |.....................| 0.9666 |...........|...........|...........|
-#> | F| Forward Diff. | -16.83 | 0.07808 | 0.6495 | 0.3224 |
-#> |.....................| -27.54 | 3.811 | 2.903 | -8.359 |
-#> |.....................| -5.718 |...........|...........|...........|
-#> | 5| 755.49648 | 0.9959 | -0.9702 | -1.000 | -0.9072 |
-#> |.....................| -0.7924 | -0.8863 | -0.8813 | -0.8706 |
-#> |.....................| -0.8759 |...........|...........|...........|
-#> | U| 755.49648 | 86.18 | -3.207 | -4.568 | -0.3341 |
-#> |.....................| 4.342 | 0.6989 | 0.8996 | 1.160 |
-#> |.....................| 0.9682 |...........|...........|...........|
-#> | X| 755.49648 | 86.18 | 0.04048 | 0.01038 | 0.4172 |
-#> |.....................| 4.342 | 0.6989 | 0.8996 | 1.160 |
-#> |.....................| 0.9682 |...........|...........|...........|
-#> | F| Forward Diff. | 25.35 | 0.04484 | 0.6934 | 0.3535 |
-#> |.....................| -25.80 | 4.244 | 2.831 | -8.249 |
-#> |.....................| -5.719 |...........|...........|...........|
-#> | 6| 755.31010 | 0.9891 | -0.9702 | -1.000 | -0.9073 |
-#> |.....................| -0.7855 | -0.8874 | -0.8820 | -0.8684 |
-#> |.....................| -0.8744 |...........|...........|...........|
-#> | U| 755.3101 | 85.59 | -3.207 | -4.568 | -0.3342 |
-#> |.....................| 4.357 | 0.6981 | 0.8989 | 1.163 |
-#> |.....................| 0.9697 |...........|...........|...........|
-#> | X| 755.3101 | 85.59 | 0.04048 | 0.01038 | 0.4172 |
-#> |.....................| 4.357 | 0.6981 | 0.8989 | 1.163 |
-#> |.....................| 0.9697 |...........|...........|...........|
-#> | F| Forward Diff. | -31.39 | 0.08909 | 0.6380 | 0.3185 |
-#> |.....................| -24.71 | 3.519 | 2.751 | -7.972 |
-#> |.....................| -5.525 |...........|...........|...........|
-#> | 7| 755.09582 | 0.9961 | -0.9702 | -1.001 | -0.9074 |
-#> |.....................| -0.7787 | -0.8884 | -0.8828 | -0.8661 |
-#> |.....................| -0.8728 |...........|...........|...........|
-#> | U| 755.09582 | 86.20 | -3.207 | -4.568 | -0.3342 |
-#> |.....................| 4.372 | 0.6974 | 0.8982 | 1.165 |
-#> |.....................| 0.9712 |...........|...........|...........|
-#> | X| 755.09582 | 86.20 | 0.04047 | 0.01038 | 0.4172 |
-#> |.....................| 4.372 | 0.6974 | 0.8982 | 1.165 |
-#> |.....................| 0.9712 |...........|...........|...........|
-#> | F| Forward Diff. | 26.63 | 0.04269 | 0.6973 | 0.3604 |
-#> |.....................| -23.22 | 4.086 | 2.689 | -8.043 |
-#> |.....................| -5.569 |...........|...........|...........|
-#> | 8| 754.90743 | 0.9894 | -0.9702 | -1.001 | -0.9075 |
-#> |.....................| -0.7716 | -0.8897 | -0.8836 | -0.8636 |
-#> |.....................| -0.8711 |...........|...........|...........|
-#> | U| 754.90743 | 85.62 | -3.207 | -4.568 | -0.3342 |
-#> |.....................| 4.387 | 0.6966 | 0.8975 | 1.168 |
-#> |.....................| 0.9729 |...........|...........|...........|
-#> | X| 754.90743 | 85.62 | 0.04047 | 0.01038 | 0.4172 |
-#> |.....................| 4.387 | 0.6966 | 0.8975 | 1.168 |
-#> |.....................| 0.9729 |...........|...........|...........|
-#> | F| Forward Diff. | -27.88 | 0.08581 | 0.6437 | 0.3265 |
-#> |.....................| -22.15 | 3.354 | 2.606 | -7.748 |
-#> |.....................| -5.369 |...........|...........|...........|
-#> | 9| 754.70769 | 0.9959 | -0.9702 | -1.001 | -0.9076 |
-#> |.....................| -0.7645 | -0.8908 | -0.8845 | -0.8610 |
-#> |.....................| -0.8693 |...........|...........|...........|
-#> | U| 754.70769 | 86.18 | -3.207 | -4.568 | -0.3343 |
-#> |.....................| 4.402 | 0.6958 | 0.8967 | 1.171 |
-#> |.....................| 0.9747 |...........|...........|...........|
-#> | X| 754.70769 | 86.18 | 0.04047 | 0.01037 | 0.4172 |
-#> |.....................| 4.402 | 0.6958 | 0.8967 | 1.171 |
-#> |.....................| 0.9747 |...........|...........|...........|
-#> | F| Forward Diff. | 25.01 | 0.04305 | 0.6984 | 0.3661 |
-#> |.....................| -20.67 | 3.871 | 2.535 | -7.809 |
-#> |.....................| -5.388 |...........|...........|...........|
-#> | 10| 754.52507 | 0.9898 | -0.9703 | -1.001 | -0.9078 |
-#> |.....................| -0.7574 | -0.8922 | -0.8854 | -0.8580 |
-#> |.....................| -0.8672 |...........|...........|...........|
-#> | U| 754.52507 | 85.65 | -3.207 | -4.569 | -0.3343 |
-#> |.....................| 4.417 | 0.6948 | 0.8958 | 1.175 |
-#> |.....................| 0.9766 |...........|...........|...........|
-#> | X| 754.52507 | 85.65 | 0.04047 | 0.01037 | 0.4172 |
-#> |.....................| 4.417 | 0.6948 | 0.8958 | 1.175 |
-#> |.....................| 0.9766 |...........|...........|...........|
-#> | F| Forward Diff. | -24.90 | 0.08308 | 0.6490 | 0.3352 |
-#> |.....................| -19.59 | 3.181 | 2.445 | -7.663 |
-#> |.....................| -5.179 |...........|...........|...........|
-#> | 11| 754.34076 | 0.9957 | -0.9703 | -1.002 | -0.9079 |
-#> |.....................| -0.7502 | -0.8935 | -0.8864 | -0.8548 |
-#> |.....................| -0.8650 |...........|...........|...........|
-#> | U| 754.34076 | 86.16 | -3.207 | -4.569 | -0.3344 |
-#> |.....................| 4.433 | 0.6939 | 0.8950 | 1.178 |
-#> |.....................| 0.9787 |...........|...........|...........|
-#> | X| 754.34076 | 86.16 | 0.04047 | 0.01037 | 0.4172 |
-#> |.....................| 4.433 | 0.6939 | 0.8950 | 1.178 |
-#> |.....................| 0.9787 |...........|...........|...........|
-#> | F| Forward Diff. | 23.15 | 0.04366 | 0.6990 | 0.3728 |
-#> |.....................| -18.16 | 3.647 | 2.362 | -7.534 |
-#> |.....................| -5.170 |...........|...........|...........|
-#> | 12| 754.16941 | 0.9900 | -0.9703 | -1.002 | -0.9081 |
-#> |.....................| -0.7432 | -0.8951 | -0.8875 | -0.8512 |
-#> |.....................| -0.8626 |...........|...........|...........|
-#> | U| 754.16941 | 85.67 | -3.207 | -4.569 | -0.3344 |
-#> |.....................| 4.448 | 0.6928 | 0.8940 | 1.182 |
-#> |.....................| 0.9811 |...........|...........|...........|
-#> | X| 754.16941 | 85.67 | 0.04047 | 0.01036 | 0.4172 |
-#> |.....................| 4.448 | 0.6928 | 0.8940 | 1.182 |
-#> |.....................| 0.9811 |...........|...........|...........|
-#> | F| Forward Diff. | -22.36 | 0.07996 | 0.6524 | 0.3446 |
-#> |.....................| -17.12 | 3.002 | 2.262 | -7.362 |
-#> |.....................| -4.949 |...........|...........|...........|
-#> | 13| 754.00081 | 0.9955 | -0.9704 | -1.002 | -0.9083 |
-#> |.....................| -0.7363 | -0.8967 | -0.8886 | -0.8472 |
-#> |.....................| -0.8599 |...........|...........|...........|
-#> | U| 754.00081 | 86.14 | -3.207 | -4.570 | -0.3345 |
-#> |.....................| 4.463 | 0.6916 | 0.8930 | 1.187 |
-#> |.....................| 0.9836 |...........|...........|...........|
-#> | X| 754.00081 | 86.14 | 0.04047 | 0.01036 | 0.4171 |
-#> |.....................| 4.463 | 0.6916 | 0.8930 | 1.187 |
-#> |.....................| 0.9836 |...........|...........|...........|
-#> | F| Forward Diff. | 21.00 | 0.04440 | 0.6979 | 0.3804 |
-#> |.....................| -15.79 | 3.414 | 2.168 | -7.205 |
-#> |.....................| -4.903 |...........|...........|...........|
-#> | 14| 753.84435 | 0.9903 | -0.9704 | -1.003 | -0.9086 |
-#> |.....................| -0.7296 | -0.8985 | -0.8898 | -0.8427 |
-#> |.....................| -0.8570 |...........|...........|...........|
-#> | U| 753.84435 | 85.70 | -3.207 | -4.570 | -0.3346 |
-#> |.....................| 4.477 | 0.6903 | 0.8919 | 1.192 |
-#> |.....................| 0.9865 |...........|...........|...........|
-#> | X| 753.84435 | 85.70 | 0.04047 | 0.01036 | 0.4171 |
-#> |.....................| 4.477 | 0.6903 | 0.8919 | 1.192 |
-#> |.....................| 0.9865 |...........|...........|...........|
-#> | F| Forward Diff. | -19.93 | 0.07681 | 0.6538 | 0.3555 |
-#> |.....................| -14.84 | 2.820 | 2.056 | -6.999 |
-#> |.....................| -4.662 |...........|...........|...........|
-#> | 15| 753.69372 | 0.9952 | -0.9704 | -1.003 | -0.9089 |
-#> |.....................| -0.7234 | -0.9005 | -0.8911 | -0.8377 |
-#> |.....................| -0.8537 |...........|...........|...........|
-#> | U| 753.69372 | 86.12 | -3.207 | -4.571 | -0.3347 |
-#> |.....................| 4.491 | 0.6890 | 0.8908 | 1.198 |
-#> |.....................| 0.9897 |...........|...........|...........|
-#> | X| 753.69372 | 86.12 | 0.04046 | 0.01035 | 0.4171 |
-#> |.....................| 4.491 | 0.6890 | 0.8908 | 1.198 |
-#> |.....................| 0.9897 |...........|...........|...........|
-#> | F| Forward Diff. | 18.81 | 0.04462 | 0.6942 | 0.3896 |
-#> |.....................| -13.66 | 3.180 | 1.953 | -6.807 |
-#> |.....................| -4.573 |...........|...........|...........|
-#> | 16| 753.55534 | 0.9906 | -0.9705 | -1.004 | -0.9093 |
-#> |.....................| -0.7176 | -0.9027 | -0.8924 | -0.8322 |
-#> |.....................| -0.8502 |...........|...........|...........|
-#> | U| 753.55534 | 85.72 | -3.207 | -4.571 | -0.3348 |
-#> |.....................| 4.503 | 0.6875 | 0.8896 | 1.204 |
-#> |.....................| 0.9931 |...........|...........|...........|
-#> | X| 753.55534 | 85.72 | 0.04046 | 0.01034 | 0.4171 |
-#> |.....................| 4.503 | 0.6875 | 0.8896 | 1.204 |
-#> |.....................| 0.9931 |...........|...........|...........|
-#> | F| Forward Diff. | -17.61 | 0.07313 | 0.6517 | 0.3679 |
-#> |.....................| -12.86 | 2.639 | 1.835 | -6.564 |
-#> |.....................| -4.309 |...........|...........|...........|
-#> | 17| 753.42478 | 0.9950 | -0.9706 | -1.005 | -0.9097 |
-#> |.....................| -0.7124 | -0.9049 | -0.8937 | -0.8262 |
-#> |.....................| -0.8464 |...........|...........|...........|
-#> | U| 753.42478 | 86.11 | -3.207 | -4.572 | -0.3350 |
-#> |.....................| 4.515 | 0.6859 | 0.8884 | 1.211 |
-#> |.....................| 0.9967 |...........|...........|...........|
-#> | X| 753.42478 | 86.11 | 0.04046 | 0.01034 | 0.4170 |
-#> |.....................| 4.515 | 0.6859 | 0.8884 | 1.211 |
-#> |.....................| 0.9967 |...........|...........|...........|
-#> | F| Forward Diff. | 16.74 | 0.04433 | 0.6853 | 0.4002 |
-#> |.....................| -11.89 | 2.952 | 1.729 | -6.336 |
-#> |.....................| -4.181 |...........|...........|...........|
-#> | 18| 753.30602 | 0.9909 | -0.9706 | -1.006 | -0.9103 |
-#> |.....................| -0.7078 | -0.9075 | -0.8949 | -0.8197 |
-#> |.....................| -0.8425 |...........|...........|...........|
-#> | U| 753.30602 | 85.74 | -3.207 | -4.573 | -0.3352 |
-#> |.....................| 4.525 | 0.6841 | 0.8873 | 1.219 |
-#> |.....................| 1.001 |...........|...........|...........|
-#> | X| 753.30602 | 85.74 | 0.04046 | 0.01033 | 0.4170 |
-#> |.....................| 4.525 | 0.6841 | 0.8873 | 1.219 |
-#> |.....................| 1.001 |...........|...........|...........|
-#> | F| Forward Diff. | -15.54 | 0.06924 | 0.6430 | 0.3812 |
-#> |.....................| -11.26 | 2.462 | 1.618 | -6.066 |
-#> |.....................| -3.903 |...........|...........|...........|
-#> | 19| 753.19508 | 0.9949 | -0.9707 | -1.007 | -0.9109 |
-#> |.....................| -0.7036 | -0.9102 | -0.8961 | -0.8129 |
-#> |.....................| -0.8385 |...........|...........|...........|
-#> | U| 753.19508 | 86.09 | -3.208 | -4.574 | -0.3354 |
-#> |.....................| 4.533 | 0.6822 | 0.8862 | 1.227 |
-#> |.....................| 1.004 |...........|...........|...........|
-#> | X| 753.19508 | 86.09 | 0.04045 | 0.01032 | 0.4169 |
-#> |.....................| 4.533 | 0.6822 | 0.8862 | 1.227 |
-#> |.....................| 1.004 |...........|...........|...........|
-#> | F| Forward Diff. | 14.90 | 0.04352 | 0.6689 | 0.4113 |
-#> |.....................| -10.49 | 2.732 | 1.522 | -5.813 |
-#> |.....................| -3.751 |...........|...........|...........|
-#> | 20| 753.09443 | 0.9911 | -0.9708 | -1.008 | -0.9117 |
-#> |.....................| -0.7001 | -0.9132 | -0.8972 | -0.8058 |
-#> |.....................| -0.8346 |...........|...........|...........|
-#> | U| 753.09443 | 85.77 | -3.208 | -4.575 | -0.3356 |
-#> |.....................| 4.541 | 0.6801 | 0.8852 | 1.235 |
-#> |.....................| 1.008 |...........|...........|...........|
-#> | X| 753.09443 | 85.77 | 0.04045 | 0.01031 | 0.4169 |
-#> |.....................| 4.541 | 0.6801 | 0.8852 | 1.235 |
-#> |.....................| 1.008 |...........|...........|...........|
-#> | F| Forward Diff. | -13.80 | 0.06521 | 0.6240 | 0.3942 |
-#> |.....................| -10.02 | 2.285 | 1.423 | -5.526 |
-#> |.....................| -3.476 |...........|...........|...........|
-#> | 21| 753.00021 | 0.9948 | -0.9709 | -1.009 | -0.9127 |
-#> |.....................| -0.6968 | -0.9163 | -0.8982 | -0.7985 |
-#> |.....................| -0.8307 |...........|...........|...........|
-#> | U| 753.00021 | 86.08 | -3.208 | -4.576 | -0.3360 |
-#> |.....................| 4.548 | 0.6779 | 0.8843 | 1.243 |
-#> |.....................| 1.012 |...........|...........|...........|
-#> | X| 753.00021 | 86.08 | 0.04045 | 0.01029 | 0.4168 |
-#> |.....................| 4.548 | 0.6779 | 0.8843 | 1.243 |
-#> |.....................| 1.012 |...........|...........|...........|
-#> | F| Forward Diff. | 13.31 | 0.04216 | 0.6406 | 0.4217 |
-#> |.....................| -9.402 | 2.517 | 1.347 | -5.262 |
-#> |.....................| -3.321 |...........|...........|...........|
-#> | 22| 752.91432 | 0.9914 | -0.9710 | -1.010 | -0.9139 |
-#> |.....................| -0.6939 | -0.9197 | -0.8991 | -0.7911 |
-#> |.....................| -0.8272 |...........|...........|...........|
-#> | U| 752.91432 | 85.79 | -3.208 | -4.578 | -0.3364 |
-#> |.....................| 4.555 | 0.6755 | 0.8835 | 1.252 |
-#> |.....................| 1.015 |...........|...........|...........|
-#> | X| 752.91432 | 85.79 | 0.04044 | 0.01028 | 0.4167 |
-#> |.....................| 4.555 | 0.6755 | 0.8835 | 1.252 |
-#> |.....................| 1.015 |...........|...........|...........|
-#> | F| Forward Diff. | -12.35 | 0.06128 | 0.5909 | 0.4053 |
-#> |.....................| -9.027 | 2.101 | 1.271 | -4.717 |
-#> |.....................| -3.067 |...........|...........|...........|
-#> | 23| 752.83200 | 0.9948 | -0.9711 | -1.012 | -0.9155 |
-#> |.....................| -0.6906 | -0.9238 | -0.9000 | -0.7843 |
-#> |.....................| -0.8235 |...........|...........|...........|
-#> | U| 752.832 | 86.09 | -3.208 | -4.580 | -0.3369 |
-#> |.....................| 4.561 | 0.6727 | 0.8827 | 1.260 |
-#> |.....................| 1.019 |...........|...........|...........|
-#> | X| 752.832 | 86.09 | 0.04044 | 0.01026 | 0.4166 |
-#> |.....................| 4.561 | 0.6727 | 0.8827 | 1.260 |
-#> |.....................| 1.019 |...........|...........|...........|
-#> | F| Forward Diff. | 12.74 | 0.03978 | 0.5956 | 0.4312 |
-#> |.....................| -8.422 | 2.296 | 1.202 | -4.471 |
-#> |.....................| -2.914 |...........|...........|...........|
-#> | 24| 752.75140 | 0.9918 | -0.9713 | -1.014 | -0.9179 |
-#> |.....................| -0.6872 | -0.9288 | -0.9011 | -0.7785 |
-#> |.....................| -0.8198 |...........|...........|...........|
-#> | U| 752.7514 | 85.82 | -3.208 | -4.582 | -0.3377 |
-#> |.....................| 4.569 | 0.6692 | 0.8818 | 1.266 |
-#> |.....................| 1.022 |...........|...........|...........|
-#> | X| 752.7514 | 85.82 | 0.04043 | 0.01024 | 0.4164 |
-#> |.....................| 4.569 | 0.6692 | 0.8818 | 1.266 |
-#> |.....................| 1.022 |...........|...........|...........|
-#> | F| Forward Diff. | -10.02 | 0.05546 | 0.5361 | 0.4172 |
-#> |.....................| -7.958 | 1.872 | 1.117 | -4.424 |
-#> |.....................| -2.664 |...........|...........|...........|
-#> | 25| 752.68235 | 0.9947 | -0.9715 | -1.016 | -0.9205 |
-#> |.....................| -0.6845 | -0.9329 | -0.9018 | -0.7712 |
-#> |.....................| -0.8173 |...........|...........|...........|
-#> | U| 752.68235 | 86.07 | -3.208 | -4.584 | -0.3386 |
-#> |.....................| 4.575 | 0.6663 | 0.8811 | 1.275 |
-#> |.....................| 1.025 |...........|...........|...........|
-#> | X| 752.68235 | 86.07 | 0.04042 | 0.01022 | 0.4162 |
-#> |.....................| 4.575 | 0.6663 | 0.8811 | 1.275 |
-#> |.....................| 1.025 |...........|...........|...........|
-#> | F| Forward Diff. | 10.53 | 0.03715 | 0.5273 | 0.4360 |
-#> |.....................| -7.447 | 2.014 | 1.063 | -3.990 |
-#> |.....................| -2.556 |...........|...........|...........|
-#> | 26| 752.62160 | 0.9918 | -0.9717 | -1.019 | -0.9237 |
-#> |.....................| -0.6821 | -0.9370 | -0.9025 | -0.7637 |
-#> |.....................| -0.8151 |...........|...........|...........|
-#> | U| 752.6216 | 85.83 | -3.209 | -4.586 | -0.3397 |
-#> |.....................| 4.580 | 0.6635 | 0.8804 | 1.284 |
-#> |.....................| 1.027 |...........|...........|...........|
-#> | X| 752.6216 | 85.83 | 0.04042 | 0.01020 | 0.4159 |
-#> |.....................| 4.580 | 0.6635 | 0.8804 | 1.284 |
-#> |.....................| 1.027 |...........|...........|...........|
-#> | F| Forward Diff. | -10.27 | 0.05173 | 0.4657 | 0.4178 |
-#> |.....................| -7.153 | 1.648 | 1.004 | -3.701 |
-#> |.....................| -2.385 |...........|...........|...........|
-#> | 27| 752.55758 | 0.9944 | -0.9719 | -1.021 | -0.9287 |
-#> |.....................| -0.6786 | -0.9418 | -0.9036 | -0.7591 |
-#> |.....................| -0.8121 |...........|...........|...........|
-#> | U| 752.55758 | 86.05 | -3.209 | -4.588 | -0.3413 |
-#> |.....................| 4.587 | 0.6600 | 0.8795 | 1.289 |
-#> |.....................| 1.030 |...........|...........|...........|
-#> | X| 752.55758 | 86.05 | 0.04040 | 0.01017 | 0.4155 |
-#> |.....................| 4.587 | 0.6600 | 0.8795 | 1.289 |
-#> |.....................| 1.030 |...........|...........|...........|
-#> | F| Forward Diff. | 7.976 | 0.03464 | 0.4539 | 0.4351 |
-#> |.....................| -6.545 | 1.728 | 0.9236 | -3.536 |
-#> |.....................| -2.257 |...........|...........|...........|
-#> | 28| 752.50465 | 0.9921 | -0.9722 | -1.023 | -0.9345 |
-#> |.....................| -0.6755 | -0.9456 | -0.9043 | -0.7539 |
-#> |.....................| -0.8090 |...........|...........|...........|
-#> | U| 752.50465 | 85.85 | -3.209 | -4.590 | -0.3432 |
-#> |.....................| 4.594 | 0.6574 | 0.8788 | 1.295 |
-#> |.....................| 1.033 |...........|...........|...........|
-#> | X| 752.50465 | 85.85 | 0.04039 | 0.01015 | 0.4150 |
-#> |.....................| 4.594 | 0.6574 | 0.8788 | 1.295 |
-#> |.....................| 1.033 |...........|...........|...........|
-#> | F| Forward Diff. | -8.947 | 0.04577 | 0.4043 | 0.4205 |
-#> |.....................| -6.122 | 1.399 | 0.8644 | -3.339 |
-#> |.....................| -2.062 |...........|...........|...........|
-#> | 29| 752.46010 | 0.9944 | -0.9724 | -1.024 | -0.9405 |
-#> |.....................| -0.6742 | -0.9477 | -0.9048 | -0.7467 |
-#> |.....................| -0.8068 |...........|...........|...........|
-#> | U| 752.4601 | 86.05 | -3.209 | -4.591 | -0.3452 |
-#> |.....................| 4.597 | 0.6559 | 0.8784 | 1.303 |
-#> |.....................| 1.035 |...........|...........|...........|
-#> | X| 752.4601 | 86.05 | 0.04039 | 0.01014 | 0.4145 |
-#> |.....................| 4.597 | 0.6559 | 0.8784 | 1.303 |
-#> |.....................| 1.035 |...........|...........|...........|
-#> | F| Forward Diff. | 6.603 | 0.03134 | 0.3976 | 0.4307 |
-#> |.....................| -5.878 | 1.523 | 0.8347 | -3.098 |
-#> |.....................| -1.971 |...........|...........|...........|
-#> | 30| 752.42045 | 0.9923 | -0.9726 | -1.025 | -0.9478 |
-#> |.....................| -0.6717 | -0.9497 | -0.9056 | -0.7410 |
-#> |.....................| -0.8056 |...........|...........|...........|
-#> | U| 752.42045 | 85.87 | -3.210 | -4.593 | -0.3477 |
-#> |.....................| 4.602 | 0.6545 | 0.8777 | 1.310 |
-#> |.....................| 1.036 |...........|...........|...........|
-#> | X| 752.42045 | 85.87 | 0.04038 | 0.01013 | 0.4139 |
-#> |.....................| 4.602 | 0.6545 | 0.8777 | 1.310 |
-#> |.....................| 1.036 |...........|...........|...........|
-#> | F| Forward Diff. | -7.567 | 0.04074 | 0.3551 | 0.4112 |
-#> |.....................| -5.553 | 1.278 | 0.7625 | -2.890 |
-#> |.....................| -1.881 |...........|...........|...........|
-#> | 31| 752.38271 | 0.9943 | -0.9729 | -1.026 | -0.9563 |
-#> |.....................| -0.6682 | -0.9523 | -0.9058 | -0.7392 |
-#> |.....................| -0.8032 |...........|...........|...........|
-#> | U| 752.38271 | 86.04 | -3.210 | -4.594 | -0.3505 |
-#> |.....................| 4.610 | 0.6527 | 0.8775 | 1.312 |
-#> |.....................| 1.038 |...........|...........|...........|
-#> | X| 752.38271 | 86.04 | 0.04037 | 0.01012 | 0.4133 |
-#> |.....................| 4.610 | 0.6527 | 0.8775 | 1.312 |
-#> |.....................| 1.038 |...........|...........|...........|
-#> | F| Forward Diff. | 5.602 | 0.02847 | 0.3641 | 0.4189 |
-#> |.....................| -5.001 | 1.344 | 0.7516 | -2.828 |
-#> |.....................| -1.805 |...........|...........|...........|
-#> | 32| 752.35435 | 0.9925 | -0.9730 | -1.028 | -0.9633 |
-#> |.....................| -0.6679 | -0.9545 | -0.9069 | -0.7341 |
-#> |.....................| -0.7988 |...........|...........|...........|
-#> | U| 752.35435 | 85.89 | -3.210 | -4.595 | -0.3529 |
-#> |.....................| 4.611 | 0.6511 | 0.8766 | 1.318 |
-#> |.....................| 1.043 |...........|...........|...........|
-#> | X| 752.35435 | 85.89 | 0.04036 | 0.01010 | 0.4127 |
-#> |.....................| 4.611 | 0.6511 | 0.8766 | 1.318 |
-#> |.....................| 1.043 |...........|...........|...........|
-#> | F| Forward Diff. | -6.571 | 0.03612 | 0.3357 | 0.4086 |
-#> |.....................| -4.992 | 1.118 | 0.6605 | -2.632 |
-#> |.....................| -1.560 |...........|...........|...........|
-#> | 33| 752.32772 | 0.9943 | -0.9732 | -1.029 | -0.9711 |
-#> |.....................| -0.6669 | -0.9557 | -0.9071 | -0.7282 |
-#> |.....................| -0.7989 |...........|...........|...........|
-#> | U| 752.32772 | 86.04 | -3.210 | -4.596 | -0.3555 |
-#> |.....................| 4.613 | 0.6503 | 0.8764 | 1.325 |
-#> |.....................| 1.043 |...........|...........|...........|
-#> | X| 752.32772 | 86.04 | 0.04035 | 0.01009 | 0.4121 |
-#> |.....................| 4.613 | 0.6503 | 0.8764 | 1.325 |
-#> |.....................| 1.043 |...........|...........|...........|
-#> | F| Forward Diff. | 5.212 | 0.02538 | 0.3153 | 0.4089 |
-#> |.....................| -4.808 | 1.231 | 0.6502 | -2.445 |
-#> |.....................| -1.583 |...........|...........|...........|
-#> | 34| 752.30453 | 0.9927 | -0.9733 | -1.030 | -0.9795 |
-#> |.....................| -0.6622 | -0.9567 | -0.9058 | -0.7271 |
-#> |.....................| -0.8012 |...........|...........|...........|
-#> | U| 752.30453 | 85.90 | -3.210 | -4.598 | -0.3583 |
-#> |.....................| 4.623 | 0.6496 | 0.8775 | 1.326 |
-#> |.....................| 1.040 |...........|...........|...........|
-#> | X| 752.30453 | 85.90 | 0.04035 | 0.01008 | 0.4114 |
-#> |.....................| 4.623 | 0.6496 | 0.8775 | 1.326 |
-#> |.....................| 1.040 |...........|...........|...........|
-#> | F| Forward Diff. | -5.777 | 0.03360 | 0.2795 | 0.3849 |
-#> |.....................| -4.177 | 1.041 | 0.7583 | -2.411 |
-#> |.....................| -1.694 |...........|...........|...........|
-#> | 35| 752.28211 | 0.9943 | -0.9735 | -1.030 | -0.9865 |
-#> |.....................| -0.6621 | -0.9586 | -0.9093 | -0.7251 |
-#> |.....................| -0.7954 |...........|...........|...........|
-#> | U| 752.28211 | 86.04 | -3.210 | -4.598 | -0.3606 |
-#> |.....................| 4.623 | 0.6483 | 0.8743 | 1.328 |
-#> |.....................| 1.046 |...........|...........|...........|
-#> | X| 752.28211 | 86.04 | 0.04034 | 0.01008 | 0.4108 |
-#> |.....................| 4.623 | 0.6483 | 0.8743 | 1.328 |
-#> |.....................| 1.046 |...........|...........|...........|
-#> | F| Forward Diff. | 4.685 | 0.02318 | 0.3105 | 0.3984 |
-#> |.....................| -4.118 | 1.106 | 0.4577 | -2.335 |
-#> |.....................| -1.438 |...........|...........|...........|
-#> | 36| 752.26507 | 0.9926 | -0.9736 | -1.031 | -0.9930 |
-#> |.....................| -0.6630 | -0.9604 | -0.9091 | -0.7199 |
-#> |.....................| -0.7902 |...........|...........|...........|
-#> | U| 752.26507 | 85.89 | -3.210 | -4.598 | -0.3628 |
-#> |.....................| 4.621 | 0.6470 | 0.8745 | 1.334 |
-#> |.....................| 1.051 |...........|...........|...........|
-#> | X| 752.26507 | 85.89 | 0.04034 | 0.01007 | 0.4103 |
-#> |.....................| 4.621 | 0.6470 | 0.8745 | 1.334 |
-#> |.....................| 1.051 |...........|...........|...........|
-#> | F| Forward Diff. | -6.810 | 0.03096 | 0.2910 | 0.3899 |
-#> |.....................| -4.283 | 0.8991 | 0.4756 | -2.130 |
-#> |.....................| -1.153 |...........|...........|...........|
-#> | 37| 752.24597 | 0.9942 | -0.9737 | -1.033 | -1.000 |
-#> |.....................| -0.6608 | -0.9614 | -0.9045 | -0.7160 |
-#> |.....................| -0.7919 |...........|...........|...........|
-#> | U| 752.24597 | 86.03 | -3.211 | -4.600 | -0.3653 |
-#> |.....................| 4.626 | 0.6463 | 0.8787 | 1.339 |
-#> |.....................| 1.049 |...........|...........|...........|
-#> | X| 752.24597 | 86.03 | 0.04033 | 0.01005 | 0.4097 |
-#> |.....................| 4.626 | 0.6463 | 0.8787 | 1.339 |
-#> |.....................| 1.049 |...........|...........|...........|
-#> | F| Forward Diff. | 3.512 | 0.02244 | 0.2659 | 0.3868 |
-#> |.....................| -3.943 | 0.9821 | 0.8784 | -2.032 |
-#> |.....................| -1.263 |...........|...........|...........|
-#> | 38| 752.22949 | 0.9926 | -0.9738 | -1.034 | -1.007 |
-#> |.....................| -0.6572 | -0.9618 | -0.9098 | -0.7144 |
-#> |.....................| -0.7948 |...........|...........|...........|
-#> | U| 752.22949 | 85.90 | -3.211 | -4.601 | -0.3676 |
-#> |.....................| 4.634 | 0.6461 | 0.8739 | 1.341 |
-#> |.....................| 1.047 |...........|...........|...........|
-#> | X| 752.22949 | 85.90 | 0.04033 | 0.01004 | 0.4091 |
-#> |.....................| 4.634 | 0.6461 | 0.8739 | 1.341 |
-#> |.....................| 1.047 |...........|...........|...........|
-#> | F| Forward Diff. | -6.652 | 0.02915 | 0.2261 | 0.3631 |
-#> |.....................| -3.474 | 0.8493 | 0.4224 | -1.980 |
-#> |.....................| -1.394 |...........|...........|...........|
-#> | 39| 752.21433 | 0.9945 | -0.9739 | -1.034 | -1.016 |
-#> |.....................| -0.6569 | -0.9629 | -0.9144 | -0.7124 |
-#> |.....................| -0.7922 |...........|...........|...........|
-#> | U| 752.21433 | 86.05 | -3.211 | -4.601 | -0.3704 |
-#> |.....................| 4.634 | 0.6453 | 0.8697 | 1.343 |
-#> |.....................| 1.049 |...........|...........|...........|
-#> | X| 752.21433 | 86.05 | 0.04032 | 0.01004 | 0.4085 |
-#> |.....................| 4.634 | 0.6453 | 0.8697 | 1.343 |
-#> |.....................| 1.049 |...........|...........|...........|
-#> | F| Forward Diff. | 5.271 | 0.01812 | 0.2470 | 0.3694 |
-#> |.....................| -3.388 | 0.9655 | 0.02976 | -1.920 |
-#> |.....................| -1.299 |...........|...........|...........|
-#> | 40| 752.19821 | 0.9933 | -0.9740 | -1.034 | -1.022 |
-#> |.....................| -0.6566 | -0.9648 | -0.9096 | -0.7099 |
-#> |.....................| -0.7872 |...........|...........|...........|
-#> | U| 752.19821 | 85.95 | -3.211 | -4.602 | -0.3726 |
-#> |.....................| 4.635 | 0.6440 | 0.8741 | 1.346 |
-#> |.....................| 1.054 |...........|...........|...........|
-#> | X| 752.19821 | 85.95 | 0.04032 | 0.01004 | 0.4079 |
-#> |.....................| 4.635 | 0.6440 | 0.8741 | 1.346 |
-#> |.....................| 1.054 |...........|...........|...........|
-#> | F| Forward Diff. | -2.667 | 0.02369 | 0.2481 | 0.3640 |
-#> |.....................| -3.371 | 0.7751 | 0.4401 | -1.801 |
-#> |.....................| -1.045 |...........|...........|...........|
-#> | 41| 752.18532 | 0.9951 | -0.9741 | -1.036 | -1.031 |
-#> |.....................| -0.6545 | -0.9659 | -0.9070 | -0.7062 |
-#> |.....................| -0.7858 |...........|...........|...........|
-#> | U| 752.18532 | 86.11 | -3.211 | -4.603 | -0.3754 |
-#> |.....................| 4.639 | 0.6432 | 0.8764 | 1.350 |
-#> |.....................| 1.055 |...........|...........|...........|
-#> | X| 752.18532 | 86.11 | 0.04032 | 0.01002 | 0.4072 |
-#> |.....................| 4.639 | 0.6432 | 0.8764 | 1.350 |
-#> |.....................| 1.055 |...........|...........|...........|
-#> | F| Forward Diff. | 8.833 | 0.01368 | 0.2421 | 0.3674 |
-#> |.....................| -3.039 | 0.8770 | 0.6679 | -1.687 |
-#> |.....................| -1.010 |...........|...........|...........|
-#> | 42| 752.16831 | 0.9936 | -0.9742 | -1.037 | -1.039 |
-#> |.....................| -0.6539 | -0.9664 | -0.9110 | -0.7027 |
-#> |.....................| -0.7873 |...........|...........|...........|
-#> | U| 752.16831 | 85.98 | -3.211 | -4.605 | -0.3782 |
-#> |.....................| 4.641 | 0.6428 | 0.8728 | 1.354 |
-#> |.....................| 1.054 |...........|...........|...........|
-#> | X| 752.16831 | 85.98 | 0.04031 | 0.01001 | 0.4066 |
-#> |.....................| 4.641 | 0.6428 | 0.8728 | 1.354 |
-#> |.....................| 1.054 |...........|...........|...........|
-#> | F| Forward Diff. | -0.7512 | 0.02003 | 0.1902 | 0.3449 |
-#> |.....................| -2.985 | 0.7407 | 0.3269 | -1.581 |
-#> |.....................| -1.064 |...........|...........|...........|
-#> | 43| 752.14828 | 0.9957 | -0.9743 | -1.038 | -1.040 |
-#> |.....................| -0.6457 | -0.9684 | -0.9119 | -0.6984 |
-#> |.....................| -0.7843 |...........|...........|...........|
-#> | U| 752.14828 | 86.16 | -3.211 | -4.605 | -0.3785 |
-#> |.....................| 4.658 | 0.6414 | 0.8720 | 1.359 |
-#> |.....................| 1.057 |...........|...........|...........|
-#> | X| 752.14828 | 86.16 | 0.04031 | 0.01000 | 0.4065 |
-#> |.....................| 4.658 | 0.6414 | 0.8720 | 1.359 |
-#> |.....................| 1.057 |...........|...........|...........|
-#> | F| Forward Diff. | 12.68 | 0.008742 | 0.2033 | 0.3626 |
-#> |.....................| -1.835 | 0.8163 | 0.2532 | -1.452 |
-#> |.....................| -0.9466 |...........|...........|...........|
-#> | 44| 752.12689 | 0.9938 | -0.9744 | -1.038 | -1.049 |
-#> |.....................| -0.6468 | -0.9706 | -0.9116 | -0.6946 |
-#> |.....................| -0.7819 |...........|...........|...........|
-#> | U| 752.12689 | 86.00 | -3.211 | -4.606 | -0.3814 |
-#> |.....................| 4.656 | 0.6399 | 0.8723 | 1.363 |
-#> |.....................| 1.059 |...........|...........|...........|
-#> | X| 752.12689 | 86.00 | 0.04030 | 0.009996 | 0.4058 |
-#> |.....................| 4.656 | 0.6399 | 0.8723 | 1.363 |
-#> |.....................| 1.059 |...........|...........|...........|
-#> | F| Forward Diff. | -0.08747 | 0.01751 | 0.1808 | 0.3434 |
-#> |.....................| -2.013 | 0.5634 | 0.2760 | -1.320 |
-#> |.....................| -0.7971 |...........|...........|...........|
-#> | 45| 752.10460 | 0.9941 | -0.9745 | -1.039 | -1.050 |
-#> |.....................| -0.6390 | -0.9728 | -0.9127 | -0.6895 |
-#> |.....................| -0.7788 |...........|...........|...........|
-#> | U| 752.1046 | 86.03 | -3.211 | -4.606 | -0.3818 |
-#> |.....................| 4.673 | 0.6383 | 0.8713 | 1.369 |
-#> |.....................| 1.062 |...........|...........|...........|
-#> | X| 752.1046 | 86.03 | 0.04030 | 0.009989 | 0.4057 |
-#> |.....................| 4.673 | 0.6383 | 0.8713 | 1.369 |
-#> |.....................| 1.062 |...........|...........|...........|
-#> | 46| 752.09051 | 0.9947 | -0.9746 | -1.040 | -1.052 |
-#> |.....................| -0.6247 | -0.9768 | -0.9147 | -0.6801 |
-#> |.....................| -0.7732 |...........|...........|...........|
-#> | U| 752.09051 | 86.08 | -3.211 | -4.608 | -0.3827 |
-#> |.....................| 4.704 | 0.6355 | 0.8695 | 1.380 |
-#> |.....................| 1.067 |...........|...........|...........|
-#> | X| 752.09051 | 86.08 | 0.04030 | 0.009976 | 0.4055 |
-#> |.....................| 4.704 | 0.6355 | 0.8695 | 1.380 |
-#> |.....................| 1.067 |...........|...........|...........|
-#> | F| Forward Diff. | 5.771 | 0.01029 | 0.1542 | 0.3620 |
-#> |.....................| 0.8997 | 0.2873 | 0.01810 | -0.9019 |
-#> |.....................| -0.3639 |...........|...........|...........|
-#> | 47| 752.06630 | 0.9944 | -0.9751 | -1.045 | -1.068 |
-#> |.....................| -0.6300 | -0.9815 | -0.9184 | -0.6573 |
-#> |.....................| -0.7726 |...........|...........|...........|
-#> | U| 752.0663 | 86.05 | -3.212 | -4.613 | -0.3878 |
-#> |.....................| 4.692 | 0.6323 | 0.8661 | 1.407 |
-#> |.....................| 1.068 |...........|...........|...........|
-#> | X| 752.0663 | 86.05 | 0.04028 | 0.009926 | 0.4043 |
-#> |.....................| 4.692 | 0.6323 | 0.8661 | 1.407 |
-#> |.....................| 1.068 |...........|...........|...........|
-#> | F| Forward Diff. | 3.128 | 0.007908 | 0.004436 | 0.3353 |
-#> |.....................| 0.2209 | 0.1645 | -0.3029 | -0.2852 |
-#> |.....................| -0.2419 |...........|...........|...........|
-#> | 48| 752.06241 | 0.9926 | -0.9758 | -1.042 | -1.095 |
-#> |.....................| -0.6306 | -0.9841 | -0.9113 | -0.6557 |
-#> |.....................| -0.7685 |...........|...........|...........|
-#> | U| 752.06241 | 85.89 | -3.213 | -4.609 | -0.3969 |
-#> |.....................| 4.691 | 0.6304 | 0.8725 | 1.408 |
-#> |.....................| 1.072 |...........|...........|...........|
-#> | X| 752.06241 | 85.89 | 0.04025 | 0.009958 | 0.4021 |
-#> |.....................| 4.691 | 0.6304 | 0.8725 | 1.408 |
-#> |.....................| 1.072 |...........|...........|...........|
-#> | F| Forward Diff. | -8.924 | 0.01284 | 0.1020 | 0.2919 |
-#> |.....................| 0.1011 | -0.08995 | 0.3194 | -0.2130 |
-#> |.....................| -0.05120 |...........|...........|...........|
-#> | 49| 752.04768 | 0.9941 | -0.9763 | -1.043 | -1.124 |
-#> |.....................| -0.6313 | -0.9862 | -0.9116 | -0.6566 |
-#> |.....................| -0.7644 |...........|...........|...........|
-#> | U| 752.04768 | 86.02 | -3.213 | -4.611 | -0.4065 |
-#> |.....................| 4.690 | 0.6289 | 0.8723 | 1.407 |
-#> |.....................| 1.076 |...........|...........|...........|
-#> | X| 752.04768 | 86.02 | 0.04023 | 0.009946 | 0.3998 |
-#> |.....................| 4.690 | 0.6289 | 0.8723 | 1.407 |
-#> |.....................| 1.076 |...........|...........|...........|
-#> | F| Forward Diff. | 0.04447 | 0.001311 | 0.1345 | 0.2729 |
-#> |.....................| 0.05334 | -0.06694 | 0.2984 | -0.1966 |
-#> |.....................| 0.06514 |...........|...........|...........|
-#> | 50| 752.04768 | 0.9941 | -0.9763 | -1.043 | -1.124 |
-#> |.....................| -0.6313 | -0.9862 | -0.9116 | -0.6566 |
-#> |.....................| -0.7644 |...........|...........|...........|
-#> | U| 752.04768 | 86.02 | -3.213 | -4.611 | -0.4065 |
-#> |.....................| 4.690 | 0.6289 | 0.8723 | 1.407 |
-#> |.....................| 1.076 |...........|...........|...........|
-#> | X| 752.04768 | 86.02 | 0.04023 | 0.009946 | 0.3998 |
-#> |.....................| 4.690 | 0.6289 | 0.8723 | 1.407 |
-#> |.....................| 1.076 |...........|...........|...........|
-#> calculating covariance matrix
-#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
-#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#> F: Forward difference gradient approximation
-#> C: Central difference gradient approximation
-#> M: Mixed forward and central difference gradient approximation
-#> Unscaled parameters for Omegas=chol(solve(omega));
-#> Diagonals are transformed, as specified by foceiControl(diagXform=)
-#> |-----+---------------+-----------+-----------+-----------+-----------|
-#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
-#> |.....................| log_beta | sigma | o1 | o2 |
-#> |.....................| o3 | o4 | o5 |...........|
-#> | 1| 491.68697 | 1.000 | -1.000 | -0.9113 | -0.8954 |
-#> |.....................| -0.8491 | -0.8582 | -0.8760 | -0.8739 |
-#> |.....................| -0.8673 | -0.8694 | -0.8683 |...........|
-#> | U| 491.68697 | 94.21 | -5.416 | -0.9966 | -0.2046 |
-#> |.....................| 2.098 | 1.647 | 0.7612 | 0.8665 |
-#> |.....................| 1.192 | 1.089 | 1.144 |...........|
-#> | X| 491.68697 | 94.21 | 0.004447 | 0.2696 | 0.8150 |
-#> |.....................| 8.153 | 1.647 | 0.7612 | 0.8665 |
-#> |.....................| 1.192 | 1.089 | 1.144 |...........|
-#> | G| Gill Diff. | 19.86 | 1.831 | -0.1132 | -0.03447 |
-#> |.....................| -0.1365 | -48.08 | 10.28 | 8.952 |
-#> |.....................| -12.04 | -8.764 | -10.61 |...........|
-#> | 2| 1105.9428 | 0.6506 | -1.032 | -0.9093 | -0.8948 |
-#> |.....................| -0.8467 | -0.01215 | -1.057 | -1.031 |
-#> |.....................| -0.6554 | -0.7152 | -0.6817 |...........|
-#> | U| 1105.9428 | 61.29 | -5.448 | -0.9946 | -0.2040 |
-#> |.....................| 2.101 | 2.344 | 0.6235 | 0.7300 |
-#> |.....................| 1.445 | 1.256 | 1.357 |...........|
-#> | X| 1105.9428 | 61.29 | 0.004306 | 0.2700 | 0.8155 |
-#> |.....................| 8.173 | 2.344 | 0.6235 | 0.7300 |
-#> |.....................| 1.445 | 1.256 | 1.357 |...........|
-#> | 3| 499.02505 | 0.9651 | -1.003 | -0.9111 | -0.8953 |
-#> |.....................| -0.8489 | -0.7736 | -0.8941 | -0.8896 |
-#> |.....................| -0.8462 | -0.8540 | -0.8497 |...........|
-#> | U| 499.02505 | 90.91 | -5.419 | -0.9964 | -0.2045 |
-#> |.....................| 2.099 | 1.717 | 0.7475 | 0.8529 |
-#> |.....................| 1.217 | 1.105 | 1.165 |...........|
-#> | X| 499.02505 | 90.91 | 0.004433 | 0.2696 | 0.8150 |
-#> |.....................| 8.155 | 1.717 | 0.7475 | 0.8529 |
-#> |.....................| 1.217 | 1.105 | 1.165 |...........|
-#> | 4| 491.11153 | 0.9924 | -1.001 | -0.9112 | -0.8954 |
-#> |.....................| -0.8491 | -0.8397 | -0.8799 | -0.8773 |
-#> |.....................| -0.8627 | -0.8661 | -0.8642 |...........|
-#> | U| 491.11153 | 93.49 | -5.416 | -0.9966 | -0.2046 |
-#> |.....................| 2.098 | 1.663 | 0.7582 | 0.8635 |
-#> |.....................| 1.198 | 1.092 | 1.148 |...........|
-#> | X| 491.11153 | 93.49 | 0.004444 | 0.2696 | 0.8150 |
-#> |.....................| 8.154 | 1.663 | 0.7582 | 0.8635 |
-#> |.....................| 1.198 | 1.092 | 1.148 |...........|
-#> | F| Forward Diff. | -141.0 | 1.761 | -0.2309 | -0.1084 |
-#> |.....................| -0.3671 | -44.06 | 11.23 | 7.698 |
-#> |.....................| -11.77 | -8.480 | -10.17 |...........|
-#> | 5| 489.72110 | 1.001 | -1.001 | -0.9112 | -0.8954 |
-#> |.....................| -0.8490 | -0.8217 | -0.8840 | -0.8806 |
-#> |.....................| -0.8581 | -0.8627 | -0.8602 |...........|
-#> | U| 489.7211 | 94.29 | -5.417 | -0.9965 | -0.2046 |
-#> |.....................| 2.099 | 1.678 | 0.7552 | 0.8607 |
-#> |.....................| 1.203 | 1.096 | 1.153 |...........|
-#> | X| 489.7211 | 94.29 | 0.004441 | 0.2696 | 0.8150 |
-#> |.....................| 8.154 | 1.678 | 0.7552 | 0.8607 |
-#> |.....................| 1.203 | 1.096 | 1.153 |...........|
-#> | F| Forward Diff. | 37.99 | 1.786 | -0.09663 | -0.03934 |
-#> |.....................| -0.1210 | -40.49 | 9.520 | 7.642 |
-#> |.....................| -11.65 | -8.313 | -10.04 |...........|
-#> | 6| 488.87741 | 0.9957 | -1.002 | -0.9111 | -0.8953 |
-#> |.....................| -0.8490 | -0.8027 | -0.8883 | -0.8842 |
-#> |.....................| -0.8530 | -0.8591 | -0.8558 |...........|
-#> | U| 488.87741 | 93.80 | -5.418 | -0.9965 | -0.2045 |
-#> |.....................| 2.099 | 1.693 | 0.7519 | 0.8576 |
-#> |.....................| 1.209 | 1.100 | 1.158 |...........|
-#> | X| 488.87741 | 93.80 | 0.004437 | 0.2696 | 0.8150 |
-#> |.....................| 8.155 | 1.693 | 0.7519 | 0.8576 |
-#> |.....................| 1.209 | 1.100 | 1.158 |...........|
-#> | F| Forward Diff. | -68.52 | 1.732 | -0.1791 | -0.08434 |
-#> |.....................| -0.2775 | -36.72 | 9.505 | 7.234 |
-#> |.....................| -11.37 | -8.098 | -9.790 |...........|
-#> | 7| 487.98842 | 1.002 | -1.003 | -0.9111 | -0.8953 |
-#> |.....................| -0.8489 | -0.7841 | -0.8926 | -0.8878 |
-#> |.....................| -0.8478 | -0.8553 | -0.8512 |...........|
-#> | U| 487.98842 | 94.37 | -5.418 | -0.9964 | -0.2045 |
-#> |.....................| 2.099 | 1.708 | 0.7486 | 0.8545 |
-#> |.....................| 1.215 | 1.104 | 1.163 |...........|
-#> | X| 487.98842 | 94.37 | 0.004434 | 0.2697 | 0.8150 |
-#> |.....................| 8.156 | 1.708 | 0.7486 | 0.8545 |
-#> |.....................| 1.215 | 1.104 | 1.163 |...........|
-#> | F| Forward Diff. | 53.83 | 1.743 | -0.07921 | -0.03701 |
-#> |.....................| -0.09401 | -33.22 | 8.823 | 7.101 |
-#> |.....................| -11.24 | -7.914 | -9.621 |...........|
-#> | 8| 487.18834 | 0.9967 | -1.004 | -0.9110 | -0.8953 |
-#> |.....................| -0.8488 | -0.7657 | -0.8973 | -0.8916 |
-#> |.....................| -0.8421 | -0.8512 | -0.8463 |...........|
-#> | U| 487.18834 | 93.89 | -5.419 | -0.9963 | -0.2045 |
-#> |.....................| 2.099 | 1.724 | 0.7451 | 0.8512 |
-#> |.....................| 1.222 | 1.108 | 1.169 |...........|
-#> | X| 487.18834 | 93.89 | 0.004430 | 0.2697 | 0.8151 |
-#> |.....................| 8.156 | 1.724 | 0.7451 | 0.8512 |
-#> |.....................| 1.222 | 1.108 | 1.169 |...........|
-#> | F| Forward Diff. | -47.29 | 1.692 | -0.1608 | -0.08286 |
-#> |.....................| -0.2512 | -29.89 | 8.493 | 6.629 |
-#> |.....................| -10.92 | -7.677 | -9.350 |...........|
-#> | 9| 486.46922 | 1.002 | -1.005 | -0.9109 | -0.8952 |
-#> |.....................| -0.8487 | -0.7480 | -0.9022 | -0.8958 |
-#> |.....................| -0.8355 | -0.8466 | -0.8406 |...........|
-#> | U| 486.46922 | 94.36 | -5.420 | -0.9963 | -0.2045 |
-#> |.....................| 2.099 | 1.738 | 0.7413 | 0.8476 |
-#> |.....................| 1.230 | 1.113 | 1.175 |...........|
-#> | X| 486.46922 | 94.36 | 0.004425 | 0.2697 | 0.8151 |
-#> |.....................| 8.157 | 1.738 | 0.7413 | 0.8476 |
-#> |.....................| 1.230 | 1.113 | 1.175 |...........|
-#> | F| Forward Diff. | 49.83 | 1.694 | -0.07480 | -0.03429 |
-#> |.....................| -0.09436 | -26.68 | 8.123 | 6.503 |
-#> |.....................| -10.68 | -7.439 | -9.119 |...........|
-#> | 10| 485.78721 | 0.9968 | -1.006 | -0.9109 | -0.8952 |
-#> |.....................| -0.8486 | -0.7319 | -0.9078 | -0.9005 |
-#> |.....................| -0.8277 | -0.8412 | -0.8339 |...........|
-#> | U| 485.78721 | 93.91 | -5.422 | -0.9962 | -0.2044 |
-#> |.....................| 2.099 | 1.752 | 0.7370 | 0.8435 |
-#> |.....................| 1.239 | 1.119 | 1.183 |...........|
-#> | X| 485.78721 | 93.91 | 0.004420 | 0.2697 | 0.8151 |
-#> |.....................| 8.158 | 1.752 | 0.7370 | 0.8435 |
-#> |.....................| 1.239 | 1.119 | 1.183 |...........|
-#> | F| Forward Diff. | -42.45 | 1.646 | -0.1526 | -0.07491 |
-#> |.....................| -0.2510 | -24.12 | 7.576 | 5.974 |
-#> |.....................| -10.35 | -7.128 | -8.768 |...........|
-#> | 11| 485.17009 | 1.001 | -1.008 | -0.9107 | -0.8952 |
-#> |.....................| -0.8484 | -0.7183 | -0.9141 | -0.9058 |
-#> |.....................| -0.8180 | -0.8347 | -0.8257 |...........|
-#> | U| 485.17009 | 94.32 | -5.423 | -0.9961 | -0.2044 |
-#> |.....................| 2.099 | 1.763 | 0.7322 | 0.8389 |
-#> |.....................| 1.251 | 1.126 | 1.192 |...........|
-#> | X| 485.17009 | 94.32 | 0.004413 | 0.2697 | 0.8152 |
-#> |.....................| 8.160 | 1.763 | 0.7322 | 0.8389 |
-#> |.....................| 1.251 | 1.126 | 1.192 |...........|
-#> | 12| 484.56759 | 1.002 | -1.010 | -0.9106 | -0.8951 |
-#> |.....................| -0.8481 | -0.7038 | -0.9212 | -0.9119 |
-#> |.....................| -0.8067 | -0.8272 | -0.8163 |...........|
-#> | U| 484.56759 | 94.37 | -5.425 | -0.9959 | -0.2043 |
-#> |.....................| 2.099 | 1.775 | 0.7268 | 0.8336 |
-#> |.....................| 1.264 | 1.134 | 1.203 |...........|
-#> | X| 484.56759 | 94.37 | 0.004404 | 0.2697 | 0.8152 |
-#> |.....................| 8.162 | 1.775 | 0.7268 | 0.8336 |
-#> |.....................| 1.264 | 1.134 | 1.203 |...........|
-#> | 13| 483.17982 | 1.003 | -1.015 | -0.9102 | -0.8949 |
-#> |.....................| -0.8475 | -0.6634 | -0.9410 | -0.9287 |
-#> |.....................| -0.7754 | -0.8064 | -0.7900 |...........|
-#> | U| 483.17982 | 94.51 | -5.431 | -0.9956 | -0.2042 |
-#> |.....................| 2.100 | 1.808 | 0.7117 | 0.8190 |
-#> |.....................| 1.302 | 1.157 | 1.233 |...........|
-#> | X| 483.17982 | 94.51 | 0.004381 | 0.2698 | 0.8153 |
-#> |.....................| 8.167 | 1.808 | 0.7117 | 0.8190 |
-#> |.....................| 1.302 | 1.157 | 1.233 |...........|
-#> | F| Forward Diff. | 68.60 | 1.559 | 0.008498 | -0.01857 |
-#> |.....................| -0.01950 | -13.38 | 5.413 | 4.461 |
-#> |.....................| -8.084 | -5.202 | -6.751 |...........|
-#> | 14| 482.50435 | 0.9937 | -1.034 | -0.9105 | -0.8944 |
-#> |.....................| -0.8462 | -0.6947 | -0.9713 | -0.9553 |
-#> |.....................| -0.7043 | -0.7694 | -0.7343 |...........|
-#> | U| 482.50435 | 93.61 | -5.449 | -0.9958 | -0.2036 |
-#> |.....................| 2.101 | 1.782 | 0.6887 | 0.7959 |
-#> |.....................| 1.386 | 1.197 | 1.297 |...........|
-#> | X| 482.50435 | 93.61 | 0.004300 | 0.2698 | 0.8158 |
-#> |.....................| 8.177 | 1.782 | 0.6887 | 0.7959 |
-#> |.....................| 1.386 | 1.197 | 1.297 |...........|
-#> | F| Forward Diff. | -85.62 | 1.442 | -0.1650 | -0.08233 |
-#> |.....................| -0.3434 | -17.31 | 3.930 | 3.048 |
-#> |.....................| -4.934 | -3.045 | -4.080 |...........|
-#> | 15| 481.97261 | 1.003 | -1.090 | -0.9106 | -0.8929 |
-#> |.....................| -0.8403 | -0.7109 | -0.9936 | -0.9798 |
-#> |.....................| -0.6305 | -0.7595 | -0.6850 |...........|
-#> | U| 481.97261 | 94.53 | -5.505 | -0.9959 | -0.2021 |
-#> |.....................| 2.107 | 1.769 | 0.6717 | 0.7747 |
-#> |.....................| 1.474 | 1.208 | 1.353 |...........|
-#> | X| 481.97261 | 94.53 | 0.004066 | 0.2697 | 0.8170 |
-#> |.....................| 8.226 | 1.769 | 0.6717 | 0.7747 |
-#> |.....................| 1.474 | 1.208 | 1.353 |...........|
-#> | F| Forward Diff. | 56.89 | 1.274 | 0.1237 | 0.02279 |
-#> |.....................| 0.2367 | -19.64 | 1.923 | 2.281 |
-#> |.....................| -1.663 | -2.419 | -1.870 |...........|
-#> | 16| 481.06506 | 1.001 | -1.169 | -0.9152 | -0.8919 |
-#> |.....................| -0.8407 | -0.6475 | -0.9528 | -0.9773 |
-#> |.....................| -0.6368 | -0.7786 | -0.6952 |...........|
-#> | U| 481.06506 | 94.29 | -5.585 | -1.000 | -0.2011 |
-#> |.....................| 2.107 | 1.821 | 0.7028 | 0.7769 |
-#> |.....................| 1.467 | 1.187 | 1.341 |...........|
-#> | X| 481.06506 | 94.29 | 0.003755 | 0.2688 | 0.8179 |
-#> |.....................| 8.223 | 1.821 | 0.7028 | 0.7769 |
-#> |.....................| 1.467 | 1.187 | 1.341 |...........|
-#> | F| Forward Diff. | 24.24 | 0.9898 | -0.1087 | 0.01886 |
-#> |.....................| 0.1247 | -10.78 | 3.743 | 2.188 |
-#> |.....................| -2.085 | -3.507 | -2.452 |...........|
-#> | 17| 481.22982 | 0.9921 | -1.212 | -0.9099 | -0.8928 |
-#> |.....................| -0.8459 | -0.6315 | -1.015 | -0.9814 |
-#> |.....................| -0.6906 | -0.7213 | -0.7106 |...........|
-#> | U| 481.22982 | 93.46 | -5.628 | -0.9952 | -0.2020 |
-#> |.....................| 2.102 | 1.834 | 0.6553 | 0.7733 |
-#> |.....................| 1.403 | 1.250 | 1.324 |...........|
-#> | X| 481.22982 | 93.46 | 0.003596 | 0.2699 | 0.8171 |
-#> |.....................| 8.180 | 1.834 | 0.6553 | 0.7733 |
-#> |.....................| 1.403 | 1.250 | 1.324 |...........|
-#> | 18| 481.29798 | 0.9919 | -1.186 | -0.9131 | -0.8922 |
-#> |.....................| -0.8428 | -0.6388 | -0.9780 | -0.9794 |
-#> |.....................| -0.6574 | -0.7554 | -0.7007 |...........|
-#> | U| 481.29798 | 93.44 | -5.602 | -0.9984 | -0.2014 |
-#> |.....................| 2.105 | 1.828 | 0.6836 | 0.7751 |
-#> |.....................| 1.442 | 1.213 | 1.335 |...........|
-#> | X| 481.29798 | 93.44 | 0.003691 | 0.2693 | 0.8176 |
-#> |.....................| 8.206 | 1.828 | 0.6836 | 0.7751 |
-#> |.....................| 1.442 | 1.213 | 1.335 |...........|
-#> | 19| 481.41397 | 0.9918 | -1.173 | -0.9147 | -0.8919 |
-#> |.....................| -0.8412 | -0.6424 | -0.9596 | -0.9784 |
-#> |.....................| -0.6408 | -0.7724 | -0.6957 |...........|
-#> | U| 481.41397 | 93.43 | -5.589 | -1.000 | -0.2012 |
-#> |.....................| 2.106 | 1.825 | 0.6976 | 0.7759 |
-#> |.....................| 1.462 | 1.194 | 1.341 |...........|
-#> | X| 481.41397 | 93.43 | 0.003739 | 0.2689 | 0.8178 |
-#> |.....................| 8.219 | 1.825 | 0.6976 | 0.7759 |
-#> |.....................| 1.462 | 1.194 | 1.341 |...........|
-#> | 20| 481.05031 | 0.9977 | -1.169 | -0.9152 | -0.8919 |
-#> |.....................| -0.8407 | -0.6461 | -0.9533 | -0.9776 |
-#> |.....................| -0.6366 | -0.7782 | -0.6949 |...........|
-#> | U| 481.05031 | 93.99 | -5.585 | -1.000 | -0.2011 |
-#> |.....................| 2.107 | 1.822 | 0.7024 | 0.7766 |
-#> |.....................| 1.467 | 1.188 | 1.342 |...........|
-#> | X| 481.05031 | 93.99 | 0.003754 | 0.2688 | 0.8179 |
-#> |.....................| 8.223 | 1.822 | 0.7024 | 0.7766 |
-#> |.....................| 1.467 | 1.188 | 1.342 |...........|
-#> | F| Forward Diff. | -27.42 | 0.9768 | -0.2107 | -0.01109 |
-#> |.....................| -0.02839 | -10.63 | 3.585 | 2.076 |
-#> |.....................| -2.082 | -3.487 | -2.432 |...........|
-#> | 21| 481.00693 | 0.9997 | -1.170 | -0.9150 | -0.8919 |
-#> |.....................| -0.8408 | -0.6450 | -0.9548 | -0.9778 |
-#> |.....................| -0.6377 | -0.7765 | -0.6951 |...........|
-#> | U| 481.00693 | 94.18 | -5.586 | -1.000 | -0.2011 |
-#> |.....................| 2.107 | 1.823 | 0.7012 | 0.7764 |
-#> |.....................| 1.466 | 1.190 | 1.342 |...........|
-#> | X| 481.00693 | 94.18 | 0.003750 | 0.2689 | 0.8178 |
-#> |.....................| 8.222 | 1.823 | 0.7012 | 0.7764 |
-#> |.....................| 1.466 | 1.190 | 1.342 |...........|
-#> | F| Forward Diff. | 5.549 | 0.9801 | -0.1366 | 0.007724 |
-#> |.....................| 0.06864 | -10.47 | 3.736 | 2.095 |
-#> |.....................| -2.145 | -3.386 | -2.439 |...........|
-#> | 22| 480.97727 | 0.9982 | -1.171 | -0.9150 | -0.8919 |
-#> |.....................| -0.8408 | -0.6422 | -0.9558 | -0.9784 |
-#> |.....................| -0.6371 | -0.7756 | -0.6944 |...........|
-#> | U| 480.97727 | 94.04 | -5.586 | -1.000 | -0.2011 |
-#> |.....................| 2.107 | 1.825 | 0.7005 | 0.7760 |
-#> |.....................| 1.466 | 1.191 | 1.342 |...........|
-#> | X| 480.97727 | 94.04 | 0.003749 | 0.2689 | 0.8178 |
-#> |.....................| 8.222 | 1.825 | 0.7005 | 0.7760 |
-#> |.....................| 1.466 | 1.191 | 1.342 |...........|
-#> | F| Forward Diff. | -18.22 | 0.9728 | -0.1820 | -0.005388 |
-#> |.....................| -0.004679 | -10.15 | 3.348 | 1.956 |
-#> |.....................| -2.141 | -3.348 | -2.415 |...........|
-#> | 23| 480.94781 | 0.9999 | -1.172 | -0.9148 | -0.8919 |
-#> |.....................| -0.8410 | -0.6410 | -0.9575 | -0.9785 |
-#> |.....................| -0.6383 | -0.7738 | -0.6946 |...........|
-#> | U| 480.94781 | 94.20 | -5.587 | -1.000 | -0.2011 |
-#> |.....................| 2.107 | 1.826 | 0.6992 | 0.7758 |
-#> |.....................| 1.465 | 1.193 | 1.342 |...........|
-#> | X| 480.94781 | 94.20 | 0.003745 | 0.2689 | 0.8178 |
-#> |.....................| 8.220 | 1.826 | 0.6992 | 0.7758 |
-#> |.....................| 1.465 | 1.193 | 1.342 |...........|
-#> | F| Forward Diff. | 8.568 | 0.9740 | -0.1199 | 0.009837 |
-#> |.....................| 0.07469 | -9.926 | 3.371 | 0.7973 |
-#> |.....................| -2.181 | -3.230 | -2.408 |...........|
-#> | 24| 480.92664 | 0.9984 | -1.173 | -0.9147 | -0.8919 |
-#> |.....................| -0.8411 | -0.6390 | -0.9589 | -0.9778 |
-#> |.....................| -0.6386 | -0.7721 | -0.6942 |...........|
-#> | U| 480.92664 | 94.06 | -5.588 | -1.000 | -0.2011 |
-#> |.....................| 2.107 | 1.828 | 0.6981 | 0.7765 |
-#> |.....................| 1.465 | 1.195 | 1.343 |...........|
-#> | X| 480.92664 | 94.06 | 0.003741 | 0.2689 | 0.8178 |
-#> |.....................| 8.219 | 1.828 | 0.6981 | 0.7765 |
-#> |.....................| 1.465 | 1.195 | 1.343 |...........|
-#> | F| Forward Diff. | -15.24 | 0.9644 | -0.1632 | -0.002739 |
-#> |.....................| -0.008738 | -9.656 | 3.177 | 0.7945 |
-#> |.....................| -2.140 | -3.159 | -2.407 |...........|
-#> | 25| 480.90633 | 0.9999 | -1.174 | -0.9146 | -0.8920 |
-#> |.....................| -0.8412 | -0.6376 | -0.9602 | -0.9760 |
-#> |.....................| -0.6390 | -0.7705 | -0.6939 |...........|
-#> | U| 480.90633 | 94.20 | -5.589 | -0.9999 | -0.2012 |
-#> |.....................| 2.106 | 1.829 | 0.6971 | 0.7780 |
-#> |.....................| 1.464 | 1.196 | 1.343 |...........|
-#> | X| 480.90633 | 94.20 | 0.003737 | 0.2690 | 0.8178 |
-#> |.....................| 8.219 | 1.829 | 0.6971 | 0.7780 |
-#> |.....................| 1.464 | 1.196 | 1.343 |...........|
-#> | F| Forward Diff. | 8.878 | 0.9654 | -0.1149 | 0.008298 |
-#> |.....................| 0.06381 | -9.456 | 3.199 | 2.165 |
-#> |.....................| -2.158 | -3.035 | -2.359 |...........|
-#> | 26| 480.88677 | 0.9984 | -1.175 | -0.9145 | -0.8920 |
-#> |.....................| -0.8413 | -0.6358 | -0.9617 | -0.9757 |
-#> |.....................| -0.6395 | -0.7687 | -0.6936 |...........|
-#> | U| 480.88677 | 94.05 | -5.591 | -0.9998 | -0.2012 |
-#> |.....................| 2.106 | 1.831 | 0.6960 | 0.7783 |
-#> |.....................| 1.464 | 1.198 | 1.343 |...........|
-#> | X| 480.88677 | 94.05 | 0.003733 | 0.2690 | 0.8178 |
-#> |.....................| 8.218 | 1.831 | 0.6960 | 0.7783 |
-#> |.....................| 1.464 | 1.198 | 1.343 |...........|
-#> | F| Forward Diff. | -15.55 | 0.9550 | -0.1566 | -0.004027 |
-#> |.....................| -0.01529 | -9.334 | 3.082 | 0.8457 |
-#> |.....................| -2.216 | -2.967 | -2.371 |...........|
-#> | 27| 480.86430 | 0.9998 | -1.177 | -0.9143 | -0.8920 |
-#> |.....................| -0.8414 | -0.6346 | -0.9633 | -0.9749 |
-#> |.....................| -0.6404 | -0.7668 | -0.6935 |...........|
-#> | U| 480.8643 | 94.19 | -5.592 | -0.9996 | -0.2012 |
-#> |.....................| 2.106 | 1.832 | 0.6948 | 0.7790 |
-#> |.....................| 1.463 | 1.200 | 1.343 |...........|
-#> | X| 480.8643 | 94.19 | 0.003727 | 0.2690 | 0.8177 |
-#> |.....................| 8.217 | 1.832 | 0.6948 | 0.7790 |
-#> |.....................| 1.463 | 1.200 | 1.343 |...........|
-#> | F| Forward Diff. | 6.756 | 0.9537 | -0.1079 | 0.006011 |
-#> |.....................| 0.04748 | -9.023 | 3.021 | 2.222 |
-#> |.....................| -2.227 | -2.836 | -2.339 |...........|
-#> | 28| 480.84403 | 0.9982 | -1.178 | -0.9142 | -0.8920 |
-#> |.....................| -0.8415 | -0.6324 | -0.9646 | -0.9751 |
-#> |.....................| -0.6405 | -0.7653 | -0.6931 |...........|
-#> | U| 480.84403 | 94.04 | -5.593 | -0.9995 | -0.2012 |
-#> |.....................| 2.106 | 1.833 | 0.6938 | 0.7788 |
-#> |.....................| 1.462 | 1.202 | 1.344 |...........|
-#> | X| 480.84403 | 94.04 | 0.003723 | 0.2690 | 0.8177 |
-#> |.....................| 8.216 | 1.833 | 0.6938 | 0.7788 |
-#> |.....................| 1.462 | 1.202 | 1.344 |...........|
-#> | F| Forward Diff. | -17.74 | 0.9443 | -0.1486 | -0.005686 |
-#> |.....................| -0.02964 | -8.905 | 2.905 | 2.091 |
-#> |.....................| -2.264 | -2.753 | -2.319 |...........|
-#> | 29| 480.81486 | 0.9998 | -1.179 | -0.9140 | -0.8921 |
-#> |.....................| -0.8417 | -0.6315 | -0.9657 | -0.9770 |
-#> |.....................| -0.6415 | -0.7640 | -0.6932 |...........|
-#> | U| 480.81486 | 94.18 | -5.595 | -0.9993 | -0.2013 |
-#> |.....................| 2.106 | 1.834 | 0.6930 | 0.7772 |
-#> |.....................| 1.461 | 1.203 | 1.344 |...........|
-#> | X| 480.81486 | 94.18 | 0.003718 | 0.2691 | 0.8177 |
-#> |.....................| 8.215 | 1.834 | 0.6930 | 0.7772 |
-#> |.....................| 1.461 | 1.203 | 1.344 |...........|
-#> | F| Forward Diff. | 6.172 | 0.9439 | -0.09077 | 0.005496 |
-#> |.....................| 0.04002 | -8.557 | 3.060 | 0.8688 |
-#> |.....................| -2.237 | -2.681 | -2.329 |...........|
-#> | 30| 480.79675 | 0.9982 | -1.180 | -0.9139 | -0.8921 |
-#> |.....................| -0.8418 | -0.6292 | -0.9672 | -0.9770 |
-#> |.....................| -0.6415 | -0.7628 | -0.6927 |...........|
-#> | U| 480.79675 | 94.04 | -5.596 | -0.9992 | -0.2013 |
-#> |.....................| 2.106 | 1.836 | 0.6918 | 0.7772 |
-#> |.....................| 1.461 | 1.205 | 1.344 |...........|
-#> | X| 480.79675 | 94.04 | 0.003714 | 0.2691 | 0.8177 |
-#> |.....................| 8.214 | 1.836 | 0.6918 | 0.7772 |
-#> |.....................| 1.461 | 1.205 | 1.344 |...........|
-#> | F| Forward Diff. | -18.05 | 0.9344 | -0.1333 | -0.006636 |
-#> |.....................| -0.03697 | -8.406 | 2.763 | 0.7695 |
-#> |.....................| -2.291 | -2.623 | -2.307 |...........|
-#> | 31| 480.77804 | 0.9997 | -1.182 | -0.9138 | -0.8921 |
-#> |.....................| -0.8419 | -0.6281 | -0.9686 | -0.9750 |
-#> |.....................| -0.6417 | -0.7615 | -0.6923 |...........|
-#> | U| 480.77804 | 94.18 | -5.597 | -0.9991 | -0.2013 |
-#> |.....................| 2.106 | 1.837 | 0.6907 | 0.7789 |
-#> |.....................| 1.461 | 1.206 | 1.345 |...........|
-#> | X| 480.77804 | 94.18 | 0.003708 | 0.2691 | 0.8176 |
-#> |.....................| 8.213 | 1.837 | 0.6907 | 0.7789 |
-#> |.....................| 1.461 | 1.206 | 1.345 |...........|
-#> | F| Forward Diff. | 5.466 | 0.9331 | -0.08875 | 0.003744 |
-#> |.....................| 0.02543 | -8.171 | 2.670 | 2.155 |
-#> |.....................| -2.279 | -2.534 | -2.278 |...........|
-#> | 32| 480.75892 | 0.9982 | -1.183 | -0.9137 | -0.8921 |
-#> |.....................| -0.8419 | -0.6258 | -0.9698 | -0.9756 |
-#> |.....................| -0.6414 | -0.7603 | -0.6917 |...........|
-#> | U| 480.75892 | 94.03 | -5.598 | -0.9991 | -0.2014 |
-#> |.....................| 2.106 | 1.839 | 0.6899 | 0.7784 |
-#> |.....................| 1.461 | 1.207 | 1.346 |...........|
-#> | X| 480.75892 | 94.03 | 0.003704 | 0.2691 | 0.8176 |
-#> |.....................| 8.212 | 1.839 | 0.6899 | 0.7784 |
-#> |.....................| 1.461 | 1.207 | 1.346 |...........|
-#> | F| Forward Diff. | -18.29 | 0.9240 | -0.1279 | -0.008301 |
-#> |.....................| -0.04619 | -7.961 | 2.584 | 0.8229 |
-#> |.....................| -2.311 | -2.476 | -2.253 |...........|
-#> | 33| 480.73432 | 0.9997 | -1.185 | -0.9136 | -0.8922 |
-#> |.....................| -0.8421 | -0.6250 | -0.9708 | -0.9758 |
-#> |.....................| -0.6420 | -0.7587 | -0.6914 |...........|
-#> | U| 480.73432 | 94.18 | -5.601 | -0.9989 | -0.2014 |
-#> |.....................| 2.105 | 1.840 | 0.6891 | 0.7782 |
-#> |.....................| 1.461 | 1.209 | 1.346 |...........|
-#> | X| 480.73432 | 94.18 | 0.003695 | 0.2692 | 0.8176 |
-#> |.....................| 8.211 | 1.840 | 0.6891 | 0.7782 |
-#> |.....................| 1.461 | 1.209 | 1.346 |...........|
-#> | F| Forward Diff. | 5.056 | 0.9202 | -0.07575 | 0.002374 |
-#> |.....................| 0.02179 | -7.789 | 2.502 | 2.101 |
-#> |.....................| -2.273 | -2.370 | -2.217 |...........|
-#> | 34| 480.71449 | 0.9983 | -1.187 | -0.9135 | -0.8922 |
-#> |.....................| -0.8422 | -0.6227 | -0.9719 | -0.9765 |
-#> |.....................| -0.6416 | -0.7575 | -0.6908 |...........|
-#> | U| 480.71449 | 94.05 | -5.602 | -0.9988 | -0.2014 |
-#> |.....................| 2.105 | 1.841 | 0.6883 | 0.7776 |
-#> |.....................| 1.461 | 1.210 | 1.347 |...........|
-#> | X| 480.71449 | 94.05 | 0.003690 | 0.2692 | 0.8175 |
-#> |.....................| 8.210 | 1.841 | 0.6883 | 0.7776 |
-#> |.....................| 1.461 | 1.210 | 1.347 |...........|
-#> | F| Forward Diff. | -16.10 | 0.9104 | -0.1099 | -0.008208 |
-#> |.....................| -0.04557 | -7.571 | 2.606 | 1.992 |
-#> |.....................| -2.295 | -2.312 | -2.196 |...........|
-#> | 35| 480.68777 | 0.9997 | -1.189 | -0.9134 | -0.8923 |
-#> |.....................| -0.8423 | -0.6220 | -0.9726 | -0.9789 |
-#> |.....................| -0.6421 | -0.7569 | -0.6908 |...........|
-#> | U| 480.68777 | 94.18 | -5.604 | -0.9987 | -0.2015 |
-#> |.....................| 2.105 | 1.842 | 0.6877 | 0.7755 |
-#> |.....................| 1.461 | 1.211 | 1.347 |...........|
-#> | X| 480.68777 | 94.18 | 0.003683 | 0.2692 | 0.8175 |
-#> |.....................| 8.209 | 1.842 | 0.6877 | 0.7755 |
-#> |.....................| 1.461 | 1.211 | 1.347 |...........|
-#> | F| Forward Diff. | 4.858 | 0.9091 | -0.06076 | 0.001972 |
-#> |.....................| 0.01464 | -7.318 | 2.391 | 0.7174 |
-#> |.....................| -2.245 | -2.255 | -2.188 |...........|
-#> | 36| 480.67297 | 0.9982 | -1.190 | -0.9134 | -0.8923 |
-#> |.....................| -0.8424 | -0.6196 | -0.9738 | -0.9789 |
-#> |.....................| -0.6415 | -0.7559 | -0.6900 |...........|
-#> | U| 480.67297 | 94.03 | -5.605 | -0.9987 | -0.2015 |
-#> |.....................| 2.105 | 1.844 | 0.6868 | 0.7755 |
-#> |.....................| 1.461 | 1.212 | 1.348 |...........|
-#> | X| 480.67297 | 94.03 | 0.003678 | 0.2692 | 0.8175 |
-#> |.....................| 8.209 | 1.844 | 0.6868 | 0.7755 |
-#> |.....................| 1.461 | 1.212 | 1.348 |...........|
-#> | F| Forward Diff. | -18.29 | 0.8994 | -0.1037 | -0.01039 |
-#> |.....................| -0.05604 | -7.086 | 2.324 | 0.6431 |
-#> |.....................| -2.272 | -2.229 | -2.170 |...........|
-#> | 37| 480.65610 | 0.9996 | -1.192 | -0.9134 | -0.8923 |
-#> |.....................| -0.8424 | -0.6187 | -0.9745 | -0.9768 |
-#> |.....................| -0.6410 | -0.7549 | -0.6892 |...........|
-#> | U| 480.6561 | 94.17 | -5.607 | -0.9987 | -0.2015 |
-#> |.....................| 2.105 | 1.845 | 0.6862 | 0.7773 |
-#> |.....................| 1.462 | 1.213 | 1.348 |...........|
-#> | X| 480.6561 | 94.17 | 0.003671 | 0.2692 | 0.8175 |
-#> |.....................| 8.208 | 1.845 | 0.6862 | 0.7773 |
-#> |.....................| 1.462 | 1.213 | 1.348 |...........|
-#> | F| Forward Diff. | 3.523 | 0.8967 | -0.06519 |-0.0005238 |
-#> |.....................| 0.007306 | -6.938 | 2.250 | 0.8205 |
-#> |.....................| -2.209 | -2.143 | -2.109 |...........|
-#> | 38| 480.63930 | 0.9982 | -1.192 | -0.9133 | -0.8923 |
-#> |.....................| -0.8425 | -0.6159 | -0.9754 | -0.9772 |
-#> |.....................| -0.6401 | -0.7540 | -0.6884 |...........|
-#> | U| 480.6393 | 94.04 | -5.608 | -0.9987 | -0.2015 |
-#> |.....................| 2.105 | 1.847 | 0.6856 | 0.7770 |
-#> |.....................| 1.463 | 1.214 | 1.349 |...........|
-#> | X| 480.6393 | 94.04 | 0.003670 | 0.2692 | 0.8175 |
-#> |.....................| 8.208 | 1.847 | 0.6856 | 0.7770 |
-#> |.....................| 1.463 | 1.214 | 1.349 |...........|
-#> | F| Forward Diff. | -17.45 | 0.8903 | -0.1044 | -0.01155 |
-#> |.....................| -0.05881 | -6.641 | 2.195 | 1.966 |
-#> |.....................| -2.207 | -2.119 | -2.090 |...........|
-#> | 39| 480.61554 | 0.9996 | -1.195 | -0.9133 | -0.8924 |
-#> |.....................| -0.8426 | -0.6153 | -0.9757 | -0.9778 |
-#> |.....................| -0.6400 | -0.7531 | -0.6877 |...........|
-#> | U| 480.61554 | 94.16 | -5.611 | -0.9986 | -0.2016 |
-#> |.....................| 2.105 | 1.848 | 0.6853 | 0.7765 |
-#> |.....................| 1.463 | 1.215 | 1.350 |...........|
-#> | X| 480.61554 | 94.16 | 0.003659 | 0.2692 | 0.8174 |
-#> |.....................| 8.207 | 1.848 | 0.6853 | 0.7765 |
-#> |.....................| 1.463 | 1.215 | 1.350 |...........|
-#> | F| Forward Diff. | 2.395 | 0.8850 | -0.05988 | -0.001937 |
-#> |.....................| 0.0008548 | -6.531 | 2.145 | 0.7341 |
-#> |.....................| -2.178 | -2.045 | -2.040 |...........|
-#> | 40| 480.59501 | 0.9985 | -1.195 | -0.9132 | -0.8924 |
-#> |.....................| -0.8426 | -0.6124 | -0.9766 | -0.9781 |
-#> |.....................| -0.6390 | -0.7522 | -0.6868 |...........|
-#> | U| 480.59501 | 94.06 | -5.611 | -0.9986 | -0.2016 |
-#> |.....................| 2.105 | 1.850 | 0.6846 | 0.7762 |
-#> |.....................| 1.464 | 1.216 | 1.351 |...........|
-#> | X| 480.59501 | 94.06 | 0.003658 | 0.2692 | 0.8174 |
-#> |.....................| 8.207 | 1.850 | 0.6846 | 0.7762 |
-#> |.....................| 1.464 | 1.216 | 1.351 |...........|
-#> | F| Forward Diff. | -13.20 | 0.8797 | -0.08878 | -0.01245 |
-#> |.....................| -0.05202 | -6.149 | 2.097 | 1.936 |
-#> |.....................| -2.128 | -2.007 | -2.021 |...........|
-#> | 41| 480.57374 | 0.9995 | -1.198 | -0.9132 | -0.8924 |
-#> |.....................| -0.8426 | -0.6117 | -0.9768 | -0.9794 |
-#> |.....................| -0.6387 | -0.7515 | -0.6862 |...........|
-#> | U| 480.57374 | 94.16 | -5.614 | -0.9986 | -0.2016 |
-#> |.....................| 2.105 | 1.851 | 0.6845 | 0.7751 |
-#> |.....................| 1.464 | 1.217 | 1.352 |...........|
-#> | X| 480.57374 | 94.16 | 0.003647 | 0.2692 | 0.8174 |
-#> |.....................| 8.207 | 1.851 | 0.6845 | 0.7751 |
-#> |.....................| 1.464 | 1.217 | 1.352 |...........|
-#> | 42| 480.55656 | 0.9993 | -1.203 | -0.9133 | -0.8924 |
-#> |.....................| -0.8427 | -0.6115 | -0.9767 | -0.9815 |
-#> |.....................| -0.6386 | -0.7506 | -0.6853 |...........|
-#> | U| 480.55656 | 94.14 | -5.619 | -0.9986 | -0.2016 |
-#> |.....................| 2.105 | 1.851 | 0.6846 | 0.7733 |
-#> |.....................| 1.465 | 1.218 | 1.353 |...........|
-#> | X| 480.55656 | 94.14 | 0.003629 | 0.2692 | 0.8174 |
-#> |.....................| 8.206 | 1.851 | 0.6846 | 0.7733 |
-#> |.....................| 1.465 | 1.218 | 1.353 |...........|
-#> | 43| 480.48642 | 0.9984 | -1.228 | -0.9134 | -0.8925 |
-#> |.....................| -0.8432 | -0.6102 | -0.9761 | -0.9914 |
-#> |.....................| -0.6380 | -0.7463 | -0.6812 |...........|
-#> | U| 480.48642 | 94.05 | -5.643 | -0.9987 | -0.2017 |
-#> |.....................| 2.104 | 1.852 | 0.6850 | 0.7647 |
-#> |.....................| 1.465 | 1.223 | 1.357 |...........|
-#> | X| 480.48642 | 94.05 | 0.003541 | 0.2692 | 0.8174 |
-#> |.....................| 8.202 | 1.852 | 0.6850 | 0.7647 |
-#> |.....................| 1.465 | 1.223 | 1.357 |...........|
-#> | 44| 480.43193 | 0.9946 | -1.325 | -0.9138 | -0.8928 |
-#> |.....................| -0.8452 | -0.6054 | -0.9741 | -1.031 |
-#> |.....................| -0.6354 | -0.7292 | -0.6649 |...........|
-#> | U| 480.43193 | 93.70 | -5.741 | -0.9991 | -0.2020 |
-#> |.....................| 2.102 | 1.856 | 0.6866 | 0.7303 |
-#> |.....................| 1.469 | 1.241 | 1.376 |...........|
-#> | X| 480.43193 | 93.70 | 0.003212 | 0.2691 | 0.8171 |
-#> |.....................| 8.185 | 1.856 | 0.6866 | 0.7303 |
-#> |.....................| 1.469 | 1.241 | 1.376 |...........|
-#> | F| Forward Diff. | -73.68 | 0.5532 | -0.05170 | -0.03792 |
-#> |.....................| -0.2632 | -4.949 | 2.751 | -2.063 |
-#> |.....................| -2.027 | -0.5538 | -1.006 |...........|
-#> | 45| 480.12037 | 0.9986 | -1.465 | -0.9157 | -0.8935 |
-#> |.....................| -0.8478 | -0.6011 | -0.9922 | -1.022 |
-#> |.....................| -0.6184 | -0.7143 | -0.6451 |...........|
-#> | U| 480.12037 | 94.07 | -5.880 | -1.001 | -0.2027 |
-#> |.....................| 2.100 | 1.859 | 0.6728 | 0.7378 |
-#> |.....................| 1.489 | 1.257 | 1.399 |...........|
-#> | X| 480.12037 | 94.07 | 0.002795 | 0.2687 | 0.8166 |
-#> |.....................| 8.164 | 1.859 | 0.6728 | 0.7378 |
-#> |.....................| 1.489 | 1.257 | 1.399 |...........|
-#> | F| Forward Diff. | -14.31 | 0.1919 | -0.006458 | -0.005637 |
-#> |.....................| -0.1500 | -5.088 | 0.6605 | -0.1467 |
-#> |.....................| -1.672 | 0.02074 | -0.4009 |...........|
-#> | 46| 480.21684 | 0.9998 | -1.532 | -0.9143 | -0.8951 |
-#> |.....................| -0.8360 | -0.5884 | -0.9862 | -1.032 |
-#> |.....................| -0.5071 | -0.7680 | -0.6684 |...........|
-#> | U| 480.21684 | 94.19 | -5.947 | -0.9996 | -0.2043 |
-#> |.....................| 2.112 | 1.870 | 0.6773 | 0.7298 |
-#> |.....................| 1.621 | 1.199 | 1.372 |...........|
-#> | X| 480.21684 | 94.19 | 0.002613 | 0.2690 | 0.8152 |
-#> |.....................| 8.261 | 1.870 | 0.6773 | 0.7298 |
-#> |.....................| 1.621 | 1.199 | 1.372 |...........|
-#> | 47| 480.06028 | 1.000 | -1.489 | -0.9152 | -0.8941 |
-#> |.....................| -0.8435 | -0.5961 | -0.9901 | -1.026 |
-#> |.....................| -0.5774 | -0.7340 | -0.6536 |...........|
-#> | U| 480.06028 | 94.21 | -5.905 | -1.000 | -0.2033 |
-#> |.....................| 2.104 | 1.863 | 0.6744 | 0.7349 |
-#> |.....................| 1.538 | 1.236 | 1.389 |...........|
-#> | X| 480.06028 | 94.21 | 0.002726 | 0.2688 | 0.8161 |
-#> |.....................| 8.200 | 1.863 | 0.6744 | 0.7349 |
-#> |.....................| 1.538 | 1.236 | 1.389 |...........|
-#> | F| Forward Diff. | 6.437 | 0.1507 | 0.07551 | -0.008836 |
-#> |.....................| 0.08632 | -3.858 | 0.8547 | 0.1963 |
-#> |.....................| 0.4591 | -0.8475 | -0.5830 |...........|
-#> | 48| 480.03665 | 0.9987 | -1.532 | -0.9229 | -0.8934 |
-#> |.....................| -0.8415 | -0.5884 | -1.015 | -1.029 |
-#> |.....................| -0.5816 | -0.7442 | -0.6445 |...........|
-#> | U| 480.03665 | 94.09 | -5.948 | -1.008 | -0.2026 |
-#> |.....................| 2.106 | 1.870 | 0.6552 | 0.7323 |
-#> |.....................| 1.533 | 1.225 | 1.399 |...........|
-#> | X| 480.03665 | 94.09 | 0.002612 | 0.2673 | 0.8166 |
-#> |.....................| 8.216 | 1.870 | 0.6552 | 0.7323 |
-#> |.....................| 1.533 | 1.225 | 1.399 |...........|
-#> | F| Forward Diff. | -11.33 | 0.04720 | -0.3576 | -0.009993 |
-#> |.....................| 0.09366 | -3.049 | -0.8552 | 2.379 |
-#> |.....................| 0.07272 | -1.673 | -0.4189 |...........|
-#> | 49| 480.00388 | 0.9997 | -1.574 | -0.9191 | -0.8927 |
-#> |.....................| -0.8426 | -0.5789 | -1.009 | -1.024 |
-#> |.....................| -0.5828 | -0.7165 | -0.6339 |...........|
-#> | U| 480.00388 | 94.18 | -5.990 | -1.004 | -0.2019 |
-#> |.....................| 2.105 | 1.878 | 0.6600 | 0.7361 |
-#> |.....................| 1.531 | 1.255 | 1.412 |...........|
-#> | X| 480.00388 | 94.18 | 0.002504 | 0.2681 | 0.8172 |
-#> |.....................| 8.207 | 1.878 | 0.6600 | 0.7361 |
-#> |.....................| 1.531 | 1.255 | 1.412 |...........|
-#> | F| Forward Diff. | 1.604 | -0.07853 | -0.1199 | 0.02191 |
-#> |.....................| 0.1056 | -1.650 | -0.4080 | 0.6580 |
-#> |.....................| 0.2834 | 0.2201 | 0.3460 |...........|
-#> | 50| 480.03472 | 1.000 | -1.551 | -0.8873 | -0.8972 |
-#> |.....................| -0.8660 | -0.5703 | -1.019 | -1.030 |
-#> |.....................| -0.5914 | -0.7201 | -0.6545 |...........|
-#> | U| 480.03472 | 94.21 | -5.967 | -0.9727 | -0.2064 |
-#> |.....................| 2.082 | 1.885 | 0.6528 | 0.7314 |
-#> |.....................| 1.521 | 1.251 | 1.388 |...........|
-#> | X| 480.03472 | 94.21 | 0.002563 | 0.2743 | 0.8135 |
-#> |.....................| 8.017 | 1.885 | 0.6528 | 0.7314 |
-#> |.....................| 1.521 | 1.251 | 1.388 |...........|
-#> | 51| 480.00362 | 0.9987 | -1.569 | -0.9113 | -0.8938 |
-#> |.....................| -0.8484 | -0.5757 | -1.011 | -1.026 |
-#> |.....................| -0.5851 | -0.7175 | -0.6392 |...........|
-#> | U| 480.00362 | 94.09 | -5.984 | -0.9966 | -0.2030 |
-#> |.....................| 2.099 | 1.880 | 0.6585 | 0.7346 |
-#> |.....................| 1.528 | 1.254 | 1.406 |...........|
-#> | X| 480.00362 | 94.09 | 0.002519 | 0.2696 | 0.8163 |
-#> |.....................| 8.160 | 1.880 | 0.6585 | 0.7346 |
-#> |.....................| 1.528 | 1.254 | 1.406 |...........|
-#> | F| Forward Diff. | -11.27 | -0.06004 | 0.2734 | -0.003181 |
-#> |.....................| -0.1459 | -1.804 | -0.6958 | 0.2356 |
-#> |.....................| -0.08489 | -0.1057 | -0.1437 |...........|
-#> | 52| 479.99564 | 1.000 | -1.563 | -0.9133 | -0.8943 |
-#> |.....................| -0.8490 | -0.5744 | -1.010 | -1.027 |
-#> |.....................| -0.5870 | -0.7192 | -0.6381 |...........|
-#> | U| 479.99564 | 94.21 | -5.979 | -0.9986 | -0.2035 |
-#> |.....................| 2.099 | 1.881 | 0.6592 | 0.7342 |
-#> |.....................| 1.526 | 1.252 | 1.407 |...........|
-#> | X| 479.99564 | 94.21 | 0.002532 | 0.2692 | 0.8159 |
-#> |.....................| 8.155 | 1.881 | 0.6592 | 0.7342 |
-#> |.....................| 1.526 | 1.252 | 1.407 |...........|
-#> | F| Forward Diff. | 5.442 | -0.04353 | 0.2015 | -0.005586 |
-#> |.....................| -0.1078 | -1.130 | -0.4765 | -0.6210 |
-#> |.....................| 0.09560 | 0.04932 | 0.1423 |...........|
-#> | 53| 479.99256 | 0.9995 | -1.560 | -0.9178 | -0.8945 |
-#> |.....................| -0.8473 | -0.5732 | -1.008 | -1.026 |
-#> |.....................| -0.5881 | -0.7196 | -0.6366 |...........|
-#> | U| 479.99256 | 94.16 | -5.975 | -1.003 | -0.2037 |
-#> |.....................| 2.100 | 1.882 | 0.6609 | 0.7344 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99256 | 94.16 | 0.002541 | 0.2683 | 0.8157 |
-#> |.....................| 8.169 | 1.882 | 0.6609 | 0.7344 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | F| Forward Diff. | -1.663 | -0.03616 | -0.04918 | -0.01811 |
-#> |.....................| -0.07323 | -1.616 | -0.5475 | -0.9126 |
-#> |.....................| -0.2713 | -0.2260 | -0.04317 |...........|
-#> | 54| 479.99337 | 0.9995 | -1.558 | -0.9178 | -0.8940 |
-#> |.....................| -0.8453 | -0.5718 | -1.004 | -1.025 |
-#> |.....................| -0.5887 | -0.7198 | -0.6325 |...........|
-#> | U| 479.99337 | 94.16 | -5.974 | -1.003 | -0.2032 |
-#> |.....................| 2.102 | 1.883 | 0.6641 | 0.7358 |
-#> |.....................| 1.524 | 1.251 | 1.413 |...........|
-#> | X| 479.99337 | 94.16 | 0.002545 | 0.2683 | 0.8161 |
-#> |.....................| 8.185 | 1.883 | 0.6641 | 0.7358 |
-#> |.....................| 1.524 | 1.251 | 1.413 |...........|
-#> | 55| 479.99257 | 0.9996 | -1.559 | -0.9178 | -0.8942 |
-#> |.....................| -0.8464 | -0.5725 | -1.006 | -1.026 |
-#> |.....................| -0.5884 | -0.7197 | -0.6348 |...........|
-#> | U| 479.99257 | 94.17 | -5.975 | -1.003 | -0.2035 |
-#> |.....................| 2.101 | 1.883 | 0.6623 | 0.7351 |
-#> |.....................| 1.525 | 1.252 | 1.411 |...........|
-#> | X| 479.99257 | 94.17 | 0.002543 | 0.2683 | 0.8159 |
-#> |.....................| 8.175 | 1.883 | 0.6623 | 0.7351 |
-#> |.....................| 1.525 | 1.252 | 1.411 |...........|
-#> | 56| 479.99255 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99255 | 94.18 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99255 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | C| Central Diff. | 1.014 | -0.03924 | -0.07311 | -0.03520 |
-#> |.....................| -0.07193 | -1.047 | -0.3482 | -0.6653 |
-#> |.....................| -0.001386 | 0.002313 | -0.01832 |...........|
-#> | 57| 479.99382 | 0.9993 | -1.559 | -0.9177 | -0.8943 |
-#> |.....................| -0.8469 | -0.5723 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99382 | 94.14 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6617 | 0.7350 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99382 | 94.14 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6617 | 0.7350 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | 58| 479.99260 | 0.9996 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5726 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.9926 | 94.17 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.9926 | 94.17 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | 59| 479.99255 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99255 | 94.17 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99255 | 94.17 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | 60| 479.99254 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99254 | 94.18 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99254 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | C| Central Diff. | 0.7083 | -0.03937 | -0.07377 | -0.03537 |
-#> |.....................| -0.07427 | -1.038 | -0.3482 | -0.6698 |
-#> |.....................| -0.009774 | 0.01032 | -0.01719 |...........|
-#> | 61| 479.99255 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99255 | 94.18 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99255 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | 62| 479.99264 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99264 | 94.18 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99264 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | 63| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99259 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | 64| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99259 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | 65| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99259 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | 66| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99259 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | 67| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99259 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | 68| 479.99259 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99259 | 94.18 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99259 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | 69| 479.99258 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99258 | 94.18 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99258 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | 70| 479.99258 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99258 | 94.18 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99258 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | 71| 479.99258 | 0.9997 | -1.559 | -0.9178 | -0.8944 |
-#> |.....................| -0.8469 | -0.5727 | -1.007 | -1.026 |
-#> |.....................| -0.5882 | -0.7196 | -0.6358 |...........|
-#> | U| 479.99258 | 94.18 | -5.975 | -1.003 | -0.2036 |
-#> |.....................| 2.101 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> | X| 479.99258 | 94.18 | 0.002542 | 0.2683 | 0.8158 |
-#> |.....................| 8.172 | 1.883 | 0.6616 | 0.7348 |
-#> |.....................| 1.525 | 1.252 | 1.409 |...........|
-#> calculating covariance matrix
-#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
-#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#> F: Forward difference gradient approximation
-#> C: Central difference gradient approximation
-#> M: Mixed forward and central difference gradient approximation
-#> Unscaled parameters for Omegas=chol(solve(omega));
-#> Diagonals are transformed, as specified by foceiControl(diagXform=)
-#> |-----+---------------+-----------+-----------+-----------+-----------|
-#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
-#> |.....................| log_k2 | g_qlogis | sigma | o1 |
-#> |.....................| o2 | o3 | o4 | o5 |
-#> |.....................| o6 |...........|...........|...........|
-#> | 1| 514.27068 | 1.000 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
-#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
-#> |.....................| -0.8683 |...........|...........|...........|
-#> | U| 514.27068 | 93.81 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 514.27068 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | G| Gill Diff. | 26.19 | 1.724 | -0.1273 | 0.01210 |
-#> |.....................| -0.2599 | 0.04964 | -46.10 | 17.02 |
-#> |.....................| 9.682 | -11.00 | -4.182 | 3.869 |
-#> |.....................| -10.57 |...........|...........|...........|
-#> | 2| 1072.3430 | 0.5548 | -1.029 | -0.9091 | -0.9298 |
-#> |.....................| -0.9733 | -0.8898 | -0.07504 | -1.166 |
-#> |.....................| -1.039 | -0.6809 | -0.8005 | -0.9394 |
-#> |.....................| -0.6887 |...........|...........|...........|
-#> | U| 1072.343 | 52.05 | -5.403 | -0.9690 | -1.880 |
-#> |.....................| -4.266 | 0.1355 | 2.292 | 0.5199 |
-#> |.....................| 0.7209 | 1.403 | 1.065 | 0.8339 |
-#> |.....................| 1.368 |...........|...........|...........|
-#> | X| 1072.343 | 52.05 | 0.004504 | 0.2751 | 0.1526 |
-#> |.....................| 0.01403 | 0.5338 | 2.292 | 0.5199 |
-#> |.....................| 0.7209 | 1.403 | 1.065 | 0.8339 |
-#> |.....................| 1.368 |...........|...........|...........|
-#> | 3| 539.25377 | 0.9555 | -1.003 | -0.9110 | -0.9296 |
-#> |.....................| -0.9773 | -0.8890 | -0.7801 | -0.9058 |
-#> |.....................| -0.8907 | -0.8491 | -0.8645 | -0.8802 |
-#> |.....................| -0.8503 |...........|...........|...........|
-#> | U| 539.25377 | 89.63 | -5.376 | -0.9709 | -1.880 |
-#> |.....................| -4.270 | 0.1356 | 1.712 | 0.7103 |
-#> |.....................| 0.8487 | 1.204 | 1.001 | 0.8867 |
-#> |.....................| 1.181 |...........|...........|...........|
-#> | X| 539.25377 | 89.63 | 0.004625 | 0.2747 | 0.1526 |
-#> |.....................| 0.01398 | 0.5339 | 1.712 | 0.7103 |
-#> |.....................| 0.8487 | 1.204 | 1.001 | 0.8867 |
-#> |.....................| 1.181 |...........|...........|...........|
-#> | 4| 527.20532 | 0.9955 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9777 | -0.8889 | -0.8506 | -0.8798 |
-#> |.....................| -0.8759 | -0.8659 | -0.8709 | -0.8743 |
-#> |.....................| -0.8665 |...........|...........|...........|
-#> | U| 527.20532 | 93.39 | -5.374 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.654 | 0.7293 |
-#> |.....................| 0.8615 | 1.184 | 0.9947 | 0.8920 |
-#> |.....................| 1.162 |...........|...........|...........|
-#> | X| 527.20532 | 93.39 | 0.004637 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.654 | 0.7293 |
-#> |.....................| 0.8615 | 1.184 | 0.9947 | 0.8920 |
-#> |.....................| 1.162 |...........|...........|...........|
-#> | 5| 527.55150 | 0.9996 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8576 | -0.8772 |
-#> |.....................| -0.8744 | -0.8676 | -0.8715 | -0.8737 |
-#> |.....................| -0.8681 |...........|...........|...........|
-#> | U| 527.5515 | 93.77 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.648 | 0.7312 |
-#> |.....................| 0.8628 | 1.182 | 0.9941 | 0.8925 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 527.5515 | 93.77 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.648 | 0.7312 |
-#> |.....................| 0.8628 | 1.182 | 0.9941 | 0.8925 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | 6| 527.60332 | 1.000 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
-#> |.....................| -0.8743 | -0.8678 | -0.8716 | -0.8737 |
-#> |.....................| -0.8682 |...........|...........|...........|
-#> | U| 527.60332 | 93.81 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 527.60332 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | 7| 527.60868 | 1.000 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
-#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
-#> |.....................| -0.8683 |...........|...........|...........|
-#> | U| 527.60868 | 93.81 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 527.60868 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | 8| 527.60932 | 1.000 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
-#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
-#> |.....................| -0.8683 |...........|...........|...........|
-#> | U| 527.60932 | 93.81 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 527.60932 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | 9| 527.60939 | 1.000 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
-#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
-#> |.....................| -0.8683 |...........|...........|...........|
-#> | U| 527.60939 | 93.81 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 527.60939 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | 10| 527.60940 | 1.000 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
-#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
-#> |.....................| -0.8683 |...........|...........|...........|
-#> | U| 527.6094 | 93.81 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 527.6094 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | 11| 527.60940 | 1.000 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
-#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
-#> |.....................| -0.8683 |...........|...........|...........|
-#> | U| 527.6094 | 93.81 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 527.6094 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | 12| 527.60940 | 1.000 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
-#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
-#> |.....................| -0.8683 |...........|...........|...........|
-#> | U| 527.6094 | 93.81 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 527.6094 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | 13| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
-#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
-#> |.....................| -0.8683 |...........|...........|...........|
-#> | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 527.60941 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | 14| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
-#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
-#> |.....................| -0.8683 |...........|...........|...........|
-#> | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 527.60941 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | 15| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
-#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
-#> |.....................| -0.8683 |...........|...........|...........|
-#> | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 527.60941 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | 16| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
-#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
-#> |.....................| -0.8683 |...........|...........|...........|
-#> | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 527.60941 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | 17| 527.60941 | 1.000 | -1.000 | -0.9112 | -0.9296 |
-#> |.....................| -0.9778 | -0.8889 | -0.8584 | -0.8769 |
-#> |.....................| -0.8742 | -0.8678 | -0.8716 | -0.8736 |
-#> |.....................| -0.8683 |...........|...........|...........|
-#> | U| 527.60941 | 93.81 | -5.373 | -0.9711 | -1.880 |
-#> |.....................| -4.271 | 0.1356 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> | X| 527.60941 | 93.81 | 0.004638 | 0.2747 | 0.1526 |
-#> |.....................| 0.01397 | 0.5339 | 1.647 | 0.7314 |
-#> |.....................| 0.8629 | 1.182 | 0.9940 | 0.8926 |
-#> |.....................| 1.160 |...........|...........|...........|
-#> calculating covariance matrix
-#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
+#> cmt(A1);
+#> rx_expr_6~ETA[1]+THETA[1];
+#> parent(0)=rx_expr_6;
+#> rx_expr_7~ETA[2]+THETA[2];
+#> rx_expr_10~exp(rx_expr_7);
+#> d/dt(parent)=-rx_expr_10*parent;
+#> rx_expr_8~ETA[3]+THETA[3];
+#> rx_expr_11~exp(rx_expr_8);
+#> d/dt(A1)=-rx_expr_11*A1+rx_expr_10*parent*f_parent_to_A1;
+#> rx_expr_0~CMT==2;
+#> rx_expr_1~CMT==1;
+#> rx_expr_2~1-(rx_expr_0);
+#> rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);
+#> rx_expr_3~(rx_expr_0);
+#> rx_expr_5~(rx_expr_2);
+#> rx_expr_13~rx_expr_5*(rx_expr_1);
+#> rx_lambda_~rx_expr_13+rx_expr_3;
+#> rx_hi_~rx_expr_13+rx_expr_3;
+#> rx_low_~0;
+#> rx_expr_4~A1*(rx_expr_0);
+#> rx_expr_9~parent*(rx_expr_2);
+#> rx_expr_14~rx_expr_9*(rx_expr_1);
+#> rx_pred_=(rx_expr_4+rx_expr_14)*(rx_expr_0)+(rx_expr_4+rx_expr_14)*(rx_expr_2)*(rx_expr_1);
+#> rx_expr_12~Rx_pow_di(THETA[5],2);
+#> rx_r_=(rx_expr_0)*rx_expr_12+(rx_expr_2)*(rx_expr_1)*rx_expr_12;
+#> parent_0=THETA[1];
+#> log_k_parent=THETA[2];
+#> log_k_A1=THETA[3];
+#> f_parent_qlogis=THETA[4];
+#> sigma=THETA[5];
+#> eta.parent_0=ETA[1];
+#> eta.log_k_parent=ETA[2];
+#> eta.log_k_A1=ETA[3];
+#> eta.f_parent_qlogis=ETA[4];
+#> parent_0_model=rx_expr_6;
+#> k_parent=rx_expr_10;
+#> k_A1=rx_expr_11;
+#> f_parent=1/(1+exp(-(ETA[4]+THETA[4])));
+#> tad=tad();
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 5.607 0.474 6.078#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
+#> cmt(A1);
+#> rx_expr_6~ETA[1]+THETA[1];
+#> parent(0)=rx_expr_6;
+#> rx_expr_7~ETA[4]+THETA[4];
+#> rx_expr_8~ETA[5]+THETA[5];
+#> rx_expr_13~exp(-(rx_expr_8));
+#> rx_expr_15~t*rx_expr_13;
+#> rx_expr_16~1+rx_expr_15;
+#> rx_expr_18~rx_expr_7-(rx_expr_8);
+#> rx_expr_20~exp(rx_expr_18);
+#> d/dt(parent)=-rx_expr_20*parent/(rx_expr_16);
+#> rx_expr_9~ETA[2]+THETA[2];
+#> rx_expr_11~exp(rx_expr_9);
+#> d/dt(A1)=-rx_expr_11*A1+rx_expr_20*parent*f_parent_to_A1/(rx_expr_16);
+#> rx_expr_0~CMT==2;
+#> rx_expr_1~CMT==1;
+#> rx_expr_2~1-(rx_expr_0);
+#> rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);
+#> rx_expr_3~(rx_expr_0);
+#> rx_expr_5~(rx_expr_2);
+#> rx_expr_14~rx_expr_5*(rx_expr_1);
+#> rx_lambda_~rx_expr_14+rx_expr_3;
+#> rx_hi_~rx_expr_14+rx_expr_3;
+#> rx_low_~0;
+#> rx_expr_4~A1*(rx_expr_0);
+#> rx_expr_10~parent*(rx_expr_2);
+#> rx_expr_17~rx_expr_10*(rx_expr_1);
+#> rx_pred_=(rx_expr_4+rx_expr_17)*(rx_expr_0)+(rx_expr_4+rx_expr_17)*(rx_expr_2)*(rx_expr_1);
+#> rx_expr_12~Rx_pow_di(THETA[6],2);
+#> rx_r_=(rx_expr_0)*rx_expr_12+(rx_expr_2)*(rx_expr_1)*rx_expr_12;
+#> parent_0=THETA[1];
+#> log_k_A1=THETA[2];
+#> f_parent_qlogis=THETA[3];
+#> log_alpha=THETA[4];
+#> log_beta=THETA[5];
+#> sigma=THETA[6];
+#> eta.parent_0=ETA[1];
+#> eta.log_k_A1=ETA[2];
+#> eta.f_parent_qlogis=ETA[3];
+#> eta.log_alpha=ETA[4];
+#> eta.log_beta=ETA[5];
+#> parent_0_model=rx_expr_6;
+#> k_A1=rx_expr_11;
+#> alpha=exp(rx_expr_7);
+#> beta=exp(rx_expr_8);
+#> f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
+#> tad=tad();
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 6.853 0.393 7.242#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
+#> cmt(A1);
+#> rx_expr_6~ETA[1]+THETA[1];
+#> parent(0)=rx_expr_6;
+#> rx_expr_7~ETA[4]+THETA[4];
+#> rx_expr_8~ETA[6]+THETA[6];
+#> rx_expr_9~ETA[5]+THETA[5];
+#> rx_expr_12~exp(rx_expr_7);
+#> rx_expr_13~exp(rx_expr_9);
+#> rx_expr_15~t*rx_expr_12;
+#> rx_expr_16~t*rx_expr_13;
+#> rx_expr_18~exp(-(rx_expr_8));
+#> rx_expr_20~1+rx_expr_18;
+#> rx_expr_25~1/(rx_expr_20);
+#> rx_expr_27~(rx_expr_25);
+#> rx_expr_28~1-rx_expr_27;
+#> d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_20)+exp(rx_expr_9-rx_expr_16)*(rx_expr_28))/(exp(-t*rx_expr_12)/(rx_expr_20)+exp(-t*rx_expr_13)*(rx_expr_28));
+#> rx_expr_10~ETA[2]+THETA[2];
+#> rx_expr_14~exp(rx_expr_10);
+#> d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_20)+exp(rx_expr_9-rx_expr_16)*(rx_expr_28))/(exp(-t*rx_expr_12)/(rx_expr_20)+exp(-t*rx_expr_13)*(rx_expr_28));
+#> rx_expr_0~CMT==2;
+#> rx_expr_1~CMT==1;
+#> rx_expr_2~1-(rx_expr_0);
+#> rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);
+#> rx_expr_3~(rx_expr_0);
+#> rx_expr_5~(rx_expr_2);
+#> rx_expr_19~rx_expr_5*(rx_expr_1);
+#> rx_lambda_~rx_expr_19+rx_expr_3;
+#> rx_hi_~rx_expr_19+rx_expr_3;
+#> rx_low_~0;
+#> rx_expr_4~A1*(rx_expr_0);
+#> rx_expr_11~parent*(rx_expr_2);
+#> rx_expr_23~rx_expr_11*(rx_expr_1);
+#> rx_pred_=(rx_expr_4+rx_expr_23)*(rx_expr_0)+(rx_expr_4+rx_expr_23)*(rx_expr_2)*(rx_expr_1);
+#> rx_expr_17~Rx_pow_di(THETA[7],2);
+#> rx_r_=(rx_expr_0)*rx_expr_17+(rx_expr_2)*(rx_expr_1)*rx_expr_17;
+#> parent_0=THETA[1];
+#> log_k_A1=THETA[2];
+#> f_parent_qlogis=THETA[3];
+#> log_k1=THETA[4];
+#> log_k2=THETA[5];
+#> g_qlogis=THETA[6];
+#> sigma=THETA[7];
+#> eta.parent_0=ETA[1];
+#> eta.log_k_A1=ETA[2];
+#> eta.f_parent_qlogis=ETA[3];
+#> eta.log_k1=ETA[4];
+#> eta.log_k2=ETA[5];
+#> eta.g_qlogis=ETA[6];
+#> parent_0_model=rx_expr_6;
+#> k_A1=rx_expr_14;
+#> k1=rx_expr_12;
+#> k2=rx_expr_13;
+#> f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
+#> g=1/(rx_expr_20);
+#> tad=tad();
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 15.18 0.414 15.6
# Variance by variable is supported by 'saem' and 'focei'
f_nlmixr_fomc_sfo_saem_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "saem")
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> 1: 93.6104 -5.6552 -0.1308 2.1755 -1.1174 2.9315 1.6064 0.6616 0.5897 0.4753 9.7765 10.2253
-#> 2: 93.8838 -5.6936 -0.1062 2.2361 -1.0529 2.7849 1.5260 0.6285 0.5602 0.4515 7.9206 5.2721
-#> 3: 93.9304 -5.7260 -0.0940 2.2480 -1.0317 2.6457 1.4889 0.5971 0.5322 0.4290 7.5051 3.6573
-#> 4: 93.6107 -5.7914 -0.0929 2.2382 -1.0171 2.5134 2.0027 0.5676 0.5056 0.4075 7.3763 3.1438
-#> 5: 93.7262 -5.7517 -0.0926 2.2365 -1.0306 2.3877 1.9026 0.5679 0.4803 0.3871 7.2914 3.0275
-#> 6: 93.7261 -5.7719 -0.0823 2.2625 -1.0391 2.2683 2.1168 0.5638 0.4563 0.3678 7.0857 2.8196
-#> 7: 93.5991 -5.8553 -0.0917 2.2659 -1.0146 2.1549 2.3708 0.5618 0.4335 0.3494 6.9413 2.7447
-#> 8: 93.4288 -5.8969 -0.0885 2.2757 -1.0253 2.1183 2.4324 0.5615 0.4118 0.3319 7.2269 2.6781
-#> 9: 93.4049 -6.1188 -0.0863 2.2841 -1.0154 2.0124 3.0090 0.5633 0.3912 0.3153 7.2084 2.7464
-#> 10: 93.4773 -6.1940 -0.0816 2.2893 -1.0174 1.9958 3.6308 0.5540 0.3716 0.2996 7.2414 2.8980
-#> 11: 93.5334 -6.1739 -0.0772 2.2901 -1.0479 2.2841 3.4492 0.5567 0.3531 0.2846 7.0567 2.8159
-#> 12: 93.5824 -6.3716 -0.0875 2.2706 -1.0452 2.1699 4.3087 0.5505 0.3354 0.2704 7.2970 2.3790
-#> 13: 93.8528 -6.3302 -0.0846 2.2564 -1.0302 2.0614 4.6014 0.5475 0.3186 0.2568 7.3901 2.1942
-#> 14: 94.0343 -6.1408 -0.0887 2.2666 -1.0280 1.9995 4.3714 0.5202 0.3027 0.2440 7.1696 2.0730
-#> 15: 94.1712 -6.3900 -0.0759 2.2825 -1.0112 1.8995 5.0913 0.5358 0.2876 0.2318 7.2155 2.0259
-#> 16: 93.9481 -6.1284 -0.0798 2.2707 -1.0264 1.8046 4.8368 0.5501 0.2732 0.2202 7.2731 2.0912
-#> 17: 93.7828 -6.2736 -0.0852 2.2870 -1.0249 1.7143 4.5949 0.5408 0.2595 0.2092 7.0213 2.0417
-#> 18: 93.8758 -6.3616 -0.0851 2.2713 -1.0157 1.8699 4.9132 0.5349 0.2465 0.1987 7.0613 1.8601
-#> 19: 93.7565 -6.5413 -0.0866 2.2695 -1.0166 2.5251 5.9754 0.5312 0.2547 0.1888 7.2555 1.7947
-#> 20: 93.7233 -6.3942 -0.0970 2.2620 -1.0195 2.3989 5.6766 0.5484 0.2576 0.1794 7.0292 1.8687
-#> 21: 93.8298 -6.2619 -0.0974 2.2570 -1.0118 2.2789 5.3928 0.5497 0.2545 0.1704 6.7138 1.8157
-#> 22: 93.9520 -6.1633 -0.0874 2.2777 -1.0274 2.1650 5.1232 0.5437 0.2641 0.1622 6.8254 1.8443
-#> 23: 93.8442 -6.3255 -0.0855 2.2568 -1.0151 2.1243 4.9615 0.5334 0.2885 0.1556 6.8049 1.8073
-#> 24: 93.9659 -6.5470 -0.0855 2.2572 -1.0178 2.0788 6.2156 0.5425 0.2834 0.1583 6.9598 1.8686
-#> 25: 94.3004 -6.4881 -0.0920 2.2371 -1.0187 3.2507 5.9048 0.5367 0.2872 0.1609 6.8709 1.8839
-#> 26: 94.1750 -6.4437 -0.0964 2.2337 -1.0301 3.1136 5.6096 0.5307 0.2820 0.1611 6.5948 1.8742
-#> 27: 94.6007 -6.3072 -0.0750 2.2936 -1.0343 3.9844 5.3291 0.5042 0.2679 0.1695 6.7524 1.8335
-#> 28: 94.4915 -6.1389 -0.0826 2.2730 -1.0223 3.7852 5.0626 0.4998 0.2590 0.1812 6.4646 1.8937
-#> 29: 94.1900 -6.1516 -0.0836 2.2680 -1.0287 3.7861 4.8095 0.4976 0.2612 0.1875 6.4674 1.8998
-#> 30: 94.6632 -6.0574 -0.0773 2.2637 -1.0280 3.5968 4.5690 0.4948 0.2525 0.2040 6.5945 1.9022
-#> 31: 94.3460 -6.1684 -0.0761 2.2677 -1.0276 3.4170 4.3406 0.4901 0.2690 0.2038 6.9918 1.8446
-#> 32: 94.4385 -5.9347 -0.0751 2.2893 -1.0146 3.3283 4.1235 0.4882 0.2576 0.2002 6.7622 1.7754
-#> 33: 94.7021 -5.9329 -0.0787 2.2987 -1.0108 3.3485 3.9174 0.4859 0.2640 0.1941 6.9648 1.8014
-#> 34: 94.4058 -6.0311 -0.0692 2.2980 -1.0125 3.1811 3.7215 0.4994 0.2676 0.1936 6.9791 1.7561
-#> 35: 94.4503 -6.0470 -0.0692 2.2950 -1.0100 3.5600 3.7611 0.4994 0.2637 0.1928 6.8010 1.7890
-#> 36: 94.3400 -6.0339 -0.0792 2.2960 -1.0204 3.3820 3.5731 0.4822 0.2638 0.1887 6.6462 1.6763
-#> 37: 94.1497 -6.0221 -0.0879 2.2653 -1.0073 3.2129 3.3944 0.4979 0.2506 0.1793 6.4853 1.7911
-#> 38: 94.1574 -5.8638 -0.0884 2.2752 -1.0156 3.0523 3.2247 0.4992 0.2435 0.1772 6.4329 1.7707
-#> 39: 94.1680 -5.9558 -0.0948 2.2535 -1.0205 2.8997 3.0635 0.5065 0.2448 0.1819 6.4462 1.8100
-#> 40: 94.0516 -6.0814 -0.0881 2.2531 -1.0356 2.7547 3.4976 0.4949 0.2515 0.1827 6.4734 1.8133
-#> 41: 94.1522 -6.1880 -0.0849 2.2618 -1.0230 2.6170 4.1610 0.5129 0.2389 0.1797 6.4165 1.7782
-#> 42: 94.2178 -6.1829 -0.0854 2.2791 -1.0325 2.8092 4.1174 0.5052 0.2288 0.1853 6.4332 1.7883
-#> 43: 93.9083 -6.1600 -0.0831 2.2860 -1.0350 2.9631 3.9116 0.4914 0.2310 0.1826 6.4865 1.8449
-#> 44: 93.9636 -6.1494 -0.0824 2.2903 -1.0150 2.8149 3.7221 0.4921 0.2214 0.1805 6.4818 1.9385
-#> 45: 93.9937 -6.2329 -0.0895 2.2832 -1.0157 4.2815 4.5622 0.5075 0.2250 0.1796 6.4098 1.8355
-#> 46: 93.8001 -6.1784 -0.0944 2.2664 -1.0212 4.0674 4.3341 0.5023 0.2274 0.1795 6.5539 1.7875
-#> 47: 93.8997 -6.3400 -0.0945 2.2627 -1.0183 3.8641 4.9860 0.5017 0.2312 0.1834 6.5497 1.7838
-#> 48: 93.7861 -6.3496 -0.0944 2.2713 -1.0255 3.6709 5.3403 0.5025 0.2197 0.1839 6.1766 1.9080
-#> 49: 93.7128 -6.3914 -0.0944 2.2752 -1.0137 3.4873 5.6007 0.5051 0.2198 0.1788 6.3050 1.8320
-#> 50: 94.1645 -6.3056 -0.0945 2.2755 -1.0062 3.3130 5.3207 0.4998 0.2176 0.1781 6.4998 1.8516
-#> 51: 93.9897 -6.1556 -0.1026 2.2633 -1.0097 3.1473 5.0547 0.4853 0.2439 0.1796 6.3184 1.7981
-#> 52: 93.7604 -6.2264 -0.1068 2.2485 -0.9936 2.9899 4.8209 0.4887 0.2542 0.1793 6.5076 1.7916
-#> 53: 93.8821 -6.5447 -0.1049 2.2546 -1.0020 2.8404 6.5603 0.4701 0.2556 0.1789 6.5735 1.7763
-#> 54: 93.8865 -6.4028 -0.1081 2.2507 -1.0162 2.6984 6.2323 0.4724 0.2576 0.1846 6.3607 1.8295
-#> 55: 94.0120 -6.5455 -0.0986 2.2728 -1.0119 2.5635 6.3983 0.4550 0.2686 0.1773 6.6815 1.7869
-#> 56: 94.1921 -6.6581 -0.0953 2.2713 -1.0151 2.4353 8.2169 0.4478 0.2675 0.1763 6.6257 1.7873
-#> 57: 93.8812 -6.4499 -0.1081 2.2447 -1.0182 2.3136 7.8060 0.4683 0.2562 0.1804 6.2421 1.8455
-#> 58: 93.9830 -6.5112 -0.1092 2.2436 -1.0136 2.1979 7.4157 0.4695 0.2569 0.1762 6.3196 1.8224
-#> 59: 93.8537 -6.6528 -0.1105 2.2390 -1.0089 2.0880 9.0039 0.4689 0.2534 0.1692 6.3735 1.8049
-#> 60: 93.7399 -6.4780 -0.1212 2.2263 -0.9979 1.9836 8.5537 0.4565 0.2445 0.1696 6.4748 1.8439
-#> 61: 93.8180 -6.4608 -0.1243 2.2275 -1.0039 1.8844 8.1260 0.4630 0.2414 0.1693 6.3936 1.7653
-#> 62: 93.5774 -6.3127 -0.1298 2.2250 -1.0022 1.7902 7.7197 0.4711 0.2452 0.1708 6.5708 1.8014
-#> 63: 93.5731 -6.2060 -0.1327 2.2213 -1.0031 1.7007 7.3337 0.4685 0.2426 0.1712 6.4933 1.8318
-#> 64: 93.3587 -6.2299 -0.1316 2.2290 -1.0004 1.6302 6.9671 0.4694 0.2460 0.1710 6.2584 1.8361
-#> 65: 93.2982 -6.1900 -0.1354 2.2341 -0.9963 1.5487 6.6187 0.4685 0.2482 0.1750 6.0950 1.8341
-#> 66: 93.4532 -6.2107 -0.1251 2.2254 -0.9786 1.4713 6.2878 0.4822 0.2489 0.1701 6.3732 1.7951
-#> 67: 93.5878 -6.1823 -0.1208 2.2455 -0.9766 1.3977 5.9734 0.4860 0.2407 0.1668 6.4456 1.8371
-#> 68: 93.5819 -5.9209 -0.1200 2.2599 -0.9792 1.3278 5.6747 0.4793 0.2412 0.1686 6.5728 1.8144
-#> 69: 93.4002 -6.1142 -0.1242 2.2542 -0.9878 1.4433 5.3910 0.4730 0.2511 0.1830 6.3888 1.7900
-#> 70: 93.2631 -6.1875 -0.1271 2.2639 -0.9844 1.5244 5.1214 0.4711 0.2444 0.1770 6.5093 1.7117
-#> 71: 93.2629 -6.2944 -0.1275 2.2418 -0.9805 1.4481 4.8654 0.4612 0.2522 0.1748 6.4659 1.8500
-#> 72: 93.0324 -6.2727 -0.1332 2.2421 -0.9766 1.3757 5.1467 0.4519 0.2524 0.1673 6.3452 1.8054
-#> 73: 93.0174 -6.4402 -0.1391 2.2320 -0.9795 1.3069 6.1963 0.4480 0.2563 0.1637 6.3915 1.8506
-#> 74: 93.0073 -6.4286 -0.1450 2.2241 -0.9962 1.2416 6.0011 0.4510 0.2461 0.1682 6.6924 1.8302
-#> 75: 93.2607 -6.5056 -0.1379 2.2233 -0.9926 1.1795 6.0508 0.4573 0.2540 0.1669 6.4813 1.7896
-#> 76: 93.2937 -6.1637 -0.1404 2.2228 -0.9970 1.1205 5.7483 0.4588 0.2529 0.1656 6.3781 1.7976
-#> 77: 93.2223 -6.1702 -0.1381 2.2200 -0.9858 1.4369 5.4609 0.4633 0.2585 0.1697 6.3510 1.8749
-#> 78: 93.3189 -6.1924 -0.1355 2.2238 -0.9944 1.3651 5.1878 0.4608 0.2631 0.1612 6.1888 1.7669
-#> 79: 93.2417 -6.6345 -0.1335 2.2340 -0.9865 1.2968 7.3486 0.4570 0.2564 0.1532 6.0902 1.7505
-#> 80: 93.3476 -6.3069 -0.1305 2.2319 -0.9880 1.6281 6.9812 0.4649 0.2525 0.1514 6.0659 1.7582
-#> 81: 93.4798 -6.3145 -0.1253 2.2468 -0.9989 1.9108 6.6321 0.4447 0.2583 0.1579 6.0843 1.7959
-#> 82: 93.2745 -6.2461 -0.1184 2.2529 -0.9937 1.8153 6.3005 0.4439 0.2602 0.1691 6.2826 1.7896
-#> 83: 93.4628 -6.3953 -0.1189 2.2640 -0.9880 1.7245 6.1094 0.4430 0.2612 0.1709 6.4474 1.6820
-#> 84: 93.3664 -6.2885 -0.1105 2.2675 -0.9875 1.6383 6.1170 0.4498 0.2689 0.1719 6.4847 1.6731
-#> 85: 93.5090 -6.3029 -0.1095 2.2709 -0.9898 1.6666 6.1406 0.4365 0.2693 0.1710 6.2452 1.6594
-#> 86: 93.5097 -6.2256 -0.1106 2.2701 -0.9928 1.5833 6.2468 0.4365 0.2749 0.1632 6.2007 1.7178
-#> 87: 93.5165 -6.3038 -0.1046 2.2731 -0.9877 1.5041 5.9345 0.4398 0.2667 0.1603 6.3928 1.7003
-#> 88: 93.3766 -6.2723 -0.1071 2.2771 -0.9881 1.4289 5.6378 0.4241 0.2538 0.1598 6.1043 1.6772
-#> 89: 93.4448 -6.0430 -0.1102 2.2781 -0.9725 1.3575 5.3559 0.4187 0.2915 0.1518 6.0153 1.7593
-#> 90: 93.2843 -6.1065 -0.1089 2.2866 -0.9705 1.5362 5.0881 0.4203 0.2844 0.1656 5.9235 1.6631
-#> 91: 93.4159 -6.0210 -0.1095 2.2879 -0.9798 2.1371 4.8337 0.4245 0.2857 0.1573 5.9182 1.7482
-#> 92: 93.3198 -6.2526 -0.1075 2.2919 -0.9791 2.0303 4.7352 0.4159 0.2918 0.1590 6.0853 1.6755
-#> 93: 93.3269 -6.1838 -0.1173 2.2809 -0.9999 1.9287 4.4985 0.4211 0.2893 0.1684 6.1189 1.6734
-#> 94: 93.2077 -6.1086 -0.1148 2.2890 -0.9918 2.1061 4.2736 0.4230 0.2802 0.1662 5.9328 1.7116
-#> 95: 93.0207 -6.1510 -0.1170 2.2665 -0.9791 2.1360 4.0630 0.4199 0.2937 0.1734 6.1415 1.6737
-#> 96: 93.2134 -6.1614 -0.1152 2.2861 -0.9711 2.5372 4.1579 0.4211 0.2790 0.1647 6.1575 1.6338
-#> 97: 93.1425 -6.2333 -0.1140 2.2912 -0.9665 2.4103 4.4551 0.4136 0.2835 0.1645 6.0790 1.6652
-#> 98: 92.9412 -6.2651 -0.1167 2.2847 -0.9738 2.2898 4.7233 0.4095 0.2882 0.1836 5.9305 1.6158
-#> 99: 92.9087 -6.1870 -0.1177 2.2833 -0.9744 2.1753 4.4872 0.4142 0.2913 0.1876 5.9838 1.7003
-#> 100: 92.7788 -6.2113 -0.1146 2.2928 -0.9939 2.0665 4.4195 0.4109 0.2945 0.1866 6.0195 1.7275
-#> 101: 92.8783 -6.0718 -0.1080 2.2959 -0.9968 1.9632 4.1985 0.4142 0.2966 0.1778 6.2542 1.6844
-#> 102: 93.0451 -6.3706 -0.1086 2.2894 -0.9974 1.8650 5.2121 0.4135 0.3030 0.1769 6.2204 1.6281
-#> 103: 93.2901 -6.4069 -0.1066 2.2943 -0.9896 1.7718 5.7453 0.4152 0.2879 0.1818 6.0239 1.7299
-#> 104: 93.3437 -6.3694 -0.1063 2.2769 -0.9914 1.6832 5.8903 0.4210 0.2884 0.1855 6.1116 1.7415
-#> 105: 93.4609 -6.2767 -0.1060 2.2751 -1.0157 1.5990 5.5958 0.4214 0.2865 0.1841 6.1287 1.7322
-#> 106: 93.5833 -6.2340 -0.1006 2.2879 -1.0084 1.8669 5.3160 0.4272 0.2982 0.1829 6.0211 1.6726
-#> 107: 93.7800 -6.1505 -0.0948 2.2685 -1.0219 1.7735 5.0502 0.4325 0.2841 0.1753 5.8556 1.7636
-#> 108: 93.8532 -6.3744 -0.0938 2.2650 -1.0210 2.0297 5.7080 0.4307 0.2836 0.1701 6.0669 1.6804
-#> 109: 93.8994 -6.3544 -0.0829 2.2862 -1.0287 1.9282 5.4226 0.4184 0.3113 0.1789 6.2343 1.6667
-#> 110: 94.0150 -6.5609 -0.0905 2.2821 -1.0088 2.1118 6.8121 0.4276 0.3275 0.1845 6.1640 1.6706
-#> 111: 93.7887 -6.0185 -0.0925 2.2831 -1.0097 2.0062 6.4715 0.4209 0.3255 0.1852 6.2823 1.6301
-#> 112: 93.9709 -6.0918 -0.0934 2.2857 -1.0067 2.2032 6.1479 0.4207 0.3285 0.1817 6.1718 1.6494
-#> 113: 93.8761 -6.3434 -0.0955 2.2919 -1.0223 2.5209 5.8405 0.4259 0.3293 0.1842 6.0377 1.6431
-#> 114: 93.6959 -6.2312 -0.0934 2.2782 -1.0154 2.3949 5.5485 0.4237 0.3460 0.1814 6.2225 1.6229
-#> 115: 93.5487 -6.0915 -0.0971 2.2836 -1.0083 2.2751 5.2711 0.4199 0.3557 0.1783 6.5929 1.6479
-#> 116: 93.5953 -6.1479 -0.1013 2.2760 -1.0018 2.1614 5.0075 0.4163 0.3399 0.1794 6.1822 1.6222
-#> 117: 93.3508 -6.1730 -0.1076 2.2632 -0.9953 2.0533 4.7571 0.4057 0.3303 0.1803 6.3444 1.7106
-#> 118: 93.4462 -5.9724 -0.1177 2.2557 -0.9963 2.0318 4.5193 0.3956 0.3349 0.1920 6.0439 1.7146
-#> 119: 93.5841 -6.0400 -0.1151 2.2480 -1.0035 1.9956 4.2933 0.3968 0.3448 0.1929 6.0754 1.6750
-#> 120: 93.4891 -6.0937 -0.1175 2.2499 -1.0006 1.8958 4.0786 0.3927 0.3392 0.1927 6.1654 1.6495
-#> 121: 93.4611 -6.1371 -0.1217 2.2538 -1.0067 1.8011 3.8747 0.3864 0.3549 0.1851 5.9558 1.6940
-#> 122: 93.4636 -6.1015 -0.1243 2.2564 -1.0002 1.7414 3.6810 0.3840 0.3557 0.1860 6.0583 1.6629
-#> 123: 93.2988 -5.9318 -0.1243 2.2601 -0.9989 2.2063 3.4969 0.3840 0.3543 0.1833 5.9686 1.5966
-#> 124: 93.4200 -5.9847 -0.1231 2.2594 -0.9991 2.0959 3.3221 0.3846 0.3544 0.1787 6.1292 1.5957
-#> 125: 93.3727 -6.1217 -0.1239 2.2584 -1.0082 1.9911 3.6395 0.3838 0.3577 0.1782 6.2794 1.6262
-#> 126: 93.4956 -6.0529 -0.1244 2.2482 -1.0096 1.8916 3.4576 0.3847 0.3505 0.1753 6.1181 1.6347
-#> 127: 93.6265 -5.9360 -0.1298 2.2342 -1.0075 1.7970 3.2847 0.3887 0.3367 0.1691 6.2315 1.7051
-#> 128: 93.4446 -6.0523 -0.1337 2.2453 -1.0079 1.7072 3.1205 0.3840 0.3302 0.1759 6.2082 1.6705
-#> 129: 93.4470 -6.0065 -0.1321 2.2321 -1.0015 1.6636 2.9644 0.3853 0.3303 0.1671 6.1479 1.6733
-#> 130: 93.3205 -5.9628 -0.1290 2.2252 -0.9954 2.0336 2.9210 0.3879 0.3284 0.1634 6.0582 1.6372
-#> 131: 93.3836 -5.8919 -0.1358 2.2375 -0.9930 2.1392 2.7749 0.3801 0.3202 0.1644 5.9972 1.6837
-#> 132: 93.1041 -5.9265 -0.1203 2.2552 -0.9929 2.0323 2.8741 0.3831 0.3353 0.1755 6.0648 1.5934
-#> 133: 93.1617 -6.0668 -0.1175 2.2538 -0.9963 1.9306 3.6825 0.3846 0.3187 0.1790 6.0732 1.5684
-#> 134: 93.1503 -6.1208 -0.1232 2.2644 -0.9851 2.3429 3.8026 0.3788 0.3296 0.1737 5.8807 1.5722
-#> 135: 92.8629 -5.9726 -0.1197 2.2650 -0.9761 2.2257 3.6124 0.3802 0.3407 0.1765 5.8408 1.5446
-#> 136: 93.1460 -6.0654 -0.1227 2.2661 -0.9736 2.1144 3.4583 0.3770 0.3434 0.1700 5.7690 1.5561
-#> 137: 93.1243 -6.2350 -0.1274 2.2472 -0.9811 2.0087 4.3526 0.3733 0.3670 0.1615 5.9377 1.5224
-#> 138: 93.1203 -6.1704 -0.1283 2.2472 -0.9891 1.9083 4.1557 0.3788 0.3671 0.1641 5.8765 1.5525
-#> 139: 93.2841 -6.0586 -0.1366 2.2404 -0.9894 1.8129 4.3184 0.3718 0.3693 0.1630 6.1854 1.6388
-#> 140: 93.4239 -6.2398 -0.1382 2.2459 -0.9713 1.7241 4.5903 0.3713 0.3627 0.1548 6.0737 1.5826
-#> 141: 93.4149 -6.1972 -0.1388 2.2605 -0.9686 2.2179 4.5557 0.3701 0.3675 0.1486 6.0793 1.5603
-#> 142: 93.4404 -5.8955 -0.1203 2.2682 -0.9706 2.1070 4.3279 0.3830 0.3719 0.1581 5.9534 1.6189
-#> 143: 93.3108 -5.8069 -0.1142 2.2835 -0.9672 2.0194 4.1115 0.3787 0.3924 0.1592 5.9410 1.5521
-#> 144: 93.3953 -5.7456 -0.1154 2.2891 -0.9553 2.2741 3.9059 0.3787 0.3849 0.1633 6.0163 1.5640
-#> 145: 93.3322 -5.8301 -0.1100 2.2926 -0.9595 2.1604 3.7106 0.3687 0.3754 0.1657 5.8968 1.5844
-#> 146: 93.0844 -5.8926 -0.1084 2.2870 -0.9605 2.0524 3.5251 0.3649 0.3713 0.1646 6.1960 1.5691
-#> 147: 93.2106 -6.0084 -0.1074 2.2931 -0.9654 1.9498 3.5341 0.3646 0.3669 0.1641 6.0548 1.5230
-#> 148: 93.2005 -6.1989 -0.1065 2.2924 -0.9740 1.8523 4.4855 0.3631 0.3660 0.1759 5.9600 1.5194
-#> 149: 93.0788 -6.2470 -0.1108 2.2861 -0.9836 2.1348 4.7630 0.3597 0.3815 0.1815 5.9584 1.5227
-#> 150: 93.2241 -6.2660 -0.1126 2.2847 -0.9912 2.1149 5.0574 0.3656 0.3788 0.1781 5.7213 1.5379
-#> 151: 93.0046 -6.5379 -0.1164 2.2757 -0.9845 2.0092 6.8660 0.3719 0.3827 0.1807 5.7612 1.5697
-#> 152: 93.2222 -6.4637 -0.1154 2.2737 -0.9950 1.6744 6.2289 0.3670 0.3881 0.1638 5.8514 1.5920
-#> 153: 93.1619 -6.3230 -0.1224 2.2638 -0.9924 1.7907 5.5429 0.3842 0.3946 0.1720 5.7562 1.5493
-#> 154: 93.0402 -6.4004 -0.1205 2.2633 -0.9868 1.7620 6.2494 0.3860 0.3891 0.1737 5.7577 1.5109
-#> 155: 93.1692 -6.4353 -0.1203 2.2696 -0.9761 1.8710 6.4519 0.3949 0.3962 0.1721 5.8348 1.4949
-#> 156: 93.2709 -6.2672 -0.1203 2.2663 -0.9708 2.1172 5.1692 0.3949 0.4187 0.1637 6.1251 1.5012
-#> 157: 93.1264 -6.1931 -0.1208 2.2728 -0.9669 1.9985 4.7739 0.3938 0.4031 0.1696 6.1014 1.5627
-#> 158: 93.1263 -6.1951 -0.1237 2.2826 -0.9729 1.7675 4.6131 0.3928 0.3904 0.1659 6.1582 1.5647
-#> 159: 92.9780 -6.2831 -0.1242 2.2726 -0.9770 1.8348 5.4674 0.3938 0.3887 0.1631 6.0622 1.5787
-#> 160: 93.1289 -6.4397 -0.1263 2.2651 -0.9675 2.4637 6.0560 0.3919 0.4017 0.1626 5.9486 1.5859
-#> 161: 93.2629 -6.3336 -0.1294 2.2670 -0.9666 2.9602 5.4966 0.3872 0.3988 0.1667 5.9034 1.5421
-#> 162: 93.1652 -6.3800 -0.1342 2.2518 -0.9754 2.8800 5.6206 0.3908 0.4158 0.1627 5.9332 1.5306
-#> 163: 93.2886 -6.4115 -0.1437 2.2330 -0.9685 1.9997 6.2760 0.4015 0.4076 0.1623 5.7905 1.5398
-#> 164: 93.4631 -6.7246 -0.1396 2.2358 -0.9854 1.8885 7.8014 0.3952 0.4028 0.1573 5.7052 1.5695
-#> 165: 93.4757 -6.8408 -0.1404 2.2346 -0.9825 2.4877 9.3632 0.3948 0.4019 0.1615 5.8406 1.5902
-#> 166: 93.9075 -6.7707 -0.1428 2.2331 -0.9848 1.9761 8.9292 0.3939 0.3909 0.1610 5.7600 1.5966
-#> 167: 93.8895 -7.1938 -0.1363 2.2449 -0.9870 2.0894 11.4058 0.3850 0.3899 0.1627 5.8501 1.5748
-#> 168: 93.5849 -6.8478 -0.1294 2.2466 -0.9888 2.3573 9.4037 0.3935 0.3808 0.1645 6.0206 1.6591
-#> 169: 93.4931 -6.4550 -0.1173 2.2727 -0.9990 2.1948 6.5738 0.3844 0.4029 0.1699 6.0990 1.6123
-#> 170: 93.7188 -6.4015 -0.1173 2.2715 -0.9981 1.8800 6.1745 0.3844 0.4001 0.1635 6.1990 1.5745
-#> 171: 93.5938 -6.4389 -0.1119 2.2663 -0.9893 2.5731 6.5397 0.3858 0.4044 0.1554 6.1636 1.5631
-#> 172: 93.4515 -6.2049 -0.1050 2.2937 -0.9701 2.6134 4.6813 0.3687 0.4017 0.1715 6.3875 1.5006
-#> 173: 93.2254 -6.2074 -0.1041 2.3111 -0.9661 2.5799 4.6939 0.3669 0.4016 0.1738 6.5633 1.5229
-#> 174: 93.4116 -6.1198 -0.1050 2.3075 -0.9711 3.0196 4.3080 0.3720 0.3988 0.1778 6.4856 1.5214
-#> 175: 93.4952 -6.0439 -0.1050 2.3008 -0.9714 3.1172 3.7728 0.3720 0.3979 0.1749 6.1918 1.4985
-#> 176: 93.6186 -6.0891 -0.1061 2.3033 -0.9794 2.1081 3.8909 0.3705 0.4029 0.1796 6.1064 1.4657
-#> 177: 93.6432 -5.9977 -0.1031 2.2953 -0.9950 1.9411 3.4156 0.3694 0.3970 0.1843 6.0473 1.4918
-#> 178: 93.5736 -6.0079 -0.0996 2.2986 -0.9809 1.7778 3.5107 0.3696 0.3909 0.1840 6.1243 1.4937
-#> 179: 93.6407 -6.0246 -0.0977 2.3042 -0.9770 2.0631 3.8144 0.3718 0.3885 0.1798 6.1851 1.5212
-#> 180: 93.6336 -5.8865 -0.0969 2.3217 -0.9871 2.2566 3.1377 0.3721 0.3715 0.1784 6.0747 1.5546
-#> 181: 93.5075 -5.8632 -0.0965 2.3140 -0.9764 2.5812 2.9771 0.3715 0.3728 0.1876 5.9833 1.5356
-#> 182: 93.4464 -5.8627 -0.0930 2.3211 -0.9713 2.5956 2.8054 0.3836 0.3759 0.1861 6.1293 1.6259
-#> 183: 93.2737 -5.8238 -0.0977 2.3127 -0.9642 2.8739 2.6277 0.3846 0.3743 0.1868 6.0451 1.6493
-#> 184: 93.2191 -5.9175 -0.0993 2.3107 -0.9592 2.3088 3.0689 0.3829 0.3515 0.1711 6.1487 1.6666
-#> 185: 93.3626 -5.8872 -0.1070 2.3112 -0.9413 2.2812 3.2719 0.3712 0.3555 0.1783 6.1295 1.6288
-#> 186: 93.1585 -5.8532 -0.1053 2.3140 -0.9665 2.7906 2.8415 0.3734 0.3531 0.1680 6.0294 1.6104
-#> 187: 93.3041 -5.6798 -0.0957 2.3158 -0.9608 3.1056 2.0850 0.3813 0.3484 0.1728 6.1191 1.5813
-#> 188: 93.2466 -5.6791 -0.0954 2.3172 -0.9446 3.8296 2.1956 0.3816 0.3439 0.1757 5.9670 1.5445
-#> 189: 93.3532 -5.6883 -0.0859 2.3335 -0.9594 2.8968 2.3125 0.3691 0.3512 0.1812 5.9467 1.6101
-#> 190: 93.5064 -5.6288 -0.0726 2.3548 -0.9562 2.8233 2.1930 0.3334 0.3700 0.1759 6.4036 1.5877
-#> 191: 93.4145 -5.6906 -0.0726 2.3467 -0.9624 2.8818 2.3581 0.3334 0.3771 0.1712 6.2046 1.4952
-#> 192: 93.2060 -5.7479 -0.0716 2.3433 -0.9618 2.5221 2.6613 0.3324 0.3909 0.1552 6.1651 1.4971
-#> 193: 93.2904 -5.7634 -0.0811 2.3327 -0.9585 2.6968 2.6324 0.3339 0.3856 0.1632 6.5621 1.5258
-#> 194: 93.5271 -5.7859 -0.0874 2.3419 -0.9580 2.8361 2.8424 0.3286 0.3784 0.1636 6.3714 1.5386
-#> 195: 93.3944 -5.9358 -0.0838 2.3407 -0.9718 3.4161 3.2427 0.3315 0.3787 0.1678 6.3722 1.5181
-#> 196: 93.2341 -5.9078 -0.0701 2.3492 -0.9816 3.1580 3.0586 0.3285 0.3666 0.1681 6.4633 1.5382
-#> 197: 93.2967 -6.0131 -0.0745 2.3426 -0.9991 3.7978 3.6459 0.3353 0.3491 0.1796 6.2264 1.5310
-#> 198: 93.2628 -5.7991 -0.0730 2.3434 -0.9819 2.3896 2.6695 0.3371 0.3431 0.1762 6.3141 1.5254
-#> 199: 93.2765 -5.9078 -0.0782 2.3553 -0.9864 2.2760 3.3883 0.3420 0.3459 0.1866 6.0192 1.4982
-#> 200: 93.0447 -5.9148 -0.0769 2.3543 -0.9759 2.1516 2.9675 0.3455 0.3476 0.1870 5.9079 1.4688
-#> 201: 93.1655 -5.8951 -0.0763 2.3493 -0.9707 1.8254 2.9481 0.3448 0.3526 0.1831 6.0676 1.5097
-#> 202: 93.1082 -5.8916 -0.0768 2.3499 -0.9673 1.8503 2.9562 0.3447 0.3574 0.1821 6.1282 1.5026
-#> 203: 93.0728 -5.9316 -0.0774 2.3506 -0.9650 2.0210 3.2306 0.3441 0.3563 0.1827 6.1253 1.4974
-#> 204: 93.0846 -5.9347 -0.0773 2.3494 -0.9648 2.1463 3.2567 0.3453 0.3563 0.1824 6.1301 1.4911
-#> 205: 93.0929 -5.9439 -0.0781 2.3491 -0.9659 2.2204 3.3165 0.3453 0.3572 0.1823 6.1098 1.4941
-#> 206: 93.1795 -5.9401 -0.0795 2.3481 -0.9681 2.2588 3.2940 0.3470 0.3568 0.1829 6.1132 1.4996
-#> 207: 93.2303 -5.9158 -0.0805 2.3467 -0.9703 2.3439 3.1823 0.3484 0.3571 0.1845 6.1021 1.5059
-#> 208: 93.2161 -5.8969 -0.0825 2.3440 -0.9700 2.3306 3.0999 0.3496 0.3563 0.1848 6.0998 1.5177
-#> 209: 93.2077 -5.8842 -0.0848 2.3413 -0.9681 2.3580 3.0406 0.3499 0.3553 0.1841 6.0829 1.5199
-#> 210: 93.1951 -5.8661 -0.0867 2.3383 -0.9656 2.4170 2.9578 0.3501 0.3543 0.1833 6.0562 1.5261
-#> 211: 93.1870 -5.8543 -0.0892 2.3347 -0.9645 2.4650 2.9307 0.3502 0.3548 0.1831 6.0286 1.5289
-#> 212: 93.2077 -5.8506 -0.0915 2.3316 -0.9626 2.4909 2.9544 0.3504 0.3555 0.1835 6.0079 1.5300
-#> 213: 93.2104 -5.8492 -0.0938 2.3283 -0.9612 2.4695 2.9635 0.3503 0.3548 0.1841 5.9859 1.5341
-#> 214: 93.2059 -5.8537 -0.0959 2.3255 -0.9615 2.4264 3.0084 0.3499 0.3540 0.1835 5.9698 1.5370
-#> 215: 93.2051 -5.8569 -0.0977 2.3227 -0.9608 2.4277 3.0541 0.3495 0.3534 0.1830 5.9586 1.5374
-#> 216: 93.1879 -5.8596 -0.0993 2.3199 -0.9600 2.4347 3.0802 0.3493 0.3534 0.1828 5.9465 1.5380
-#> 217: 93.1834 -5.8621 -0.1008 2.3173 -0.9594 2.4479 3.0998 0.3491 0.3535 0.1827 5.9369 1.5402
-#> 218: 93.1796 -5.8657 -0.1021 2.3152 -0.9593 2.4234 3.1238 0.3492 0.3534 0.1835 5.9184 1.5441
-#> 219: 93.1680 -5.8721 -0.1032 2.3132 -0.9588 2.4640 3.1464 0.3494 0.3531 0.1839 5.8929 1.5493
-#> 220: 93.1579 -5.8839 -0.1044 2.3118 -0.9586 2.5707 3.1909 0.3495 0.3531 0.1847 5.8754 1.5496
-#> 221: 93.1557 -5.8882 -0.1058 2.3100 -0.9583 2.6662 3.2052 0.3492 0.3533 0.1854 5.8662 1.5518
-#> 222: 93.1624 -5.8832 -0.1074 2.3075 -0.9578 2.7993 3.1736 0.3490 0.3542 0.1861 5.8489 1.5546
-#> 223: 93.1699 -5.8771 -0.1086 2.3052 -0.9583 2.9085 3.1456 0.3488 0.3558 0.1871 5.8436 1.5610
-#> 224: 93.1870 -5.8751 -0.1097 2.3037 -0.9583 2.9988 3.1279 0.3487 0.3570 0.1878 5.8390 1.5628
-#> 225: 93.2094 -5.8719 -0.1110 2.3012 -0.9583 3.0581 3.1018 0.3485 0.3574 0.1885 5.8214 1.5656
-#> 226: 93.2352 -5.8683 -0.1122 2.2988 -0.9587 3.1297 3.0761 0.3482 0.3584 0.1895 5.8105 1.5680
-#> 227: 93.2611 -5.8653 -0.1132 2.2964 -0.9589 3.1563 3.0610 0.3476 0.3594 0.1904 5.8038 1.5701
-#> 228: 93.2741 -5.8593 -0.1140 2.2943 -0.9591 3.1641 3.0356 0.3470 0.3603 0.1911 5.7984 1.5730
-#> 229: 93.2899 -5.8593 -0.1151 2.2919 -0.9595 3.1626 3.0313 0.3466 0.3613 0.1918 5.7999 1.5745
-#> 230: 93.3048 -5.8650 -0.1164 2.2899 -0.9593 3.1743 3.0542 0.3460 0.3624 0.1921 5.7990 1.5753
-#> 231: 93.3159 -5.8638 -0.1177 2.2875 -0.9592 3.1930 3.0524 0.3454 0.3631 0.1924 5.7956 1.5748
-#> 232: 93.3209 -5.8611 -0.1189 2.2852 -0.9590 3.1872 3.0420 0.3450 0.3639 0.1926 5.7921 1.5755
-#> 233: 93.3196 -5.8556 -0.1200 2.2833 -0.9589 3.1861 3.0209 0.3445 0.3644 0.1926 5.7852 1.5779
-#> 234: 93.3245 -5.8530 -0.1210 2.2813 -0.9591 3.1890 3.0115 0.3441 0.3651 0.1922 5.7781 1.5786
-#> 235: 93.3219 -5.8522 -0.1218 2.2800 -0.9593 3.1573 3.0042 0.3437 0.3659 0.1917 5.7813 1.5797
-#> 236: 93.3155 -5.8524 -0.1227 2.2789 -0.9595 3.1542 3.0035 0.3433 0.3669 0.1913 5.7834 1.5800
-#> 237: 93.3060 -5.8556 -0.1235 2.2779 -0.9599 3.1308 3.0158 0.3430 0.3678 0.1910 5.7833 1.5809
-#> 238: 93.3111 -5.8563 -0.1242 2.2772 -0.9602 3.1194 3.0099 0.3427 0.3683 0.1907 5.7842 1.5809
-#> 239: 93.3177 -5.8580 -0.1248 2.2764 -0.9605 3.0944 3.0130 0.3423 0.3686 0.1904 5.7840 1.5815
-#> 240: 93.3222 -5.8606 -0.1255 2.2754 -0.9608 3.0739 3.0140 0.3420 0.3686 0.1902 5.7843 1.5825
-#> 241: 93.3289 -5.8627 -0.1262 2.2740 -0.9611 3.0848 3.0167 0.3417 0.3688 0.1900 5.7836 1.5840
-#> 242: 93.3366 -5.8627 -0.1270 2.2727 -0.9612 3.1273 3.0103 0.3415 0.3691 0.1898 5.7855 1.5850
-#> 243: 93.3441 -5.8646 -0.1277 2.2714 -0.9614 3.1530 3.0218 0.3414 0.3692 0.1896 5.7829 1.5856
-#> 244: 93.3499 -5.8645 -0.1285 2.2700 -0.9618 3.1705 3.0265 0.3412 0.3694 0.1894 5.7778 1.5874
-#> 245: 93.3619 -5.8673 -0.1294 2.2686 -0.9622 3.1863 3.0397 0.3412 0.3694 0.1892 5.7752 1.5889
-#> 246: 93.3745 -5.8698 -0.1301 2.2671 -0.9627 3.2105 3.0484 0.3412 0.3693 0.1890 5.7716 1.5905
-#> 247: 93.3838 -5.8757 -0.1307 2.2659 -0.9632 3.2158 3.0715 0.3412 0.3693 0.1889 5.7688 1.5922
-#> 248: 93.3914 -5.8799 -0.1314 2.2650 -0.9640 3.2268 3.0851 0.3413 0.3690 0.1889 5.7648 1.5934
-#> 249: 93.3983 -5.8844 -0.1319 2.2640 -0.9648 3.2471 3.0990 0.3415 0.3691 0.1889 5.7641 1.5944
-#> 250: 93.4032 -5.8898 -0.1324 2.2629 -0.9655 3.2828 3.1197 0.3414 0.3694 0.1887 5.7623 1.5965
-#> 251: 93.4053 -5.8939 -0.1329 2.2621 -0.9657 3.3074 3.1303 0.3414 0.3698 0.1887 5.7611 1.5978
-#> 252: 93.4095 -5.8950 -0.1334 2.2613 -0.9658 3.3479 3.1281 0.3414 0.3701 0.1887 5.7578 1.5986
-#> 253: 93.4132 -5.8956 -0.1340 2.2606 -0.9660 3.3486 3.1283 0.3413 0.3703 0.1887 5.7559 1.5999
-#> 254: 93.4201 -5.8966 -0.1345 2.2597 -0.9660 3.3502 3.1298 0.3413 0.3706 0.1888 5.7593 1.5997
-#> 255: 93.4235 -5.8953 -0.1349 2.2590 -0.9656 3.3332 3.1220 0.3412 0.3706 0.1887 5.7571 1.6012
-#> 256: 93.4231 -5.8926 -0.1353 2.2585 -0.9651 3.3255 3.1104 0.3411 0.3706 0.1886 5.7569 1.6018
-#> 257: 93.4247 -5.8874 -0.1356 2.2582 -0.9646 3.3164 3.0917 0.3410 0.3705 0.1885 5.7585 1.6030
-#> 258: 93.4198 -5.8857 -0.1359 2.2580 -0.9641 3.3086 3.0828 0.3409 0.3702 0.1885 5.7608 1.6026
-#> 259: 93.4125 -5.8833 -0.1362 2.2576 -0.9638 3.2926 3.0726 0.3408 0.3701 0.1885 5.7651 1.6023
-#> 260: 93.4073 -5.8847 -0.1365 2.2572 -0.9640 3.2737 3.0759 0.3406 0.3703 0.1885 5.7687 1.6030
-#> 261: 93.4049 -5.8885 -0.1368 2.2571 -0.9642 3.2510 3.0904 0.3402 0.3702 0.1882 5.7742 1.6028
-#> 262: 93.4036 -5.8931 -0.1371 2.2566 -0.9645 3.2279 3.1104 0.3397 0.3699 0.1880 5.7766 1.6033
-#> 263: 93.4026 -5.8964 -0.1375 2.2562 -0.9647 3.2024 3.1313 0.3395 0.3696 0.1877 5.7786 1.6029
-#> 264: 93.3990 -5.9003 -0.1377 2.2559 -0.9649 3.1808 3.1545 0.3393 0.3694 0.1874 5.7778 1.6022
-#> 265: 93.4005 -5.9013 -0.1380 2.2555 -0.9650 3.1664 3.1680 0.3390 0.3693 0.1871 5.7765 1.6021
-#> 266: 93.4005 -5.9011 -0.1382 2.2552 -0.9653 3.1530 3.1708 0.3387 0.3692 0.1869 5.7763 1.6020
-#> 267: 93.4006 -5.9035 -0.1384 2.2549 -0.9654 3.1384 3.1902 0.3384 0.3690 0.1866 5.7768 1.6014
-#> 268: 93.3972 -5.9086 -0.1385 2.2547 -0.9653 3.1224 3.2331 0.3380 0.3688 0.1863 5.7778 1.6008
-#> 269: 93.3936 -5.9113 -0.1386 2.2547 -0.9654 3.0959 3.2552 0.3377 0.3688 0.1861 5.7782 1.6001
-#> 270: 93.3867 -5.9139 -0.1387 2.2547 -0.9653 3.0853 3.2756 0.3372 0.3687 0.1859 5.7787 1.5989
-#> 271: 93.3836 -5.9154 -0.1389 2.2545 -0.9654 3.0824 3.2889 0.3367 0.3686 0.1858 5.7761 1.5980
-#> 272: 93.3812 -5.9160 -0.1390 2.2543 -0.9653 3.0741 3.2919 0.3362 0.3686 0.1857 5.7729 1.5977
-#> 273: 93.3767 -5.9174 -0.1390 2.2542 -0.9652 3.0663 3.2992 0.3358 0.3687 0.1856 5.7699 1.5970
-#> 274: 93.3696 -5.9171 -0.1391 2.2543 -0.9652 3.0604 3.2940 0.3355 0.3687 0.1855 5.7688 1.5958
-#> 275: 93.3658 -5.9177 -0.1393 2.2544 -0.9651 3.0605 3.2961 0.3353 0.3687 0.1853 5.7675 1.5952
-#> 276: 93.3621 -5.9185 -0.1395 2.2543 -0.9649 3.0508 3.2992 0.3351 0.3686 0.1852 5.7672 1.5940
-#> 277: 93.3602 -5.9206 -0.1397 2.2542 -0.9649 3.0453 3.3087 0.3349 0.3685 0.1851 5.7679 1.5935
-#> 278: 93.3565 -5.9213 -0.1400 2.2539 -0.9648 3.0366 3.3117 0.3347 0.3683 0.1852 5.7695 1.5931
-#> 279: 93.3548 -5.9222 -0.1403 2.2535 -0.9647 3.0284 3.3179 0.3345 0.3682 0.1854 5.7703 1.5928
-#> 280: 93.3544 -5.9215 -0.1407 2.2528 -0.9647 3.0193 3.3141 0.3344 0.3683 0.1854 5.7714 1.5927
-#> 281: 93.3533 -5.9205 -0.1410 2.2522 -0.9647 3.0130 3.3090 0.3341 0.3685 0.1855 5.7706 1.5927
-#> 282: 93.3564 -5.9189 -0.1414 2.2514 -0.9648 3.0025 3.3019 0.3339 0.3686 0.1856 5.7682 1.5930
-#> 283: 93.3571 -5.9164 -0.1417 2.2508 -0.9646 2.9990 3.2926 0.3337 0.3686 0.1858 5.7642 1.5943
-#> 284: 93.3576 -5.9154 -0.1421 2.2501 -0.9644 2.9976 3.2895 0.3336 0.3686 0.1860 5.7625 1.5942
-#> 285: 93.3584 -5.9142 -0.1425 2.2496 -0.9644 2.9906 3.2835 0.3334 0.3684 0.1861 5.7591 1.5939
-#> 286: 93.3609 -5.9137 -0.1429 2.2491 -0.9642 2.9852 3.2817 0.3332 0.3682 0.1863 5.7572 1.5939
-#> 287: 93.3641 -5.9131 -0.1433 2.2485 -0.9641 2.9732 3.2785 0.3331 0.3680 0.1863 5.7547 1.5944
-#> 288: 93.3671 -5.9128 -0.1436 2.2480 -0.9641 2.9673 3.2767 0.3330 0.3679 0.1864 5.7540 1.5939
-#> 289: 93.3676 -5.9125 -0.1440 2.2474 -0.9639 2.9663 3.2765 0.3329 0.3678 0.1865 5.7536 1.5939
-#> 290: 93.3659 -5.9126 -0.1443 2.2469 -0.9637 2.9570 3.2776 0.3328 0.3678 0.1866 5.7523 1.5941
-#> 291: 93.3620 -5.9109 -0.1447 2.2466 -0.9634 2.9472 3.2713 0.3327 0.3676 0.1866 5.7527 1.5943
-#> 292: 93.3601 -5.9096 -0.1450 2.2462 -0.9632 2.9359 3.2664 0.3326 0.3675 0.1866 5.7517 1.5944
-#> 293: 93.3582 -5.9077 -0.1453 2.2457 -0.9629 2.9295 3.2586 0.3326 0.3675 0.1866 5.7514 1.5945
-#> 294: 93.3583 -5.9054 -0.1456 2.2454 -0.9626 2.9203 3.2478 0.3326 0.3676 0.1867 5.7508 1.5942
-#> 295: 93.3577 -5.9037 -0.1459 2.2449 -0.9624 2.9216 3.2406 0.3325 0.3678 0.1867 5.7493 1.5934
-#> 296: 93.3570 -5.9016 -0.1462 2.2445 -0.9623 2.9304 3.2334 0.3323 0.3680 0.1868 5.7502 1.5933
-#> 297: 93.3538 -5.8988 -0.1462 2.2441 -0.9621 2.9429 3.2217 0.3321 0.3681 0.1870 5.7539 1.5939
-#> 298: 93.3525 -5.8966 -0.1463 2.2438 -0.9620 2.9662 3.2118 0.3319 0.3683 0.1870 5.7555 1.5942
-#> 299: 93.3526 -5.8957 -0.1465 2.2437 -0.9619 2.9812 3.2056 0.3318 0.3685 0.1870 5.7582 1.5938
-#> 300: 93.3504 -5.8953 -0.1467 2.2436 -0.9616 2.9982 3.2029 0.3316 0.3688 0.1873 5.7609 1.5937
-#> 301: 93.3469 -5.8941 -0.1469 2.2434 -0.9612 3.0124 3.1993 0.3315 0.3690 0.1875 5.7641 1.5933
-#> 302: 93.3442 -5.8944 -0.1472 2.2434 -0.9609 3.0353 3.2015 0.3313 0.3692 0.1876 5.7660 1.5937
-#> 303: 93.3428 -5.8970 -0.1474 2.2432 -0.9607 3.0454 3.2160 0.3312 0.3692 0.1876 5.7654 1.5938
-#> 304: 93.3407 -5.9012 -0.1475 2.2430 -0.9607 3.0626 3.2409 0.3310 0.3693 0.1877 5.7649 1.5932
-#> 305: 93.3395 -5.9051 -0.1476 2.2429 -0.9607 3.0756 3.2632 0.3308 0.3693 0.1879 5.7650 1.5924
-#> 306: 93.3398 -5.9099 -0.1478 2.2429 -0.9607 3.0881 3.2952 0.3306 0.3694 0.1880 5.7655 1.5920
-#> 307: 93.3406 -5.9128 -0.1479 2.2427 -0.9608 3.0995 3.3163 0.3305 0.3695 0.1880 5.7666 1.5921
-#> 308: 93.3418 -5.9165 -0.1480 2.2426 -0.9610 3.1060 3.3420 0.3303 0.3696 0.1881 5.7674 1.5914
-#> 309: 93.3437 -5.9205 -0.1481 2.2424 -0.9610 3.1185 3.3703 0.3301 0.3697 0.1882 5.7665 1.5908
-#> 310: 93.3442 -5.9236 -0.1482 2.2422 -0.9612 3.1270 3.3902 0.3299 0.3698 0.1882 5.7650 1.5904
-#> 311: 93.3482 -5.9268 -0.1482 2.2421 -0.9614 3.1333 3.4086 0.3296 0.3698 0.1882 5.7636 1.5900
-#> 312: 93.3529 -5.9286 -0.1482 2.2420 -0.9615 3.1348 3.4186 0.3294 0.3699 0.1882 5.7622 1.5895
-#> 313: 93.3573 -5.9290 -0.1481 2.2419 -0.9617 3.1332 3.4199 0.3291 0.3699 0.1882 5.7621 1.5891
-#> 314: 93.3630 -5.9293 -0.1482 2.2418 -0.9619 3.1398 3.4211 0.3289 0.3700 0.1883 5.7594 1.5888
-#> 315: 93.3669 -5.9284 -0.1483 2.2416 -0.9622 3.1464 3.4155 0.3286 0.3702 0.1885 5.7586 1.5889
-#> 316: 93.3724 -5.9279 -0.1485 2.2412 -0.9624 3.1426 3.4124 0.3283 0.3704 0.1887 5.7581 1.5887
-#> 317: 93.3763 -5.9281 -0.1487 2.2409 -0.9626 3.1335 3.4108 0.3281 0.3706 0.1888 5.7573 1.5880
-#> 318: 93.3786 -5.9275 -0.1488 2.2405 -0.9627 3.1262 3.4057 0.3279 0.3709 0.1888 5.7579 1.5876
-#> 319: 93.3821 -5.9275 -0.1490 2.2402 -0.9628 3.1273 3.4032 0.3276 0.3711 0.1889 5.7570 1.5870
-#> 320: 93.3856 -5.9272 -0.1491 2.2401 -0.9629 3.1337 3.3989 0.3273 0.3715 0.1888 5.7563 1.5861
-#> 321: 93.3902 -5.9263 -0.1492 2.2399 -0.9631 3.1388 3.3931 0.3269 0.3718 0.1887 5.7555 1.5852
-#> 322: 93.3951 -5.9251 -0.1493 2.2397 -0.9631 3.1415 3.3856 0.3266 0.3721 0.1886 5.7552 1.5846
-#> 323: 93.3988 -5.9251 -0.1493 2.2395 -0.9632 3.1377 3.3824 0.3262 0.3724 0.1885 5.7556 1.5841
-#> 324: 93.4030 -5.9236 -0.1494 2.2394 -0.9633 3.1355 3.3738 0.3259 0.3727 0.1885 5.7562 1.5837
-#> 325: 93.4047 -5.9219 -0.1495 2.2393 -0.9633 3.1415 3.3647 0.3256 0.3731 0.1884 5.7553 1.5831
-#> 326: 93.4077 -5.9204 -0.1495 2.2391 -0.9634 3.1489 3.3564 0.3254 0.3735 0.1884 5.7562 1.5829
-#> 327: 93.4121 -5.9185 -0.1496 2.2390 -0.9635 3.1503 3.3472 0.3250 0.3739 0.1884 5.7562 1.5825
-#> 328: 93.4157 -5.9182 -0.1496 2.2389 -0.9636 3.1564 3.3432 0.3246 0.3743 0.1884 5.7559 1.5823
-#> 329: 93.4181 -5.9169 -0.1496 2.2388 -0.9638 3.1666 3.3361 0.3243 0.3746 0.1884 5.7544 1.5822
-#> 330: 93.4206 -5.9171 -0.1497 2.2386 -0.9640 3.1726 3.3349 0.3239 0.3748 0.1885 5.7538 1.5824
-#> 331: 93.4214 -5.9172 -0.1497 2.2385 -0.9642 3.1764 3.3332 0.3236 0.3750 0.1886 5.7540 1.5824
-#> 332: 93.4226 -5.9171 -0.1497 2.2385 -0.9645 3.1787 3.3303 0.3232 0.3752 0.1887 5.7539 1.5826
-#> 333: 93.4242 -5.9168 -0.1497 2.2384 -0.9645 3.1757 3.3287 0.3229 0.3755 0.1886 5.7545 1.5823
-#> 334: 93.4273 -5.9167 -0.1497 2.2383 -0.9645 3.1832 3.3290 0.3226 0.3758 0.1887 5.7540 1.5818
-#> 335: 93.4306 -5.9170 -0.1498 2.2384 -0.9644 3.1910 3.3318 0.3223 0.3760 0.1887 5.7548 1.5814
-#> 336: 93.4315 -5.9177 -0.1498 2.2384 -0.9644 3.1999 3.3355 0.3219 0.3762 0.1887 5.7558 1.5811
-#> 337: 93.4332 -5.9181 -0.1499 2.2384 -0.9643 3.2145 3.3360 0.3216 0.3764 0.1887 5.7581 1.5805
-#> 338: 93.4352 -5.9169 -0.1498 2.2384 -0.9643 3.2221 3.3307 0.3213 0.3767 0.1887 5.7592 1.5802
-#> 339: 93.4385 -5.9152 -0.1498 2.2384 -0.9643 3.2356 3.3242 0.3210 0.3770 0.1887 5.7605 1.5797
-#> 340: 93.4417 -5.9130 -0.1498 2.2384 -0.9643 3.2506 3.3167 0.3207 0.3773 0.1888 5.7599 1.5794
-#> 341: 93.4452 -5.9102 -0.1497 2.2382 -0.9641 3.2568 3.3064 0.3205 0.3772 0.1888 5.7590 1.5799
-#> 342: 93.4487 -5.9077 -0.1497 2.2381 -0.9641 3.2628 3.2970 0.3203 0.3772 0.1889 5.7587 1.5802
-#> 343: 93.4519 -5.9055 -0.1497 2.2380 -0.9642 3.2685 3.2892 0.3201 0.3772 0.1889 5.7585 1.5810
-#> 344: 93.4556 -5.9048 -0.1497 2.2379 -0.9643 3.2690 3.2847 0.3200 0.3771 0.1891 5.7573 1.5812
-#> 345: 93.4588 -5.9041 -0.1498 2.2377 -0.9645 3.2704 3.2807 0.3199 0.3771 0.1893 5.7567 1.5811
-#> 346: 93.4605 -5.9033 -0.1498 2.2376 -0.9647 3.2655 3.2747 0.3198 0.3770 0.1893 5.7557 1.5808
-#> 347: 93.4638 -5.9027 -0.1498 2.2375 -0.9648 3.2725 3.2701 0.3198 0.3768 0.1894 5.7532 1.5808
-#> 348: 93.4643 -5.9028 -0.1498 2.2373 -0.9649 3.2764 3.2676 0.3197 0.3768 0.1893 5.7523 1.5807
-#> 349: 93.4664 -5.9023 -0.1497 2.2372 -0.9650 3.2806 3.2638 0.3197 0.3767 0.1893 5.7527 1.5815
-#> 350: 93.4700 -5.9014 -0.1497 2.2370 -0.9651 3.2817 3.2585 0.3196 0.3767 0.1892 5.7534 1.5817
-#> 351: 93.4724 -5.9001 -0.1497 2.2369 -0.9652 3.2825 3.2522 0.3196 0.3768 0.1892 5.7541 1.5818
-#> 352: 93.4744 -5.8986 -0.1497 2.2369 -0.9653 3.2875 3.2460 0.3195 0.3768 0.1891 5.7546 1.5819
-#> 353: 93.4738 -5.8975 -0.1496 2.2369 -0.9653 3.2891 3.2407 0.3195 0.3769 0.1889 5.7560 1.5822
-#> 354: 93.4733 -5.8960 -0.1496 2.2369 -0.9652 3.2856 3.2333 0.3194 0.3768 0.1889 5.7579 1.5824
-#> 355: 93.4731 -5.8944 -0.1496 2.2370 -0.9652 3.2893 3.2259 0.3194 0.3767 0.1888 5.7599 1.5826
-#> 356: 93.4724 -5.8933 -0.1495 2.2373 -0.9652 3.2924 3.2197 0.3194 0.3767 0.1888 5.7608 1.5832
-#> 357: 93.4723 -5.8929 -0.1493 2.2376 -0.9654 3.2907 3.2164 0.3194 0.3767 0.1887 5.7605 1.5833
-#> 358: 93.4723 -5.8923 -0.1491 2.2378 -0.9654 3.2875 3.2120 0.3194 0.3766 0.1886 5.7608 1.5837
-#> 359: 93.4705 -5.8931 -0.1490 2.2379 -0.9656 3.2875 3.2121 0.3194 0.3764 0.1886 5.7606 1.5843
-#> 360: 93.4699 -5.8938 -0.1488 2.2382 -0.9658 3.2837 3.2133 0.3195 0.3763 0.1886 5.7606 1.5848
-#> 361: 93.4693 -5.8951 -0.1487 2.2383 -0.9659 3.2822 3.2164 0.3195 0.3763 0.1886 5.7600 1.5852
-#> 362: 93.4691 -5.8963 -0.1486 2.2385 -0.9660 3.2770 3.2196 0.3195 0.3763 0.1884 5.7618 1.5856
-#> 363: 93.4681 -5.8970 -0.1485 2.2387 -0.9660 3.2706 3.2208 0.3195 0.3762 0.1883 5.7639 1.5857
-#> 364: 93.4674 -5.8970 -0.1484 2.2389 -0.9660 3.2593 3.2189 0.3195 0.3760 0.1881 5.7659 1.5855
-#> 365: 93.4680 -5.8968 -0.1482 2.2391 -0.9659 3.2513 3.2174 0.3196 0.3758 0.1881 5.7686 1.5857
-#> 366: 93.4672 -5.8962 -0.1480 2.2393 -0.9658 3.2493 3.2161 0.3196 0.3755 0.1880 5.7714 1.5861
-#> 367: 93.4656 -5.8953 -0.1479 2.2396 -0.9657 3.2462 3.2121 0.3195 0.3753 0.1881 5.7721 1.5862
-#> 368: 93.4645 -5.8946 -0.1478 2.2398 -0.9657 3.2469 3.2083 0.3194 0.3750 0.1882 5.7724 1.5860
-#> 369: 93.4638 -5.8946 -0.1476 2.2401 -0.9657 3.2544 3.2068 0.3194 0.3749 0.1882 5.7713 1.5856
-#> 370: 93.4639 -5.8946 -0.1475 2.2404 -0.9657 3.2547 3.2066 0.3194 0.3748 0.1882 5.7719 1.5853
-#> 371: 93.4646 -5.8959 -0.1474 2.2407 -0.9657 3.2584 3.2129 0.3194 0.3746 0.1883 5.7725 1.5847
-#> 372: 93.4648 -5.8964 -0.1473 2.2409 -0.9658 3.2649 3.2172 0.3193 0.3745 0.1883 5.7730 1.5843
-#> 373: 93.4658 -5.8958 -0.1471 2.2411 -0.9659 3.2744 3.2135 0.3193 0.3743 0.1884 5.7730 1.5843
-#> 374: 93.4678 -5.8953 -0.1470 2.2412 -0.9662 3.2855 3.2100 0.3192 0.3742 0.1885 5.7727 1.5847
-#> 375: 93.4697 -5.8955 -0.1470 2.2413 -0.9663 3.2917 3.2087 0.3190 0.3742 0.1885 5.7733 1.5845
-#> 376: 93.4707 -5.8960 -0.1469 2.2414 -0.9664 3.2997 3.2095 0.3189 0.3741 0.1885 5.7726 1.5841
-#> 377: 93.4712 -5.8965 -0.1468 2.2415 -0.9665 3.3016 3.2100 0.3188 0.3741 0.1885 5.7724 1.5836
-#> 378: 93.4706 -5.8971 -0.1468 2.2416 -0.9665 3.2958 3.2113 0.3187 0.3741 0.1884 5.7733 1.5829
-#> 379: 93.4699 -5.8983 -0.1467 2.2418 -0.9666 3.2940 3.2174 0.3186 0.3741 0.1883 5.7732 1.5827
-#> 380: 93.4709 -5.8993 -0.1467 2.2418 -0.9667 3.2907 3.2225 0.3185 0.3739 0.1882 5.7726 1.5826
-#> 381: 93.4730 -5.9009 -0.1467 2.2418 -0.9667 3.2861 3.2325 0.3185 0.3737 0.1881 5.7709 1.5825
-#> 382: 93.4746 -5.9018 -0.1467 2.2418 -0.9667 3.2841 3.2407 0.3184 0.3734 0.1880 5.7692 1.5822
-#> 383: 93.4744 -5.9033 -0.1468 2.2418 -0.9667 3.2847 3.2537 0.3184 0.3732 0.1878 5.7672 1.5819
-#> 384: 93.4747 -5.9049 -0.1468 2.2418 -0.9667 3.2854 3.2640 0.3184 0.3729 0.1878 5.7657 1.5816
-#> 385: 93.4751 -5.9062 -0.1468 2.2418 -0.9666 3.2917 3.2702 0.3184 0.3727 0.1877 5.7642 1.5813
-#> 386: 93.4756 -5.9074 -0.1468 2.2418 -0.9666 3.2971 3.2753 0.3185 0.3725 0.1876 5.7625 1.5810
-#> 387: 93.4761 -5.9084 -0.1469 2.2417 -0.9666 3.2988 3.2789 0.3185 0.3723 0.1875 5.7613 1.5804
-#> 388: 93.4777 -5.9092 -0.1469 2.2417 -0.9666 3.3055 3.2811 0.3185 0.3721 0.1875 5.7599 1.5803
-#> 389: 93.4805 -5.9092 -0.1468 2.2417 -0.9667 3.3138 3.2802 0.3185 0.3719 0.1874 5.7588 1.5803
-#> 390: 93.4828 -5.9089 -0.1468 2.2417 -0.9667 3.3164 3.2782 0.3186 0.3718 0.1873 5.7576 1.5806
-#> 391: 93.4854 -5.9094 -0.1467 2.2416 -0.9668 3.3265 3.2800 0.3186 0.3716 0.1873 5.7556 1.5804
-#> 392: 93.4877 -5.9103 -0.1467 2.2416 -0.9669 3.3327 3.2836 0.3187 0.3715 0.1873 5.7535 1.5803
-#> 393: 93.4899 -5.9110 -0.1467 2.2416 -0.9669 3.3419 3.2876 0.3187 0.3715 0.1873 5.7517 1.5803
-#> 394: 93.4925 -5.9117 -0.1467 2.2416 -0.9669 3.3494 3.2903 0.3187 0.3714 0.1873 5.7508 1.5801
-#> 395: 93.4945 -5.9121 -0.1467 2.2416 -0.9670 3.3536 3.2912 0.3187 0.3714 0.1873 5.7497 1.5796
-#> 396: 93.4951 -5.9124 -0.1467 2.2416 -0.9670 3.3590 3.2918 0.3187 0.3715 0.1873 5.7476 1.5793
-#> 397: 93.4955 -5.9123 -0.1467 2.2416 -0.9669 3.3626 3.2904 0.3186 0.3715 0.1873 5.7456 1.5788
-#> 398: 93.4971 -5.9120 -0.1467 2.2416 -0.9669 3.3735 3.2887 0.3186 0.3716 0.1873 5.7433 1.5786
-#> 399: 93.4995 -5.9116 -0.1467 2.2415 -0.9669 3.3854 3.2866 0.3186 0.3716 0.1873 5.7422 1.5785
-#> 400: 93.5007 -5.9116 -0.1466 2.2415 -0.9669 3.3923 3.2856 0.3186 0.3717 0.1873 5.7416 1.5786
-#> 401: 93.5028 -5.9109 -0.1467 2.2415 -0.9669 3.4020 3.2820 0.3186 0.3718 0.1873 5.7412 1.5787
-#> 402: 93.5042 -5.9099 -0.1467 2.2414 -0.9669 3.4114 3.2781 0.3186 0.3719 0.1874 5.7406 1.5788
-#> 403: 93.5054 -5.9090 -0.1467 2.2413 -0.9670 3.4179 3.2735 0.3186 0.3720 0.1874 5.7401 1.5785
-#> 404: 93.5071 -5.9093 -0.1468 2.2412 -0.9670 3.4190 3.2726 0.3186 0.3720 0.1875 5.7392 1.5779
-#> 405: 93.5087 -5.9087 -0.1468 2.2411 -0.9671 3.4186 3.2689 0.3186 0.3721 0.1876 5.7386 1.5776
-#> 406: 93.5091 -5.9087 -0.1469 2.2411 -0.9671 3.4228 3.2688 0.3186 0.3721 0.1876 5.7377 1.5774
-#> 407: 93.5094 -5.9091 -0.1470 2.2411 -0.9672 3.4285 3.2698 0.3186 0.3720 0.1877 5.7368 1.5770
-#> 408: 93.5108 -5.9081 -0.1470 2.2410 -0.9672 3.4378 3.2648 0.3187 0.3719 0.1877 5.7358 1.5766
-#> 409: 93.5113 -5.9082 -0.1470 2.2410 -0.9672 3.4444 3.2643 0.3187 0.3719 0.1878 5.7357 1.5763
-#> 410: 93.5102 -5.9099 -0.1470 2.2410 -0.9672 3.4502 3.2731 0.3188 0.3719 0.1878 5.7359 1.5756
-#> 411: 93.5097 -5.9109 -0.1469 2.2410 -0.9673 3.4534 3.2793 0.3188 0.3718 0.1878 5.7348 1.5753
-#> 412: 93.5102 -5.9114 -0.1469 2.2410 -0.9673 3.4522 3.2836 0.3189 0.3717 0.1878 5.7330 1.5753
-#> 413: 93.5110 -5.9120 -0.1469 2.2410 -0.9675 3.4534 3.2885 0.3189 0.3716 0.1878 5.7320 1.5756
-#> 414: 93.5126 -5.9130 -0.1469 2.2410 -0.9675 3.4550 3.2943 0.3190 0.3716 0.1878 5.7314 1.5753
-#> 415: 93.5144 -5.9140 -0.1469 2.2409 -0.9676 3.4574 3.3003 0.3190 0.3715 0.1878 5.7304 1.5751
-#> 416: 93.5147 -5.9149 -0.1469 2.2409 -0.9676 3.4632 3.3059 0.3191 0.3714 0.1878 5.7292 1.5750
-#> 417: 93.5132 -5.9156 -0.1468 2.2410 -0.9677 3.4675 3.3090 0.3192 0.3713 0.1878 5.7292 1.5747
-#> 418: 93.5131 -5.9165 -0.1468 2.2410 -0.9678 3.4680 3.3130 0.3192 0.3712 0.1878 5.7296 1.5747
-#> 419: 93.5142 -5.9166 -0.1467 2.2411 -0.9678 3.4663 3.3143 0.3193 0.3712 0.1879 5.7302 1.5744
-#> 420: 93.5150 -5.9164 -0.1466 2.2412 -0.9679 3.4626 3.3130 0.3193 0.3712 0.1879 5.7303 1.5744
-#> 421: 93.5162 -5.9169 -0.1465 2.2413 -0.9681 3.4596 3.3158 0.3194 0.3713 0.1880 5.7315 1.5743
-#> 422: 93.5173 -5.9172 -0.1465 2.2414 -0.9682 3.4567 3.3165 0.3194 0.3714 0.1881 5.7332 1.5740
-#> 423: 93.5174 -5.9178 -0.1464 2.2415 -0.9684 3.4550 3.3185 0.3194 0.3715 0.1882 5.7348 1.5741
-#> 424: 93.5174 -5.9189 -0.1464 2.2417 -0.9685 3.4531 3.3225 0.3193 0.3716 0.1882 5.7360 1.5737
-#> 425: 93.5171 -5.9184 -0.1463 2.2418 -0.9685 3.4508 3.3186 0.3192 0.3718 0.1882 5.7372 1.5738
-#> 426: 93.5167 -5.9177 -0.1462 2.2419 -0.9686 3.4566 3.3143 0.3192 0.3720 0.1882 5.7385 1.5735
-#> 427: 93.5185 -5.9174 -0.1462 2.2420 -0.9687 3.4561 3.3114 0.3191 0.3721 0.1881 5.7389 1.5734
-#> 428: 93.5192 -5.9177 -0.1461 2.2421 -0.9688 3.4574 3.3112 0.3191 0.3722 0.1880 5.7398 1.5731
-#> 429: 93.5184 -5.9179 -0.1460 2.2421 -0.9689 3.4558 3.3102 0.3190 0.3723 0.1879 5.7405 1.5729
-#> 430: 93.5170 -5.9187 -0.1460 2.2421 -0.9690 3.4575 3.3132 0.3190 0.3724 0.1879 5.7404 1.5727
-#> 431: 93.5156 -5.9192 -0.1460 2.2422 -0.9691 3.4556 3.3150 0.3190 0.3724 0.1879 5.7405 1.5726
-#> 432: 93.5148 -5.9203 -0.1459 2.2422 -0.9692 3.4557 3.3201 0.3190 0.3725 0.1878 5.7409 1.5727
-#> 433: 93.5134 -5.9215 -0.1459 2.2422 -0.9692 3.4569 3.3263 0.3190 0.3726 0.1878 5.7415 1.5731
-#> 434: 93.5128 -5.9222 -0.1459 2.2423 -0.9691 3.4623 3.3304 0.3190 0.3726 0.1877 5.7422 1.5728
-#> 435: 93.5116 -5.9231 -0.1459 2.2424 -0.9691 3.4672 3.3376 0.3191 0.3727 0.1877 5.7424 1.5726
-#> 436: 93.5111 -5.9228 -0.1459 2.2425 -0.9692 3.4658 3.3352 0.3190 0.3727 0.1876 5.7429 1.5725
-#> 437: 93.5100 -5.9227 -0.1459 2.2425 -0.9692 3.4651 3.3328 0.3190 0.3727 0.1876 5.7430 1.5725
-#> 438: 93.5071 -5.9230 -0.1459 2.2425 -0.9692 3.4614 3.3329 0.3190 0.3728 0.1876 5.7437 1.5725
-#> 439: 93.5035 -5.9225 -0.1459 2.2426 -0.9691 3.4555 3.3298 0.3190 0.3728 0.1875 5.7449 1.5725
-#> 440: 93.5006 -5.9222 -0.1459 2.2426 -0.9690 3.4503 3.3286 0.3190 0.3728 0.1874 5.7461 1.5723
-#> 441: 93.4988 -5.9220 -0.1459 2.2427 -0.9689 3.4445 3.3272 0.3190 0.3728 0.1874 5.7466 1.5721
-#> 442: 93.4971 -5.9216 -0.1459 2.2428 -0.9688 3.4392 3.3265 0.3190 0.3728 0.1874 5.7475 1.5721
-#> 443: 93.4957 -5.9214 -0.1458 2.2429 -0.9688 3.4338 3.3256 0.3190 0.3729 0.1874 5.7487 1.5723
-#> 444: 93.4949 -5.9210 -0.1458 2.2430 -0.9688 3.4288 3.3236 0.3189 0.3729 0.1874 5.7502 1.5721
-#> 445: 93.4932 -5.9210 -0.1458 2.2430 -0.9687 3.4283 3.3237 0.3189 0.3731 0.1874 5.7516 1.5719
-#> 446: 93.4922 -5.9205 -0.1458 2.2430 -0.9687 3.4253 3.3215 0.3188 0.3733 0.1873 5.7524 1.5717
-#> 447: 93.4917 -5.9205 -0.1458 2.2430 -0.9686 3.4257 3.3213 0.3187 0.3736 0.1873 5.7528 1.5715
-#> 448: 93.4924 -5.9205 -0.1458 2.2430 -0.9685 3.4296 3.3209 0.3186 0.3737 0.1872 5.7532 1.5717
-#> 449: 93.4920 -5.9203 -0.1459 2.2430 -0.9684 3.4302 3.3194 0.3185 0.3739 0.1872 5.7542 1.5717
-#> 450: 93.4915 -5.9207 -0.1459 2.2430 -0.9684 3.4314 3.3217 0.3184 0.3741 0.1871 5.7551 1.5715
-#> 451: 93.4915 -5.9214 -0.1459 2.2430 -0.9684 3.4371 3.3253 0.3183 0.3743 0.1871 5.7562 1.5717
-#> 452: 93.4926 -5.9212 -0.1458 2.2430 -0.9683 3.4417 3.3242 0.3182 0.3745 0.1870 5.7567 1.5717
-#> 453: 93.4935 -5.9211 -0.1459 2.2430 -0.9683 3.4413 3.3232 0.3182 0.3746 0.1870 5.7574 1.5714
-#> 454: 93.4941 -5.9209 -0.1459 2.2429 -0.9683 3.4406 3.3222 0.3182 0.3748 0.1870 5.7580 1.5713
-#> 455: 93.4947 -5.9212 -0.1459 2.2429 -0.9684 3.4450 3.3232 0.3181 0.3750 0.1870 5.7580 1.5710
-#> 456: 93.4950 -5.9214 -0.1459 2.2429 -0.9684 3.4481 3.3236 0.3181 0.3751 0.1870 5.7585 1.5708
-#> 457: 93.4961 -5.9220 -0.1459 2.2429 -0.9685 3.4516 3.3266 0.3180 0.3752 0.1869 5.7590 1.5707
-#> 458: 93.4965 -5.9218 -0.1459 2.2428 -0.9685 3.4553 3.3257 0.3179 0.3753 0.1869 5.7589 1.5707
-#> 459: 93.4959 -5.9212 -0.1459 2.2428 -0.9685 3.4572 3.3229 0.3178 0.3754 0.1868 5.7596 1.5705
-#> 460: 93.4960 -5.9209 -0.1459 2.2428 -0.9685 3.4573 3.3209 0.3178 0.3755 0.1868 5.7598 1.5704
-#> 461: 93.4944 -5.9211 -0.1459 2.2428 -0.9685 3.4592 3.3202 0.3177 0.3757 0.1868 5.7609 1.5701
-#> 462: 93.4941 -5.9214 -0.1459 2.2428 -0.9686 3.4630 3.3206 0.3176 0.3759 0.1868 5.7617 1.5700
-#> 463: 93.4932 -5.9215 -0.1459 2.2429 -0.9686 3.4708 3.3197 0.3175 0.3761 0.1868 5.7622 1.5699
-#> 464: 93.4933 -5.9209 -0.1459 2.2429 -0.9685 3.4759 3.3162 0.3175 0.3762 0.1869 5.7628 1.5696
-#> 465: 93.4928 -5.9204 -0.1459 2.2428 -0.9685 3.4794 3.3133 0.3174 0.3764 0.1870 5.7642 1.5693
-#> 466: 93.4934 -5.9197 -0.1460 2.2428 -0.9685 3.4838 3.3105 0.3173 0.3766 0.1870 5.7659 1.5693
-#> 467: 93.4931 -5.9197 -0.1460 2.2428 -0.9685 3.4866 3.3094 0.3172 0.3768 0.1871 5.7667 1.5691
-#> 468: 93.4933 -5.9198 -0.1460 2.2428 -0.9685 3.4916 3.3099 0.3172 0.3769 0.1871 5.7672 1.5690
-#> 469: 93.4936 -5.9200 -0.1461 2.2427 -0.9685 3.4929 3.3119 0.3171 0.3771 0.1871 5.7681 1.5689
-#> 470: 93.4938 -5.9200 -0.1461 2.2427 -0.9685 3.4931 3.3111 0.3171 0.3773 0.1871 5.7685 1.5687
-#> 471: 93.4943 -5.9198 -0.1461 2.2427 -0.9685 3.4932 3.3097 0.3170 0.3776 0.1871 5.7681 1.5686
-#> 472: 93.4931 -5.9197 -0.1461 2.2427 -0.9684 3.4923 3.3092 0.3170 0.3778 0.1870 5.7683 1.5686
-#> 473: 93.4928 -5.9193 -0.1461 2.2426 -0.9684 3.4918 3.3068 0.3169 0.3781 0.1870 5.7690 1.5685
-#> 474: 93.4920 -5.9193 -0.1462 2.2426 -0.9683 3.4878 3.3075 0.3169 0.3781 0.1870 5.7687 1.5688
-#> 475: 93.4909 -5.9191 -0.1463 2.2425 -0.9683 3.4868 3.3069 0.3169 0.3782 0.1869 5.7681 1.5692
-#> 476: 93.4887 -5.9190 -0.1464 2.2424 -0.9682 3.4881 3.3072 0.3169 0.3783 0.1869 5.7673 1.5694
-#> 477: 93.4875 -5.9185 -0.1465 2.2423 -0.9681 3.4847 3.3059 0.3169 0.3784 0.1868 5.7667 1.5696
-#> 478: 93.4867 -5.9182 -0.1466 2.2421 -0.9681 3.4804 3.3056 0.3170 0.3784 0.1867 5.7661 1.5700
-#> 479: 93.4865 -5.9178 -0.1468 2.2419 -0.9681 3.4768 3.3043 0.3171 0.3784 0.1867 5.7657 1.5702
-#> 480: 93.4863 -5.9181 -0.1469 2.2417 -0.9680 3.4733 3.3057 0.3172 0.3784 0.1866 5.7656 1.5702
-#> 481: 93.4865 -5.9182 -0.1470 2.2415 -0.9680 3.4694 3.3069 0.3173 0.3784 0.1866 5.7648 1.5705
-#> 482: 93.4871 -5.9187 -0.1472 2.2412 -0.9681 3.4667 3.3089 0.3173 0.3784 0.1865 5.7631 1.5709
-#> 483: 93.4860 -5.9192 -0.1473 2.2410 -0.9681 3.4668 3.3107 0.3174 0.3785 0.1865 5.7624 1.5709
-#> 484: 93.4858 -5.9193 -0.1474 2.2408 -0.9681 3.4681 3.3111 0.3174 0.3786 0.1864 5.7615 1.5713
-#> 485: 93.4858 -5.9195 -0.1476 2.2406 -0.9681 3.4643 3.3110 0.3174 0.3787 0.1864 5.7612 1.5717
-#> 486: 93.4853 -5.9198 -0.1477 2.2404 -0.9682 3.4665 3.3115 0.3174 0.3788 0.1864 5.7612 1.5717
-#> 487: 93.4856 -5.9201 -0.1478 2.2402 -0.9682 3.4687 3.3143 0.3173 0.3790 0.1864 5.7612 1.5719
-#> 488: 93.4858 -5.9209 -0.1479 2.2401 -0.9683 3.4688 3.3186 0.3173 0.3792 0.1864 5.7626 1.5722
-#> 489: 93.4870 -5.9211 -0.1480 2.2399 -0.9684 3.4681 3.3198 0.3174 0.3794 0.1863 5.7640 1.5725
-#> 490: 93.4881 -5.9213 -0.1481 2.2398 -0.9684 3.4694 3.3211 0.3174 0.3797 0.1864 5.7650 1.5728
-#> 491: 93.4892 -5.9210 -0.1482 2.2395 -0.9685 3.4716 3.3193 0.3173 0.3799 0.1864 5.7650 1.5732
-#> 492: 93.4907 -5.9211 -0.1483 2.2393 -0.9686 3.4754 3.3179 0.3173 0.3801 0.1865 5.7648 1.5736
-#> 493: 93.4928 -5.9215 -0.1484 2.2390 -0.9686 3.4858 3.3185 0.3173 0.3803 0.1865 5.7640 1.5738
-#> 494: 93.4937 -5.9217 -0.1485 2.2388 -0.9687 3.4940 3.3182 0.3172 0.3805 0.1865 5.7639 1.5740
-#> 495: 93.4945 -5.9213 -0.1485 2.2386 -0.9688 3.4998 3.3151 0.3172 0.3808 0.1866 5.7638 1.5742
-#> 496: 93.4953 -5.9208 -0.1486 2.2384 -0.9688 3.5036 3.3123 0.3172 0.3810 0.1867 5.7635 1.5745
-#> 497: 93.4969 -5.9205 -0.1487 2.2382 -0.9689 3.5064 3.3109 0.3172 0.3813 0.1868 5.7637 1.5747
-#> 498: 93.4980 -5.9205 -0.1488 2.2379 -0.9690 3.5057 3.3104 0.3171 0.3815 0.1868 5.7639 1.5752
-#> 499: 93.4999 -5.9205 -0.1488 2.2377 -0.9691 3.5095 3.3102 0.3171 0.3817 0.1869 5.7639 1.5756
-#> 500: 93.5013 -5.9210 -0.1489 2.2376 -0.9691 3.5093 3.3135 0.3171 0.3818 0.1869 5.7644 1.5758#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"#> Calculating residuals/tables#> done#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
-#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#> F: Forward difference gradient approximation
-#> C: Central difference gradient approximation
-#> M: Mixed forward and central difference gradient approximation
-#> Unscaled parameters for Omegas=chol(solve(omega));
-#> Diagonals are transformed, as specified by foceiControl(diagXform=)
-#> |-----+---------------+-----------+-----------+-----------+-----------|
-#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
-#> |.....................| log_beta |sigma_parent | sigma_A1 | o1 |
-#> |.....................| o2 | o3 | o4 | o5 |
-#> | 1| 470.09130 | 1.000 | -1.000 | -0.9119 | -0.8960 |
-#> |.....................| -0.8494 | -0.8528 | -0.8683 | -0.8768 |
-#> |.....................| -0.8744 | -0.8681 | -0.8700 | -0.8694 |
-#> | U| 470.0913 | 94.11 | -5.371 | -0.9909 | -0.1965 |
-#> |.....................| 2.121 | 1.952 | 1.178 | 0.7545 |
-#> |.....................| 0.8769 | 1.189 | 1.095 | 1.127 |
-#> | X| 470.0913 | 94.11 | 0.004648 | 0.2707 | 0.8216 |
-#> |.....................| 8.339 | 1.952 | 1.178 | 0.7545 |
-#> |.....................| 0.8769 | 1.189 | 1.095 | 1.127 |
-#> | G| Gill Diff. | 72.01 | 2.213 | -0.2476 | -0.3163 |
-#> |.....................| -0.8532 | -32.82 | -13.44 | 9.552 |
-#> |.....................| 11.72 | -12.16 | -9.599 | -9.049 |
-#> | 2| 5180.4321 | 0.1393 | -1.026 | -0.9090 | -0.8922 |
-#> |.....................| -0.8392 | -0.4605 | -0.7077 | -0.9910 |
-#> |.....................| -1.014 | -0.7228 | -0.7553 | -0.7612 |
-#> | U| 5180.4321 | 13.11 | -5.398 | -0.9880 | -0.1927 |
-#> |.....................| 2.131 | 2.334 | 1.272 | 0.6684 |
-#> |.....................| 0.7541 | 1.362 | 1.220 | 1.248 |
-#> | X| 5180.4321 | 13.11 | 0.004526 | 0.2713 | 0.8247 |
-#> |.....................| 8.424 | 2.334 | 1.272 | 0.6684 |
-#> |.....................| 0.7541 | 1.362 | 1.220 | 1.248 |
-#> | 3| 529.93288 | 0.9139 | -1.003 | -0.9116 | -0.8956 |
-#> |.....................| -0.8484 | -0.8135 | -0.8523 | -0.8883 |
-#> |.....................| -0.8884 | -0.8536 | -0.8585 | -0.8585 |
-#> | U| 529.93288 | 86.01 | -5.374 | -0.9906 | -0.1961 |
-#> |.....................| 2.122 | 1.990 | 1.187 | 0.7459 |
-#> |.....................| 0.8647 | 1.206 | 1.107 | 1.139 |
-#> | X| 529.93288 | 86.01 | 0.004635 | 0.2708 | 0.8219 |
-#> |.....................| 8.347 | 1.990 | 1.187 | 0.7459 |
-#> |.....................| 0.8647 | 1.206 | 1.107 | 1.139 |
-#> | 4| 469.96296 | 0.9914 | -1.000 | -0.9119 | -0.8959 |
-#> |.....................| -0.8493 | -0.8489 | -0.8667 | -0.8780 |
-#> |.....................| -0.8758 | -0.8667 | -0.8689 | -0.8683 |
-#> | U| 469.96296 | 93.30 | -5.372 | -0.9909 | -0.1965 |
-#> |.....................| 2.121 | 1.955 | 1.179 | 0.7536 |
-#> |.....................| 0.8757 | 1.191 | 1.096 | 1.128 |
-#> | X| 469.96296 | 93.30 | 0.004646 | 0.2707 | 0.8216 |
-#> |.....................| 8.339 | 1.955 | 1.179 | 0.7536 |
-#> |.....................| 0.8757 | 1.191 | 1.096 | 1.128 |
-#> | F| Forward Diff. | -91.63 | 2.121 | -0.4143 | -0.3985 |
-#> |.....................| -1.124 | -34.23 | -12.87 | 9.567 |
-#> |.....................| 8.592 | -11.79 | -9.469 | -8.518 |
-#> | 5| 469.41305 | 0.9973 | -1.001 | -0.9118 | -0.8959 |
-#> |.....................| -0.8491 | -0.8424 | -0.8642 | -0.8798 |
-#> |.....................| -0.8776 | -0.8644 | -0.8670 | -0.8666 |
-#> | U| 469.41305 | 93.85 | -5.372 | -0.9908 | -0.1964 |
-#> |.....................| 2.121 | 1.962 | 1.180 | 0.7523 |
-#> |.....................| 0.8741 | 1.193 | 1.098 | 1.130 |
-#> | X| 469.41305 | 93.85 | 0.004644 | 0.2707 | 0.8217 |
-#> |.....................| 8.341 | 1.962 | 1.180 | 0.7523 |
-#> |.....................| 0.8741 | 1.193 | 1.098 | 1.130 |
-#> | F| Forward Diff. | 19.88 | 2.163 | -0.2989 | -0.3449 |
-#> |.....................| -0.9473 | -32.84 | -13.22 | 8.952 |
-#> |.....................| 11.37 | -11.75 | -9.421 | -8.530 |
-#> | 6| 469.13124 | 0.9930 | -1.001 | -0.9118 | -0.8958 |
-#> |.....................| -0.8489 | -0.8354 | -0.8614 | -0.8817 |
-#> |.....................| -0.8801 | -0.8619 | -0.8650 | -0.8648 |
-#> | U| 469.13124 | 93.45 | -5.373 | -0.9908 | -0.1963 |
-#> |.....................| 2.121 | 1.969 | 1.182 | 0.7508 |
-#> |.....................| 0.8719 | 1.196 | 1.100 | 1.132 |
-#> | X| 469.13124 | 93.45 | 0.004642 | 0.2708 | 0.8218 |
-#> |.....................| 8.343 | 1.969 | 1.182 | 0.7508 |
-#> |.....................| 0.8719 | 1.196 | 1.100 | 1.132 |
-#> | F| Forward Diff. | -60.06 | 2.108 | -0.3845 | -0.3876 |
-#> |.....................| -1.088 | -32.82 | -12.89 | 8.720 |
-#> |.....................| 9.663 | -11.60 | -9.301 | -8.348 |
-#> | 7| 468.71336 | 0.9979 | -1.002 | -0.9117 | -0.8957 |
-#> |.....................| -0.8487 | -0.8285 | -0.8586 | -0.8835 |
-#> |.....................| -0.8823 | -0.8594 | -0.8631 | -0.8630 |
-#> | U| 468.71336 | 93.91 | -5.373 | -0.9907 | -0.1962 |
-#> |.....................| 2.122 | 1.975 | 1.183 | 0.7495 |
-#> |.....................| 0.8700 | 1.199 | 1.102 | 1.134 |
-#> | X| 468.71336 | 93.91 | 0.004640 | 0.2708 | 0.8218 |
-#> |.....................| 8.345 | 1.975 | 1.183 | 0.7495 |
-#> |.....................| 0.8700 | 1.199 | 1.102 | 1.134 |
-#> | F| Forward Diff. | 31.80 | 2.131 | -0.3007 | -0.3556 |
-#> |.....................| -0.9543 | -30.66 | -12.35 | 8.979 |
-#> |.....................| 9.681 | -11.54 | -9.231 | -8.330 |
-#> | 8| 468.42878 | 0.9931 | -1.002 | -0.9116 | -0.8956 |
-#> |.....................| -0.8484 | -0.8217 | -0.8559 | -0.8855 |
-#> |.....................| -0.8845 | -0.8568 | -0.8610 | -0.8612 |
-#> | U| 468.42878 | 93.46 | -5.373 | -0.9906 | -0.1962 |
-#> |.....................| 2.122 | 1.982 | 1.185 | 0.7480 |
-#> |.....................| 0.8681 | 1.202 | 1.105 | 1.136 |
-#> | X| 468.42878 | 93.46 | 0.004638 | 0.2708 | 0.8219 |
-#> |.....................| 8.346 | 1.982 | 1.185 | 0.7480 |
-#> |.....................| 0.8681 | 1.202 | 1.105 | 1.136 |
-#> | F| Forward Diff. | -55.97 | 2.081 | -0.3855 | -0.3928 |
-#> |.....................| -1.100 | -30.89 | -12.11 | 8.596 |
-#> |.....................| 9.353 | -11.36 | -9.087 | -8.137 |
-#> | 9| 468.02528 | 0.9977 | -1.003 | -0.9115 | -0.8955 |
-#> |.....................| -0.8482 | -0.8148 | -0.8531 | -0.8875 |
-#> |.....................| -0.8866 | -0.8542 | -0.8589 | -0.8593 |
-#> | U| 468.02528 | 93.90 | -5.374 | -0.9905 | -0.1961 |
-#> |.....................| 2.122 | 1.989 | 1.187 | 0.7465 |
-#> |.....................| 0.8662 | 1.206 | 1.107 | 1.138 |
-#> | X| 468.02528 | 93.90 | 0.004636 | 0.2708 | 0.8220 |
-#> |.....................| 8.348 | 1.989 | 1.187 | 0.7465 |
-#> |.....................| 0.8662 | 1.206 | 1.107 | 1.138 |
-#> | F| Forward Diff. | 28.40 | 2.101 | -0.3066 | -0.3612 |
-#> |.....................| -0.9721 | -29.21 | -11.91 | 8.561 |
-#> |.....................| 9.360 | -11.31 | -9.026 | -8.108 |
-#> | 10| 467.76129 | 0.9930 | -1.003 | -0.9115 | -0.8954 |
-#> |.....................| -0.8479 | -0.8081 | -0.8503 | -0.8895 |
-#> |.....................| -0.8888 | -0.8515 | -0.8567 | -0.8574 |
-#> | U| 467.76129 | 93.46 | -5.374 | -0.9905 | -0.1960 |
-#> |.....................| 2.122 | 1.995 | 1.188 | 0.7450 |
-#> |.....................| 0.8643 | 1.209 | 1.109 | 1.140 |
-#> | X| 467.76129 | 93.46 | 0.004633 | 0.2708 | 0.8220 |
-#> |.....................| 8.351 | 1.995 | 1.188 | 0.7450 |
-#> |.....................| 0.8643 | 1.209 | 1.109 | 1.140 |
-#> | F| Forward Diff. | -56.33 | 2.052 | -0.3905 | -0.3944 |
-#> |.....................| -1.108 | -29.62 | -11.80 | 8.124 |
-#> |.....................| 9.000 | -11.14 | -8.878 | -7.912 |
-#> | 11| 467.36507 | 0.9976 | -1.004 | -0.9114 | -0.8953 |
-#> |.....................| -0.8477 | -0.8013 | -0.8475 | -0.8914 |
-#> |.....................| -0.8910 | -0.8487 | -0.8545 | -0.8554 |
-#> | U| 467.36507 | 93.88 | -5.375 | -0.9904 | -0.1959 |
-#> |.....................| 2.123 | 2.002 | 1.190 | 0.7435 |
-#> |.....................| 0.8624 | 1.212 | 1.112 | 1.142 |
-#> | X| 467.36507 | 93.88 | 0.004631 | 0.2708 | 0.8221 |
-#> |.....................| 8.353 | 2.002 | 1.190 | 0.7435 |
-#> |.....................| 0.8624 | 1.212 | 1.112 | 1.142 |
-#> | F| Forward Diff. | 25.62 | 2.072 | -0.2964 | -0.3658 |
-#> |.....................| -0.9890 | -26.78 | -10.91 | 8.547 |
-#> |.....................| 9.002 | -11.08 | -8.799 | -7.879 |
-#> | 12| 467.13453 | 0.9928 | -1.004 | -0.9113 | -0.8952 |
-#> |.....................| -0.8474 | -0.7947 | -0.8448 | -0.8935 |
-#> |.....................| -0.8932 | -0.8459 | -0.8523 | -0.8534 |
-#> | U| 467.13453 | 93.43 | -5.376 | -0.9903 | -0.1958 |
-#> |.....................| 2.123 | 2.008 | 1.191 | 0.7419 |
-#> |.....................| 0.8604 | 1.215 | 1.114 | 1.145 |
-#> | X| 467.13453 | 93.43 | 0.004628 | 0.2709 | 0.8222 |
-#> |.....................| 8.355 | 2.008 | 1.191 | 0.7419 |
-#> |.....................| 0.8604 | 1.215 | 1.114 | 1.145 |
-#> | F| Forward Diff. | -59.86 | 2.021 | -0.3893 | -0.4093 |
-#> |.....................| -1.140 | -28.00 | -11.13 | 7.926 |
-#> |.....................| 9.918 | -10.90 | -8.684 | -7.680 |
-#> | 13| 466.72836 | 0.9971 | -1.005 | -0.9112 | -0.8951 |
-#> |.....................| -0.8471 | -0.7882 | -0.8421 | -0.8957 |
-#> |.....................| -0.8959 | -0.8428 | -0.8499 | -0.8513 |
-#> | U| 466.72836 | 93.84 | -5.376 | -0.9902 | -0.1956 |
-#> |.....................| 2.123 | 2.015 | 1.193 | 0.7403 |
-#> |.....................| 0.8581 | 1.219 | 1.117 | 1.147 |
-#> | X| 466.72836 | 93.84 | 0.004626 | 0.2709 | 0.8223 |
-#> |.....................| 8.358 | 2.015 | 1.193 | 0.7403 |
-#> |.....................| 0.8581 | 1.219 | 1.117 | 1.147 |
-#> | F| Forward Diff. | 18.13 | 2.039 | -0.3145 | -0.3694 |
-#> |.....................| -1.015 | -26.10 | -10.63 | 8.044 |
-#> |.....................| 8.616 | -10.80 | -8.580 | -7.637 |
-#> | 14| 466.53378 | 0.9925 | -1.005 | -0.9111 | -0.8950 |
-#> |.....................| -0.8468 | -0.7815 | -0.8394 | -0.8978 |
-#> |.....................| -0.8981 | -0.8400 | -0.8477 | -0.8494 |
-#> | U| 466.53378 | 93.40 | -5.377 | -0.9901 | -0.1956 |
-#> |.....................| 2.123 | 2.021 | 1.195 | 0.7387 |
-#> |.....................| 0.8562 | 1.222 | 1.119 | 1.149 |
-#> | X| 466.53378 | 93.40 | 0.004623 | 0.2709 | 0.8224 |
-#> |.....................| 8.360 | 2.021 | 1.195 | 0.7387 |
-#> |.....................| 0.8562 | 1.222 | 1.119 | 1.149 |
-#> | F| Forward Diff. | -63.81 | 1.989 | -0.4067 | -0.4178 |
-#> |.....................| -1.167 | -26.39 | -10.45 | 7.924 |
-#> |.....................| 8.221 | -10.62 | -8.445 | -7.432 |
-#> | 15| 466.13347 | 0.9972 | -1.006 | -0.9110 | -0.8949 |
-#> |.....................| -0.8464 | -0.7752 | -0.8368 | -0.9000 |
-#> |.....................| -0.9002 | -0.8369 | -0.8452 | -0.8472 |
-#> | U| 466.13347 | 93.85 | -5.377 | -0.9900 | -0.1954 |
-#> |.....................| 2.124 | 2.027 | 1.196 | 0.7370 |
-#> |.....................| 0.8543 | 1.226 | 1.122 | 1.152 |
-#> | X| 466.13347 | 93.85 | 0.004620 | 0.2709 | 0.8225 |
-#> |.....................| 8.363 | 2.027 | 1.196 | 0.7370 |
-#> |.....................| 0.8543 | 1.226 | 1.122 | 1.152 |
-#> | F| Forward Diff. | 18.92 | 2.012 | -0.3108 | -0.3757 |
-#> |.....................| -1.021 | -25.52 | -10.81 | 7.279 |
-#> |.....................| 9.661 | -10.54 | -8.331 | -7.395 |
-#> | 16| 465.94504 | 0.9925 | -1.006 | -0.9109 | -0.8948 |
-#> |.....................| -0.8461 | -0.7686 | -0.8339 | -0.9019 |
-#> |.....................| -0.9028 | -0.8341 | -0.8430 | -0.8453 |
-#> | U| 465.94504 | 93.41 | -5.378 | -0.9899 | -0.1953 |
-#> |.....................| 2.124 | 2.034 | 1.198 | 0.7356 |
-#> |.....................| 0.8521 | 1.229 | 1.124 | 1.154 |
-#> | X| 465.94504 | 93.41 | 0.004618 | 0.2709 | 0.8226 |
-#> |.....................| 8.366 | 2.034 | 1.198 | 0.7356 |
-#> |.....................| 0.8521 | 1.229 | 1.124 | 1.154 |
-#> | F| Forward Diff. | -61.65 | 1.961 | -0.4097 | -0.4254 |
-#> |.....................| -1.181 | -25.22 | -10.13 | 7.338 |
-#> |.....................| 9.206 | -10.38 | -8.223 | -7.205 |
-#> | 17| 465.56754 | 0.9973 | -1.007 | -0.9108 | -0.8946 |
-#> |.....................| -0.8457 | -0.7626 | -0.8312 | -0.9037 |
-#> |.....................| -0.9058 | -0.8309 | -0.8405 | -0.8432 |
-#> | U| 465.56754 | 93.86 | -5.378 | -0.9898 | -0.1952 |
-#> |.....................| 2.125 | 2.040 | 1.199 | 0.7342 |
-#> |.....................| 0.8494 | 1.233 | 1.127 | 1.156 |
-#> | X| 465.56754 | 93.86 | 0.004615 | 0.2710 | 0.8227 |
-#> |.....................| 8.369 | 2.040 | 1.199 | 0.7342 |
-#> |.....................| 0.8494 | 1.233 | 1.127 | 1.156 |
-#> | F| Forward Diff. | 20.78 | 1.982 | -0.3060 | -0.3796 |
-#> |.....................| -1.026 | -23.61 | -9.859 | 7.282 |
-#> |.....................| 6.603 | -10.29 | -8.096 | -7.167 |
-#> | 18| 465.36858 | 0.9928 | -1.008 | -0.9107 | -0.8945 |
-#> |.....................| -0.8454 | -0.7560 | -0.8284 | -0.9059 |
-#> |.....................| -0.9077 | -0.8278 | -0.8381 | -0.8410 |
-#> | U| 465.36858 | 93.44 | -5.379 | -0.9897 | -0.1950 |
-#> |.....................| 2.125 | 2.046 | 1.201 | 0.7326 |
-#> |.....................| 0.8477 | 1.237 | 1.130 | 1.159 |
-#> | X| 465.36858 | 93.44 | 0.004612 | 0.2710 | 0.8228 |
-#> |.....................| 8.372 | 2.046 | 1.201 | 0.7326 |
-#> |.....................| 0.8477 | 1.237 | 1.130 | 1.159 |
-#> | F| Forward Diff. | -55.43 | 1.935 | -0.4028 | -0.4254 |
-#> |.....................| -1.182 | -23.34 | -9.189 | 7.305 |
-#> |.....................| 7.555 | -10.07 | -7.946 | -6.960 |
-#> | 19| 465.01863 | 0.9972 | -1.008 | -0.9105 | -0.8943 |
-#> |.....................| -0.8449 | -0.7499 | -0.8257 | -0.9082 |
-#> |.....................| -0.9092 | -0.8240 | -0.8352 | -0.8386 |
-#> | U| 465.01863 | 93.84 | -5.380 | -0.9895 | -0.1948 |
-#> |.....................| 2.125 | 2.052 | 1.203 | 0.7308 |
-#> |.....................| 0.8464 | 1.241 | 1.133 | 1.161 |
-#> | X| 465.01863 | 93.84 | 0.004609 | 0.2710 | 0.8230 |
-#> |.....................| 8.376 | 2.052 | 1.203 | 0.7308 |
-#> |.....................| 0.8464 | 1.241 | 1.133 | 1.161 |
-#> | F| Forward Diff. | 18.74 | 1.956 | -0.3105 | -0.3857 |
-#> |.....................| -1.041 | -22.36 | -9.386 | 7.151 |
-#> |.....................| 7.639 | -9.969 | -7.832 | -6.900 |
-#> | 20| 464.81883 | 0.9930 | -1.009 | -0.9104 | -0.8942 |
-#> |.....................| -0.8445 | -0.7435 | -0.8230 | -0.9105 |
-#> |.....................| -0.9115 | -0.8207 | -0.8326 | -0.8363 |
-#> | U| 464.81883 | 93.45 | -5.381 | -0.9894 | -0.1947 |
-#> |.....................| 2.126 | 2.058 | 1.204 | 0.7291 |
-#> |.....................| 0.8444 | 1.245 | 1.136 | 1.164 |
-#> | X| 464.81883 | 93.45 | 0.004605 | 0.2710 | 0.8231 |
-#> |.....................| 8.380 | 2.058 | 1.204 | 0.7291 |
-#> |.....................| 0.8444 | 1.245 | 1.136 | 1.164 |
-#> | F| Forward Diff. | -51.40 | 1.910 | -0.3971 | -0.4173 |
-#> |.....................| -1.192 | -21.85 | -8.569 | 7.088 |
-#> |.....................| 7.257 | -9.784 | -7.694 | -6.698 |
-#> | 21| 464.49434 | 0.9973 | -1.010 | -0.9102 | -0.8940 |
-#> |.....................| -0.8439 | -0.7380 | -0.8206 | -0.9131 |
-#> |.....................| -0.9139 | -0.8168 | -0.8296 | -0.8338 |
-#> | U| 464.49434 | 93.85 | -5.381 | -0.9892 | -0.1945 |
-#> |.....................| 2.126 | 2.064 | 1.206 | 0.7271 |
-#> |.....................| 0.8423 | 1.250 | 1.139 | 1.167 |
-#> | X| 464.49434 | 93.85 | 0.004602 | 0.2711 | 0.8233 |
-#> |.....................| 8.385 | 2.064 | 1.206 | 0.7271 |
-#> |.....................| 0.8423 | 1.250 | 1.139 | 1.167 |
-#> | F| Forward Diff. | 20.43 | 1.927 | -0.3065 | -0.3887 |
-#> |.....................| -1.043 | -20.85 | -8.676 | 6.819 |
-#> |.....................| 7.291 | -9.652 | -7.555 | -6.636 |
-#> | 22| 464.27900 | 0.9935 | -1.011 | -0.9101 | -0.8938 |
-#> |.....................| -0.8433 | -0.7319 | -0.8180 | -0.9156 |
-#> |.....................| -0.9164 | -0.8129 | -0.8266 | -0.8314 |
-#> | U| 464.279 | 93.50 | -5.382 | -0.9891 | -0.1943 |
-#> |.....................| 2.127 | 2.070 | 1.207 | 0.7252 |
-#> |.....................| 0.8401 | 1.255 | 1.142 | 1.169 |
-#> | X| 464.279 | 93.50 | 0.004598 | 0.2711 | 0.8234 |
-#> |.....................| 8.389 | 2.070 | 1.207 | 0.7252 |
-#> |.....................| 0.8401 | 1.255 | 1.142 | 1.169 |
-#> | F| Forward Diff. | -42.65 | 1.884 | -0.3905 | -0.4168 |
-#> |.....................| -1.174 | -21.12 | -8.566 | 6.431 |
-#> |.....................| 8.301 | -9.439 | -7.399 | -6.436 |
-#> | 23| 463.98221 | 0.9971 | -1.012 | -0.9099 | -0.8935 |
-#> |.....................| -0.8426 | -0.7266 | -0.8156 | -0.9179 |
-#> |.....................| -0.9200 | -0.8088 | -0.8235 | -0.8288 |
-#> | U| 463.98221 | 93.84 | -5.383 | -0.9889 | -0.1940 |
-#> |.....................| 2.128 | 2.075 | 1.209 | 0.7235 |
-#> |.....................| 0.8370 | 1.260 | 1.146 | 1.172 |
-#> | X| 463.98221 | 93.84 | 0.004593 | 0.2711 | 0.8236 |
-#> |.....................| 8.395 | 2.075 | 1.209 | 0.7235 |
-#> |.....................| 0.8370 | 1.260 | 1.146 | 1.172 |
-#> | F| Forward Diff. | 17.69 | 1.891 | -0.3039 | -0.3774 |
-#> |.....................| -1.038 | -20.36 | -8.704 | 6.334 |
-#> |.....................| 6.886 | -9.291 | -7.246 | -6.355 |
-#> | 24| 463.80345 | 0.9930 | -1.013 | -0.9097 | -0.8933 |
-#> |.....................| -0.8421 | -0.7205 | -0.8127 | -0.9199 |
-#> |.....................| -0.9227 | -0.8053 | -0.8209 | -0.8265 |
-#> | U| 463.80345 | 93.45 | -5.384 | -0.9887 | -0.1939 |
-#> |.....................| 2.128 | 2.081 | 1.210 | 0.7220 |
-#> |.....................| 0.8346 | 1.264 | 1.148 | 1.175 |
-#> | X| 463.80345 | 93.45 | 0.004590 | 0.2712 | 0.8238 |
-#> |.....................| 8.399 | 2.081 | 1.210 | 0.7220 |
-#> |.....................| 0.8346 | 1.264 | 1.148 | 1.175 |
-#> | F| Forward Diff. | -49.16 | 1.846 | -0.3979 | -0.4233 |
-#> |.....................| -1.191 | -20.11 | -8.128 | 6.150 |
-#> |.....................| 7.842 | -9.114 | -7.113 | -6.163 |
-#> | 25| 463.50095 | 0.9970 | -1.014 | -0.9095 | -0.8930 |
-#> |.....................| -0.8413 | -0.7152 | -0.8100 | -0.9219 |
-#> |.....................| -0.9258 | -0.8011 | -0.8178 | -0.8240 |
-#> | U| 463.50095 | 93.83 | -5.385 | -0.9885 | -0.1936 |
-#> |.....................| 2.129 | 2.086 | 1.212 | 0.7205 |
-#> |.....................| 0.8318 | 1.269 | 1.152 | 1.178 |
-#> | X| 463.50095 | 93.83 | 0.004585 | 0.2712 | 0.8240 |
-#> |.....................| 8.406 | 2.086 | 1.212 | 0.7205 |
-#> |.....................| 0.8318 | 1.269 | 1.152 | 1.178 |
-#> | F| Forward Diff. | 15.76 | 1.857 | -0.2989 | -0.3817 |
-#> |.....................| -1.050 | -19.47 | -8.354 | 5.597 |
-#> |.....................| 5.177 | -8.956 | -6.950 | -6.091 |
-#> | 26| 463.33971 | 0.9930 | -1.014 | -0.9093 | -0.8928 |
-#> |.....................| -0.8408 | -0.7088 | -0.8070 | -0.9237 |
-#> |.....................| -0.9274 | -0.7974 | -0.8150 | -0.8217 |
-#> | U| 463.33971 | 93.45 | -5.386 | -0.9883 | -0.1934 |
-#> |.....................| 2.129 | 2.092 | 1.214 | 0.7192 |
-#> |.....................| 0.8304 | 1.273 | 1.155 | 1.180 |
-#> | X| 463.33971 | 93.45 | 0.004581 | 0.2712 | 0.8242 |
-#> |.....................| 8.411 | 2.092 | 1.214 | 0.7192 |
-#> |.....................| 0.8304 | 1.273 | 1.155 | 1.180 |
-#> | F| Forward Diff. | -49.38 | 1.817 | -0.3945 | -0.4254 |
-#> |.....................| -1.192 | -18.49 | -7.219 | 6.140 |
-#> |.....................| 6.147 | -8.752 | -6.775 | -5.892 |
-#> | 27| 463.06378 | 0.9971 | -1.016 | -0.9091 | -0.8925 |
-#> |.....................| -0.8398 | -0.7035 | -0.8044 | -0.9255 |
-#> |.....................| -0.9274 | -0.7927 | -0.8116 | -0.8189 |
-#> | U| 463.06378 | 93.84 | -5.387 | -0.9881 | -0.1930 |
-#> |.....................| 2.130 | 2.097 | 1.215 | 0.7178 |
-#> |.....................| 0.8305 | 1.279 | 1.159 | 1.184 |
-#> | X| 463.06378 | 93.84 | 0.004575 | 0.2713 | 0.8245 |
-#> |.....................| 8.419 | 2.097 | 1.215 | 0.7178 |
-#> |.....................| 0.8305 | 1.279 | 1.159 | 1.184 |
-#> | F| Forward Diff. | 17.15 | 1.839 | -0.2941 | -0.3829 |
-#> |.....................| -1.046 | -18.21 | -7.786 | 5.595 |
-#> |.....................| 7.714 | -8.592 | -6.652 | -5.814 |
-#> | 28| 462.87224 | 0.9938 | -1.017 | -0.9088 | -0.8922 |
-#> |.....................| -0.8390 | -0.6982 | -0.8019 | -0.9277 |
-#> |.....................| -0.9311 | -0.7885 | -0.8085 | -0.8163 |
-#> | U| 462.87224 | 93.52 | -5.388 | -0.9879 | -0.1927 |
-#> |.....................| 2.131 | 2.102 | 1.217 | 0.7161 |
-#> |.....................| 0.8272 | 1.284 | 1.162 | 1.186 |
-#> | X| 462.87224 | 93.52 | 0.004570 | 0.2713 | 0.8247 |
-#> |.....................| 8.425 | 2.102 | 1.217 | 0.7161 |
-#> |.....................| 0.8272 | 1.284 | 1.162 | 1.186 |
-#> | F| Forward Diff. | -35.81 | 1.797 | -0.3699 | -0.4180 |
-#> |.....................| -1.164 | -17.54 | -6.949 | 5.683 |
-#> |.....................| 5.938 | -8.368 | -6.484 | -5.617 |
-#> | 29| 462.64279 | 0.9976 | -1.018 | -0.9085 | -0.8918 |
-#> |.....................| -0.8379 | -0.6938 | -0.7998 | -0.9297 |
-#> |.....................| -0.9347 | -0.7837 | -0.8051 | -0.8136 |
-#> | U| 462.64279 | 93.88 | -5.390 | -0.9876 | -0.1923 |
-#> |.....................| 2.132 | 2.107 | 1.218 | 0.7146 |
-#> |.....................| 0.8240 | 1.289 | 1.166 | 1.189 |
-#> | X| 462.64279 | 93.88 | 0.004563 | 0.2714 | 0.8250 |
-#> |.....................| 8.435 | 2.107 | 1.218 | 0.7146 |
-#> |.....................| 0.8240 | 1.289 | 1.166 | 1.189 |
-#> | F| Forward Diff. | 23.89 | 1.802 | -0.2695 | -0.3764 |
-#> |.....................| -1.014 | -17.48 | -7.590 | 5.234 |
-#> |.....................| 7.275 | -8.199 | -6.306 | -5.540 |
-#> | 30| 462.43086 | 0.9946 | -1.020 | -0.9083 | -0.8914 |
-#> |.....................| -0.8367 | -0.6890 | -0.7974 | -0.9317 |
-#> |.....................| -0.9381 | -0.7789 | -0.8017 | -0.8108 |
-#> | U| 462.43086 | 93.61 | -5.391 | -0.9873 | -0.1919 |
-#> |.....................| 2.134 | 2.111 | 1.219 | 0.7131 |
-#> |.....................| 0.8211 | 1.295 | 1.169 | 1.193 |
-#> | X| 462.43086 | 93.61 | 0.004556 | 0.2715 | 0.8254 |
-#> |.....................| 8.445 | 2.111 | 1.219 | 0.7131 |
-#> |.....................| 0.8211 | 1.295 | 1.169 | 1.193 |
-#> | F| Forward Diff. | -22.12 | 1.763 | -0.3409 | -0.4033 |
-#> |.....................| -1.105 | -16.76 | -6.743 | 5.132 |
-#> |.....................| 5.573 | -7.935 | -6.123 | -5.337 |
-#> | 31| 462.24769 | 0.9981 | -1.021 | -0.9079 | -0.8909 |
-#> |.....................| -0.8355 | -0.6838 | -0.7950 | -0.9332 |
-#> |.....................| -0.9404 | -0.7741 | -0.7984 | -0.8080 |
-#> | U| 462.24769 | 93.94 | -5.393 | -0.9870 | -0.1915 |
-#> |.....................| 2.135 | 2.117 | 1.221 | 0.7120 |
-#> |.....................| 0.8190 | 1.301 | 1.173 | 1.196 |
-#> | X| 462.24769 | 93.94 | 0.004549 | 0.2715 | 0.8258 |
-#> |.....................| 8.455 | 2.117 | 1.221 | 0.7120 |
-#> |.....................| 0.8190 | 1.301 | 1.173 | 1.196 |
-#> | F| Forward Diff. | 32.76 | 1.771 | -0.2440 | -0.3645 |
-#> |.....................| -0.9678 | -16.08 | -6.874 | 5.077 |
-#> |.....................| 5.606 | -7.758 | -5.959 | -5.256 |
-#> | 32| 462.04894 | 0.9949 | -1.023 | -0.9076 | -0.8904 |
-#> |.....................| -0.8341 | -0.6790 | -0.7932 | -0.9353 |
-#> |.....................| -0.9395 | -0.7687 | -0.7947 | -0.8049 |
-#> | U| 462.04894 | 93.63 | -5.395 | -0.9866 | -0.1909 |
-#> |.....................| 2.136 | 2.121 | 1.222 | 0.7104 |
-#> |.....................| 0.8198 | 1.307 | 1.177 | 1.199 |
-#> | X| 462.04894 | 93.63 | 0.004540 | 0.2716 | 0.8262 |
-#> |.....................| 8.467 | 2.121 | 1.222 | 0.7104 |
-#> |.....................| 0.8198 | 1.307 | 1.177 | 1.199 |
-#> | F| Forward Diff. | -16.92 | 1.743 | -0.3189 | -0.3951 |
-#> |.....................| -1.072 | -15.84 | -6.430 | 4.847 |
-#> |.....................| 5.467 | -7.483 | -5.756 | -5.023 |
-#> | 33| 461.88553 | 0.9980 | -1.025 | -0.9073 | -0.8898 |
-#> |.....................| -0.8327 | -0.6736 | -0.7912 | -0.9375 |
-#> |.....................| -0.9397 | -0.7637 | -0.7912 | -0.8019 |
-#> | U| 461.88553 | 93.92 | -5.397 | -0.9863 | -0.1904 |
-#> |.....................| 2.138 | 2.126 | 1.223 | 0.7088 |
-#> |.....................| 0.8197 | 1.313 | 1.181 | 1.203 |
-#> | X| 461.88553 | 93.92 | 0.004531 | 0.2716 | 0.8266 |
-#> |.....................| 8.479 | 2.126 | 1.223 | 0.7088 |
-#> |.....................| 0.8197 | 1.313 | 1.181 | 1.203 |
-#> | F| Forward Diff. | 30.55 | 1.755 | -0.2327 | -0.3563 |
-#> |.....................| -0.9551 | -15.13 | -6.434 | 4.973 |
-#> |.....................| 5.515 | -7.304 | -5.584 | -4.904 |
-#> | 34| 461.69674 | 0.9949 | -1.028 | -0.9069 | -0.8892 |
-#> |.....................| -0.8309 | -0.6692 | -0.7896 | -0.9402 |
-#> |.....................| -0.9399 | -0.7583 | -0.7876 | -0.7990 |
-#> | U| 461.69674 | 93.63 | -5.400 | -0.9859 | -0.1897 |
-#> |.....................| 2.139 | 2.131 | 1.224 | 0.7067 |
-#> |.....................| 0.8195 | 1.320 | 1.185 | 1.206 |
-#> | X| 461.69674 | 93.63 | 0.004519 | 0.2717 | 0.8272 |
-#> |.....................| 8.494 | 2.131 | 1.224 | 0.7067 |
-#> |.....................| 0.8195 | 1.320 | 1.185 | 1.206 |
-#> | F| Forward Diff. | -16.57 | 1.720 | -0.3086 | -0.3856 |
-#> |.....................| -1.039 | -14.73 | -5.908 | 4.823 |
-#> |.....................| 5.359 | -7.008 | -5.393 | -4.695 |
-#> | 35| 461.54208 | 0.9978 | -1.031 | -0.9065 | -0.8885 |
-#> |.....................| -0.8293 | -0.6648 | -0.7883 | -0.9440 |
-#> |.....................| -0.9414 | -0.7533 | -0.7842 | -0.7963 |
-#> | U| 461.54208 | 93.91 | -5.402 | -0.9855 | -0.1891 |
-#> |.....................| 2.141 | 2.135 | 1.225 | 0.7038 |
-#> |.....................| 0.8182 | 1.325 | 1.189 | 1.209 |
-#> | X| 461.54208 | 93.91 | 0.004507 | 0.2718 | 0.8277 |
-#> |.....................| 8.508 | 2.135 | 1.225 | 0.7038 |
-#> |.....................| 0.8182 | 1.325 | 1.189 | 1.209 |
-#> | F| Forward Diff. | 27.49 | 1.722 | -0.2172 | -0.3438 |
-#> |.....................| -0.9069 | -13.76 | -5.979 | 4.702 |
-#> |.....................| 5.353 | -6.828 | -5.231 | -4.587 |
-#> | 36| 461.38014 | 0.9949 | -1.034 | -0.9061 | -0.8878 |
-#> |.....................| -0.8274 | -0.6624 | -0.7872 | -0.9482 |
-#> |.....................| -0.9437 | -0.7482 | -0.7807 | -0.7935 |
-#> | U| 461.38014 | 93.63 | -5.405 | -0.9851 | -0.1883 |
-#> |.....................| 2.143 | 2.137 | 1.225 | 0.7007 |
-#> |.....................| 0.8162 | 1.332 | 1.192 | 1.212 |
-#> | X| 461.38014 | 93.63 | 0.004492 | 0.2719 | 0.8283 |
-#> |.....................| 8.524 | 2.137 | 1.225 | 0.7007 |
-#> |.....................| 0.8162 | 1.332 | 1.192 | 1.212 |
-#> | F| Forward Diff. | -16.54 | 1.681 | -0.2967 | -0.3702 |
-#> |.....................| -1.003 | -14.15 | -5.693 | 4.358 |
-#> |.....................| 5.078 | -6.560 | -5.051 | -4.397 |
-#> | 37| 461.22820 | 0.9976 | -1.038 | -0.9057 | -0.8870 |
-#> |.....................| -0.8255 | -0.6585 | -0.7854 | -0.9513 |
-#> |.....................| -0.9460 | -0.7433 | -0.7774 | -0.7908 |
-#> | U| 461.2282 | 93.88 | -5.409 | -0.9847 | -0.1876 |
-#> |.....................| 2.145 | 2.141 | 1.226 | 0.6983 |
-#> |.....................| 0.8141 | 1.337 | 1.196 | 1.215 |
-#> | X| 461.2282 | 93.88 | 0.004476 | 0.2720 | 0.8290 |
-#> |.....................| 8.540 | 2.141 | 1.226 | 0.6983 |
-#> |.....................| 0.8141 | 1.337 | 1.196 | 1.215 |
-#> | F| Forward Diff. | 22.68 | 1.675 | -0.2117 | -0.3293 |
-#> |.....................| -0.8651 | -13.27 | -5.458 | 4.237 |
-#> |.....................| 3.708 | -6.326 | -4.874 | -4.289 |
-#> | 38| 461.10880 | 0.9948 | -1.041 | -0.9053 | -0.8864 |
-#> |.....................| -0.8238 | -0.6532 | -0.7845 | -0.9533 |
-#> |.....................| -0.9419 | -0.7394 | -0.7747 | -0.7885 |
-#> | U| 461.1088 | 93.62 | -5.412 | -0.9844 | -0.1869 |
-#> |.....................| 2.146 | 2.146 | 1.227 | 0.6968 |
-#> |.....................| 0.8177 | 1.342 | 1.199 | 1.218 |
-#> | X| 461.1088 | 93.62 | 0.004461 | 0.2720 | 0.8295 |
-#> |.....................| 8.555 | 2.146 | 1.227 | 0.6968 |
-#> |.....................| 0.8177 | 1.342 | 1.199 | 1.218 |
-#> | F| Forward Diff. | -17.23 | 1.655 | -0.2888 | -0.3567 |
-#> |.....................| -0.9524 | -13.71 | -5.652 | 3.877 |
-#> |.....................| 5.125 | -6.149 | -4.743 | -4.110 |
-#> | 39| 460.99174 | 0.9974 | -1.045 | -0.9049 | -0.8856 |
-#> |.....................| -0.8221 | -0.6468 | -0.7824 | -0.9536 |
-#> |.....................| -0.9388 | -0.7360 | -0.7723 | -0.7867 |
-#> | U| 460.99174 | 93.87 | -5.416 | -0.9840 | -0.1862 |
-#> |.....................| 2.148 | 2.153 | 1.228 | 0.6966 |
-#> |.....................| 0.8204 | 1.346 | 1.202 | 1.220 |
-#> | X| 460.99174 | 93.87 | 0.004444 | 0.2721 | 0.8301 |
-#> |.....................| 8.569 | 2.153 | 1.228 | 0.6966 |
-#> |.....................| 0.8204 | 1.346 | 1.202 | 1.220 |
-#> | F| Forward Diff. | 21.44 | 1.663 | -0.2166 | -0.3206 |
-#> |.....................| -0.8444 | -13.00 | -5.647 | 3.881 |
-#> |.....................| 5.370 | -6.036 | -4.631 | -4.039 |
-#> | 40| 460.85317 | 0.9948 | -1.049 | -0.9044 | -0.8849 |
-#> |.....................| -0.8203 | -0.6417 | -0.7791 | -0.9516 |
-#> |.....................| -0.9438 | -0.7341 | -0.7712 | -0.7862 |
-#> | U| 460.85317 | 93.62 | -5.420 | -0.9835 | -0.1854 |
-#> |.....................| 2.150 | 2.158 | 1.230 | 0.6981 |
-#> |.....................| 0.8161 | 1.348 | 1.203 | 1.220 |
-#> | X| 460.85317 | 93.62 | 0.004425 | 0.2722 | 0.8308 |
-#> |.....................| 8.585 | 2.158 | 1.230 | 0.6981 |
-#> |.....................| 0.8161 | 1.348 | 1.203 | 1.220 |
-#> | F| Forward Diff. | -17.08 | 1.613 | -0.2650 | -0.3380 |
-#> |.....................| -0.8994 | -12.83 | -5.261 | 3.879 |
-#> |.....................| 3.650 | -5.911 | -4.518 | -3.985 |
-#> | 41| 460.73362 | 0.9974 | -1.054 | -0.9040 | -0.8841 |
-#> |.....................| -0.8184 | -0.6359 | -0.7754 | -0.9517 |
-#> |.....................| -0.9423 | -0.7308 | -0.7693 | -0.7845 |
-#> | U| 460.73362 | 93.86 | -5.425 | -0.9831 | -0.1846 |
-#> |.....................| 2.152 | 2.163 | 1.232 | 0.6980 |
-#> |.....................| 0.8173 | 1.352 | 1.205 | 1.222 |
-#> | X| 460.73362 | 93.86 | 0.004404 | 0.2723 | 0.8314 |
-#> |.....................| 8.601 | 2.163 | 1.232 | 0.6980 |
-#> |.....................| 0.8173 | 1.352 | 1.205 | 1.222 |
-#> | F| Forward Diff. | 20.68 | 1.612 | -0.1811 | -0.2966 |
-#> |.....................| -0.7710 | -11.91 | -4.976 | 4.011 |
-#> |.....................| 3.788 | -5.788 | -4.468 | -3.936 |
-#> | 42| 460.64877 | 0.9948 | -1.058 | -0.9038 | -0.8835 |
-#> |.....................| -0.8171 | -0.6318 | -0.7737 | -0.9543 |
-#> |.....................| -0.9372 | -0.7272 | -0.7669 | -0.7822 |
-#> | U| 460.64877 | 93.62 | -5.429 | -0.9829 | -0.1841 |
-#> |.....................| 2.153 | 2.167 | 1.233 | 0.6961 |
-#> |.....................| 0.8219 | 1.357 | 1.208 | 1.225 |
-#> | X| 460.64877 | 93.62 | 0.004387 | 0.2723 | 0.8319 |
-#> |.....................| 8.612 | 2.167 | 1.233 | 0.6961 |
-#> |.....................| 0.8219 | 1.357 | 1.208 | 1.225 |
-#> | F| Forward Diff. | -16.17 | 1.594 | -0.2646 | -0.3254 |
-#> |.....................| -0.8335 | -11.77 | -4.666 | 3.810 |
-#> |.....................| 5.289 | -5.625 | -4.348 | -3.754 |
-#> | 43| 460.54180 | 0.9972 | -1.063 | -0.9035 | -0.8829 |
-#> |.....................| -0.8158 | -0.6297 | -0.7745 | -0.9584 |
-#> |.....................| -0.9393 | -0.7227 | -0.7634 | -0.7794 |
-#> | U| 460.5418 | 93.85 | -5.434 | -0.9826 | -0.1834 |
-#> |.....................| 2.154 | 2.169 | 1.233 | 0.6929 |
-#> |.....................| 0.8200 | 1.362 | 1.211 | 1.228 |
-#> | X| 460.5418 | 93.85 | 0.004366 | 0.2724 | 0.8324 |
-#> |.....................| 8.623 | 2.169 | 1.233 | 0.6929 |
-#> |.....................| 0.8200 | 1.362 | 1.211 | 1.228 |
-#> | F| Forward Diff. | 18.48 | 1.582 | -0.1851 | -0.2851 |
-#> |.....................| -0.7462 | -11.38 | -4.808 | 3.651 |
-#> |.....................| 5.261 | -5.402 | -4.159 | -3.623 |
-#> | 44| 460.43711 | 0.9948 | -1.067 | -0.9032 | -0.8823 |
-#> |.....................| -0.8147 | -0.6284 | -0.7753 | -0.9609 |
-#> |.....................| -0.9464 | -0.7199 | -0.7613 | -0.7778 |
-#> | U| 460.43711 | 93.63 | -5.438 | -0.9823 | -0.1829 |
-#> |.....................| 2.156 | 2.171 | 1.232 | 0.6911 |
-#> |.....................| 0.8138 | 1.365 | 1.214 | 1.230 |
-#> | X| 460.43711 | 93.63 | 0.004347 | 0.2724 | 0.8329 |
-#> |.....................| 8.632 | 2.171 | 1.232 | 0.6911 |
-#> |.....................| 0.8138 | 1.365 | 1.214 | 1.230 |
-#> | 45| 460.35910 | 0.9948 | -1.072 | -0.9029 | -0.8817 |
-#> |.....................| -0.8135 | -0.6285 | -0.7770 | -0.9633 |
-#> |.....................| -0.9542 | -0.7172 | -0.7594 | -0.7765 |
-#> | U| 460.3591 | 93.63 | -5.443 | -0.9820 | -0.1822 |
-#> |.....................| 2.157 | 2.170 | 1.231 | 0.6893 |
-#> |.....................| 0.8069 | 1.368 | 1.216 | 1.231 |
-#> | X| 460.3591 | 93.63 | 0.004325 | 0.2725 | 0.8334 |
-#> |.....................| 8.643 | 2.170 | 1.231 | 0.6893 |
-#> |.....................| 0.8069 | 1.368 | 1.216 | 1.231 |
-#> | 46| 460.06586 | 0.9948 | -1.095 | -0.9016 | -0.8789 |
-#> |.....................| -0.8080 | -0.6294 | -0.7850 | -0.9744 |
-#> |.....................| -0.9902 | -0.7052 | -0.7507 | -0.7704 |
-#> | U| 460.06586 | 93.63 | -5.466 | -0.9807 | -0.1794 |
-#> |.....................| 2.162 | 2.170 | 1.227 | 0.6809 |
-#> |.....................| 0.7753 | 1.383 | 1.225 | 1.238 |
-#> | X| 460.06586 | 93.63 | 0.004227 | 0.2728 | 0.8358 |
-#> |.....................| 8.691 | 2.170 | 1.227 | 0.6809 |
-#> |.....................| 0.7753 | 1.383 | 1.225 | 1.238 |
-#> | 47| 459.86897 | 0.9949 | -1.169 | -0.8972 | -0.8697 |
-#> |.....................| -0.7899 | -0.6321 | -0.8109 | -1.010 |
-#> |.....................| -1.107 | -0.6662 | -0.7224 | -0.7508 |
-#> | U| 459.86897 | 93.63 | -5.541 | -0.9763 | -0.1702 |
-#> |.....................| 2.180 | 2.167 | 1.211 | 0.6537 |
-#> |.....................| 0.6731 | 1.429 | 1.256 | 1.260 |
-#> | X| 459.86897 | 93.63 | 0.003924 | 0.2736 | 0.8435 |
-#> |.....................| 8.849 | 2.167 | 1.211 | 0.6537 |
-#> |.....................| 0.6731 | 1.429 | 1.256 | 1.260 |
-#> | F| Forward Diff. | -18.09 | 0.8663 | 0.2544 | 0.003114 |
-#> |.....................| -0.1212 | -11.64 | -7.047 | 0.1395 |
-#> |.....................| -6.727 | -2.881 | -1.866 | -2.263 |
-#> | 48| 458.58262 | 0.9946 | -1.323 | -0.9067 | -0.8597 |
-#> |.....................| -0.7710 | -0.5295 | -0.7001 | -0.9650 |
-#> |.....................| -1.113 | -0.6398 | -0.7228 | -0.7390 |
-#> | U| 458.58262 | 93.60 | -5.695 | -0.9858 | -0.1602 |
-#> |.....................| 2.199 | 2.267 | 1.277 | 0.6880 |
-#> |.....................| 0.6674 | 1.460 | 1.256 | 1.273 |
-#> | X| 458.58262 | 93.60 | 0.003363 | 0.2717 | 0.8520 |
-#> |.....................| 9.019 | 2.267 | 1.277 | 0.6880 |
-#> |.....................| 0.6674 | 1.460 | 1.256 | 1.273 |
-#> | F| Forward Diff. | -24.91 | 0.5848 | -0.03458 | 0.2475 |
-#> |.....................| 0.3762 | -4.573 | -0.04388 | 1.648 |
-#> |.....................| -5.878 | -2.073 | -1.935 | -2.146 |
-#> | 49| 460.44377 | 0.9922 | -1.558 | -0.9059 | -0.8818 |
-#> |.....................| -0.8081 | -0.3861 | -0.8607 | -1.070 |
-#> |.....................| -0.9432 | -0.5131 | -0.5915 | -0.5851 |
-#> | U| 460.44377 | 93.38 | -5.929 | -0.9849 | -0.1824 |
-#> |.....................| 2.162 | 2.407 | 1.182 | 0.6086 |
-#> |.....................| 0.8166 | 1.611 | 1.400 | 1.447 |
-#> | X| 460.44377 | 93.38 | 0.002660 | 0.2719 | 0.8333 |
-#> |.....................| 8.690 | 2.407 | 1.182 | 0.6086 |
-#> |.....................| 0.8166 | 1.611 | 1.400 | 1.447 |
-#> | 50| 458.18867 | 0.9958 | -1.393 | -0.9065 | -0.8663 |
-#> |.....................| -0.7821 | -0.4865 | -0.7479 | -0.9965 |
-#> |.....................| -1.062 | -0.6019 | -0.6835 | -0.6930 |
-#> | U| 458.18867 | 93.71 | -5.765 | -0.9855 | -0.1668 |
-#> |.....................| 2.188 | 2.309 | 1.248 | 0.6642 |
-#> |.....................| 0.7122 | 1.506 | 1.299 | 1.325 |
-#> | X| 458.18867 | 93.71 | 0.003136 | 0.2718 | 0.8463 |
-#> |.....................| 8.919 | 2.309 | 1.248 | 0.6642 |
-#> |.....................| 0.7122 | 1.506 | 1.299 | 1.325 |
-#> | F| Forward Diff. | -3.049 | 0.4396 | -0.1330 | 0.02964 |
-#> |.....................| -0.08039 | -2.599 | -3.012 | -0.1957 |
-#> |.....................| -2.463 | -0.6721 | 0.3494 | 0.7476 |
-#> | 51| 458.45407 | 0.9980 | -1.449 | -0.8787 | -0.8738 |
-#> |.....................| -0.7836 | -0.4935 | -0.7244 | -1.061 |
-#> |.....................| -1.034 | -0.5419 | -0.6952 | -0.7610 |
-#> | U| 458.45407 | 93.92 | -5.821 | -0.9579 | -0.1743 |
-#> |.....................| 2.187 | 2.302 | 1.262 | 0.6155 |
-#> |.....................| 0.7366 | 1.577 | 1.286 | 1.249 |
-#> | X| 458.45407 | 93.92 | 0.002965 | 0.2773 | 0.8400 |
-#> |.....................| 8.906 | 2.302 | 1.262 | 0.6155 |
-#> |.....................| 0.7366 | 1.577 | 1.286 | 1.249 |
-#> | 52| 458.19883 | 0.9985 | -1.406 | -0.9001 | -0.8680 |
-#> |.....................| -0.7823 | -0.4861 | -0.7404 | -1.011 |
-#> |.....................| -1.054 | -0.5879 | -0.6864 | -0.7089 |
-#> | U| 458.19883 | 93.97 | -5.778 | -0.9792 | -0.1685 |
-#> |.....................| 2.188 | 2.309 | 1.253 | 0.6534 |
-#> |.....................| 0.7193 | 1.522 | 1.296 | 1.307 |
-#> | X| 458.19883 | 93.97 | 0.003096 | 0.2731 | 0.8449 |
-#> |.....................| 8.917 | 2.309 | 1.253 | 0.6534 |
-#> |.....................| 0.7193 | 1.522 | 1.296 | 1.307 |
-#> | 53| 458.20478 | 0.9986 | -1.399 | -0.9039 | -0.8670 |
-#> |.....................| -0.7821 | -0.4848 | -0.7433 | -1.002 |
-#> |.....................| -1.058 | -0.5961 | -0.6848 | -0.6996 |
-#> | U| 458.20478 | 93.98 | -5.770 | -0.9830 | -0.1675 |
-#> |.....................| 2.188 | 2.311 | 1.251 | 0.6601 |
-#> |.....................| 0.7162 | 1.512 | 1.297 | 1.318 |
-#> | X| 458.20478 | 93.98 | 0.003120 | 0.2723 | 0.8458 |
-#> |.....................| 8.919 | 2.311 | 1.251 | 0.6601 |
-#> |.....................| 0.7162 | 1.512 | 1.297 | 1.318 |
-#> | 54| 458.21371 | 0.9986 | -1.394 | -0.9063 | -0.8663 |
-#> |.....................| -0.7820 | -0.4840 | -0.7451 | -0.9963 |
-#> |.....................| -1.060 | -0.6013 | -0.6838 | -0.6937 |
-#> | U| 458.21371 | 93.98 | -5.765 | -0.9854 | -0.1669 |
-#> |.....................| 2.188 | 2.311 | 1.250 | 0.6644 |
-#> |.....................| 0.7142 | 1.506 | 1.298 | 1.325 |
-#> | X| 458.21371 | 93.98 | 0.003135 | 0.2718 | 0.8463 |
-#> |.....................| 8.920 | 2.311 | 1.250 | 0.6644 |
-#> |.....................| 0.7142 | 1.506 | 1.298 | 1.325 |
-#> | 55| 458.18572 | 0.9965 | -1.393 | -0.9064 | -0.8663 |
-#> |.....................| -0.7820 | -0.4858 | -0.7472 | -0.9964 |
-#> |.....................| -1.062 | -0.6017 | -0.6836 | -0.6932 |
-#> | U| 458.18572 | 93.79 | -5.765 | -0.9855 | -0.1668 |
-#> |.....................| 2.188 | 2.310 | 1.249 | 0.6643 |
-#> |.....................| 0.7128 | 1.506 | 1.299 | 1.325 |
-#> | X| 458.18572 | 93.79 | 0.003136 | 0.2718 | 0.8463 |
-#> |.....................| 8.919 | 2.310 | 1.249 | 0.6643 |
-#> |.....................| 0.7128 | 1.506 | 1.299 | 1.325 |
-#> | F| Forward Diff. | 5.905 | 0.4355 | -0.1157 | 0.02634 |
-#> |.....................| -0.05151 | -1.735 | -2.785 | -0.07657 |
-#> |.....................| -2.587 | -0.1320 | 0.06282 | 0.8041 |
-#> | 56| 458.18221 | 0.9957 | -1.394 | -0.9063 | -0.8663 |
-#> |.....................| -0.7820 | -0.4856 | -0.7465 | -0.9968 |
-#> |.....................| -1.061 | -0.6016 | -0.6835 | -0.6937 |
-#> | U| 458.18221 | 93.70 | -5.765 | -0.9853 | -0.1669 |
-#> |.....................| 2.188 | 2.310 | 1.249 | 0.6640 |
-#> |.....................| 0.7132 | 1.506 | 1.299 | 1.325 |
-#> | X| 458.18221 | 93.70 | 0.003135 | 0.2718 | 0.8463 |
-#> |.....................| 8.920 | 2.310 | 1.249 | 0.6640 |
-#> |.....................| 0.7132 | 1.506 | 1.299 | 1.325 |
-#> | F| Forward Diff. | -4.339 | 0.4378 | -0.1282 | 0.03581 |
-#> |.....................| -0.09329 | -1.978 | -2.551 | -0.01933 |
-#> |.....................| -3.951 | -0.1424 | 0.01723 | 0.8408 |
-#> | 57| 458.17882 | 0.9963 | -1.394 | -0.9061 | -0.8663 |
-#> |.....................| -0.7819 | -0.4855 | -0.7459 | -0.9972 |
-#> |.....................| -1.060 | -0.6016 | -0.6832 | -0.6941 |
-#> | U| 458.17882 | 93.76 | -5.766 | -0.9852 | -0.1669 |
-#> |.....................| 2.188 | 2.310 | 1.250 | 0.6637 |
-#> |.....................| 0.7139 | 1.506 | 1.299 | 1.324 |
-#> | X| 458.17882 | 93.76 | 0.003134 | 0.2719 | 0.8463 |
-#> |.....................| 8.920 | 2.310 | 1.250 | 0.6637 |
-#> |.....................| 0.7139 | 1.506 | 1.299 | 1.324 |
-#> | F| Forward Diff. | 2.737 | 0.4289 | -0.1193 | 0.04099 |
-#> |.....................| -0.07175 | -2.104 | -2.655 | -0.1084 |
-#> |.....................| -2.489 | -0.08715 | 0.1037 | 0.7775 |
-#> | 58| 458.17628 | 0.9955 | -1.394 | -0.9061 | -0.8663 |
-#> |.....................| -0.7819 | -0.4849 | -0.7451 | -0.9972 |
-#> |.....................| -1.060 | -0.6016 | -0.6832 | -0.6943 |
-#> | U| 458.17628 | 93.69 | -5.766 | -0.9851 | -0.1669 |
-#> |.....................| 2.188 | 2.311 | 1.250 | 0.6637 |
-#> |.....................| 0.7145 | 1.506 | 1.299 | 1.324 |
-#> | X| 458.17628 | 93.69 | 0.003133 | 0.2719 | 0.8463 |
-#> |.....................| 8.920 | 2.311 | 1.250 | 0.6637 |
-#> |.....................| 0.7145 | 1.506 | 1.299 | 1.324 |
-#> | F| Forward Diff. | -5.829 | 0.4364 | -0.1238 | 0.03009 |
-#> |.....................| -0.09450 | -1.871 | -2.366 | 0.01771 |
-#> |.....................| -2.486 | -0.08743 | 0.03350 | 0.7982 |
-#> | 59| 458.17323 | 0.9963 | -1.395 | -0.9059 | -0.8664 |
-#> |.....................| -0.7819 | -0.4846 | -0.7446 | -0.9977 |
-#> |.....................| -1.059 | -0.6018 | -0.6829 | -0.6949 |
-#> | U| 458.17323 | 93.77 | -5.766 | -0.9850 | -0.1669 |
-#> |.....................| 2.188 | 2.311 | 1.250 | 0.6633 |
-#> |.....................| 0.7149 | 1.506 | 1.299 | 1.323 |
-#> | X| 458.17323 | 93.77 | 0.003132 | 0.2719 | 0.8463 |
-#> |.....................| 8.921 | 2.311 | 1.250 | 0.6633 |
-#> |.....................| 0.7149 | 1.506 | 1.299 | 1.323 |
-#> | F| Forward Diff. | 3.135 | 0.4259 | -0.1111 | 0.03860 |
-#> |.....................| -0.07150 | -1.713 | -2.294 | -0.1635 |
-#> |.....................| -3.755 | -0.1071 | 0.1242 | 0.7274 |
-#> | 60| 458.17055 | 0.9957 | -1.395 | -0.9058 | -0.8664 |
-#> |.....................| -0.7818 | -0.4843 | -0.7440 | -0.9980 |
-#> |.....................| -1.058 | -0.6018 | -0.6828 | -0.6953 |
-#> | U| 458.17055 | 93.70 | -5.766 | -0.9848 | -0.1669 |
-#> |.....................| 2.188 | 2.311 | 1.251 | 0.6631 |
-#> |.....................| 0.7157 | 1.506 | 1.300 | 1.323 |
-#> | X| 458.17055 | 93.70 | 0.003131 | 0.2719 | 0.8463 |
-#> |.....................| 8.921 | 2.311 | 1.251 | 0.6631 |
-#> |.....................| 0.7157 | 1.506 | 1.300 | 1.323 |
-#> | F| Forward Diff. | -3.767 | 0.4346 | -0.1027 | 0.03296 |
-#> |.....................| -0.07232 | -2.503 | -3.089 | -0.1630 |
-#> |.....................| -2.382 | -0.08570 | 0.1151 | 0.7161 |
-#> | 61| 458.16819 | 0.9965 | -1.395 | -0.9058 | -0.8664 |
-#> |.....................| -0.7818 | -0.4837 | -0.7432 | -0.9981 |
-#> |.....................| -1.058 | -0.6018 | -0.6828 | -0.6955 |
-#> | U| 458.16819 | 93.79 | -5.767 | -0.9848 | -0.1669 |
-#> |.....................| 2.188 | 2.312 | 1.251 | 0.6630 |
-#> |.....................| 0.7162 | 1.506 | 1.300 | 1.322 |
-#> | X| 458.16819 | 93.79 | 0.003130 | 0.2719 | 0.8462 |
-#> |.....................| 8.921 | 2.312 | 1.251 | 0.6630 |
-#> |.....................| 0.7162 | 1.506 | 1.300 | 1.322 |
-#> | F| Forward Diff. | 6.568 | 0.4333 | -0.07429 | 0.03599 |
-#> |.....................| -0.03802 | -2.553 | -3.191 | -0.5393 |
-#> |.....................| -0.9714 | -0.8035 | 0.1031 | 0.6902 |
-#> | 62| 458.16513 | 0.9957 | -1.396 | -0.9056 | -0.8666 |
-#> |.....................| -0.7821 | -0.4835 | -0.7425 | -0.9983 |
-#> |.....................| -1.057 | -0.6019 | -0.6824 | -0.6959 |
-#> | U| 458.16513 | 93.70 | -5.767 | -0.9847 | -0.1672 |
-#> |.....................| 2.188 | 2.312 | 1.252 | 0.6629 |
-#> |.....................| 0.7164 | 1.506 | 1.300 | 1.322 |
-#> | X| 458.16513 | 93.70 | 0.003129 | 0.2720 | 0.8461 |
-#> |.....................| 8.919 | 2.312 | 1.252 | 0.6629 |
-#> |.....................| 0.7164 | 1.506 | 1.300 | 1.322 |
-#> | F| Forward Diff. | -3.933 | 0.4306 | -0.09800 | 0.02413 |
-#> |.....................| -0.09225 | -1.469 | -2.000 | -0.05194 |
-#> |.....................| -3.675 | -0.07209 | 0.09082 | 0.7196 |
-#> | 63| 458.16261 | 0.9962 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4834 | -0.7420 | -0.9986 |
-#> |.....................| -1.057 | -0.6017 | -0.6820 | -0.6964 |
-#> | U| 458.16261 | 93.76 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.312 | 1.252 | 0.6626 |
-#> |.....................| 0.7170 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16261 | 93.76 | 0.003127 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.312 | 1.252 | 0.6626 |
-#> |.....................| 0.7170 | 1.506 | 1.300 | 1.321 |
-#> | F| Forward Diff. | 2.233 | 0.4197 | -0.09277 | 0.03004 |
-#> |.....................| -0.08165 | -1.772 | -2.245 | -0.08206 |
-#> |.....................| -2.339 | -0.1510 | 0.07888 | 0.6887 |
-#> | 64| 458.16062 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16062 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16062 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | M| Mixed Diff. | -6.515 | 0.4169 | -0.1028 |-1.670e+05 |
-#> |.....................| -0.1097 | -2.956 | -2.997 | -0.5657 |
-#> |.....................| -4.153 | -0.6659 | -0.7853 | 0.1256 |
-#> | 65| 458.16519 | 0.9948 | -1.397 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4822 | -0.7405 | -0.9986 |
-#> |.....................| -1.055 | -0.6016 | -0.6821 | -0.6969 |
-#> | U| 458.16519 | 93.62 | -5.768 | -0.9844 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.253 | 0.6627 |
-#> |.....................| 0.7183 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16519 | 93.62 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.253 | 0.6627 |
-#> |.....................| 0.7183 | 1.506 | 1.300 | 1.321 |
-#> | 66| 458.16209 | 0.9951 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4825 | -0.7409 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6968 |
-#> | U| 458.16209 | 93.65 | -5.768 | -0.9844 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.253 | 0.6626 |
-#> |.....................| 0.7180 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16209 | 93.65 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.253 | 0.6626 |
-#> |.....................| 0.7180 | 1.506 | 1.300 | 1.321 |
-#> | 67| 458.16115 | 0.9953 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4827 | -0.7410 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16115 | 93.67 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.253 | 0.6626 |
-#> |.....................| 0.7178 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16115 | 93.67 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.253 | 0.6626 |
-#> |.....................| 0.7178 | 1.506 | 1.300 | 1.321 |
-#> | 68| 458.16084 | 0.9954 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4827 | -0.7411 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16084 | 93.68 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16084 | 93.68 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
-#> | 69| 458.16072 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16072 | 93.68 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16072 | 93.68 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
-#> | 70| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7177 | 1.506 | 1.300 | 1.321 |
-#> | 71| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 72| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 73| 458.16072 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16072 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16072 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 74| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 75| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 76| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 77| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 78| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 79| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 80| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 81| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 82| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 83| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 84| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 85| 458.16068 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16068 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16068 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 86| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 87| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 88| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 89| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 90| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 91| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | 92| 458.16067 | 0.9955 | -1.396 | -0.9054 | -0.8667 |
-#> |.....................| -0.7822 | -0.4828 | -0.7412 | -0.9986 |
-#> |.....................| -1.056 | -0.6017 | -0.6821 | -0.6967 |
-#> | U| 458.16067 | 93.69 | -5.768 | -0.9845 | -0.1673 |
-#> |.....................| 2.188 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> | X| 458.16067 | 93.69 | 0.003126 | 0.2720 | 0.8460 |
-#> |.....................| 8.918 | 2.313 | 1.252 | 0.6626 |
-#> |.....................| 0.7176 | 1.506 | 1.300 | 1.321 |
-#> calculating covariance matrix
-#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> 1: 93.5791 -5.6199 -2.0817 -3.9984 -1.2037 0.1481 4.5359 1.6042 1.1515 2.4545 0.4989 0.5230 19.1822 10.0277
-#> 2: 93.5157 -5.6781 -1.9742 -4.0546 -1.1333 0.1109 4.4678 1.5240 1.0939 2.3318 0.4740 0.6338 12.8885 7.4711
-#> 3: 93.2898 -5.7047 -1.8559 -4.1328 -1.0939 0.0438 5.0096 1.4478 1.1939 2.2152 0.4503 0.6021 11.0381 5.1444
-#> 4: 93.0426 -5.7814 -1.8501 -4.1839 -1.0410 0.0594 6.3802 1.4778 1.2229 2.1556 0.4278 0.5972 10.2381 4.4049
-#> 5: 92.9134 -5.8482 -1.8162 -4.2071 -1.0582 0.0732 6.9858 1.8242 1.1718 2.3151 0.4064 0.5822 9.8642 4.4088
-#> 6: 92.7655 -5.8047 -1.8535 -4.2041 -0.9870 0.0611 6.6365 1.7739 1.1619 2.2910 0.3861 0.5531 8.6374 4.0594
-#> 7: 93.0259 -5.8252 -1.9173 -4.2093 -0.9549 0.0995 6.3047 2.2731 1.1038 2.1765 0.3668 0.5255 9.0819 3.0678
-#> 8: 93.1406 -5.7510 -1.9019 -4.2213 -0.9559 0.1508 5.9894 2.5908 1.0919 2.0948 0.3484 0.4992 8.3332 2.3703
-#> 9: 93.3980 -5.5162 -1.9512 -4.2707 -0.9026 0.1570 5.6900 2.4612 1.0373 2.3579 0.3310 0.4742 7.7762 2.1692
-#> 10: 93.5148 -5.4966 -1.9184 -4.2482 -0.9045 0.1396 5.4055 2.3382 0.9855 2.2400 0.3145 0.4652 7.5796 1.9233
-#> 11: 93.1833 -5.5679 -1.9315 -4.2869 -0.9148 0.1713 5.1352 2.2213 0.9362 2.1465 0.2987 0.4622 7.5181 1.8003
-#> 12: 92.9902 -5.7249 -1.9741 -4.3054 -0.9148 0.1927 4.8784 2.9298 0.8975 2.3858 0.2838 0.5005 7.3638 1.7074
-#> 13: 92.5821 -5.7143 -1.9662 -4.3403 -0.8940 0.1595 4.6345 2.8035 0.9305 2.5370 0.2696 0.4755 7.1732 1.6333
-#> 14: 92.1385 -5.5571 -1.9874 -4.2935 -0.8815 0.1762 5.5000 2.6634 0.9011 2.4102 0.2561 0.5012 7.1920 1.7020
-#> 15: 92.1244 -5.5198 -1.9701 -4.3134 -0.8984 0.1704 5.2250 2.5302 0.9705 2.4401 0.2433 0.4839 7.4072 1.6160
-#> 16: 92.6306 -5.4666 -1.9776 -4.3023 -0.8906 0.1737 4.9638 2.4037 1.0278 2.3181 0.2312 0.5183 7.5105 1.6033
-#> 17: 92.5769 -5.4886 -2.0034 -4.3892 -0.8863 0.1967 5.6659 2.2835 1.0796 2.7700 0.2196 0.5138 7.6495 1.4656
-#> 18: 92.0321 -5.5257 -2.0086 -4.3651 -0.8914 0.1869 6.5345 2.1693 1.0771 2.6315 0.2086 0.4906 7.8248 1.4297
-#> 19: 92.5497 -5.5509 -1.9892 -4.3590 -0.8947 0.2148 6.2078 2.0936 1.0629 2.4999 0.1992 0.4847 7.8809 1.4881
-#> 20: 92.3638 -5.5322 -1.9943 -4.3507 -0.9153 0.1787 6.2176 2.1784 1.0242 2.5190 0.1923 0.4604 7.7900 1.5147
-#> 21: 92.3946 -5.5963 -1.9984 -4.3234 -0.9031 0.1961 5.9067 2.4305 0.9962 2.3930 0.1827 0.4374 7.6671 1.5182
-#> 22: 92.3389 -5.7757 -1.9686 -4.3485 -0.9054 0.1677 5.6113 3.2010 0.9650 2.4493 0.1907 0.4220 7.1305 1.5425
-#> 23: 92.5054 -5.7766 -1.9947 -4.3613 -0.9069 0.1781 5.3308 3.2506 0.9932 2.5478 0.1868 0.4217 7.6690 1.4526
-#> 24: 92.5865 -5.8597 -1.9691 -4.4676 -0.8950 0.1755 5.0642 4.0954 0.9471 3.5482 0.1891 0.4438 7.2397 1.6349
-#> 25: 92.3775 -5.8727 -1.9577 -4.4964 -0.8955 0.1477 4.8354 3.8906 0.9557 3.5054 0.2003 0.4216 6.7966 1.5576
-#> 26: 92.2427 -5.9696 -1.9672 -4.4384 -0.9063 0.1733 4.5937 4.0917 0.9924 3.3326 0.1918 0.4341 6.9377 1.5723
-#> 27: 92.7312 -5.8434 -1.9590 -4.3655 -0.9095 0.1669 4.4448 3.8871 1.0032 3.1660 0.2006 0.4320 7.1970 1.5118
-#> 28: 92.7033 -5.8759 -1.9827 -4.3776 -0.9145 0.1844 4.5885 3.6928 0.9750 3.0077 0.2093 0.4104 6.8745 1.4865
-#> 29: 92.5242 -5.8627 -1.9806 -4.4623 -0.9142 0.2069 5.2823 3.5081 0.9748 3.5849 0.2098 0.4120 6.9735 1.5115
-#> 30: 92.2312 -5.8332 -1.9739 -4.3699 -0.9100 0.1624 5.0182 3.5473 0.9553 3.4056 0.2102 0.3914 6.8547 1.5172
-#> 31: 92.1659 -5.7898 -1.9642 -4.3956 -0.9105 0.1625 4.7672 3.3700 0.9442 3.2571 0.2071 0.3795 6.5191 1.5452
-#> 32: 92.5436 -5.7968 -1.9642 -4.3987 -0.9179 0.1110 4.5289 3.2015 0.9382 3.0943 0.2024 0.3605 6.5921 1.5105
-#> 33: 92.7837 -5.8155 -1.9539 -4.3145 -0.9157 0.1398 4.3024 3.3616 0.9119 2.9395 0.1981 0.3494 6.2870 1.6036
-#> 34: 93.0500 -5.8853 -1.9587 -4.2507 -0.9146 0.1455 4.0873 4.3592 0.9129 2.7926 0.1961 0.3319 6.3493 1.6059
-#> 35: 93.1208 -5.8581 -1.9614 -4.2722 -0.9127 0.1255 4.0645 4.1413 0.9262 2.6529 0.1964 0.3157 6.1337 1.6010
-#> 36: 93.1002 -5.8598 -1.9886 -4.2092 -0.9076 0.1192 4.2392 3.9342 0.9566 2.5203 0.2015 0.3222 6.5326 1.4847
-#> 37: 92.8242 -5.6228 -1.9655 -4.2054 -0.9099 0.1010 6.8190 3.7375 0.9087 2.3943 0.1942 0.3141 6.2613 1.6015
-#> 38: 93.1512 -5.5747 -1.9736 -4.2054 -0.9115 0.0887 6.4781 3.5506 0.8904 2.2746 0.1930 0.3298 6.4960 1.5750
-#> 39: 92.9998 -5.5416 -1.9750 -4.2124 -0.9101 0.0953 6.1542 3.3731 0.9013 2.1608 0.1858 0.3204 6.6470 1.5705
-#> 40: 93.2158 -5.7057 -1.9587 -4.2101 -0.9122 0.0630 5.8464 3.2044 0.9350 2.1357 0.1851 0.3044 6.6842 1.5069
-#> 41: 93.0585 -5.5453 -1.9306 -4.2101 -0.9021 0.0531 5.5541 3.0442 0.9458 2.1673 0.1851 0.2892 6.3923 1.5949
-#> 42: 93.0958 -5.4512 -1.9484 -4.2227 -0.8959 0.0649 5.2764 2.8920 0.9571 2.1930 0.1829 0.2747 6.3082 1.5985
-#> 43: 93.2333 -5.5398 -1.9391 -4.2400 -0.8972 0.0870 5.0126 2.7474 0.9913 2.2830 0.1984 0.2720 6.0810 1.6131
-#> 44: 92.9479 -5.5648 -1.9227 -4.2468 -0.9104 0.0963 4.7620 2.6100 0.9682 2.2976 0.2038 0.2648 5.8461 1.6955
-#> 45: 93.0244 -5.6247 -1.9379 -4.2588 -0.9093 0.0865 5.2997 2.4894 0.9837 2.3100 0.2039 0.2844 5.9439 1.6121
-#> 46: 92.5959 -5.6240 -1.9513 -4.2588 -0.9172 0.0923 5.3111 2.5081 1.0158 2.3100 0.2050 0.2702 6.0141 1.6189
-#> 47: 92.8483 -5.5823 -1.9529 -4.2684 -0.9194 0.0770 6.2469 2.3827 1.0328 2.3567 0.2104 0.2567 6.0472 1.5858
-#> 48: 92.6210 -5.6336 -1.9379 -4.3049 -0.9054 0.0747 7.5721 2.3177 1.0379 2.5427 0.2103 0.2439 6.0431 1.5860
-#> 49: 92.6337 -5.6723 -1.9486 -4.2879 -0.8985 0.0773 7.1935 2.6572 1.0181 2.4515 0.2056 0.2559 6.0895 1.5217
-#> 50: 92.2413 -5.7138 -1.9587 -4.2804 -0.8926 0.0774 8.1551 2.9779 1.0282 2.4807 0.2090 0.2510 6.2355 1.5223
-#> 51: 92.2223 -5.6765 -1.9496 -4.2971 -0.8840 0.1034 7.7638 3.0625 1.0017 2.6024 0.2075 0.2384 6.3495 1.6621
-#> 52: 92.4242 -5.6573 -1.9408 -4.2943 -0.8993 0.1136 8.3190 2.9093 1.0044 2.4822 0.2163 0.2411 6.0611 1.5241
-#> 53: 92.6070 -5.5921 -1.9397 -4.2873 -0.9046 0.0904 10.3681 2.7639 1.0098 2.4895 0.2194 0.2393 6.1728 1.5264
-#> 54: 92.9339 -5.6194 -1.9292 -4.2950 -0.9006 0.1010 9.9150 2.6257 1.0088 2.4268 0.2346 0.2492 5.9203 1.5693
-#> 55: 93.4640 -5.5851 -1.8969 -4.2614 -0.9065 0.1058 10.3986 2.4944 1.0204 2.3055 0.2257 0.2403 5.7030 1.5717
-#> 56: 93.3646 -5.5851 -1.9127 -4.3130 -0.9196 0.1077 9.8787 2.3697 1.0067 2.6259 0.2261 0.2370 5.7389 1.5053
-#> 57: 93.5408 -5.4962 -1.9150 -4.3285 -0.9148 0.0880 9.3848 2.2512 0.9903 2.6118 0.2160 0.2494 5.7530 1.5780
-#> 58: 93.5195 -5.4358 -1.9459 -4.3041 -0.9076 0.1022 8.9155 2.1386 1.0220 2.5253 0.2220 0.2578 6.0138 1.4494
-#> 59: 93.5906 -5.4624 -1.9507 -4.3065 -0.9124 0.1374 8.4698 2.0317 1.0230 2.5539 0.2212 0.2449 5.7538 1.6021
-#> 60: 93.3308 -5.3784 -1.9540 -4.2417 -0.9173 0.1337 8.0463 1.9301 1.0298 2.4262 0.2173 0.2327 5.8841 1.4634
-#> 61: 93.3506 -5.4000 -1.9688 -4.2389 -0.9130 0.0942 7.6440 1.8336 1.0437 2.3049 0.2216 0.2210 6.0098 1.4243
-#> 62: 93.6969 -5.4175 -1.9467 -4.2389 -0.9135 0.1315 7.2618 1.7419 1.0213 2.2519 0.2250 0.2149 5.6278 1.4755
-#> 63: 93.6188 -5.3860 -1.9295 -4.2637 -0.9222 0.1196 7.8033 1.6548 1.0340 2.2699 0.2282 0.2282 5.6763 1.4755
-#> 64: 93.6782 -5.4118 -1.9518 -4.2655 -0.9298 0.1055 8.3519 1.5721 1.0227 2.4426 0.2317 0.2560 5.8006 1.4724
-#> 65: 93.5253 -5.4313 -1.9314 -4.2538 -0.9245 0.0919 7.9343 1.4980 1.0771 2.3486 0.2249 0.2635 5.8752 1.4850
-#> 66: 93.3192 -5.5672 -1.9715 -4.2575 -0.9224 0.1404 8.2293 1.9722 1.0233 2.3758 0.2365 0.2546 5.9462 1.5148
-#> 67: 93.0765 -5.4861 -1.9673 -4.2472 -0.9103 0.0935 8.3227 1.8736 0.9889 2.3305 0.2493 0.2419 5.7836 1.4946
-#> 68: 93.2666 -5.4963 -1.9635 -4.2435 -0.9093 0.0940 9.2911 1.7800 1.0050 2.3179 0.2495 0.2298 5.7104 1.4797
-#> 69: 93.3894 -5.5666 -1.9342 -4.2325 -0.9227 0.0957 9.0211 2.0287 1.0012 2.3052 0.2483 0.2348 5.8939 1.5158
-#> 70: 93.2671 -5.5710 -1.9486 -4.2723 -0.9323 0.1062 8.5700 2.1251 0.9714 2.3266 0.2498 0.2466 6.1562 1.5041
-#> 71: 92.9975 -5.5829 -1.9507 -4.2632 -0.9317 0.1166 8.1415 2.0322 0.9403 2.3654 0.2373 0.2454 5.8668 1.5122
-#> 72: 92.6364 -5.5255 -1.9888 -4.2605 -0.9255 0.1062 8.8866 1.9306 0.9680 2.4488 0.2314 0.2438 6.2101 1.5098
-#> 73: 92.4442 -5.5679 -1.9880 -4.3501 -0.9070 0.0972 9.1986 1.9203 0.9597 3.1091 0.2369 0.2412 6.1257 1.5029
-#> 74: 92.3866 -5.5447 -1.9895 -4.3137 -0.9004 0.0898 10.2222 1.8961 0.9573 2.9536 0.2494 0.2361 6.0474 1.4875
-#> 75: 92.2491 -5.6481 -1.9591 -4.3587 -0.8991 0.1028 9.7111 2.2694 1.0140 2.9121 0.2524 0.2243 6.0995 1.4780
-#> 76: 92.4656 -5.6014 -1.9860 -4.3538 -0.9015 0.0978 11.3121 2.1560 0.9861 2.9372 0.2489 0.2314 6.0996 1.4464
-#> 77: 92.5076 -5.5929 -1.9560 -4.3624 -0.9051 0.1008 12.0483 2.0482 1.0212 3.0132 0.2551 0.2378 5.9595 1.5081
-#> 78: 92.5987 -5.7000 -1.9592 -4.3611 -0.9131 0.0958 11.4458 2.3873 1.0062 2.9848 0.2549 0.2372 6.0385 1.4666
-#> 79: 92.4883 -5.7675 -1.9900 -4.4226 -0.9163 0.1153 10.8735 2.7867 0.9616 3.4984 0.2546 0.2309 5.9441 1.4722
-#> 80: 92.1716 -5.7782 -1.9810 -4.4398 -0.9122 0.1193 10.3299 3.0280 0.9642 3.6766 0.2520 0.2291 6.3013 1.4698
-#> 81: 92.1145 -5.8494 -1.9836 -4.3634 -0.9196 0.1013 9.8134 3.1850 0.9160 3.4927 0.2562 0.2409 6.2458 1.4664
-#> 82: 92.3761 -5.9668 -1.9722 -4.3888 -0.9240 0.1139 9.9738 3.9484 0.8923 3.3519 0.2434 0.2318 6.0987 1.4847
-#> 83: 92.7805 -6.1135 -1.9335 -4.3600 -0.9273 0.1027 11.2060 4.7684 0.8932 3.1843 0.2454 0.2202 5.9824 1.4920
-#> 84: 92.9601 -6.2190 -1.9374 -4.3187 -0.9376 0.1140 10.6457 5.6632 0.9077 3.0250 0.2464 0.2188 5.9979 1.5152
-#> 85: 92.4579 -6.1486 -1.9398 -4.3269 -0.9417 0.0979 10.1134 5.3800 0.9011 2.8738 0.2446 0.2330 5.7007 1.5648
-#> 86: 92.3580 -6.2177 -1.9549 -4.3287 -0.9510 0.1073 9.6077 5.1608 0.9318 2.7301 0.2497 0.2214 5.9916 1.5305
-#> 87: 92.8919 -6.3309 -1.9480 -4.3285 -0.9647 0.1009 9.1273 6.4577 0.9494 2.7023 0.2408 0.2126 5.9053 1.4313
-#> 88: 93.0621 -6.1220 -1.9623 -4.3341 -0.9624 0.1300 8.6710 6.1349 0.9563 2.6593 0.2404 0.2130 6.1925 1.4510
-#> 89: 92.7711 -6.2636 -1.9545 -4.3520 -0.9496 0.1227 8.2374 6.2143 0.9791 2.5862 0.2346 0.2333 5.9772 1.4523
-#> 90: 92.9148 -6.5481 -1.9586 -4.3275 -0.9496 0.1096 7.8255 8.2617 0.9787 2.4647 0.2346 0.2216 5.9136 1.4247
-#> 91: 92.8129 -6.4655 -1.9753 -4.3287 -0.9435 0.1210 9.1893 7.8487 0.9642 2.5304 0.2354 0.2268 5.9129 1.4229
-#> 92: 93.1090 -6.4752 -1.9841 -4.3533 -0.9428 0.1509 10.1133 7.7232 0.9160 2.6037 0.2457 0.2265 5.8601 1.4646
-#> 93: 93.4781 -6.3780 -1.9909 -4.3713 -0.9450 0.1544 9.6076 7.3370 0.9153 2.7656 0.2485 0.2499 5.9150 1.5180
-#> 94: 93.2125 -6.3021 -1.9798 -4.3459 -0.9470 0.1520 9.6738 6.9702 0.9314 2.6273 0.2428 0.2519 5.8752 1.4456
-#> 95: 93.0091 -5.9727 -1.9828 -4.3777 -0.9447 0.1370 9.6411 6.6217 0.9107 2.7137 0.2428 0.2556 5.8302 1.4477
-#> 96: 92.8731 -5.7813 -1.9952 -4.3343 -0.9352 0.1505 9.1590 6.2906 0.9011 2.5780 0.2366 0.2546 6.0545 1.4887
-#> 97: 92.7834 -5.8119 -1.9975 -4.3303 -0.9258 0.1231 8.8022 5.9760 0.9005 2.5331 0.2392 0.2419 5.9522 1.4754
-#> 98: 92.8447 -5.9773 -1.9940 -4.3353 -0.9301 0.1409 8.3621 5.6772 0.9244 2.4828 0.2426 0.2490 6.1027 1.4129
-#> 99: 93.1697 -5.8958 -1.9964 -4.3325 -0.9248 0.1411 7.9440 5.3934 0.9586 2.6138 0.2378 0.2545 6.2793 1.3719
-#> 100: 93.2536 -5.8481 -2.0009 -4.3408 -0.9304 0.1718 8.7965 5.1237 0.9290 2.6161 0.2398 0.2418 6.0908 1.4534
-#> 101: 93.2942 -5.8684 -1.9650 -4.3096 -0.9305 0.1496 9.7633 4.8675 0.9166 2.4853 0.2372 0.2565 5.9079 1.4948
-#> 102: 93.2636 -6.1363 -1.9517 -4.2653 -0.9235 0.1175 10.7772 5.1927 0.8944 2.3610 0.2448 0.2812 5.7748 1.5533
-#> 103: 92.6954 -5.9371 -1.9524 -4.2792 -0.9045 0.1288 10.2383 4.9331 0.8876 2.2429 0.2406 0.2720 5.5496 1.5601
-#> 104: 92.6149 -6.0650 -1.9532 -4.2752 -0.9048 0.0973 10.9914 4.6864 0.8845 2.1875 0.2475 0.2584 5.5593 1.4897
-#> 105: 92.8231 -5.9779 -1.9650 -4.2939 -0.9013 0.1112 10.4712 4.4521 0.9193 2.1985 0.2416 0.2455 5.4420 1.4910
-#> 106: 92.7599 -5.9602 -1.9594 -4.3018 -0.9026 0.1273 10.1396 4.2295 0.9308 2.1700 0.2453 0.2625 5.5458 1.4429
-#> 107: 93.1433 -5.9509 -1.9638 -4.2715 -0.9324 0.1385 9.6327 4.0415 0.9271 2.1026 0.2415 0.2626 5.4762 1.4286
-#> 108: 93.1354 -5.7359 -1.9691 -4.2962 -0.9256 0.1346 10.2794 3.8394 0.9387 2.1671 0.2412 0.2627 5.5107 1.4200
-#> 109: 92.9608 -5.8252 -1.9780 -4.3149 -0.9125 0.1564 9.7654 4.0619 0.9380 2.1731 0.2325 0.2657 5.8118 1.4379
-#> 110: 93.1043 -5.7632 -1.9874 -4.2868 -0.9113 0.1178 9.2771 3.8588 0.9420 2.1477 0.2214 0.2524 5.9352 1.4377
-#> 111: 92.8879 -5.7965 -1.9781 -4.2851 -0.9147 0.1107 8.8133 3.6659 0.9526 2.1891 0.2130 0.2398 5.6360 1.4461
-#> 112: 92.9347 -5.7484 -1.9460 -4.2825 -0.9195 0.1078 8.3726 3.4826 0.9710 2.2687 0.2051 0.2278 5.5771 1.5123
-#> 113: 92.7217 -5.7193 -1.9328 -4.2721 -0.9252 0.1021 7.9540 3.3085 1.0056 2.2848 0.2244 0.2164 5.7135 1.5082
-#> 114: 92.9944 -5.7382 -1.9414 -4.2835 -0.9210 0.1210 7.5563 3.1430 1.0184 2.2457 0.2260 0.2182 5.6799 1.4751
-#> 115: 93.1261 -5.8876 -1.9290 -4.2753 -0.9382 0.0960 9.7696 3.4406 1.0140 2.2745 0.2171 0.2073 5.3919 1.4919
-#> 116: 92.7669 -5.9842 -1.9484 -4.2828 -0.9504 0.1122 9.2811 4.1332 1.0202 2.2835 0.2160 0.2136 5.3651 1.5337
-#> 117: 92.9804 -5.9847 -1.9584 -4.2879 -0.9474 0.1234 9.2911 3.9265 0.9692 2.3115 0.2135 0.2163 5.1053 1.4774
-#> 118: 93.2853 -5.8443 -1.9494 -4.2700 -0.9400 0.1105 9.8572 3.7302 0.9736 2.2489 0.2192 0.2223 5.2416 1.4668
-#> 119: 93.2776 -5.8592 -1.9458 -4.2600 -0.9394 0.1072 9.3643 3.5437 0.9789 2.1964 0.2176 0.2205 5.2942 1.4847
-#> 120: 93.0335 -5.8156 -1.9453 -4.2623 -0.9437 0.1139 8.8961 3.3665 0.9698 2.2380 0.2206 0.2231 5.4427 1.4470
-#> 121: 93.0115 -5.8402 -1.9355 -4.2596 -0.9291 0.1138 8.4513 3.3018 0.9743 2.1463 0.2096 0.2120 5.1537 1.4487
-#> 122: 93.6277 -5.8852 -1.9276 -4.2787 -0.9419 0.1388 8.0287 3.4114 0.9438 2.1410 0.2072 0.2104 5.1198 1.5201
-#> 123: 93.4952 -6.0977 -1.9332 -4.2847 -0.9431 0.1412 7.6273 4.8225 0.9472 2.1335 0.2081 0.2129 5.2003 1.6193
-#> 124: 93.7207 -6.2280 -1.9105 -4.2692 -0.9551 0.1422 7.2459 5.4835 0.9657 2.0896 0.2148 0.2272 5.2901 1.5482
-#> 125: 93.6041 -6.0808 -1.9356 -4.2748 -0.9531 0.1184 7.0201 5.2094 0.9591 2.0421 0.2089 0.2158 5.3848 1.4896
-#> 126: 93.5193 -6.0164 -1.9296 -4.2890 -0.9600 0.1351 7.6848 4.9489 0.9931 2.1387 0.1989 0.2129 5.1988 1.4492
-#> 127: 93.7135 -5.9340 -1.9448 -4.2883 -0.9633 0.1428 8.3411 4.7014 0.9820 2.1192 0.1985 0.2046 5.3953 1.4985
-#> 128: 94.2312 -5.8849 -1.9404 -4.2754 -0.9633 0.1495 7.9240 4.4664 0.9884 2.0587 0.1902 0.2171 5.7113 1.4987
-#> 129: 94.0390 -5.8674 -1.9229 -4.3309 -0.9614 0.1472 8.5108 4.2430 1.0319 2.1023 0.1909 0.2154 5.5654 1.4294
-#> 130: 93.4178 -6.0458 -1.9224 -4.3364 -0.9560 0.1570 8.0852 4.4639 1.0184 2.2804 0.1869 0.2182 5.6585 1.4443
-#> 131: 93.5483 -6.2682 -1.9258 -4.3654 -0.9554 0.1449 7.6810 5.6020 1.0254 2.3477 0.1857 0.2230 5.4266 1.4324
-#> 132: 93.5180 -6.3297 -1.9204 -4.3577 -0.9640 0.1365 7.2969 5.5672 1.0354 2.3257 0.1788 0.2118 5.4913 1.4859
-#> 133: 93.4707 -6.0990 -1.9415 -4.3315 -0.9775 0.1232 6.9321 5.2888 1.0686 2.3421 0.1851 0.2012 5.8429 1.4618
-#> 134: 93.1012 -6.1236 -1.9308 -4.3409 -0.9654 0.1225 7.6471 5.0244 1.0517 2.4652 0.1947 0.2008 5.6902 1.5432
-#> 135: 93.2545 -6.1070 -1.9408 -4.3415 -0.9553 0.1228 9.2701 4.7732 1.0160 2.3607 0.1919 0.1907 5.5154 1.5317
-#> 136: 93.3338 -6.0321 -1.9336 -4.3074 -0.9598 0.1120 8.8066 4.5345 0.9652 2.2427 0.1999 0.2249 5.3667 1.6036
-#> 137: 93.5910 -6.0627 -1.9339 -4.3074 -0.9529 0.1407 8.3663 4.3078 0.9538 2.2128 0.1966 0.2195 5.2959 1.6015
-#> 138: 93.6338 -5.9702 -1.9252 -4.3105 -0.9615 0.1373 7.9480 4.0924 0.9875 2.2635 0.1964 0.2218 5.4532 1.5261
-#> 139: 93.6403 -5.8913 -1.9237 -4.2962 -0.9582 0.1165 8.0749 3.8878 0.9746 2.2457 0.1972 0.2125 5.9356 1.5173
-#> 140: 92.8503 -5.8314 -1.9452 -4.3180 -0.9487 0.1142 8.6356 3.6934 0.9933 2.2044 0.1961 0.2019 5.7908 1.5138
-#> 141: 93.1249 -6.0584 -1.9448 -4.3139 -0.9367 0.0950 8.9231 4.4196 1.0220 2.2246 0.2079 0.2077 6.0233 1.4339
-#> 142: 93.1846 -6.3026 -1.9152 -4.3093 -0.9392 0.0866 10.1508 5.9592 1.0562 2.3325 0.2082 0.2133 5.5285 1.4832
-#> 143: 92.4682 -6.1485 -1.9146 -4.2812 -0.9376 0.0260 9.6433 5.6613 1.0618 2.3594 0.2000 0.2027 6.0573 1.4428
-#> 144: 92.7792 -6.1108 -1.8939 -4.2740 -0.9341 0.0765 9.1611 5.3782 1.0917 2.3074 0.2057 0.2240 6.2141 1.4953
-#> 145: 93.1314 -6.2086 -1.8939 -4.3580 -0.9341 0.0741 8.7031 5.1093 1.0931 2.7164 0.2105 0.2229 5.8543 1.4855
-#> 146: 93.2254 -6.2170 -1.8998 -4.3724 -0.9311 0.0677 8.2679 5.0506 1.0811 2.8434 0.2049 0.2118 5.5455 1.4763
-#> 147: 93.3264 -6.0136 -1.8998 -4.3853 -0.9328 0.0817 9.4673 4.7980 1.0668 2.8512 0.2009 0.2114 5.5518 1.5225
-#> 148: 93.2298 -5.9143 -1.8921 -4.5001 -0.9296 0.1057 8.9939 4.5581 1.0563 3.8266 0.1982 0.2043 5.5242 1.5614
-#> 149: 93.3604 -5.9894 -1.8832 -4.5223 -0.9338 0.0858 8.5442 4.3302 1.0544 4.3930 0.1986 0.2003 5.4353 1.4957
-#> 150: 93.4715 -5.9630 -1.8833 -4.4796 -0.9335 0.0827 8.1170 4.1137 1.0912 4.1733 0.1984 0.1903 5.7477 1.4554
-#> 151: 93.3385 -5.8026 -1.9052 -4.4507 -0.9368 0.0684 8.7726 3.9080 1.1249 3.9647 0.2074 0.1808 5.7693 1.4400
-#> 152: 93.1682 -5.8529 -1.9441 -4.3545 -0.9309 0.0752 8.8042 3.1783 1.0496 3.0168 0.2069 0.1688 5.9161 1.4565
-#> 153: 93.0559 -6.0261 -1.9425 -4.3431 -0.9327 0.1016 9.1435 3.9939 1.0120 2.8470 0.1894 0.1509 5.4435 1.5486
-#> 154: 92.8582 -6.0887 -1.9278 -4.3094 -0.9352 0.1064 8.4316 4.2991 0.9819 2.6257 0.1907 0.1609 5.4587 1.5208
-#> 155: 93.3200 -5.8480 -1.9149 -4.3363 -0.9294 0.1143 9.6700 3.1734 0.9942 2.6441 0.1824 0.1906 5.5193 1.6410
-#> 156: 93.3199 -5.9053 -1.9213 -4.3163 -0.9369 0.1291 7.5899 3.5902 0.9823 2.4648 0.1770 0.1956 5.3816 1.5356
-#> 157: 93.2434 -5.8763 -1.9161 -4.3035 -0.9549 0.1075 8.4137 3.2576 0.9935 2.5007 0.1795 0.1852 5.4053 1.5706
-#> 158: 93.1494 -5.9243 -1.8929 -4.3162 -0.9680 0.1296 8.2959 3.3262 1.0029 2.4943 0.1866 0.1921 5.4369 1.5510
-#> 159: 93.5683 -6.0335 -1.9127 -4.3040 -0.9675 0.1271 7.7222 4.0079 0.9768 2.5765 0.1869 0.2028 5.7165 1.4968
-#> 160: 93.9417 -6.0018 -1.9085 -4.2818 -0.9611 0.1161 5.8791 4.4991 0.9658 2.4933 0.1878 0.1986 6.0579 1.5272
-#> 161: 94.1252 -5.9264 -1.8943 -4.2805 -0.9645 0.0860 4.9517 3.6307 0.9754 2.4988 0.1934 0.1785 5.7457 1.5878
-#> 162: 93.9389 -5.7613 -1.8946 -4.2410 -0.9752 0.0898 6.7269 2.5865 1.0184 2.4379 0.1933 0.1908 5.9052 1.5215
-#> 163: 93.5890 -5.7243 -1.8992 -4.2636 -0.9722 0.0759 8.4484 2.5137 1.0151 2.3869 0.1928 0.1889 5.4694 1.5048
-#> 164: 93.9751 -5.7314 -1.8786 -4.3271 -0.9702 0.1020 6.6884 2.5136 1.0133 2.8395 0.1907 0.1998 5.4625 1.4854
-#> 165: 93.9708 -5.7409 -1.8856 -4.3129 -0.9616 0.1094 5.8809 2.4589 1.0401 2.6662 0.1912 0.1998 5.4339 1.4549
-#> 166: 93.9265 -5.6937 -1.9134 -4.3080 -0.9702 0.1151 5.6940 2.4086 1.0065 2.6864 0.1983 0.1987 5.6907 1.4857
-#> 167: 93.4157 -5.7312 -1.9163 -4.3286 -0.9638 0.1216 5.1230 2.5468 1.0487 2.5930 0.1917 0.1940 5.5938 1.4267
-#> 168: 93.3701 -5.8757 -1.9196 -4.3493 -0.9579 0.1134 6.0802 3.3929 1.0517 2.6981 0.1888 0.2063 5.4125 1.4365
-#> 169: 93.4342 -6.0262 -1.9041 -4.3347 -0.9526 0.0997 6.0780 3.6349 1.0623 2.7344 0.1946 0.1978 5.4930 1.4594
-#> 170: 93.3751 -6.1195 -1.9093 -4.3541 -0.9872 0.0834 6.8972 4.0337 1.0763 2.8428 0.2077 0.2005 5.6759 1.4455
-#> 171: 93.3603 -6.0360 -1.9196 -4.4632 -0.9763 0.0866 7.4236 3.6025 1.0684 3.7611 0.2046 0.1894 5.6282 1.4414
-#> 172: 93.2776 -5.9538 -1.9031 -4.4815 -0.9779 0.1024 5.4751 3.2802 1.0599 3.9487 0.2115 0.1990 5.6116 1.4230
-#> 173: 93.4470 -5.8580 -1.9193 -4.4170 -0.9641 0.0957 5.6416 2.8005 1.0440 3.4509 0.2066 0.1863 5.5804 1.4485
-#> 174: 93.2952 -5.8590 -1.9010 -4.3600 -0.9640 0.0789 6.4314 2.9503 1.0808 2.9773 0.2045 0.1969 5.4423 1.4421
-#> 175: 93.3756 -5.7733 -1.8959 -4.3621 -0.9504 0.0609 6.1723 2.5287 1.0950 3.0019 0.2127 0.2053 5.4338 1.4470
-#> 176: 93.1450 -5.8266 -1.9053 -4.3401 -0.9457 0.0633 6.5237 3.0522 1.0942 2.9464 0.2134 0.2021 5.6501 1.3664
-#> 177: 92.7723 -5.9978 -1.9231 -4.3529 -0.9524 0.0658 7.4519 4.2374 1.0640 3.0260 0.2158 0.2146 5.9180 1.4100
-#> 178: 92.7261 -5.9836 -1.9189 -4.3349 -0.9576 0.0768 5.5211 4.2557 1.0611 2.8827 0.2169 0.2088 5.8872 1.4206
-#> 179: 92.9599 -6.0071 -1.9259 -4.3081 -0.9581 0.0657 6.0953 3.8205 1.0816 2.6709 0.2122 0.2014 5.8221 1.4026
-#> 180: 93.0831 -6.1544 -1.9400 -4.3018 -0.9496 0.0411 4.2312 4.9005 1.1064 2.6542 0.2143 0.2221 6.3264 1.3820
-#> 181: 92.8840 -6.0889 -1.9364 -4.3200 -0.9566 0.0861 4.2186 4.4615 1.0930 2.7270 0.2142 0.2424 6.0486 1.4035
-#> 182: 93.1913 -6.1457 -1.9384 -4.3085 -0.9606 0.0733 6.2878 4.6026 1.0917 2.6393 0.2131 0.2151 5.7042 1.4952
-#> 183: 93.1218 -6.3114 -1.9355 -4.2883 -0.9742 0.0741 7.2675 5.1377 1.0914 2.5060 0.2220 0.2111 5.5099 1.4097
-#> 184: 93.1462 -6.3147 -1.9068 -4.2880 -0.9653 0.0893 7.6928 5.6510 1.0563 2.5066 0.2256 0.2201 5.4138 1.5319
-#> 185: 93.1825 -6.3608 -1.9265 -4.2815 -0.9549 0.0873 7.1340 5.9801 1.0363 2.4788 0.2177 0.1958 5.4202 1.4569
-#> 186: 93.6270 -6.1413 -1.9278 -4.2702 -0.9696 0.1185 6.7652 4.5535 1.0400 2.3673 0.2163 0.1932 5.3005 1.5012
-#> 187: 93.9922 -6.3364 -1.9269 -4.2702 -0.9729 0.1197 7.7694 6.1592 0.9948 2.3673 0.2196 0.2091 5.3075 1.5105
-#> 188: 93.8884 -6.0236 -1.9207 -4.2928 -0.9900 0.1343 7.8090 4.2847 0.9840 2.4238 0.2195 0.1966 5.2861 1.5607
-#> 189: 94.3110 -6.0809 -1.9145 -4.2826 -0.9840 0.1224 8.5580 4.0998 0.9800 2.4505 0.2294 0.1840 5.7107 1.5180
-#> 190: 94.0039 -6.0996 -1.9140 -4.2793 -0.9782 0.1429 10.6594 4.1655 0.9796 2.4415 0.2297 0.1960 5.7533 1.5720
-#> 191: 93.9692 -6.1129 -1.9362 -4.3261 -0.9705 0.1462 8.8201 4.3146 1.0124 2.4625 0.2287 0.2049 5.5670 1.5206
-#> 192: 93.3178 -5.9759 -1.9192 -4.3378 -0.9664 0.1434 8.8047 3.7150 1.0282 2.4137 0.2243 0.1977 5.3858 1.4599
-#> 193: 93.1427 -5.9388 -1.9391 -4.3211 -0.9650 0.1401 7.1862 3.2835 1.0218 2.3216 0.2163 0.1866 5.3930 1.5017
-#> 194: 93.0588 -6.0605 -1.9361 -4.3350 -0.9462 0.1330 6.8930 4.0020 1.0166 2.3186 0.2057 0.1818 5.2535 1.5075
-#> 195: 93.1820 -6.1201 -1.9579 -4.3034 -0.9534 0.1557 8.1300 4.4218 0.9932 2.1873 0.2099 0.1834 5.4862 1.4698
-#> 196: 93.2230 -5.8879 -1.9725 -4.2965 -0.9584 0.1390 8.1307 3.0777 1.0051 2.1597 0.2089 0.1683 5.7058 1.3970
-#> 197: 93.3504 -5.8829 -1.9677 -4.3075 -0.9577 0.1638 6.7115 3.0660 1.0050 2.1377 0.2024 0.1642 5.4691 1.5016
-#> 198: 93.3016 -5.8771 -1.9885 -4.3241 -0.9605 0.1562 6.4722 3.0381 0.9727 2.2053 0.1975 0.1683 5.3434 1.4885
-#> 199: 93.2464 -5.8787 -1.9871 -4.3430 -0.9528 0.1751 4.5894 3.0445 0.9748 2.2247 0.1886 0.1780 5.4469 1.4405
-#> 200: 93.3474 -5.7995 -1.9767 -4.3298 -0.9480 0.1947 4.7024 2.8535 0.9895 2.2234 0.1951 0.2012 5.5130 1.4641
-#> 201: 93.3231 -5.8169 -1.9737 -4.3268 -0.9510 0.1804 4.4248 2.8913 0.9738 2.2141 0.1955 0.2057 5.5422 1.4843
-#> 202: 93.3484 -5.8009 -1.9732 -4.3240 -0.9519 0.1674 4.4068 2.8084 0.9736 2.2040 0.1959 0.2033 5.5843 1.4744
-#> 203: 93.2617 -5.7915 -1.9678 -4.3211 -0.9535 0.1629 4.5333 2.7678 0.9877 2.1980 0.1961 0.2023 5.6265 1.4811
-#> 204: 93.2210 -5.8071 -1.9647 -4.3220 -0.9504 0.1629 4.6144 2.8347 0.9922 2.1938 0.1937 0.2013 5.5745 1.4988
-#> 205: 93.1914 -5.8104 -1.9667 -4.3225 -0.9484 0.1593 4.5880 2.8639 0.9931 2.1952 0.1916 0.1979 5.5960 1.5057
-#> 206: 93.1827 -5.8348 -1.9697 -4.3236 -0.9498 0.1587 4.7189 3.0353 0.9929 2.2016 0.1922 0.1947 5.6096 1.5136
-#> 207: 93.2017 -5.8760 -1.9714 -4.3239 -0.9518 0.1592 4.8171 3.2659 0.9947 2.2042 0.1927 0.1910 5.6413 1.5078
-#> 208: 93.2226 -5.8819 -1.9736 -4.3261 -0.9532 0.1610 4.8241 3.2964 0.9957 2.2122 0.1938 0.1878 5.6704 1.5031
-#> 209: 93.2158 -5.8786 -1.9743 -4.3278 -0.9538 0.1595 4.6275 3.2763 0.9963 2.2279 0.1950 0.1848 5.6758 1.5038
-#> 210: 93.2216 -5.8798 -1.9746 -4.3286 -0.9535 0.1589 4.5667 3.2857 0.9974 2.2473 0.1948 0.1834 5.6707 1.5054
-#> 211: 93.2238 -5.8847 -1.9763 -4.3302 -0.9530 0.1591 4.5745 3.2932 0.9956 2.2576 0.1948 0.1823 5.6691 1.4990
-#> 212: 93.2242 -5.8893 -1.9777 -4.3323 -0.9532 0.1600 4.6203 3.2955 0.9938 2.2704 0.1958 0.1814 5.6732 1.4994
-#> 213: 93.2246 -5.8950 -1.9756 -4.3345 -0.9532 0.1588 4.7363 3.3106 0.9894 2.2864 0.1960 0.1791 5.6401 1.5015
-#> 214: 93.2056 -5.9070 -1.9740 -4.3368 -0.9532 0.1586 4.7814 3.3538 0.9888 2.3047 0.1960 0.1761 5.6265 1.5008
-#> 215: 93.2126 -5.9157 -1.9720 -4.3405 -0.9533 0.1580 4.9117 3.3916 0.9890 2.3191 0.1959 0.1742 5.6054 1.5015
-#> 216: 93.2161 -5.9242 -1.9716 -4.3423 -0.9533 0.1594 5.0163 3.4425 0.9897 2.3291 0.1959 0.1739 5.5975 1.5005
-#> 217: 93.2193 -5.9351 -1.9715 -4.3445 -0.9537 0.1614 4.9927 3.5085 0.9905 2.3309 0.1957 0.1739 5.5905 1.5024
-#> 218: 93.1973 -5.9314 -1.9725 -4.3479 -0.9548 0.1640 5.0502 3.4902 0.9918 2.3344 0.1952 0.1740 5.5909 1.5046
-#> 219: 93.1938 -5.9312 -1.9729 -4.3508 -0.9539 0.1664 5.0446 3.4901 0.9922 2.3365 0.1949 0.1746 5.5808 1.5046
-#> 220: 93.1994 -5.9424 -1.9734 -4.3531 -0.9536 0.1683 5.0462 3.5593 0.9917 2.3370 0.1945 0.1754 5.5831 1.5055
-#> 221: 93.2015 -5.9511 -1.9746 -4.3550 -0.9537 0.1702 5.1062 3.6002 0.9899 2.3368 0.1945 0.1762 5.5731 1.5043
-#> 222: 93.2057 -5.9653 -1.9756 -4.3571 -0.9541 0.1718 5.1727 3.6876 0.9886 2.3364 0.1943 0.1776 5.5813 1.5047
-#> 223: 93.1998 -5.9723 -1.9761 -4.3592 -0.9540 0.1726 5.1866 3.7239 0.9871 2.3428 0.1940 0.1791 5.5702 1.5047
-#> 224: 93.2042 -5.9799 -1.9768 -4.3615 -0.9540 0.1734 5.1516 3.7613 0.9849 2.3531 0.1934 0.1809 5.5705 1.5039
-#> 225: 93.1974 -5.9813 -1.9776 -4.3648 -0.9540 0.1740 5.1225 3.7676 0.9840 2.3663 0.1929 0.1834 5.5698 1.5030
-#> 226: 93.1963 -5.9807 -1.9777 -4.3679 -0.9535 0.1751 5.1632 3.7694 0.9839 2.3785 0.1927 0.1850 5.5676 1.5069
-#> 227: 93.1912 -5.9740 -1.9783 -4.3707 -0.9533 0.1768 5.1987 3.7421 0.9835 2.3931 0.1922 0.1855 5.5597 1.5091
-#> 228: 93.1902 -5.9799 -1.9792 -4.3745 -0.9533 0.1784 5.2070 3.7641 0.9825 2.4134 0.1917 0.1861 5.5502 1.5086
-#> 229: 93.1903 -5.9894 -1.9805 -4.3792 -0.9533 0.1796 5.2398 3.8109 0.9812 2.4382 0.1910 0.1870 5.5486 1.5075
-#> 230: 93.1833 -5.9946 -1.9816 -4.3836 -0.9530 0.1814 5.2357 3.8346 0.9800 2.4614 0.1904 0.1883 5.5515 1.5065
-#> 231: 93.1740 -6.0001 -1.9834 -4.3871 -0.9528 0.1833 5.2848 3.8635 0.9783 2.4814 0.1898 0.1893 5.5526 1.5057
-#> 232: 93.1581 -6.0071 -1.9852 -4.3904 -0.9523 0.1857 5.3056 3.8967 0.9766 2.5002 0.1891 0.1904 5.5571 1.5057
-#> 233: 93.1417 -6.0131 -1.9865 -4.3933 -0.9517 0.1869 5.3290 3.9227 0.9745 2.5129 0.1885 0.1909 5.5609 1.5069
-#> 234: 93.1245 -6.0198 -1.9878 -4.3961 -0.9514 0.1880 5.3062 3.9567 0.9731 2.5269 0.1886 0.1916 5.5645 1.5074
-#> 235: 93.1084 -6.0269 -1.9885 -4.3985 -0.9514 0.1892 5.3213 3.9969 0.9729 2.5390 0.1887 0.1931 5.5722 1.5065
-#> 236: 93.1037 -6.0382 -1.9897 -4.4009 -0.9517 0.1899 5.3601 4.0674 0.9744 2.5501 0.1886 0.1949 5.5811 1.5066
-#> 237: 93.0989 -6.0432 -1.9906 -4.4031 -0.9518 0.1909 5.3744 4.0877 0.9755 2.5623 0.1885 0.1964 5.5890 1.5051
-#> 238: 93.0932 -6.0433 -1.9912 -4.4041 -0.9521 0.1915 5.4192 4.0775 0.9772 2.5698 0.1886 0.1980 5.5980 1.5029
-#> 239: 93.0943 -6.0475 -1.9913 -4.4056 -0.9520 0.1921 5.4483 4.0960 0.9792 2.5785 0.1888 0.1997 5.5999 1.5011
-#> 240: 93.0904 -6.0498 -1.9909 -4.4070 -0.9520 0.1925 5.4921 4.1095 0.9814 2.5867 0.1887 0.2011 5.5974 1.5013
-#> 241: 93.0883 -6.0508 -1.9910 -4.4086 -0.9520 0.1931 5.5503 4.1140 0.9827 2.5966 0.1887 0.2023 5.6049 1.4997
-#> 242: 93.0884 -6.0487 -1.9916 -4.4102 -0.9517 0.1940 5.5634 4.1021 0.9831 2.6059 0.1886 0.2039 5.6116 1.5005
-#> 243: 93.0836 -6.0466 -1.9920 -4.4123 -0.9517 0.1950 5.5786 4.0878 0.9837 2.6204 0.1887 0.2054 5.6217 1.5000
-#> 244: 93.0756 -6.0477 -1.9926 -4.4149 -0.9517 0.1956 5.5827 4.0904 0.9843 2.6385 0.1887 0.2070 5.6306 1.4995
-#> 245: 93.0664 -6.0533 -1.9930 -4.4174 -0.9514 0.1963 5.6228 4.1208 0.9857 2.6549 0.1888 0.2086 5.6346 1.4996
-#> 246: 93.0643 -6.0543 -1.9931 -4.4200 -0.9511 0.1969 5.6236 4.1257 0.9872 2.6735 0.1886 0.2096 5.6381 1.4989
-#> 247: 93.0631 -6.0568 -1.9929 -4.4227 -0.9511 0.1974 5.6045 4.1389 0.9889 2.6910 0.1886 0.2107 5.6408 1.4984
-#> 248: 93.0636 -6.0567 -1.9924 -4.4264 -0.9513 0.1974 5.6016 4.1412 0.9906 2.7225 0.1886 0.2117 5.6424 1.4992
-#> 249: 93.0727 -6.0560 -1.9920 -4.4302 -0.9514 0.1973 5.6088 4.1383 0.9922 2.7584 0.1885 0.2125 5.6441 1.4992
-#> 250: 93.0865 -6.0551 -1.9915 -4.4337 -0.9512 0.1973 5.6127 4.1386 0.9941 2.7852 0.1884 0.2135 5.6522 1.4977
-#> 251: 93.0887 -6.0551 -1.9910 -4.4364 -0.9511 0.1967 5.5869 4.1455 0.9964 2.8060 0.1883 0.2146 5.6561 1.4968
-#> 252: 93.0877 -6.0522 -1.9904 -4.4376 -0.9511 0.1964 5.5778 4.1346 0.9987 2.8151 0.1883 0.2155 5.6583 1.4964
-#> 253: 93.0843 -6.0518 -1.9897 -4.4391 -0.9512 0.1961 5.5948 4.1323 1.0011 2.8253 0.1884 0.2164 5.6588 1.4972
-#> 254: 93.0818 -6.0518 -1.9896 -4.4399 -0.9512 0.1957 5.6122 4.1352 1.0016 2.8319 0.1882 0.2169 5.6573 1.4991
-#> 255: 93.0838 -6.0524 -1.9895 -4.4401 -0.9514 0.1954 5.6310 4.1366 1.0025 2.8408 0.1880 0.2174 5.6584 1.4996
-#> 256: 93.0850 -6.0579 -1.9892 -4.4400 -0.9515 0.1948 5.6526 4.1752 1.0043 2.8482 0.1879 0.2181 5.6611 1.4979
-#> 257: 93.0868 -6.0600 -1.9890 -4.4391 -0.9517 0.1940 5.6742 4.1941 1.0055 2.8499 0.1878 0.2189 5.6649 1.4985
-#> 258: 93.0873 -6.0606 -1.9888 -4.4391 -0.9518 0.1932 5.7088 4.2037 1.0066 2.8552 0.1877 0.2196 5.6668 1.4983
-#> 259: 93.0912 -6.0650 -1.9882 -4.4377 -0.9519 0.1925 5.7494 4.2300 1.0080 2.8537 0.1877 0.2204 5.6729 1.4977
-#> 260: 93.0964 -6.0699 -1.9874 -4.4362 -0.9519 0.1918 5.7609 4.2588 1.0100 2.8513 0.1877 0.2212 5.6792 1.4974
-#> 261: 93.1014 -6.0737 -1.9866 -4.4350 -0.9522 0.1913 5.7971 4.2807 1.0115 2.8496 0.1877 0.2220 5.6812 1.4969
-#> 262: 93.1064 -6.0734 -1.9859 -4.4346 -0.9526 0.1909 5.7936 4.2719 1.0129 2.8505 0.1877 0.2228 5.6824 1.4958
-#> 263: 93.1092 -6.0783 -1.9850 -4.4344 -0.9530 0.1906 5.8078 4.2973 1.0141 2.8525 0.1879 0.2233 5.6815 1.4954
-#> 264: 93.1128 -6.0830 -1.9842 -4.4338 -0.9535 0.1901 5.8245 4.3273 1.0146 2.8527 0.1880 0.2237 5.6768 1.4958
-#> 265: 93.1198 -6.0874 -1.9834 -4.4331 -0.9541 0.1895 5.8467 4.3490 1.0149 2.8522 0.1880 0.2238 5.6693 1.4965
-#> 266: 93.1284 -6.0890 -1.9828 -4.4327 -0.9546 0.1888 5.8350 4.3488 1.0149 2.8513 0.1881 0.2239 5.6650 1.4970
-#> 267: 93.1380 -6.0926 -1.9819 -4.4326 -0.9549 0.1883 5.8440 4.3677 1.0156 2.8526 0.1883 0.2240 5.6609 1.4974
-#> 268: 93.1480 -6.0915 -1.9810 -4.4321 -0.9552 0.1873 5.8565 4.3552 1.0163 2.8522 0.1886 0.2238 5.6537 1.4990
-#> 269: 93.1539 -6.0910 -1.9803 -4.4314 -0.9556 0.1866 5.8709 4.3438 1.0179 2.8503 0.1888 0.2237 5.6495 1.4989
-#> 270: 93.1620 -6.0898 -1.9798 -4.4311 -0.9561 0.1861 5.8678 4.3301 1.0197 2.8507 0.1890 0.2235 5.6466 1.4984
-#> 271: 93.1668 -6.0881 -1.9792 -4.4305 -0.9565 0.1857 5.8508 4.3147 1.0209 2.8487 0.1891 0.2234 5.6487 1.4997
-#> 272: 93.1725 -6.0848 -1.9787 -4.4300 -0.9569 0.1855 5.8431 4.2948 1.0217 2.8474 0.1894 0.2233 5.6488 1.5000
-#> 273: 93.1770 -6.0809 -1.9783 -4.4297 -0.9572 0.1850 5.8432 4.2739 1.0227 2.8470 0.1897 0.2235 5.6497 1.5000
-#> 274: 93.1797 -6.0774 -1.9776 -4.4299 -0.9574 0.1846 5.8549 4.2532 1.0243 2.8494 0.1901 0.2235 5.6511 1.5003
-#> 275: 93.1829 -6.0759 -1.9774 -4.4303 -0.9578 0.1845 5.8633 4.2387 1.0255 2.8514 0.1906 0.2234 5.6561 1.5010
-#> 276: 93.1846 -6.0764 -1.9771 -4.4303 -0.9581 0.1845 5.8738 4.2322 1.0267 2.8523 0.1911 0.2232 5.6554 1.5020
-#> 277: 93.1880 -6.0792 -1.9768 -4.4305 -0.9584 0.1844 5.8980 4.2423 1.0278 2.8541 0.1915 0.2229 5.6586 1.5019
-#> 278: 93.1920 -6.0791 -1.9766 -4.4307 -0.9586 0.1841 5.9368 4.2391 1.0289 2.8559 0.1919 0.2226 5.6600 1.5024
-#> 279: 93.1892 -6.0786 -1.9766 -4.4310 -0.9586 0.1839 5.9822 4.2309 1.0300 2.8584 0.1925 0.2226 5.6642 1.5015
-#> 280: 93.1868 -6.0782 -1.9765 -4.4311 -0.9587 0.1836 6.0381 4.2253 1.0311 2.8616 0.1930 0.2227 5.6686 1.5008
-#> 281: 93.1805 -6.0781 -1.9764 -4.4309 -0.9586 0.1832 6.0718 4.2228 1.0325 2.8626 0.1936 0.2227 5.6741 1.5002
-#> 282: 93.1780 -6.0768 -1.9762 -4.4318 -0.9585 0.1829 6.0867 4.2160 1.0341 2.8701 0.1941 0.2228 5.6740 1.4998
-#> 283: 93.1777 -6.0736 -1.9760 -4.4325 -0.9583 0.1825 6.1250 4.2003 1.0355 2.8768 0.1946 0.2228 5.6761 1.5010
-#> 284: 93.1745 -6.0726 -1.9757 -4.4337 -0.9582 0.1823 6.1509 4.1975 1.0370 2.8843 0.1951 0.2227 5.6764 1.5009
-#> 285: 93.1742 -6.0719 -1.9755 -4.4348 -0.9579 0.1820 6.1652 4.1936 1.0381 2.8910 0.1954 0.2225 5.6773 1.5011
-#> 286: 93.1706 -6.0698 -1.9754 -4.4356 -0.9576 0.1818 6.1840 4.1844 1.0394 2.8966 0.1958 0.2224 5.6780 1.5011
-#> 287: 93.1672 -6.0678 -1.9752 -4.4370 -0.9573 0.1816 6.2123 4.1767 1.0400 2.9079 0.1963 0.2224 5.6757 1.5015
-#> 288: 93.1628 -6.0658 -1.9753 -4.4379 -0.9572 0.1815 6.2355 4.1700 1.0407 2.9150 0.1967 0.2223 5.6742 1.5013
-#> 289: 93.1588 -6.0628 -1.9753 -4.4389 -0.9569 0.1818 6.2435 4.1565 1.0416 2.9217 0.1969 0.2218 5.6777 1.5007
-#> 290: 93.1560 -6.0590 -1.9754 -4.4399 -0.9565 0.1820 6.2564 4.1394 1.0425 2.9291 0.1971 0.2214 5.6778 1.5006
-#> 291: 93.1552 -6.0555 -1.9754 -4.4409 -0.9562 0.1821 6.2753 4.1246 1.0435 2.9375 0.1973 0.2210 5.6779 1.5009
-#> 292: 93.1546 -6.0541 -1.9754 -4.4415 -0.9558 0.1820 6.2881 4.1183 1.0444 2.9414 0.1975 0.2205 5.6762 1.5006
-#> 293: 93.1506 -6.0535 -1.9756 -4.4424 -0.9555 0.1821 6.2856 4.1182 1.0454 2.9474 0.1976 0.2200 5.6770 1.4994
-#> 294: 93.1453 -6.0520 -1.9758 -4.4424 -0.9553 0.1819 6.2733 4.1124 1.0463 2.9487 0.1979 0.2195 5.6792 1.4985
-#> 295: 93.1431 -6.0487 -1.9760 -4.4421 -0.9551 0.1820 6.2655 4.1009 1.0469 2.9498 0.1982 0.2190 5.6797 1.4989
-#> 296: 93.1425 -6.0460 -1.9760 -4.4432 -0.9548 0.1818 6.2801 4.0912 1.0478 2.9566 0.1984 0.2185 5.6795 1.4989
-#> 297: 93.1403 -6.0442 -1.9761 -4.4440 -0.9545 0.1818 6.2979 4.0836 1.0485 2.9626 0.1987 0.2182 5.6783 1.4978
-#> 298: 93.1400 -6.0438 -1.9763 -4.4440 -0.9543 0.1817 6.3069 4.0842 1.0492 2.9646 0.1989 0.2178 5.6783 1.4968
-#> 299: 93.1373 -6.0426 -1.9764 -4.4445 -0.9540 0.1813 6.3134 4.0790 1.0505 2.9694 0.1991 0.2175 5.6800 1.4953
-#> 300: 93.1340 -6.0412 -1.9764 -4.4450 -0.9538 0.1811 6.3192 4.0731 1.0516 2.9744 0.1993 0.2171 5.6782 1.4938
-#> 301: 93.1330 -6.0402 -1.9766 -4.4455 -0.9535 0.1808 6.3278 4.0685 1.0531 2.9784 0.1996 0.2167 5.6819 1.4925
-#> 302: 93.1308 -6.0402 -1.9768 -4.4457 -0.9534 0.1806 6.3417 4.0684 1.0549 2.9813 0.1998 0.2163 5.6824 1.4905
-#> 303: 93.1294 -6.0373 -1.9769 -4.4459 -0.9532 0.1804 6.3489 4.0538 1.0565 2.9838 0.2000 0.2159 5.6841 1.4890
-#> 304: 93.1304 -6.0345 -1.9771 -4.4461 -0.9530 0.1801 6.3543 4.0409 1.0581 2.9859 0.2002 0.2155 5.6869 1.4875
-#> 305: 93.1287 -6.0319 -1.9772 -4.4463 -0.9528 0.1800 6.3496 4.0293 1.0597 2.9882 0.2003 0.2151 5.6902 1.4867
-#> 306: 93.1261 -6.0301 -1.9775 -4.4474 -0.9527 0.1802 6.3479 4.0231 1.0614 2.9989 0.2003 0.2145 5.6963 1.4856
-#> 307: 93.1232 -6.0284 -1.9777 -4.4479 -0.9526 0.1802 6.3507 4.0135 1.0629 3.0036 0.2004 0.2141 5.6987 1.4849
-#> 308: 93.1192 -6.0264 -1.9779 -4.4483 -0.9524 0.1802 6.3641 4.0019 1.0644 3.0084 0.2004 0.2135 5.6991 1.4837
-#> 309: 93.1137 -6.0253 -1.9783 -4.4487 -0.9522 0.1803 6.3579 3.9953 1.0658 3.0133 0.2004 0.2130 5.7035 1.4826
-#> 310: 93.1100 -6.0223 -1.9787 -4.4489 -0.9520 0.1804 6.3423 3.9800 1.0665 3.0171 0.2005 0.2126 5.7061 1.4822
-#> 311: 93.1044 -6.0215 -1.9791 -4.4496 -0.9517 0.1804 6.3365 3.9744 1.0675 3.0251 0.2005 0.2121 5.7092 1.4816
-#> 312: 93.1006 -6.0206 -1.9795 -4.4501 -0.9516 0.1806 6.3317 3.9681 1.0688 3.0321 0.2006 0.2115 5.7128 1.4805
-#> 313: 93.0951 -6.0194 -1.9797 -4.4499 -0.9516 0.1805 6.3297 3.9609 1.0702 3.0333 0.2008 0.2109 5.7137 1.4805
-#> 314: 93.0922 -6.0192 -1.9800 -4.4497 -0.9515 0.1804 6.3486 3.9570 1.0715 3.0345 0.2009 0.2104 5.7144 1.4800
-#> 315: 93.0883 -6.0186 -1.9804 -4.4495 -0.9515 0.1803 6.3712 3.9528 1.0726 3.0351 0.2011 0.2100 5.7156 1.4794
-#> 316: 93.0808 -6.0182 -1.9808 -4.4492 -0.9514 0.1802 6.3979 3.9483 1.0738 3.0345 0.2013 0.2097 5.7164 1.4792
-#> 317: 93.0758 -6.0174 -1.9813 -4.4487 -0.9513 0.1801 6.4377 3.9428 1.0747 3.0327 0.2015 0.2094 5.7175 1.4787
-#> 318: 93.0713 -6.0166 -1.9816 -4.4484 -0.9513 0.1801 6.4856 3.9375 1.0757 3.0316 0.2017 0.2091 5.7197 1.4778
-#> 319: 93.0659 -6.0176 -1.9819 -4.4482 -0.9511 0.1800 6.5263 3.9425 1.0768 3.0313 0.2018 0.2088 5.7218 1.4772
-#> 320: 93.0607 -6.0165 -1.9822 -4.4484 -0.9510 0.1798 6.5554 3.9372 1.0777 3.0329 0.2019 0.2087 5.7236 1.4771
-#> 321: 93.0551 -6.0145 -1.9825 -4.4487 -0.9509 0.1797 6.5844 3.9275 1.0787 3.0368 0.2021 0.2085 5.7256 1.4766
-#> 322: 93.0531 -6.0130 -1.9827 -4.4491 -0.9507 0.1797 6.6073 3.9201 1.0797 3.0400 0.2021 0.2082 5.7250 1.4759
-#> 323: 93.0477 -6.0123 -1.9828 -4.4493 -0.9506 0.1794 6.6255 3.9149 1.0804 3.0420 0.2021 0.2080 5.7249 1.4756
-#> 324: 93.0425 -6.0107 -1.9829 -4.4498 -0.9504 0.1792 6.6282 3.9060 1.0813 3.0457 0.2022 0.2078 5.7250 1.4754
-#> 325: 93.0389 -6.0090 -1.9830 -4.4504 -0.9503 0.1792 6.6252 3.8965 1.0819 3.0496 0.2022 0.2077 5.7246 1.4749
-#> 326: 93.0411 -6.0093 -1.9832 -4.4509 -0.9503 0.1795 6.6358 3.8976 1.0827 3.0516 0.2022 0.2076 5.7248 1.4738
-#> 327: 93.0418 -6.0095 -1.9834 -4.4514 -0.9503 0.1797 6.6415 3.8962 1.0834 3.0533 0.2022 0.2075 5.7237 1.4737
-#> 328: 93.0434 -6.0093 -1.9835 -4.4520 -0.9503 0.1798 6.6621 3.8957 1.0841 3.0550 0.2022 0.2074 5.7247 1.4731
-#> 329: 93.0446 -6.0109 -1.9836 -4.4522 -0.9503 0.1798 6.6763 3.9048 1.0847 3.0543 0.2022 0.2072 5.7259 1.4725
-#> 330: 93.0451 -6.0133 -1.9838 -4.4518 -0.9503 0.1799 6.6859 3.9192 1.0852 3.0521 0.2022 0.2070 5.7252 1.4719
-#> 331: 93.0456 -6.0136 -1.9838 -4.4516 -0.9503 0.1799 6.6773 3.9217 1.0858 3.0505 0.2022 0.2067 5.7250 1.4715
-#> 332: 93.0463 -6.0133 -1.9839 -4.4515 -0.9504 0.1799 6.6560 3.9195 1.0863 3.0494 0.2022 0.2063 5.7255 1.4710
-#> 333: 93.0496 -6.0122 -1.9839 -4.4513 -0.9505 0.1800 6.6484 3.9134 1.0869 3.0474 0.2022 0.2060 5.7253 1.4705
-#> 334: 93.0520 -6.0105 -1.9838 -4.4513 -0.9505 0.1801 6.6314 3.9035 1.0877 3.0462 0.2022 0.2056 5.7259 1.4702
-#> 335: 93.0550 -6.0088 -1.9836 -4.4510 -0.9507 0.1800 6.6194 3.8941 1.0887 3.0451 0.2022 0.2051 5.7263 1.4702
-#> 336: 93.0554 -6.0081 -1.9834 -4.4509 -0.9508 0.1800 6.6100 3.8896 1.0896 3.0444 0.2022 0.2048 5.7266 1.4705
-#> 337: 93.0582 -6.0067 -1.9832 -4.4507 -0.9509 0.1800 6.6089 3.8805 1.0904 3.0445 0.2021 0.2044 5.7260 1.4706
-#> 338: 93.0631 -6.0073 -1.9831 -4.4507 -0.9511 0.1801 6.5993 3.8798 1.0908 3.0443 0.2021 0.2040 5.7250 1.4711
-#> 339: 93.0689 -6.0071 -1.9831 -4.4508 -0.9513 0.1803 6.5976 3.8749 1.0911 3.0442 0.2021 0.2037 5.7240 1.4714
-#> 340: 93.0694 -6.0085 -1.9831 -4.4507 -0.9516 0.1804 6.5915 3.8779 1.0914 3.0436 0.2022 0.2032 5.7227 1.4711
-#> 341: 93.0709 -6.0097 -1.9830 -4.4508 -0.9518 0.1804 6.5862 3.8803 1.0915 3.0429 0.2023 0.2026 5.7213 1.4715
-#> 342: 93.0741 -6.0104 -1.9829 -4.4507 -0.9521 0.1804 6.5894 3.8812 1.0918 3.0417 0.2024 0.2022 5.7204 1.4714
-#> 343: 93.0781 -6.0122 -1.9829 -4.4505 -0.9523 0.1804 6.5907 3.8870 1.0921 3.0410 0.2024 0.2016 5.7202 1.4712
-#> 344: 93.0818 -6.0134 -1.9829 -4.4503 -0.9525 0.1804 6.5908 3.8895 1.0926 3.0400 0.2025 0.2011 5.7182 1.4712
-#> 345: 93.0850 -6.0148 -1.9829 -4.4500 -0.9528 0.1806 6.5984 3.8931 1.0926 3.0387 0.2026 0.2006 5.7169 1.4712
-#> 346: 93.0849 -6.0155 -1.9831 -4.4502 -0.9529 0.1807 6.6079 3.8986 1.0931 3.0401 0.2028 0.2002 5.7172 1.4716
-#> 347: 93.0859 -6.0161 -1.9832 -4.4503 -0.9530 0.1809 6.6307 3.9028 1.0941 3.0404 0.2029 0.1998 5.7170 1.4712
-#> 348: 93.0885 -6.0173 -1.9833 -4.4503 -0.9532 0.1809 6.6470 3.9096 1.0951 3.0404 0.2030 0.1993 5.7174 1.4708
-#> 349: 93.0894 -6.0189 -1.9835 -4.4503 -0.9534 0.1810 6.6443 3.9190 1.0955 3.0410 0.2031 0.1989 5.7175 1.4707
-#> 350: 93.0924 -6.0196 -1.9836 -4.4502 -0.9535 0.1813 6.6543 3.9218 1.0957 3.0409 0.2032 0.1983 5.7182 1.4705
-#> 351: 93.0938 -6.0203 -1.9838 -4.4503 -0.9536 0.1814 6.6630 3.9233 1.0963 3.0417 0.2032 0.1977 5.7189 1.4703
-#> 352: 93.0946 -6.0210 -1.9838 -4.4505 -0.9537 0.1816 6.6698 3.9263 1.0968 3.0432 0.2033 0.1973 5.7196 1.4701
-#> 353: 93.0969 -6.0214 -1.9839 -4.4505 -0.9538 0.1818 6.6837 3.9270 1.0973 3.0442 0.2034 0.1968 5.7199 1.4701
-#> 354: 93.1014 -6.0199 -1.9839 -4.4504 -0.9539 0.1817 6.7040 3.9204 1.0978 3.0438 0.2034 0.1962 5.7191 1.4703
-#> 355: 93.1035 -6.0197 -1.9838 -4.4502 -0.9539 0.1816 6.7119 3.9222 1.0983 3.0433 0.2034 0.1957 5.7194 1.4706
-#> 356: 93.1055 -6.0198 -1.9839 -4.4496 -0.9539 0.1815 6.7302 3.9277 1.0989 3.0409 0.2035 0.1952 5.7206 1.4707
-#> 357: 93.1080 -6.0188 -1.9837 -4.4490 -0.9540 0.1813 6.7558 3.9243 1.0997 3.0386 0.2035 0.1948 5.7217 1.4706
-#> 358: 93.1111 -6.0182 -1.9835 -4.4484 -0.9541 0.1812 6.7733 3.9204 1.1005 3.0365 0.2035 0.1944 5.7209 1.4700
-#> 359: 93.1148 -6.0175 -1.9834 -4.4481 -0.9542 0.1811 6.7997 3.9151 1.1012 3.0355 0.2035 0.1940 5.7191 1.4696
-#> 360: 93.1157 -6.0176 -1.9832 -4.4478 -0.9543 0.1810 6.8133 3.9155 1.1017 3.0340 0.2035 0.1937 5.7158 1.4691
-#> 361: 93.1169 -6.0185 -1.9830 -4.4476 -0.9544 0.1808 6.8098 3.9232 1.1022 3.0328 0.2035 0.1934 5.7143 1.4690
-#> 362: 93.1173 -6.0205 -1.9829 -4.4472 -0.9545 0.1805 6.8125 3.9361 1.1024 3.0319 0.2035 0.1931 5.7137 1.4693
-#> 363: 93.1162 -6.0230 -1.9828 -4.4467 -0.9545 0.1801 6.8240 3.9524 1.1025 3.0312 0.2035 0.1928 5.7125 1.4695
-#> 364: 93.1173 -6.0240 -1.9826 -4.4464 -0.9546 0.1799 6.8341 3.9575 1.1027 3.0307 0.2035 0.1924 5.7092 1.4695
-#> 365: 93.1199 -6.0259 -1.9824 -4.4462 -0.9547 0.1796 6.8476 3.9687 1.1028 3.0316 0.2036 0.1920 5.7073 1.4695
-#> 366: 93.1220 -6.0277 -1.9821 -4.4461 -0.9548 0.1793 6.8542 3.9777 1.1032 3.0319 0.2037 0.1916 5.7060 1.4694
-#> 367: 93.1230 -6.0287 -1.9819 -4.4460 -0.9548 0.1791 6.8633 3.9829 1.1038 3.0331 0.2038 0.1914 5.7056 1.4693
-#> 368: 93.1255 -6.0276 -1.9816 -4.4459 -0.9549 0.1789 6.8734 3.9764 1.1038 3.0341 0.2038 0.1912 5.7050 1.4695
-#> 369: 93.1258 -6.0263 -1.9814 -4.4461 -0.9549 0.1787 6.8756 3.9698 1.1039 3.0357 0.2039 0.1910 5.7031 1.4697
-#> 370: 93.1288 -6.0252 -1.9811 -4.4463 -0.9548 0.1785 6.8892 3.9639 1.1039 3.0375 0.2040 0.1909 5.7029 1.4701
-#> 371: 93.1317 -6.0245 -1.9810 -4.4467 -0.9548 0.1784 6.8974 3.9601 1.1037 3.0391 0.2040 0.1907 5.7037 1.4700
-#> 372: 93.1346 -6.0233 -1.9811 -4.4465 -0.9548 0.1781 6.9042 3.9536 1.1035 3.0386 0.2040 0.1905 5.7038 1.4700
-#> 373: 93.1340 -6.0234 -1.9810 -4.4461 -0.9547 0.1778 6.9034 3.9548 1.1034 3.0371 0.2039 0.1903 5.7040 1.4698
-#> 374: 93.1324 -6.0230 -1.9811 -4.4456 -0.9547 0.1775 6.9080 3.9527 1.1034 3.0349 0.2038 0.1901 5.7055 1.4691
-#> 375: 93.1309 -6.0226 -1.9812 -4.4451 -0.9546 0.1773 6.9093 3.9493 1.1034 3.0334 0.2037 0.1899 5.7063 1.4683
-#> 376: 93.1298 -6.0215 -1.9811 -4.4447 -0.9546 0.1770 6.9039 3.9432 1.1035 3.0319 0.2036 0.1897 5.7064 1.4678
-#> 377: 93.1296 -6.0209 -1.9811 -4.4443 -0.9546 0.1768 6.8932 3.9390 1.1036 3.0305 0.2035 0.1895 5.7056 1.4672
-#> 378: 93.1292 -6.0200 -1.9810 -4.4438 -0.9545 0.1764 6.8850 3.9349 1.1037 3.0288 0.2034 0.1892 5.7068 1.4667
-#> 379: 93.1284 -6.0196 -1.9808 -4.4432 -0.9544 0.1760 6.8766 3.9318 1.1038 3.0266 0.2033 0.1890 5.7072 1.4665
-#> 380: 93.1304 -6.0182 -1.9806 -4.4425 -0.9543 0.1756 6.8737 3.9249 1.1040 3.0236 0.2033 0.1888 5.7074 1.4662
-#> 381: 93.1315 -6.0169 -1.9804 -4.4417 -0.9542 0.1754 6.8707 3.9193 1.1040 3.0210 0.2032 0.1886 5.7066 1.4661
-#> 382: 93.1331 -6.0160 -1.9801 -4.4409 -0.9542 0.1750 6.8645 3.9150 1.1040 3.0187 0.2032 0.1885 5.7063 1.4664
-#> 383: 93.1334 -6.0153 -1.9800 -4.4403 -0.9542 0.1746 6.8599 3.9123 1.1037 3.0167 0.2032 0.1882 5.7074 1.4665
-#> 384: 93.1328 -6.0140 -1.9801 -4.4397 -0.9540 0.1742 6.8600 3.9074 1.1034 3.0149 0.2031 0.1879 5.7072 1.4667
-#> 385: 93.1306 -6.0137 -1.9801 -4.4392 -0.9539 0.1739 6.8449 3.9073 1.1031 3.0137 0.2030 0.1876 5.7084 1.4665
-#> 386: 93.1281 -6.0134 -1.9801 -4.4388 -0.9539 0.1735 6.8356 3.9088 1.1028 3.0123 0.2029 0.1872 5.7087 1.4667
-#> 387: 93.1267 -6.0141 -1.9801 -4.4384 -0.9537 0.1732 6.8364 3.9150 1.1025 3.0110 0.2028 0.1869 5.7101 1.4669
-#> 388: 93.1252 -6.0142 -1.9801 -4.4380 -0.9536 0.1730 6.8374 3.9192 1.1022 3.0097 0.2028 0.1866 5.7110 1.4670
-#> 389: 93.1223 -6.0140 -1.9801 -4.4375 -0.9535 0.1728 6.8334 3.9209 1.1019 3.0083 0.2028 0.1862 5.7105 1.4674
-#> 390: 93.1221 -6.0144 -1.9800 -4.4371 -0.9534 0.1726 6.8248 3.9256 1.1014 3.0068 0.2028 0.1859 5.7098 1.4675
-#> 391: 93.1210 -6.0149 -1.9799 -4.4365 -0.9533 0.1725 6.8339 3.9293 1.1011 3.0054 0.2028 0.1856 5.7109 1.4678
-#> 392: 93.1193 -6.0145 -1.9799 -4.4360 -0.9532 0.1724 6.8360 3.9279 1.1009 3.0040 0.2028 0.1852 5.7107 1.4678
-#> 393: 93.1200 -6.0149 -1.9799 -4.4357 -0.9532 0.1723 6.8461 3.9287 1.1005 3.0019 0.2028 0.1849 5.7100 1.4678
-#> 394: 93.1202 -6.0138 -1.9799 -4.4355 -0.9532 0.1723 6.8520 3.9229 1.1006 3.0003 0.2028 0.1846 5.7085 1.4679
-#> 395: 93.1203 -6.0134 -1.9800 -4.4354 -0.9532 0.1723 6.8583 3.9200 1.1005 2.9987 0.2027 0.1844 5.7072 1.4680
-#> 396: 93.1195 -6.0131 -1.9800 -4.4353 -0.9532 0.1724 6.8593 3.9169 1.1004 2.9969 0.2027 0.1842 5.7062 1.4676
-#> 397: 93.1195 -6.0130 -1.9801 -4.4352 -0.9532 0.1724 6.8591 3.9143 1.1004 2.9958 0.2027 0.1839 5.7046 1.4675
-#> 398: 93.1200 -6.0128 -1.9801 -4.4352 -0.9532 0.1725 6.8522 3.9125 1.1004 2.9945 0.2028 0.1836 5.7032 1.4675
-#> 399: 93.1200 -6.0135 -1.9803 -4.4351 -0.9531 0.1726 6.8471 3.9166 1.1003 2.9933 0.2028 0.1833 5.7032 1.4673
-#> 400: 93.1204 -6.0139 -1.9803 -4.4351 -0.9531 0.1727 6.8438 3.9191 1.1003 2.9918 0.2027 0.1832 5.7026 1.4671
-#> 401: 93.1198 -6.0139 -1.9804 -4.4351 -0.9530 0.1728 6.8373 3.9186 1.1004 2.9901 0.2027 0.1831 5.7015 1.4670
-#> 402: 93.1199 -6.0141 -1.9804 -4.4351 -0.9530 0.1729 6.8357 3.9194 1.1005 2.9882 0.2027 0.1830 5.7003 1.4671
-#> 403: 93.1196 -6.0155 -1.9804 -4.4350 -0.9530 0.1730 6.8285 3.9255 1.1007 2.9863 0.2026 0.1829 5.7001 1.4671
-#> 404: 93.1183 -6.0164 -1.9805 -4.4350 -0.9531 0.1732 6.8204 3.9308 1.1009 2.9843 0.2026 0.1829 5.7008 1.4670
-#> 405: 93.1178 -6.0161 -1.9805 -4.4350 -0.9532 0.1733 6.8205 3.9286 1.1012 2.9823 0.2025 0.1829 5.7013 1.4669
-#> 406: 93.1176 -6.0171 -1.9806 -4.4348 -0.9533 0.1735 6.8253 3.9319 1.1013 2.9801 0.2025 0.1828 5.7026 1.4666
-#> 407: 93.1168 -6.0185 -1.9807 -4.4348 -0.9533 0.1736 6.8290 3.9373 1.1015 2.9788 0.2024 0.1830 5.7033 1.4664
-#> 408: 93.1165 -6.0198 -1.9808 -4.4349 -0.9534 0.1738 6.8217 3.9428 1.1017 2.9773 0.2023 0.1830 5.7047 1.4663
-#> 409: 93.1165 -6.0210 -1.9809 -4.4350 -0.9534 0.1741 6.8208 3.9505 1.1019 2.9761 0.2021 0.1830 5.7055 1.4661
-#> 410: 93.1169 -6.0230 -1.9810 -4.4351 -0.9535 0.1745 6.8239 3.9617 1.1020 2.9751 0.2020 0.1829 5.7052 1.4658
-#> 411: 93.1166 -6.0237 -1.9811 -4.4353 -0.9536 0.1748 6.8234 3.9664 1.1020 2.9741 0.2019 0.1829 5.7043 1.4657
-#> 412: 93.1164 -6.0235 -1.9812 -4.4355 -0.9536 0.1751 6.8205 3.9643 1.1020 2.9735 0.2017 0.1827 5.7053 1.4654
-#> 413: 93.1182 -6.0232 -1.9814 -4.4356 -0.9537 0.1755 6.8133 3.9615 1.1020 2.9726 0.2016 0.1825 5.7070 1.4650
-#> 414: 93.1190 -6.0226 -1.9815 -4.4360 -0.9537 0.1760 6.8113 3.9578 1.1021 2.9726 0.2015 0.1825 5.7081 1.4648
-#> 415: 93.1183 -6.0226 -1.9817 -4.4364 -0.9538 0.1765 6.8081 3.9557 1.1021 2.9725 0.2014 0.1824 5.7085 1.4646
-#> 416: 93.1185 -6.0238 -1.9818 -4.4369 -0.9538 0.1768 6.8134 3.9617 1.1020 2.9734 0.2013 0.1822 5.7103 1.4645
-#> 417: 93.1190 -6.0245 -1.9819 -4.4373 -0.9540 0.1770 6.8164 3.9664 1.1022 2.9743 0.2012 0.1819 5.7102 1.4650
-#> 418: 93.1219 -6.0256 -1.9818 -4.4376 -0.9542 0.1773 6.8206 3.9710 1.1026 2.9745 0.2011 0.1816 5.7110 1.4655
-#> 419: 93.1255 -6.0261 -1.9817 -4.4381 -0.9543 0.1776 6.8183 3.9714 1.1030 2.9759 0.2010 0.1814 5.7134 1.4659
-#> 420: 93.1294 -6.0262 -1.9816 -4.4385 -0.9546 0.1779 6.8113 3.9704 1.1033 2.9768 0.2009 0.1810 5.7156 1.4666
-#> 421: 93.1319 -6.0259 -1.9815 -4.4392 -0.9547 0.1781 6.7989 3.9685 1.1036 2.9786 0.2008 0.1808 5.7171 1.4676
-#> 422: 93.1338 -6.0263 -1.9814 -4.4398 -0.9548 0.1783 6.7922 3.9681 1.1038 2.9806 0.2006 0.1808 5.7179 1.4681
-#> 423: 93.1353 -6.0266 -1.9813 -4.4406 -0.9550 0.1786 6.7868 3.9674 1.1040 2.9837 0.2006 0.1808 5.7181 1.4687
-#> 424: 93.1374 -6.0270 -1.9811 -4.4414 -0.9550 0.1787 6.7758 3.9674 1.1043 2.9866 0.2004 0.1807 5.7198 1.4693
-#> 425: 93.1383 -6.0270 -1.9811 -4.4420 -0.9551 0.1787 6.7547 3.9674 1.1042 2.9887 0.2003 0.1806 5.7211 1.4702
-#> 426: 93.1400 -6.0268 -1.9811 -4.4427 -0.9551 0.1789 6.7376 3.9654 1.1043 2.9917 0.2002 0.1805 5.7241 1.4706
-#> 427: 93.1391 -6.0268 -1.9811 -4.4433 -0.9552 0.1790 6.7196 3.9634 1.1045 2.9951 0.2001 0.1805 5.7271 1.4710
-#> 428: 93.1404 -6.0268 -1.9810 -4.4442 -0.9552 0.1792 6.7104 3.9628 1.1044 2.9999 0.2000 0.1803 5.7282 1.4712
-#> 429: 93.1431 -6.0265 -1.9810 -4.4450 -0.9553 0.1793 6.7029 3.9612 1.1045 3.0043 0.1999 0.1803 5.7293 1.4716
-#> 430: 93.1464 -6.0263 -1.9809 -4.4457 -0.9554 0.1795 6.6962 3.9606 1.1046 3.0074 0.1999 0.1802 5.7291 1.4724
-#> 431: 93.1485 -6.0267 -1.9809 -4.4460 -0.9555 0.1797 6.6865 3.9623 1.1046 3.0082 0.1998 0.1802 5.7287 1.4726
-#> 432: 93.1509 -6.0277 -1.9808 -4.4462 -0.9556 0.1798 6.6843 3.9658 1.1047 3.0086 0.1998 0.1801 5.7280 1.4727
-#> 433: 93.1528 -6.0289 -1.9806 -4.4464 -0.9557 0.1798 6.6840 3.9714 1.1049 3.0087 0.1998 0.1801 5.7282 1.4729
-#> 434: 93.1555 -6.0286 -1.9804 -4.4467 -0.9557 0.1798 6.6870 3.9693 1.1052 3.0094 0.1997 0.1800 5.7277 1.4729
-#> 435: 93.1574 -6.0290 -1.9803 -4.4467 -0.9558 0.1798 6.6893 3.9712 1.1055 3.0095 0.1996 0.1800 5.7278 1.4727
-#> 436: 93.1594 -6.0299 -1.9802 -4.4468 -0.9558 0.1798 6.6934 3.9749 1.1059 3.0103 0.1996 0.1801 5.7271 1.4727
-#> 437: 93.1600 -6.0311 -1.9800 -4.4469 -0.9558 0.1797 6.7010 3.9812 1.1065 3.0110 0.1996 0.1801 5.7275 1.4727
-#> 438: 93.1617 -6.0318 -1.9799 -4.4471 -0.9559 0.1796 6.7120 3.9865 1.1069 3.0121 0.1995 0.1801 5.7271 1.4727
-#> 439: 93.1634 -6.0329 -1.9798 -4.4472 -0.9559 0.1795 6.7279 3.9930 1.1075 3.0127 0.1995 0.1802 5.7268 1.4727
-#> 440: 93.1644 -6.0332 -1.9797 -4.4473 -0.9559 0.1794 6.7338 3.9962 1.1080 3.0136 0.1994 0.1803 5.7270 1.4726
-#> 441: 93.1654 -6.0335 -1.9795 -4.4477 -0.9558 0.1794 6.7435 3.9988 1.1085 3.0155 0.1994 0.1805 5.7274 1.4728
-#> 442: 93.1670 -6.0340 -1.9792 -4.4480 -0.9558 0.1794 6.7493 4.0028 1.1091 3.0173 0.1993 0.1808 5.7282 1.4729
-#> 443: 93.1685 -6.0346 -1.9790 -4.4485 -0.9558 0.1793 6.7577 4.0073 1.1092 3.0202 0.1992 0.1811 5.7267 1.4732
-#> 444: 93.1671 -6.0346 -1.9789 -4.4491 -0.9558 0.1792 6.7559 4.0069 1.1093 3.0238 0.1992 0.1813 5.7258 1.4733
-#> 445: 93.1655 -6.0355 -1.9789 -4.4497 -0.9557 0.1790 6.7552 4.0127 1.1094 3.0276 0.1992 0.1814 5.7262 1.4733
-#> 446: 93.1641 -6.0361 -1.9787 -4.4501 -0.9557 0.1789 6.7579 4.0169 1.1096 3.0306 0.1991 0.1816 5.7262 1.4732
-#> 447: 93.1628 -6.0363 -1.9786 -4.4503 -0.9556 0.1787 6.7680 4.0196 1.1099 3.0318 0.1991 0.1818 5.7258 1.4729
-#> 448: 93.1629 -6.0371 -1.9787 -4.4509 -0.9556 0.1786 6.7705 4.0248 1.1100 3.0358 0.1990 0.1820 5.7267 1.4725
-#> 449: 93.1626 -6.0381 -1.9785 -4.4510 -0.9556 0.1784 6.7800 4.0298 1.1101 3.0368 0.1989 0.1822 5.7266 1.4722
-#> 450: 93.1614 -6.0386 -1.9782 -4.4514 -0.9556 0.1782 6.7796 4.0316 1.1103 3.0392 0.1989 0.1824 5.7260 1.4720
-#> 451: 93.1603 -6.0397 -1.9779 -4.4518 -0.9556 0.1780 6.7799 4.0381 1.1107 3.0416 0.1988 0.1827 5.7264 1.4720
-#> 452: 93.1610 -6.0406 -1.9775 -4.4522 -0.9556 0.1777 6.7813 4.0424 1.1111 3.0443 0.1988 0.1828 5.7268 1.4719
-#> 453: 93.1618 -6.0414 -1.9771 -4.4523 -0.9556 0.1774 6.7814 4.0490 1.1115 3.0456 0.1987 0.1830 5.7262 1.4721
-#> 454: 93.1625 -6.0415 -1.9767 -4.4525 -0.9555 0.1771 6.7799 4.0499 1.1118 3.0473 0.1986 0.1831 5.7260 1.4723
-#> 455: 93.1636 -6.0412 -1.9765 -4.4528 -0.9555 0.1769 6.7778 4.0489 1.1123 3.0496 0.1985 0.1832 5.7268 1.4722
-#> 456: 93.1653 -6.0401 -1.9762 -4.4532 -0.9554 0.1768 6.7703 4.0441 1.1127 3.0517 0.1983 0.1834 5.7282 1.4725
-#> 457: 93.1672 -6.0396 -1.9760 -4.4535 -0.9554 0.1766 6.7683 4.0427 1.1129 3.0539 0.1982 0.1835 5.7281 1.4727
-#> 458: 93.1692 -6.0398 -1.9757 -4.4539 -0.9554 0.1765 6.7627 4.0450 1.1132 3.0570 0.1981 0.1835 5.7294 1.4729
-#> 459: 93.1708 -6.0402 -1.9756 -4.4542 -0.9554 0.1763 6.7615 4.0483 1.1133 3.0596 0.1980 0.1836 5.7320 1.4728
-#> 460: 93.1710 -6.0401 -1.9755 -4.4544 -0.9553 0.1762 6.7629 4.0487 1.1135 3.0615 0.1979 0.1835 5.7323 1.4730
-#> 461: 93.1708 -6.0403 -1.9755 -4.4546 -0.9552 0.1762 6.7639 4.0492 1.1136 3.0631 0.1978 0.1834 5.7321 1.4729
-#> 462: 93.1707 -6.0405 -1.9755 -4.4548 -0.9552 0.1760 6.7657 4.0506 1.1136 3.0647 0.1977 0.1833 5.7323 1.4727
-#> 463: 93.1690 -6.0403 -1.9755 -4.4548 -0.9551 0.1759 6.7607 4.0494 1.1136 3.0651 0.1976 0.1832 5.7332 1.4726
-#> 464: 93.1673 -6.0400 -1.9755 -4.4548 -0.9551 0.1758 6.7588 4.0480 1.1138 3.0652 0.1975 0.1832 5.7344 1.4724
-#> 465: 93.1657 -6.0399 -1.9755 -4.4548 -0.9550 0.1756 6.7601 4.0474 1.1138 3.0652 0.1974 0.1831 5.7350 1.4724
-#> 466: 93.1656 -6.0406 -1.9754 -4.4548 -0.9549 0.1755 6.7589 4.0514 1.1139 3.0658 0.1973 0.1831 5.7355 1.4723
-#> 467: 93.1657 -6.0408 -1.9753 -4.4548 -0.9549 0.1754 6.7558 4.0525 1.1139 3.0664 0.1972 0.1831 5.7358 1.4725
-#> 468: 93.1664 -6.0411 -1.9752 -4.4551 -0.9548 0.1753 6.7546 4.0551 1.1140 3.0679 0.1971 0.1832 5.7358 1.4723
-#> 469: 93.1667 -6.0412 -1.9751 -4.4552 -0.9547 0.1752 6.7547 4.0554 1.1141 3.0676 0.1970 0.1833 5.7354 1.4721
-#> 470: 93.1664 -6.0413 -1.9750 -4.4552 -0.9546 0.1751 6.7579 4.0564 1.1143 3.0676 0.1969 0.1833 5.7352 1.4718
-#> 471: 93.1656 -6.0411 -1.9750 -4.4553 -0.9545 0.1750 6.7611 4.0555 1.1142 3.0681 0.1968 0.1834 5.7354 1.4715
-#> 472: 93.1644 -6.0408 -1.9751 -4.4554 -0.9544 0.1749 6.7577 4.0542 1.1142 3.0686 0.1968 0.1834 5.7362 1.4712
-#> 473: 93.1632 -6.0405 -1.9751 -4.4554 -0.9543 0.1749 6.7527 4.0526 1.1141 3.0686 0.1967 0.1835 5.7363 1.4708
-#> 474: 93.1619 -6.0405 -1.9752 -4.4555 -0.9542 0.1748 6.7479 4.0521 1.1140 3.0689 0.1967 0.1835 5.7366 1.4705
-#> 475: 93.1609 -6.0413 -1.9753 -4.4557 -0.9542 0.1748 6.7469 4.0558 1.1139 3.0698 0.1967 0.1835 5.7379 1.4702
-#> 476: 93.1607 -6.0411 -1.9754 -4.4556 -0.9542 0.1747 6.7414 4.0549 1.1139 3.0697 0.1966 0.1835 5.7388 1.4698
-#> 477: 93.1597 -6.0413 -1.9754 -4.4560 -0.9542 0.1747 6.7321 4.0560 1.1137 3.0733 0.1966 0.1836 5.7392 1.4697
-#> 478: 93.1591 -6.0421 -1.9754 -4.4563 -0.9542 0.1745 6.7239 4.0608 1.1137 3.0765 0.1965 0.1836 5.7399 1.4697
-#> 479: 93.1589 -6.0438 -1.9754 -4.4564 -0.9542 0.1744 6.7150 4.0719 1.1136 3.0785 0.1964 0.1838 5.7421 1.4695
-#> 480: 93.1594 -6.0459 -1.9754 -4.4566 -0.9542 0.1742 6.7102 4.0895 1.1135 3.0807 0.1964 0.1839 5.7446 1.4695
-#> 481: 93.1604 -6.0472 -1.9754 -4.4570 -0.9542 0.1741 6.7104 4.1016 1.1135 3.0848 0.1964 0.1841 5.7456 1.4693
-#> 482: 93.1584 -6.0486 -1.9754 -4.4573 -0.9542 0.1739 6.7061 4.1152 1.1136 3.0877 0.1964 0.1842 5.7464 1.4690
-#> 483: 93.1561 -6.0501 -1.9754 -4.4576 -0.9541 0.1737 6.7067 4.1286 1.1135 3.0903 0.1963 0.1843 5.7475 1.4688
-#> 484: 93.1545 -6.0507 -1.9754 -4.4578 -0.9541 0.1737 6.7113 4.1362 1.1134 3.0918 0.1963 0.1845 5.7488 1.4687
-#> 485: 93.1524 -6.0507 -1.9754 -4.4583 -0.9540 0.1736 6.7094 4.1381 1.1134 3.0970 0.1964 0.1847 5.7496 1.4685
-#> 486: 93.1510 -6.0508 -1.9754 -4.4586 -0.9540 0.1735 6.7118 4.1405 1.1134 3.0996 0.1964 0.1847 5.7502 1.4682
-#> 487: 93.1495 -6.0507 -1.9755 -4.4591 -0.9539 0.1734 6.7128 4.1406 1.1134 3.1037 0.1965 0.1848 5.7510 1.4680
-#> 488: 93.1494 -6.0502 -1.9756 -4.4597 -0.9538 0.1734 6.7171 4.1384 1.1135 3.1081 0.1965 0.1848 5.7508 1.4677
-#> 489: 93.1497 -6.0497 -1.9756 -4.4604 -0.9538 0.1734 6.7188 4.1358 1.1135 3.1133 0.1966 0.1847 5.7499 1.4675
-#> 490: 93.1507 -6.0486 -1.9757 -4.4607 -0.9538 0.1735 6.7206 4.1319 1.1136 3.1157 0.1967 0.1847 5.7498 1.4672
-#> 491: 93.1507 -6.0476 -1.9757 -4.4612 -0.9537 0.1735 6.7141 4.1270 1.1136 3.1187 0.1968 0.1846 5.7503 1.4672
-#> 492: 93.1507 -6.0470 -1.9758 -4.4618 -0.9536 0.1735 6.7140 4.1238 1.1139 3.1218 0.1969 0.1846 5.7511 1.4669
-#> 493: 93.1513 -6.0468 -1.9758 -4.4623 -0.9535 0.1736 6.7214 4.1232 1.1141 3.1246 0.1970 0.1845 5.7514 1.4668
-#> 494: 93.1511 -6.0467 -1.9759 -4.4629 -0.9534 0.1737 6.7332 4.1232 1.1144 3.1278 0.1971 0.1845 5.7512 1.4664
-#> 495: 93.1511 -6.0464 -1.9761 -4.4635 -0.9533 0.1738 6.7377 4.1218 1.1145 3.1309 0.1972 0.1845 5.7515 1.4661
-#> 496: 93.1498 -6.0465 -1.9762 -4.4639 -0.9532 0.1739 6.7412 4.1241 1.1147 3.1325 0.1974 0.1845 5.7514 1.4657
-#> 497: 93.1482 -6.0467 -1.9764 -4.4644 -0.9532 0.1741 6.7506 4.1259 1.1149 3.1346 0.1975 0.1846 5.7513 1.4652
-#> 498: 93.1479 -6.0465 -1.9765 -4.4647 -0.9531 0.1743 6.7588 4.1263 1.1150 3.1357 0.1977 0.1846 5.7511 1.4648
-#> 499: 93.1462 -6.0455 -1.9766 -4.4651 -0.9530 0.1745 6.7659 4.1219 1.1152 3.1374 0.1978 0.1847 5.7515 1.4645
-#> 500: 93.1455 -6.0439 -1.9768 -4.4657 -0.9529 0.1747 6.7747 4.1151 1.1154 3.1404 0.1980 0.1848 5.7516 1.4641#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"#> Calculating residuals/tables#> done#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
-#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#> F: Forward difference gradient approximation
-#> C: Central difference gradient approximation
-#> M: Mixed forward and central difference gradient approximation
-#> Unscaled parameters for Omegas=chol(solve(omega));
-#> Diagonals are transformed, as specified by foceiControl(diagXform=)
-#> |-----+---------------+-----------+-----------+-----------+-----------|
-#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
-#> |.....................| log_k2 | g_qlogis |sigma_parent | sigma_A1 |
-#> |.....................| o1 | o2 | o3 | o4 |
-#> |.....................| o5 | o6 |...........|...........|
-#> | 1| 488.12318 | 1.000 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
-#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
-#> |.....................| -0.8750 | -0.8689 |...........|...........|
-#> | U| 488.12318 | 93.43 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | X| 488.12318 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | G| Gill Diff. | 52.24 | 2.364 | -0.1419 | 0.08101 |
-#> |.....................| -0.5200 | 0.08781 | -28.20 | -16.37 |
-#> |.....................| 14.83 | 13.24 | -12.01 | -2.482 |
-#> |.....................| 5.466 | -10.09 |...........|...........|
-#> | 2| 2642.5634 | 0.2192 | -1.035 | -0.9096 | -0.9332 |
-#> |.....................| -0.9743 | -0.8898 | -0.4296 | -0.6255 |
-#> |.....................| -1.099 | -1.073 | -0.6891 | -0.8357 |
-#> |.....................| -0.9567 | -0.7180 |...........|...........|
-#> | U| 2642.5634 | 20.48 | -5.348 | -0.9517 | -1.954 |
-#> |.....................| -4.421 | 0.1928 | 2.469 | 1.224 |
-#> |.....................| 0.5606 | 0.7036 | 1.386 | 1.005 |
-#> |.....................| 0.7896 | 1.336 |...........|...........|
-#> | X| 2642.5634 | 20.48 | 0.004759 | 0.2785 | 0.1417 |
-#> |.....................| 0.01202 | 0.5480 | 2.469 | 1.224 |
-#> |.....................| 0.5606 | 0.7036 | 1.386 | 1.005 |
-#> |.....................| 0.7896 | 1.336 |...........|...........|
-#> | 3| 546.98314 | 0.9219 | -1.004 | -0.9115 | -0.9321 |
-#> |.....................| -0.9813 | -0.8886 | -0.8089 | -0.8458 |
-#> |.....................| -0.9000 | -0.8944 | -0.8506 | -0.8691 |
-#> |.....................| -0.8831 | -0.8538 |...........|...........|
-#> | U| 546.98314 | 86.13 | -5.316 | -0.9535 | -1.953 |
-#> |.....................| -4.428 | 0.1930 | 2.082 | 1.104 |
-#> |.....................| 0.7044 | 0.8599 | 1.196 | 0.9723 |
-#> |.....................| 0.8529 | 1.178 |...........|...........|
-#> | X| 546.98314 | 86.13 | 0.004913 | 0.2782 | 0.1419 |
-#> |.....................| 0.01193 | 0.5481 | 2.082 | 1.104 |
-#> |.....................| 0.7044 | 0.8599 | 1.196 | 0.9723 |
-#> |.....................| 0.8529 | 1.178 |...........|...........|
-#> | 4| 506.37737 | 0.9922 | -1.000 | -0.9117 | -0.9320 |
-#> |.....................| -0.9820 | -0.8885 | -0.8469 | -0.8679 |
-#> |.....................| -0.8800 | -0.8766 | -0.8668 | -0.8724 |
-#> |.....................| -0.8758 | -0.8674 |...........|...........|
-#> | U| 506.37737 | 92.70 | -5.313 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.043 | 1.092 |
-#> |.....................| 0.7187 | 0.8755 | 1.177 | 0.9691 |
-#> |.....................| 0.8592 | 1.163 |...........|...........|
-#> | X| 506.37737 | 92.70 | 0.004928 | 0.2781 | 0.1419 |
-#> |.....................| 0.01193 | 0.5481 | 2.043 | 1.092 |
-#> |.....................| 0.7187 | 0.8755 | 1.177 | 0.9691 |
-#> |.....................| 0.8592 | 1.163 |...........|...........|
-#> | 5| 506.42840 | 0.9992 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8507 | -0.8701 |
-#> |.....................| -0.8780 | -0.8748 | -0.8684 | -0.8727 |
-#> |.....................| -0.8751 | -0.8687 |...........|...........|
-#> | U| 506.4284 | 93.35 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.091 |
-#> |.....................| 0.7202 | 0.8771 | 1.175 | 0.9688 |
-#> |.....................| 0.8598 | 1.161 |...........|...........|
-#> | X| 506.4284 | 93.35 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.091 |
-#> |.....................| 0.7202 | 0.8771 | 1.175 | 0.9688 |
-#> |.....................| 0.8598 | 1.161 |...........|...........|
-#> | 6| 506.47762 | 0.9999 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
-#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
-#> |.....................| -0.8750 | -0.8689 |...........|...........|
-#> | U| 506.47762 | 93.42 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | X| 506.47762 | 93.42 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | 7| 506.48298 | 1.000 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
-#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
-#> |.....................| -0.8750 | -0.8689 |...........|...........|
-#> | U| 506.48298 | 93.43 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | X| 506.48298 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | 8| 506.48363 | 1.000 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
-#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
-#> |.....................| -0.8750 | -0.8689 |...........|...........|
-#> | U| 506.48363 | 93.43 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | X| 506.48363 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | 9| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
-#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
-#> |.....................| -0.8750 | -0.8689 |...........|...........|
-#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | 10| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
-#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
-#> |.....................| -0.8750 | -0.8689 |...........|...........|
-#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | 11| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
-#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
-#> |.....................| -0.8750 | -0.8689 |...........|...........|
-#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | 12| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
-#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
-#> |.....................| -0.8750 | -0.8689 |...........|...........|
-#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | 13| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
-#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
-#> |.....................| -0.8750 | -0.8689 |...........|...........|
-#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | 14| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
-#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
-#> |.....................| -0.8750 | -0.8689 |...........|...........|
-#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | 15| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
-#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
-#> |.....................| -0.8750 | -0.8689 |...........|...........|
-#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | 16| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
-#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
-#> |.....................| -0.8750 | -0.8689 |...........|...........|
-#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | 17| 506.48371 | 1.000 | -1.000 | -0.9117 | -0.9319 |
-#> |.....................| -0.9821 | -0.8885 | -0.8511 | -0.8703 |
-#> |.....................| -0.8778 | -0.8746 | -0.8686 | -0.8728 |
-#> |.....................| -0.8750 | -0.8689 |...........|...........|
-#> | U| 506.48371 | 93.43 | -5.312 | -0.9537 | -1.953 |
-#> |.....................| -4.429 | 0.1930 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> | X| 506.48371 | 93.43 | 0.004930 | 0.2781 | 0.1419 |
-#> |.....................| 0.01192 | 0.5481 | 2.039 | 1.090 |
-#> |.....................| 0.7203 | 0.8772 | 1.175 | 0.9687 |
-#> |.....................| 0.8599 | 1.161 |...........|...........|
-#> calculating covariance matrix
-#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> Timing stopped at: 1.22 0.089 1.31#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
+#> cmt(A1);
+#> rx_expr_6~ETA[1]+THETA[1];
+#> parent(0)=rx_expr_6;
+#> rx_expr_7~ETA[4]+THETA[4];
+#> rx_expr_8~ETA[5]+THETA[5];
+#> rx_expr_12~exp(-(rx_expr_8));
+#> rx_expr_14~t*rx_expr_12;
+#> rx_expr_15~1+rx_expr_14;
+#> rx_expr_17~rx_expr_7-(rx_expr_8);
+#> rx_expr_19~exp(rx_expr_17);
+#> d/dt(parent)=-rx_expr_19*parent/(rx_expr_15);
+#> rx_expr_9~ETA[2]+THETA[2];
+#> rx_expr_11~exp(rx_expr_9);
+#> d/dt(A1)=-rx_expr_11*A1+rx_expr_19*parent*f_parent_to_A1/(rx_expr_15);
+#> rx_expr_0~CMT==2;
+#> rx_expr_1~CMT==1;
+#> rx_expr_2~1-(rx_expr_0);
+#> rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);
+#> rx_expr_3~(rx_expr_0);
+#> rx_expr_5~(rx_expr_2);
+#> rx_expr_13~rx_expr_5*(rx_expr_1);
+#> rx_lambda_~rx_expr_13+rx_expr_3;
+#> rx_hi_~rx_expr_13+rx_expr_3;
+#> rx_low_~0;
+#> rx_expr_4~A1*(rx_expr_0);
+#> rx_expr_10~parent*(rx_expr_2);
+#> rx_expr_16~rx_expr_10*(rx_expr_1);
+#> rx_pred_=(rx_expr_4+rx_expr_16)*(rx_expr_0)+(rx_expr_4+rx_expr_16)*(rx_expr_2)*(rx_expr_1);
+#> rx_r_=(rx_expr_0)*Rx_pow_di(THETA[7],2)+(rx_expr_2)*(rx_expr_1)*Rx_pow_di(THETA[6],2);
+#> parent_0=THETA[1];
+#> log_k_A1=THETA[2];
+#> f_parent_qlogis=THETA[3];
+#> log_alpha=THETA[4];
+#> log_beta=THETA[5];
+#> sigma_parent=THETA[6];
+#> sigma_A1=THETA[7];
+#> eta.parent_0=ETA[1];
+#> eta.log_k_A1=ETA[2];
+#> eta.f_parent_qlogis=ETA[3];
+#> eta.log_alpha=ETA[4];
+#> eta.log_beta=ETA[5];
+#> parent_0_model=rx_expr_6;
+#> k_A1=rx_expr_11;
+#> alpha=exp(rx_expr_7);
+#> beta=exp(rx_expr_8);
+#> f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
+#> tad=tad();
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 6.784 0.418 7.2#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> Timing stopped at: 1.357 0.096 1.452#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
+#> cmt(A1);
+#> rx_expr_6~ETA[1]+THETA[1];
+#> parent(0)=rx_expr_6;
+#> rx_expr_7~ETA[4]+THETA[4];
+#> rx_expr_8~ETA[6]+THETA[6];
+#> rx_expr_9~ETA[5]+THETA[5];
+#> rx_expr_12~exp(rx_expr_7);
+#> rx_expr_13~exp(rx_expr_9);
+#> rx_expr_15~t*rx_expr_12;
+#> rx_expr_16~t*rx_expr_13;
+#> rx_expr_17~exp(-(rx_expr_8));
+#> rx_expr_19~1+rx_expr_17;
+#> rx_expr_24~1/(rx_expr_19);
+#> rx_expr_26~(rx_expr_24);
+#> rx_expr_27~1-rx_expr_26;
+#> d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));
+#> rx_expr_10~ETA[2]+THETA[2];
+#> rx_expr_14~exp(rx_expr_10);
+#> d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));
+#> rx_expr_0~CMT==2;
+#> rx_expr_1~CMT==1;
+#> rx_expr_2~1-(rx_expr_0);
+#> rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);
+#> rx_expr_3~(rx_expr_0);
+#> rx_expr_5~(rx_expr_2);
+#> rx_expr_18~rx_expr_5*(rx_expr_1);
+#> rx_lambda_~rx_expr_18+rx_expr_3;
+#> rx_hi_~rx_expr_18+rx_expr_3;
+#> rx_low_~0;
+#> rx_expr_4~A1*(rx_expr_0);
+#> rx_expr_11~parent*(rx_expr_2);
+#> rx_expr_22~rx_expr_11*(rx_expr_1);
+#> rx_pred_=(rx_expr_4+rx_expr_22)*(rx_expr_0)+(rx_expr_4+rx_expr_22)*(rx_expr_2)*(rx_expr_1);
+#> rx_r_=(rx_expr_0)*Rx_pow_di(THETA[8],2)+(rx_expr_2)*(rx_expr_1)*Rx_pow_di(THETA[7],2);
+#> parent_0=THETA[1];
+#> log_k_A1=THETA[2];
+#> f_parent_qlogis=THETA[3];
+#> log_k1=THETA[4];
+#> log_k2=THETA[5];
+#> g_qlogis=THETA[6];
+#> sigma_parent=THETA[7];
+#> sigma_A1=THETA[8];
+#> eta.parent_0=ETA[1];
+#> eta.log_k_A1=ETA[2];
+#> eta.f_parent_qlogis=ETA[3];
+#> eta.log_k1=ETA[4];
+#> eta.log_k2=ETA[5];
+#> eta.g_qlogis=ETA[6];
+#> parent_0_model=rx_expr_6;
+#> k_A1=rx_expr_14;
+#> k1=rx_expr_12;
+#> k2=rx_expr_13;
+#> f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
+#> g=1/(rx_expr_19);
+#> tad=tad();
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 15.17 0.353 15.52
# Identical two-component error for all variables is only possible with
# est = 'focei' in nlmixr
f_nlmixr_fomc_sfo_focei_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei")
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
-#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#> F: Forward difference gradient approximation
-#> C: Central difference gradient approximation
-#> M: Mixed forward and central difference gradient approximation
-#> Unscaled parameters for Omegas=chol(solve(omega));
-#> Diagonals are transformed, as specified by foceiControl(diagXform=)
-#> |-----+---------------+-----------+-----------+-----------+-----------|
-#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
-#> |.....................| log_beta | sigma_low | rsd_high | o1 |
-#> |.....................| o2 | o3 | o4 | o5 |
-#> | 1| 504.82714 | 1.000 | -1.000 | -0.9114 | -0.8944 |
-#> |.....................| -0.8457 | -0.8687 | -0.8916 | -0.8768 |
-#> |.....................| -0.8745 | -0.8676 | -0.8705 | -0.8704 |
-#> | U| 504.82714 | 93.12 | -5.303 | -0.9442 | -0.1065 |
-#> |.....................| 2.291 | 1.160 | 0.03005 | 0.7578 |
-#> |.....................| 0.8738 | 1.213 | 1.069 | 1.072 |
-#> | X| 504.82714 | 93.12 | 0.004975 | 0.2801 | 0.8989 |
-#> |.....................| 9.884 | 1.160 | 0.03005 | 0.7578 |
-#> |.....................| 0.8738 | 1.213 | 1.069 | 1.072 |
-#> | G| Gill Diff. | 73.79 | 2.406 | 0.05615 | 0.2285 |
-#> |.....................| 0.009051 | -72.42 | -25.46 | 1.201 |
-#> |.....................| 11.89 | -10.88 | -9.982 | -10.81 |
-#> | 2| 4107.3121 | 0.3213 | -1.022 | -0.9119 | -0.8965 |
-#> |.....................| -0.8458 | -0.2026 | -0.6574 | -0.8879 |
-#> |.....................| -0.9839 | -0.7675 | -0.7787 | -0.7710 |
-#> | U| 4107.3121 | 29.92 | -5.326 | -0.9447 | -0.1086 |
-#> |.....................| 2.291 | 1.546 | 0.03357 | 0.7494 |
-#> |.....................| 0.7782 | 1.335 | 1.167 | 1.179 |
-#> | X| 4107.3121 | 29.92 | 0.004866 | 0.2800 | 0.8971 |
-#> |.....................| 9.883 | 1.546 | 0.03357 | 0.7494 |
-#> |.....................| 0.7782 | 1.335 | 1.167 | 1.179 |
-#> | 3| 528.17103 | 0.9321 | -1.002 | -0.9115 | -0.8946 |
-#> |.....................| -0.8457 | -0.8021 | -0.8682 | -0.8779 |
-#> |.....................| -0.8854 | -0.8576 | -0.8613 | -0.8605 |
-#> | U| 528.17103 | 86.80 | -5.306 | -0.9442 | -0.1067 |
-#> |.....................| 2.291 | 1.198 | 0.03041 | 0.7570 |
-#> |.....................| 0.8642 | 1.226 | 1.079 | 1.083 |
-#> | X| 528.17103 | 86.80 | 0.004964 | 0.2800 | 0.8988 |
-#> |.....................| 9.884 | 1.198 | 0.03041 | 0.7570 |
-#> |.....................| 0.8642 | 1.226 | 1.079 | 1.083 |
-#> | 4| 503.95550 | 0.9892 | -1.000 | -0.9114 | -0.8944 |
-#> |.....................| -0.8457 | -0.8581 | -0.8879 | -0.8770 |
-#> |.....................| -0.8762 | -0.8660 | -0.8691 | -0.8689 |
-#> | U| 503.9555 | 92.11 | -5.304 | -0.9442 | -0.1066 |
-#> |.....................| 2.291 | 1.166 | 0.03011 | 0.7577 |
-#> |.....................| 0.8723 | 1.215 | 1.070 | 1.074 |
-#> | X| 503.9555 | 92.11 | 0.004973 | 0.2801 | 0.8989 |
-#> |.....................| 9.884 | 1.166 | 0.03011 | 0.7577 |
-#> |.....................| 0.8723 | 1.215 | 1.070 | 1.074 |
-#> | F| Forward Diff. | -82.12 | 2.266 | -0.2557 | 0.1457 |
-#> |.....................| -0.3150 | -70.09 | -26.27 | 1.274 |
-#> |.....................| 9.305 | -11.84 | -9.592 | -10.45 |
-#> | 5| 503.06948 | 1.000 | -1.001 | -0.9114 | -0.8944 |
-#> |.....................| -0.8456 | -0.8479 | -0.8841 | -0.8772 |
-#> |.....................| -0.8776 | -0.8643 | -0.8677 | -0.8674 |
-#> | U| 503.06948 | 93.16 | -5.304 | -0.9442 | -0.1066 |
-#> |.....................| 2.291 | 1.172 | 0.03017 | 0.7575 |
-#> |.....................| 0.8711 | 1.217 | 1.072 | 1.075 |
-#> | X| 503.06948 | 93.16 | 0.004971 | 0.2801 | 0.8989 |
-#> |.....................| 9.884 | 1.172 | 0.03017 | 0.7575 |
-#> |.....................| 0.8711 | 1.217 | 1.072 | 1.075 |
-#> | F| Forward Diff. | 78.20 | 2.380 | 0.07920 | 0.2489 |
-#> |.....................| 0.04185 | -69.32 | -24.13 | 1.306 |
-#> |.....................| 9.997 | -11.88 | -9.541 | -10.51 |
-#> | 6| 502.21512 | 0.9895 | -1.001 | -0.9114 | -0.8945 |
-#> |.....................| -0.8456 | -0.8375 | -0.8805 | -0.8774 |
-#> |.....................| -0.8791 | -0.8625 | -0.8662 | -0.8658 |
-#> | U| 502.21512 | 92.14 | -5.304 | -0.9442 | -0.1066 |
-#> |.....................| 2.291 | 1.178 | 0.03022 | 0.7574 |
-#> |.....................| 0.8698 | 1.220 | 1.073 | 1.077 |
-#> | X| 502.21512 | 92.14 | 0.004969 | 0.2801 | 0.8989 |
-#> |.....................| 9.884 | 1.178 | 0.03022 | 0.7574 |
-#> |.....................| 0.8698 | 1.220 | 1.073 | 1.077 |
-#> | F| Forward Diff. | -79.18 | 2.245 | -0.2400 | 0.1569 |
-#> |.....................| -0.2882 | -67.02 | -25.09 | 1.000 |
-#> |.....................| 9.365 | -11.67 | -9.440 | -10.32 |
-#> | 7| 501.33312 | 1.000 | -1.001 | -0.9114 | -0.8945 |
-#> |.....................| -0.8456 | -0.8270 | -0.8765 | -0.8775 |
-#> |.....................| -0.8805 | -0.8607 | -0.8647 | -0.8642 |
-#> | U| 501.33312 | 93.14 | -5.305 | -0.9441 | -0.1067 |
-#> |.....................| 2.291 | 1.184 | 0.03028 | 0.7573 |
-#> |.....................| 0.8685 | 1.222 | 1.075 | 1.079 |
-#> | X| 501.33312 | 93.14 | 0.004968 | 0.2801 | 0.8988 |
-#> |.....................| 9.884 | 1.184 | 0.03028 | 0.7573 |
-#> |.....................| 0.8685 | 1.222 | 1.075 | 1.079 |
-#> | F| Forward Diff. | 73.96 | 2.351 | 0.08380 | 0.2565 |
-#> |.....................| 0.05289 | -66.42 | -23.08 | 0.9343 |
-#> |.....................| 11.48 | -11.71 | -9.377 | -10.38 |
-#> | 8| 500.50460 | 0.9897 | -1.002 | -0.9114 | -0.8946 |
-#> |.....................| -0.8456 | -0.8163 | -0.8728 | -0.8777 |
-#> |.....................| -0.8824 | -0.8588 | -0.8632 | -0.8625 |
-#> | U| 500.5046 | 92.16 | -5.305 | -0.9442 | -0.1067 |
-#> |.....................| 2.291 | 1.190 | 0.03034 | 0.7572 |
-#> |.....................| 0.8669 | 1.224 | 1.077 | 1.081 |
-#> | X| 500.5046 | 92.16 | 0.004966 | 0.2801 | 0.8988 |
-#> |.....................| 9.884 | 1.190 | 0.03034 | 0.7572 |
-#> |.....................| 0.8669 | 1.224 | 1.077 | 1.081 |
-#> | F| Forward Diff. | -76.85 | 2.219 | -0.2273 | 0.1675 |
-#> |.....................| -0.2752 | -63.09 | -23.56 | 1.068 |
-#> |.....................| 8.794 | -11.52 | -9.279 | -10.19 |
-#> | 9| 499.65692 | 1.000 | -1.002 | -0.9113 | -0.8946 |
-#> |.....................| -0.8456 | -0.8056 | -0.8689 | -0.8779 |
-#> |.....................| -0.8839 | -0.8568 | -0.8617 | -0.8608 |
-#> | U| 499.65692 | 93.14 | -5.306 | -0.9441 | -0.1067 |
-#> |.....................| 2.291 | 1.196 | 0.03040 | 0.7570 |
-#> |.....................| 0.8655 | 1.226 | 1.078 | 1.082 |
-#> | X| 499.65692 | 93.14 | 0.004964 | 0.2801 | 0.8988 |
-#> |.....................| 9.885 | 1.196 | 0.03040 | 0.7570 |
-#> |.....................| 0.8655 | 1.226 | 1.078 | 1.082 |
-#> | F| Forward Diff. | 72.32 | 2.320 | 0.09176 | 0.2615 |
-#> |.....................| 0.06934 | -62.36 | -21.54 | 1.140 |
-#> |.....................| 9.404 | -11.56 | -9.216 | -10.24 |
-#> | 10| 498.81870 | 0.9902 | -1.003 | -0.9114 | -0.8946 |
-#> |.....................| -0.8456 | -0.7946 | -0.8650 | -0.8781 |
-#> |.....................| -0.8856 | -0.8548 | -0.8600 | -0.8589 |
-#> | U| 498.8187 | 92.21 | -5.306 | -0.9441 | -0.1068 |
-#> |.....................| 2.291 | 1.203 | 0.03045 | 0.7569 |
-#> |.....................| 0.8641 | 1.229 | 1.080 | 1.084 |
-#> | X| 498.8187 | 92.21 | 0.004962 | 0.2801 | 0.8987 |
-#> |.....................| 9.885 | 1.203 | 0.03045 | 0.7569 |
-#> |.....................| 0.8641 | 1.229 | 1.080 | 1.084 |
-#> | F| Forward Diff. | -70.56 | 2.198 | -0.2057 | 0.1798 |
-#> |.....................| -0.2468 | -59.74 | -22.28 | 0.8150 |
-#> |.....................| 7.180 | -11.33 | -9.109 | -10.05 |
-#> | 11| 497.99655 | 1.000 | -1.003 | -0.9113 | -0.8947 |
-#> |.....................| -0.8455 | -0.7835 | -0.8609 | -0.8782 |
-#> |.....................| -0.8869 | -0.8527 | -0.8583 | -0.8571 |
-#> | U| 497.99655 | 93.13 | -5.306 | -0.9441 | -0.1068 |
-#> |.....................| 2.291 | 1.209 | 0.03052 | 0.7568 |
-#> |.....................| 0.8629 | 1.231 | 1.082 | 1.086 |
-#> | X| 497.99655 | 93.13 | 0.004960 | 0.2801 | 0.8987 |
-#> |.....................| 9.885 | 1.209 | 0.03052 | 0.7568 |
-#> |.....................| 0.8629 | 1.231 | 1.082 | 1.086 |
-#> | F| Forward Diff. | 69.16 | 2.293 | 0.1087 | 0.2725 |
-#> |.....................| 0.08752 | -59.63 | -20.54 | 0.7584 |
-#> |.....................| 10.86 | -11.45 | -9.094 | -10.13 |
-#> | 12| 497.16410 | 0.9907 | -1.003 | -0.9113 | -0.8947 |
-#> |.....................| -0.8455 | -0.7720 | -0.8569 | -0.8784 |
-#> |.....................| -0.8889 | -0.8505 | -0.8566 | -0.8551 |
-#> | U| 497.1641 | 92.25 | -5.307 | -0.9441 | -0.1069 |
-#> |.....................| 2.291 | 1.216 | 0.03058 | 0.7566 |
-#> |.....................| 0.8612 | 1.234 | 1.084 | 1.088 |
-#> | X| 497.1641 | 92.25 | 0.004958 | 0.2801 | 0.8987 |
-#> |.....................| 9.885 | 1.216 | 0.03058 | 0.7566 |
-#> |.....................| 0.8612 | 1.234 | 1.084 | 1.088 |
-#> | F| Forward Diff. | -65.09 | 2.175 | -0.1829 | 0.1920 |
-#> |.....................| -0.2233 | -56.76 | -21.02 | 0.6415 |
-#> |.....................| 9.983 | -11.18 | -8.930 | -9.895 |
-#> | 13| 496.40281 | 1.000 | -1.004 | -0.9113 | -0.8948 |
-#> |.....................| -0.8455 | -0.7609 | -0.8528 | -0.8785 |
-#> |.....................| -0.8909 | -0.8483 | -0.8548 | -0.8532 |
-#> | U| 496.40281 | 93.15 | -5.307 | -0.9441 | -0.1069 |
-#> |.....................| 2.291 | 1.222 | 0.03064 | 0.7566 |
-#> |.....................| 0.8594 | 1.237 | 1.086 | 1.091 |
-#> | X| 496.40281 | 93.15 | 0.004955 | 0.2801 | 0.8986 |
-#> |.....................| 9.885 | 1.222 | 0.03064 | 0.7566 |
-#> |.....................| 0.8594 | 1.237 | 1.086 | 1.091 |
-#> | F| Forward Diff. | 70.05 | 2.265 | 0.1236 | 0.2851 |
-#> |.....................| 0.1152 | -55.71 | -19.12 | 0.8701 |
-#> |.....................| 7.394 | -11.22 | -8.890 | -9.949 |
-#> | 14| 495.59236 | 0.9910 | -1.004 | -0.9113 | -0.8948 |
-#> |.....................| -0.8455 | -0.7494 | -0.8488 | -0.8787 |
-#> |.....................| -0.8926 | -0.8459 | -0.8530 | -0.8511 |
-#> | U| 495.59236 | 92.28 | -5.308 | -0.9441 | -0.1070 |
-#> |.....................| 2.291 | 1.229 | 0.03070 | 0.7564 |
-#> |.....................| 0.8580 | 1.240 | 1.088 | 1.093 |
-#> | X| 495.59236 | 92.28 | 0.004953 | 0.2801 | 0.8986 |
-#> |.....................| 9.885 | 1.229 | 0.03070 | 0.7564 |
-#> |.....................| 0.8580 | 1.240 | 1.088 | 1.093 |
-#> | F| Forward Diff. | -61.97 | 2.150 | -0.1619 | 0.2028 |
-#> |.....................| -0.2007 | -53.46 | -19.76 | 0.5341 |
-#> |.....................| 9.715 | -10.96 | -8.745 | -9.729 |
-#> | 15| 494.82198 | 1.000 | -1.005 | -0.9113 | -0.8949 |
-#> |.....................| -0.8455 | -0.7378 | -0.8446 | -0.8788 |
-#> |.....................| -0.8946 | -0.8435 | -0.8510 | -0.8489 |
-#> | U| 494.82198 | 93.11 | -5.308 | -0.9441 | -0.1070 |
-#> |.....................| 2.291 | 1.235 | 0.03076 | 0.7563 |
-#> |.....................| 0.8562 | 1.243 | 1.090 | 1.095 |
-#> | X| 494.82198 | 93.11 | 0.004951 | 0.2801 | 0.8985 |
-#> |.....................| 9.886 | 1.235 | 0.03076 | 0.7563 |
-#> |.....................| 0.8562 | 1.243 | 1.090 | 1.095 |
-#> | F| Forward Diff. | 62.35 | 2.229 | 0.1203 | 0.2879 |
-#> |.....................| 0.1180 | -52.16 | -17.88 | 0.7550 |
-#> |.....................| 8.431 | -10.99 | -8.665 | -9.736 |
-#> | 16| 494.07821 | 0.9910 | -1.005 | -0.9113 | -0.8949 |
-#> |.....................| -0.8455 | -0.7261 | -0.8406 | -0.8789 |
-#> |.....................| -0.8966 | -0.8410 | -0.8490 | -0.8467 |
-#> | U| 494.07821 | 92.28 | -5.309 | -0.9441 | -0.1071 |
-#> |.....................| 2.291 | 1.242 | 0.03082 | 0.7562 |
-#> |.....................| 0.8544 | 1.246 | 1.092 | 1.098 |
-#> | X| 494.07821 | 92.28 | 0.004948 | 0.2801 | 0.8985 |
-#> |.....................| 9.885 | 1.242 | 0.03082 | 0.7562 |
-#> |.....................| 0.8544 | 1.246 | 1.092 | 1.098 |
-#> | F| Forward Diff. | -62.97 | 2.119 | -0.1628 | 0.2103 |
-#> |.....................| -0.1835 | -49.97 | -18.50 | 0.4855 |
-#> |.....................| 6.275 | -10.75 | -8.529 | -9.546 |
-#> | 17| 493.31030 | 0.9997 | -1.006 | -0.9113 | -0.8950 |
-#> |.....................| -0.8455 | -0.7143 | -0.8363 | -0.8790 |
-#> |.....................| -0.8981 | -0.8383 | -0.8469 | -0.8443 |
-#> | U| 493.3103 | 93.08 | -5.309 | -0.9441 | -0.1071 |
-#> |.....................| 2.291 | 1.249 | 0.03089 | 0.7561 |
-#> |.....................| 0.8531 | 1.249 | 1.094 | 1.100 |
-#> | X| 493.3103 | 93.08 | 0.004946 | 0.2801 | 0.8984 |
-#> |.....................| 9.886 | 1.249 | 0.03089 | 0.7561 |
-#> |.....................| 0.8531 | 1.249 | 1.094 | 1.100 |
-#> | F| Forward Diff. | 56.08 | 2.195 | 0.1067 | 0.2931 |
-#> |.....................| 0.1254 | -49.64 | -16.98 | 0.3491 |
-#> |.....................| 8.549 | -10.78 | -8.455 | -9.552 |
-#> | 18| 492.59068 | 0.9914 | -1.006 | -0.9113 | -0.8951 |
-#> |.....................| -0.8455 | -0.7023 | -0.8321 | -0.8791 |
-#> |.....................| -0.9000 | -0.8355 | -0.8448 | -0.8419 |
-#> | U| 492.59068 | 92.32 | -5.310 | -0.9441 | -0.1072 |
-#> |.....................| 2.291 | 1.256 | 0.03095 | 0.7561 |
-#> |.....................| 0.8514 | 1.252 | 1.096 | 1.103 |
-#> | X| 492.59068 | 92.32 | 0.004943 | 0.2801 | 0.8983 |
-#> |.....................| 9.885 | 1.256 | 0.03095 | 0.7561 |
-#> |.....................| 0.8514 | 1.252 | 1.096 | 1.103 |
-#> | F| Forward Diff. | -58.13 | 2.097 | -0.1289 | 0.2246 |
-#> |.....................| -0.1582 | -47.13 | -17.33 | 0.3097 |
-#> |.....................| 7.738 | -10.54 | -8.304 | -9.345 |
-#> | 19| 491.88063 | 0.9998 | -1.007 | -0.9113 | -0.8951 |
-#> |.....................| -0.8455 | -0.6905 | -0.8279 | -0.8791 |
-#> |.....................| -0.9022 | -0.8327 | -0.8426 | -0.8394 |
-#> | U| 491.88063 | 93.10 | -5.310 | -0.9441 | -0.1073 |
-#> |.....................| 2.291 | 1.263 | 0.03101 | 0.7561 |
-#> |.....................| 0.8496 | 1.256 | 1.099 | 1.105 |
-#> | X| 491.88063 | 93.10 | 0.004940 | 0.2801 | 0.8983 |
-#> |.....................| 9.886 | 1.263 | 0.03101 | 0.7561 |
-#> |.....................| 0.8496 | 1.256 | 1.099 | 1.105 |
-#> | F| Forward Diff. | 56.71 | 2.166 | 0.1292 | 0.3076 |
-#> |.....................| 0.1542 | -45.57 | -15.60 | 0.4873 |
-#> |.....................| 6.413 | -10.51 | -8.202 | -9.332 |
-#> | 20| 491.19020 | 0.9917 | -1.008 | -0.9113 | -0.8952 |
-#> |.....................| -0.8455 | -0.6785 | -0.8237 | -0.8792 |
-#> |.....................| -0.9039 | -0.8296 | -0.8402 | -0.8366 |
-#> | U| 491.1902 | 92.34 | -5.311 | -0.9441 | -0.1074 |
-#> |.....................| 2.291 | 1.270 | 0.03107 | 0.7560 |
-#> |.....................| 0.8481 | 1.259 | 1.101 | 1.108 |
-#> | X| 491.1902 | 92.34 | 0.004937 | 0.2801 | 0.8982 |
-#> |.....................| 9.885 | 1.270 | 0.03107 | 0.7560 |
-#> |.....................| 0.8481 | 1.259 | 1.101 | 1.108 |
-#> | F| Forward Diff. | -55.56 | 2.070 | -0.1130 | 0.2359 |
-#> |.....................| -0.1346 | -44.07 | -16.23 | 0.1008 |
-#> |.....................| 7.464 | -10.26 | -8.060 | -9.125 |
-#> | 21| 490.47868 | 0.9993 | -1.008 | -0.9113 | -0.8953 |
-#> |.....................| -0.8455 | -0.6665 | -0.8194 | -0.8791 |
-#> |.....................| -0.9059 | -0.8264 | -0.8377 | -0.8337 |
-#> | U| 490.47868 | 93.05 | -5.312 | -0.9441 | -0.1075 |
-#> |.....................| 2.291 | 1.277 | 0.03114 | 0.7561 |
-#> |.....................| 0.8463 | 1.263 | 1.104 | 1.111 |
-#> | X| 490.47868 | 93.05 | 0.004934 | 0.2801 | 0.8981 |
-#> |.....................| 9.885 | 1.277 | 0.03114 | 0.7561 |
-#> |.....................| 0.8463 | 1.263 | 1.104 | 1.111 |
-#> | F| Forward Diff. | 47.93 | 2.132 | 0.1269 | 0.3117 |
-#> |.....................| 0.1562 | -43.27 | -14.78 | 0.06906 |
-#> |.....................| 9.295 | -10.26 | -7.955 | -9.092 |
-#> | 22| 489.84765 | 0.9918 | -1.009 | -0.9114 | -0.8954 |
-#> |.....................| -0.8456 | -0.6545 | -0.8153 | -0.8790 |
-#> |.....................| -0.9090 | -0.8231 | -0.8352 | -0.8308 |
-#> | U| 489.84765 | 92.35 | -5.312 | -0.9441 | -0.1076 |
-#> |.....................| 2.291 | 1.284 | 0.03120 | 0.7562 |
-#> |.....................| 0.8436 | 1.267 | 1.107 | 1.115 |
-#> | X| 489.84765 | 92.35 | 0.004930 | 0.2801 | 0.8980 |
-#> |.....................| 9.885 | 1.284 | 0.03120 | 0.7562 |
-#> |.....................| 0.8436 | 1.267 | 1.107 | 1.115 |
-#> | F| Forward Diff. | -55.71 | 2.038 | -0.1283 | 0.2328 |
-#> |.....................| -0.1164 | -41.15 | -15.14 | 0.009736 |
-#> |.....................| 8.505 | -10.03 | -7.805 | -8.885 |
-#> | 23| 489.17644 | 0.9994 | -1.010 | -0.9113 | -0.8955 |
-#> |.....................| -0.8456 | -0.6429 | -0.8112 | -0.8788 |
-#> |.....................| -0.9126 | -0.8197 | -0.8325 | -0.8278 |
-#> | U| 489.17644 | 93.06 | -5.313 | -0.9441 | -0.1077 |
-#> |.....................| 2.291 | 1.290 | 0.03126 | 0.7563 |
-#> |.....................| 0.8405 | 1.272 | 1.109 | 1.118 |
-#> | X| 489.17644 | 93.06 | 0.004927 | 0.2801 | 0.8979 |
-#> |.....................| 9.885 | 1.290 | 0.03126 | 0.7563 |
-#> |.....................| 0.8405 | 1.272 | 1.109 | 1.118 |
-#> | F| Forward Diff. | 46.87 | 2.093 | 0.1493 | 0.3243 |
-#> |.....................| 0.1838 | -40.03 | -13.57 | 0.1411 |
-#> |.....................| 5.593 | -9.957 | -7.669 | -8.831 |
-#> | 24| 488.58015 | 0.9920 | -1.011 | -0.9114 | -0.8957 |
-#> |.....................| -0.8457 | -0.6309 | -0.8071 | -0.8787 |
-#> |.....................| -0.9147 | -0.8159 | -0.8297 | -0.8244 |
-#> | U| 488.58015 | 92.37 | -5.314 | -0.9442 | -0.1078 |
-#> |.....................| 2.291 | 1.297 | 0.03132 | 0.7564 |
-#> |.....................| 0.8386 | 1.276 | 1.112 | 1.121 |
-#> | X| 488.58015 | 92.37 | 0.004923 | 0.2801 | 0.8978 |
-#> |.....................| 9.884 | 1.297 | 0.03132 | 0.7564 |
-#> |.....................| 0.8386 | 1.276 | 1.112 | 1.121 |
-#> | F| Forward Diff. | -53.50 | 2.005 | -0.1078 | 0.2446 |
-#> |.....................| -0.09190 | -37.89 | -13.87 | 0.05672 |
-#> |.....................| 4.909 | -9.713 | -7.511 | -8.606 |
-#> | 25| 487.93833 | 0.9991 | -1.011 | -0.9114 | -0.8958 |
-#> |.....................| -0.8457 | -0.6190 | -0.8030 | -0.8785 |
-#> |.....................| -0.9153 | -0.8117 | -0.8266 | -0.8207 |
-#> | U| 487.93833 | 93.04 | -5.315 | -0.9442 | -0.1080 |
-#> |.....................| 2.291 | 1.304 | 0.03139 | 0.7566 |
-#> |.....................| 0.8381 | 1.281 | 1.116 | 1.125 |
-#> | X| 487.93833 | 93.04 | 0.004918 | 0.2801 | 0.8977 |
-#> |.....................| 9.883 | 1.304 | 0.03139 | 0.7566 |
-#> |.....................| 0.8381 | 1.281 | 1.116 | 1.125 |
-#> | F| Forward Diff. | 41.92 | 2.065 | 0.1569 | 0.3320 |
-#> |.....................| 0.1961 | -37.34 | -12.63 | 0.01172 |
-#> |.....................| 5.301 | -9.646 | -7.360 | -8.530 |
-#> | 26| 487.37063 | 0.9925 | -1.012 | -0.9115 | -0.8960 |
-#> |.....................| -0.8458 | -0.6069 | -0.7990 | -0.8783 |
-#> |.....................| -0.9161 | -0.8073 | -0.8233 | -0.8168 |
-#> | U| 487.37063 | 92.42 | -5.316 | -0.9443 | -0.1081 |
-#> |.....................| 2.291 | 1.311 | 0.03145 | 0.7567 |
-#> |.....................| 0.8374 | 1.287 | 1.119 | 1.130 |
-#> | X| 487.37063 | 92.42 | 0.004913 | 0.2800 | 0.8975 |
-#> |.....................| 9.882 | 1.311 | 0.03145 | 0.7567 |
-#> |.....................| 0.8374 | 1.287 | 1.119 | 1.130 |
-#> | F| Forward Diff. | -47.84 | 1.989 | -0.08553 | 0.2559 |
-#> |.....................| -0.06263 | -35.59 | -12.91 | -0.09336 |
-#> |.....................| 8.020 | -9.356 | -7.180 | -8.291 |
-#> | 27| 486.76802 | 0.9991 | -1.014 | -0.9115 | -0.8962 |
-#> |.....................| -0.8459 | -0.5954 | -0.7952 | -0.8779 |
-#> |.....................| -0.9197 | -0.8027 | -0.8200 | -0.8127 |
-#> | U| 486.76802 | 93.03 | -5.317 | -0.9443 | -0.1083 |
-#> |.....................| 2.291 | 1.318 | 0.03150 | 0.7570 |
-#> |.....................| 0.8342 | 1.292 | 1.123 | 1.134 |
-#> | X| 486.76802 | 93.03 | 0.004908 | 0.2800 | 0.8973 |
-#> |.....................| 9.881 | 1.318 | 0.03150 | 0.7570 |
-#> |.....................| 0.8342 | 1.292 | 1.123 | 1.134 |
-#> | F| Forward Diff. | 39.28 | 2.032 | 0.1697 | 0.3409 |
-#> |.....................| 0.2161 | -34.26 | -11.60 | -0.04206 |
-#> |.....................| 6.414 | -9.258 | -7.014 | -8.183 |
-#> | 28| 486.25961 | 0.9924 | -1.015 | -0.9116 | -0.8964 |
-#> |.....................| -0.8461 | -0.5843 | -0.7916 | -0.8775 |
-#> |.....................| -0.9242 | -0.7980 | -0.8166 | -0.8086 |
-#> | U| 486.25961 | 92.41 | -5.318 | -0.9444 | -0.1086 |
-#> |.....................| 2.290 | 1.324 | 0.03156 | 0.7573 |
-#> |.....................| 0.8303 | 1.298 | 1.126 | 1.138 |
-#> | X| 486.25961 | 92.41 | 0.004902 | 0.2800 | 0.8971 |
-#> |.....................| 9.880 | 1.324 | 0.03156 | 0.7573 |
-#> |.....................| 0.8303 | 1.298 | 1.126 | 1.138 |
-#> | F| Forward Diff. | -50.63 | 1.945 | -0.07307 | 0.2626 |
-#> |.....................| -0.04930 | -33.11 | -12.03 | -0.1686 |
-#> |.....................| 7.510 | -8.984 | -6.802 | -7.934 |
-#> | 29| 485.66844 | 0.9985 | -1.016 | -0.9117 | -0.8967 |
-#> |.....................| -0.8462 | -0.5738 | -0.7881 | -0.8769 |
-#> |.....................| -0.9293 | -0.7927 | -0.8129 | -0.8039 |
-#> | U| 485.66844 | 92.98 | -5.319 | -0.9445 | -0.1089 |
-#> |.....................| 2.290 | 1.331 | 0.03161 | 0.7578 |
-#> |.....................| 0.8259 | 1.304 | 1.130 | 1.143 |
-#> | X| 485.66844 | 92.98 | 0.004895 | 0.2800 | 0.8969 |
-#> |.....................| 9.878 | 1.331 | 0.03161 | 0.7578 |
-#> |.....................| 0.8259 | 1.304 | 1.130 | 1.143 |
-#> | F| Forward Diff. | 30.24 | 1.977 | 0.1746 | 0.3455 |
-#> |.....................| 0.2218 | -32.22 | -10.87 | -0.2249 |
-#> |.....................| 4.336 | -8.820 | -6.615 | -7.812 |
-#> | 30| 485.23968 | 0.9921 | -1.017 | -0.9119 | -0.8970 |
-#> |.....................| -0.8465 | -0.5622 | -0.7845 | -0.8762 |
-#> |.....................| -0.9314 | -0.7876 | -0.8094 | -0.7994 |
-#> | U| 485.23968 | 92.38 | -5.321 | -0.9447 | -0.1091 |
-#> |.....................| 2.290 | 1.337 | 0.03166 | 0.7583 |
-#> |.....................| 0.8240 | 1.310 | 1.134 | 1.148 |
-#> | X| 485.23968 | 92.38 | 0.004889 | 0.2800 | 0.8966 |
-#> |.....................| 9.876 | 1.337 | 0.03166 | 0.7583 |
-#> |.....................| 0.8240 | 1.310 | 1.134 | 1.148 |
-#> | F| Forward Diff. | -56.59 | 1.902 | -0.07536 | 0.2678 |
-#> |.....................| -0.04797 | -30.46 | -11.14 | -0.09043 |
-#> |.....................| 3.742 | -8.533 | -6.412 | -7.541 |
-#> | 31| 484.69662 | 0.9984 | -1.019 | -0.9121 | -0.8974 |
-#> |.....................| -0.8467 | -0.5517 | -0.7813 | -0.8754 |
-#> |.....................| -0.9289 | -0.7816 | -0.8053 | -0.7941 |
-#> | U| 484.69662 | 92.97 | -5.322 | -0.9448 | -0.1095 |
-#> |.....................| 2.290 | 1.343 | 0.03171 | 0.7589 |
-#> |.....................| 0.8262 | 1.318 | 1.138 | 1.154 |
-#> | X| 484.69662 | 92.97 | 0.004881 | 0.2799 | 0.8963 |
-#> |.....................| 9.873 | 1.343 | 0.03171 | 0.7589 |
-#> |.....................| 0.8262 | 1.318 | 1.138 | 1.154 |
-#> | F| Forward Diff. | 27.47 | 1.960 | 0.1737 | 0.3487 |
-#> |.....................| 0.2320 | -29.84 | -10.04 | -0.2714 |
-#> |.....................| 5.731 | -8.337 | -6.228 | -7.371 |
-#> | 32| 484.27605 | 0.9928 | -1.021 | -0.9123 | -0.8978 |
-#> |.....................| -0.8471 | -0.5404 | -0.7779 | -0.8746 |
-#> |.....................| -0.9302 | -0.7757 | -0.8014 | -0.7889 |
-#> | U| 484.27605 | 92.45 | -5.324 | -0.9451 | -0.1099 |
-#> |.....................| 2.289 | 1.350 | 0.03176 | 0.7595 |
-#> |.....................| 0.8251 | 1.325 | 1.143 | 1.159 |
-#> | X| 484.27605 | 92.45 | 0.004872 | 0.2799 | 0.8959 |
-#> |.....................| 9.870 | 1.350 | 0.03176 | 0.7595 |
-#> |.....................| 0.8251 | 1.325 | 1.143 | 1.159 |
-#> | F| Forward Diff. | -48.28 | 1.894 | -0.05804 | 0.2769 |
-#> |.....................| -0.01457 | -28.21 | -10.24 | -0.1977 |
-#> |.....................| 5.253 | -8.027 | -5.998 | -7.085 |
-#> | 33| 483.77365 | 0.9986 | -1.023 | -0.9126 | -0.8983 |
-#> |.....................| -0.8475 | -0.5309 | -0.7752 | -0.8734 |
-#> |.....................| -0.9343 | -0.7690 | -0.7970 | -0.7831 |
-#> | U| 483.77365 | 92.99 | -5.326 | -0.9453 | -0.1104 |
-#> |.....................| 2.289 | 1.355 | 0.03180 | 0.7604 |
-#> |.....................| 0.8215 | 1.333 | 1.147 | 1.166 |
-#> | X| 483.77365 | 92.99 | 0.004861 | 0.2798 | 0.8954 |
-#> |.....................| 9.866 | 1.355 | 0.03180 | 0.7604 |
-#> |.....................| 0.8215 | 1.333 | 1.147 | 1.166 |
-#> | F| Forward Diff. | 28.59 | 1.923 | 0.1952 | 0.3548 |
-#> |.....................| 0.2608 | -27.76 | -9.333 | -0.3645 |
-#> |.....................| 3.958 | -7.814 | -5.777 | -6.894 |
-#> | 34| 483.37086 | 0.9934 | -1.025 | -0.9129 | -0.8989 |
-#> |.....................| -0.8480 | -0.5203 | -0.7721 | -0.8720 |
-#> |.....................| -0.9349 | -0.7624 | -0.7928 | -0.7774 |
-#> | U| 483.37086 | 92.51 | -5.329 | -0.9456 | -0.1110 |
-#> |.....................| 2.289 | 1.362 | 0.03185 | 0.7615 |
-#> |.....................| 0.8209 | 1.341 | 1.152 | 1.172 |
-#> | X| 483.37086 | 92.51 | 0.004850 | 0.2798 | 0.8949 |
-#> |.....................| 9.861 | 1.362 | 0.03185 | 0.7615 |
-#> |.....................| 0.8209 | 1.341 | 1.152 | 1.172 |
-#> | F| Forward Diff. | -41.16 | 1.862 | -0.03265 | 0.2828 |
-#> |.....................| 0.01951 | -26.43 | -9.488 | -0.2833 |
-#> |.....................| 3.545 | -7.469 | -5.528 | -6.584 |
-#> | 35| 482.96272 | 0.9987 | -1.028 | -0.9132 | -0.8995 |
-#> |.....................| -0.8485 | -0.5103 | -0.7694 | -0.8702 |
-#> |.....................| -0.9315 | -0.7558 | -0.7888 | -0.7716 |
-#> | U| 482.96272 | 92.99 | -5.332 | -0.9459 | -0.1117 |
-#> |.....................| 2.288 | 1.367 | 0.03189 | 0.7629 |
-#> |.....................| 0.8240 | 1.349 | 1.156 | 1.178 |
-#> | X| 482.96272 | 92.99 | 0.004836 | 0.2797 | 0.8943 |
-#> |.....................| 9.856 | 1.367 | 0.03189 | 0.7629 |
-#> |.....................| 0.8240 | 1.349 | 1.156 | 1.178 |
-#> | F| Forward Diff. | 28.21 | 1.908 | 0.1917 | 0.3504 |
-#> |.....................| 0.2712 | -25.82 | -8.599 | -0.3385 |
-#> |.....................| 4.050 | -7.278 | -5.334 | -6.398 |
-#> | 36| 482.60011 | 0.9939 | -1.032 | -0.9136 | -0.9003 |
-#> |.....................| -0.8492 | -0.4998 | -0.7669 | -0.8684 |
-#> |.....................| -0.9296 | -0.7490 | -0.7849 | -0.7659 |
-#> | U| 482.60011 | 92.55 | -5.335 | -0.9462 | -0.1124 |
-#> |.....................| 2.287 | 1.373 | 0.03193 | 0.7642 |
-#> |.....................| 0.8256 | 1.357 | 1.160 | 1.184 |
-#> | X| 482.60011 | 92.55 | 0.004820 | 0.2796 | 0.8937 |
-#> |.....................| 9.849 | 1.373 | 0.03193 | 0.7642 |
-#> |.....................| 0.8256 | 1.357 | 1.160 | 1.184 |
-#> | F| Forward Diff. | -36.31 | 1.855 | -0.03781 | 0.2769 |
-#> |.....................| 0.03076 | -24.99 | -8.890 | -0.4685 |
-#> |.....................| 7.176 | -6.892 | -5.117 | -6.081 |
-#> | 37| 482.21198 | 0.9982 | -1.035 | -0.9138 | -0.9009 |
-#> |.....................| -0.8497 | -0.4920 | -0.7653 | -0.8661 |
-#> |.....................| -0.9399 | -0.7441 | -0.7821 | -0.7617 |
-#> | U| 482.21198 | 92.95 | -5.338 | -0.9465 | -0.1130 |
-#> |.....................| 2.287 | 1.378 | 0.03195 | 0.7659 |
-#> |.....................| 0.8166 | 1.363 | 1.163 | 1.189 |
-#> | X| 482.21198 | 92.95 | 0.004805 | 0.2796 | 0.8931 |
-#> |.....................| 9.844 | 1.378 | 0.03195 | 0.7659 |
-#> |.....................| 0.8166 | 1.363 | 1.163 | 1.189 |
-#> | F| Forward Diff. | 20.01 | 1.850 | 0.1852 | 0.3312 |
-#> |.....................| 0.2616 | -23.95 | -7.997 | -0.3393 |
-#> |.....................| 4.985 | -6.711 | -4.923 | -5.940 |
-#> | 38| 481.96846 | 0.9924 | -1.037 | -0.9141 | -0.9014 |
-#> |.....................| -0.8503 | -0.4828 | -0.7630 | -0.8646 |
-#> |.....................| -0.9490 | -0.7399 | -0.7795 | -0.7579 |
-#> | U| 481.96846 | 92.41 | -5.341 | -0.9468 | -0.1136 |
-#> |.....................| 2.286 | 1.383 | 0.03199 | 0.7671 |
-#> |.....................| 0.8087 | 1.368 | 1.166 | 1.193 |
-#> | X| 481.96846 | 92.41 | 0.004793 | 0.2795 | 0.8927 |
-#> |.....................| 9.838 | 1.383 | 0.03199 | 0.7671 |
-#> |.....................| 0.8087 | 1.368 | 1.166 | 1.193 |
-#> | F| Forward Diff. | -59.26 | 1.761 | -0.08116 | 0.2547 |
-#> |.....................| -0.02692 | -22.78 | -8.366 | -0.2344 |
-#> |.....................| 4.087 | -6.524 | -4.792 | -5.748 |
-#> | 39| 481.52549 | 0.9980 | -1.042 | -0.9148 | -0.9024 |
-#> |.....................| -0.8514 | -0.4755 | -0.7621 | -0.8625 |
-#> |.....................| -0.9558 | -0.7333 | -0.7761 | -0.7520 |
-#> | U| 481.52549 | 92.93 | -5.345 | -0.9474 | -0.1146 |
-#> |.....................| 2.285 | 1.388 | 0.03200 | 0.7686 |
-#> |.....................| 0.8027 | 1.376 | 1.170 | 1.199 |
-#> | X| 481.52549 | 92.93 | 0.004770 | 0.2794 | 0.8917 |
-#> |.....................| 9.827 | 1.388 | 0.03200 | 0.7686 |
-#> |.....................| 0.8027 | 1.376 | 1.170 | 1.199 |
-#> | F| Forward Diff. | 14.56 | 1.771 | 0.1903 | 0.3270 |
-#> |.....................| 0.2641 | -22.44 | -7.508 | -0.4496 |
-#> |.....................| 2.566 | -6.373 | -4.622 | -5.584 |
-#> | 40| 481.26396 | 0.9932 | -1.045 | -0.9155 | -0.9032 |
-#> |.....................| -0.8523 | -0.4642 | -0.7593 | -0.8605 |
-#> |.....................| -0.9543 | -0.7272 | -0.7727 | -0.7469 |
-#> | U| 481.26396 | 92.49 | -5.349 | -0.9480 | -0.1154 |
-#> |.....................| 2.284 | 1.394 | 0.03204 | 0.7702 |
-#> |.....................| 0.8040 | 1.384 | 1.173 | 1.205 |
-#> | X| 481.26396 | 92.49 | 0.004753 | 0.2793 | 0.8910 |
-#> |.....................| 9.818 | 1.394 | 0.03204 | 0.7702 |
-#> |.....................| 0.8040 | 1.384 | 1.173 | 1.205 |
-#> | F| Forward Diff. | -49.84 | 1.721 | -0.06329 | 0.2500 |
-#> |.....................| 0.003387 | -21.58 | -7.808 | -0.4470 |
-#> |.....................| 3.805 | -6.020 | -4.412 | -5.292 |
-#> | 41| 480.91101 | 0.9981 | -1.051 | -0.9163 | -0.9044 |
-#> |.....................| -0.8537 | -0.4552 | -0.7584 | -0.8559 |
-#> |.....................| -0.9510 | -0.7207 | -0.7698 | -0.7416 |
-#> | U| 480.91101 | 92.94 | -5.355 | -0.9488 | -0.1166 |
-#> |.....................| 2.283 | 1.399 | 0.03206 | 0.7737 |
-#> |.....................| 0.8069 | 1.392 | 1.176 | 1.210 |
-#> | X| 480.91101 | 92.94 | 0.004727 | 0.2791 | 0.8900 |
-#> |.....................| 9.804 | 1.399 | 0.03206 | 0.7737 |
-#> |.....................| 0.8069 | 1.392 | 1.176 | 1.210 |
-#> | F| Forward Diff. | 16.05 | 1.751 | 0.1631 | 0.3020 |
-#> |.....................| 0.2540 | -20.90 | -6.928 | -0.3893 |
-#> |.....................| 4.288 | -5.817 | -4.263 | -5.144 |
-#> | 42| 480.64341 | 0.9941 | -1.056 | -0.9169 | -0.9053 |
-#> |.....................| -0.8549 | -0.4456 | -0.7571 | -0.8527 |
-#> |.....................| -0.9585 | -0.7158 | -0.7673 | -0.7373 |
-#> | U| 480.64341 | 92.57 | -5.360 | -0.9493 | -0.1175 |
-#> |.....................| 2.282 | 1.405 | 0.03208 | 0.7761 |
-#> |.....................| 0.8004 | 1.398 | 1.179 | 1.215 |
-#> | X| 480.64341 | 92.57 | 0.004703 | 0.2790 | 0.8892 |
-#> |.....................| 9.793 | 1.405 | 0.03208 | 0.7761 |
-#> |.....................| 0.8004 | 1.398 | 1.179 | 1.215 |
-#> | F| Forward Diff. | -40.16 | 1.680 | -0.01378 | 0.2424 |
-#> |.....................| 0.03021 | -20.27 | -7.228 | -0.4675 |
-#> |.....................| 4.140 | -5.523 | -4.100 | -4.903 |
-#> | 43| 480.34062 | 0.9982 | -1.062 | -0.9177 | -0.9064 |
-#> |.....................| -0.8561 | -0.4387 | -0.7572 | -0.8486 |
-#> |.....................| -0.9687 | -0.7122 | -0.7655 | -0.7338 |
-#> | U| 480.34062 | 92.95 | -5.365 | -0.9501 | -0.1185 |
-#> |.....................| 2.280 | 1.409 | 0.03207 | 0.7792 |
-#> |.....................| 0.7914 | 1.402 | 1.181 | 1.219 |
-#> | X| 480.34062 | 92.95 | 0.004675 | 0.2789 | 0.8883 |
-#> |.....................| 9.781 | 1.409 | 0.03207 | 0.7792 |
-#> |.....................| 0.7914 | 1.402 | 1.181 | 1.219 |
-#> | 44| 480.11354 | 0.9982 | -1.069 | -0.9186 | -0.9075 |
-#> |.....................| -0.8576 | -0.4327 | -0.7582 | -0.8437 |
-#> |.....................| -0.9807 | -0.7086 | -0.7639 | -0.7301 |
-#> | U| 480.11354 | 92.95 | -5.372 | -0.9510 | -0.1197 |
-#> |.....................| 2.279 | 1.412 | 0.03206 | 0.7829 |
-#> |.....................| 0.7810 | 1.406 | 1.183 | 1.223 |
-#> | X| 480.11354 | 92.95 | 0.004643 | 0.2787 | 0.8872 |
-#> |.....................| 9.767 | 1.412 | 0.03206 | 0.7829 |
-#> |.....................| 0.7810 | 1.406 | 1.183 | 1.223 |
-#> | 45| 479.24256 | 0.9982 | -1.100 | -0.9228 | -0.9129 |
-#> |.....................| -0.8642 | -0.4061 | -0.7626 | -0.8221 |
-#> |.....................| -1.034 | -0.6924 | -0.7565 | -0.7138 |
-#> | U| 479.24256 | 92.95 | -5.404 | -0.9550 | -0.1250 |
-#> |.....................| 2.272 | 1.428 | 0.03199 | 0.7993 |
-#> |.....................| 0.7344 | 1.426 | 1.191 | 1.240 |
-#> | X| 479.24256 | 92.95 | 0.004500 | 0.2779 | 0.8825 |
-#> |.....................| 9.702 | 1.428 | 0.03199 | 0.7993 |
-#> |.....................| 0.7344 | 1.426 | 1.191 | 1.240 |
-#> | 46| 477.60836 | 1.003 | -1.228 | -0.9400 | -0.9346 |
-#> |.....................| -0.8912 | -0.2901 | -0.7784 | -0.7332 |
-#> |.....................| -1.206 | -0.6258 | -0.7257 | -0.6466 |
-#> | U| 477.60836 | 93.40 | -5.531 | -0.9712 | -0.1467 |
-#> |.....................| 2.245 | 1.495 | 0.03176 | 0.8667 |
-#> |.....................| 0.5843 | 1.507 | 1.224 | 1.312 |
-#> | X| 477.60836 | 93.40 | 0.003961 | 0.2746 | 0.8635 |
-#> |.....................| 9.444 | 1.495 | 0.03176 | 0.8667 |
-#> |.....................| 0.5843 | 1.507 | 1.224 | 1.312 |
-#> | F| Forward Diff. | 50.81 | 0.8332 | 0.6263 | 0.04339 |
-#> |.....................| 0.5543 | -9.740 | -2.969 | 0.1978 |
-#> |.....................| -10.28 | -2.761 | -1.505 | -1.849 |
-#> | 47| 476.77966 | 1.006 | -1.398 | -0.9862 | -0.9532 |
-#> |.....................| -0.9413 | -0.07616 | -0.7687 | -0.6374 |
-#> |.....................| -0.9573 | -0.5395 | -0.7103 | -0.5930 |
-#> | U| 476.77966 | 93.71 | -5.701 | -1.015 | -0.1654 |
-#> |.....................| 2.195 | 1.619 | 0.03190 | 0.9393 |
-#> |.....................| 0.8014 | 1.612 | 1.240 | 1.369 |
-#> | X| 476.77966 | 93.71 | 0.003342 | 0.2660 | 0.8476 |
-#> |.....................| 8.982 | 1.619 | 0.03190 | 0.9393 |
-#> |.....................| 0.8014 | 1.612 | 1.240 | 1.369 |
-#> | F| Forward Diff. | 100.8 | 0.5681 | -2.148 | -0.2910 |
-#> |.....................| -0.6169 | 0.8458 | 0.8586 | 0.3650 |
-#> |.....................| 3.820 | 1.443 | -0.7364 | 0.2440 |
-#> | 48| 478.65806 | 0.9952 | -1.512 | -0.6913 | -0.9031 |
-#> |.....................| -0.8317 | -0.01918 | -0.7109 | -0.6555 |
-#> |.....................| -0.9083 | -0.7021 | -0.6121 | -0.6260 |
-#> | U| 478.65806 | 92.67 | -5.815 | -0.7363 | -0.1152 |
-#> |.....................| 2.305 | 1.652 | 0.03277 | 0.9255 |
-#> |.....................| 0.8442 | 1.414 | 1.345 | 1.334 |
-#> | X| 478.65806 | 92.67 | 0.002982 | 0.3238 | 0.8912 |
-#> |.....................| 10.02 | 1.652 | 0.03277 | 0.9255 |
-#> |.....................| 0.8442 | 1.414 | 1.345 | 1.334 |
-#> | 49| 476.83500 | 0.9931 | -1.426 | -0.9118 | -0.9406 |
-#> |.....................| -0.9137 | -0.06192 | -0.7543 | -0.6420 |
-#> |.....................| -0.9454 | -0.5805 | -0.6855 | -0.6013 |
-#> | U| 476.835 | 92.48 | -5.730 | -0.9445 | -0.1527 |
-#> |.....................| 2.223 | 1.627 | 0.03212 | 0.9358 |
-#> |.....................| 0.8118 | 1.562 | 1.267 | 1.361 |
-#> | X| 476.835 | 92.48 | 0.003247 | 0.2800 | 0.8584 |
-#> |.....................| 9.234 | 1.627 | 0.03212 | 0.9358 |
-#> |.....................| 0.8118 | 1.562 | 1.267 | 1.361 |
-#> | 50| 476.86775 | 0.9928 | -1.411 | -0.9513 | -0.9473 |
-#> |.....................| -0.9284 | -0.06958 | -0.7620 | -0.6396 |
-#> |.....................| -0.9520 | -0.5587 | -0.6987 | -0.5969 |
-#> | U| 476.86775 | 92.44 | -5.715 | -0.9819 | -0.1595 |
-#> |.....................| 2.208 | 1.623 | 0.03200 | 0.9376 |
-#> |.....................| 0.8060 | 1.588 | 1.252 | 1.365 |
-#> | X| 476.86775 | 92.44 | 0.003297 | 0.2725 | 0.8526 |
-#> |.....................| 9.099 | 1.623 | 0.03200 | 0.9376 |
-#> |.....................| 0.8060 | 1.588 | 1.252 | 1.365 |
-#> | 51| 476.94436 | 0.9926 | -1.403 | -0.9724 | -0.9509 |
-#> |.....................| -0.9362 | -0.07366 | -0.7662 | -0.6383 |
-#> |.....................| -0.9556 | -0.5471 | -0.7057 | -0.5945 |
-#> | U| 476.94436 | 92.42 | -5.706 | -1.002 | -0.1630 |
-#> |.....................| 2.200 | 1.621 | 0.03194 | 0.9386 |
-#> |.....................| 0.8029 | 1.602 | 1.245 | 1.368 |
-#> | X| 476.94436 | 92.42 | 0.003324 | 0.2686 | 0.8496 |
-#> |.....................| 9.028 | 1.621 | 0.03194 | 0.9386 |
-#> |.....................| 0.8029 | 1.602 | 1.245 | 1.368 |
-#> | 52| 476.64580 | 0.9959 | -1.398 | -0.9860 | -0.9532 |
-#> |.....................| -0.9413 | -0.07625 | -0.7688 | -0.6374 |
-#> |.....................| -0.9577 | -0.5396 | -0.7102 | -0.5930 |
-#> | U| 476.6458 | 92.74 | -5.701 | -1.015 | -0.1653 |
-#> |.....................| 2.195 | 1.619 | 0.03190 | 0.9392 |
-#> |.....................| 0.8011 | 1.611 | 1.240 | 1.369 |
-#> | X| 476.6458 | 92.74 | 0.003342 | 0.2661 | 0.8476 |
-#> |.....................| 8.983 | 1.619 | 0.03190 | 0.9392 |
-#> |.....................| 0.8011 | 1.611 | 1.240 | 1.369 |
-#> | F| Forward Diff. | -76.03 | 0.4748 | -3.401 | -0.5335 |
-#> |.....................| -1.858 | 1.570 | -0.1336 | 0.2990 |
-#> |.....................| 3.107 | 1.921 | -0.6340 | 0.6252 |
-#> | 53| 476.45477 | 1.000 | -1.400 | -0.9787 | -0.9521 |
-#> |.....................| -0.9380 | -0.07508 | -0.7683 | -0.6381 |
-#> |.....................| -0.9567 | -0.5427 | -0.7079 | -0.5935 |
-#> | U| 476.45477 | 93.14 | -5.704 | -1.008 | -0.1642 |
-#> |.....................| 2.199 | 1.620 | 0.03191 | 0.9387 |
-#> |.....................| 0.8019 | 1.608 | 1.243 | 1.369 |
-#> | X| 476.45477 | 93.14 | 0.003334 | 0.2674 | 0.8486 |
-#> |.....................| 9.012 | 1.620 | 0.03191 | 0.9387 |
-#> |.....................| 0.8019 | 1.608 | 1.243 | 1.369 |
-#> | F| Forward Diff. | 0.2803 | 0.4975 | -2.426 | -0.4122 |
-#> |.....................| -1.237 | 1.245 | 0.3711 | 0.1250 |
-#> |.....................| 4.601 | 1.480 | -0.5654 | 0.4236 |
-#> | 54| 476.38303 | 0.9998 | -1.401 | -0.9743 | -0.9513 |
-#> |.....................| -0.9358 | -0.07732 | -0.7690 | -0.6383 |
-#> |.....................| -0.9650 | -0.5454 | -0.7069 | -0.5943 |
-#> | U| 476.38303 | 93.10 | -5.704 | -1.004 | -0.1635 |
-#> |.....................| 2.201 | 1.618 | 0.03190 | 0.9385 |
-#> |.....................| 0.7947 | 1.604 | 1.244 | 1.368 |
-#> | X| 476.38303 | 93.10 | 0.003331 | 0.2682 | 0.8492 |
-#> |.....................| 9.032 | 1.618 | 0.03190 | 0.9385 |
-#> |.....................| 0.7947 | 1.604 | 1.244 | 1.368 |
-#> | 55| 476.22864 | 0.9983 | -1.404 | -0.9612 | -0.9491 |
-#> |.....................| -0.9291 | -0.08404 | -0.7710 | -0.6390 |
-#> |.....................| -0.9898 | -0.5533 | -0.7039 | -0.5966 |
-#> | U| 476.22864 | 92.96 | -5.707 | -0.9912 | -0.1612 |
-#> |.....................| 2.207 | 1.614 | 0.03187 | 0.9380 |
-#> |.....................| 0.7730 | 1.595 | 1.247 | 1.366 |
-#> | X| 476.22864 | 92.96 | 0.003322 | 0.2707 | 0.8511 |
-#> |.....................| 9.093 | 1.614 | 0.03187 | 0.9380 |
-#> |.....................| 0.7730 | 1.595 | 1.247 | 1.366 |
-#> | 56| 476.57199 | 0.9958 | -1.445 | -0.8532 | -0.9271 |
-#> |.....................| -0.8725 | -0.06353 | -0.7679 | -0.6421 |
-#> |.....................| -0.9751 | -0.5970 | -0.6712 | -0.6082 |
-#> | U| 476.57199 | 92.73 | -5.749 | -0.8892 | -0.1393 |
-#> |.....................| 2.264 | 1.626 | 0.03191 | 0.9357 |
-#> |.....................| 0.7859 | 1.542 | 1.282 | 1.353 |
-#> | X| 476.57199 | 92.73 | 0.003186 | 0.2913 | 0.8700 |
-#> |.....................| 9.623 | 1.626 | 0.03191 | 0.9357 |
-#> |.....................| 0.7859 | 1.542 | 1.282 | 1.353 |
-#> | F| Forward Diff. | -32.75 | 0.5399 | -1.515 | -0.3941 |
-#> |.....................| -1.151 | 1.245 | 0.03890 | 0.2327 |
-#> |.....................| 2.518 | 0.9004 | -0.2852 | 0.3306 |
-#> | 57| 476.21990 | 0.9982 | -1.515 | -0.9538 | -0.8974 |
-#> |.....................| -0.8289 | -0.1020 | -0.7526 | -0.6734 |
-#> |.....................| -0.9899 | -0.5334 | -0.6863 | -0.5986 |
-#> | U| 476.2199 | 92.95 | -5.819 | -0.9842 | -0.1096 |
-#> |.....................| 2.308 | 1.604 | 0.03214 | 0.9120 |
-#> |.....................| 0.7729 | 1.619 | 1.266 | 1.364 |
-#> | X| 476.2199 | 92.95 | 0.002972 | 0.2721 | 0.8962 |
-#> |.....................| 10.05 | 1.604 | 0.03214 | 0.9120 |
-#> |.....................| 0.7729 | 1.619 | 1.266 | 1.364 |
-#> | F| Forward Diff. | -17.29 | 0.1752 | -1.213 | 0.7541 |
-#> |.....................| 1.907 | 0.8055 | -0.1948 | -0.02118 |
-#> |.....................| 1.522 | 1.784 | 0.5826 | 0.3001 |
-#> | 58| 476.15328 | 0.9997 | -1.587 | -0.9380 | -0.8926 |
-#> |.....................| -0.8393 | -0.1057 | -0.7294 | -0.6920 |
-#> |.....................| -0.9908 | -0.5546 | -0.6943 | -0.5998 |
-#> | U| 476.15328 | 93.09 | -5.890 | -0.9693 | -0.1048 |
-#> |.....................| 2.297 | 1.602 | 0.03249 | 0.8979 |
-#> |.....................| 0.7721 | 1.593 | 1.257 | 1.362 |
-#> | X| 476.15328 | 93.09 | 0.002766 | 0.2750 | 0.9005 |
-#> |.....................| 9.947 | 1.602 | 0.03249 | 0.8979 |
-#> |.....................| 0.7721 | 1.593 | 1.257 | 1.362 |
-#> | F| Forward Diff. | 9.478 | -0.04668 | -0.07764 | 0.8847 |
-#> |.....................| 1.686 | 1.059 | 0.2200 | -0.09397 |
-#> |.....................| 3.078 | 0.7416 | 0.1570 | 0.2315 |
-#> | 59| 476.01802 | 1.000 | -1.651 | -0.9570 | -0.8992 |
-#> |.....................| -0.8607 | -0.1274 | -0.7088 | -0.7141 |
-#> |.....................| -1.015 | -0.5543 | -0.6984 | -0.6027 |
-#> | U| 476.01802 | 93.12 | -5.954 | -0.9872 | -0.1113 |
-#> |.....................| 2.276 | 1.589 | 0.03280 | 0.8811 |
-#> |.....................| 0.7512 | 1.594 | 1.253 | 1.359 |
-#> | X| 476.01802 | 93.12 | 0.002594 | 0.2715 | 0.8947 |
-#> |.....................| 9.736 | 1.589 | 0.03280 | 0.8811 |
-#> |.....................| 0.7512 | 1.594 | 1.253 | 1.359 |
-#> | 60| 476.22711 | 1.004 | -1.844 | -1.014 | -0.9185 |
-#> |.....................| -0.9244 | -0.1921 | -0.6470 | -0.7805 |
-#> |.....................| -1.085 | -0.5529 | -0.7106 | -0.6114 |
-#> | U| 476.22711 | 93.52 | -6.147 | -1.041 | -0.1307 |
-#> |.....................| 2.212 | 1.552 | 0.03373 | 0.8308 |
-#> |.....................| 0.6895 | 1.595 | 1.240 | 1.350 |
-#> | X| 476.22711 | 93.52 | 0.002140 | 0.2610 | 0.8775 |
-#> |.....................| 9.136 | 1.552 | 0.03373 | 0.8308 |
-#> |.....................| 0.6895 | 1.595 | 1.240 | 1.350 |
-#> | F| Forward Diff. | 11.37 | -0.1053 | -1.010 | 0.7448 |
-#> |.....................| 1.048 | 0.2820 | 0.2022 | -0.3140 |
-#> |.....................| 0.8239 | 0.7199 | -0.08354 | 0.05077 |
-#> | 61| 477.73164 | 0.9986 | -1.783 | -0.8482 | -1.092 |
-#> |.....................| -0.9355 | -0.2068 | -0.7199 | -0.6608 |
-#> |.....................| -1.022 | -0.4554 | -0.5612 | -0.5707 |
-#> | U| 477.73164 | 92.99 | -6.086 | -0.8845 | -0.3044 |
-#> |.....................| 2.201 | 1.543 | 0.03264 | 0.9215 |
-#> |.....................| 0.7445 | 1.714 | 1.399 | 1.393 |
-#> | X| 477.73164 | 92.99 | 0.002274 | 0.2922 | 0.7376 |
-#> |.....................| 9.035 | 1.543 | 0.03264 | 0.9215 |
-#> |.....................| 0.7445 | 1.714 | 1.399 | 1.393 |
-#> | 62| 476.07192 | 0.9962 | -1.664 | -0.9459 | -0.9184 |
-#> |.....................| -0.8684 | -0.1353 | -0.7100 | -0.7087 |
-#> |.....................| -1.016 | -0.5448 | -0.6848 | -0.5995 |
-#> | U| 476.07192 | 92.76 | -5.967 | -0.9768 | -0.1306 |
-#> |.....................| 2.268 | 1.585 | 0.03278 | 0.8852 |
-#> |.....................| 0.7503 | 1.605 | 1.267 | 1.362 |
-#> | X| 476.07192 | 92.76 | 0.002561 | 0.2735 | 0.8776 |
-#> |.....................| 9.662 | 1.585 | 0.03278 | 0.8852 |
-#> |.....................| 0.7503 | 1.605 | 1.267 | 1.362 |
-#> | 63| 476.10587 | 0.9957 | -1.654 | -0.9539 | -0.9043 |
-#> |.....................| -0.8630 | -0.1295 | -0.7092 | -0.7126 |
-#> |.....................| -1.015 | -0.5521 | -0.6949 | -0.6019 |
-#> | U| 476.10587 | 92.72 | -5.958 | -0.9843 | -0.1164 |
-#> |.....................| 2.274 | 1.588 | 0.03280 | 0.8822 |
-#> |.....................| 0.7508 | 1.596 | 1.257 | 1.360 |
-#> | X| 476.10587 | 92.72 | 0.002586 | 0.2720 | 0.8901 |
-#> |.....................| 9.714 | 1.588 | 0.03280 | 0.8822 |
-#> |.....................| 0.7508 | 1.596 | 1.257 | 1.360 |
-#> | 64| 476.02413 | 0.9981 | -1.651 | -0.9568 | -0.8993 |
-#> |.....................| -0.8609 | -0.1274 | -0.7088 | -0.7140 |
-#> |.....................| -1.015 | -0.5544 | -0.6984 | -0.6027 |
-#> | U| 476.02413 | 92.94 | -5.954 | -0.9870 | -0.1114 |
-#> |.....................| 2.276 | 1.589 | 0.03280 | 0.8812 |
-#> |.....................| 0.7511 | 1.593 | 1.253 | 1.359 |
-#> | X| 476.02413 | 92.94 | 0.002594 | 0.2715 | 0.8946 |
-#> |.....................| 9.735 | 1.589 | 0.03280 | 0.8812 |
-#> |.....................| 0.7511 | 1.593 | 1.253 | 1.359 |
-#> | 65| 476.01367 | 0.9993 | -1.651 | -0.9569 | -0.8992 |
-#> |.....................| -0.8608 | -0.1274 | -0.7088 | -0.7141 |
-#> |.....................| -1.015 | -0.5543 | -0.6984 | -0.6027 |
-#> | U| 476.01367 | 93.05 | -5.954 | -0.9871 | -0.1114 |
-#> |.....................| 2.276 | 1.589 | 0.03280 | 0.8812 |
-#> |.....................| 0.7512 | 1.594 | 1.253 | 1.359 |
-#> | X| 476.01367 | 93.05 | 0.002594 | 0.2715 | 0.8946 |
-#> |.....................| 9.736 | 1.589 | 0.03280 | 0.8812 |
-#> |.....................| 0.7512 | 1.594 | 1.253 | 1.359 |
-#> | F| Forward Diff. | -0.2880 | -0.1104 | -1.088 | 0.7255 |
-#> |.....................| 0.9655 | -0.09765 | 0.02713 | -0.4308 |
-#> |.....................| 1.898 | 0.6709 | -0.08067 | 0.06084 |
-#> | 66| 476.01068 | 0.9993 | -1.651 | -0.9566 | -0.8994 |
-#> |.....................| -0.8610 | -0.1274 | -0.7088 | -0.7139 |
-#> |.....................| -1.015 | -0.5545 | -0.6983 | -0.6027 |
-#> | U| 476.01068 | 93.06 | -5.954 | -0.9868 | -0.1116 |
-#> |.....................| 2.276 | 1.589 | 0.03280 | 0.8813 |
-#> |.....................| 0.7507 | 1.593 | 1.253 | 1.359 |
-#> | X| 476.01068 | 93.06 | 0.002595 | 0.2715 | 0.8944 |
-#> |.....................| 9.733 | 1.589 | 0.03280 | 0.8813 |
-#> |.....................| 0.7507 | 1.593 | 1.253 | 1.359 |
-#> | 67| 476.00249 | 0.9996 | -1.651 | -0.9556 | -0.9000 |
-#> |.....................| -0.8619 | -0.1273 | -0.7089 | -0.7136 |
-#> |.....................| -1.017 | -0.5551 | -0.6983 | -0.6027 |
-#> | U| 476.00249 | 93.08 | -5.954 | -0.9860 | -0.1122 |
-#> |.....................| 2.275 | 1.589 | 0.03280 | 0.8815 |
-#> |.....................| 0.7493 | 1.593 | 1.253 | 1.359 |
-#> | X| 476.00249 | 93.08 | 0.002595 | 0.2717 | 0.8939 |
-#> |.....................| 9.725 | 1.589 | 0.03280 | 0.8815 |
-#> |.....................| 0.7493 | 1.593 | 1.253 | 1.359 |
-#> | 68| 475.98648 | 0.9997 | -1.654 | -0.9518 | -0.9062 |
-#> |.....................| -0.8643 | -0.1288 | -0.7101 | -0.7095 |
-#> |.....................| -1.019 | -0.5521 | -0.6956 | -0.6031 |
-#> | U| 475.98648 | 93.09 | -5.957 | -0.9823 | -0.1183 |
-#> |.....................| 2.272 | 1.589 | 0.03278 | 0.8846 |
-#> |.....................| 0.7477 | 1.596 | 1.256 | 1.359 |
-#> | X| 475.98648 | 93.09 | 0.002587 | 0.2724 | 0.8884 |
-#> |.....................| 9.702 | 1.589 | 0.03278 | 0.8846 |
-#> |.....................| 0.7477 | 1.596 | 1.256 | 1.359 |
-#> | 69| 475.97179 | 0.9994 | -1.666 | -0.9399 | -0.9282 |
-#> |.....................| -0.8710 | -0.1347 | -0.7147 | -0.6948 |
-#> |.....................| -1.020 | -0.5387 | -0.6854 | -0.6045 |
-#> | U| 475.97179 | 93.06 | -5.969 | -0.9711 | -0.1404 |
-#> |.....................| 2.266 | 1.585 | 0.03271 | 0.8957 |
-#> |.....................| 0.7463 | 1.612 | 1.267 | 1.357 |
-#> | X| 475.97179 | 93.06 | 0.002557 | 0.2747 | 0.8690 |
-#> |.....................| 9.637 | 1.585 | 0.03271 | 0.8957 |
-#> |.....................| 0.7463 | 1.612 | 1.267 | 1.357 |
-#> | F| Forward Diff. | 1.543 | -0.1187 | -0.09427 | 0.04746 |
-#> |.....................| 0.7019 | 0.1743 | 0.004057 | -0.1664 |
-#> |.....................| 1.824 | 1.487 | 0.8060 | -0.1087 |
-#> | 70| 475.93640 | 0.9984 | -1.664 | -0.9398 | -0.9470 |
-#> |.....................| -0.8662 | -0.1315 | -0.7271 | -0.6595 |
-#> |.....................| -1.030 | -0.5499 | -0.6986 | -0.5913 |
-#> | U| 475.9364 | 92.96 | -5.967 | -0.9710 | -0.1592 |
-#> |.....................| 2.270 | 1.587 | 0.03253 | 0.9225 |
-#> |.....................| 0.7382 | 1.599 | 1.253 | 1.371 |
-#> | X| 475.9364 | 92.96 | 0.002561 | 0.2747 | 0.8529 |
-#> |.....................| 9.682 | 1.587 | 0.03253 | 0.9225 |
-#> |.....................| 0.7382 | 1.599 | 1.253 | 1.371 |
-#> | F| Forward Diff. | -18.02 | -0.07507 | -0.1675 | -0.4306 |
-#> |.....................| 0.8222 | -0.4249 | -0.3576 | -0.06909 |
-#> |.....................| -0.1553 | 0.7789 | -0.06902 | 0.4423 |
-#> | 71| 475.93449 | 0.9995 | -1.655 | -0.9484 | -0.9330 |
-#> |.....................| -0.8784 | -0.1258 | -0.7357 | -0.6330 |
-#> |.....................| -1.033 | -0.5716 | -0.6758 | -0.5988 |
-#> | U| 475.93449 | 93.07 | -5.959 | -0.9791 | -0.1451 |
-#> |.....................| 2.258 | 1.590 | 0.03240 | 0.9426 |
-#> |.....................| 0.7351 | 1.573 | 1.277 | 1.363 |
-#> | X| 475.93449 | 93.07 | 0.002583 | 0.2731 | 0.8649 |
-#> |.....................| 9.566 | 1.590 | 0.03240 | 0.9426 |
-#> |.....................| 0.7351 | 1.573 | 1.277 | 1.363 |
-#> | F| Forward Diff. | -1.432 | -0.03245 | -0.4539 | -0.04331 |
-#> |.....................| 0.5695 | -0.03993 | -0.2223 | 0.1396 |
-#> |.....................| -0.3709 | -0.08203 | 1.409 | 0.03273 |
-#> | 72| 475.92305 | 1.001 | -1.648 | -0.9418 | -0.9189 |
-#> |.....................| -0.8867 | -0.1240 | -0.7358 | -0.6284 |
-#> |.....................| -1.035 | -0.5652 | -0.6857 | -0.6066 |
-#> | U| 475.92305 | 93.18 | -5.952 | -0.9729 | -0.1311 |
-#> |.....................| 2.250 | 1.591 | 0.03240 | 0.9461 |
-#> |.....................| 0.7335 | 1.580 | 1.266 | 1.355 |
-#> | X| 475.92305 | 93.18 | 0.002602 | 0.2743 | 0.8772 |
-#> |.....................| 9.486 | 1.591 | 0.03240 | 0.9461 |
-#> |.....................| 0.7335 | 1.580 | 1.266 | 1.355 |
-#> | F| Forward Diff. | 18.31 | 0.001701 | 0.03033 | 0.3531 |
-#> |.....................| 0.4204 | 0.05655 | -0.08057 | 0.1734 |
-#> |.....................| -0.4632 | 0.1099 | 0.8178 | -0.3689 |
-#> | 73| 475.91938 | 0.9986 | -1.638 | -0.9366 | -0.9070 |
-#> |.....................| -0.8945 | -0.1236 | -0.7244 | -0.6267 |
-#> |.....................| -1.037 | -0.5623 | -0.6914 | -0.6147 |
-#> | U| 475.91938 | 92.99 | -5.941 | -0.9680 | -0.1192 |
-#> |.....................| 2.242 | 1.592 | 0.03257 | 0.9474 |
-#> |.....................| 0.7320 | 1.584 | 1.260 | 1.346 |
-#> | X| 475.91938 | 92.99 | 0.002629 | 0.2753 | 0.8877 |
-#> |.....................| 9.412 | 1.592 | 0.03257 | 0.9474 |
-#> |.....................| 0.7320 | 1.584 | 1.260 | 1.346 |
-#> | F| Forward Diff. | -15.99 | 0.01876 | 0.07238 | 0.5908 |
-#> |.....................| -0.09055 | 0.2914 | -0.2119 | 0.1409 |
-#> |.....................| 0.4365 | 0.1061 | 0.4376 | -0.5157 |
-#> | 74| 475.91938 | 0.9986 | -1.638 | -0.9366 | -0.9070 |
-#> |.....................| -0.8945 | -0.1236 | -0.7244 | -0.6267 |
-#> |.....................| -1.037 | -0.5623 | -0.6914 | -0.6147 |
-#> | U| 475.91938 | 92.99 | -5.941 | -0.9680 | -0.1192 |
-#> |.....................| 2.242 | 1.592 | 0.03257 | 0.9474 |
-#> |.....................| 0.7320 | 1.584 | 1.260 | 1.346 |
-#> | X| 475.91938 | 92.99 | 0.002629 | 0.2753 | 0.8877 |
-#> |.....................| 9.412 | 1.592 | 0.03257 | 0.9474 |
-#> |.....................| 0.7320 | 1.584 | 1.260 | 1.346 |
-#> calculating covariance matrix
-#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
-#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#> F: Forward difference gradient approximation
-#> C: Central difference gradient approximation
-#> M: Mixed forward and central difference gradient approximation
-#> Unscaled parameters for Omegas=chol(solve(omega));
-#> Diagonals are transformed, as specified by foceiControl(diagXform=)
-#> |-----+---------------+-----------+-----------+-----------+-----------|
-#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
-#> |.....................| log_k2 | g_qlogis | sigma_low | rsd_high |
-#> |.....................| o1 | o2 | o3 | o4 |
-#> |.....................| o5 | o6 |...........|...........|
-#> | 1| 495.80376 | 1.000 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
-#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
-#> |.....................| -0.8749 | -0.8675 |...........|...........|
-#> | U| 495.80376 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | X| 495.80376 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | G| Gill Diff. | 40.10 | 2.344 | -0.09792 | 0.01304 |
-#> |.....................| -0.4854 | 0.6353 | -29.93 | -20.00 |
-#> |.....................| 1.261 | 9.993 | -12.68 | -0.7774 |
-#> |.....................| 8.106 | -12.55 |...........|...........|
-#> | 2| 2936.2793 | 0.3119 | -1.040 | -0.9093 | -0.9382 |
-#> |.....................| -0.9801 | -0.8941 | -0.3619 | -0.5483 |
-#> |.....................| -0.8992 | -1.046 | -0.6506 | -0.8594 |
-#> |.....................| -1.014 | -0.6521 |...........|...........|
-#> | U| 2936.2793 | 28.54 | -5.229 | -0.8860 | -2.190 |
-#> |.....................| -4.622 | 0.4539 | 1.041 | 0.06759 |
-#> |.....................| 0.7138 | 0.7431 | 1.443 | 0.9756 |
-#> |.....................| 0.7388 | 1.478 |...........|...........|
-#> | X| 2936.2793 | 28.54 | 0.005360 | 0.2919 | 0.1119 |
-#> |.....................| 0.009832 | 0.6116 | 1.041 | 0.06759 |
-#> |.....................| 0.7138 | 0.7431 | 1.443 | 0.9756 |
-#> |.....................| 0.7388 | 1.478 |...........|...........|
-#> | 3| 515.54714 | 0.9312 | -1.004 | -0.9108 | -0.9380 |
-#> |.....................| -0.9876 | -0.8843 | -0.8242 | -0.8571 |
-#> |.....................| -0.8797 | -0.8912 | -0.8464 | -0.8714 |
-#> |.....................| -0.8888 | -0.8460 |...........|...........|
-#> | U| 515.54714 | 85.19 | -5.193 | -0.8873 | -2.190 |
-#> |.....................| -4.630 | 0.4584 | 0.8493 | 0.05868 |
-#> |.....................| 0.7280 | 0.8815 | 1.211 | 0.9641 |
-#> |.....................| 0.8462 | 1.242 |...........|...........|
-#> | X| 515.54714 | 85.19 | 0.005557 | 0.2917 | 0.1119 |
-#> |.....................| 0.009758 | 0.6126 | 0.8493 | 0.05868 |
-#> |.....................| 0.7280 | 0.8815 | 1.211 | 0.9641 |
-#> |.....................| 0.8462 | 1.242 |...........|...........|
-#> | 4| 501.46574 | 0.9922 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9884 | -0.8833 | -0.8697 | -0.8876 |
-#> |.....................| -0.8778 | -0.8761 | -0.8657 | -0.8726 |
-#> |.....................| -0.8765 | -0.8650 |...........|...........|
-#> | U| 501.46574 | 90.77 | -5.189 | -0.8874 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8304 | 0.05781 |
-#> |.....................| 0.7294 | 0.8952 | 1.188 | 0.9629 |
-#> |.....................| 0.8568 | 1.219 |...........|...........|
-#> | X| 501.46574 | 90.77 | 0.005577 | 0.2916 | 0.1119 |
-#> |.....................| 0.009751 | 0.6127 | 0.8304 | 0.05781 |
-#> |.....................| 0.7294 | 0.8952 | 1.188 | 0.9629 |
-#> |.....................| 0.8568 | 1.219 |...........|...........|
-#> | 5| 501.84206 | 0.9992 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9884 | -0.8832 | -0.8749 | -0.8911 |
-#> |.....................| -0.8776 | -0.8743 | -0.8679 | -0.8727 |
-#> |.....................| -0.8751 | -0.8673 |...........|...........|
-#> | U| 501.84206 | 91.41 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8283 | 0.05771 |
-#> |.....................| 0.7296 | 0.8967 | 1.185 | 0.9628 |
-#> |.....................| 0.8580 | 1.216 |...........|...........|
-#> | X| 501.84206 | 91.41 | 0.005579 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8283 | 0.05771 |
-#> |.....................| 0.7296 | 0.8967 | 1.185 | 0.9628 |
-#> |.....................| 0.8580 | 1.216 |...........|...........|
-#> | 6| 501.90183 | 0.9999 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8914 |
-#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
-#> |.....................| -0.8749 | -0.8675 |...........|...........|
-#> | U| 501.90183 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05770 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | X| 501.90183 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05770 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | 7| 501.90808 | 1.000 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
-#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
-#> |.....................| -0.8749 | -0.8675 |...........|...........|
-#> | U| 501.90808 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | X| 501.90808 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | 8| 501.90873 | 1.000 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
-#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
-#> |.....................| -0.8749 | -0.8675 |...........|...........|
-#> | U| 501.90873 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | X| 501.90873 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | 9| 501.90880 | 1.000 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
-#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
-#> |.....................| -0.8749 | -0.8675 |...........|...........|
-#> | U| 501.9088 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | X| 501.9088 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | 10| 501.90881 | 1.000 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
-#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
-#> |.....................| -0.8749 | -0.8675 |...........|...........|
-#> | U| 501.90881 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | X| 501.90881 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | 11| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
-#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
-#> |.....................| -0.8749 | -0.8675 |...........|...........|
-#> | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | X| 501.90882 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | 12| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
-#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
-#> |.....................| -0.8749 | -0.8675 |...........|...........|
-#> | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | X| 501.90882 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | 13| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
-#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
-#> |.....................| -0.8749 | -0.8675 |...........|...........|
-#> | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | X| 501.90882 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | 14| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
-#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
-#> |.....................| -0.8749 | -0.8675 |...........|...........|
-#> | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | X| 501.90882 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | 15| 501.90882 | 1.000 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
-#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
-#> |.....................| -0.8749 | -0.8675 |...........|...........|
-#> | U| 501.90882 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | X| 501.90882 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | 16| 501.90883 | 1.000 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
-#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
-#> |.....................| -0.8749 | -0.8675 |...........|...........|
-#> | U| 501.90883 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | X| 501.90883 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | 17| 501.90883 | 1.000 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
-#> |.....................| -0.8776 | -0.8741 | -0.8681 | -0.8727 |
-#> |.....................| -0.8749 | -0.8675 |...........|...........|
-#> | U| 501.90883 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> | X| 501.90883 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
-#> |.....................| 0.7296 | 0.8969 | 1.185 | 0.9628 |
-#> |.....................| 0.8582 | 1.216 |...........|...........|
-#> calculating covariance matrix
-#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
+#> cmt(A1);
+#> rx_expr_6~ETA[1]+THETA[1];
+#> parent(0)=rx_expr_6;
+#> rx_expr_7~ETA[4]+THETA[4];
+#> rx_expr_8~ETA[5]+THETA[5];
+#> rx_expr_14~exp(-(rx_expr_8));
+#> rx_expr_16~t*rx_expr_14;
+#> rx_expr_17~1+rx_expr_16;
+#> rx_expr_19~rx_expr_7-(rx_expr_8);
+#> rx_expr_21~exp(rx_expr_19);
+#> d/dt(parent)=-rx_expr_21*parent/(rx_expr_17);
+#> rx_expr_9~ETA[2]+THETA[2];
+#> rx_expr_11~exp(rx_expr_9);
+#> d/dt(A1)=-rx_expr_11*A1+rx_expr_21*parent*f_parent_to_A1/(rx_expr_17);
+#> rx_expr_0~CMT==2;
+#> rx_expr_1~CMT==1;
+#> rx_expr_2~1-(rx_expr_0);
+#> rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);
+#> rx_expr_3~(rx_expr_0);
+#> rx_expr_5~(rx_expr_2);
+#> rx_expr_15~rx_expr_5*(rx_expr_1);
+#> rx_lambda_~rx_expr_15+rx_expr_3;
+#> rx_hi_~rx_expr_15+rx_expr_3;
+#> rx_low_~0;
+#> rx_expr_4~A1*(rx_expr_0);
+#> rx_expr_10~parent*(rx_expr_2);
+#> rx_expr_18~rx_expr_10*(rx_expr_1);
+#> rx_pred_=(rx_expr_4+rx_expr_18)*(rx_expr_0)+(rx_expr_4+rx_expr_18)*(rx_expr_2)*(rx_expr_1);
+#> rx_expr_12~Rx_pow_di(THETA[7],2);
+#> rx_expr_13~Rx_pow_di(THETA[6],2);
+#> rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_18)*(rx_expr_0)+(rx_expr_4+rx_expr_18)*(rx_expr_2)*(rx_expr_1)),2)*rx_expr_12+rx_expr_13)*(rx_expr_0)+(rx_expr_12*Rx_pow_di(((rx_expr_4+rx_expr_18)*(rx_expr_1)),2)+rx_expr_13)*(rx_expr_2)*(rx_expr_1);
+#> parent_0=THETA[1];
+#> log_k_A1=THETA[2];
+#> f_parent_qlogis=THETA[3];
+#> log_alpha=THETA[4];
+#> log_beta=THETA[5];
+#> sigma_low=THETA[6];
+#> rsd_high=THETA[7];
+#> eta.parent_0=ETA[1];
+#> eta.log_k_A1=ETA[2];
+#> eta.f_parent_qlogis=ETA[3];
+#> eta.log_alpha=ETA[4];
+#> eta.log_beta=ETA[5];
+#> parent_0_model=rx_expr_6;
+#> k_A1=rx_expr_11;
+#> alpha=exp(rx_expr_7);
+#> beta=exp(rx_expr_8);
+#> f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
+#> tad=tad();
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 8.708 0.429 9.135#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
+#> cmt(A1);
+#> rx_expr_6~ETA[1]+THETA[1];
+#> parent(0)=rx_expr_6;
+#> rx_expr_7~ETA[4]+THETA[4];
+#> rx_expr_8~ETA[6]+THETA[6];
+#> rx_expr_9~ETA[5]+THETA[5];
+#> rx_expr_12~exp(rx_expr_7);
+#> rx_expr_13~exp(rx_expr_9);
+#> rx_expr_15~t*rx_expr_12;
+#> rx_expr_16~t*rx_expr_13;
+#> rx_expr_19~exp(-(rx_expr_8));
+#> rx_expr_21~1+rx_expr_19;
+#> rx_expr_26~1/(rx_expr_21);
+#> rx_expr_28~(rx_expr_26);
+#> rx_expr_29~1-rx_expr_28;
+#> d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_21)+exp(rx_expr_9-rx_expr_16)*(rx_expr_29))/(exp(-t*rx_expr_12)/(rx_expr_21)+exp(-t*rx_expr_13)*(rx_expr_29));
+#> rx_expr_10~ETA[2]+THETA[2];
+#> rx_expr_14~exp(rx_expr_10);
+#> d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_21)+exp(rx_expr_9-rx_expr_16)*(rx_expr_29))/(exp(-t*rx_expr_12)/(rx_expr_21)+exp(-t*rx_expr_13)*(rx_expr_29));
+#> rx_expr_0~CMT==2;
+#> rx_expr_1~CMT==1;
+#> rx_expr_2~1-(rx_expr_0);
+#> rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);
+#> rx_expr_3~(rx_expr_0);
+#> rx_expr_5~(rx_expr_2);
+#> rx_expr_20~rx_expr_5*(rx_expr_1);
+#> rx_lambda_~rx_expr_20+rx_expr_3;
+#> rx_hi_~rx_expr_20+rx_expr_3;
+#> rx_low_~0;
+#> rx_expr_4~A1*(rx_expr_0);
+#> rx_expr_11~parent*(rx_expr_2);
+#> rx_expr_24~rx_expr_11*(rx_expr_1);
+#> rx_pred_=(rx_expr_4+rx_expr_24)*(rx_expr_0)+(rx_expr_4+rx_expr_24)*(rx_expr_2)*(rx_expr_1);
+#> rx_expr_17~Rx_pow_di(THETA[8],2);
+#> rx_expr_18~Rx_pow_di(THETA[7],2);
+#> rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_24)*(rx_expr_0)+(rx_expr_4+rx_expr_24)*(rx_expr_2)*(rx_expr_1)),2)*rx_expr_17+rx_expr_18)*(rx_expr_0)+(rx_expr_17*Rx_pow_di(((rx_expr_4+rx_expr_24)*(rx_expr_1)),2)+rx_expr_18)*(rx_expr_2)*(rx_expr_1);
+#> parent_0=THETA[1];
+#> log_k_A1=THETA[2];
+#> f_parent_qlogis=THETA[3];
+#> log_k1=THETA[4];
+#> log_k2=THETA[5];
+#> g_qlogis=THETA[6];
+#> sigma_low=THETA[7];
+#> rsd_high=THETA[8];
+#> eta.parent_0=ETA[1];
+#> eta.log_k_A1=ETA[2];
+#> eta.f_parent_qlogis=ETA[3];
+#> eta.log_k1=ETA[4];
+#> eta.log_k2=ETA[5];
+#> eta.g_qlogis=ETA[6];
+#> parent_0_model=rx_expr_6;
+#> k_A1=rx_expr_14;
+#> k1=rx_expr_12;
+#> k2=rx_expr_13;
+#> f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
+#> g=1/(rx_expr_21);
+#> tad=tad();
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 18.05 0.446 18.5
# Two-component error by variable is possible with both estimation methods
# Variance by variable is supported by 'saem' and 'focei'
f_nlmixr_fomc_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "saem",
error_model = "obs_tc")
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> 1: 92.2740 -5.2361 0.2113 1.9393 -2.0029 2.8805 1.6298 0.7279 0.7192 0.4382 6.7264 0.4769 7.2363 0.6178
-#> 2: 93.1532 -5.3060 0.0602 2.0735 -2.0177 2.7365 1.5483 0.6915 0.8577 0.4163 7.5229 0.0003 8.5494 0.0006
-#> 3: 9.3232e+01 -5.5491e+00 5.1555e-02 2.4627e+00 -1.4981e+00 2.5997e+00 1.4709e+00 6.5697e-01 8.1480e-01 3.9549e-01 4.6581e+00 4.3492e-05 5.3112e+00 1.7818e-04
-#> 4: 9.3109e+01 -5.6749e+00 3.7928e-02 2.4274e+00 -1.3355e+00 2.4697e+00 1.3973e+00 6.2412e-01 7.7406e-01 3.7572e-01 3.5252e+00 9.5643e-05 4.0990e+00 4.6584e-05
-#> 5: 9.3327e+01 -5.8341e+00 -1.6798e-02 2.4024e+00 -1.2129e+00 2.3462e+00 1.3274e+00 5.9292e-01 7.3536e-01 3.5693e-01 3.3259e+00 1.6901e-05 3.5218e+00 4.0075e-05
-#> 6: 9.3449e+01 -6.0745e+00 -6.1031e-02 2.3458e+00 -1.2034e+00 2.2289e+00 1.8700e+00 5.6327e-01 6.9859e-01 3.3908e-01 2.9533e+00 6.5587e-07 3.1056e+00 2.1346e-02
-#> 7: 93.2519 -6.0564 -0.0590 2.3588 -1.1293 2.1174 1.8910 0.5351 0.6637 0.3221 2.8211 0.0082 2.8507 0.0251
-#> 8: 93.0343 -5.9362 -0.0851 2.2949 -1.0760 2.0116 1.7964 0.5084 0.6305 0.3060 2.5340 0.0181 2.6368 0.0243
-#> 9: 93.1444 -6.1910 -0.1199 2.2709 -1.1077 1.9110 1.8664 0.4829 0.5990 0.2907 2.3768 0.0191 2.3601 0.0284
-#> 10: 93.2748 -6.4970 -0.1598 2.2235 -1.1034 2.1024 3.1968 0.4588 0.5690 0.2762 2.1991 0.0255 2.2790 0.0316
-#> 11: 93.4141 -6.4463 -0.1698 2.1876 -1.0890 1.9973 3.0370 0.4358 0.5406 0.2624 2.1469 0.0266 2.1681 0.0325
-#> 12: 93.4935 -6.5467 -0.1715 2.1666 -1.0952 1.8974 3.7848 0.4141 0.5135 0.2493 1.9137 0.0292 2.0701 0.0331
-#> 13: 93.6730 -6.4173 -0.1752 2.1387 -1.0753 1.8026 3.7278 0.3934 0.4879 0.2368 1.9084 0.0272 2.0289 0.0369
-#> 14: 93.5721 -6.2146 -0.1738 2.1854 -1.0740 2.0902 3.5415 0.3737 0.4635 0.2250 1.9861 0.0239 2.0052 0.0347
-#> 15: 93.6638 -6.3103 -0.1693 2.1828 -1.0327 2.0702 3.3644 0.3720 0.4403 0.2137 1.8947 0.0247 1.9865 0.0375
-#> 16: 93.4156 -6.0957 -0.1666 2.1755 -1.0737 2.6391 3.1962 0.3691 0.4183 0.2030 1.9089 0.0241 2.0159 0.0360
-#> 17: 93.4257 -6.1494 -0.1705 2.1664 -1.0589 2.5072 3.0714 0.3697 0.3974 0.1929 1.8253 0.0268 2.0391 0.0301
-#> 18: 93.5593 -6.1696 -0.1780 2.1670 -1.0129 2.3818 3.7604 0.3725 0.3775 0.1832 1.8529 0.0304 1.8784 0.0298
-#> 19: 93.5027 -6.2960 -0.1791 2.1543 -1.0325 2.6052 4.5501 0.3942 0.3586 0.1741 1.8082 0.0328 1.8654 0.0335
-#> 20: 93.4480 -6.4389 -0.1776 2.1772 -1.0485 2.6607 5.1881 0.3894 0.3554 0.1654 1.8032 0.0322 1.9018 0.0312
-#> 21: 93.6411 -6.2893 -0.1750 2.1759 -1.0350 2.5276 4.9287 0.3817 0.3386 0.1605 1.8533 0.0264 1.9317 0.0301
-#> 22: 93.9320 -6.1469 -0.1750 2.1910 -1.0527 2.4013 4.6823 0.3720 0.3642 0.1525 1.8949 0.0273 1.8977 0.0310
-#> 23: 93.6074 -6.3097 -0.1502 2.2111 -1.0155 2.2812 4.6643 0.3832 0.4236 0.1449 1.7075 0.0340 1.7367 0.0337
-#> 24: 93.7425 -6.4598 -0.1446 2.2249 -1.0011 2.7056 6.0597 0.3949 0.4075 0.1479 1.7180 0.0360 1.7786 0.0302
-#> 25: 94.1822 -6.3674 -0.1496 2.1917 -1.0011 3.4724 5.7567 0.3897 0.4355 0.1465 1.6977 0.0356 1.8373 0.0328
-#> 26: 94.0446 -6.3235 -0.1496 2.2004 -1.0414 3.5912 5.4688 0.3897 0.4438 0.1405 1.6765 0.0344 1.8262 0.0355
-#> 27: 94.4454 -6.2148 -0.1370 2.2360 -1.0220 4.6238 5.1954 0.3702 0.4216 0.1335 1.7209 0.0349 1.7702 0.0336
-#> 28: 94.1837 -6.1301 -0.1376 2.2253 -1.0261 4.3926 4.9356 0.3644 0.4005 0.1345 1.6968 0.0290 1.8540 0.0316
-#> 29: 94.0681 -5.8726 -0.1440 2.2237 -1.0400 4.1730 4.6889 0.3750 0.4055 0.1464 1.7084 0.0329 1.7379 0.0407
-#> 30: 94.5866 -5.9141 -0.1416 2.2045 -1.0350 3.9896 4.4544 0.3770 0.3852 0.1769 1.6009 0.0326 1.8718 0.0350
-#> 31: 94.1640 -6.0370 -0.1382 2.2140 -1.0189 5.4942 4.2317 0.3759 0.3809 0.1680 1.5887 0.0386 1.8918 0.0286
-#> 32: 94.5952 -5.8349 -0.1373 2.2374 -1.0283 5.2195 4.0201 0.3745 0.3835 0.1636 1.6451 0.0375 1.7459 0.0382
-#> 33: 95.0936 -5.8145 -0.1356 2.2325 -1.0037 4.9634 3.8191 0.3614 0.3644 0.1677 1.6313 0.0414 1.6809 0.0399
-#> 34: 94.7033 -5.8916 -0.1208 2.2687 -0.9896 5.4935 3.6281 0.3741 0.3536 0.1701 1.5923 0.0376 1.2962 0.0644
-#> 35: 94.8127 -5.9839 -0.1122 2.2615 -0.9983 5.2188 3.7348 0.3817 0.3661 0.1712 1.5848 0.0313 1.1651 0.0752
-#> 36: 94.6798 -5.8938 -0.1203 2.2441 -1.0009 4.9578 3.5480 0.3835 0.3478 0.1708 1.5525 0.0313 1.1527 0.0712
-#> 37: 93.9759 -5.8017 -0.1274 2.2346 -1.0021 4.7100 3.3706 0.3868 0.3350 0.1622 1.6278 0.0256 1.7263 0.0372
-#> 38: 94.2013 -5.8617 -0.1206 2.2570 -1.0125 4.4745 3.2021 0.3754 0.3520 0.1574 1.5396 0.0290 1.0653 0.0746
-#> 39: 94.1314 -5.7645 -0.1261 2.2381 -1.0361 4.2507 3.0420 0.3804 0.3521 0.1543 1.6280 0.0267 1.1461 0.0755
-#> 40: 93.7934 -5.8654 -0.1206 2.2417 -1.0503 4.0382 2.8899 0.3624 0.3413 0.1747 1.6231 0.0239 1.5698 0.0513
-#> 41: 93.8756 -6.0150 -0.1171 2.2581 -1.0313 3.8363 3.3629 0.3809 0.3369 0.1944 1.6461 0.0217 1.7762 0.0345
-#> 42: 94.0644 -5.9723 -0.1136 2.2769 -1.0295 3.6445 3.2171 0.3702 0.3394 0.1920 1.5035 0.0416 1.5148 0.0475
-#> 43: 93.7394 -5.9927 -0.1233 2.2650 -1.0374 3.4622 3.0562 0.3735 0.3370 0.1824 1.6022 0.0379 1.5080 0.0468
-#> 44: 93.5428 -5.9784 -0.1187 2.2780 -1.0279 3.2891 2.9495 0.3732 0.3289 0.1742 1.5456 0.0471 1.4361 0.0517
-#> 45: 93.2885 -5.9836 -0.1273 2.2650 -1.0100 3.1247 3.2884 0.3768 0.3719 0.1655 1.6579 0.0336 1.4031 0.0585
-#> 46: 93.4080 -5.9261 -0.1371 2.2513 -1.0159 3.4180 3.1630 0.3709 0.3762 0.1711 1.7365 0.0269 1.4612 0.0530
-#> 47: 93.4548 -5.8101 -0.1372 2.2650 -1.0058 3.2471 3.0049 0.3703 0.3921 0.1797 1.7161 0.0300 1.4813 0.0524
-#> 48: 93.1829 -5.6877 -0.1391 2.2594 -1.0035 3.0848 2.8546 0.3690 0.3901 0.1707 1.7558 0.0292 1.5856 0.0487
-#> 49: 93.1860 -5.8153 -0.1349 2.2793 -0.9905 2.9305 2.7119 0.3619 0.3877 0.1690 1.7255 0.0299 1.6143 0.0465
-#> 50: 93.5597 -5.7551 -0.1334 2.2669 -0.9808 2.7840 2.5763 0.3652 0.3795 0.1716 1.6690 0.0290 1.4895 0.0536
-#> 51: 93.5952 -5.8089 -0.1358 2.2626 -1.0100 2.6448 2.4475 0.3640 0.4246 0.1630 1.5892 0.0344 1.3958 0.0604
-#> 52: 93.3111 -5.9181 -0.1323 2.2489 -0.9909 2.5126 2.8739 0.3695 0.4337 0.1549 1.5200 0.0329 1.2246 0.0685
-#> 53: 93.4921 -6.0837 -0.1307 2.2513 -1.0031 2.3869 3.6029 0.3678 0.4363 0.1682 1.4683 0.0336 1.2917 0.0665
-#> 54: 93.4808 -6.2019 -0.1488 2.2068 -1.0207 2.2676 4.1833 0.3952 0.4145 0.1598 1.6478 0.0325 1.2418 0.0659
-#> 55: 93.5453 -6.2747 -0.1411 2.2297 -1.0122 2.1542 4.5107 0.3941 0.4044 0.1556 1.5685 0.0358 1.3236 0.0654
-#> 56: 94.0212 -6.2713 -0.1355 2.2228 -1.0205 2.0465 5.1718 0.3901 0.4101 0.1516 1.5568 0.0341 1.1952 0.0736
-#> 57: 93.7155 -6.2511 -0.1574 2.1899 -1.0374 1.9442 4.9132 0.3991 0.3974 0.1442 1.5528 0.0364 1.5497 0.0485
-#> 58: 93.9064 -6.2021 -0.1543 2.1935 -1.0277 1.8470 4.6676 0.3935 0.3944 0.1458 1.5590 0.0354 1.3512 0.0613
-#> 59: 93.9059 -6.3971 -0.1550 2.1899 -1.0124 1.7546 5.8885 0.3925 0.3943 0.1446 1.5641 0.0373 1.4293 0.0550
-#> 60: 93.8600 -6.2474 -0.1552 2.1978 -0.9930 1.7661 5.5941 0.3905 0.4078 0.1532 1.5235 0.0364 1.5442 0.0477
-#> 61: 93.8936 -6.3077 -0.1568 2.2022 -1.0084 1.7122 5.3507 0.3946 0.4146 0.1455 1.5154 0.0342 1.3664 0.0587
-#> 62: 93.6133 -6.1446 -0.1473 2.2277 -1.0195 1.6266 5.0832 0.3794 0.4254 0.1383 1.5586 0.0330 1.1663 0.0705
-#> 63: 93.5549 -6.3005 -0.1437 2.2302 -1.0096 1.5452 5.0969 0.3651 0.4262 0.1349 1.5730 0.0323 1.2501 0.0668
-#> 64: 93.3212 -6.1190 -0.1428 2.2309 -1.0005 1.4826 4.8421 0.3661 0.4181 0.1443 1.6657 0.0259 1.3409 0.0627
-#> 65: 93.2534 -5.9614 -0.1492 2.2310 -0.9865 1.4084 4.6000 0.3735 0.4186 0.1695 1.6883 0.0235 1.4446 0.0563
-#> 66: 93.3429 -5.9786 -0.1401 2.2198 -0.9934 1.3380 4.3700 0.3807 0.4094 0.1610 1.6697 0.0270 1.1164 0.0778
-#> 67: 93.5657 -6.2158 -0.1405 2.2326 -0.9891 1.2711 4.4653 0.3827 0.4063 0.1530 1.5851 0.0316 1.3581 0.0590
-#> 68: 93.4898 -5.9763 -0.1375 2.2431 -0.9837 1.2076 4.2420 0.3771 0.4127 0.1453 1.6134 0.0325 1.1459 0.0744
-#> 69: 93.4995 -6.1375 -0.1412 2.2423 -1.0003 1.3178 4.3907 0.3746 0.4202 0.1403 1.6223 0.0304 1.3354 0.0608
-#> 70: 93.4369 -6.1690 -0.1395 2.2472 -1.0047 1.6239 4.5654 0.3793 0.4087 0.1400 1.6317 0.0349 1.4812 0.0494
-#> 71: 93.4041 -6.3637 -0.1489 2.2348 -1.0125 1.5427 5.3897 0.3603 0.3883 0.1330 1.5954 0.0303 1.3502 0.0612
-#> 72: 93.1755 -6.4067 -0.1441 2.2492 -0.9859 1.4656 6.3554 0.3423 0.3688 0.1388 1.6135 0.0287 1.6402 0.0435
-#> 73: 93.0023 -6.7319 -0.1526 2.2550 -0.9800 1.3923 7.6438 0.3341 0.3504 0.1462 1.5491 0.0312 1.3997 0.0554
-#> 74: 92.8952 -6.7189 -0.1530 2.2393 -0.9936 1.5478 7.2616 0.3344 0.3329 0.1503 1.5626 0.0326 1.3340 0.0634
-#> 75: 93.0812 -6.8015 -0.1546 2.2265 -0.9751 1.4704 8.9537 0.3501 0.3162 0.1438 1.6019 0.0268 1.1663 0.0715
-#> 76: 93.1080 -6.1728 -0.1515 2.2259 -1.0010 1.3969 8.5060 0.3407 0.3015 0.1398 1.6484 0.0279 1.3118 0.0637
-#> 77: 92.9248 -6.3432 -0.1573 2.2221 -0.9819 1.4456 8.0807 0.3506 0.3002 0.1442 1.5947 0.0294 1.6368 0.0407
-#> 78: 93.0194 -6.1448 -0.1611 2.2228 -0.9831 1.3733 7.6767 0.3487 0.3046 0.1369 1.6471 0.0254 1.4261 0.0529
-#> 79: 92.9378 -6.6970 -0.1593 2.2313 -0.9910 1.3046 10.0158 0.3460 0.2999 0.1386 1.6108 0.0267 1.5818 0.0420
-#> 80: 93.0293 -6.3275 -0.1579 2.2290 -0.9753 1.3191 9.5150 0.3543 0.2960 0.1490 1.6570 0.0259 1.5435 0.0431
-#> 81: 93.1417 -6.2258 -0.1607 2.2285 -0.9399 1.4131 9.0393 0.3514 0.3020 0.1415 1.6990 0.0236 1.6875 0.0364
-#> 82: 92.9115 -6.1764 -0.1555 2.2204 -0.9471 1.3424 8.5873 0.3502 0.2954 0.1540 1.6780 0.0216 1.2280 0.0687
-#> 83: 93.0528 -6.3505 -0.1559 2.2391 -0.9651 1.2753 8.1579 0.3499 0.2903 0.1706 1.6924 0.0242 1.6807 0.0465
-#> 84: 93.0032 -6.2300 -0.1596 2.2300 -0.9232 1.2115 7.9391 0.3470 0.2995 0.1858 1.7153 0.0259 1.7160 0.0406
-#> 85: 93.0518 -6.3704 -0.1434 2.2696 -0.9330 1.1510 8.3071 0.3504 0.2916 0.1765 1.7072 0.0275 1.5494 0.0490
-#> 86: 93.1344 -6.3566 -0.1424 2.2595 -0.9512 1.0934 9.2972 0.3520 0.2869 0.1677 1.6609 0.0253 1.5022 0.0508
-#> 87: 93.2468 -6.3860 -0.1449 2.2505 -0.9601 1.0387 8.8323 0.3474 0.3046 0.1593 1.6326 0.0262 1.3048 0.0626
-#> 88: 93.2286 -6.3886 -0.1466 2.2452 -0.9870 0.9868 8.3907 0.3474 0.2894 0.1513 1.6554 0.0245 1.6330 0.0376
-#> 89: 93.2892 -6.0277 -0.1469 2.2403 -0.9694 0.9375 7.9712 0.3451 0.2904 0.1438 1.6795 0.0251 1.6691 0.0365
-#> 90: 93.1766 -6.1076 -0.1460 2.2502 -0.9729 0.8906 7.5726 0.3458 0.2932 0.1481 1.6182 0.0331 1.5854 0.0401
-#> 91: 93.3300 -6.0932 -0.1559 2.2356 -0.9551 0.8461 7.1940 0.3771 0.2883 0.1512 1.6728 0.0272 1.6098 0.0401
-#> 92: 93.2470 -6.4839 -0.1592 2.2265 -1.0016 0.8038 6.8343 0.3813 0.2923 0.1597 1.7017 0.0300 1.6084 0.0423
-#> 93: 93.2272 -6.2819 -0.1612 2.2356 -1.0073 0.7636 6.4926 0.3849 0.2816 0.1722 1.5422 0.0420 1.4772 0.0493
-#> 94: 93.1441 -6.1805 -0.1571 2.2274 -1.0106 0.7254 6.1680 0.3878 0.2811 0.1636 1.5998 0.0403 1.4386 0.0535
-#> 95: 92.7747 -6.2274 -0.1709 2.2191 -1.0042 0.6891 5.8596 0.3909 0.2905 0.1591 1.7184 0.0282 1.6086 0.0519
-#> 96: 92.9830 -6.3291 -0.1603 2.2297 -1.0053 0.6547 5.5666 0.3774 0.2850 0.1512 1.7427 0.0284 1.7548 0.0384
-#> 97: 92.9302 -6.3943 -0.1608 2.2211 -0.9643 0.6219 5.2882 0.3817 0.2828 0.1589 1.7080 0.0295 1.7102 0.0398
-#> 98: 92.7704 -6.3554 -0.1679 2.1894 -0.9736 0.5908 5.4196 0.3864 0.2813 0.1560 1.7234 0.0240 1.2269 0.0685
-#> 99: 92.7596 -6.2138 -0.1687 2.2088 -0.9744 0.5613 5.1486 0.3939 0.2983 0.1482 1.6732 0.0250 1.5718 0.0497
-#> 100: 92.6608 -6.2662 -0.1687 2.2180 -1.0107 0.5332 5.1471 0.3939 0.2927 0.1408 1.8434 0.0232 1.7316 0.0413
-#> 101: 92.7024 -6.1288 -0.1643 2.2096 -1.0032 0.5066 4.8898 0.3934 0.2807 0.1349 1.7055 0.0253 1.5883 0.0439
-#> 102: 92.8885 -6.3175 -0.1697 2.2208 -0.9967 0.4812 4.9699 0.3888 0.2912 0.1371 1.7311 0.0284 1.6455 0.0402
-#> 103: 92.9487 -6.2493 -0.1677 2.1861 -0.9874 0.4572 4.9605 0.3907 0.2844 0.1626 1.6898 0.0279 1.6252 0.0409
-#> 104: 92.9633 -6.2534 -0.1731 2.1797 -0.9790 0.4343 4.8675 0.4015 0.2784 0.1758 1.6516 0.0268 1.6901 0.0360
-#> 105: 93.0513 -6.0656 -0.1748 2.1802 -0.9876 0.4126 4.6241 0.4041 0.2801 0.1670 1.6863 0.0269 1.6208 0.0366
-#> 106: 93.0600 -6.2162 -0.1860 2.1783 -0.9702 0.4570 4.5504 0.4451 0.2761 0.1586 1.6859 0.0274 1.5273 0.0437
-#> 107: 93.1856 -6.1826 -0.1801 2.1796 -0.9813 0.4341 4.7286 0.4517 0.2807 0.1575 1.6268 0.0341 1.2548 0.0630
-#> 108: 93.2401 -6.2943 -0.1783 2.1808 -0.9806 0.4124 5.3114 0.4502 0.2786 0.1496 1.6676 0.0291 1.4627 0.0484
-#> 109: 93.0988 -6.1669 -0.1655 2.2018 -0.9682 0.4036 5.0458 0.4302 0.3195 0.1435 1.6524 0.0295 1.5759 0.0447
-#> 110: 93.2129 -6.3104 -0.1748 2.1876 -0.9837 0.4825 5.6408 0.4430 0.3306 0.1595 1.6068 0.0326 1.6295 0.0388
-#> 111: 93.1292 -5.9096 -0.1740 2.1932 -0.9674 0.5262 5.3587 0.4444 0.3233 0.1646 1.5777 0.0334 1.6590 0.0374
-#> 112: 93.2723 -5.8153 -0.1706 2.1920 -0.9761 0.5109 5.0908 0.4486 0.3180 0.1634 1.6128 0.0321 1.6551 0.0396
-#> 113: 93.3171 -6.0458 -0.1666 2.1879 -0.9740 0.5530 4.8362 0.4508 0.3303 0.1607 1.5862 0.0325 1.2705 0.0643
-#> 114: 93.1717 -5.9615 -0.1655 2.1638 -0.9773 0.5254 4.5944 0.4472 0.3283 0.1657 1.6307 0.0287 1.2995 0.0677
-#> 115: 93.1917 -6.0856 -0.1592 2.1576 -1.0269 0.4991 4.3647 0.4349 0.3464 0.1574 1.6430 0.0354 1.2812 0.0714
-#> 116: 93.1287 -5.9635 -0.1609 2.1640 -0.9985 0.4741 4.1465 0.4237 0.3408 0.1495 1.6910 0.0269 1.2338 0.0738
-#> 117: 93.1184 -5.8768 -0.1603 2.1842 -0.9557 0.4504 3.9392 0.4211 0.3293 0.1420 1.6447 0.0257 1.2680 0.0705
-#> 118: 93.2207 -5.7436 -0.1654 2.1709 -0.9816 0.4279 3.7422 0.4158 0.3298 0.1349 1.6860 0.0238 1.1436 0.0780
-#> 119: 93.3064 -5.8397 -0.1713 2.1722 -1.0093 0.4065 3.5551 0.4100 0.3429 0.1384 1.6612 0.0262 1.6491 0.0458
-#> 120: 93.2749 -5.8221 -0.1737 2.1643 -1.0166 0.3862 3.3773 0.4044 0.3305 0.1527 1.6516 0.0232 1.7832 0.0410
-#> 121: 93.1620 -5.9756 -0.1579 2.2018 -1.0007 0.3818 3.2992 0.3841 0.3433 0.1620 1.6648 0.0251 1.3408 0.0665
-#> 122: 93.2070 -6.0164 -0.1540 2.2154 -1.0196 0.4217 3.5598 0.3649 0.3436 0.1539 1.6757 0.0287 1.3019 0.0652
-#> 123: 93.1588 -5.7424 -0.1581 2.2142 -0.9985 0.5270 3.3818 0.3491 0.3584 0.1655 1.6321 0.0237 1.3494 0.0644
-#> 124: 93.1496 -5.6257 -0.1463 2.2264 -0.9767 0.5914 3.2127 0.3347 0.3738 0.1573 1.6553 0.0226 1.5964 0.0544
-#> 125: 93.0224 -5.8536 -0.1742 2.1859 -0.9939 0.6381 3.0521 0.3840 0.3692 0.1664 1.6009 0.0246 1.4169 0.0652
-#> 126: 93.0788 -5.6973 -0.1778 2.1772 -0.9574 0.6062 2.8995 0.3710 0.3630 0.1839 1.5256 0.0312 1.5566 0.0518
-#> 127: 93.1613 -5.5833 -0.1729 2.1806 -0.9588 0.5759 2.7545 0.3532 0.3464 0.1878 1.5708 0.0307 1.6405 0.0476
-#> 128: 93.2043 -5.6742 -0.1746 2.1919 -0.9814 0.7099 2.6168 0.3569 0.3422 0.1848 1.6236 0.0312 1.5066 0.0517
-#> 129: 93.1963 -5.7026 -0.1770 2.1853 -0.9814 0.6744 2.4859 0.3544 0.3390 0.1774 1.6150 0.0293 1.5712 0.0479
-#> 130: 93.1669 -5.7260 -0.1826 2.1565 -0.9959 0.6407 2.3616 0.3750 0.3249 0.1685 1.6347 0.0215 1.5556 0.0535
-#> 131: 93.0792 -5.7201 -0.1971 2.1339 -1.0057 0.7376 2.2436 0.3901 0.3086 0.1616 1.7653 0.0206 1.6640 0.0458
-#> 132: 92.8580 -5.8266 -0.1877 2.1512 -0.9940 0.7008 2.3272 0.3895 0.3161 0.1863 1.6050 0.0231 1.5123 0.0558
-#> 133: 92.8479 -5.8397 -0.1834 2.1637 -0.9815 0.7195 2.4732 0.3875 0.3060 0.1877 1.6197 0.0217 1.4131 0.0617
-#> 134: 92.9218 -5.8317 -0.1903 2.1709 -0.9903 0.6835 2.5070 0.3808 0.3147 0.1857 1.7298 0.0225 1.5493 0.0521
-#> 135: 92.7533 -5.7287 -0.1909 2.1670 -0.9674 0.6493 2.3817 0.3792 0.3156 0.1981 1.7074 0.0222 1.2776 0.0718
-#> 136: 92.7255 -5.9071 -0.1787 2.1826 -0.9826 0.6169 2.8147 0.3603 0.3172 0.1882 1.6242 0.0288 1.2313 0.0682
-#> 137: 92.7882 -5.9574 -0.1847 2.1549 -0.9848 0.5860 3.0538 0.3651 0.3206 0.1787 1.5640 0.0277 1.1609 0.0716
-#> 138: 92.8155 -5.9445 -0.1719 2.1750 -0.9838 0.5567 3.3525 0.3568 0.3390 0.1698 1.5507 0.0259 1.0634 0.0816
-#> 139: 92.9393 -6.0638 -0.1726 2.1840 -0.9888 0.5289 4.1627 0.3562 0.3453 0.1613 1.5792 0.0259 1.5189 0.0533
-#> 140: 93.0330 -6.1823 -0.1726 2.1984 -0.9850 0.5024 4.3153 0.3562 0.3506 0.1533 1.6467 0.0248 1.5734 0.0459
-#> 141: 93.0651 -6.1847 -0.1702 2.2183 -0.9749 0.4773 4.1656 0.3604 0.3626 0.1527 1.5887 0.0272 1.5613 0.0433
-#> 142: 93.0350 -5.9581 -0.1641 2.2133 -0.9707 0.4535 3.9574 0.3642 0.3541 0.1662 1.5904 0.0246 1.4665 0.0556
-#> 143: 92.9215 -5.7798 -0.1642 2.2269 -0.9665 0.5015 3.7595 0.3665 0.3626 0.1667 1.6019 0.0275 1.3379 0.0563
-#> 144: 93.0132 -5.6752 -0.1629 2.2273 -0.9468 0.4764 3.5715 0.3648 0.3555 0.1648 1.5218 0.0320 1.1736 0.0695
-#> 145: 92.9596 -5.8104 -0.1449 2.2498 -0.9730 0.4526 3.3929 0.3465 0.3524 0.1670 1.5918 0.0284 1.3067 0.0630
-#> 146: 92.7925 -5.7223 -0.1458 2.2463 -0.9569 0.5591 3.2233 0.3443 0.3492 0.1587 1.6175 0.0260 1.0691 0.0729
-#> 147: 92.8399 -5.8322 -0.1478 2.2485 -0.9474 0.5312 3.2015 0.3422 0.3536 0.1507 1.6257 0.0255 1.2184 0.0622
-#> 148: 92.8390 -5.9554 -0.1498 2.2490 -0.9550 0.5046 3.6305 0.3387 0.3597 0.1615 1.5994 0.0263 1.2274 0.0638
-#> 149: 92.8158 -5.9697 -0.1511 2.2337 -0.9812 0.4794 3.8244 0.3386 0.3894 0.1559 1.5723 0.0255 1.0661 0.0760
-#> 150: 92.8379 -6.0841 -0.1532 2.2323 -0.9832 0.4554 4.3416 0.3340 0.3840 0.1575 1.5375 0.0272 1.1589 0.0677
-#> 151: 92.6741 -6.3268 -0.1572 2.2252 -0.9782 0.4327 5.9395 0.3389 0.3859 0.1584 1.5384 0.0252 1.2809 0.0638
-#> 152: 92.7165 -6.3594 -0.1527 2.2233 -1.0007 0.4210 5.8433 0.3384 0.3915 0.1324 1.5861 0.0254 1.0728 0.0756
-#> 153: 92.6823 -6.2114 -0.1640 2.2160 -0.9861 0.5285 5.4117 0.3473 0.3878 0.1376 1.6150 0.0255 1.2105 0.0659
-#> 154: 92.4787 -6.1829 -0.1622 2.2055 -0.9571 0.5031 5.7087 0.3490 0.3748 0.1345 1.5749 0.0250 1.0579 0.0741
-#> 155: 92.4780 -6.4925 -0.1675 2.2190 -0.9301 0.4020 7.4764 0.3587 0.3785 0.1287 1.5959 0.0258 1.1342 0.0709
-#> 156: 92.5151 -6.2825 -0.1673 2.2194 -0.9174 0.3603 5.6463 0.3589 0.3848 0.1202 1.5413 0.0301 1.1866 0.0674
-#> 157: 92.5140 -6.0058 -0.1644 2.2312 -0.9298 0.3857 4.2481 0.3610 0.3706 0.1281 1.5944 0.0292 1.2712 0.0631
-#> 158: 92.5669 -5.8692 -0.1673 2.2493 -0.9413 0.4751 3.7632 0.3600 0.3572 0.1383 1.6202 0.0323 1.4797 0.0499
-#> 159: 92.4844 -6.0078 -0.1540 2.2464 -0.9423 0.4626 4.6774 0.3587 0.3603 0.1450 1.6404 0.0280 1.3577 0.0587
-#> 160: 92.5182 -6.1231 -0.1504 2.2518 -0.9274 0.4153 5.0466 0.3616 0.3633 0.1373 1.5891 0.0297 1.2392 0.0653
-#> 161: 92.5665 -5.9062 -0.1569 2.2563 -0.9412 0.3989 4.3594 0.3541 0.3719 0.1433 1.6242 0.0314 1.2822 0.0627
-#> 162: 92.5749 -6.0936 -0.1507 2.2752 -0.9474 0.3140 4.4065 0.3438 0.3921 0.1320 1.5013 0.0378 1.1647 0.0662
-#> 163: 92.6248 -6.1392 -0.1565 2.2499 -0.9499 0.2129 4.6022 0.3512 0.3890 0.1425 1.4936 0.0336 1.4339 0.0494
-#> 164: 92.6486 -6.3898 -0.1590 2.2519 -0.9574 0.1948 5.7817 0.3564 0.3925 0.1308 1.5218 0.0326 1.2197 0.0630
-#> 165: 92.6600 -6.3261 -0.1606 2.2464 -0.9815 0.3054 5.9162 0.3611 0.3979 0.1433 1.5747 0.0316 1.2062 0.0632
-#> 166: 92.7951 -6.3068 -0.1630 2.2428 -0.9542 0.3144 5.7041 0.3597 0.3766 0.1612 1.5464 0.0317 1.2649 0.0617
-#> 167: 92.8541 -6.4919 -0.1642 2.2275 -0.9505 0.3509 6.3858 0.3639 0.3713 0.1581 1.5543 0.0315 1.3546 0.0574
-#> 168: 92.6848 -6.3299 -0.1618 2.2329 -0.9494 0.4645 5.7127 0.3700 0.3698 0.1544 1.5058 0.0340 1.1747 0.0685
-#> 169: 92.5817 -6.0236 -0.1572 2.2583 -0.9510 0.6725 3.9864 0.3672 0.3812 0.1763 1.4445 0.0386 1.3230 0.0583
-#> 170: 92.7223 -5.9170 -0.1609 2.2456 -0.9485 0.5137 3.7991 0.3712 0.3714 0.1601 1.5502 0.0385 1.3393 0.0547
-#> 171: 92.6532 -5.9417 -0.1544 2.2294 -0.9448 0.6206 3.9052 0.3789 0.3634 0.1487 1.5809 0.0314 1.1226 0.0711
-#> 172: 92.4803 -5.7302 -0.1414 2.2679 -0.9255 0.7853 2.7901 0.3598 0.3666 0.1508 1.5531 0.0341 1.1785 0.0667
-#> 173: 92.3172 -5.7462 -0.1405 2.2823 -0.9193 1.2505 2.9155 0.3579 0.3678 0.1480 1.4894 0.0434 1.2288 0.0618
-#> 174: 92.4674 -5.6638 -0.1415 2.2775 -0.9054 1.0653 2.8138 0.3623 0.3740 0.1371 1.5301 0.0393 1.0790 0.0669
-#> 175: 92.5581 -5.6388 -0.1338 2.2878 -0.9154 0.6617 2.5216 0.3471 0.3719 0.1546 1.5231 0.0361 1.0672 0.0723
-#> 176: 92.7218 -5.7548 -0.1249 2.3099 -0.9203 0.4464 2.8226 0.3570 0.3978 0.1570 1.4938 0.0354 1.1125 0.0655
-#> 177: 92.7655 -5.6769 -0.1232 2.3114 -0.9257 0.5291 2.5249 0.3571 0.4023 0.1657 1.4392 0.0386 1.1149 0.0663
-#> 178: 92.7966 -5.6766 -0.1219 2.3202 -0.9142 0.4897 2.3359 0.3605 0.3944 0.1720 1.4792 0.0401 1.1665 0.0637
-#> 179: 92.8304 -5.7678 -0.1133 2.3352 -0.9262 0.5428 2.8512 0.3552 0.4191 0.1716 1.4994 0.0410 1.0651 0.0701
-#> 180: 92.8413 -5.7485 -0.1124 2.3452 -0.9494 0.5179 2.6552 0.3555 0.4025 0.1778 1.5102 0.0383 1.1541 0.0670
-#> 181: 92.7078 -5.7437 -0.1145 2.3257 -0.9482 0.6237 2.5673 0.3564 0.3851 0.1897 1.5373 0.0335 1.1413 0.0698
-#> 182: 92.6278 -5.7965 -0.1115 2.3341 -0.9763 0.7558 2.7421 0.3541 0.3850 0.1625 1.5720 0.0309 1.1164 0.0758
-#> 183: 92.4359 -5.7826 -0.1211 2.3204 -0.9481 1.2089 3.0954 0.3598 0.3813 0.1384 1.6391 0.0333 1.2142 0.0646
-#> 184: 92.4840 -5.9143 -0.1218 2.2965 -0.9330 1.2610 4.0248 0.3752 0.3549 0.1597 1.6019 0.0292 1.0945 0.0767
-#> 185: 92.5659 -5.8333 -0.1223 2.2914 -0.9090 1.0578 3.9752 0.3706 0.3640 0.1769 1.5858 0.0287 1.7070 0.0404
-#> 186: 92.5157 -5.9540 -0.1274 2.2967 -0.9678 1.0199 3.7413 0.3625 0.3766 0.1354 1.5905 0.0321 1.2521 0.0660
-#> 187: 92.6988 -5.8607 -0.1193 2.2922 -0.9685 1.1721 2.9764 0.3511 0.3823 0.1347 1.5790 0.0352 1.1477 0.0746
-#> 188: 92.7427 -5.9073 -0.1166 2.3166 -0.9529 1.3606 2.9747 0.3487 0.3981 0.1322 1.5315 0.0344 1.3014 0.0594
-#> 189: 92.6288 -5.8326 -0.1075 2.3268 -0.9543 1.3459 3.2341 0.3388 0.3983 0.1622 1.5374 0.0334 1.5390 0.0504
-#> 190: 92.8047 -5.6198 -0.1064 2.3212 -0.9148 1.6280 2.5774 0.3319 0.4086 0.1656 1.5159 0.0321 1.5423 0.0515
-#> 191: 92.7642 -5.5780 -0.1105 2.3041 -0.9414 1.5723 2.6038 0.3402 0.4111 0.1612 1.5254 0.0321 1.1206 0.0792
-#> 192: 92.7137 -5.5650 -0.1087 2.3014 -0.9399 1.1968 2.0552 0.3412 0.4267 0.1418 1.4910 0.0332 0.9683 0.0834
-#> 193: 93.0503 -5.6414 -0.1060 2.3050 -0.9563 1.0067 2.2362 0.3434 0.4179 0.1371 1.5947 0.0279 1.0349 0.0813
-#> 194: 93.1071 -5.6349 -0.1048 2.3170 -0.9613 1.1495 2.6224 0.3451 0.4086 0.1419 1.6235 0.0276 1.0558 0.0792
-#> 195: 93.0741 -5.7863 -0.1052 2.3293 -0.9605 1.1597 3.0814 0.3440 0.4342 0.1394 1.5248 0.0348 1.0554 0.0771
-#> 196: 93.0768 -5.6986 -0.0911 2.3395 -0.9537 1.1388 2.7165 0.3463 0.4303 0.1467 1.5960 0.0324 1.1195 0.0755
-#> 197: 92.8638 -5.7840 -0.1009 2.3420 -0.9699 1.0231 2.8293 0.3625 0.4272 0.1849 1.5366 0.0360 1.3691 0.0602
-#> 198: 92.8979 -5.8328 -0.0905 2.3497 -0.9668 0.8847 2.7469 0.3509 0.4357 0.1842 1.5501 0.0361 1.1744 0.0715
-#> 199: 92.7817 -6.0173 -0.0946 2.3477 -0.9729 0.8131 3.4886 0.3517 0.4471 0.1906 1.4350 0.0393 1.2311 0.0693
-#> 200: 92.6353 -6.0362 -0.0924 2.3396 -0.9621 0.8259 3.3916 0.3556 0.4569 0.1867 1.4397 0.0350 1.0910 0.0793
-#> 201: 92.6908 -6.0423 -0.0917 2.3400 -0.9564 0.6766 3.6159 0.3552 0.4565 0.1735 1.4506 0.0362 1.0646 0.0794
-#> 202: 92.6302 -6.0238 -0.0919 2.3443 -0.9546 0.5824 3.6723 0.3555 0.4576 0.1716 1.4800 0.0363 1.0519 0.0791
-#> 203: 92.6040 -6.0387 -0.0944 2.3405 -0.9579 0.5710 3.9080 0.3583 0.4476 0.1752 1.4934 0.0373 1.0842 0.0762
-#> 204: 92.6042 -6.0088 -0.0965 2.3351 -0.9580 0.6145 3.8412 0.3608 0.4413 0.1720 1.5047 0.0374 1.0694 0.0760
-#> 205: 92.5887 -6.0107 -0.0968 2.3362 -0.9576 0.6432 3.8854 0.3606 0.4405 0.1711 1.4896 0.0380 1.0615 0.0750
-#> 206: 92.6452 -5.9990 -0.0992 2.3311 -0.9581 0.6728 3.8231 0.3636 0.4339 0.1683 1.4904 0.0379 1.0630 0.0747
-#> 207: 92.6867 -5.9760 -0.1012 2.3283 -0.9606 0.6907 3.6867 0.3665 0.4303 0.1665 1.4908 0.0376 1.0656 0.0739
-#> 208: 92.6867 -5.9652 -0.1033 2.3252 -0.9611 0.6656 3.6185 0.3680 0.4271 0.1656 1.4972 0.0369 1.0944 0.0724
-#> 209: 92.6807 -5.9535 -0.1051 2.3225 -0.9621 0.6532 3.5653 0.3669 0.4249 0.1641 1.4992 0.0366 1.1029 0.0721
-#> 210: 92.6772 -5.9392 -0.1067 2.3185 -0.9611 0.6492 3.4774 0.3661 0.4220 0.1620 1.5034 0.0360 1.0982 0.0723
-#> 211: 92.6803 -5.9099 -0.1089 2.3129 -0.9619 0.6462 3.3783 0.3656 0.4218 0.1622 1.5094 0.0354 1.1060 0.0725
-#> 212: 92.7033 -5.9046 -0.1110 2.3085 -0.9606 0.6467 3.3879 0.3653 0.4222 0.1602 1.5099 0.0350 1.1004 0.0726
-#> 213: 92.7143 -5.9026 -0.1135 2.3046 -0.9594 0.6326 3.3887 0.3646 0.4214 0.1585 1.5139 0.0347 1.1050 0.0722
-#> 214: 92.7156 -5.9151 -0.1157 2.3011 -0.9590 0.6186 3.4587 0.3637 0.4205 0.1571 1.5149 0.0344 1.1060 0.0720
-#> 215: 92.7185 -5.9240 -0.1177 2.2984 -0.9585 0.6226 3.5192 0.3630 0.4190 0.1564 1.5155 0.0342 1.1159 0.0713
-#> 216: 92.7133 -5.9331 -0.1197 2.2953 -0.9575 0.6253 3.5505 0.3630 0.4179 0.1552 1.5199 0.0338 1.1276 0.0708
-#> 217: 92.7111 -5.9341 -0.1215 2.2924 -0.9579 0.6200 3.5565 0.3627 0.4170 0.1542 1.5238 0.0337 1.1409 0.0702
-#> 218: 92.7142 -5.9390 -0.1226 2.2901 -0.9588 0.6110 3.5792 0.3623 0.4162 0.1541 1.5236 0.0335 1.1378 0.0704
-#> 219: 92.7121 -5.9351 -0.1233 2.2891 -0.9587 0.6083 3.5562 0.3617 0.4154 0.1535 1.5280 0.0335 1.1518 0.0697
-#> 220: 92.7133 -5.9467 -0.1244 2.2876 -0.9591 0.6158 3.6036 0.3614 0.4147 0.1542 1.5273 0.0334 1.1572 0.0693
-#> 221: 92.7206 -5.9543 -0.1253 2.2856 -0.9602 0.6252 3.6357 0.3610 0.4131 0.1540 1.5272 0.0335 1.1591 0.0692
-#> 222: 92.7267 -5.9436 -0.1262 2.2840 -0.9608 0.6377 3.5725 0.3608 0.4118 0.1540 1.5302 0.0334 1.1735 0.0683
-#> 223: 92.7364 -5.9346 -0.1268 2.2825 -0.9619 0.6430 3.5288 0.3606 0.4117 0.1542 1.5327 0.0332 1.1883 0.0676
-#> 224: 92.7464 -5.9269 -0.1274 2.2822 -0.9621 0.6394 3.4906 0.3604 0.4107 0.1541 1.5342 0.0334 1.2022 0.0667
-#> 225: 92.7572 -5.9244 -0.1278 2.2813 -0.9616 0.6340 3.4677 0.3603 0.4100 0.1535 1.5345 0.0334 1.2129 0.0661
-#> 226: 92.7662 -5.9237 -0.1282 2.2803 -0.9615 0.6336 3.4532 0.3603 0.4101 0.1532 1.5326 0.0334 1.2151 0.0661
-#> 227: 92.7778 -5.9193 -0.1286 2.2792 -0.9628 0.6280 3.4339 0.3604 0.4096 0.1527 1.5323 0.0334 1.2217 0.0658
-#> 228: 92.7824 -5.9112 -0.1289 2.2782 -0.9636 0.6217 3.3964 0.3607 0.4091 0.1525 1.5316 0.0335 1.2255 0.0658
-#> 229: 92.7895 -5.9077 -0.1291 2.2770 -0.9646 0.6178 3.3717 0.3607 0.4096 0.1521 1.5326 0.0334 1.2247 0.0660
-#> 230: 92.7987 -5.9153 -0.1297 2.2758 -0.9648 0.6177 3.4004 0.3603 0.4098 0.1517 1.5333 0.0334 1.2321 0.0656
-#> 231: 92.8081 -5.9176 -0.1308 2.2735 -0.9654 0.6185 3.4195 0.3596 0.4086 0.1513 1.5361 0.0331 1.2359 0.0656
-#> 232: 92.8119 -5.9161 -0.1318 2.2715 -0.9658 0.6140 3.4221 0.3590 0.4075 0.1513 1.5387 0.0330 1.2434 0.0653
-#> 233: 92.8117 -5.9111 -0.1329 2.2694 -0.9662 0.6096 3.4008 0.3586 0.4065 0.1511 1.5410 0.0328 1.2426 0.0654
-#> 234: 92.8132 -5.9040 -0.1339 2.2672 -0.9660 0.6097 3.3787 0.3583 0.4059 0.1506 1.5425 0.0325 1.2463 0.0654
-#> 235: 92.8117 -5.8978 -0.1347 2.2653 -0.9661 0.6020 3.3558 0.3579 0.4051 0.1502 1.5443 0.0324 1.2439 0.0657
-#> 236: 92.8050 -5.8967 -0.1355 2.2638 -0.9663 0.5963 3.3466 0.3575 0.4046 0.1495 1.5453 0.0322 1.2377 0.0661
-#> 237: 92.7975 -5.9004 -0.1362 2.2625 -0.9668 0.5891 3.3624 0.3571 0.4043 0.1491 1.5460 0.0321 1.2334 0.0664
-#> 238: 92.7965 -5.9036 -0.1371 2.2613 -0.9670 0.5828 3.3683 0.3569 0.4037 0.1488 1.5486 0.0320 1.2405 0.0662
-#> 239: 92.8006 -5.9067 -0.1376 2.2607 -0.9677 0.5767 3.3801 0.3568 0.4027 0.1490 1.5487 0.0319 1.2478 0.0658
-#> 240: 92.8061 -5.9102 -0.1382 2.2597 -0.9678 0.5697 3.3876 0.3566 0.4014 0.1489 1.5499 0.0319 1.2545 0.0654
-#> 241: 92.8111 -5.9132 -0.1388 2.2589 -0.9684 0.5647 3.3986 0.3567 0.4004 0.1489 1.5507 0.0319 1.2607 0.0651
-#> 242: 92.8157 -5.9119 -0.1395 2.2577 -0.9686 0.5610 3.3902 0.3568 0.3995 0.1490 1.5524 0.0319 1.2673 0.0647
-#> 243: 92.8204 -5.9142 -0.1401 2.2567 -0.9689 0.5597 3.3991 0.3570 0.3983 0.1492 1.5526 0.0319 1.2728 0.0646
-#> 244: 92.8272 -5.9129 -0.1408 2.2558 -0.9689 0.5598 3.3989 0.3574 0.3972 0.1493 1.5542 0.0319 1.2805 0.0642
-#> 245: 92.8361 -5.9152 -0.1414 2.2548 -0.9693 0.5617 3.4133 0.3580 0.3959 0.1500 1.5541 0.0318 1.2876 0.0638
-#> 246: 92.8432 -5.9122 -0.1420 2.2536 -0.9695 0.5627 3.4039 0.3584 0.3946 0.1507 1.5546 0.0318 1.2944 0.0633
-#> 247: 92.8481 -5.9125 -0.1426 2.2524 -0.9695 0.5574 3.4087 0.3588 0.3931 0.1515 1.5556 0.0318 1.3003 0.0629
-#> 248: 92.8486 -5.9123 -0.1433 2.2515 -0.9693 0.5545 3.4095 0.3594 0.3916 0.1519 1.5583 0.0317 1.3043 0.0626
-#> 249: 92.8515 -5.9123 -0.1439 2.2505 -0.9694 0.5547 3.4088 0.3600 0.3904 0.1523 1.5605 0.0316 1.3087 0.0623
-#> 250: 92.8521 -5.9139 -0.1443 2.2493 -0.9691 0.5589 3.4212 0.3604 0.3894 0.1525 1.5617 0.0316 1.3081 0.0624
-#> 251: 92.8530 -5.9118 -0.1450 2.2484 -0.9683 0.5562 3.4138 0.3612 0.3884 0.1528 1.5615 0.0316 1.3066 0.0625
-#> 252: 92.8568 -5.9075 -0.1457 2.2474 -0.9681 0.5506 3.3889 0.3619 0.3875 0.1531 1.5620 0.0315 1.3067 0.0625
-#> 253: 92.8603 -5.9070 -0.1464 2.2467 -0.9682 0.5476 3.3746 0.3622 0.3867 0.1539 1.5640 0.0314 1.3122 0.0622
-#> 254: 92.8653 -5.9077 -0.1470 2.2457 -0.9688 0.5448 3.3656 0.3626 0.3858 0.1546 1.5641 0.0314 1.3147 0.0620
-#> 255: 92.8686 -5.9059 -0.1477 2.2445 -0.9688 0.5406 3.3533 0.3630 0.3850 0.1549 1.5637 0.0314 1.3155 0.0619
-#> 256: 92.8706 -5.9011 -0.1483 2.2435 -0.9685 0.5384 3.3300 0.3634 0.3841 0.1550 1.5644 0.0313 1.3161 0.0617
-#> 257: 92.8721 -5.8957 -0.1488 2.2426 -0.9683 0.5398 3.3084 0.3638 0.3833 0.1552 1.5647 0.0313 1.3158 0.0617
-#> 258: 92.8725 -5.8928 -0.1493 2.2419 -0.9680 0.5392 3.2921 0.3641 0.3822 0.1552 1.5665 0.0312 1.3184 0.0614
-#> 259: 92.8718 -5.8915 -0.1498 2.2411 -0.9680 0.5367 3.2850 0.3644 0.3815 0.1553 1.5668 0.0312 1.3202 0.0613
-#> 260: 92.8701 -5.8928 -0.1499 2.2409 -0.9679 0.5339 3.2888 0.3652 0.3802 0.1552 1.5675 0.0312 1.3215 0.0612
-#> 261: 92.8700 -5.8961 -0.1499 2.2407 -0.9679 0.5302 3.2976 0.3659 0.3789 0.1551 1.5677 0.0312 1.3197 0.0613
-#> 262: 92.8683 -5.9013 -0.1500 2.2407 -0.9678 0.5282 3.3236 0.3666 0.3778 0.1549 1.5684 0.0312 1.3184 0.0613
-#> 263: 92.8662 -5.9021 -0.1498 2.2407 -0.9677 0.5271 3.3285 0.3670 0.3767 0.1547 1.5682 0.0313 1.3156 0.0615
-#> 264: 92.8631 -5.9059 -0.1495 2.2409 -0.9675 0.5244 3.3527 0.3673 0.3755 0.1547 1.5677 0.0313 1.3139 0.0616
-#> 265: 92.8635 -5.9042 -0.1492 2.2411 -0.9675 0.5220 3.3541 0.3675 0.3745 0.1545 1.5676 0.0313 1.3098 0.0618
-#> 266: 92.8636 -5.9033 -0.1490 2.2411 -0.9673 0.5208 3.3523 0.3680 0.3735 0.1546 1.5679 0.0312 1.3087 0.0619
-#> 267: 92.8639 -5.9035 -0.1489 2.2413 -0.9673 0.5208 3.3566 0.3685 0.3726 0.1546 1.5676 0.0312 1.3072 0.0621
-#> 268: 92.8620 -5.9065 -0.1487 2.2413 -0.9674 0.5191 3.3797 0.3689 0.3717 0.1545 1.5676 0.0312 1.3103 0.0620
-#> 269: 92.8593 -5.9073 -0.1486 2.2416 -0.9672 0.5192 3.3885 0.3693 0.3710 0.1545 1.5685 0.0312 1.3136 0.0618
-#> 270: 92.8549 -5.9087 -0.1487 2.2418 -0.9672 0.5209 3.4007 0.3695 0.3703 0.1544 1.5703 0.0312 1.3177 0.0615
-#> 271: 92.8519 -5.9089 -0.1487 2.2416 -0.9671 0.5227 3.4043 0.3696 0.3697 0.1545 1.5705 0.0312 1.3216 0.0613
-#> 272: 92.8493 -5.9084 -0.1488 2.2416 -0.9669 0.5223 3.3999 0.3698 0.3693 0.1543 1.5707 0.0311 1.3206 0.0614
-#> 273: 92.8479 -5.9090 -0.1486 2.2416 -0.9667 0.5230 3.3980 0.3701 0.3689 0.1544 1.5699 0.0311 1.3192 0.0615
-#> 274: 92.8456 -5.9108 -0.1485 2.2417 -0.9667 0.5249 3.4024 0.3705 0.3684 0.1544 1.5688 0.0311 1.3169 0.0617
-#> 275: 92.8440 -5.9131 -0.1483 2.2422 -0.9666 0.5253 3.4117 0.3707 0.3677 0.1542 1.5690 0.0311 1.3166 0.0616
-#> 276: 92.8425 -5.9132 -0.1482 2.2426 -0.9662 0.5241 3.4171 0.3709 0.3670 0.1540 1.5689 0.0311 1.3142 0.0617
-#> 277: 92.8412 -5.9139 -0.1481 2.2430 -0.9660 0.5214 3.4228 0.3711 0.3663 0.1540 1.5687 0.0311 1.3173 0.0615
-#> 278: 92.8398 -5.9139 -0.1479 2.2432 -0.9659 0.5184 3.4254 0.3712 0.3654 0.1540 1.5684 0.0311 1.3148 0.0617
-#> 279: 92.8386 -5.9156 -0.1478 2.2433 -0.9661 0.5157 3.4338 0.3713 0.3649 0.1539 1.5682 0.0311 1.3136 0.0618
-#> 280: 92.8378 -5.9173 -0.1478 2.2428 -0.9663 0.5127 3.4381 0.3714 0.3643 0.1537 1.5679 0.0311 1.3104 0.0621
-#> 281: 92.8364 -5.9188 -0.1479 2.2423 -0.9666 0.5089 3.4418 0.3716 0.3634 0.1533 1.5674 0.0311 1.3071 0.0623
-#> 282: 92.8377 -5.9179 -0.1481 2.2418 -0.9668 0.5045 3.4355 0.3717 0.3626 0.1530 1.5686 0.0311 1.3055 0.0624
-#> 283: 92.8385 -5.9157 -0.1485 2.2410 -0.9667 0.5014 3.4260 0.3720 0.3616 0.1527 1.5699 0.0311 1.3072 0.0622
-#> 284: 92.8388 -5.9156 -0.1489 2.2403 -0.9666 0.4977 3.4274 0.3723 0.3605 0.1525 1.5705 0.0310 1.3081 0.0621
-#> 285: 92.8374 -5.9156 -0.1492 2.2395 -0.9668 0.4944 3.4215 0.3727 0.3594 0.1525 1.5716 0.0310 1.3103 0.0619
-#> 286: 92.8376 -5.9168 -0.1496 2.2388 -0.9672 0.4915 3.4197 0.3731 0.3583 0.1526 1.5724 0.0310 1.3141 0.0617
-#> 287: 92.8393 -5.9176 -0.1498 2.2380 -0.9673 0.4886 3.4177 0.3735 0.3572 0.1523 1.5737 0.0309 1.3155 0.0615
-#> 288: 92.8400 -5.9206 -0.1502 2.2372 -0.9675 0.4873 3.4259 0.3739 0.3562 0.1523 1.5739 0.0309 1.3160 0.0614
-#> 289: 92.8404 -5.9217 -0.1506 2.2362 -0.9678 0.4845 3.4269 0.3744 0.3552 0.1524 1.5735 0.0309 1.3165 0.0614
-#> 290: 92.8395 -5.9255 -0.1510 2.2354 -0.9680 0.4830 3.4395 0.3748 0.3543 0.1521 1.5737 0.0308 1.3159 0.0615
-#> 291: 92.8384 -5.9274 -0.1513 2.2345 -0.9680 0.4841 3.4460 0.3752 0.3533 0.1518 1.5742 0.0309 1.3173 0.0613
-#> 292: 92.8384 -5.9276 -0.1515 2.2342 -0.9681 0.4865 3.4437 0.3755 0.3525 0.1516 1.5738 0.0309 1.3163 0.0614
-#> 293: 92.8385 -5.9281 -0.1517 2.2338 -0.9681 0.4882 3.4446 0.3757 0.3516 0.1513 1.5738 0.0308 1.3143 0.0614
-#> 294: 92.8400 -5.9277 -0.1519 2.2335 -0.9680 0.4871 3.4449 0.3758 0.3508 0.1512 1.5736 0.0308 1.3149 0.0614
-#> 295: 92.8414 -5.9279 -0.1520 2.2331 -0.9680 0.4842 3.4523 0.3760 0.3502 0.1510 1.5740 0.0308 1.3153 0.0614
-#> 296: 92.8424 -5.9282 -0.1521 2.2329 -0.9681 0.4835 3.4589 0.3760 0.3496 0.1509 1.5743 0.0307 1.3180 0.0613
-#> 297: 92.8409 -5.9281 -0.1522 2.2325 -0.9683 0.4827 3.4636 0.3760 0.3491 0.1509 1.5745 0.0307 1.3216 0.0611
-#> 298: 92.8395 -5.9276 -0.1522 2.2322 -0.9684 0.4819 3.4641 0.3761 0.3486 0.1508 1.5744 0.0307 1.3226 0.0612
-#> 299: 92.8388 -5.9305 -0.1524 2.2321 -0.9686 0.4800 3.4829 0.3761 0.3481 0.1507 1.5745 0.0307 1.3218 0.0612
-#> 300: 92.8375 -5.9329 -0.1524 2.2321 -0.9683 0.4792 3.4982 0.3761 0.3477 0.1505 1.5745 0.0307 1.3205 0.0613
-#> 301: 92.8359 -5.9337 -0.1524 2.2321 -0.9680 0.4788 3.5056 0.3762 0.3473 0.1503 1.5746 0.0306 1.3182 0.0614
-#> 302: 92.8346 -5.9360 -0.1524 2.2322 -0.9678 0.4800 3.5237 0.3763 0.3470 0.1500 1.5744 0.0306 1.3174 0.0614
-#> 303: 92.8338 -5.9387 -0.1524 2.2324 -0.9674 0.4795 3.5444 0.3764 0.3467 0.1501 1.5738 0.0307 1.3181 0.0613
-#> 304: 92.8318 -5.9436 -0.1524 2.2327 -0.9673 0.4787 3.5819 0.3766 0.3464 0.1502 1.5735 0.0307 1.3191 0.0612
-#> 305: 92.8300 -5.9486 -0.1524 2.2327 -0.9673 0.4794 3.6200 0.3766 0.3460 0.1502 1.5726 0.0308 1.3198 0.0611
-#> 306: 92.8294 -5.9540 -0.1524 2.2328 -0.9673 0.4788 3.6681 0.3766 0.3456 0.1502 1.5723 0.0309 1.3214 0.0610
-#> 307: 92.8287 -5.9579 -0.1525 2.2330 -0.9669 0.4779 3.7052 0.3766 0.3452 0.1498 1.5735 0.0309 1.3235 0.0609
-#> 308: 92.8290 -5.9624 -0.1524 2.2332 -0.9669 0.4775 3.7470 0.3766 0.3448 0.1500 1.5737 0.0309 1.3265 0.0607
-#> 309: 92.8293 -5.9653 -0.1524 2.2333 -0.9668 0.4774 3.7756 0.3766 0.3443 0.1499 1.5736 0.0309 1.3290 0.0605
-#> 310: 92.8289 -5.9672 -0.1523 2.2335 -0.9669 0.4762 3.7957 0.3767 0.3438 0.1499 1.5736 0.0309 1.3316 0.0603
-#> 311: 92.8301 -5.9702 -0.1521 2.2337 -0.9670 0.4755 3.8172 0.3767 0.3432 0.1498 1.5737 0.0309 1.3324 0.0603
-#> 312: 92.8322 -5.9715 -0.1520 2.2341 -0.9670 0.4742 3.8229 0.3767 0.3427 0.1496 1.5734 0.0309 1.3309 0.0603
-#> 313: 92.8338 -5.9713 -0.1517 2.2342 -0.9672 0.4737 3.8202 0.3766 0.3422 0.1494 1.5733 0.0309 1.3306 0.0604
-#> 314: 92.8360 -5.9711 -0.1515 2.2343 -0.9675 0.4725 3.8154 0.3767 0.3417 0.1493 1.5733 0.0309 1.3322 0.0603
-#> 315: 92.8378 -5.9694 -0.1514 2.2343 -0.9680 0.4714 3.8051 0.3767 0.3414 0.1494 1.5734 0.0309 1.3352 0.0601
-#> 316: 92.8400 -5.9683 -0.1514 2.2343 -0.9682 0.4705 3.7984 0.3767 0.3410 0.1495 1.5735 0.0309 1.3354 0.0602
-#> 317: 92.8422 -5.9689 -0.1513 2.2344 -0.9686 0.4695 3.7961 0.3768 0.3406 0.1497 1.5735 0.0309 1.3362 0.0602
-#> 318: 92.8440 -5.9696 -0.1510 2.2347 -0.9689 0.4681 3.7934 0.3769 0.3403 0.1499 1.5731 0.0309 1.3381 0.0601
-#> 319: 92.8458 -5.9710 -0.1508 2.2350 -0.9692 0.4668 3.7913 0.3769 0.3401 0.1500 1.5723 0.0309 1.3403 0.0599
-#> 320: 92.8474 -5.9719 -0.1506 2.2353 -0.9695 0.4667 3.7876 0.3769 0.3400 0.1502 1.5714 0.0309 1.3423 0.0598
-#> 321: 92.8494 -5.9710 -0.1503 2.2355 -0.9696 0.4673 3.7790 0.3769 0.3397 0.1503 1.5709 0.0309 1.3439 0.0597
-#> 322: 92.8511 -5.9693 -0.1501 2.2359 -0.9698 0.4690 3.7674 0.3769 0.3395 0.1503 1.5708 0.0309 1.3451 0.0596
-#> 323: 92.8528 -5.9700 -0.1498 2.2364 -0.9699 0.4696 3.7641 0.3768 0.3394 0.1504 1.5701 0.0310 1.3470 0.0594
-#> 324: 92.8547 -5.9695 -0.1495 2.2369 -0.9699 0.4703 3.7567 0.3767 0.3392 0.1505 1.5698 0.0310 1.3485 0.0593
-#> 325: 92.8563 -5.9678 -0.1490 2.2376 -0.9702 0.4701 3.7473 0.3769 0.3395 0.1505 1.5702 0.0311 1.3494 0.0592
-#> 326: 92.8582 -5.9676 -0.1486 2.2382 -0.9703 0.4709 3.7434 0.3771 0.3397 0.1506 1.5700 0.0311 1.3479 0.0593
-#> 327: 92.8603 -5.9665 -0.1481 2.2389 -0.9704 0.4716 3.7361 0.3769 0.3399 0.1507 1.5699 0.0311 1.3471 0.0594
-#> 328: 92.8622 -5.9671 -0.1477 2.2397 -0.9704 0.4726 3.7379 0.3767 0.3398 0.1507 1.5698 0.0311 1.3481 0.0593
-#> 329: 92.8639 -5.9667 -0.1473 2.2405 -0.9707 0.4735 3.7366 0.3766 0.3398 0.1506 1.5696 0.0311 1.3482 0.0593
-#> 330: 92.8663 -5.9673 -0.1469 2.2413 -0.9708 0.4736 3.7382 0.3765 0.3397 0.1506 1.5691 0.0312 1.3492 0.0592
-#> 331: 92.8674 -5.9670 -0.1464 2.2420 -0.9710 0.4740 3.7350 0.3763 0.3397 0.1507 1.5689 0.0312 1.3512 0.0591
-#> 332: 92.8681 -5.9664 -0.1460 2.2428 -0.9710 0.4737 3.7311 0.3762 0.3396 0.1509 1.5687 0.0312 1.3527 0.0590
-#> 333: 92.8683 -5.9649 -0.1456 2.2436 -0.9708 0.4727 3.7232 0.3760 0.3397 0.1509 1.5686 0.0312 1.3505 0.0591
-#> 334: 92.8690 -5.9642 -0.1452 2.2444 -0.9707 0.4723 3.7194 0.3758 0.3399 0.1511 1.5682 0.0312 1.3490 0.0592
-#> 335: 92.8698 -5.9656 -0.1447 2.2454 -0.9707 0.4722 3.7289 0.3756 0.3400 0.1512 1.5674 0.0313 1.3476 0.0592
-#> 336: 92.8691 -5.9664 -0.1443 2.2463 -0.9706 0.4724 3.7333 0.3753 0.3401 0.1511 1.5669 0.0313 1.3455 0.0593
-#> 337: 92.8687 -5.9670 -0.1440 2.2471 -0.9705 0.4742 3.7378 0.3749 0.3402 0.1510 1.5665 0.0314 1.3433 0.0594
-#> 338: 92.8683 -5.9663 -0.1435 2.2480 -0.9703 0.4747 3.7370 0.3746 0.3405 0.1510 1.5663 0.0313 1.3402 0.0595
-#> 339: 92.8682 -5.9650 -0.1431 2.2488 -0.9701 0.4760 3.7332 0.3743 0.3408 0.1509 1.5661 0.0313 1.3374 0.0597
-#> 340: 92.8684 -5.9639 -0.1427 2.2496 -0.9699 0.4774 3.7283 0.3739 0.3411 0.1510 1.5658 0.0313 1.3358 0.0597
-#> 341: 92.8685 -5.9610 -0.1423 2.2504 -0.9696 0.4782 3.7169 0.3735 0.3413 0.1510 1.5661 0.0313 1.3338 0.0598
-#> 342: 92.8681 -5.9581 -0.1419 2.2512 -0.9696 0.4802 3.7060 0.3731 0.3416 0.1511 1.5661 0.0313 1.3316 0.0599
-#> 343: 92.8671 -5.9557 -0.1414 2.2521 -0.9697 0.4821 3.6971 0.3726 0.3419 0.1510 1.5667 0.0313 1.3292 0.0601
-#> 344: 92.8662 -5.9550 -0.1409 2.2531 -0.9696 0.4825 3.6931 0.3722 0.3424 0.1509 1.5660 0.0314 1.3269 0.0602
-#> 345: 92.8651 -5.9542 -0.1405 2.2542 -0.9696 0.4825 3.6886 0.3717 0.3429 0.1511 1.5645 0.0315 1.3252 0.0602
-#> 346: 92.8636 -5.9534 -0.1401 2.2549 -0.9696 0.4822 3.6821 0.3714 0.3432 0.1510 1.5638 0.0315 1.3231 0.0603
-#> 347: 92.8622 -5.9532 -0.1397 2.2557 -0.9696 0.4815 3.6782 0.3712 0.3435 0.1509 1.5636 0.0315 1.3220 0.0604
-#> 348: 92.8593 -5.9538 -0.1394 2.2566 -0.9697 0.4813 3.6787 0.3709 0.3438 0.1508 1.5634 0.0315 1.3202 0.0605
-#> 349: 92.8574 -5.9532 -0.1389 2.2574 -0.9697 0.4808 3.6739 0.3706 0.3440 0.1506 1.5630 0.0316 1.3179 0.0606
-#> 350: 92.8561 -5.9528 -0.1385 2.2583 -0.9697 0.4801 3.6705 0.3703 0.3443 0.1505 1.5625 0.0316 1.3161 0.0607
-#> 351: 92.8541 -5.9518 -0.1381 2.2591 -0.9697 0.4804 3.6650 0.3700 0.3446 0.1505 1.5619 0.0316 1.3141 0.0608
-#> 352: 92.8528 -5.9516 -0.1377 2.2599 -0.9700 0.4818 3.6626 0.3698 0.3449 0.1504 1.5614 0.0316 1.3122 0.0609
-#> 353: 92.8506 -5.9518 -0.1373 2.2607 -0.9700 0.4836 3.6601 0.3697 0.3451 0.1506 1.5604 0.0317 1.3116 0.0610
-#> 354: 92.8482 -5.9507 -0.1369 2.2615 -0.9700 0.4852 3.6520 0.3696 0.3451 0.1506 1.5595 0.0317 1.3099 0.0611
-#> 355: 92.8459 -5.9500 -0.1365 2.2624 -0.9699 0.4873 3.6467 0.3695 0.3454 0.1505 1.5589 0.0318 1.3090 0.0611
-#> 356: 92.8441 -5.9494 -0.1361 2.2632 -0.9700 0.4893 3.6407 0.3696 0.3456 0.1505 1.5581 0.0319 1.3083 0.0612
-#> 357: 92.8425 -5.9492 -0.1356 2.2641 -0.9700 0.4906 3.6359 0.3696 0.3459 0.1506 1.5568 0.0320 1.3082 0.0612
-#> 358: 92.8414 -5.9487 -0.1351 2.2649 -0.9700 0.4914 3.6300 0.3697 0.3460 0.1506 1.5559 0.0321 1.3064 0.0613
-#> 359: 92.8395 -5.9487 -0.1346 2.2657 -0.9700 0.4923 3.6262 0.3699 0.3462 0.1507 1.5558 0.0321 1.3050 0.0614
-#> 360: 92.8373 -5.9478 -0.1341 2.2666 -0.9700 0.4922 3.6206 0.3700 0.3465 0.1509 1.5553 0.0322 1.3061 0.0614
-#> 361: 92.8353 -5.9475 -0.1337 2.2673 -0.9699 0.4912 3.6183 0.3700 0.3469 0.1510 1.5549 0.0322 1.3051 0.0614
-#> 362: 92.8339 -5.9474 -0.1333 2.2681 -0.9699 0.4896 3.6164 0.3700 0.3472 0.1510 1.5549 0.0322 1.3041 0.0616
-#> 363: 92.8318 -5.9470 -0.1328 2.2690 -0.9696 0.4882 3.6136 0.3700 0.3476 0.1510 1.5541 0.0323 1.3035 0.0616
-#> 364: 92.8305 -5.9460 -0.1325 2.2697 -0.9695 0.4863 3.6099 0.3701 0.3477 0.1510 1.5533 0.0324 1.3028 0.0616
-#> 365: 92.8300 -5.9451 -0.1320 2.2705 -0.9693 0.4851 3.6083 0.3703 0.3479 0.1511 1.5535 0.0324 1.3017 0.0617
-#> 366: 92.8290 -5.9444 -0.1317 2.2710 -0.9691 0.4841 3.6062 0.3707 0.3476 0.1512 1.5534 0.0325 1.3013 0.0617
-#> 367: 92.8279 -5.9438 -0.1313 2.2715 -0.9688 0.4829 3.6026 0.3711 0.3473 0.1513 1.5537 0.0325 1.2996 0.0618
-#> 368: 92.8270 -5.9437 -0.1310 2.2721 -0.9687 0.4824 3.6015 0.3715 0.3471 0.1513 1.5535 0.0325 1.2984 0.0619
-#> 369: 92.8268 -5.9444 -0.1306 2.2726 -0.9686 0.4829 3.6042 0.3718 0.3469 0.1514 1.5530 0.0325 1.2983 0.0619
-#> 370: 92.8268 -5.9455 -0.1303 2.2732 -0.9686 0.4833 3.6099 0.3721 0.3466 0.1513 1.5526 0.0326 1.2971 0.0619
-#> 371: 92.8269 -5.9462 -0.1300 2.2737 -0.9686 0.4842 3.6169 0.3723 0.3465 0.1512 1.5516 0.0326 1.2961 0.0619
-#> 372: 92.8272 -5.9465 -0.1297 2.2741 -0.9685 0.4852 3.6242 0.3726 0.3463 0.1512 1.5507 0.0327 1.2950 0.0620
-#> 373: 92.8275 -5.9456 -0.1294 2.2746 -0.9686 0.4861 3.6219 0.3729 0.3461 0.1511 1.5501 0.0328 1.2946 0.0620
-#> 374: 92.8278 -5.9445 -0.1291 2.2750 -0.9687 0.4867 3.6175 0.3730 0.3461 0.1509 1.5496 0.0328 1.2942 0.0620
-#> 375: 92.8285 -5.9438 -0.1289 2.2753 -0.9689 0.4874 3.6118 0.3731 0.3459 0.1509 1.5491 0.0329 1.2938 0.0620
-#> 376: 92.8286 -5.9439 -0.1287 2.2755 -0.9689 0.4876 3.6100 0.3733 0.3458 0.1508 1.5488 0.0329 1.2930 0.0621
-#> 377: 92.8289 -5.9431 -0.1285 2.2758 -0.9690 0.4870 3.6054 0.3735 0.3456 0.1508 1.5487 0.0329 1.2921 0.0621
-#> 378: 92.8293 -5.9428 -0.1284 2.2760 -0.9689 0.4865 3.6019 0.3737 0.3454 0.1508 1.5484 0.0329 1.2910 0.0622
-#> 379: 92.8294 -5.9441 -0.1282 2.2763 -0.9688 0.4857 3.6077 0.3739 0.3451 0.1507 1.5480 0.0329 1.2907 0.0622
-#> 380: 92.8296 -5.9448 -0.1281 2.2766 -0.9688 0.4844 3.6104 0.3741 0.3448 0.1506 1.5475 0.0329 1.2901 0.0622
-#> 381: 92.8301 -5.9461 -0.1280 2.2767 -0.9689 0.4833 3.6194 0.3743 0.3444 0.1505 1.5476 0.0329 1.2893 0.0622
-#> 382: 92.8312 -5.9464 -0.1278 2.2768 -0.9689 0.4823 3.6237 0.3745 0.3441 0.1505 1.5476 0.0329 1.2881 0.0622
-#> 383: 92.8317 -5.9459 -0.1277 2.2770 -0.9687 0.4817 3.6282 0.3747 0.3438 0.1504 1.5479 0.0329 1.2875 0.0622
-#> 384: 92.8325 -5.9458 -0.1276 2.2772 -0.9686 0.4818 3.6293 0.3749 0.3434 0.1503 1.5481 0.0329 1.2863 0.0623
-#> 385: 92.8337 -5.9449 -0.1275 2.2773 -0.9685 0.4832 3.6263 0.3751 0.3431 0.1503 1.5481 0.0330 1.2860 0.0622
-#> 386: 92.8346 -5.9455 -0.1274 2.2773 -0.9682 0.4834 3.6283 0.3754 0.3427 0.1501 1.5483 0.0330 1.2851 0.0623
-#> 387: 92.8353 -5.9460 -0.1273 2.2775 -0.9681 0.4831 3.6303 0.3756 0.3424 0.1499 1.5486 0.0330 1.2836 0.0623
-#> 388: 92.8365 -5.9462 -0.1272 2.2777 -0.9680 0.4831 3.6294 0.3759 0.3420 0.1498 1.5486 0.0330 1.2830 0.0624
-#> 389: 92.8378 -5.9456 -0.1271 2.2779 -0.9678 0.4830 3.6260 0.3762 0.3416 0.1497 1.5486 0.0330 1.2816 0.0624
-#> 390: 92.8397 -5.9454 -0.1270 2.2779 -0.9678 0.4835 3.6245 0.3765 0.3413 0.1496 1.5488 0.0330 1.2805 0.0625
-#> 391: 92.8416 -5.9461 -0.1269 2.2780 -0.9679 0.4841 3.6273 0.3768 0.3409 0.1497 1.5486 0.0330 1.2816 0.0624
-#> 392: 92.8430 -5.9471 -0.1269 2.2779 -0.9679 0.4844 3.6293 0.3771 0.3408 0.1498 1.5483 0.0330 1.2830 0.0623
-#> 393: 92.8444 -5.9478 -0.1269 2.2779 -0.9680 0.4841 3.6310 0.3774 0.3407 0.1500 1.5485 0.0330 1.2842 0.0623
-#> 394: 92.8458 -5.9492 -0.1268 2.2779 -0.9680 0.4839 3.6370 0.3775 0.3407 0.1502 1.5484 0.0330 1.2847 0.0622
-#> 395: 92.8474 -5.9501 -0.1268 2.2780 -0.9681 0.4830 3.6391 0.3777 0.3406 0.1503 1.5485 0.0330 1.2849 0.0622
-#> 396: 92.8484 -5.9500 -0.1267 2.2781 -0.9682 0.4820 3.6369 0.3778 0.3406 0.1504 1.5490 0.0330 1.2850 0.0622
-#> 397: 92.8497 -5.9490 -0.1267 2.2782 -0.9680 0.4813 3.6308 0.3779 0.3407 0.1504 1.5494 0.0330 1.2848 0.0622
-#> 398: 92.8511 -5.9478 -0.1267 2.2782 -0.9679 0.4811 3.6256 0.3780 0.3407 0.1505 1.5498 0.0330 1.2844 0.0622
-#> 399: 92.8531 -5.9467 -0.1266 2.2782 -0.9680 0.4804 3.6208 0.3781 0.3407 0.1505 1.5505 0.0330 1.2842 0.0623
-#> 400: 92.8545 -5.9465 -0.1266 2.2782 -0.9679 0.4793 3.6175 0.3783 0.3406 0.1505 1.5506 0.0329 1.2833 0.0623
-#> 401: 92.8558 -5.9458 -0.1266 2.2781 -0.9679 0.4787 3.6135 0.3784 0.3406 0.1506 1.5506 0.0329 1.2836 0.0623
-#> 402: 92.8571 -5.9454 -0.1266 2.2780 -0.9678 0.4788 3.6122 0.3786 0.3405 0.1506 1.5508 0.0329 1.2841 0.0623
-#> 403: 92.8583 -5.9454 -0.1267 2.2778 -0.9679 0.4794 3.6115 0.3790 0.3402 0.1507 1.5508 0.0330 1.2859 0.0622
-#> 404: 92.8593 -5.9466 -0.1268 2.2776 -0.9681 0.4787 3.6149 0.3793 0.3401 0.1508 1.5507 0.0330 1.2875 0.0621
-#> 405: 92.8598 -5.9475 -0.1269 2.2774 -0.9681 0.4781 3.6208 0.3796 0.3399 0.1509 1.5507 0.0330 1.2888 0.0620
-#> 406: 92.8596 -5.9480 -0.1269 2.2773 -0.9680 0.4776 3.6238 0.3798 0.3397 0.1509 1.5508 0.0330 1.2895 0.0619
-#> 407: 92.8588 -5.9487 -0.1270 2.2773 -0.9679 0.4773 3.6289 0.3801 0.3395 0.1508 1.5510 0.0331 1.2887 0.0619
-#> 408: 92.8587 -5.9489 -0.1271 2.2771 -0.9677 0.4777 3.6323 0.3804 0.3391 0.1508 1.5513 0.0331 1.2878 0.0620
-#> 409: 92.8585 -5.9498 -0.1272 2.2770 -0.9677 0.4791 3.6383 0.3806 0.3389 0.1506 1.5512 0.0331 1.2865 0.0621
-#> 410: 92.8574 -5.9522 -0.1272 2.2769 -0.9676 0.4810 3.6538 0.3809 0.3387 0.1507 1.5509 0.0331 1.2855 0.0621
-#> 411: 92.8568 -5.9532 -0.1272 2.2767 -0.9675 0.4817 3.6651 0.3811 0.3385 0.1507 1.5508 0.0332 1.2842 0.0622
-#> 412: 92.8562 -5.9535 -0.1273 2.2767 -0.9674 0.4819 3.6756 0.3812 0.3383 0.1507 1.5509 0.0332 1.2851 0.0621
-#> 413: 92.8559 -5.9542 -0.1274 2.2766 -0.9672 0.4824 3.6881 0.3814 0.3381 0.1507 1.5514 0.0332 1.2848 0.0621
-#> 414: 92.8556 -5.9550 -0.1274 2.2765 -0.9670 0.4835 3.6990 0.3815 0.3379 0.1507 1.5519 0.0332 1.2838 0.0622
-#> 415: 92.8551 -5.9566 -0.1274 2.2764 -0.9669 0.4838 3.7133 0.3816 0.3377 0.1506 1.5522 0.0332 1.2828 0.0623
-#> 416: 92.8547 -5.9581 -0.1275 2.2764 -0.9668 0.4848 3.7276 0.3818 0.3374 0.1504 1.5526 0.0332 1.2814 0.0623
-#> 417: 92.8538 -5.9581 -0.1274 2.2764 -0.9667 0.4856 3.7321 0.3818 0.3372 0.1503 1.5532 0.0332 1.2800 0.0624
-#> 418: 92.8527 -5.9590 -0.1273 2.2766 -0.9665 0.4869 3.7398 0.3817 0.3372 0.1502 1.5532 0.0332 1.2787 0.0625
-#> 419: 92.8524 -5.9596 -0.1272 2.2768 -0.9663 0.4869 3.7467 0.3817 0.3372 0.1501 1.5531 0.0332 1.2779 0.0625
-#> 420: 92.8520 -5.9598 -0.1271 2.2771 -0.9662 0.4863 3.7494 0.3817 0.3372 0.1501 1.5528 0.0332 1.2774 0.0625
-#> 421: 92.8516 -5.9601 -0.1270 2.2772 -0.9661 0.4855 3.7541 0.3817 0.3372 0.1500 1.5527 0.0333 1.2763 0.0625
-#> 422: 92.8509 -5.9602 -0.1270 2.2775 -0.9659 0.4855 3.7554 0.3818 0.3371 0.1499 1.5525 0.0333 1.2753 0.0626
-#> 423: 92.8497 -5.9608 -0.1269 2.2777 -0.9658 0.4855 3.7590 0.3819 0.3371 0.1499 1.5524 0.0334 1.2746 0.0626
-#> 424: 92.8490 -5.9620 -0.1269 2.2779 -0.9658 0.4852 3.7657 0.3820 0.3370 0.1498 1.5521 0.0334 1.2740 0.0626
-#> 425: 92.8481 -5.9615 -0.1268 2.2780 -0.9657 0.4852 3.7639 0.3819 0.3369 0.1497 1.5520 0.0334 1.2741 0.0625
-#> 426: 92.8471 -5.9611 -0.1267 2.2783 -0.9656 0.4859 3.7632 0.3819 0.3369 0.1495 1.5520 0.0335 1.2744 0.0625
-#> 427: 92.8470 -5.9605 -0.1266 2.2784 -0.9655 0.4856 3.7616 0.3819 0.3368 0.1494 1.5522 0.0335 1.2739 0.0625
-#> 428: 92.8464 -5.9602 -0.1266 2.2786 -0.9653 0.4851 3.7603 0.3820 0.3367 0.1493 1.5522 0.0335 1.2731 0.0625
-#> 429: 92.8450 -5.9593 -0.1265 2.2788 -0.9652 0.4852 3.7573 0.3820 0.3366 0.1493 1.5525 0.0335 1.2720 0.0626
-#> 430: 92.8440 -5.9590 -0.1264 2.2789 -0.9651 0.4862 3.7586 0.3821 0.3365 0.1493 1.5524 0.0335 1.2710 0.0627
-#> 431: 92.8428 -5.9583 -0.1263 2.2791 -0.9649 0.4868 3.7575 0.3821 0.3365 0.1493 1.5522 0.0335 1.2698 0.0627
-#> 432: 92.8417 -5.9583 -0.1262 2.2793 -0.9649 0.4881 3.7580 0.3821 0.3365 0.1493 1.5518 0.0335 1.2683 0.0628
-#> 433: 92.8404 -5.9589 -0.1261 2.2796 -0.9648 0.4888 3.7614 0.3821 0.3364 0.1494 1.5513 0.0335 1.2681 0.0628
-#> 434: 92.8392 -5.9585 -0.1260 2.2798 -0.9646 0.4900 3.7602 0.3821 0.3363 0.1494 1.5509 0.0336 1.2686 0.0627
-#> 435: 92.8376 -5.9587 -0.1260 2.2801 -0.9645 0.4913 3.7622 0.3822 0.3362 0.1494 1.5506 0.0336 1.2677 0.0627
-#> 436: 92.8367 -5.9581 -0.1259 2.2802 -0.9646 0.4912 3.7594 0.3821 0.3361 0.1494 1.5504 0.0336 1.2684 0.0627
-#> 437: 92.8352 -5.9588 -0.1259 2.2803 -0.9647 0.4910 3.7634 0.3821 0.3360 0.1494 1.5501 0.0337 1.2695 0.0626
-#> 438: 92.8332 -5.9592 -0.1259 2.2804 -0.9648 0.4913 3.7649 0.3821 0.3358 0.1494 1.5498 0.0337 1.2705 0.0625
-#> 439: 92.8310 -5.9589 -0.1258 2.2805 -0.9648 0.4916 3.7630 0.3821 0.3357 0.1494 1.5497 0.0337 1.2713 0.0625
-#> 440: 92.8292 -5.9590 -0.1258 2.2806 -0.9649 0.4915 3.7620 0.3821 0.3355 0.1493 1.5494 0.0338 1.2712 0.0625
-#> 441: 92.8276 -5.9590 -0.1258 2.2808 -0.9650 0.4915 3.7619 0.3822 0.3353 0.1493 1.5493 0.0338 1.2712 0.0625
-#> 442: 92.8258 -5.9587 -0.1257 2.2809 -0.9650 0.4927 3.7592 0.3822 0.3351 0.1493 1.5493 0.0338 1.2707 0.0625
-#> 443: 92.8241 -5.9586 -0.1256 2.2811 -0.9651 0.4941 3.7563 0.3822 0.3350 0.1493 1.5491 0.0338 1.2704 0.0625
-#> 444: 92.8228 -5.9591 -0.1256 2.2812 -0.9651 0.4954 3.7566 0.3822 0.3349 0.1493 1.5488 0.0339 1.2703 0.0625
-#> 445: 92.8210 -5.9596 -0.1256 2.2813 -0.9652 0.4972 3.7573 0.3821 0.3348 0.1493 1.5484 0.0339 1.2702 0.0625
-#> 446: 92.8193 -5.9595 -0.1255 2.2815 -0.9652 0.4989 3.7551 0.3821 0.3348 0.1494 1.5482 0.0339 1.2708 0.0624
-#> 447: 92.8183 -5.9598 -0.1255 2.2817 -0.9652 0.5002 3.7548 0.3820 0.3347 0.1494 1.5478 0.0339 1.2710 0.0624
-#> 448: 92.8177 -5.9607 -0.1255 2.2818 -0.9653 0.5019 3.7585 0.3819 0.3347 0.1495 1.5475 0.0340 1.2711 0.0624
-#> 449: 92.8171 -5.9613 -0.1254 2.2819 -0.9654 0.5040 3.7592 0.3819 0.3347 0.1495 1.5474 0.0340 1.2711 0.0624
-#> 450: 92.8164 -5.9621 -0.1253 2.2821 -0.9655 0.5060 3.7632 0.3818 0.3346 0.1495 1.5470 0.0340 1.2704 0.0624
-#> 451: 92.8157 -5.9628 -0.1253 2.2822 -0.9655 0.5082 3.7655 0.3816 0.3346 0.1495 1.5469 0.0340 1.2699 0.0625
-#> 452: 92.8157 -5.9633 -0.1252 2.2824 -0.9656 0.5092 3.7657 0.3815 0.3346 0.1495 1.5468 0.0340 1.2691 0.0625
-#> 453: 92.8155 -5.9631 -0.1252 2.2823 -0.9657 0.5099 3.7646 0.3815 0.3347 0.1494 1.5470 0.0340 1.2684 0.0625
-#> 454: 92.8149 -5.9627 -0.1252 2.2823 -0.9656 0.5110 3.7623 0.3815 0.3347 0.1495 1.5470 0.0340 1.2678 0.0626
-#> 455: 92.8147 -5.9626 -0.1253 2.2822 -0.9656 0.5118 3.7610 0.3816 0.3347 0.1495 1.5471 0.0340 1.2675 0.0626
-#> 456: 92.8146 -5.9631 -0.1253 2.2821 -0.9657 0.5124 3.7612 0.3817 0.3348 0.1495 1.5473 0.0340 1.2684 0.0625
-#> 457: 92.8146 -5.9639 -0.1253 2.2820 -0.9658 0.5131 3.7636 0.3817 0.3347 0.1494 1.5471 0.0340 1.2683 0.0625
-#> 458: 92.8142 -5.9641 -0.1254 2.2818 -0.9658 0.5143 3.7637 0.3817 0.3347 0.1493 1.5472 0.0340 1.2679 0.0626
-#> 459: 92.8129 -5.9636 -0.1254 2.2818 -0.9660 0.5155 3.7609 0.3817 0.3347 0.1493 1.5474 0.0340 1.2692 0.0625
-#> 460: 92.8118 -5.9630 -0.1254 2.2817 -0.9660 0.5155 3.7563 0.3818 0.3347 0.1493 1.5476 0.0340 1.2703 0.0624
-#> 461: 92.8102 -5.9625 -0.1255 2.2816 -0.9661 0.5159 3.7525 0.3818 0.3347 0.1493 1.5478 0.0340 1.2711 0.0624
-#> 462: 92.8090 -5.9628 -0.1255 2.2814 -0.9661 0.5163 3.7520 0.3819 0.3347 0.1492 1.5481 0.0340 1.2708 0.0624
-#> 463: 92.8075 -5.9633 -0.1256 2.2813 -0.9660 0.5180 3.7534 0.3819 0.3347 0.1491 1.5484 0.0340 1.2705 0.0624
-#> 464: 92.8066 -5.9628 -0.1256 2.2812 -0.9659 0.5194 3.7507 0.3820 0.3347 0.1490 1.5485 0.0340 1.2702 0.0624
-#> 465: 92.8058 -5.9627 -0.1257 2.2811 -0.9658 0.5212 3.7506 0.3820 0.3347 0.1490 1.5484 0.0340 1.2696 0.0625
-#> 466: 92.8055 -5.9624 -0.1258 2.2808 -0.9656 0.5227 3.7510 0.3821 0.3347 0.1489 1.5487 0.0340 1.2704 0.0624
-#> 467: 92.8052 -5.9624 -0.1260 2.2805 -0.9656 0.5242 3.7518 0.3822 0.3346 0.1488 1.5488 0.0340 1.2715 0.0623
-#> 468: 92.8054 -5.9623 -0.1261 2.2803 -0.9654 0.5260 3.7545 0.3823 0.3346 0.1487 1.5493 0.0340 1.2730 0.0623
-#> 469: 92.8052 -5.9629 -0.1262 2.2803 -0.9654 0.5278 3.7617 0.3824 0.3346 0.1486 1.5495 0.0340 1.2737 0.0622
-#> 470: 92.8055 -5.9638 -0.1263 2.2802 -0.9653 0.5290 3.7667 0.3825 0.3347 0.1486 1.5494 0.0341 1.2729 0.0623
-#> 471: 92.8061 -5.9645 -0.1263 2.2801 -0.9653 0.5293 3.7702 0.3825 0.3347 0.1485 1.5494 0.0341 1.2724 0.0623
-#> 472: 92.8057 -5.9645 -0.1264 2.2800 -0.9653 0.5288 3.7699 0.3826 0.3347 0.1484 1.5495 0.0341 1.2728 0.0623
-#> 473: 92.8053 -5.9643 -0.1265 2.2799 -0.9652 0.5282 3.7701 0.3827 0.3347 0.1483 1.5494 0.0341 1.2721 0.0623
-#> 474: 92.8049 -5.9638 -0.1266 2.2798 -0.9653 0.5273 3.7676 0.3828 0.3347 0.1483 1.5495 0.0341 1.2722 0.0623
-#> 475: 92.8041 -5.9639 -0.1267 2.2796 -0.9654 0.5269 3.7668 0.3829 0.3347 0.1482 1.5495 0.0341 1.2721 0.0623
-#> 476: 92.8032 -5.9641 -0.1269 2.2794 -0.9653 0.5260 3.7681 0.3830 0.3347 0.1481 1.5496 0.0341 1.2716 0.0623
-#> 477: 92.8026 -5.9634 -0.1270 2.2792 -0.9653 0.5249 3.7647 0.3831 0.3347 0.1480 1.5500 0.0341 1.2716 0.0623
-#> 478: 92.8021 -5.9627 -0.1271 2.2789 -0.9653 0.5241 3.7606 0.3832 0.3346 0.1480 1.5500 0.0341 1.2718 0.0623
-#> 479: 92.8019 -5.9623 -0.1272 2.2787 -0.9654 0.5241 3.7581 0.3833 0.3345 0.1480 1.5502 0.0342 1.2714 0.0624
-#> 480: 92.8017 -5.9631 -0.1274 2.2784 -0.9654 0.5241 3.7606 0.3835 0.3344 0.1479 1.5503 0.0342 1.2711 0.0624
-#> 481: 92.8020 -5.9638 -0.1275 2.2781 -0.9654 0.5237 3.7659 0.3837 0.3343 0.1478 1.5508 0.0342 1.2720 0.0624
-#> 482: 92.8024 -5.9640 -0.1278 2.2777 -0.9654 0.5228 3.7668 0.3838 0.3342 0.1478 1.5512 0.0342 1.2729 0.0623
-#> 483: 92.8017 -5.9645 -0.1280 2.2773 -0.9654 0.5224 3.7676 0.3840 0.3341 0.1478 1.5515 0.0342 1.2741 0.0622
-#> 484: 92.8012 -5.9642 -0.1281 2.2771 -0.9653 0.5221 3.7649 0.3841 0.3340 0.1478 1.5521 0.0341 1.2747 0.0622
-#> 485: 92.8009 -5.9642 -0.1283 2.2769 -0.9653 0.5214 3.7635 0.3842 0.3339 0.1479 1.5523 0.0341 1.2752 0.0622
-#> 486: 92.8002 -5.9639 -0.1284 2.2767 -0.9652 0.5213 3.7609 0.3842 0.3339 0.1480 1.5523 0.0341 1.2760 0.0621
-#> 487: 92.7998 -5.9636 -0.1285 2.2767 -0.9652 0.5212 3.7603 0.3842 0.3339 0.1480 1.5525 0.0341 1.2762 0.0621
-#> 488: 92.7995 -5.9634 -0.1285 2.2766 -0.9652 0.5218 3.7592 0.3841 0.3339 0.1480 1.5530 0.0341 1.2773 0.0621
-#> 489: 92.7996 -5.9630 -0.1286 2.2765 -0.9653 0.5220 3.7578 0.3841 0.3339 0.1480 1.5532 0.0341 1.2778 0.0621
-#> 490: 92.8001 -5.9629 -0.1287 2.2764 -0.9652 0.5226 3.7573 0.3841 0.3339 0.1479 1.5533 0.0341 1.2788 0.0620
-#> 491: 92.8001 -5.9629 -0.1287 2.2762 -0.9651 0.5225 3.7568 0.3841 0.3338 0.1479 1.5533 0.0341 1.2790 0.0620
-#> 492: 92.8005 -5.9625 -0.1288 2.2761 -0.9651 0.5228 3.7544 0.3840 0.3339 0.1479 1.5536 0.0341 1.2797 0.0619
-#> 493: 92.8010 -5.9626 -0.1289 2.2759 -0.9651 0.5228 3.7544 0.3840 0.3339 0.1479 1.5537 0.0340 1.2795 0.0620
-#> 494: 92.8014 -5.9623 -0.1290 2.2757 -0.9651 0.5239 3.7523 0.3839 0.3340 0.1479 1.5540 0.0340 1.2790 0.0620
-#> 495: 92.8017 -5.9617 -0.1291 2.2755 -0.9652 0.5244 3.7491 0.3838 0.3341 0.1480 1.5540 0.0340 1.2787 0.0621
-#> 496: 92.8019 -5.9613 -0.1291 2.2754 -0.9652 0.5246 3.7459 0.3837 0.3341 0.1481 1.5539 0.0340 1.2802 0.0620
-#> 497: 92.8023 -5.9611 -0.1292 2.2753 -0.9653 0.5252 3.7447 0.3836 0.3340 0.1482 1.5539 0.0340 1.2814 0.0620
-#> 498: 92.8025 -5.9615 -0.1292 2.2752 -0.9653 0.5254 3.7446 0.3836 0.3339 0.1483 1.5539 0.0340 1.2825 0.0619
-#> 499: 92.8033 -5.9616 -0.1292 2.2751 -0.9654 0.5254 3.7447 0.3836 0.3338 0.1483 1.5538 0.0340 1.2834 0.0619
-#> 500: 92.8041 -5.9630 -0.1292 2.2752 -0.9655 0.5248 3.7529 0.3836 0.3337 0.1484 1.5538 0.0340 1.2841 0.0619#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"#> Calculating residuals/tables#> done#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> Timing stopped at: 0.763 0.036 0.799f_nlmixr_fomc_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei",
error_model = "obs_tc")
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
-#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#> F: Forward difference gradient approximation
-#> C: Central difference gradient approximation
-#> M: Mixed forward and central difference gradient approximation
-#> Unscaled parameters for Omegas=chol(solve(omega));
-#> Diagonals are transformed, as specified by foceiControl(diagXform=)
-#> |-----+---------------+-----------+-----------+-----------+-----------|
-#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_alpha |
-#> |.....................| log_beta |sigma_low_parent |rsd_high_parent |sigma_low_A1 |
-#> |.....................|rsd_high_A1 | o1 | o2 | o3 |
-#> |.....................| o4 | o5 |...........|...........|
-#> | 1| 504.82714 | 1.000 | -1.000 | -0.9114 | -0.8944 |
-#> |.....................| -0.8457 | -0.8687 | -0.8916 | -0.8687 |
-#> |.....................| -0.8916 | -0.8768 | -0.8745 | -0.8676 |
-#> |.....................| -0.8705 | -0.8704 |...........|...........|
-#> | U| 504.82714 | 93.12 | -5.303 | -0.9442 | -0.1065 |
-#> |.....................| 2.291 | 1.160 | 0.03005 | 1.160 |
-#> |.....................| 0.03005 | 0.7578 | 0.8738 | 1.213 |
-#> |.....................| 1.069 | 1.072 |...........|...........|
-#> | X| 504.82714 | 93.12 | 0.004975 | 0.2801 | 0.8989 |
-#> |.....................| 9.884 | 1.160 | 0.03005 | 1.160 |
-#> |.....................| 0.03005 | 0.7578 | 0.8738 | 1.213 |
-#> |.....................| 1.069 | 1.072 |...........|...........|
-#> | G| Gill Diff. | 73.79 | 2.406 | 0.05615 | 0.2285 |
-#> |.....................| 0.009051 | -73.50 | -23.10 | 0.2441 |
-#> |.....................| -2.663 | 1.201 | 11.89 | -10.88 |
-#> |.....................| -9.982 | -10.81 |...........|...........|
-#> | 2| 4109.9562 | 0.3228 | -1.022 | -0.9119 | -0.8965 |
-#> |.....................| -0.8458 | -0.1941 | -0.6796 | -0.8709 |
-#> |.....................| -0.8672 | -0.8879 | -0.9836 | -0.7677 |
-#> |.....................| -0.7789 | -0.7712 |...........|...........|
-#> | U| 4109.9562 | 30.05 | -5.326 | -0.9447 | -0.1086 |
-#> |.....................| 2.291 | 1.551 | 0.03324 | 1.158 |
-#> |.....................| 0.03042 | 0.7495 | 0.7784 | 1.335 |
-#> |.....................| 1.167 | 1.178 |...........|...........|
-#> | X| 4109.9562 | 30.05 | 0.004866 | 0.2800 | 0.8971 |
-#> |.....................| 9.883 | 1.551 | 0.03324 | 1.158 |
-#> |.....................| 0.03042 | 0.7495 | 0.7784 | 1.335 |
-#> |.....................| 1.167 | 1.178 |...........|...........|
-#> | 3| 527.72868 | 0.9323 | -1.002 | -0.9115 | -0.8946 |
-#> |.....................| -0.8457 | -0.8012 | -0.8704 | -0.8689 |
-#> |.....................| -0.8892 | -0.8779 | -0.8854 | -0.8576 |
-#> |.....................| -0.8613 | -0.8605 |...........|...........|
-#> | U| 527.72868 | 86.81 | -5.306 | -0.9442 | -0.1067 |
-#> |.....................| 2.291 | 1.199 | 0.03037 | 1.159 |
-#> |.....................| 0.03009 | 0.7570 | 0.8642 | 1.226 |
-#> |.....................| 1.079 | 1.083 |...........|...........|
-#> | X| 527.72868 | 86.81 | 0.004964 | 0.2800 | 0.8988 |
-#> |.....................| 9.884 | 1.199 | 0.03037 | 1.159 |
-#> |.....................| 0.03009 | 0.7570 | 0.8642 | 1.226 |
-#> |.....................| 1.079 | 1.083 |...........|...........|
-#> | 4| 503.94655 | 0.9891 | -1.000 | -0.9114 | -0.8944 |
-#> |.....................| -0.8457 | -0.8578 | -0.8882 | -0.8687 |
-#> |.....................| -0.8912 | -0.8770 | -0.8762 | -0.8660 |
-#> |.....................| -0.8690 | -0.8688 |...........|...........|
-#> | U| 503.94655 | 92.10 | -5.304 | -0.9442 | -0.1066 |
-#> |.....................| 2.291 | 1.166 | 0.03011 | 1.160 |
-#> |.....................| 0.03006 | 0.7577 | 0.8722 | 1.215 |
-#> |.....................| 1.070 | 1.074 |...........|...........|
-#> | X| 503.94655 | 92.10 | 0.004973 | 0.2801 | 0.8989 |
-#> |.....................| 9.884 | 1.166 | 0.03011 | 1.160 |
-#> |.....................| 0.03006 | 0.7577 | 0.8722 | 1.215 |
-#> |.....................| 1.070 | 1.074 |...........|...........|
-#> | F| Forward Diff. | -83.20 | 2.270 | -0.2572 | 0.1460 |
-#> |.....................| -0.3233 | -71.29 | -24.25 | 0.7297 |
-#> |.....................| -2.130 | 1.329 | 9.332 | -11.82 |
-#> |.....................| -9.604 | -10.42 |...........|...........|
-#> | 5| 503.03407 | 1.000 | -1.001 | -0.9114 | -0.8944 |
-#> |.....................| -0.8456 | -0.8473 | -0.8847 | -0.8688 |
-#> |.....................| -0.8909 | -0.8772 | -0.8776 | -0.8642 |
-#> |.....................| -0.8676 | -0.8673 |...........|...........|
-#> | U| 503.03407 | 93.15 | -5.304 | -0.9442 | -0.1066 |
-#> |.....................| 2.291 | 1.172 | 0.03016 | 1.159 |
-#> |.....................| 0.03007 | 0.7575 | 0.8710 | 1.217 |
-#> |.....................| 1.072 | 1.075 |...........|...........|
-#> | X| 503.03407 | 93.15 | 0.004971 | 0.2801 | 0.8989 |
-#> |.....................| 9.884 | 1.172 | 0.03016 | 1.159 |
-#> |.....................| 0.03007 | 0.7575 | 0.8710 | 1.217 |
-#> |.....................| 1.072 | 1.075 |...........|...........|
-#> | F| Forward Diff. | 79.23 | 2.386 | 0.06830 | 0.2424 |
-#> |.....................| 0.02121 | -70.84 | -22.28 | -0.5289 |
-#> |.....................| -2.713 | 1.149 | 11.82 | -11.86 |
-#> |.....................| -9.567 | -10.47 |...........|...........|
-#> | 6| 502.12413 | 0.9895 | -1.001 | -0.9114 | -0.8945 |
-#> |.....................| -0.8456 | -0.8365 | -0.8812 | -0.8687 |
-#> |.....................| -0.8905 | -0.8774 | -0.8794 | -0.8624 |
-#> |.....................| -0.8662 | -0.8657 |...........|...........|
-#> | U| 502.12413 | 92.14 | -5.304 | -0.9442 | -0.1066 |
-#> |.....................| 2.291 | 1.178 | 0.03021 | 1.160 |
-#> |.....................| 0.03007 | 0.7574 | 0.8695 | 1.220 |
-#> |.....................| 1.073 | 1.077 |...........|...........|
-#> | X| 502.12413 | 92.14 | 0.004969 | 0.2801 | 0.8989 |
-#> |.....................| 9.884 | 1.178 | 0.03021 | 1.160 |
-#> |.....................| 0.03007 | 0.7574 | 0.8695 | 1.220 |
-#> |.....................| 1.073 | 1.077 |...........|...........|
-#> | F| Forward Diff. | -77.28 | 2.252 | -0.2503 | 0.1427 |
-#> |.....................| -0.3238 | -69.21 | -23.25 | 0.3943 |
-#> |.....................| -2.493 | 1.092 | 10.79 | -11.67 |
-#> |.....................| -9.485 | -10.25 |...........|...........|
-#> | 7| 501.24651 | 1.000 | -1.001 | -0.9114 | -0.8945 |
-#> |.....................| -0.8456 | -0.8257 | -0.8776 | -0.8688 |
-#> |.....................| -0.8901 | -0.8775 | -0.8811 | -0.8606 |
-#> |.....................| -0.8647 | -0.8641 |...........|...........|
-#> | U| 501.24651 | 93.15 | -5.305 | -0.9441 | -0.1067 |
-#> |.....................| 2.291 | 1.184 | 0.03026 | 1.160 |
-#> |.....................| 0.03008 | 0.7573 | 0.8680 | 1.222 |
-#> |.....................| 1.075 | 1.079 |...........|...........|
-#> | X| 501.24651 | 93.15 | 0.004968 | 0.2801 | 0.8988 |
-#> |.....................| 9.885 | 1.184 | 0.03026 | 1.160 |
-#> |.....................| 0.03008 | 0.7573 | 0.8680 | 1.222 |
-#> |.....................| 1.075 | 1.079 |...........|...........|
-#> | F| Forward Diff. | 78.96 | 2.363 | 0.07229 | 0.2390 |
-#> |.....................| 0.02239 | -67.81 | -20.97 | 0.1381 |
-#> |.....................| -2.125 | 1.379 | 9.797 | -11.70 |
-#> |.....................| -9.438 | -10.29 |...........|...........|
-#> | 8| 500.35160 | 0.9896 | -1.002 | -0.9114 | -0.8945 |
-#> |.....................| -0.8456 | -0.8148 | -0.8742 | -0.8688 |
-#> |.....................| -0.8898 | -0.8778 | -0.8827 | -0.8587 |
-#> |.....................| -0.8632 | -0.8625 |...........|...........|
-#> | U| 500.3516 | 92.15 | -5.305 | -0.9441 | -0.1067 |
-#> |.....................| 2.291 | 1.191 | 0.03032 | 1.159 |
-#> |.....................| 0.03008 | 0.7571 | 0.8666 | 1.224 |
-#> |.....................| 1.077 | 1.081 |...........|...........|
-#> | X| 500.3516 | 92.15 | 0.004966 | 0.2801 | 0.8988 |
-#> |.....................| 9.885 | 1.191 | 0.03032 | 1.159 |
-#> |.....................| 0.03008 | 0.7571 | 0.8666 | 1.224 |
-#> |.....................| 1.077 | 1.081 |...........|...........|
-#> | F| Forward Diff. | -75.23 | 2.232 | -0.2459 | 0.1501 |
-#> |.....................| -0.3253 | -66.87 | -22.19 | 0.4436 |
-#> |.....................| -2.150 | 0.9434 | 9.182 | -11.49 |
-#> |.....................| -9.350 | -10.07 |...........|...........|
-#> | 9| 499.45361 | 1.000 | -1.002 | -0.9113 | -0.8946 |
-#> |.....................| -0.8455 | -0.8036 | -0.8705 | -0.8689 |
-#> |.....................| -0.8894 | -0.8779 | -0.8842 | -0.8568 |
-#> |.....................| -0.8616 | -0.8608 |...........|...........|
-#> | U| 499.45361 | 93.12 | -5.306 | -0.9441 | -0.1067 |
-#> |.....................| 2.291 | 1.197 | 0.03037 | 1.159 |
-#> |.....................| 0.03009 | 0.7570 | 0.8653 | 1.226 |
-#> |.....................| 1.078 | 1.082 |...........|...........|
-#> | X| 499.45361 | 93.12 | 0.004964 | 0.2801 | 0.8988 |
-#> |.....................| 9.885 | 1.197 | 0.03037 | 1.159 |
-#> |.....................| 0.03009 | 0.7570 | 0.8653 | 1.226 |
-#> |.....................| 1.078 | 1.082 |...........|...........|
-#> | F| Forward Diff. | 73.21 | 2.337 | 0.06584 | 0.2472 |
-#> |.....................| 0.008903 | -65.96 | -20.21 | -0.3457 |
-#> |.....................| -2.677 | 1.048 | 11.29 | -11.53 |
-#> |.....................| -9.311 | -10.11 |...........|...........|
-#> | 10| 498.59105 | 0.9896 | -1.003 | -0.9113 | -0.8946 |
-#> |.....................| -0.8455 | -0.7924 | -0.8671 | -0.8688 |
-#> |.....................| -0.8890 | -0.8781 | -0.8861 | -0.8548 |
-#> |.....................| -0.8600 | -0.8591 |...........|...........|
-#> | U| 498.59105 | 92.15 | -5.306 | -0.9441 | -0.1068 |
-#> |.....................| 2.291 | 1.204 | 0.03042 | 1.159 |
-#> |.....................| 0.03009 | 0.7568 | 0.8636 | 1.229 |
-#> |.....................| 1.080 | 1.084 |...........|...........|
-#> | X| 498.59105 | 92.15 | 0.004962 | 0.2801 | 0.8987 |
-#> |.....................| 9.885 | 1.204 | 0.03042 | 1.159 |
-#> |.....................| 0.03009 | 0.7568 | 0.8636 | 1.229 |
-#> |.....................| 1.080 | 1.084 |...........|...........|
-#> | F| Forward Diff. | -74.43 | 2.211 | -0.2431 | 0.1502 |
-#> |.....................| -0.3305 | -64.40 | -21.08 | 0.5329 |
-#> |.....................| -2.487 | 0.9319 | 8.926 | -11.33 |
-#> |.....................| -9.217 | -9.888 |...........|...........|
-#> | 11| 497.71590 | 1.000 | -1.003 | -0.9113 | -0.8946 |
-#> |.....................| -0.8455 | -0.7811 | -0.8634 | -0.8689 |
-#> |.....................| -0.8885 | -0.8783 | -0.8877 | -0.8529 |
-#> |.....................| -0.8584 | -0.8573 |...........|...........|
-#> | U| 497.7159 | 93.11 | -5.306 | -0.9441 | -0.1068 |
-#> |.....................| 2.291 | 1.210 | 0.03048 | 1.159 |
-#> |.....................| 0.03010 | 0.7567 | 0.8622 | 1.231 |
-#> |.....................| 1.082 | 1.086 |...........|...........|
-#> | X| 497.7159 | 93.11 | 0.004960 | 0.2801 | 0.8987 |
-#> |.....................| 9.886 | 1.210 | 0.03048 | 1.159 |
-#> |.....................| 0.03010 | 0.7567 | 0.8622 | 1.231 |
-#> |.....................| 1.082 | 1.086 |...........|...........|
-#> | F| Forward Diff. | 71.79 | 2.312 | 0.07434 | 0.2557 |
-#> |.....................| 0.006614 | -63.04 | -18.95 | 0.3164 |
-#> |.....................| -2.117 | 1.342 | 9.274 | -11.35 |
-#> |.....................| -9.172 | -9.924 |...........|...........|
-#> | 12| 496.86264 | 0.9898 | -1.003 | -0.9113 | -0.8947 |
-#> |.....................| -0.8455 | -0.7696 | -0.8599 | -0.8690 |
-#> |.....................| -0.8881 | -0.8785 | -0.8894 | -0.8508 |
-#> |.....................| -0.8567 | -0.8555 |...........|...........|
-#> | U| 496.86264 | 92.17 | -5.307 | -0.9441 | -0.1068 |
-#> |.....................| 2.291 | 1.217 | 0.03053 | 1.159 |
-#> |.....................| 0.03011 | 0.7565 | 0.8607 | 1.234 |
-#> |.....................| 1.084 | 1.088 |...........|...........|
-#> | X| 496.86264 | 92.17 | 0.004958 | 0.2801 | 0.8987 |
-#> |.....................| 9.886 | 1.217 | 0.03053 | 1.159 |
-#> |.....................| 0.03011 | 0.7565 | 0.8607 | 1.234 |
-#> |.....................| 1.084 | 1.088 |...........|...........|
-#> | F| Forward Diff. | -71.54 | 2.190 | -0.2371 | 0.1482 |
-#> |.....................| -0.3369 | -61.67 | -19.90 | 0.9419 |
-#> |.....................| -2.139 | 1.041 | 7.036 | -11.13 |
-#> |.....................| -9.064 | -9.692 |...........|...........|
-#> | 13| 495.99097 | 0.9997 | -1.004 | -0.9113 | -0.8947 |
-#> |.....................| -0.8454 | -0.7580 | -0.8562 | -0.8692 |
-#> |.....................| -0.8877 | -0.8787 | -0.8907 | -0.8487 |
-#> |.....................| -0.8550 | -0.8537 |...........|...........|
-#> | U| 495.99097 | 93.09 | -5.307 | -0.9441 | -0.1069 |
-#> |.....................| 2.291 | 1.224 | 0.03059 | 1.159 |
-#> |.....................| 0.03011 | 0.7564 | 0.8596 | 1.236 |
-#> |.....................| 1.085 | 1.090 |...........|...........|
-#> | X| 495.99097 | 93.09 | 0.004956 | 0.2801 | 0.8987 |
-#> |.....................| 9.886 | 1.224 | 0.03059 | 1.159 |
-#> |.....................| 0.03011 | 0.7564 | 0.8596 | 1.236 |
-#> |.....................| 1.085 | 1.090 |...........|...........|
-#> | F| Forward Diff. | 67.48 | 2.282 | 0.05510 | 0.2442 |
-#> |.....................| -0.01700 | -60.62 | -17.93 | 0.4372 |
-#> |.....................| -2.100 | 1.212 | 9.042 | -11.17 |
-#> |.....................| -9.025 | -9.723 |...........|...........|
-#> | 14| 495.15472 | 0.9899 | -1.004 | -0.9113 | -0.8948 |
-#> |.....................| -0.8454 | -0.7463 | -0.8527 | -0.8693 |
-#> |.....................| -0.8873 | -0.8789 | -0.8924 | -0.8465 |
-#> |.....................| -0.8533 | -0.8518 |...........|...........|
-#> | U| 495.15472 | 92.18 | -5.308 | -0.9441 | -0.1069 |
-#> |.....................| 2.291 | 1.231 | 0.03064 | 1.159 |
-#> |.....................| 0.03012 | 0.7562 | 0.8581 | 1.239 |
-#> |.....................| 1.087 | 1.092 |...........|...........|
-#> | X| 495.15472 | 92.18 | 0.004954 | 0.2801 | 0.8986 |
-#> |.....................| 9.886 | 1.231 | 0.03064 | 1.159 |
-#> |.....................| 0.03012 | 0.7562 | 0.8581 | 1.239 |
-#> |.....................| 1.087 | 1.092 |...........|...........|
-#> | F| Forward Diff. | -68.93 | 2.171 | -0.2257 | 0.1488 |
-#> |.....................| -0.3348 | -59.34 | -18.81 | 1.070 |
-#> |.....................| -2.082 | 1.016 | 8.208 | -10.96 |
-#> |.....................| -8.930 | -9.498 |...........|...........|
-#> | 15| 494.30065 | 0.9995 | -1.005 | -0.9112 | -0.8948 |
-#> |.....................| -0.8453 | -0.7344 | -0.8490 | -0.8695 |
-#> |.....................| -0.8869 | -0.8792 | -0.8941 | -0.8443 |
-#> |.....................| -0.8515 | -0.8499 |...........|...........|
-#> | U| 494.30065 | 93.07 | -5.308 | -0.9440 | -0.1069 |
-#> |.....................| 2.291 | 1.237 | 0.03069 | 1.159 |
-#> |.....................| 0.03013 | 0.7561 | 0.8567 | 1.242 |
-#> |.....................| 1.089 | 1.094 |...........|...........|
-#> | X| 494.30065 | 93.07 | 0.004951 | 0.2801 | 0.8986 |
-#> |.....................| 9.887 | 1.237 | 0.03069 | 1.159 |
-#> |.....................| 0.03013 | 0.7561 | 0.8567 | 1.242 |
-#> |.....................| 1.089 | 1.094 |...........|...........|
-#> | F| Forward Diff. | 65.20 | 2.260 | 0.06851 | 0.2416 |
-#> |.....................| -0.02143 | -58.42 | -17.03 | 0.3665 |
-#> |.....................| -2.202 | 1.112 | 7.377 | -10.96 |
-#> |.....................| -8.866 | -9.510 |...........|...........|
-#> | 16| 493.48608 | 0.9901 | -1.005 | -0.9112 | -0.8948 |
-#> |.....................| -0.8453 | -0.7225 | -0.8455 | -0.8696 |
-#> |.....................| -0.8865 | -0.8794 | -0.8956 | -0.8421 |
-#> |.....................| -0.8496 | -0.8479 |...........|...........|
-#> | U| 493.48608 | 92.19 | -5.309 | -0.9440 | -0.1070 |
-#> |.....................| 2.291 | 1.244 | 0.03075 | 1.159 |
-#> |.....................| 0.03013 | 0.7559 | 0.8553 | 1.244 |
-#> |.....................| 1.091 | 1.096 |...........|...........|
-#> | X| 493.48608 | 92.19 | 0.004949 | 0.2801 | 0.8985 |
-#> |.....................| 9.887 | 1.244 | 0.03075 | 1.159 |
-#> |.....................| 0.03013 | 0.7559 | 0.8553 | 1.244 |
-#> |.....................| 1.091 | 1.096 |...........|...........|
-#> | F| Forward Diff. | -66.94 | 2.152 | -0.2367 | 0.1452 |
-#> |.....................| -0.3412 | -57.13 | -17.84 | 1.057 |
-#> |.....................| -2.129 | 0.9540 | 6.557 | -10.77 |
-#> |.....................| -8.770 | -9.285 |...........|...........|
-#> | 17| 492.64670 | 0.9993 | -1.006 | -0.9112 | -0.8949 |
-#> |.....................| -0.8453 | -0.7105 | -0.8419 | -0.8698 |
-#> |.....................| -0.8860 | -0.8796 | -0.8969 | -0.8398 |
-#> |.....................| -0.8478 | -0.8460 |...........|...........|
-#> | U| 492.6467 | 93.06 | -5.309 | -0.9440 | -0.1070 |
-#> |.....................| 2.291 | 1.251 | 0.03080 | 1.159 |
-#> |.....................| 0.03014 | 0.7557 | 0.8542 | 1.247 |
-#> |.....................| 1.093 | 1.098 |...........|...........|
-#> | X| 492.6467 | 93.06 | 0.004947 | 0.2801 | 0.8985 |
-#> |.....................| 9.888 | 1.251 | 0.03080 | 1.159 |
-#> |.....................| 0.03014 | 0.7557 | 0.8542 | 1.247 |
-#> |.....................| 1.093 | 1.098 |...........|...........|
-#> | F| Forward Diff. | 62.51 | 2.244 | 0.07930 | 0.2506 |
-#> |.....................| -0.02305 | -56.21 | -16.10 | 0.4420 |
-#> |.....................| -2.202 | 1.071 | 7.160 | -10.75 |
-#> |.....................| -8.705 | -9.292 |...........|...........|
-#> | 18| 491.85024 | 0.9902 | -1.006 | -0.9112 | -0.8949 |
-#> |.....................| -0.8453 | -0.6983 | -0.8384 | -0.8699 |
-#> |.....................| -0.8855 | -0.8798 | -0.8984 | -0.8374 |
-#> |.....................| -0.8459 | -0.8439 |...........|...........|
-#> | U| 491.85024 | 92.21 | -5.310 | -0.9440 | -0.1071 |
-#> |.....................| 2.291 | 1.258 | 0.03085 | 1.159 |
-#> |.....................| 0.03015 | 0.7556 | 0.8529 | 1.250 |
-#> |.....................| 1.095 | 1.100 |...........|...........|
-#> | X| 491.85024 | 92.21 | 0.004944 | 0.2801 | 0.8985 |
-#> |.....................| 9.888 | 1.258 | 0.03085 | 1.159 |
-#> |.....................| 0.03015 | 0.7556 | 0.8529 | 1.250 |
-#> |.....................| 1.095 | 1.100 |...........|...........|
-#> | F| Forward Diff. | -64.39 | 2.132 | -0.2231 | 0.1507 |
-#> |.....................| -0.3455 | -54.91 | -16.84 | 1.107 |
-#> |.....................| -2.130 | 0.9153 | 6.361 | -10.56 |
-#> |.....................| -8.604 | -9.065 |...........|...........|
-#> | 19| 491.03181 | 0.9992 | -1.007 | -0.9112 | -0.8950 |
-#> |.....................| -0.8452 | -0.6860 | -0.8347 | -0.8702 |
-#> |.....................| -0.8850 | -0.8800 | -0.8997 | -0.8350 |
-#> |.....................| -0.8439 | -0.8419 |...........|...........|
-#> | U| 491.03181 | 93.04 | -5.310 | -0.9440 | -0.1071 |
-#> |.....................| 2.291 | 1.265 | 0.03091 | 1.159 |
-#> |.....................| 0.03015 | 0.7554 | 0.8517 | 1.253 |
-#> |.....................| 1.097 | 1.103 |...........|...........|
-#> | X| 491.03181 | 93.04 | 0.004942 | 0.2801 | 0.8984 |
-#> |.....................| 9.888 | 1.265 | 0.03091 | 1.159 |
-#> |.....................| 0.03015 | 0.7554 | 0.8517 | 1.253 |
-#> |.....................| 1.097 | 1.103 |...........|...........|
-#> | F| Forward Diff. | 59.97 | 2.217 | 0.06954 | 0.2512 |
-#> |.....................| -0.03854 | -54.10 | -15.21 | 0.3955 |
-#> |.....................| -2.336 | 1.047 | 8.162 | -10.81 |
-#> |.....................| -8.706 | -9.233 |...........|...........|
-#> | 20| 490.24998 | 0.9904 | -1.007 | -0.9112 | -0.8950 |
-#> |.....................| -0.8452 | -0.6737 | -0.8313 | -0.8703 |
-#> |.....................| -0.8845 | -0.8803 | -0.9015 | -0.8325 |
-#> |.....................| -0.8419 | -0.8397 |...........|...........|
-#> | U| 490.24998 | 92.22 | -5.311 | -0.9440 | -0.1072 |
-#> |.....................| 2.291 | 1.273 | 0.03096 | 1.159 |
-#> |.....................| 0.03016 | 0.7552 | 0.8502 | 1.256 |
-#> |.....................| 1.099 | 1.105 |...........|...........|
-#> | X| 490.24998 | 92.22 | 0.004939 | 0.2801 | 0.8984 |
-#> |.....................| 9.889 | 1.273 | 0.03096 | 1.159 |
-#> |.....................| 0.03016 | 0.7552 | 0.8502 | 1.256 |
-#> |.....................| 1.099 | 1.105 |...........|...........|
-#> | F| Forward Diff. | -61.40 | 2.114 | -0.2172 | 0.1580 |
-#> |.....................| -0.3477 | -53.15 | -16.02 | 0.7982 |
-#> |.....................| -2.483 | 0.7215 | 9.240 | -10.34 |
-#> |.....................| -8.435 | -8.843 |...........|...........|
-#> | 21| 489.45580 | 0.9991 | -1.008 | -0.9111 | -0.8951 |
-#> |.....................| -0.8451 | -0.6614 | -0.8278 | -0.8705 |
-#> |.....................| -0.8839 | -0.8804 | -0.9038 | -0.8300 |
-#> |.....................| -0.8398 | -0.8376 |...........|...........|
-#> | U| 489.4558 | 93.03 | -5.311 | -0.9439 | -0.1072 |
-#> |.....................| 2.291 | 1.280 | 0.03101 | 1.159 |
-#> |.....................| 0.03017 | 0.7551 | 0.8482 | 1.259 |
-#> |.....................| 1.102 | 1.107 |...........|...........|
-#> | X| 489.4558 | 93.03 | 0.004937 | 0.2801 | 0.8983 |
-#> |.....................| 9.889 | 1.280 | 0.03101 | 1.159 |
-#> |.....................| 0.03017 | 0.7551 | 0.8482 | 1.259 |
-#> |.....................| 1.102 | 1.107 |...........|...........|
-#> | F| Forward Diff. | 58.20 | 2.191 | 0.07193 | 0.2543 |
-#> |.....................| -0.04201 | -51.69 | -14.22 | 0.6968 |
-#> |.....................| -2.088 | 1.024 | 8.024 | -10.34 |
-#> |.....................| -8.364 | -8.845 |...........|...........|
-#> | 22| 488.71859 | 0.9903 | -1.008 | -0.9111 | -0.8951 |
-#> |.....................| -0.8451 | -0.6491 | -0.8245 | -0.8707 |
-#> |.....................| -0.8833 | -0.8807 | -0.9059 | -0.8275 |
-#> |.....................| -0.8378 | -0.8354 |...........|...........|
-#> | U| 488.71859 | 92.21 | -5.312 | -0.9439 | -0.1073 |
-#> |.....................| 2.291 | 1.287 | 0.03106 | 1.158 |
-#> |.....................| 0.03018 | 0.7549 | 0.8463 | 1.262 |
-#> |.....................| 1.104 | 1.110 |...........|...........|
-#> | X| 488.71859 | 92.21 | 0.004934 | 0.2801 | 0.8983 |
-#> |.....................| 9.890 | 1.287 | 0.03106 | 1.158 |
-#> |.....................| 0.03018 | 0.7549 | 0.8463 | 1.262 |
-#> |.....................| 1.104 | 1.110 |...........|...........|
-#> | F| Forward Diff. | -62.72 | 2.087 | -0.2158 | 0.1536 |
-#> |.....................| -0.3560 | -50.59 | -14.96 | 1.289 |
-#> |.....................| -2.066 | 0.8753 | 7.259 | -10.12 |
-#> |.....................| -8.247 | -8.604 |...........|...........|
-#> | 23| 487.91801 | 0.9987 | -1.009 | -0.9111 | -0.8952 |
-#> |.....................| -0.8450 | -0.6366 | -0.8210 | -0.8711 |
-#> |.....................| -0.8828 | -0.8809 | -0.9078 | -0.8248 |
-#> |.....................| -0.8356 | -0.8332 |...........|...........|
-#> | U| 487.91801 | 93.00 | -5.312 | -0.9439 | -0.1073 |
-#> |.....................| 2.292 | 1.294 | 0.03112 | 1.158 |
-#> |.....................| 0.03019 | 0.7547 | 0.8446 | 1.265 |
-#> |.....................| 1.106 | 1.112 |...........|...........|
-#> | X| 487.91801 | 93.00 | 0.004931 | 0.2801 | 0.8982 |
-#> |.....................| 9.890 | 1.294 | 0.03112 | 1.158 |
-#> |.....................| 0.03019 | 0.7547 | 0.8446 | 1.265 |
-#> |.....................| 1.106 | 1.112 |...........|...........|
-#> | F| Forward Diff. | 52.73 | 2.162 | 0.07610 | 0.2481 |
-#> |.....................| -0.05835 | -50.28 | -13.63 | 0.1991 |
-#> |.....................| -2.681 | 0.6961 | 9.479 | -10.12 |
-#> |.....................| -8.180 | -8.607 |...........|...........|
-#> | 24| 487.19380 | 0.9906 | -1.009 | -0.9111 | -0.8952 |
-#> |.....................| -0.8450 | -0.6240 | -0.8177 | -0.8712 |
-#> |.....................| -0.8820 | -0.8811 | -0.9103 | -0.8222 |
-#> |.....................| -0.8335 | -0.8310 |...........|...........|
-#> | U| 487.1938 | 92.24 | -5.313 | -0.9439 | -0.1074 |
-#> |.....................| 2.292 | 1.301 | 0.03116 | 1.158 |
-#> |.....................| 0.03020 | 0.7546 | 0.8424 | 1.269 |
-#> |.....................| 1.108 | 1.114 |...........|...........|
-#> | X| 487.1938 | 92.24 | 0.004929 | 0.2801 | 0.8982 |
-#> |.....................| 9.891 | 1.301 | 0.03116 | 1.158 |
-#> |.....................| 0.03020 | 0.7546 | 0.8424 | 1.269 |
-#> |.....................| 1.108 | 1.114 |...........|...........|
-#> | F| Forward Diff. | -58.70 | 2.065 | -0.2024 | 0.1592 |
-#> |.....................| -0.3563 | -48.58 | -14.05 | 1.280 |
-#> |.....................| -2.114 | 0.8980 | 5.535 | -9.882 |
-#> |.....................| -8.046 | -8.364 |...........|...........|
-#> | 25| 486.45861 | 0.9990 | -1.010 | -0.9111 | -0.8953 |
-#> |.....................| -0.8449 | -0.6115 | -0.8144 | -0.8715 |
-#> |.....................| -0.8813 | -0.8813 | -0.9121 | -0.8195 |
-#> |.....................| -0.8313 | -0.8287 |...........|...........|
-#> | U| 486.45861 | 93.03 | -5.313 | -0.9439 | -0.1074 |
-#> |.....................| 2.292 | 1.309 | 0.03121 | 1.158 |
-#> |.....................| 0.03021 | 0.7545 | 0.8409 | 1.272 |
-#> |.....................| 1.111 | 1.117 |...........|...........|
-#> | X| 486.45861 | 93.03 | 0.004926 | 0.2801 | 0.8981 |
-#> |.....................| 9.892 | 1.309 | 0.03121 | 1.158 |
-#> |.....................| 0.03021 | 0.7545 | 0.8409 | 1.272 |
-#> |.....................| 1.111 | 1.117 |...........|...........|
-#> | F| Forward Diff. | 56.64 | 2.141 | 0.09518 | 0.2574 |
-#> |.....................| -0.04938 | -48.45 | -12.81 | 0.1110 |
-#> |.....................| -2.819 | 0.7463 | 7.804 | -9.858 |
-#> |.....................| -7.976 | -8.366 |...........|...........|
-#> | 26| 485.70463 | 0.9912 | -1.011 | -0.9111 | -0.8954 |
-#> |.....................| -0.8448 | -0.5987 | -0.8113 | -0.8717 |
-#> |.....................| -0.8805 | -0.8815 | -0.9139 | -0.8166 |
-#> |.....................| -0.8290 | -0.8264 |...........|...........|
-#> | U| 485.70463 | 92.30 | -5.314 | -0.9439 | -0.1075 |
-#> |.....................| 2.292 | 1.316 | 0.03126 | 1.158 |
-#> |.....................| 0.03022 | 0.7543 | 0.8393 | 1.275 |
-#> |.....................| 1.113 | 1.119 |...........|...........|
-#> | X| 485.70463 | 92.30 | 0.004923 | 0.2801 | 0.8981 |
-#> |.....................| 9.892 | 1.316 | 0.03126 | 1.158 |
-#> |.....................| 0.03022 | 0.7543 | 0.8393 | 1.275 |
-#> |.....................| 1.113 | 1.119 |...........|...........|
-#> | F| Forward Diff. | -49.75 | 2.049 | -0.1896 | 0.1657 |
-#> |.....................| -0.3394 | -47.06 | -13.27 | 0.8968 |
-#> |.....................| -2.558 | 0.5259 | 7.006 | -9.655 |
-#> |.....................| -7.860 | -8.128 |...........|...........|
-#> | 27| 485.03383 | 0.9993 | -1.011 | -0.9111 | -0.8954 |
-#> |.....................| -0.8447 | -0.5860 | -0.8081 | -0.8719 |
-#> |.....................| -0.8796 | -0.8816 | -0.9160 | -0.8138 |
-#> |.....................| -0.8267 | -0.8240 |...........|...........|
-#> | U| 485.03383 | 93.05 | -5.315 | -0.9439 | -0.1076 |
-#> |.....................| 2.292 | 1.323 | 0.03131 | 1.158 |
-#> |.....................| 0.03024 | 0.7542 | 0.8375 | 1.279 |
-#> |.....................| 1.116 | 1.122 |...........|...........|
-#> | X| 485.03383 | 93.05 | 0.004920 | 0.2801 | 0.8980 |
-#> |.....................| 9.893 | 1.323 | 0.03131 | 1.158 |
-#> |.....................| 0.03024 | 0.7542 | 0.8375 | 1.279 |
-#> |.....................| 1.116 | 1.122 |...........|...........|
-#> | F| Forward Diff. | 59.36 | 2.117 | 0.1128 | 0.2587 |
-#> |.....................| -0.03694 | -45.49 | -11.65 | 0.8714 |
-#> |.....................| -2.196 | 0.9711 | 7.208 | -9.629 |
-#> |.....................| -7.785 | -8.123 |...........|...........|
-#> | 28| 484.30050 | 0.9913 | -1.012 | -0.9111 | -0.8955 |
-#> |.....................| -0.8447 | -0.5733 | -0.8052 | -0.8723 |
-#> |.....................| -0.8788 | -0.8818 | -0.9181 | -0.8109 |
-#> |.....................| -0.8243 | -0.8216 |...........|...........|
-#> | U| 484.3005 | 92.30 | -5.315 | -0.9439 | -0.1077 |
-#> |.....................| 2.292 | 1.331 | 0.03135 | 1.157 |
-#> |.....................| 0.03025 | 0.7541 | 0.8357 | 1.282 |
-#> |.....................| 1.118 | 1.124 |...........|...........|
-#> | X| 484.3005 | 92.30 | 0.004916 | 0.2801 | 0.8979 |
-#> |.....................| 9.894 | 1.331 | 0.03135 | 1.157 |
-#> |.....................| 0.03025 | 0.7541 | 0.8357 | 1.282 |
-#> |.....................| 1.118 | 1.124 |...........|...........|
-#> | F| Forward Diff. | -49.13 | 2.024 | -0.1788 | 0.1668 |
-#> |.....................| -0.3408 | -44.74 | -12.30 | 1.348 |
-#> |.....................| -2.137 | 0.7757 | 5.010 | -9.393 |
-#> |.....................| -7.651 | -7.866 |...........|...........|
-#> | 29| 483.61888 | 0.9988 | -1.013 | -0.9110 | -0.8956 |
-#> |.....................| -0.8446 | -0.5603 | -0.8022 | -0.8729 |
-#> |.....................| -0.8781 | -0.8821 | -0.9194 | -0.8078 |
-#> |.....................| -0.8218 | -0.8191 |...........|...........|
-#> | U| 483.61888 | 93.00 | -5.316 | -0.9438 | -0.1077 |
-#> |.....................| 2.292 | 1.338 | 0.03140 | 1.157 |
-#> |.....................| 0.03026 | 0.7539 | 0.8345 | 1.286 |
-#> |.....................| 1.121 | 1.127 |...........|...........|
-#> | X| 483.61888 | 93.00 | 0.004913 | 0.2801 | 0.8979 |
-#> |.....................| 9.895 | 1.338 | 0.03140 | 1.157 |
-#> |.....................| 0.03026 | 0.7539 | 0.8345 | 1.286 |
-#> |.....................| 1.121 | 1.127 |...........|...........|
-#> | F| Forward Diff. | 51.77 | 2.082 | 0.08733 | 0.2462 |
-#> |.....................| -0.07383 | -44.60 | -11.22 | 0.3023 |
-#> |.....................| -2.722 | 0.5489 | 8.672 | -9.371 |
-#> |.....................| -7.562 | -7.848 |...........|...........|
-#> | 30| 482.91165 | 0.9915 | -1.013 | -0.9110 | -0.8957 |
-#> |.....................| -0.8445 | -0.5473 | -0.7995 | -0.8732 |
-#> |.....................| -0.8770 | -0.8822 | -0.9219 | -0.8047 |
-#> |.....................| -0.8192 | -0.8165 |...........|...........|
-#> | U| 482.91165 | 92.33 | -5.317 | -0.9438 | -0.1078 |
-#> |.....................| 2.292 | 1.346 | 0.03144 | 1.157 |
-#> |.....................| 0.03027 | 0.7538 | 0.8323 | 1.290 |
-#> |.....................| 1.124 | 1.130 |...........|...........|
-#> | X| 482.91165 | 92.33 | 0.004909 | 0.2801 | 0.8978 |
-#> |.....................| 9.895 | 1.346 | 0.03144 | 1.157 |
-#> |.....................| 0.03027 | 0.7538 | 0.8323 | 1.290 |
-#> |.....................| 1.124 | 1.130 |...........|...........|
-#> | F| Forward Diff. | -45.50 | 2.003 | -0.1660 | 0.1702 |
-#> |.....................| -0.3374 | -43.33 | -11.63 | 0.9930 |
-#> |.....................| -2.511 | 0.4656 | 7.949 | -9.128 |
-#> |.....................| -7.427 | -7.608 |...........|...........|
-#> | 31| 482.28997 | 0.9991 | -1.014 | -0.9110 | -0.8957 |
-#> |.....................| -0.8444 | -0.5346 | -0.7968 | -0.8735 |
-#> |.....................| -0.8759 | -0.8822 | -0.9253 | -0.8017 |
-#> |.....................| -0.8168 | -0.8141 |...........|...........|
-#> | U| 482.28997 | 93.03 | -5.317 | -0.9438 | -0.1079 |
-#> |.....................| 2.292 | 1.353 | 0.03148 | 1.157 |
-#> |.....................| 0.03029 | 0.7538 | 0.8294 | 1.293 |
-#> |.....................| 1.126 | 1.132 |...........|...........|
-#> | X| 482.28997 | 93.03 | 0.004906 | 0.2801 | 0.8977 |
-#> |.....................| 9.896 | 1.353 | 0.03148 | 1.157 |
-#> |.....................| 0.03029 | 0.7538 | 0.8294 | 1.293 |
-#> |.....................| 1.126 | 1.132 |...........|...........|
-#> | F| Forward Diff. | 55.95 | 2.054 | 0.1106 | 0.2465 |
-#> |.....................| -0.05340 | -42.18 | -10.21 | 0.8261 |
-#> |.....................| -2.234 | 0.9104 | 5.096 | -9.114 |
-#> |.....................| -7.334 | -7.590 |...........|...........|
-#> | 32| 481.60550 | 0.9915 | -1.015 | -0.9110 | -0.8958 |
-#> |.....................| -0.8443 | -0.5217 | -0.7945 | -0.8740 |
-#> |.....................| -0.8749 | -0.8824 | -0.9274 | -0.7984 |
-#> |.....................| -0.8142 | -0.8115 |...........|...........|
-#> | U| 481.6055 | 92.33 | -5.318 | -0.9438 | -0.1080 |
-#> |.....................| 2.292 | 1.361 | 0.03151 | 1.156 |
-#> |.....................| 0.03031 | 0.7536 | 0.8276 | 1.297 |
-#> |.....................| 1.129 | 1.135 |...........|...........|
-#> | X| 481.6055 | 92.33 | 0.004902 | 0.2801 | 0.8977 |
-#> |.....................| 9.897 | 1.361 | 0.03151 | 1.156 |
-#> |.....................| 0.03031 | 0.7536 | 0.8276 | 1.297 |
-#> |.....................| 1.129 | 1.135 |...........|...........|
-#> | F| Forward Diff. | -45.82 | 1.973 | -0.1624 | 0.1674 |
-#> |.....................| -0.3387 | -41.15 | -10.74 | 1.410 |
-#> |.....................| -2.130 | 0.6088 | 4.422 | -8.852 |
-#> |.....................| -7.186 | -7.335 |...........|...........|
-#> | 33| 480.97343 | 0.9986 | -1.016 | -0.9110 | -0.8959 |
-#> |.....................| -0.8442 | -0.5084 | -0.7922 | -0.8748 |
-#> |.....................| -0.8740 | -0.8826 | -0.9278 | -0.7950 |
-#> |.....................| -0.8114 | -0.8088 |...........|...........|
-#> | U| 480.97343 | 92.98 | -5.319 | -0.9438 | -0.1081 |
-#> |.....................| 2.292 | 1.368 | 0.03155 | 1.156 |
-#> |.....................| 0.03032 | 0.7534 | 0.8272 | 1.301 |
-#> |.....................| 1.132 | 1.138 |...........|...........|
-#> | X| 480.97343 | 92.98 | 0.004897 | 0.2801 | 0.8976 |
-#> |.....................| 9.898 | 1.368 | 0.03155 | 1.156 |
-#> |.....................| 0.03032 | 0.7534 | 0.8272 | 1.301 |
-#> |.....................| 1.132 | 1.138 |...........|...........|
-#> | F| Forward Diff. | 47.76 | 2.024 | 0.09167 | 0.2404 |
-#> |.....................| -0.07393 | -40.22 | -9.470 | 1.031 |
-#> |.....................| -2.098 | 0.8752 | 6.346 | -8.797 |
-#> |.....................| -7.089 | -7.296 |...........|...........|
-#> | 34| 480.33235 | 0.9916 | -1.017 | -0.9110 | -0.8960 |
-#> |.....................| -0.8441 | -0.4952 | -0.7903 | -0.8757 |
-#> |.....................| -0.8731 | -0.8830 | -0.9294 | -0.7914 |
-#> |.....................| -0.8086 | -0.8060 |...........|...........|
-#> | U| 480.33235 | 92.33 | -5.320 | -0.9438 | -0.1082 |
-#> |.....................| 2.292 | 1.376 | 0.03158 | 1.155 |
-#> |.....................| 0.03033 | 0.7532 | 0.8258 | 1.306 |
-#> |.....................| 1.135 | 1.141 |...........|...........|
-#> | X| 480.33235 | 92.33 | 0.004893 | 0.2801 | 0.8975 |
-#> |.....................| 9.899 | 1.376 | 0.03158 | 1.155 |
-#> |.....................| 0.03033 | 0.7532 | 0.8258 | 1.306 |
-#> |.....................| 1.135 | 1.141 |...........|...........|
-#> | F| Forward Diff. | -44.82 | 1.956 | -0.1640 | 0.1653 |
-#> |.....................| -0.3374 | -39.36 | -9.982 | 1.432 |
-#> |.....................| -2.136 | 0.6770 | 5.747 | -8.552 |
-#> |.....................| -6.943 | -7.038 |...........|...........|
-#> | 35| 479.71253 | 0.9984 | -1.018 | -0.9110 | -0.8961 |
-#> |.....................| -0.8439 | -0.4821 | -0.7885 | -0.8768 |
-#> |.....................| -0.8721 | -0.8833 | -0.9319 | -0.7879 |
-#> |.....................| -0.8057 | -0.8033 |...........|...........|
-#> | U| 479.71253 | 92.97 | -5.321 | -0.9438 | -0.1083 |
-#> |.....................| 2.293 | 1.384 | 0.03160 | 1.155 |
-#> |.....................| 0.03035 | 0.7529 | 0.8236 | 1.310 |
-#> |.....................| 1.138 | 1.144 |...........|...........|
-#> | X| 479.71253 | 92.97 | 0.004888 | 0.2801 | 0.8974 |
-#> |.....................| 9.901 | 1.384 | 0.03160 | 1.155 |
-#> |.....................| 0.03035 | 0.7529 | 0.8236 | 1.310 |
-#> |.....................| 1.138 | 1.144 |...........|...........|
-#> | F| Forward Diff. | 45.27 | 2.001 | 0.09802 | 0.2411 |
-#> |.....................| -0.07361 | -39.48 | -9.147 | 0.2467 |
-#> |.....................| -2.886 | 0.4583 | 7.836 | -8.475 |
-#> |.....................| -6.831 | -7.001 |...........|...........|
-#> | 36| 479.08241 | 0.9920 | -1.019 | -0.9110 | -0.8962 |
-#> |.....................| -0.8438 | -0.4691 | -0.7871 | -0.8771 |
-#> |.....................| -0.8704 | -0.8833 | -0.9359 | -0.7844 |
-#> |.....................| -0.8029 | -0.8006 |...........|...........|
-#> | U| 479.08241 | 92.37 | -5.322 | -0.9438 | -0.1084 |
-#> |.....................| 2.293 | 1.391 | 0.03163 | 1.155 |
-#> |.....................| 0.03037 | 0.7529 | 0.8201 | 1.314 |
-#> |.....................| 1.141 | 1.147 |...........|...........|
-#> | X| 479.08241 | 92.37 | 0.004883 | 0.2801 | 0.8973 |
-#> |.....................| 9.902 | 1.391 | 0.03163 | 1.155 |
-#> |.....................| 0.03037 | 0.7529 | 0.8201 | 1.314 |
-#> |.....................| 1.141 | 1.147 |...........|...........|
-#> | F| Forward Diff. | -39.48 | 1.926 | -0.1378 | 0.1752 |
-#> |.....................| -0.3206 | -38.45 | -9.498 | 0.8453 |
-#> |.....................| -2.699 | 0.3871 | 5.589 | -8.242 |
-#> |.....................| -6.674 | -6.762 |...........|...........|
-#> | 37| 478.53604 | 0.9990 | -1.019 | -0.9110 | -0.8964 |
-#> |.....................| -0.8437 | -0.4561 | -0.7854 | -0.8772 |
-#> |.....................| -0.8684 | -0.8832 | -0.9392 | -0.7811 |
-#> |.....................| -0.8002 | -0.7981 |...........|...........|
-#> | U| 478.53604 | 93.02 | -5.323 | -0.9438 | -0.1085 |
-#> |.....................| 2.293 | 1.399 | 0.03165 | 1.155 |
-#> |.....................| 0.03040 | 0.7530 | 0.8172 | 1.318 |
-#> |.....................| 1.144 | 1.150 |...........|...........|
-#> | X| 478.53604 | 93.02 | 0.004879 | 0.2801 | 0.8972 |
-#> |.....................| 9.903 | 1.399 | 0.03165 | 1.155 |
-#> |.....................| 0.03040 | 0.7530 | 0.8172 | 1.318 |
-#> |.....................| 1.144 | 1.150 |...........|...........|
-#> | F| Forward Diff. | 52.06 | 1.969 | 0.1359 | 0.2508 |
-#> |.....................| -0.04337 | -37.95 | -8.435 | 0.2680 |
-#> |.....................| -2.930 | 0.5186 | 5.955 | -8.188 |
-#> |.....................| -6.576 | -6.741 |...........|...........|
-#> | 38| 477.90297 | 0.9924 | -1.021 | -0.9111 | -0.8965 |
-#> |.....................| -0.8436 | -0.4428 | -0.7846 | -0.8771 |
-#> |.....................| -0.8659 | -0.8830 | -0.9416 | -0.7776 |
-#> |.....................| -0.7975 | -0.7955 |...........|...........|
-#> | U| 477.90297 | 92.41 | -5.324 | -0.9439 | -0.1086 |
-#> |.....................| 2.293 | 1.406 | 0.03166 | 1.155 |
-#> |.....................| 0.03044 | 0.7531 | 0.8151 | 1.323 |
-#> |.....................| 1.147 | 1.152 |...........|...........|
-#> | X| 477.90297 | 92.41 | 0.004873 | 0.2801 | 0.8971 |
-#> |.....................| 9.904 | 1.406 | 0.03166 | 1.155 |
-#> |.....................| 0.03044 | 0.7531 | 0.8151 | 1.323 |
-#> |.....................| 1.147 | 1.152 |...........|...........|
-#> | F| Forward Diff. | -35.48 | 1.900 | -0.1171 | 0.1805 |
-#> |.....................| -0.3013 | -36.12 | -8.554 | 1.521 |
-#> |.....................| -2.082 | 0.5139 | 5.057 | -7.934 |
-#> |.....................| -6.421 | -6.501 |...........|...........|
-#> | 39| 477.39487 | 0.9991 | -1.022 | -0.9111 | -0.8966 |
-#> |.....................| -0.8434 | -0.4296 | -0.7836 | -0.8780 |
-#> |.....................| -0.8642 | -0.8831 | -0.9436 | -0.7740 |
-#> |.....................| -0.7946 | -0.7928 |...........|...........|
-#> | U| 477.39487 | 93.04 | -5.325 | -0.9439 | -0.1088 |
-#> |.....................| 2.293 | 1.414 | 0.03168 | 1.154 |
-#> |.....................| 0.03047 | 0.7531 | 0.8134 | 1.327 |
-#> |.....................| 1.150 | 1.155 |...........|...........|
-#> | X| 477.39487 | 93.04 | 0.004868 | 0.2801 | 0.8969 |
-#> |.....................| 9.906 | 1.414 | 0.03168 | 1.154 |
-#> |.....................| 0.03047 | 0.7531 | 0.8134 | 1.327 |
-#> |.....................| 1.150 | 1.155 |...........|...........|
-#> | F| Forward Diff. | 53.22 | 1.947 | 0.1564 | 0.2562 |
-#> |.....................| -0.02756 | -35.38 | -7.440 | 1.129 |
-#> |.....................| -2.109 | 0.8531 | 5.389 | -7.888 |
-#> |.....................| -6.311 | -6.462 |...........|...........|
-#> | 40| 476.77835 | 0.9927 | -1.023 | -0.9112 | -0.8968 |
-#> |.....................| -0.8433 | -0.4165 | -0.7840 | -0.8801 |
-#> |.....................| -0.8630 | -0.8835 | -0.9455 | -0.7699 |
-#> |.....................| -0.7913 | -0.7897 |...........|...........|
-#> | U| 476.77835 | 92.44 | -5.326 | -0.9439 | -0.1090 |
-#> |.....................| 2.293 | 1.422 | 0.03167 | 1.153 |
-#> |.....................| 0.03048 | 0.7527 | 0.8117 | 1.332 |
-#> |.....................| 1.153 | 1.159 |...........|...........|
-#> | X| 476.77835 | 92.44 | 0.004861 | 0.2801 | 0.8968 |
-#> |.....................| 9.907 | 1.422 | 0.03167 | 1.153 |
-#> |.....................| 0.03048 | 0.7527 | 0.8117 | 1.332 |
-#> |.....................| 1.153 | 1.159 |...........|...........|
-#> | F| Forward Diff. | -31.48 | 1.878 | -0.09989 | 0.1868 |
-#> |.....................| -0.2862 | -34.69 | -7.934 | 1.303 |
-#> |.....................| -2.230 | 0.5238 | 3.299 | -7.623 |
-#> |.....................| -6.137 | -6.207 |...........|...........|
-#> | 41| 476.29140 | 0.9988 | -1.024 | -0.9112 | -0.8970 |
-#> |.....................| -0.8432 | -0.4030 | -0.7837 | -0.8817 |
-#> |.....................| -0.8615 | -0.8839 | -0.9453 | -0.7660 |
-#> |.....................| -0.7883 | -0.7869 |...........|...........|
-#> | U| 476.2914 | 93.01 | -5.328 | -0.9440 | -0.1091 |
-#> |.....................| 2.293 | 1.430 | 0.03168 | 1.152 |
-#> |.....................| 0.03051 | 0.7524 | 0.8119 | 1.337 |
-#> |.....................| 1.157 | 1.162 |...........|...........|
-#> | X| 476.2914 | 93.01 | 0.004855 | 0.2801 | 0.8966 |
-#> |.....................| 9.909 | 1.430 | 0.03168 | 1.152 |
-#> |.....................| 0.03051 | 0.7524 | 0.8119 | 1.337 |
-#> |.....................| 1.157 | 1.162 |...........|...........|
-#> | F| Forward Diff. | 48.73 | 1.930 | 0.1514 | 0.2545 |
-#> |.....................| -0.03521 | -34.01 | -6.934 | 1.004 |
-#> |.....................| -2.133 | 0.7968 | 5.252 | -7.528 |
-#> |.....................| -6.021 | -6.137 |...........|...........|
-#> | 42| 475.72593 | 0.9927 | -1.026 | -0.9113 | -0.8972 |
-#> |.....................| -0.8430 | -0.3897 | -0.7848 | -0.8834 |
-#> |.....................| -0.8598 | -0.8844 | -0.9451 | -0.7619 |
-#> |.....................| -0.7851 | -0.7840 |...........|...........|
-#> | U| 475.72593 | 92.44 | -5.329 | -0.9441 | -0.1094 |
-#> |.....................| 2.294 | 1.437 | 0.03166 | 1.151 |
-#> |.....................| 0.03053 | 0.7521 | 0.8121 | 1.342 |
-#> |.....................| 1.160 | 1.165 |...........|...........|
-#> | X| 475.72593 | 92.44 | 0.004847 | 0.2801 | 0.8964 |
-#> |.....................| 9.910 | 1.437 | 0.03166 | 1.151 |
-#> |.....................| 0.03053 | 0.7521 | 0.8121 | 1.342 |
-#> |.....................| 1.160 | 1.165 |...........|...........|
-#> | F| Forward Diff. | -31.62 | 1.868 | -0.1026 | 0.1833 |
-#> |.....................| -0.2884 | -33.06 | -7.282 | 1.547 |
-#> |.....................| -2.194 | 0.5347 | 3.320 | -7.249 |
-#> |.....................| -5.852 | -5.889 |...........|...........|
-#> | 43| 475.25217 | 0.9986 | -1.027 | -0.9113 | -0.8974 |
-#> |.....................| -0.8428 | -0.3762 | -0.7856 | -0.8854 |
-#> |.....................| -0.8580 | -0.8849 | -0.9453 | -0.7580 |
-#> |.....................| -0.7821 | -0.7812 |...........|...........|
-#> | U| 475.25217 | 92.99 | -5.331 | -0.9441 | -0.1096 |
-#> |.....................| 2.294 | 1.445 | 0.03165 | 1.150 |
-#> |.....................| 0.03056 | 0.7517 | 0.8119 | 1.346 |
-#> |.....................| 1.163 | 1.168 |...........|...........|
-#> | X| 475.25217 | 92.99 | 0.004840 | 0.2801 | 0.8962 |
-#> |.....................| 9.912 | 1.445 | 0.03165 | 1.150 |
-#> |.....................| 0.03056 | 0.7517 | 0.8119 | 1.346 |
-#> |.....................| 1.163 | 1.168 |...........|...........|
-#> | F| Forward Diff. | 45.01 | 1.918 | 0.1424 | 0.2472 |
-#> |.....................| -0.04139 | -32.61 | -6.424 | 0.9161 |
-#> |.....................| -2.151 | 0.6354 | 5.209 | -7.174 |
-#> |.....................| -5.746 | -5.822 |...........|...........|
-#> | 44| 474.72079 | 0.9929 | -1.029 | -0.9114 | -0.8977 |
-#> |.....................| -0.8427 | -0.3629 | -0.7879 | -0.8876 |
-#> |.....................| -0.8559 | -0.8852 | -0.9458 | -0.7541 |
-#> |.....................| -0.7790 | -0.7785 |...........|...........|
-#> | U| 474.72079 | 92.46 | -5.333 | -0.9442 | -0.1098 |
-#> |.....................| 2.294 | 1.453 | 0.03161 | 1.149 |
-#> |.....................| 0.03059 | 0.7515 | 0.8114 | 1.351 |
-#> |.....................| 1.167 | 1.171 |...........|...........|
-#> | X| 474.72079 | 92.46 | 0.004831 | 0.2800 | 0.8960 |
-#> |.....................| 9.913 | 1.453 | 0.03161 | 1.149 |
-#> |.....................| 0.03059 | 0.7515 | 0.8114 | 1.351 |
-#> |.....................| 1.167 | 1.171 |...........|...........|
-#> | F| Forward Diff. | -29.98 | 1.856 | -0.09377 | 0.1852 |
-#> |.....................| -0.2753 | -32.15 | -6.889 | 1.072 |
-#> |.....................| -2.266 | 0.4091 | 3.274 | -6.876 |
-#> |.....................| -5.564 | -5.585 |...........|...........|
-#> | 45| 474.26379 | 0.9985 | -1.031 | -0.9115 | -0.8979 |
-#> |.....................| -0.8425 | -0.3491 | -0.7895 | -0.8887 |
-#> |.....................| -0.8536 | -0.8852 | -0.9464 | -0.7506 |
-#> |.....................| -0.7762 | -0.7761 |...........|...........|
-#> | U| 474.26379 | 92.98 | -5.335 | -0.9443 | -0.1101 |
-#> |.....................| 2.294 | 1.461 | 0.03159 | 1.148 |
-#> |.....................| 0.03063 | 0.7515 | 0.8109 | 1.355 |
-#> |.....................| 1.170 | 1.173 |...........|...........|
-#> | X| 474.26379 | 92.98 | 0.004822 | 0.2800 | 0.8958 |
-#> |.....................| 9.915 | 1.461 | 0.03159 | 1.148 |
-#> |.....................| 0.03063 | 0.7515 | 0.8109 | 1.355 |
-#> |.....................| 1.170 | 1.173 |...........|...........|
-#> | F| Forward Diff. | 42.78 | 1.902 | 0.1464 | 0.2388 |
-#> |.....................| -0.03417 | -31.28 | -5.931 | 0.8375 |
-#> |.....................| -2.202 | 0.7305 | 5.128 | -6.841 |
-#> |.....................| -5.479 | -5.554 |...........|...........|
-#> | 46| 473.76810 | 0.9929 | -1.033 | -0.9117 | -0.8982 |
-#> |.....................| -0.8424 | -0.3358 | -0.7928 | -0.8897 |
-#> |.....................| -0.8508 | -0.8855 | -0.9473 | -0.7471 |
-#> |.....................| -0.7734 | -0.7737 |...........|...........|
-#> | U| 473.7681 | 92.46 | -5.337 | -0.9444 | -0.1104 |
-#> |.....................| 2.294 | 1.469 | 0.03154 | 1.147 |
-#> |.....................| 0.03067 | 0.7512 | 0.8101 | 1.360 |
-#> |.....................| 1.173 | 1.176 |...........|...........|
-#> | X| 473.7681 | 92.46 | 0.004812 | 0.2800 | 0.8955 |
-#> |.....................| 9.917 | 1.469 | 0.03154 | 1.147 |
-#> |.....................| 0.03067 | 0.7512 | 0.8101 | 1.360 |
-#> |.....................| 1.173 | 1.176 |...........|...........|
-#> | F| Forward Diff. | -30.83 | 1.832 | -0.1003 | 0.1743 |
-#> |.....................| -0.2686 | -30.77 | -6.362 | 1.107 |
-#> |.....................| -2.234 | 0.4249 | 4.678 | -6.593 |
-#> |.....................| -5.329 | -5.340 |...........|...........|
-#> | 47| 473.32508 | 0.9983 | -1.035 | -0.9117 | -0.8984 |
-#> |.....................| -0.8422 | -0.3229 | -0.7959 | -0.8909 |
-#> |.....................| -0.8482 | -0.8859 | -0.9520 | -0.7438 |
-#> |.....................| -0.7708 | -0.7715 |...........|...........|
-#> | U| 473.32508 | 92.96 | -5.339 | -0.9445 | -0.1106 |
-#> |.....................| 2.294 | 1.476 | 0.03149 | 1.147 |
-#> |.....................| 0.03071 | 0.7509 | 0.8061 | 1.364 |
-#> |.....................| 1.175 | 1.178 |...........|...........|
-#> | X| 473.32508 | 92.96 | 0.004802 | 0.2800 | 0.8953 |
-#> |.....................| 9.918 | 1.476 | 0.03149 | 1.147 |
-#> |.....................| 0.03071 | 0.7509 | 0.8061 | 1.364 |
-#> |.....................| 1.175 | 1.178 |...........|...........|
-#> | F| Forward Diff. | 38.19 | 1.865 | 0.1554 | 0.2504 |
-#> |.....................| -0.02116 | -30.15 | -5.522 | 0.8218 |
-#> |.....................| -2.215 | 0.6878 | 4.772 | -6.537 |
-#> |.....................| -5.232 | -5.315 |...........|...........|
-#> | 48| 472.87290 | 0.9930 | -1.038 | -0.9119 | -0.8988 |
-#> |.....................| -0.8421 | -0.3103 | -0.8002 | -0.8921 |
-#> |.....................| -0.8451 | -0.8864 | -0.9564 | -0.7407 |
-#> |.....................| -0.7684 | -0.7695 |...........|...........|
-#> | U| 472.8729 | 92.47 | -5.341 | -0.9447 | -0.1109 |
-#> |.....................| 2.294 | 1.483 | 0.03143 | 1.146 |
-#> |.....................| 0.03075 | 0.7506 | 0.8022 | 1.367 |
-#> |.....................| 1.178 | 1.180 |...........|...........|
-#> | X| 472.8729 | 92.47 | 0.004791 | 0.2800 | 0.8950 |
-#> |.....................| 9.919 | 1.483 | 0.03143 | 1.146 |
-#> |.....................| 0.03075 | 0.7506 | 0.8022 | 1.367 |
-#> |.....................| 1.178 | 1.180 |...........|...........|
-#> | F| Forward Diff. | -31.43 | 1.786 | -0.07853 | 0.1828 |
-#> |.....................| -0.2451 | -29.69 | -5.937 | 1.129 |
-#> |.....................| -2.237 | 0.5225 | 4.143 | -6.356 |
-#> |.....................| -5.097 | -5.139 |...........|...........|
-#> | 49| 472.45068 | 0.9981 | -1.040 | -0.9121 | -0.8991 |
-#> |.....................| -0.8421 | -0.2974 | -0.8046 | -0.8935 |
-#> |.....................| -0.8420 | -0.8871 | -0.9597 | -0.7375 |
-#> |.....................| -0.7660 | -0.7674 |...........|...........|
-#> | U| 472.45068 | 92.94 | -5.343 | -0.9449 | -0.1112 |
-#> |.....................| 2.294 | 1.491 | 0.03136 | 1.145 |
-#> |.....................| 0.03080 | 0.7500 | 0.7993 | 1.371 |
-#> |.....................| 1.180 | 1.183 |...........|...........|
-#> | X| 472.45068 | 92.94 | 0.004780 | 0.2799 | 0.8947 |
-#> |.....................| 9.919 | 1.491 | 0.03136 | 1.145 |
-#> |.....................| 0.03080 | 0.7500 | 0.7993 | 1.371 |
-#> |.....................| 1.180 | 1.183 |...........|...........|
-#> | F| Forward Diff. | 34.69 | 1.825 | 0.1712 | 0.2558 |
-#> |.....................| 0.0008262 | -30.15 | -5.461 | 0.02383 |
-#> |.....................| -3.011 | 0.3236 | 4.609 | -6.242 |
-#> |.....................| -4.997 | -5.107 |...........|...........|
-#> | 50| 472.02915 | 0.9936 | -1.042 | -0.9125 | -0.8995 |
-#> |.....................| -0.8422 | -0.2847 | -0.8092 | -0.8923 |
-#> |.....................| -0.8364 | -0.8868 | -0.9626 | -0.7353 |
-#> |.....................| -0.7644 | -0.7660 |...........|...........|
-#> | U| 472.02915 | 92.52 | -5.345 | -0.9452 | -0.1116 |
-#> |.....................| 2.294 | 1.498 | 0.03129 | 1.146 |
-#> |.....................| 0.03088 | 0.7503 | 0.7968 | 1.374 |
-#> |.....................| 1.182 | 1.184 |...........|...........|
-#> | X| 472.02915 | 92.52 | 0.004770 | 0.2799 | 0.8944 |
-#> |.....................| 9.918 | 1.498 | 0.03129 | 1.146 |
-#> |.....................| 0.03088 | 0.7503 | 0.7968 | 1.374 |
-#> |.....................| 1.182 | 1.184 |...........|...........|
-#> | F| Forward Diff. | -26.29 | 1.758 | -0.04843 | 0.1910 |
-#> |.....................| -0.1997 | -28.69 | -5.506 | 1.097 |
-#> |.....................| -2.285 | 0.4947 | 2.297 | -6.079 |
-#> |.....................| -4.892 | -4.970 |...........|...........|
-#> | 51| 471.69520 | 0.9992 | -1.044 | -0.9127 | -0.8998 |
-#> |.....................| -0.8423 | -0.2715 | -0.8127 | -0.8918 |
-#> |.....................| -0.8317 | -0.8866 | -0.9606 | -0.7330 |
-#> |.....................| -0.7627 | -0.7642 |...........|...........|
-#> | U| 471.6952 | 93.04 | -5.347 | -0.9454 | -0.1120 |
-#> |.....................| 2.294 | 1.506 | 0.03124 | 1.146 |
-#> |.....................| 0.03096 | 0.7504 | 0.7985 | 1.377 |
-#> |.....................| 1.184 | 1.186 |...........|...........|
-#> | X| 471.6952 | 93.04 | 0.004761 | 0.2798 | 0.8941 |
-#> |.....................| 9.917 | 1.506 | 0.03124 | 1.146 |
-#> |.....................| 0.03096 | 0.7504 | 0.7985 | 1.377 |
-#> |.....................| 1.184 | 1.186 |...........|...........|
-#> | F| Forward Diff. | 46.70 | 1.815 | 0.2108 | 0.2607 |
-#> |.....................| 0.05766 | -27.95 | -4.639 | 0.9041 |
-#> |.....................| -2.201 | 0.7590 | 4.326 | -6.078 |
-#> |.....................| -4.851 | -4.972 |...........|...........|
-#> | 52| 471.30240 | 0.9939 | -1.046 | -0.9131 | -0.9002 |
-#> |.....................| -0.8425 | -0.2596 | -0.8187 | -0.8939 |
-#> |.....................| -0.8280 | -0.8876 | -0.9571 | -0.7302 |
-#> |.....................| -0.7606 | -0.7622 |...........|...........|
-#> | U| 471.3024 | 92.55 | -5.350 | -0.9458 | -0.1124 |
-#> |.....................| 2.294 | 1.513 | 0.03115 | 1.145 |
-#> |.....................| 0.03101 | 0.7497 | 0.8016 | 1.380 |
-#> |.....................| 1.186 | 1.188 |...........|...........|
-#> | X| 471.3024 | 92.55 | 0.004750 | 0.2797 | 0.8937 |
-#> |.....................| 9.915 | 1.513 | 0.03115 | 1.145 |
-#> |.....................| 0.03101 | 0.7497 | 0.8016 | 1.380 |
-#> |.....................| 1.186 | 1.188 |...........|...........|
-#> | F| Forward Diff. | -23.61 | 1.763 | -0.06060 | 0.1836 |
-#> |.....................| -0.1912 | -28.31 | -5.279 | 0.6597 |
-#> |.....................| -2.739 | 0.2048 | 5.941 | -5.864 |
-#> |.....................| -4.747 | -4.787 |...........|...........|
-#> | 53| 470.94339 | 0.9985 | -1.048 | -0.9133 | -0.9006 |
-#> |.....................| -0.8426 | -0.2476 | -0.8235 | -0.8946 |
-#> |.....................| -0.8237 | -0.8877 | -0.9629 | -0.7278 |
-#> |.....................| -0.7587 | -0.7604 |...........|...........|
-#> | U| 470.94339 | 92.98 | -5.352 | -0.9460 | -0.1127 |
-#> |.....................| 2.294 | 1.520 | 0.03108 | 1.145 |
-#> |.....................| 0.03108 | 0.7496 | 0.7965 | 1.383 |
-#> |.....................| 1.188 | 1.190 |...........|...........|
-#> | X| 470.94339 | 92.98 | 0.004740 | 0.2797 | 0.8934 |
-#> |.....................| 9.914 | 1.520 | 0.03108 | 1.145 |
-#> |.....................| 0.03108 | 0.7496 | 0.7965 | 1.383 |
-#> |.....................| 1.188 | 1.190 |...........|...........|
-#> | F| Forward Diff. | 36.04 | 1.791 | 0.1836 | 0.2544 |
-#> |.....................| 0.04274 | -27.03 | -4.370 | 0.9159 |
-#> |.....................| -2.217 | 0.6791 | 4.141 | -5.840 |
-#> |.....................| -4.667 | -4.764 |...........|...........|
-#> | 54| 470.60274 | 0.9931 | -1.051 | -0.9136 | -0.9010 |
-#> |.....................| -0.8428 | -0.2366 | -0.8300 | -0.8957 |
-#> |.....................| -0.8190 | -0.8879 | -0.9681 | -0.7257 |
-#> |.....................| -0.7570 | -0.7588 |...........|...........|
-#> | U| 470.60274 | 92.48 | -5.354 | -0.9463 | -0.1131 |
-#> |.....................| 2.294 | 1.526 | 0.03098 | 1.144 |
-#> |.....................| 0.03115 | 0.7494 | 0.7919 | 1.386 |
-#> |.....................| 1.190 | 1.192 |...........|...........|
-#> | X| 470.60274 | 92.48 | 0.004728 | 0.2796 | 0.8930 |
-#> |.....................| 9.912 | 1.526 | 0.03098 | 1.144 |
-#> |.....................| 0.03115 | 0.7494 | 0.7919 | 1.386 |
-#> |.....................| 1.190 | 1.192 |...........|...........|
-#> | F| Forward Diff. | -35.91 | 1.718 | -0.07847 | 0.1786 |
-#> |.....................| -0.1996 | -26.69 | -4.843 | 1.231 |
-#> |.....................| -2.229 | 0.5625 | 3.489 | -5.662 |
-#> |.....................| -4.557 | -4.604 |...........|...........|
-#> | 55| 470.25392 | 0.9977 | -1.054 | -0.9140 | -0.9015 |
-#> |.....................| -0.8431 | -0.2250 | -0.8375 | -0.8987 |
-#> |.....................| -0.8153 | -0.8894 | -0.9673 | -0.7229 |
-#> |.....................| -0.7550 | -0.7569 |...........|...........|
-#> | U| 470.25392 | 92.90 | -5.357 | -0.9467 | -0.1136 |
-#> |.....................| 2.293 | 1.533 | 0.03087 | 1.142 |
-#> |.....................| 0.03120 | 0.7483 | 0.7927 | 1.389 |
-#> |.....................| 1.192 | 1.194 |...........|...........|
-#> | X| 470.25392 | 92.90 | 0.004715 | 0.2796 | 0.8926 |
-#> |.....................| 9.909 | 1.533 | 0.03087 | 1.142 |
-#> |.....................| 0.03120 | 0.7483 | 0.7927 | 1.389 |
-#> |.....................| 1.192 | 1.194 |...........|...........|
-#> | F| Forward Diff. | 23.42 | 1.753 | 0.1414 | 0.2393 |
-#> |.....................| 0.01691 | -26.51 | -4.262 | 0.6993 |
-#> |.....................| -2.408 | 0.5525 | 2.318 | -5.573 |
-#> |.....................| -4.475 | -4.572 |...........|...........|
-#> | 56| 469.96066 | 0.9934 | -1.056 | -0.9144 | -0.9019 |
-#> |.....................| -0.8434 | -0.2128 | -0.8432 | -0.9002 |
-#> |.....................| -0.8113 | -0.8903 | -0.9627 | -0.7205 |
-#> |.....................| -0.7531 | -0.7551 |...........|...........|
-#> | U| 469.96066 | 92.50 | -5.359 | -0.9470 | -0.1140 |
-#> |.....................| 2.293 | 1.540 | 0.03078 | 1.141 |
-#> |.....................| 0.03126 | 0.7476 | 0.7967 | 1.392 |
-#> |.....................| 1.194 | 1.196 |...........|...........|
-#> | X| 469.96066 | 92.50 | 0.004704 | 0.2795 | 0.8922 |
-#> |.....................| 9.906 | 1.540 | 0.03078 | 1.141 |
-#> |.....................| 0.03126 | 0.7476 | 0.7967 | 1.392 |
-#> |.....................| 1.194 | 1.196 |...........|...........|
-#> | F| Forward Diff. | -33.10 | 1.713 | -0.09549 | 0.1710 |
-#> |.....................| -0.1943 | -25.89 | -4.557 | 1.045 |
-#> |.....................| -2.243 | 0.5648 | 3.834 | -5.392 |
-#> |.....................| -4.399 | -4.402 |...........|...........|
-#> | 57| 469.66426 | 0.9983 | -1.059 | -0.9147 | -0.9023 |
-#> |.....................| -0.8437 | -0.2012 | -0.8503 | -0.9014 |
-#> |.....................| -0.8068 | -0.8914 | -0.9589 | -0.7186 |
-#> |.....................| -0.7515 | -0.7537 |...........|...........|
-#> | U| 469.66426 | 92.95 | -5.362 | -0.9473 | -0.1144 |
-#> |.....................| 2.293 | 1.547 | 0.03068 | 1.141 |
-#> |.....................| 0.03133 | 0.7468 | 0.8000 | 1.394 |
-#> |.....................| 1.196 | 1.197 |...........|...........|
-#> | X| 469.66426 | 92.95 | 0.004691 | 0.2794 | 0.8919 |
-#> |.....................| 9.903 | 1.547 | 0.03068 | 1.141 |
-#> |.....................| 0.03133 | 0.7468 | 0.8000 | 1.394 |
-#> |.....................| 1.196 | 1.197 |...........|...........|
-#> | F| Forward Diff. | 29.48 | 1.769 | 0.1441 | 0.2362 |
-#> |.....................| 0.03493 | -25.40 | -3.876 | 0.7581 |
-#> |.....................| -2.246 | 0.6653 | 4.370 | -5.362 |
-#> |.....................| -4.340 | -4.389 |...........|...........|
-#> | 58| 469.35361 | 0.9940 | -1.062 | -0.9149 | -0.9027 |
-#> |.....................| -0.8440 | -0.1900 | -0.8585 | -0.9032 |
-#> |.....................| -0.8026 | -0.8931 | -0.9615 | -0.7168 |
-#> |.....................| -0.7497 | -0.7523 |...........|...........|
-#> | U| 469.35361 | 92.56 | -5.365 | -0.9475 | -0.1149 |
-#> |.....................| 2.293 | 1.553 | 0.03055 | 1.140 |
-#> |.....................| 0.03139 | 0.7454 | 0.7977 | 1.396 |
-#> |.....................| 1.198 | 1.199 |...........|...........|
-#> | X| 469.35361 | 92.56 | 0.004677 | 0.2794 | 0.8915 |
-#> |.....................| 9.900 | 1.553 | 0.03055 | 1.140 |
-#> |.....................| 0.03139 | 0.7454 | 0.7977 | 1.396 |
-#> |.....................| 1.198 | 1.199 |...........|...........|
-#> | F| Forward Diff. | -26.71 | 1.702 | -0.07338 | 0.1729 |
-#> |.....................| -0.1601 | -26.00 | -4.465 | 0.4354 |
-#> |.....................| -2.821 | 0.3110 | 5.728 | -5.228 |
-#> |.....................| -4.240 | -4.266 |...........|...........|
-#> | 59| 469.04262 | 0.9978 | -1.064 | -0.9151 | -0.9031 |
-#> |.....................| -0.8443 | -0.1798 | -0.8657 | -0.9030 |
-#> |.....................| -0.7971 | -0.8938 | -0.9685 | -0.7157 |
-#> |.....................| -0.7487 | -0.7515 |...........|...........|
-#> | U| 469.04262 | 92.91 | -5.368 | -0.9477 | -0.1152 |
-#> |.....................| 2.292 | 1.559 | 0.03044 | 1.140 |
-#> |.....................| 0.03147 | 0.7450 | 0.7916 | 1.398 |
-#> |.....................| 1.199 | 1.200 |...........|...........|
-#> | X| 469.04262 | 92.91 | 0.004665 | 0.2794 | 0.8912 |
-#> |.....................| 9.897 | 1.559 | 0.03044 | 1.140 |
-#> |.....................| 0.03147 | 0.7450 | 0.7916 | 1.398 |
-#> |.....................| 1.199 | 1.200 |...........|...........|
-#> | 60| 468.78438 | 0.9975 | -1.068 | -0.9154 | -0.9036 |
-#> |.....................| -0.8447 | -0.1709 | -0.8764 | -0.9025 |
-#> |.....................| -0.7900 | -0.8946 | -0.9771 | -0.7153 |
-#> |.....................| -0.7482 | -0.7514 |...........|...........|
-#> | U| 468.78438 | 92.88 | -5.371 | -0.9479 | -0.1157 |
-#> |.....................| 2.292 | 1.564 | 0.03028 | 1.140 |
-#> |.....................| 0.03158 | 0.7443 | 0.7841 | 1.398 |
-#> |.....................| 1.200 | 1.200 |...........|...........|
-#> | X| 468.78438 | 92.88 | 0.004649 | 0.2793 | 0.8907 |
-#> |.....................| 9.893 | 1.564 | 0.03028 | 1.140 |
-#> |.....................| 0.03158 | 0.7443 | 0.7841 | 1.398 |
-#> |.....................| 1.200 | 1.200 |...........|...........|
-#> | 61| 467.65199 | 0.9960 | -1.083 | -0.9167 | -0.9058 |
-#> |.....................| -0.8469 | -0.1283 | -0.9284 | -0.9002 |
-#> |.....................| -0.7560 | -0.8987 | -1.018 | -0.7133 |
-#> |.....................| -0.7456 | -0.7506 |...........|...........|
-#> | U| 467.65199 | 92.74 | -5.387 | -0.9492 | -0.1179 |
-#> |.....................| 2.290 | 1.589 | 0.02950 | 1.141 |
-#> |.....................| 0.03209 | 0.7413 | 0.7481 | 1.401 |
-#> |.....................| 1.202 | 1.201 |...........|...........|
-#> | X| 467.65199 | 92.74 | 0.004577 | 0.2791 | 0.8887 |
-#> |.....................| 9.872 | 1.589 | 0.02950 | 1.141 |
-#> |.....................| 0.03209 | 0.7413 | 0.7481 | 1.401 |
-#> |.....................| 1.202 | 1.201 |...........|...........|
-#> | 62| 464.96560 | 0.9898 | -1.148 | -0.9222 | -0.9151 |
-#> |.....................| -0.8556 | 0.04847 | -1.144 | -0.8910 |
-#> |.....................| -0.6148 | -0.9154 | -1.189 | -0.7051 |
-#> |.....................| -0.7350 | -0.7474 |...........|...........|
-#> | U| 464.9656 | 92.17 | -5.451 | -0.9543 | -0.1273 |
-#> |.....................| 2.281 | 1.691 | 0.02626 | 1.147 |
-#> |.....................| 0.03421 | 0.7285 | 0.5986 | 1.411 |
-#> |.....................| 1.214 | 1.204 |...........|...........|
-#> | X| 464.9656 | 92.17 | 0.004291 | 0.2780 | 0.8805 |
-#> |.....................| 9.786 | 1.691 | 0.02626 | 1.147 |
-#> |.....................| 0.03421 | 0.7285 | 0.5986 | 1.411 |
-#> |.....................| 1.214 | 1.204 |...........|...........|
-#> | F| Forward Diff. | -134.9 | 0.8693 | 0.2607 | 0.2086 |
-#> |.....................| 0.2111 | -19.53 | -3.427 | 3.399 |
-#> |.....................| -2.172 | 1.526 | -11.79 | -4.993 |
-#> |.....................| -3.321 | -4.659 |...........|...........|
-#> | 63| 458.88877 | 1.003 | -1.235 | -0.9465 | -0.9328 |
-#> |.....................| -0.8841 | 0.3192 | -1.460 | -0.9475 |
-#> |.....................| -0.4237 | -0.9768 | -1.134 | -0.6574 |
-#> |.....................| -0.7075 | -0.6995 |...........|...........|
-#> | U| 458.88877 | 93.40 | -5.538 | -0.9774 | -0.1450 |
-#> |.....................| 2.252 | 1.848 | 0.02152 | 1.114 |
-#> |.....................| 0.03709 | 0.6820 | 0.6469 | 1.468 |
-#> |.....................| 1.243 | 1.255 |...........|...........|
-#> | X| 458.88877 | 93.40 | 0.003933 | 0.2734 | 0.8651 |
-#> |.....................| 9.511 | 1.848 | 0.02152 | 1.114 |
-#> |.....................| 0.03709 | 0.6820 | 0.6469 | 1.468 |
-#> |.....................| 1.243 | 1.255 |...........|...........|
-#> | 64| 455.19412 | 1.006 | -1.330 | -0.9732 | -0.9522 |
-#> |.....................| -0.9154 | 0.6143 | -1.806 | -1.009 |
-#> |.....................| -0.2144 | -1.044 | -1.075 | -0.6056 |
-#> |.....................| -0.6776 | -0.6473 |...........|...........|
-#> | U| 455.19412 | 93.67 | -5.634 | -1.003 | -0.1644 |
-#> |.....................| 2.221 | 2.019 | 0.01631 | 1.078 |
-#> |.....................| 0.04023 | 0.6311 | 0.6989 | 1.531 |
-#> |.....................| 1.275 | 1.311 |...........|...........|
-#> | X| 455.19412 | 93.67 | 0.003576 | 0.2684 | 0.8484 |
-#> |.....................| 9.218 | 2.019 | 0.01631 | 1.078 |
-#> |.....................| 0.04023 | 0.6311 | 0.6989 | 1.531 |
-#> |.....................| 1.275 | 1.311 |...........|...........|
-#> | F| Forward Diff. | 18.82 | 0.9889 | -1.032 | -0.1489 |
-#> |.....................| 0.2009 | -8.117 | -0.5123 | 0.1656 |
-#> |.....................| -2.314 | -3.473 | -0.8284 | 0.3432 |
-#> |.....................| -0.8357 | 0.04588 |...........|...........|
-#> | 65| 458.62552 | 1.004 | -1.494 | -0.8145 | -0.9319 |
-#> |.....................| -0.9630 | 1.033 | -2.192 | -1.036 |
-#> |.....................| 0.2529 | -0.5036 | -0.8838 | -0.8679 |
-#> |.....................| -0.7178 | -0.8209 |...........|...........|
-#> | U| 458.62552 | 93.52 | -5.797 | -0.8527 | -0.1440 |
-#> |.....................| 2.174 | 2.262 | 0.01051 | 1.062 |
-#> |.....................| 0.04725 | 1.041 | 0.8656 | 1.213 |
-#> |.....................| 1.232 | 1.125 |...........|...........|
-#> | X| 458.62552 | 93.52 | 0.003036 | 0.2989 | 0.8659 |
-#> |.....................| 8.789 | 2.262 | 0.01051 | 1.062 |
-#> |.....................| 0.04725 | 1.041 | 0.8656 | 1.213 |
-#> |.....................| 1.232 | 1.125 |...........|...........|
-#> | 66| 454.48694 | 1.003 | -1.384 | -0.9206 | -0.9455 |
-#> |.....................| -0.9312 | 0.7538 | -1.934 | -1.018 |
-#> |.....................| -0.05956 | -0.8649 | -1.011 | -0.6924 |
-#> |.....................| -0.6908 | -0.7048 |...........|...........|
-#> | U| 454.48694 | 93.41 | -5.688 | -0.9529 | -0.1576 |
-#> |.....................| 2.205 | 2.100 | 0.01439 | 1.073 |
-#> |.....................| 0.04256 | 0.7669 | 0.7542 | 1.426 |
-#> |.....................| 1.261 | 1.250 |...........|...........|
-#> | X| 454.48694 | 93.41 | 0.003387 | 0.2783 | 0.8542 |
-#> |.....................| 9.074 | 2.100 | 0.01439 | 1.073 |
-#> |.....................| 0.04256 | 0.7669 | 0.7542 | 1.426 |
-#> |.....................| 1.261 | 1.250 |...........|...........|
-#> | F| Forward Diff. | -11.88 | 0.8805 | 1.030 | 0.0001663 |
-#> |.....................| -0.3119 | -6.748 | -1.151 | 0.2517 |
-#> |.....................| -3.379 | 3.981 | 5.317 | -4.395 |
-#> |.....................| -1.890 | -2.785 |...........|...........|
-#> | 67| 453.47854 | 1.004 | -1.455 | -0.9097 | -0.9308 |
-#> |.....................| -0.9364 | 0.8078 | -2.047 | -1.046 |
-#> |.....................| 0.2383 | -0.8443 | -0.9977 | -0.6524 |
-#> |.....................| -0.6789 | -0.6970 |...........|...........|
-#> | U| 453.47854 | 93.48 | -5.759 | -0.9426 | -0.1429 |
-#> |.....................| 2.200 | 2.132 | 0.01270 | 1.056 |
-#> |.....................| 0.04703 | 0.7825 | 0.7661 | 1.474 |
-#> |.....................| 1.274 | 1.258 |...........|...........|
-#> | X| 453.47854 | 93.48 | 0.003156 | 0.2804 | 0.8668 |
-#> |.....................| 9.026 | 2.132 | 0.01270 | 1.056 |
-#> |.....................| 0.04703 | 0.7825 | 0.7661 | 1.474 |
-#> |.....................| 1.274 | 1.258 |...........|...........|
-#> | F| Forward Diff. | -7.580 | 0.7096 | 1.748 | 0.4450 |
-#> |.....................| -0.3063 | -5.686 | -1.090 | 2.089 |
-#> |.....................| -1.806 | 4.661 | 3.477 | -2.550 |
-#> |.....................| -1.063 | -2.646 |...........|...........|
-#> | 68| 452.65869 | 1.010 | -1.604 | -0.9910 | -0.9601 |
-#> |.....................| -0.9321 | 0.9548 | -2.236 | -1.333 |
-#> |.....................| 0.7427 | -0.9083 | -1.017 | -0.7899 |
-#> |.....................| -0.7453 | -0.6781 |...........|...........|
-#> | U| 452.65869 | 94.06 | -5.907 | -1.019 | -0.1723 |
-#> |.....................| 2.204 | 2.217 | 0.009851 | 0.8906 |
-#> |.....................| 0.05461 | 0.7340 | 0.7490 | 1.308 |
-#> |.....................| 1.203 | 1.278 |...........|...........|
-#> | X| 452.65869 | 94.06 | 0.002719 | 0.2652 | 0.8418 |
-#> |.....................| 9.065 | 2.217 | 0.009851 | 0.8906 |
-#> |.....................| 0.05461 | 0.7340 | 0.7490 | 1.308 |
-#> |.....................| 1.203 | 1.278 |...........|...........|
-#> | F| Forward Diff. | 87.74 | 0.4343 | -0.7887 | -0.2527 |
-#> |.....................| -0.1232 | -3.287 | -0.3715 | -5.728 |
-#> |.....................| -3.469 | 4.620 | 5.104 | -8.863 |
-#> |.....................| -5.024 | -1.180 |...........|...........|
-#> | 69| 455.46876 | 1.000 | -1.721 | -0.9929 | -1.109 |
-#> |.....................| -0.8905 | 1.109 | -2.343 | -1.386 |
-#> |.....................| 1.193 | -1.162 | -0.9750 | -0.9277 |
-#> |.....................| -0.5804 | -0.9245 |...........|...........|
-#> | U| 455.46876 | 93.13 | -6.025 | -1.021 | -0.3216 |
-#> |.....................| 2.246 | 2.306 | 0.008241 | 0.8595 |
-#> |.....................| 0.06138 | 0.5417 | 0.7859 | 1.140 |
-#> |.....................| 1.379 | 1.014 |...........|...........|
-#> | X| 455.46876 | 93.13 | 0.002419 | 0.2648 | 0.7250 |
-#> |.....................| 9.450 | 2.306 | 0.008241 | 0.8595 |
-#> |.....................| 0.06138 | 0.5417 | 0.7859 | 1.140 |
-#> |.....................| 1.379 | 1.014 |...........|...........|
-#> | 70| 453.13548 | 0.9926 | -1.633 | -0.9913 | -0.9976 |
-#> |.....................| -0.9216 | 0.9941 | -2.263 | -1.345 |
-#> |.....................| 0.8563 | -0.9728 | -1.008 | -0.8230 |
-#> |.....................| -0.7030 | -0.7398 |...........|...........|
-#> | U| 453.13548 | 92.43 | -5.937 | -1.020 | -0.2097 |
-#> |.....................| 2.215 | 2.240 | 0.009448 | 0.8833 |
-#> |.....................| 0.05632 | 0.6851 | 0.7575 | 1.268 |
-#> |.....................| 1.248 | 1.212 |...........|...........|
-#> | X| 453.13548 | 92.43 | 0.002640 | 0.2651 | 0.8108 |
-#> |.....................| 9.161 | 2.240 | 0.009448 | 0.8833 |
-#> |.....................| 0.05632 | 0.6851 | 0.7575 | 1.268 |
-#> |.....................| 1.248 | 1.212 |...........|...........|
-#> | 71| 453.54485 | 0.9910 | -1.615 | -0.9910 | -0.9747 |
-#> |.....................| -0.9280 | 0.9706 | -2.247 | -1.337 |
-#> |.....................| 0.7875 | -0.9341 | -1.014 | -0.8015 |
-#> |.....................| -0.7281 | -0.7020 |...........|...........|
-#> | U| 453.54485 | 92.28 | -5.919 | -1.019 | -0.1868 |
-#> |.....................| 2.209 | 2.226 | 0.009694 | 0.8882 |
-#> |.....................| 0.05529 | 0.7144 | 0.7517 | 1.294 |
-#> |.....................| 1.221 | 1.253 |...........|...........|
-#> | X| 453.54485 | 92.28 | 0.002688 | 0.2651 | 0.8296 |
-#> |.....................| 9.103 | 2.226 | 0.009694 | 0.8882 |
-#> |.....................| 0.05529 | 0.7144 | 0.7517 | 1.294 |
-#> |.....................| 1.221 | 1.253 |...........|...........|
-#> | 72| 453.87696 | 0.9902 | -1.606 | -0.9909 | -0.9627 |
-#> |.....................| -0.9313 | 0.9582 | -2.238 | -1.332 |
-#> |.....................| 0.7513 | -0.9138 | -1.018 | -0.7903 |
-#> |.....................| -0.7413 | -0.6822 |...........|...........|
-#> | U| 453.87696 | 92.21 | -5.909 | -1.019 | -0.1748 |
-#> |.....................| 2.205 | 2.219 | 0.009824 | 0.8908 |
-#> |.....................| 0.05474 | 0.7298 | 0.7487 | 1.307 |
-#> |.....................| 1.207 | 1.274 |...........|...........|
-#> | X| 453.87696 | 92.21 | 0.002714 | 0.2652 | 0.8396 |
-#> |.....................| 9.072 | 2.219 | 0.009824 | 0.8908 |
-#> |.....................| 0.05474 | 0.7298 | 0.7487 | 1.307 |
-#> |.....................| 1.207 | 1.274 |...........|...........|
-#> | 73| 452.40810 | 1.003 | -1.604 | -0.9910 | -0.9601 |
-#> |.....................| -0.9321 | 0.9550 | -2.236 | -1.332 |
-#> |.....................| 0.7430 | -0.9087 | -1.018 | -0.7892 |
-#> |.....................| -0.7449 | -0.6781 |...........|...........|
-#> | U| 452.4081 | 93.41 | -5.907 | -1.019 | -0.1722 |
-#> |.....................| 2.204 | 2.217 | 0.009851 | 0.8908 |
-#> |.....................| 0.05462 | 0.7337 | 0.7487 | 1.309 |
-#> |.....................| 1.203 | 1.278 |...........|...........|
-#> | X| 452.4081 | 93.41 | 0.002719 | 0.2652 | 0.8418 |
-#> |.....................| 9.065 | 2.217 | 0.009851 | 0.8908 |
-#> |.....................| 0.05462 | 0.7337 | 0.7487 | 1.309 |
-#> |.....................| 1.203 | 1.278 |...........|...........|
-#> | F| Forward Diff. | -20.28 | 0.3985 | -0.9900 | -0.3302 |
-#> |.....................| -0.4580 | -3.509 | -0.7634 | -5.125 |
-#> |.....................| -3.224 | 3.921 | 4.784 | -8.607 |
-#> |.....................| -4.910 | -1.049 |...........|...........|
-#> | 74| 452.35774 | 1.005 | -1.605 | -0.9906 | -0.9617 |
-#> |.....................| -0.9314 | 0.9567 | -2.238 | -1.332 |
-#> |.....................| 0.7462 | -0.9112 | -1.018 | -0.7890 |
-#> |.....................| -0.7417 | -0.6810 |...........|...........|
-#> | U| 452.35774 | 93.58 | -5.909 | -1.019 | -0.1738 |
-#> |.....................| 2.205 | 2.218 | 0.009828 | 0.8908 |
-#> |.....................| 0.05467 | 0.7317 | 0.7485 | 1.309 |
-#> |.....................| 1.207 | 1.275 |...........|...........|
-#> | X| 452.35774 | 93.58 | 0.002715 | 0.2652 | 0.8405 |
-#> |.....................| 9.072 | 2.218 | 0.009828 | 0.8908 |
-#> |.....................| 0.05467 | 0.7317 | 0.7485 | 1.309 |
-#> |.....................| 1.207 | 1.275 |...........|...........|
-#> | F| Forward Diff. | 9.319 | 0.4042 | -0.9262 | -0.3428 |
-#> |.....................| -0.3413 | -3.482 | -0.6441 | -5.151 |
-#> |.....................| -3.223 | 3.864 | 4.863 | -8.623 |
-#> |.....................| -4.770 | -1.217 |...........|...........|
-#> | 75| 452.31017 | 1.003 | -1.607 | -0.9902 | -0.9631 |
-#> |.....................| -0.9307 | 0.9586 | -2.239 | -1.332 |
-#> |.....................| 0.7493 | -0.9137 | -1.019 | -0.7876 |
-#> |.....................| -0.7383 | -0.6834 |...........|...........|
-#> | U| 452.31017 | 93.41 | -5.910 | -1.019 | -0.1752 |
-#> |.....................| 2.206 | 2.219 | 0.009807 | 0.8910 |
-#> |.....................| 0.05471 | 0.7298 | 0.7478 | 1.310 |
-#> |.....................| 1.210 | 1.273 |...........|...........|
-#> | X| 452.31017 | 93.41 | 0.002711 | 0.2653 | 0.8393 |
-#> |.....................| 9.078 | 2.219 | 0.009807 | 0.8910 |
-#> |.....................| 0.05471 | 0.7298 | 0.7478 | 1.310 |
-#> |.....................| 1.210 | 1.273 |...........|...........|
-#> | F| Forward Diff. | -20.20 | 0.3903 | -0.9767 | -0.3983 |
-#> |.....................| -0.4106 | -3.495 | -0.7375 | -5.052 |
-#> |.....................| -3.297 | 3.718 | 4.704 | -8.538 |
-#> |.....................| -4.606 | -1.295 |...........|...........|
-#> | 76| 452.25868 | 1.005 | -1.609 | -0.9898 | -0.9648 |
-#> |.....................| -0.9300 | 0.9604 | -2.241 | -1.332 |
-#> |.....................| 0.7529 | -0.9160 | -1.019 | -0.7870 |
-#> |.....................| -0.7354 | -0.6858 |...........|...........|
-#> | U| 452.25868 | 93.58 | -5.912 | -1.018 | -0.1770 |
-#> |.....................| 2.207 | 2.220 | 0.009778 | 0.8908 |
-#> |.....................| 0.05477 | 0.7281 | 0.7476 | 1.311 |
-#> |.....................| 1.213 | 1.270 |...........|...........|
-#> | X| 452.25868 | 93.58 | 0.002707 | 0.2654 | 0.8378 |
-#> |.....................| 9.084 | 2.220 | 0.009778 | 0.8908 |
-#> |.....................| 0.05477 | 0.7281 | 0.7476 | 1.311 |
-#> |.....................| 1.213 | 1.270 |...........|...........|
-#> | F| Forward Diff. | 8.768 | 0.3959 | -0.9108 | -0.4152 |
-#> |.....................| -0.2985 | -3.789 | -0.7277 | -5.480 |
-#> |.....................| -3.800 | 3.463 | 7.165 | -8.525 |
-#> |.....................| -4.480 | -1.429 |...........|...........|
-#> | 77| 452.20380 | 1.003 | -1.610 | -0.9896 | -0.9665 |
-#> |.....................| -0.9299 | 0.9625 | -2.243 | -1.331 |
-#> |.....................| 0.7574 | -0.9182 | -1.020 | -0.7855 |
-#> |.....................| -0.7330 | -0.6868 |...........|...........|
-#> | U| 452.2038 | 93.42 | -5.913 | -1.018 | -0.1787 |
-#> |.....................| 2.207 | 2.221 | 0.009753 | 0.8912 |
-#> |.....................| 0.05483 | 0.7265 | 0.7464 | 1.313 |
-#> |.....................| 1.216 | 1.269 |...........|...........|
-#> | X| 452.2038 | 93.42 | 0.002704 | 0.2654 | 0.8364 |
-#> |.....................| 9.085 | 2.221 | 0.009753 | 0.8912 |
-#> |.....................| 0.05483 | 0.7265 | 0.7464 | 1.313 |
-#> |.....................| 1.216 | 1.269 |...........|...........|
-#> | F| Forward Diff. | -17.51 | 0.3875 | -0.9566 | -0.4713 |
-#> |.....................| -0.3666 | -3.384 | -0.7134 | -4.862 |
-#> |.....................| -3.257 | 3.566 | 3.539 | -8.382 |
-#> |.....................| -4.308 | -1.428 |...........|...........|
-#> | 78| 452.15674 | 1.006 | -1.611 | -0.9895 | -0.9681 |
-#> |.....................| -0.9296 | 0.9646 | -2.244 | -1.331 |
-#> |.....................| 0.7624 | -0.9204 | -1.020 | -0.7847 |
-#> |.....................| -0.7317 | -0.6876 |...........|...........|
-#> | U| 452.15674 | 93.63 | -5.915 | -1.018 | -0.1803 |
-#> |.....................| 2.207 | 2.222 | 0.009729 | 0.8915 |
-#> |.....................| 0.05491 | 0.7248 | 0.7463 | 1.314 |
-#> |.....................| 1.217 | 1.268 |...........|...........|
-#> | X| 452.15674 | 93.63 | 0.002700 | 0.2654 | 0.8350 |
-#> |.....................| 9.088 | 2.222 | 0.009729 | 0.8915 |
-#> |.....................| 0.05491 | 0.7248 | 0.7463 | 1.314 |
-#> |.....................| 1.217 | 1.268 |...........|...........|
-#> | F| Forward Diff. | 16.34 | 0.3942 | -0.8917 | -0.4820 |
-#> |.....................| -0.2498 | -3.403 | -0.6022 | -5.023 |
-#> |.....................| -3.383 | 3.482 | 3.627 | -8.397 |
-#> |.....................| -4.266 | -1.517 |...........|...........|
-#> | 79| 452.11013 | 1.004 | -1.613 | -0.9892 | -0.9692 |
-#> |.....................| -0.9285 | 0.9667 | -2.245 | -1.330 |
-#> |.....................| 0.7674 | -0.9230 | -1.020 | -0.7840 |
-#> |.....................| -0.7312 | -0.6887 |...........|...........|
-#> | U| 452.11013 | 93.48 | -5.917 | -1.018 | -0.1814 |
-#> |.....................| 2.208 | 2.224 | 0.009710 | 0.8921 |
-#> |.....................| 0.05499 | 0.7229 | 0.7466 | 1.315 |
-#> |.....................| 1.218 | 1.267 |...........|...........|
-#> | X| 452.11013 | 93.48 | 0.002694 | 0.2655 | 0.8341 |
-#> |.....................| 9.098 | 2.224 | 0.009710 | 0.8921 |
-#> |.....................| 0.05499 | 0.7229 | 0.7466 | 1.315 |
-#> |.....................| 1.218 | 1.267 |...........|...........|
-#> | F| Forward Diff. | -8.858 | 0.3784 | -0.9339 | -0.5242 |
-#> |.....................| -0.2958 | -3.274 | -0.6451 | -4.716 |
-#> |.....................| -3.235 | 3.524 | 3.578 | -8.323 |
-#> |.....................| -4.226 | -1.527 |...........|...........|
-#> | 80| 452.06081 | 1.006 | -1.615 | -0.9885 | -0.9698 |
-#> |.....................| -0.9277 | 0.9688 | -2.247 | -1.329 |
-#> |.....................| 0.7723 | -0.9255 | -1.020 | -0.7822 |
-#> |.....................| -0.7302 | -0.6891 |...........|...........|
-#> | U| 452.06081 | 93.65 | -5.919 | -1.017 | -0.1820 |
-#> |.....................| 2.209 | 2.225 | 0.009693 | 0.8927 |
-#> |.....................| 0.05506 | 0.7209 | 0.7465 | 1.317 |
-#> |.....................| 1.219 | 1.266 |...........|...........|
-#> | X| 452.06081 | 93.65 | 0.002689 | 0.2656 | 0.8336 |
-#> |.....................| 9.105 | 2.225 | 0.009693 | 0.8927 |
-#> |.....................| 0.05506 | 0.7209 | 0.7465 | 1.317 |
-#> |.....................| 1.219 | 1.266 |...........|...........|
-#> | F| Forward Diff. | 18.08 | 0.3814 | -0.8701 | -0.5179 |
-#> |.....................| -0.1901 | -3.027 | -0.4828 | -4.583 |
-#> |.....................| -3.046 | 3.385 | 4.724 | -8.292 |
-#> |.....................| -4.215 | -1.583 |...........|...........|
-#> | 81| 452.00089 | 1.004 | -1.618 | -0.9864 | -0.9698 |
-#> |.....................| -0.9276 | 0.9701 | -2.249 | -1.331 |
-#> |.....................| 0.7751 | -0.9261 | -1.021 | -0.7787 |
-#> |.....................| -0.7281 | -0.6889 |...........|...........|
-#> | U| 452.00089 | 93.48 | -5.921 | -1.015 | -0.1820 |
-#> |.....................| 2.209 | 2.226 | 0.009656 | 0.8916 |
-#> |.....................| 0.05510 | 0.7205 | 0.7459 | 1.321 |
-#> |.....................| 1.221 | 1.267 |...........|...........|
-#> | X| 452.00089 | 93.48 | 0.002683 | 0.2660 | 0.8336 |
-#> |.....................| 9.107 | 2.226 | 0.009656 | 0.8916 |
-#> |.....................| 0.05510 | 0.7205 | 0.7459 | 1.321 |
-#> |.....................| 1.221 | 1.267 |...........|...........|
-#> | F| Forward Diff. | -8.141 | 0.3688 | -0.8752 | -0.5418 |
-#> |.....................| -0.2687 | -3.191 | -0.6153 | -4.612 |
-#> |.....................| -3.168 | 3.248 | 4.602 | -8.159 |
-#> |.....................| -4.118 | -1.545 |...........|...........|
-#> | 82| 451.94404 | 1.006 | -1.619 | -0.9850 | -0.9696 |
-#> |.....................| -0.9279 | 0.9711 | -2.251 | -1.332 |
-#> |.....................| 0.7767 | -0.9258 | -1.022 | -0.7739 |
-#> |.....................| -0.7256 | -0.6877 |...........|...........|
-#> | U| 451.94404 | 93.65 | -5.922 | -1.014 | -0.1817 |
-#> |.....................| 2.209 | 2.226 | 0.009627 | 0.8908 |
-#> |.....................| 0.05512 | 0.7207 | 0.7445 | 1.327 |
-#> |.....................| 1.224 | 1.268 |...........|...........|
-#> | X| 451.94404 | 93.65 | 0.002679 | 0.2663 | 0.8338 |
-#> |.....................| 9.104 | 2.226 | 0.009627 | 0.8908 |
-#> |.....................| 0.05512 | 0.7207 | 0.7445 | 1.327 |
-#> |.....................| 1.224 | 1.268 |...........|...........|
-#> | 83| 451.90577 | 1.006 | -1.621 | -0.9832 | -0.9693 |
-#> |.....................| -0.9284 | 0.9716 | -2.254 | -1.336 |
-#> |.....................| 0.7778 | -0.9242 | -1.023 | -0.7696 |
-#> |.....................| -0.7233 | -0.6864 |...........|...........|
-#> | U| 451.90577 | 93.65 | -5.925 | -1.012 | -0.1815 |
-#> |.....................| 2.208 | 2.227 | 0.009581 | 0.8887 |
-#> |.....................| 0.05514 | 0.7219 | 0.7437 | 1.332 |
-#> |.....................| 1.226 | 1.269 |...........|...........|
-#> | X| 451.90577 | 93.65 | 0.002673 | 0.2666 | 0.8340 |
-#> |.....................| 9.099 | 2.227 | 0.009581 | 0.8887 |
-#> |.....................| 0.05514 | 0.7219 | 0.7437 | 1.332 |
-#> |.....................| 1.226 | 1.269 |...........|...........|
-#> | 84| 451.74017 | 1.006 | -1.632 | -0.9740 | -0.9682 |
-#> |.....................| -0.9311 | 0.9738 | -2.270 | -1.354 |
-#> |.....................| 0.7839 | -0.9163 | -1.028 | -0.7474 |
-#> |.....................| -0.7117 | -0.6796 |...........|...........|
-#> | U| 451.74017 | 93.64 | -5.935 | -1.003 | -0.1804 |
-#> |.....................| 2.205 | 2.228 | 0.009348 | 0.8780 |
-#> |.....................| 0.05523 | 0.7279 | 0.7400 | 1.359 |
-#> |.....................| 1.239 | 1.277 |...........|...........|
-#> | X| 451.74017 | 93.64 | 0.002645 | 0.2683 | 0.8350 |
-#> |.....................| 9.074 | 2.228 | 0.009348 | 0.8780 |
-#> |.....................| 0.05523 | 0.7279 | 0.7400 | 1.359 |
-#> |.....................| 1.239 | 1.277 |...........|...........|
-#> | 85| 451.58673 | 1.005 | -1.675 | -0.9364 | -0.9637 |
-#> |.....................| -0.9422 | 0.9828 | -2.333 | -1.429 |
-#> |.....................| 0.8084 | -0.8841 | -1.045 | -0.6570 |
-#> |.....................| -0.6645 | -0.6522 |...........|...........|
-#> | U| 451.58673 | 93.57 | -5.978 | -0.9678 | -0.1758 |
-#> |.....................| 2.194 | 2.233 | 0.008399 | 0.8346 |
-#> |.....................| 0.05560 | 0.7523 | 0.7245 | 1.469 |
-#> |.....................| 1.289 | 1.306 |...........|...........|
-#> | X| 451.58673 | 93.57 | 0.002533 | 0.2753 | 0.8388 |
-#> |.....................| 8.974 | 2.233 | 0.008399 | 0.8346 |
-#> |.....................| 0.05560 | 0.7523 | 0.7245 | 1.469 |
-#> |.....................| 1.289 | 1.306 |...........|...........|
-#> | F| Forward Diff. | 7.829 | 0.3494 | 0.8366 | -0.4922 |
-#> |.....................| -0.7083 | -3.782 | -0.9020 | -9.523 |
-#> |.....................| -4.571 | 4.733 | 3.935 | -3.194 |
-#> |.....................| -1.280 | 0.5510 |...........|...........|
-#> | 86| 450.56328 | 1.003 | -1.760 | -0.9418 | -0.9563 |
-#> |.....................| -0.9480 | 1.050 | -2.445 | -1.421 |
-#> |.....................| 0.9402 | -0.9310 | -1.041 | -0.6107 |
-#> |.....................| -0.6547 | -0.6413 |...........|...........|
-#> | U| 450.56328 | 93.41 | -6.064 | -0.9728 | -0.1684 |
-#> |.....................| 2.189 | 2.272 | 0.006706 | 0.8396 |
-#> |.....................| 0.05758 | 0.7168 | 0.7280 | 1.525 |
-#> |.....................| 1.300 | 1.318 |...........|...........|
-#> | X| 450.56328 | 93.41 | 0.002326 | 0.2743 | 0.8450 |
-#> |.....................| 8.923 | 2.272 | 0.006706 | 0.8396 |
-#> |.....................| 0.05758 | 0.7168 | 0.7280 | 1.525 |
-#> |.....................| 1.300 | 1.318 |...........|...........|
-#> | 87| 449.70344 | 1.004 | -1.916 | -0.9511 | -0.9429 |
-#> |.....................| -0.9589 | 1.170 | -2.653 | -1.409 |
-#> |.....................| 1.180 | -1.015 | -1.032 | -0.5274 |
-#> |.....................| -0.6372 | -0.6210 |...........|...........|
-#> | U| 449.70344 | 93.47 | -6.220 | -0.9817 | -0.1550 |
-#> |.....................| 2.178 | 2.342 | 0.003591 | 0.8462 |
-#> |.....................| 0.06119 | 0.6534 | 0.7360 | 1.626 |
-#> |.....................| 1.318 | 1.340 |...........|...........|
-#> | X| 449.70344 | 93.47 | 0.001990 | 0.2726 | 0.8564 |
-#> |.....................| 8.826 | 2.342 | 0.003591 | 0.8462 |
-#> |.....................| 0.06119 | 0.6534 | 0.7360 | 1.626 |
-#> |.....................| 1.318 | 1.340 |...........|...........|
-#> | F| Forward Diff. | -19.90 | -0.3168 | 0.4549 | 0.1875 |
-#> |.....................| -1.116 | -0.4934 | -0.07687 | -3.113 |
-#> |.....................| -2.715 | -1.586 | 5.430 | 3.365 |
-#> |.....................| 0.3009 | 1.974 |...........|...........|
-#> | 88| 451.98935 | 1.002 | -1.890 | -1.062 | -1.052 |
-#> |.....................| -0.7983 | 1.243 | -2.828 | -1.513 |
-#> |.....................| 1.600 | -1.043 | -1.029 | -0.6268 |
-#> |.....................| -0.3463 | -0.6648 |...........|...........|
-#> | U| 451.98935 | 93.35 | -6.193 | -1.087 | -0.2643 |
-#> |.....................| 2.338 | 2.384 | 0.0009551 | 0.7857 |
-#> |.....................| 0.06749 | 0.6319 | 0.7389 | 1.506 |
-#> |.....................| 1.629 | 1.293 |...........|...........|
-#> | X| 451.98935 | 93.35 | 0.002043 | 0.2523 | 0.7677 |
-#> |.....................| 10.36 | 2.384 | 0.0009551 | 0.7857 |
-#> |.....................| 0.06749 | 0.6319 | 0.7389 | 1.506 |
-#> |.....................| 1.629 | 1.293 |...........|...........|
-#> | 89| 449.56377 | 1.005 | -1.911 | -0.9716 | -0.9631 |
-#> |.....................| -0.9292 | 1.184 | -2.685 | -1.428 |
-#> |.....................| 1.258 | -1.020 | -1.032 | -0.5459 |
-#> |.....................| -0.5835 | -0.6292 |...........|...........|
-#> | U| 449.56377 | 93.56 | -6.215 | -1.001 | -0.1752 |
-#> |.....................| 2.207 | 2.350 | 0.003105 | 0.8351 |
-#> |.....................| 0.06235 | 0.6495 | 0.7362 | 1.604 |
-#> |.....................| 1.376 | 1.331 |...........|...........|
-#> | X| 449.56377 | 93.56 | 0.002000 | 0.2687 | 0.8393 |
-#> |.....................| 9.092 | 2.350 | 0.003105 | 0.8351 |
-#> |.....................| 0.06235 | 0.6495 | 0.7362 | 1.604 |
-#> |.....................| 1.376 | 1.331 |...........|...........|
-#> | F| Forward Diff. | -8.503 | -0.3085 | -0.7128 | -0.4858 |
-#> |.....................| -0.1462 | -0.3349 | -0.04630 | -2.615 |
-#> |.....................| -2.539 | -1.761 | 5.421 | 2.664 |
-#> |.....................| 3.069 | 1.771 |...........|...........|
-#> | 90| 449.37295 | 1.008 | -1.883 | -0.9569 | -0.9753 |
-#> |.....................| -0.9112 | 1.201 | -2.710 | -1.458 |
-#> |.....................| 1.352 | -1.030 | -1.036 | -0.5467 |
-#> |.....................| -0.5933 | -0.6460 |...........|...........|
-#> | U| 449.37295 | 93.89 | -6.186 | -0.9871 | -0.1875 |
-#> |.....................| 2.225 | 2.360 | 0.002726 | 0.8181 |
-#> |.....................| 0.06377 | 0.6417 | 0.7326 | 1.603 |
-#> |.....................| 1.365 | 1.313 |...........|...........|
-#> | X| 449.37295 | 93.89 | 0.002058 | 0.2715 | 0.8291 |
-#> |.....................| 9.256 | 2.360 | 0.002726 | 0.8181 |
-#> |.....................| 0.06377 | 0.6417 | 0.7326 | 1.603 |
-#> |.....................| 1.365 | 1.313 |...........|...........|
-#> | F| Forward Diff. | 31.95 | -0.2055 | 0.2861 | -0.8772 |
-#> |.....................| 0.4589 | 0.008909 | 0.01409 | -2.994 |
-#> |.....................| -2.511 | -2.129 | 5.021 | 2.567 |
-#> |.....................| 2.446 | 1.004 |...........|...........|
-#> | 91| 449.07232 | 1.007 | -1.848 | -0.9883 | -0.9607 |
-#> |.....................| -0.9269 | 1.208 | -2.721 | -1.473 |
-#> |.....................| 1.446 | -1.013 | -1.041 | -0.5472 |
-#> |.....................| -0.6000 | -0.6251 |...........|...........|
-#> | U| 449.07232 | 93.73 | -6.151 | -1.017 | -0.1729 |
-#> |.....................| 2.210 | 2.364 | 0.002568 | 0.8093 |
-#> |.....................| 0.06518 | 0.6543 | 0.7283 | 1.602 |
-#> |.....................| 1.358 | 1.335 |...........|...........|
-#> | X| 449.07232 | 93.73 | 0.002130 | 0.2656 | 0.8412 |
-#> |.....................| 9.113 | 2.364 | 0.002568 | 0.8093 |
-#> |.....................| 0.06518 | 0.6543 | 0.7283 | 1.602 |
-#> |.....................| 1.358 | 1.335 |...........|...........|
-#> | 92| 449.34581 | 1.013 | -1.744 | -1.083 | -0.9172 |
-#> |.....................| -0.9739 | 1.229 | -2.752 | -1.520 |
-#> |.....................| 1.728 | -0.9642 | -1.054 | -0.5478 |
-#> |.....................| -0.6192 | -0.5619 |...........|...........|
-#> | U| 449.34581 | 94.33 | -6.047 | -1.106 | -0.1294 |
-#> |.....................| 2.163 | 2.376 | 0.002092 | 0.7821 |
-#> |.....................| 0.06942 | 0.6916 | 0.7169 | 1.601 |
-#> |.....................| 1.337 | 1.403 |...........|...........|
-#> | X| 449.34581 | 94.33 | 0.002364 | 0.2486 | 0.8787 |
-#> |.....................| 8.694 | 2.376 | 0.002092 | 0.7821 |
-#> |.....................| 0.06942 | 0.6916 | 0.7169 | 1.601 |
-#> |.....................| 1.337 | 1.403 |...........|...........|
-#> | F| Forward Diff. | 11.36 | -0.08356 | -1.544 | -0.3785 |
-#> |.....................| -0.02879 | 0.1985 | 0.04898 | -2.532 |
-#> |.....................| -2.210 | -1.428 | 5.624 | 2.440 |
-#> |.....................| 2.104 | 1.894 |...........|...........|
-#> | 93| 449.83746 | 0.9966 | -1.806 | -0.8436 | -0.9213 |
-#> |.....................| -1.016 | 1.236 | -2.752 | -1.567 |
-#> |.....................| 1.816 | -1.085 | -1.056 | -0.6567 |
-#> |.....................| -0.5363 | -0.5852 |...........|...........|
-#> | U| 449.83746 | 92.80 | -6.109 | -0.8802 | -0.1335 |
-#> |.....................| 2.121 | 2.380 | 0.002093 | 0.7548 |
-#> |.....................| 0.07074 | 0.5997 | 0.7149 | 1.469 |
-#> |.....................| 1.426 | 1.378 |...........|...........|
-#> | X| 449.83746 | 92.80 | 0.002222 | 0.2931 | 0.8750 |
-#> |.....................| 8.340 | 2.380 | 0.002093 | 0.7548 |
-#> |.....................| 0.07074 | 0.5997 | 0.7149 | 1.469 |
-#> |.....................| 1.426 | 1.378 |...........|...........|
-#> | 94| 449.05525 | 1.000 | -1.836 | -0.9477 | -0.9497 |
-#> |.....................| -0.9515 | 1.216 | -2.730 | -1.498 |
-#> |.....................| 1.549 | -1.033 | -1.047 | -0.5784 |
-#> |.....................| -0.5830 | -0.6146 |...........|...........|
-#> | U| 449.05525 | 93.13 | -6.140 | -0.9784 | -0.1618 |
-#> |.....................| 2.185 | 2.368 | 0.002436 | 0.7946 |
-#> |.....................| 0.06673 | 0.6395 | 0.7230 | 1.564 |
-#> |.....................| 1.376 | 1.346 |...........|...........|
-#> | X| 449.05525 | 93.13 | 0.002156 | 0.2732 | 0.8506 |
-#> |.....................| 8.891 | 2.368 | 0.002436 | 0.7946 |
-#> |.....................| 0.06673 | 0.6395 | 0.7230 | 1.564 |
-#> |.....................| 1.376 | 1.346 |...........|...........|
-#> | F| Forward Diff. | -56.82 | -0.05113 | 0.4930 | -0.04031 |
-#> |.....................| -1.049 | 0.03445 | -0.05944 | -2.319 |
-#> |.....................| -2.208 | -2.328 | 3.545 | 0.3775 |
-#> |.....................| 2.643 | 2.387 |...........|...........|
-#> | 95| 448.75128 | 1.006 | -1.837 | -0.9543 | -0.9497 |
-#> |.....................| -0.9537 | 1.219 | -2.732 | -1.514 |
-#> |.....................| 1.608 | -1.030 | -1.050 | -0.5750 |
-#> |.....................| -0.5860 | -0.6263 |...........|...........|
-#> | U| 448.75128 | 93.69 | -6.140 | -0.9847 | -0.1618 |
-#> |.....................| 2.183 | 2.370 | 0.002396 | 0.7854 |
-#> |.....................| 0.06761 | 0.6415 | 0.7208 | 1.568 |
-#> |.....................| 1.373 | 1.334 |...........|...........|
-#> | X| 448.75128 | 93.69 | 0.002154 | 0.2720 | 0.8506 |
-#> |.....................| 8.872 | 2.370 | 0.002396 | 0.7854 |
-#> |.....................| 0.06761 | 0.6415 | 0.7208 | 1.568 |
-#> |.....................| 1.373 | 1.334 |...........|...........|
-#> | F| Forward Diff. | 6.795 | -0.02569 | 0.3964 | 0.03329 |
-#> |.....................| -0.8574 | 0.1774 | 0.01390 | -2.462 |
-#> |.....................| -2.149 | -2.476 | 3.910 | 1.045 |
-#> |.....................| 2.743 | 2.014 |...........|...........|
-#> | 96| 448.60805 | 1.005 | -1.844 | -0.9658 | -0.9658 |
-#> |.....................| -0.9330 | 1.222 | -2.731 | -1.528 |
-#> |.....................| 1.652 | -1.023 | -1.051 | -0.5597 |
-#> |.....................| -0.5993 | -0.6478 |...........|...........|
-#> | U| 448.60805 | 93.55 | -6.147 | -0.9955 | -0.1780 |
-#> |.....................| 2.204 | 2.372 | 0.002406 | 0.7773 |
-#> |.....................| 0.06828 | 0.6470 | 0.7198 | 1.587 |
-#> |.....................| 1.359 | 1.311 |...........|...........|
-#> | X| 448.60805 | 93.55 | 0.002140 | 0.2698 | 0.8370 |
-#> |.....................| 9.057 | 2.372 | 0.002406 | 0.7773 |
-#> |.....................| 0.06828 | 0.6470 | 0.7198 | 1.587 |
-#> |.....................| 1.359 | 1.311 |...........|...........|
-#> | 97| 448.54893 | 1.004 | -1.854 | -0.9831 | -0.9905 |
-#> |.....................| -0.9018 | 1.226 | -2.730 | -1.550 |
-#> |.....................| 1.719 | -1.013 | -1.051 | -0.5361 |
-#> |.....................| -0.6188 | -0.6800 |...........|...........|
-#> | U| 448.54893 | 93.53 | -6.157 | -1.012 | -0.2026 |
-#> |.....................| 2.235 | 2.374 | 0.002422 | 0.7645 |
-#> |.....................| 0.06928 | 0.6548 | 0.7192 | 1.616 |
-#> |.....................| 1.338 | 1.276 |...........|...........|
-#> | X| 448.54893 | 93.53 | 0.002118 | 0.2666 | 0.8166 |
-#> |.....................| 9.344 | 2.374 | 0.002422 | 0.7645 |
-#> |.....................| 0.06928 | 0.6548 | 0.7192 | 1.616 |
-#> |.....................| 1.338 | 1.276 |...........|...........|
-#> | F| Forward Diff. | -11.31 | -0.05480 | -1.344 | -1.332 |
-#> |.....................| 0.5363 | 0.1616 | -0.02955 | -2.282 |
-#> |.....................| -1.949 | -1.541 | 5.051 | 2.875 |
-#> |.....................| 1.005 | -0.6800 |...........|...........|
-#> | 98| 448.23423 | 1.005 | -1.862 | -0.9802 | -0.9885 |
-#> |.....................| -0.8649 | 1.225 | -2.731 | -1.570 |
-#> |.....................| 1.863 | -0.9934 | -1.058 | -0.5422 |
-#> |.....................| -0.6330 | -0.6404 |...........|...........|
-#> | U| 448.23423 | 93.60 | -6.165 | -1.009 | -0.2007 |
-#> |.....................| 2.272 | 2.374 | 0.002415 | 0.7529 |
-#> |.....................| 0.07145 | 0.6695 | 0.7131 | 1.608 |
-#> |.....................| 1.323 | 1.319 |...........|...........|
-#> | X| 448.23423 | 93.60 | 0.002101 | 0.2671 | 0.8182 |
-#> |.....................| 9.695 | 2.374 | 0.002415 | 0.7529 |
-#> |.....................| 0.07145 | 0.6695 | 0.7131 | 1.608 |
-#> |.....................| 1.323 | 1.319 |...........|...........|
-#> | 99| 448.52797 | 1.003 | -1.887 | -0.9721 | -0.9832 |
-#> |.....................| -0.7539 | 1.222 | -2.732 | -1.631 |
-#> |.....................| 2.296 | -0.9358 | -1.078 | -0.5592 |
-#> |.....................| -0.6753 | -0.5215 |...........|...........|
-#> | U| 448.52797 | 93.41 | -6.190 | -1.001 | -0.1954 |
-#> |.....................| 2.383 | 2.371 | 0.002396 | 0.7173 |
-#> |.....................| 0.07796 | 0.7131 | 0.6963 | 1.588 |
-#> |.....................| 1.277 | 1.446 |...........|...........|
-#> | X| 448.52797 | 93.41 | 0.002050 | 0.2687 | 0.8225 |
-#> |.....................| 10.83 | 2.371 | 0.002396 | 0.7173 |
-#> |.....................| 0.07796 | 0.7131 | 0.6963 | 1.588 |
-#> |.....................| 1.277 | 1.446 |...........|...........|
-#> | F| Forward Diff. | -1.417 | -0.03842 | -1.058 | -1.257 |
-#> |.....................| 1.697 | 0.2446 | 0.02601 | -1.725 |
-#> |.....................| -1.728 | -0.7541 | 3.822 | 2.423 |
-#> |.....................| 0.4552 | 1.132 |...........|...........|
-#> | 100| 447.48636 | 1.010 | -1.889 | -1.018 | -0.9136 |
-#> |.....................| -0.9465 | 1.241 | -2.741 | -1.706 |
-#> |.....................| 2.465 | -0.9635 | -1.095 | -0.5705 |
-#> |.....................| -0.6276 | -0.6598 |...........|...........|
-#> | U| 447.48636 | 94.00 | -6.193 | -1.045 | -0.1257 |
-#> |.....................| 2.190 | 2.383 | 0.002265 | 0.6743 |
-#> |.....................| 0.08050 | 0.6921 | 0.6807 | 1.574 |
-#> |.....................| 1.328 | 1.298 |...........|...........|
-#> | X| 447.48636 | 94.00 | 0.002044 | 0.2602 | 0.8818 |
-#> |.....................| 8.935 | 2.383 | 0.002265 | 0.6743 |
-#> |.....................| 0.08050 | 0.6921 | 0.6807 | 1.574 |
-#> |.....................| 1.328 | 1.298 |...........|...........|
-#> | F| Forward Diff. | 49.18 | 0.06228 | -2.520 | 1.219 |
-#> |.....................| -0.3402 | 0.5332 | 0.01803 | -1.013 |
-#> |.....................| -0.7363 | 0.9697 | 2.720 | 0.6118 |
-#> |.....................| 0.4882 | -0.1519 |...........|...........|
-#> | 101| 448.59314 | 1.009 | -1.906 | -0.9798 | -1.202 |
-#> |.....................| -1.107 | 1.243 | -2.730 | -1.791 |
-#> |.....................| 2.989 | -0.9474 | -1.110 | -0.5914 |
-#> |.....................| -0.6423 | -0.5882 |...........|...........|
-#> | U| 448.59314 | 93.96 | -6.209 | -1.009 | -0.4139 |
-#> |.....................| 2.029 | 2.384 | 0.002422 | 0.6247 |
-#> |.....................| 0.08837 | 0.7043 | 0.6679 | 1.549 |
-#> |.....................| 1.313 | 1.375 |...........|...........|
-#> | X| 448.59314 | 93.96 | 0.002010 | 0.2672 | 0.6611 |
-#> |.....................| 7.610 | 2.384 | 0.002422 | 0.6247 |
-#> |.....................| 0.08837 | 0.7043 | 0.6679 | 1.549 |
-#> |.....................| 1.313 | 1.375 |...........|...........|
-#> | 102| 447.34338 | 1.004 | -1.893 | -1.010 | -0.9727 |
-#> |.....................| -0.9794 | 1.241 | -2.739 | -1.723 |
-#> |.....................| 2.572 | -0.9603 | -1.099 | -0.5748 |
-#> |.....................| -0.6307 | -0.6452 |...........|...........|
-#> | U| 447.34338 | 93.48 | -6.196 | -1.037 | -0.1848 |
-#> |.....................| 2.157 | 2.383 | 0.002297 | 0.6642 |
-#> |.....................| 0.08211 | 0.6946 | 0.6778 | 1.569 |
-#> |.....................| 1.325 | 1.314 |...........|...........|
-#> | X| 447.34338 | 93.48 | 0.002037 | 0.2617 | 0.8313 |
-#> |.....................| 8.647 | 2.383 | 0.002297 | 0.6642 |
-#> |.....................| 0.08211 | 0.6946 | 0.6778 | 1.569 |
-#> |.....................| 1.325 | 1.314 |...........|...........|
-#> | F| Forward Diff. | -27.99 | 0.05620 | -2.283 | -0.5861 |
-#> |.....................| -1.399 | 0.3409 | -0.05316 | -0.7185 |
-#> |.....................| -0.6589 | 0.7167 | 1.472 | 0.2167 |
-#> |.....................| 0.2339 | 0.7351 |...........|...........|
-#> | 103| 447.24116 | 1.004 | -1.898 | -0.9880 | -0.9438 |
-#> |.....................| -0.9421 | 1.243 | -2.723 | -1.759 |
-#> |.....................| 2.683 | -0.9737 | -1.096 | -0.5790 |
-#> |.....................| -0.6284 | -0.6557 |...........|...........|
-#> | U| 447.24116 | 93.50 | -6.201 | -1.017 | -0.1559 |
-#> |.....................| 2.195 | 2.384 | 0.002530 | 0.6435 |
-#> |.....................| 0.08377 | 0.6844 | 0.6802 | 1.564 |
-#> |.....................| 1.328 | 1.302 |...........|...........|
-#> | X| 447.24116 | 93.50 | 0.002027 | 0.2657 | 0.8556 |
-#> |.....................| 8.976 | 2.384 | 0.002530 | 0.6435 |
-#> |.....................| 0.08377 | 0.6844 | 0.6802 | 1.564 |
-#> |.....................| 1.328 | 1.302 |...........|...........|
-#> | F| Forward Diff. | -22.25 | 0.02611 | -1.124 | 0.2366 |
-#> |.....................| -0.4078 | 0.2597 | -0.06938 | -0.8187 |
-#> |.....................| -0.5375 | 0.002218 | 1.533 | -0.1306 |
-#> |.....................| 0.2372 | 0.1318 |...........|...........|
-#> | 104| 447.36545 | 1.010 | -1.910 | -0.9563 | -1.018 |
-#> |.....................| -0.9640 | 1.238 | -2.696 | -1.806 |
-#> |.....................| 2.921 | -0.9760 | -1.100 | -0.5866 |
-#> |.....................| -0.6320 | -0.6434 |...........|...........|
-#> | U| 447.36545 | 94.05 | -6.214 | -0.9866 | -0.2304 |
-#> |.....................| 2.173 | 2.381 | 0.002941 | 0.6159 |
-#> |.....................| 0.08734 | 0.6827 | 0.6770 | 1.554 |
-#> |.....................| 1.324 | 1.315 |...........|...........|
-#> | X| 447.36545 | 94.05 | 0.002002 | 0.2716 | 0.7942 |
-#> |.....................| 8.780 | 2.381 | 0.002941 | 0.6159 |
-#> |.....................| 0.08734 | 0.6827 | 0.6770 | 1.554 |
-#> |.....................| 1.324 | 1.315 |...........|...........|
-#> | 105| 447.25244 | 1.009 | -1.902 | -0.9770 | -0.9694 |
-#> |.....................| -0.9495 | 1.241 | -2.714 | -1.775 |
-#> |.....................| 2.765 | -0.9745 | -1.097 | -0.5816 |
-#> |.....................| -0.6297 | -0.6515 |...........|...........|
-#> | U| 447.25244 | 93.94 | -6.205 | -1.006 | -0.1815 |
-#> |.....................| 2.187 | 2.383 | 0.002671 | 0.6341 |
-#> |.....................| 0.08500 | 0.6838 | 0.6790 | 1.560 |
-#> |.....................| 1.326 | 1.307 |...........|...........|
-#> | X| 447.25244 | 93.94 | 0.002018 | 0.2677 | 0.8340 |
-#> |.....................| 8.909 | 2.383 | 0.002671 | 0.6341 |
-#> |.....................| 0.08500 | 0.6838 | 0.6790 | 1.560 |
-#> |.....................| 1.326 | 1.307 |...........|...........|
-#> | 106| 447.24908 | 1.008 | -1.900 | -0.9828 | -0.9557 |
-#> |.....................| -0.9455 | 1.242 | -2.719 | -1.766 |
-#> |.....................| 2.721 | -0.9741 | -1.097 | -0.5802 |
-#> |.....................| -0.6290 | -0.6537 |...........|...........|
-#> | U| 447.24908 | 93.91 | -6.203 | -1.012 | -0.1678 |
-#> |.....................| 2.191 | 2.383 | 0.002596 | 0.6392 |
-#> |.....................| 0.08434 | 0.6841 | 0.6795 | 1.562 |
-#> |.....................| 1.327 | 1.304 |...........|...........|
-#> | X| 447.24908 | 93.91 | 0.002023 | 0.2667 | 0.8455 |
-#> |.....................| 8.945 | 2.383 | 0.002596 | 0.6392 |
-#> |.....................| 0.08434 | 0.6841 | 0.6795 | 1.562 |
-#> |.....................| 1.327 | 1.304 |...........|...........|
-#> | 107| 447.25180 | 1.008 | -1.899 | -0.9855 | -0.9493 |
-#> |.....................| -0.9436 | 1.242 | -2.721 | -1.762 |
-#> |.....................| 2.700 | -0.9739 | -1.097 | -0.5796 |
-#> |.....................| -0.6287 | -0.6548 |...........|...........|
-#> | U| 447.2518 | 93.89 | -6.202 | -1.014 | -0.1614 |
-#> |.....................| 2.193 | 2.383 | 0.002560 | 0.6416 |
-#> |.....................| 0.08403 | 0.6843 | 0.6798 | 1.563 |
-#> |.....................| 1.327 | 1.303 |...........|...........|
-#> | X| 447.2518 | 93.89 | 0.002025 | 0.2662 | 0.8509 |
-#> |.....................| 8.962 | 2.383 | 0.002560 | 0.6416 |
-#> |.....................| 0.08403 | 0.6843 | 0.6798 | 1.563 |
-#> |.....................| 1.327 | 1.303 |...........|...........|
-#> | 108| 447.25421 | 1.008 | -1.898 | -0.9869 | -0.9460 |
-#> |.....................| -0.9426 | 1.242 | -2.722 | -1.760 |
-#> |.....................| 2.690 | -0.9738 | -1.096 | -0.5792 |
-#> |.....................| -0.6286 | -0.6553 |...........|...........|
-#> | U| 447.25421 | 93.88 | -6.202 | -1.015 | -0.1582 |
-#> |.....................| 2.194 | 2.384 | 0.002542 | 0.6428 |
-#> |.....................| 0.08388 | 0.6843 | 0.6799 | 1.563 |
-#> |.....................| 1.327 | 1.303 |...........|...........|
-#> | X| 447.25421 | 93.88 | 0.002026 | 0.2659 | 0.8537 |
-#> |.....................| 8.970 | 2.384 | 0.002542 | 0.6428 |
-#> |.....................| 0.08388 | 0.6843 | 0.6799 | 1.563 |
-#> |.....................| 1.327 | 1.303 |...........|...........|
-#> | 109| 447.24978 | 1.008 | -1.898 | -0.9878 | -0.9438 |
-#> |.....................| -0.9420 | 1.242 | -2.723 | -1.759 |
-#> |.....................| 2.683 | -0.9737 | -1.096 | -0.5790 |
-#> |.....................| -0.6285 | -0.6557 |...........|...........|
-#> | U| 447.24978 | 93.86 | -6.201 | -1.016 | -0.1560 |
-#> |.....................| 2.195 | 2.384 | 0.002530 | 0.6436 |
-#> |.....................| 0.08377 | 0.6844 | 0.6800 | 1.564 |
-#> |.....................| 1.328 | 1.302 |...........|...........|
-#> | X| 447.24978 | 93.86 | 0.002027 | 0.2657 | 0.8556 |
-#> |.....................| 8.976 | 2.384 | 0.002530 | 0.6436 |
-#> |.....................| 0.08377 | 0.6844 | 0.6800 | 1.564 |
-#> |.....................| 1.328 | 1.302 |...........|...........|
-#> | 110| 447.22094 | 1.006 | -1.898 | -0.9879 | -0.9438 |
-#> |.....................| -0.9420 | 1.243 | -2.723 | -1.759 |
-#> |.....................| 2.683 | -0.9737 | -1.096 | -0.5790 |
-#> |.....................| -0.6284 | -0.6557 |...........|...........|
-#> | U| 447.22094 | 93.66 | -6.201 | -1.016 | -0.1560 |
-#> |.....................| 2.195 | 2.384 | 0.002530 | 0.6435 |
-#> |.....................| 0.08377 | 0.6844 | 0.6801 | 1.564 |
-#> |.....................| 1.328 | 1.302 |...........|...........|
-#> | X| 447.22094 | 93.66 | 0.002027 | 0.2657 | 0.8556 |
-#> |.....................| 8.976 | 2.384 | 0.002530 | 0.6435 |
-#> |.....................| 0.08377 | 0.6844 | 0.6801 | 1.564 |
-#> |.....................| 1.328 | 1.302 |...........|...........|
-#> | F| Forward Diff. | 0.7136 | 0.03206 | -1.028 | 0.2620 |
-#> |.....................| -0.3312 | 0.3050 | -0.05505 | -0.8960 |
-#> |.....................| -0.4549 | 0.03409 | 2.494 | -0.1555 |
-#> |.....................| 0.2265 | 0.1085 |...........|...........|
-#> | 111| 447.21344 | 1.005 | -1.898 | -0.9873 | -0.9440 |
-#> |.....................| -0.9418 | 1.242 | -2.723 | -1.758 |
-#> |.....................| 2.683 | -0.9737 | -1.098 | -0.5789 |
-#> |.....................| -0.6286 | -0.6557 |...........|...........|
-#> | U| 447.21344 | 93.62 | -6.201 | -1.016 | -0.1561 |
-#> |.....................| 2.195 | 2.384 | 0.002531 | 0.6439 |
-#> |.....................| 0.08377 | 0.6844 | 0.6789 | 1.564 |
-#> |.....................| 1.327 | 1.302 |...........|...........|
-#> | X| 447.21344 | 93.62 | 0.002027 | 0.2658 | 0.8555 |
-#> |.....................| 8.978 | 2.384 | 0.002531 | 0.6439 |
-#> |.....................| 0.08377 | 0.6844 | 0.6789 | 1.564 |
-#> |.....................| 1.327 | 1.302 |...........|...........|
-#> | F| Forward Diff. | -4.689 | 0.03686 | -1.013 | 0.2539 |
-#> |.....................| -0.3408 | 0.6592 | 0.03740 | -0.5502 |
-#> |.....................| -0.2201 | 0.3219 | 2.382 | -0.1778 |
-#> |.....................| 0.2028 | 0.08770 |...........|...........|
-#> | 112| 447.19216 | 1.006 | -1.899 | -0.9854 | -0.9463 |
-#> |.....................| -0.9420 | 1.239 | -2.724 | -1.756 |
-#> |.....................| 2.680 | -0.9744 | -1.101 | -0.5784 |
-#> |.....................| -0.6293 | -0.6560 |...........|...........|
-#> | U| 447.19216 | 93.64 | -6.203 | -1.014 | -0.1585 |
-#> |.....................| 2.195 | 2.382 | 0.002523 | 0.6453 |
-#> |.....................| 0.08373 | 0.6839 | 0.6759 | 1.564 |
-#> |.....................| 1.327 | 1.302 |...........|...........|
-#> | X| 447.19216 | 93.64 | 0.002024 | 0.2662 | 0.8535 |
-#> |.....................| 8.976 | 2.382 | 0.002523 | 0.6453 |
-#> |.....................| 0.08373 | 0.6839 | 0.6759 | 1.564 |
-#> |.....................| 1.327 | 1.302 |...........|...........|
-#> | 113| 447.14896 | 1.005 | -1.904 | -0.9796 | -0.9535 |
-#> |.....................| -0.9426 | 1.230 | -2.725 | -1.748 |
-#> |.....................| 2.670 | -0.9764 | -1.111 | -0.5767 |
-#> |.....................| -0.6315 | -0.6570 |...........|...........|
-#> | U| 447.14896 | 93.56 | -6.208 | -1.009 | -0.1657 |
-#> |.....................| 2.194 | 2.376 | 0.002500 | 0.6498 |
-#> |.....................| 0.08358 | 0.6823 | 0.6675 | 1.566 |
-#> |.....................| 1.324 | 1.301 |...........|...........|
-#> | X| 447.14896 | 93.56 | 0.002014 | 0.2673 | 0.8473 |
-#> |.....................| 8.971 | 2.376 | 0.002500 | 0.6498 |
-#> |.....................| 0.08358 | 0.6823 | 0.6675 | 1.566 |
-#> |.....................| 1.324 | 1.301 |...........|...........|
-#> | 114| 447.12523 | 1.003 | -1.923 | -0.9566 | -0.9821 |
-#> |.....................| -0.9448 | 1.194 | -2.731 | -1.717 |
-#> |.....................| 2.632 | -0.9846 | -1.149 | -0.5701 |
-#> |.....................| -0.6401 | -0.6607 |...........|...........|
-#> | U| 447.12523 | 93.36 | -6.227 | -0.9868 | -0.1943 |
-#> |.....................| 2.192 | 2.355 | 0.002410 | 0.6677 |
-#> |.....................| 0.08300 | 0.6762 | 0.6336 | 1.574 |
-#> |.....................| 1.315 | 1.297 |...........|...........|
-#> | X| 447.12523 | 93.36 | 0.001976 | 0.2715 | 0.8234 |
-#> |.....................| 8.951 | 2.355 | 0.002410 | 0.6677 |
-#> |.....................| 0.08300 | 0.6762 | 0.6336 | 1.574 |
-#> |.....................| 1.315 | 1.297 |...........|...........|
-#> | F| Forward Diff. | -42.78 | 0.1470 | 0.5793 | -0.8455 |
-#> |.....................| -0.3546 | -0.4331 | -0.1071 | -0.02049 |
-#> |.....................| -0.3358 | -0.3904 | -2.177 | 0.2043 |
-#> |.....................| -0.1377 | -0.3207 |...........|...........|
-#> | 115| 447.09924 | 1.007 | -1.940 | -0.9416 | -1.018 |
-#> |.....................| -0.9550 | 1.181 | -2.719 | -1.734 |
-#> |.....................| 2.734 | -0.9861 | -1.153 | -0.5706 |
-#> |.....................| -0.6433 | -0.6564 |...........|...........|
-#> | U| 447.09924 | 93.80 | -6.243 | -0.9727 | -0.2297 |
-#> |.....................| 2.182 | 2.348 | 0.002591 | 0.6578 |
-#> |.....................| 0.08453 | 0.6750 | 0.6303 | 1.574 |
-#> |.....................| 1.312 | 1.301 |...........|...........|
-#> | X| 447.09924 | 93.80 | 0.001943 | 0.2743 | 0.7947 |
-#> |.....................| 8.860 | 2.348 | 0.002591 | 0.6578 |
-#> |.....................| 0.08453 | 0.6750 | 0.6303 | 1.574 |
-#> |.....................| 1.312 | 1.301 |...........|...........|
-#> | F| Forward Diff. | 15.04 | 0.1387 | 1.646 | -1.777 |
-#> |.....................| -0.3749 | -0.5049 | -0.07528 | 0.1505 |
-#> |.....................| -0.2071 | -0.6675 | -2.129 | 0.2735 |
-#> |.....................| -0.05533 | -0.2849 |...........|...........|
-#> | 116| 447.06926 | 1.008 | -1.968 | -0.9759 | -0.9363 |
-#> |.....................| -0.9300 | 1.192 | -2.714 | -1.733 |
-#> |.....................| 2.676 | -0.9757 | -1.142 | -0.5672 |
-#> |.....................| -0.6383 | -0.6598 |...........|...........|
-#> | U| 447.06926 | 93.90 | -6.272 | -1.005 | -0.1484 |
-#> |.....................| 2.207 | 2.354 | 0.002664 | 0.6586 |
-#> |.....................| 0.08367 | 0.6829 | 0.6398 | 1.578 |
-#> |.....................| 1.317 | 1.298 |...........|...........|
-#> | X| 447.06926 | 93.90 | 0.001889 | 0.2679 | 0.8621 |
-#> |.....................| 9.084 | 2.354 | 0.002664 | 0.6586 |
-#> |.....................| 0.08367 | 0.6829 | 0.6398 | 1.578 |
-#> |.....................| 1.317 | 1.298 |...........|...........|
-#> | F| Forward Diff. | 31.57 | 0.06960 | -0.1881 | 0.5445 |
-#> |.....................| 0.2088 | -0.3879 | -0.06801 | -0.3419 |
-#> |.....................| -0.4021 | 0.02711 | -1.273 | 0.2199 |
-#> |.....................| -0.1004 | -0.4182 |...........|...........|
-#> | 117| 447.12806 | 1.006 | -2.047 | -0.9734 | -0.9587 |
-#> |.....................| -0.9336 | 1.189 | -2.704 | -1.764 |
-#> |.....................| 2.737 | -0.9879 | -1.112 | -0.5826 |
-#> |.....................| -0.6349 | -0.6438 |...........|...........|
-#> | U| 447.12806 | 93.67 | -6.350 | -1.003 | -0.1708 |
-#> |.....................| 2.203 | 2.352 | 0.002825 | 0.6405 |
-#> |.....................| 0.08458 | 0.6737 | 0.6664 | 1.559 |
-#> |.....................| 1.321 | 1.315 |...........|...........|
-#> | X| 447.12806 | 93.67 | 0.001747 | 0.2684 | 0.8430 |
-#> |.....................| 9.052 | 2.352 | 0.002825 | 0.6405 |
-#> |.....................| 0.08458 | 0.6737 | 0.6664 | 1.559 |
-#> |.....................| 1.321 | 1.315 |...........|...........|
-#> | 118| 447.05003 | 1.006 | -1.997 | -0.9750 | -0.9445 |
-#> |.....................| -0.9313 | 1.191 | -2.710 | -1.744 |
-#> |.....................| 2.698 | -0.9801 | -1.131 | -0.5728 |
-#> |.....................| -0.6370 | -0.6539 |...........|...........|
-#> | U| 447.05003 | 93.71 | -6.300 | -1.004 | -0.1566 |
-#> |.....................| 2.205 | 2.354 | 0.002723 | 0.6520 |
-#> |.....................| 0.08400 | 0.6796 | 0.6495 | 1.571 |
-#> |.....................| 1.318 | 1.304 |...........|...........|
-#> | X| 447.05003 | 93.71 | 0.001836 | 0.2681 | 0.8551 |
-#> |.....................| 9.073 | 2.354 | 0.002723 | 0.6520 |
-#> |.....................| 0.08400 | 0.6796 | 0.6495 | 1.571 |
-#> |.....................| 1.318 | 1.304 |...........|...........|
-#> | F| Forward Diff. | 4.860 | -0.01375 | -0.2473 | 0.2780 |
-#> |.....................| 0.08862 | -0.4372 | -0.08802 | -0.3404 |
-#> |.....................| -0.3654 | -0.2345 | -0.3468 | 0.08396 |
-#> |.....................| -0.01035 | -0.06837 |...........|...........|
-#> | 119| 447.04716 | 1.006 | -1.989 | -0.9725 | -0.9518 |
-#> |.....................| -0.9334 | 1.193 | -2.718 | -1.756 |
-#> |.....................| 2.735 | -0.9825 | -1.129 | -0.5738 |
-#> |.....................| -0.6372 | -0.6523 |...........|...........|
-#> | U| 447.04716 | 93.69 | -6.292 | -1.002 | -0.1639 |
-#> |.....................| 2.203 | 2.355 | 0.002610 | 0.6452 |
-#> |.....................| 0.08456 | 0.6777 | 0.6509 | 1.570 |
-#> |.....................| 1.318 | 1.306 |...........|...........|
-#> | X| 447.04716 | 93.69 | 0.001850 | 0.2686 | 0.8488 |
-#> |.....................| 9.053 | 2.355 | 0.002610 | 0.6452 |
-#> |.....................| 0.08456 | 0.6777 | 0.6509 | 1.570 |
-#> |.....................| 1.318 | 1.306 |...........|...........|
-#> | F| Forward Diff. | 2.456 | -0.007589 | -0.1181 | 0.06051 |
-#> |.....................| 0.03158 | -0.4028 | -0.08358 | -0.4018 |
-#> |.....................| -0.3358 | -0.3459 | -0.2609 | 0.03632 |
-#> |.....................| -0.03277 | 0.02331 |...........|...........|
-#> | 120| 447.04716 | 1.006 | -1.989 | -0.9725 | -0.9518 |
-#> |.....................| -0.9334 | 1.193 | -2.718 | -1.756 |
-#> |.....................| 2.735 | -0.9825 | -1.129 | -0.5738 |
-#> |.....................| -0.6372 | -0.6523 |...........|...........|
-#> | U| 447.04716 | 93.69 | -6.292 | -1.002 | -0.1639 |
-#> |.....................| 2.203 | 2.355 | 0.002610 | 0.6452 |
-#> |.....................| 0.08456 | 0.6777 | 0.6509 | 1.570 |
-#> |.....................| 1.318 | 1.306 |...........|...........|
-#> | X| 447.04716 | 93.69 | 0.001850 | 0.2686 | 0.8488 |
-#> |.....................| 9.053 | 2.355 | 0.002610 | 0.6452 |
-#> |.....................| 0.08456 | 0.6777 | 0.6509 | 1.570 |
-#> |.....................| 1.318 | 1.306 |...........|...........|
-#> calculating covariance matrix
-#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
+#> cmt(A1);
+#> rx_expr_6~ETA[1]+THETA[1];
+#> parent(0)=rx_expr_6;
+#> rx_expr_7~ETA[4]+THETA[4];
+#> rx_expr_8~ETA[5]+THETA[5];
+#> rx_expr_12~exp(-(rx_expr_8));
+#> rx_expr_14~t*rx_expr_12;
+#> rx_expr_15~1+rx_expr_14;
+#> rx_expr_17~rx_expr_7-(rx_expr_8);
+#> rx_expr_19~exp(rx_expr_17);
+#> d/dt(parent)=-rx_expr_19*parent/(rx_expr_15);
+#> rx_expr_9~ETA[2]+THETA[2];
+#> rx_expr_11~exp(rx_expr_9);
+#> d/dt(A1)=-rx_expr_11*A1+rx_expr_19*parent*f_parent_to_A1/(rx_expr_15);
+#> rx_expr_0~CMT==2;
+#> rx_expr_1~CMT==1;
+#> rx_expr_2~1-(rx_expr_0);
+#> rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);
+#> rx_expr_3~(rx_expr_0);
+#> rx_expr_5~(rx_expr_2);
+#> rx_expr_13~rx_expr_5*(rx_expr_1);
+#> rx_lambda_~rx_expr_13+rx_expr_3;
+#> rx_hi_~rx_expr_13+rx_expr_3;
+#> rx_low_~0;
+#> rx_expr_4~A1*(rx_expr_0);
+#> rx_expr_10~parent*(rx_expr_2);
+#> rx_expr_16~rx_expr_10*(rx_expr_1);
+#> rx_pred_=(rx_expr_4+rx_expr_16)*(rx_expr_0)+(rx_expr_4+rx_expr_16)*(rx_expr_2)*(rx_expr_1);
+#> rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_16)*(rx_expr_0)+(rx_expr_4+rx_expr_16)*(rx_expr_2)*(rx_expr_1)),2)*Rx_pow_di(THETA[9],2)+Rx_pow_di(THETA[8],2))*(rx_expr_0)+(Rx_pow_di(THETA[7],2)*Rx_pow_di(((rx_expr_4+rx_expr_16)*(rx_expr_1)),2)+Rx_pow_di(THETA[6],2))*(rx_expr_2)*(rx_expr_1);
+#> parent_0=THETA[1];
+#> log_k_A1=THETA[2];
+#> f_parent_qlogis=THETA[3];
+#> log_alpha=THETA[4];
+#> log_beta=THETA[5];
+#> sigma_low_parent=THETA[6];
+#> rsd_high_parent=THETA[7];
+#> sigma_low_A1=THETA[8];
+#> rsd_high_A1=THETA[9];
+#> eta.parent_0=ETA[1];
+#> eta.log_k_A1=ETA[2];
+#> eta.f_parent_qlogis=ETA[3];
+#> eta.log_alpha=ETA[4];
+#> eta.log_beta=ETA[5];
+#> parent_0_model=rx_expr_6;
+#> k_A1=rx_expr_11;
+#> alpha=exp(rx_expr_7);
+#> beta=exp(rx_expr_8);
+#> f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
+#> tad=tad();
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 8.196 0.388 8.584f_nlmixr_dfop_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "saem",
error_model = "obs_tc")
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> 1: 9.1294e+01 -5.0486e+00 -1.7441e+00 -3.5640e+00 -2.1387e+00 4.8639e-01 5.5948e+00 1.4680e+00 1.1057e+00 2.3810e+00 4.8150e-01 4.3452e-01 1.0359e+01 2.3790e-05 7.8082e+00 5.1813e-01
-#> 2: 9.1224e+01 -5.2308e+00 -1.9743e+00 -4.0115e+00 -1.8311e+00 9.8058e-02 5.3151e+00 1.3946e+00 1.0504e+00 2.8908e+00 4.5742e-01 5.2252e-01 5.9132e+00 5.7000e-04 6.5362e+00 1.8571e-07
-#> 3: 9.1371e+01 -5.5075e+00 -2.1136e+00 -4.0542e+00 -1.4871e+00 -4.1222e-02 5.0493e+00 1.3249e+00 9.9785e-01 3.4546e+00 4.3455e-01 6.3380e-01 4.0626e+00 1.0302e-05 4.6845e+00 5.0378e-04
-#> 4: 91.3391 -5.7912 -2.1450 -3.9623 -1.3302 -0.1356 4.7969 1.2586 0.9480 3.2819 0.4128 0.6021 3.3624 0.0249 3.6770 0.0248
-#> 5: 91.5018 -6.0214 -2.1492 -3.9323 -1.2118 -0.0647 4.5570 1.1957 0.9006 3.1178 0.3922 0.5720 2.9393 0.0349 3.1610 0.0371
-#> 6: 91.4496 -5.8734 -2.0974 -3.9977 -1.0936 -0.0608 4.3292 1.3347 0.8695 3.1231 0.3726 0.5434 2.5921 0.0366 2.7534 0.0396
-#> 7: 91.6540 -5.8545 -2.1019 -3.9268 -0.9717 -0.1622 4.1127 1.8221 0.8771 2.9670 0.3539 0.5162 2.3468 0.0466 2.4323 0.0474
-#> 8: 91.7226 -5.8139 -2.0764 -4.0030 -0.9804 -0.1283 3.9071 2.3972 0.9978 2.9945 0.3362 0.4904 2.0001 0.0405 2.0620 0.0557
-#> 9: 91.9975 -5.6339 -2.0812 -3.9379 -0.9156 -0.0654 4.4265 2.2773 0.9479 3.0945 0.3194 0.4659 1.8817 0.0397 1.4473 0.0845
-#> 10: 91.9477 -5.6101 -2.0459 -3.8821 -0.9368 -0.0428 4.9868 2.2787 0.9297 3.2162 0.3035 0.4426 1.6910 0.0397 1.3759 0.0892
-#> 11: 92.1798 -5.5425 -2.0676 -3.9349 -0.9248 -0.0339 5.0312 2.1648 0.8832 3.0554 0.2883 0.4205 1.6613 0.0375 1.3387 0.0823
-#> 12: 92.1456 -5.6294 -2.1011 -3.8899 -0.9195 -0.0410 4.7796 2.0565 0.9077 3.1066 0.3013 0.3995 1.6018 0.0393 1.5496 0.0691
-#> 13: 91.6764 -5.5607 -2.0911 -3.8832 -0.9268 -0.0367 4.5407 1.9537 0.9246 3.0425 0.2862 0.3795 1.6900 0.0350 1.4050 0.0712
-#> 14: 91.4832 -5.5007 -2.1133 -3.8869 -0.9208 -0.0202 4.3136 1.8560 0.8795 3.0389 0.2719 0.3605 1.5526 0.0389 1.7056 0.0502
-#> 15: 91.7854 -5.4454 -2.1124 -3.8750 -0.8842 -0.0608 4.0979 1.7632 0.9004 3.0463 0.2583 0.3425 1.6201 0.0384 1.2463 0.0747
-#> 16: 91.7608 -5.4097 -2.1449 -3.8750 -0.8797 -0.0532 3.8930 1.6751 0.9666 3.0463 0.2454 0.3254 1.6086 0.0384 1.0840 0.0850
-#> 17: 91.6692 -5.5401 -2.1688 -3.8762 -0.9022 -0.0101 3.6984 1.8405 1.0323 2.9672 0.2331 0.3091 1.4625 0.0371 1.1135 0.0841
-#> 18: 91.3169 -5.5720 -2.1777 -3.8851 -0.9396 0.0040 3.5135 1.8186 1.0419 3.0783 0.2215 0.2936 1.4778 0.0396 1.3403 0.0732
-#> 19: 91.4384 -5.6696 -2.1469 -3.8892 -0.9318 -0.0103 3.3378 2.2700 1.0489 3.0592 0.2128 0.2790 1.3854 0.0379 1.1760 0.0858
-#> 20: 91.3273 -5.7800 -2.1388 -3.9004 -0.9536 -0.0159 3.1709 2.7506 1.0297 3.0477 0.2021 0.2650 1.4542 0.0419 1.1576 0.0856
-#> 21: 91.7477 -5.7952 -2.1436 -3.9164 -0.9263 -0.0184 3.0124 3.0737 1.0414 3.0435 0.1948 0.2518 1.5026 0.0398 1.1833 0.0791
-#> 22: 91.6492 -6.0575 -2.1196 -3.9168 -0.9471 -0.0153 2.8617 4.1317 1.0322 3.0494 0.1850 0.2392 1.4351 0.0409 1.0739 0.0873
-#> 23: 91.8536 -6.2824 -2.1596 -3.9174 -0.9405 0.0031 2.7187 5.3935 1.0143 3.1085 0.1758 0.2272 1.4534 0.0404 1.0651 0.0805
-#> 24: 92.1616 -6.2246 -2.0912 -3.9224 -0.9338 0.0118 2.5827 5.7533 0.9636 3.0780 0.1741 0.2158 1.5863 0.0336 1.0915 0.0804
-#> 25: 92.2576 -6.2746 -2.1058 -3.9587 -0.9355 0.0189 2.4536 5.4656 0.9706 3.3477 0.1780 0.2051 1.4555 0.0365 1.0838 0.0782
-#> 26: 92.3314 -6.1739 -2.1211 -3.9676 -0.9474 0.0525 2.4934 5.5785 0.9981 3.3705 0.1835 0.1948 1.4433 0.0379 1.1300 0.0783
-#> 27: 92.8206 -6.1111 -2.0900 -3.9787 -0.9472 0.0058 2.5201 5.4329 1.0145 3.5013 0.1856 0.1851 1.4484 0.0391 1.1809 0.0723
-#> 28: 92.8685 -6.0934 -2.0963 -3.9872 -0.9693 0.0053 2.9812 5.1612 0.9925 3.5416 0.1816 0.1758 1.4713 0.0389 1.1766 0.0704
-#> 29: 92.6774 -5.8779 -2.0833 -3.9954 -0.9546 -0.0099 4.3751 4.9032 1.0762 3.5483 0.1755 0.1670 1.4844 0.0378 1.3435 0.0599
-#> 30: 92.6704 -5.9657 -2.0746 -3.9920 -0.9342 -0.0329 4.1563 4.6580 1.0571 3.5382 0.1667 0.1587 1.4510 0.0427 1.2218 0.0678
-#> 31: 92.4139 -5.7428 -2.0922 -3.9765 -0.9178 -0.0302 3.9485 4.4251 1.0210 3.5601 0.1596 0.1507 1.5981 0.0349 1.3086 0.0619
-#> 32: 92.8243 -5.8072 -2.1154 -3.9699 -0.9130 0.0065 3.7511 4.2039 1.0622 3.4768 0.1667 0.1432 1.5321 0.0333 1.3779 0.0611
-#> 33: 92.8737 -5.6655 -2.1132 -3.9763 -0.9155 0.0183 3.5635 3.9937 1.1068 3.5075 0.1583 0.1360 1.5351 0.0341 1.2700 0.0673
-#> 34: 93.0233 -5.7429 -2.1022 -3.9648 -0.9057 0.0202 3.3853 3.7940 1.0830 3.4532 0.1504 0.1292 1.5128 0.0368 1.1942 0.0702
-#> 35: 93.1333 -5.7707 -2.1003 -4.0004 -0.9031 0.0201 3.2161 3.6043 1.1161 3.4701 0.1429 0.1228 1.6003 0.0307 1.1387 0.0734
-#> 36: 93.1398 -5.7700 -2.1168 -3.9678 -0.9038 0.0107 3.0553 3.4241 1.1209 3.4126 0.1358 0.1166 1.4919 0.0331 1.0642 0.0755
-#> 37: 92.8847 -5.6651 -2.1538 -3.9634 -0.9176 0.0364 2.9995 3.2529 1.1108 3.3776 0.1402 0.1173 1.5093 0.0396 1.1550 0.0693
-#> 38: 93.2326 -5.5244 -2.1571 -3.9909 -0.9231 0.0179 2.8832 3.0902 1.0763 3.5170 0.1332 0.1205 1.4962 0.0472 1.1657 0.0679
-#> 39: 92.9946 -5.4516 -2.1475 -3.9365 -0.9067 0.0309 3.0986 2.9357 1.0562 3.4194 0.1265 0.1251 1.4786 0.0464 1.1183 0.0721
-#> 40: 93.2028 -5.6148 -2.1367 -3.9235 -0.9048 0.0099 2.9436 2.7889 1.1256 3.3460 0.1241 0.1288 1.4515 0.0459 1.0449 0.0753
-#> 41: 93.1297 -5.4665 -2.0545 -4.0108 -0.9136 -0.0216 2.7964 2.6495 1.1471 3.4754 0.1281 0.1223 1.7359 0.0321 1.0876 0.0780
-#> 42: 93.0469 -5.3767 -2.0820 -4.0213 -0.9361 -0.0264 2.6566 2.5170 1.0897 3.5120 0.1411 0.1162 1.7070 0.0276 1.2377 0.0691
-#> 43: 93.3305 -5.4943 -2.0910 -4.0226 -0.9414 -0.0201 2.5238 2.3912 1.0896 3.4589 0.1621 0.1126 1.5584 0.0393 1.1485 0.0705
-#> 44: 93.2566 -5.4919 -2.1016 -4.0718 -0.9373 0.0024 2.3976 2.2716 1.0451 3.8959 0.1612 0.1162 1.5769 0.0286 1.2778 0.0693
-#> 45: 93.0284 -5.4885 -2.1012 -4.0740 -0.9202 -0.0197 2.2777 2.1580 1.0268 3.9297 0.1553 0.1104 1.5589 0.0289 1.1388 0.0778
-#> 46: 92.7188 -5.5807 -2.1102 -4.0875 -0.9465 0.0076 2.1638 2.2084 0.9840 4.0322 0.1475 0.1048 1.6729 0.0295 1.2763 0.0735
-#> 47: 92.6718 -5.5108 -2.1268 -4.0638 -0.9220 0.0131 2.0556 2.0980 1.0064 3.8306 0.1475 0.0996 1.6527 0.0271 1.3190 0.0659
-#> 48: 92.6727 -5.5268 -2.1326 -4.0693 -0.8999 0.0259 1.9529 2.2445 1.0387 3.8064 0.1459 0.0946 1.6587 0.0283 1.3555 0.0604
-#> 49: 92.5230 -5.5592 -2.1701 -4.0595 -0.9087 0.0350 1.8552 2.5181 1.0238 3.7514 0.1552 0.0899 1.5473 0.0307 1.2437 0.0662
-#> 50: 92.4920 -5.5778 -2.1309 -4.0711 -0.9317 0.0383 1.7625 2.6771 1.0203 3.7435 0.1587 0.0854 1.5727 0.0330 1.2555 0.0611
-#> 51: 92.4606 -5.5485 -2.1346 -4.0687 -0.9148 0.0638 1.6743 2.8079 1.0402 3.6978 0.1513 0.0811 1.5476 0.0335 1.2744 0.0658
-#> 52: 92.6305 -5.6829 -2.1658 -4.0697 -0.9298 0.0848 1.5906 2.8530 1.0565 3.6998 0.1644 0.0798 1.4751 0.0296 1.1351 0.0747
-#> 53: 92.6412 -5.5519 -2.1984 -4.1605 -0.9472 0.0803 1.8328 2.7103 1.0501 4.4111 0.1626 0.0758 1.5735 0.0343 1.2247 0.0643
-#> 54: 92.7616 -5.5718 -2.1826 -4.2028 -0.9382 0.0939 1.9108 2.5748 1.0708 4.7287 0.1775 0.0720 1.4860 0.0299 1.2190 0.0638
-#> 55: 92.8466 -5.6434 -2.1590 -4.0501 -0.9219 0.0660 2.3709 2.4461 1.0399 4.4922 0.1686 0.0684 1.5899 0.0297 1.2586 0.0598
-#> 56: 92.8839 -5.6503 -2.1758 -4.0467 -0.9265 0.0765 2.2523 2.3238 1.0755 4.2676 0.1698 0.0666 1.5357 0.0319 1.1854 0.0633
-#> 57: 92.8882 -5.3950 -2.1926 -4.0282 -0.9455 0.0600 2.4994 2.2076 1.0411 4.0542 0.1684 0.0633 1.5839 0.0342 1.2789 0.0612
-#> 58: 92.9510 -5.4362 -2.1993 -4.0402 -0.9349 0.0576 2.3744 2.0972 1.0184 3.8515 0.1757 0.0604 1.5796 0.0328 1.3027 0.0570
-#> 59: 92.8806 -5.4605 -2.2176 -4.2201 -0.9360 0.0998 2.2557 1.9923 1.0248 5.1421 0.1904 0.0573 1.6469 0.0325 1.4177 0.0534
-#> 60: 92.8606 -5.4697 -2.2016 -4.1707 -0.9218 0.0747 2.1429 1.8927 1.0489 4.8850 0.1809 0.0545 1.5984 0.0318 1.2879 0.0589
-#> 61: 92.8939 -5.5167 -2.2169 -4.1567 -0.9434 0.0680 2.1067 1.9160 1.0677 4.6408 0.1775 0.0517 1.5223 0.0404 1.2033 0.0623
-#> 62: 93.1569 -5.6121 -2.2073 -4.1427 -0.9431 0.0717 2.5977 2.0627 1.0518 4.5133 0.1758 0.0494 1.4644 0.0364 1.1857 0.0621
-#> 63: 93.2362 -5.5056 -2.1832 -4.0832 -0.9433 0.0754 3.4639 1.9596 1.0905 4.2877 0.1851 0.0536 1.5500 0.0320 1.2533 0.0610
-#> 64: 93.3935 -5.4320 -2.1735 -4.0754 -0.9601 0.0719 5.0337 1.8616 1.0723 4.0733 0.1907 0.0649 1.5436 0.0270 1.4154 0.0546
-#> 65: 93.1102 -5.5419 -2.1870 -4.0496 -0.9481 0.0753 5.0250 1.9760 1.1263 3.8696 0.1902 0.0617 1.4779 0.0262 1.1326 0.0712
-#> 66: 92.9832 -5.7640 -2.1941 -4.0532 -0.9444 0.0635 5.2049 2.6553 1.1258 3.7699 0.1915 0.0586 1.4926 0.0307 1.0960 0.0645
-#> 67: 92.6674 -5.6976 -2.1858 -4.0855 -0.9209 0.0562 4.9447 2.5225 1.1285 4.0204 0.1948 0.0556 1.4667 0.0315 1.1023 0.0650
-#> 68: 92.7718 -5.7724 -2.1760 -4.0242 -0.9354 0.0441 4.6975 2.8536 1.1471 3.8194 0.1922 0.0529 1.4283 0.0329 1.1174 0.0664
-#> 69: 92.8377 -5.7554 -2.1833 -4.0670 -0.9412 0.0834 4.4626 2.7404 1.1565 3.7904 0.1826 0.0502 1.4628 0.0318 1.0793 0.0747
-#> 70: 92.6830 -5.9071 -2.2266 -4.0604 -0.9399 0.0730 4.2394 3.5629 1.1459 3.7282 0.1734 0.0477 1.4892 0.0331 1.1526 0.0683
-#> 71: 92.5729 -5.8185 -2.2009 -4.0623 -0.9401 0.0878 4.0275 3.3847 1.0886 3.7348 0.1648 0.0453 1.4739 0.0373 1.0902 0.0678
-#> 72: 92.1755 -6.0270 -2.2108 -4.1507 -0.9564 0.0665 3.8261 3.9851 1.1200 4.1726 0.1617 0.0431 1.4478 0.0348 1.1400 0.0673
-#> 73: 91.8986 -6.0175 -2.1916 -4.1416 -0.9347 0.0243 3.6348 4.0607 1.1553 4.0576 0.1802 0.0409 1.4330 0.0406 1.0914 0.0712
-#> 74: 91.7729 -5.8767 -2.1898 -4.0934 -0.9122 0.0184 3.4531 3.8577 1.1254 3.8547 0.1827 0.0389 1.3372 0.0524 1.0717 0.0687
-#> 75: 91.3098 -5.9950 -2.1572 -4.1349 -0.9427 0.0190 3.4756 3.8000 1.1626 3.8402 0.1969 0.0369 1.3378 0.0501 1.1602 0.0685
-#> 76: 91.3766 -5.8701 -2.2042 -4.1128 -0.9081 0.0539 3.9350 3.6100 1.2348 3.7994 0.1891 0.0369 1.3400 0.0495 1.0656 0.0738
-#> 77: 91.6057 -5.7437 -2.1988 -4.1241 -0.8890 0.0500 5.0868 3.4295 1.1971 3.8470 0.1950 0.0469 1.4928 0.0397 1.1129 0.0700
-#> 78: 91.7868 -5.7832 -2.1844 -4.1102 -0.9104 0.0698 4.8325 3.2580 1.1670 3.6547 0.1993 0.0502 1.4336 0.0340 0.9512 0.0805
-#> 79: 91.7221 -5.7881 -2.2166 -4.1137 -0.9160 0.0672 4.5909 3.0951 1.1582 3.5765 0.1928 0.0486 1.4632 0.0352 1.0210 0.0728
-#> 80: 91.8608 -5.8064 -2.2006 -4.0971 -0.9209 0.0642 4.3613 3.2163 1.1481 3.4758 0.1832 0.0462 1.4368 0.0356 1.0605 0.0710
-#> 81: 91.6423 -5.8749 -2.2037 -4.0893 -0.9187 0.0503 4.1432 3.5329 1.0907 3.5148 0.2011 0.0451 1.4719 0.0346 1.1684 0.0646
-#> 82: 91.8319 -6.0898 -2.2251 -4.0826 -0.9368 0.0842 4.1509 4.4964 1.0606 3.4836 0.1910 0.0428 1.4468 0.0387 1.1605 0.0637
-#> 83: 91.9794 -6.0417 -2.1947 -4.1042 -0.9114 0.0741 6.5949 4.5668 1.1113 3.6409 0.1815 0.0407 1.4780 0.0346 1.1277 0.0634
-#> 84: 91.8669 -6.1877 -2.1979 -4.1052 -0.9300 0.0807 6.2651 5.1958 1.1750 3.6752 0.1724 0.0386 1.4931 0.0278 1.0401 0.0685
-#> 85: 91.6789 -6.0634 -2.1896 -4.1357 -0.9371 0.0933 5.9519 4.9360 1.1259 3.8493 0.1732 0.0367 1.5058 0.0275 1.1356 0.0670
-#> 86: 91.6989 -6.2114 -2.2056 -4.1542 -0.9646 0.0882 5.6543 5.0411 1.1091 3.9411 0.1988 0.0349 1.4099 0.0338 1.1811 0.0636
-#> 87: 92.3758 -6.3779 -2.2062 -4.1739 -0.9385 0.0916 5.3716 6.2290 1.1213 4.0290 0.1889 0.0331 1.4809 0.0306 1.1443 0.0626
-#> 88: 92.2757 -6.2016 -2.2215 -4.1389 -0.9582 0.0942 5.1030 5.9176 1.0797 4.0768 0.1990 0.0315 1.4282 0.0386 1.2235 0.0629
-#> 89: 92.1970 -6.3356 -2.2081 -4.1412 -0.9555 0.1057 4.8478 5.9597 1.1474 4.0677 0.1890 0.0299 1.3856 0.0377 1.1807 0.0640
-#> 90: 92.0813 -6.4550 -2.2045 -4.1524 -0.9553 0.0885 4.6054 6.9999 1.1542 3.9901 0.1880 0.0284 1.3416 0.0416 1.1379 0.0653
-#> 91: 91.7111 -6.5289 -2.2203 -4.1763 -0.9288 0.0823 5.4933 6.9237 1.1601 4.0435 0.1839 0.0360 1.3387 0.0401 1.1768 0.0591
-#> 92: 92.1217 -6.5567 -2.2232 -4.2082 -0.9411 0.0815 8.0692 6.7286 1.1684 3.9422 0.1763 0.0411 1.3740 0.0463 1.1538 0.0613
-#> 93: 92.7497 -6.3512 -2.2463 -4.1806 -0.9633 0.0724 7.6657 6.3922 1.1870 3.8858 0.1796 0.0391 1.4232 0.0454 1.3749 0.0497
-#> 94: 92.2679 -6.3542 -2.2473 -4.1873 -0.9382 0.0711 7.2824 6.0726 1.1940 3.8847 0.1956 0.0371 1.3812 0.0465 1.2897 0.0521
-#> 95: 92.0257 -6.2448 -2.2624 -4.1681 -0.9624 0.0810 6.9183 5.7690 1.1345 3.8091 0.1858 0.0359 1.3026 0.0509 1.3000 0.0530
-#> 96: 91.5166 -5.9442 -2.2924 -4.2449 -0.9238 0.1058 7.1159 5.4805 1.1231 4.2529 0.1953 0.0343 1.4063 0.0445 1.3479 0.0482
-#> 97: 91.1606 -5.8541 -2.2912 -4.2398 -0.8875 0.1101 9.4515 5.2065 1.1256 4.3194 0.2081 0.0337 1.3436 0.0498 1.3317 0.0496
-#> 98: 91.2787 -6.0967 -2.2703 -4.2641 -0.9260 0.0869 8.9789 4.9462 1.2070 4.2238 0.1977 0.0373 1.3124 0.0495 1.1362 0.0653
-#> 99: 91.6449 -5.9441 -2.2562 -4.2355 -0.9312 0.1237 8.5300 4.6988 1.2343 4.0468 0.1878 0.0369 1.3508 0.0462 1.0542 0.0704
-#> 100: 91.7795 -5.8857 -2.2516 -4.3381 -0.9344 0.1291 8.1035 4.4639 1.2355 4.6941 0.1968 0.0393 1.4327 0.0358 1.1170 0.0668
-#> 101: 92.2537 -5.7930 -2.2345 -4.3477 -0.9272 0.1340 8.3402 4.2407 1.1961 4.7638 0.1933 0.0402 1.4683 0.0375 1.1216 0.0626
-#> 102: 92.3920 -6.0193 -2.2332 -4.3487 -0.9155 0.1565 11.1006 4.2977 1.1700 4.8048 0.2260 0.0444 1.4443 0.0342 1.0888 0.0674
-#> 103: 92.0043 -5.7825 -2.2376 -4.2616 -0.9043 0.1686 10.5455 4.0829 1.1587 4.5646 0.2147 0.0422 1.4198 0.0338 1.1639 0.0625
-#> 104: 92.1575 -5.8497 -2.2470 -4.2456 -0.9128 0.1762 10.0183 3.8787 1.1405 4.3364 0.2040 0.0440 1.3919 0.0379 1.2040 0.0582
-#> 105: 92.2784 -5.7971 -2.2582 -4.2100 -0.9128 0.1731 9.5173 3.6848 1.1351 4.1196 0.1938 0.0418 1.3982 0.0404 1.1069 0.0656
-#> 106: 92.4336 -5.7752 -2.2690 -4.3771 -0.8925 0.1644 9.0415 3.5005 1.1547 5.0970 0.1841 0.0476 1.3670 0.0423 1.1716 0.0625
-#> 107: 92.5128 -5.8328 -2.2549 -4.4193 -0.9403 0.2268 8.5894 3.3255 1.1160 5.2711 0.1749 0.0453 1.4023 0.0347 1.0279 0.0757
-#> 108: 92.8926 -5.7266 -2.2606 -4.5037 -0.9392 0.2394 8.1599 3.1592 1.1293 5.9652 0.1661 0.0447 1.3837 0.0346 0.9545 0.0747
-#> 109: 92.4657 -5.8687 -2.2884 -4.4108 -0.9043 0.2611 7.7519 4.0001 1.0729 5.6669 0.1578 0.0424 1.3441 0.0351 0.9758 0.0708
-#> 110: 92.6620 -5.6900 -2.2825 -4.4337 -0.9003 0.2602 7.3643 3.8001 1.0843 5.3836 0.1499 0.0433 1.4652 0.0302 0.9950 0.0722
-#> 111: 92.8949 -5.6946 -2.2661 -4.5240 -0.9233 0.2372 6.9961 3.6101 1.0845 5.8133 0.1551 0.0411 1.5005 0.0327 0.9284 0.0753
-#> 112: 93.4237 -5.6562 -2.2474 -4.4809 -0.9441 0.2322 6.6463 3.4296 1.1498 5.5227 0.1474 0.0409 1.4612 0.0317 0.9336 0.0762
-#> 113: 93.1883 -5.6891 -2.2846 -4.3984 -0.9416 0.2317 6.3140 3.2581 1.1062 5.2465 0.1596 0.0463 1.3924 0.0380 1.0268 0.0698
-#> 114: 93.4464 -5.7087 -2.2902 -4.4274 -0.9401 0.2638 5.9983 3.0952 1.1170 5.0203 0.1516 0.0495 1.4108 0.0361 1.0355 0.0682
-#> 115: 93.1873 -5.8732 -2.2668 -4.5086 -0.9636 0.2516 5.6984 3.3427 1.1141 5.7549 0.1440 0.0490 1.5010 0.0309 1.0443 0.0679
-#> 116: 92.6878 -5.8520 -2.2903 -4.5349 -0.9663 0.2612 5.4135 3.2444 1.1048 5.8809 0.1471 0.0511 1.3910 0.0360 1.0423 0.0702
-#> 117: 92.7775 -5.7892 -2.2897 -4.4572 -0.9544 0.2380 5.1428 3.0822 1.0731 5.5869 0.1397 0.0703 1.3493 0.0360 0.9831 0.0713
-#> 118: 93.1533 -5.8045 -2.2859 -4.4787 -0.9667 0.2150 4.8857 3.0277 1.0872 5.6786 0.1439 0.0812 1.3838 0.0373 1.0547 0.0696
-#> 119: 92.8370 -5.7208 -2.2738 -4.4627 -0.9462 0.2095 4.6414 2.8764 1.1172 5.6197 0.1643 0.0772 1.3394 0.0348 0.9180 0.0803
-#> 120: 92.5430 -5.7795 -2.3004 -4.4203 -0.9479 0.2313 4.4093 2.8377 1.1312 5.3387 0.1655 0.0803 1.2967 0.0360 1.0699 0.0761
-#> 121: 92.5318 -5.6550 -2.2866 -4.5065 -0.9166 0.2321 4.1888 2.6959 1.0994 6.0180 0.1686 0.0763 1.3882 0.0322 0.9895 0.0733
-#> 122: 92.7380 -5.6688 -2.2968 -4.4523 -0.9279 0.2529 3.9794 2.5611 1.0642 5.7171 0.1601 0.0851 1.3786 0.0316 0.9358 0.0742
-#> 123: 93.0753 -5.7451 -2.2896 -4.5423 -0.9371 0.2724 3.7804 2.9938 1.0758 5.9349 0.1521 0.0808 1.4275 0.0339 0.9652 0.0727
-#> 124: 93.2708 -5.8004 -2.2782 -4.4951 -0.9451 0.2590 3.5914 3.0594 1.0875 5.6382 0.1607 0.0768 1.3628 0.0340 1.0577 0.0693
-#> 125: 93.4025 -5.7710 -2.2990 -4.4498 -0.9661 0.2633 3.4118 2.9276 1.0809 5.3563 0.1527 0.0730 1.3816 0.0406 1.0295 0.0671
-#> 126: 93.4928 -5.7054 -2.3002 -4.4087 -0.9394 0.2965 3.4732 2.7812 1.1275 5.0884 0.1481 0.0693 1.2949 0.0423 0.9084 0.0726
-#> 127: 93.6449 -5.6593 -2.2683 -4.3418 -0.9194 0.2560 4.2986 2.6422 1.1070 4.8340 0.1449 0.0707 1.4258 0.0341 0.8802 0.0777
-#> 128: 93.7430 -5.6359 -2.2686 -4.4174 -0.9500 0.2279 5.2477 2.5101 1.1046 5.5376 0.1512 0.0859 1.4523 0.0327 0.8659 0.0826
-#> 129: 93.7432 -5.6851 -2.2849 -4.2019 -0.9660 0.1995 7.2497 2.8789 1.1315 5.2607 0.1762 0.0972 1.3901 0.0357 1.1264 0.0743
-#> 130: 93.2409 -5.8965 -2.2946 -4.1880 -0.9774 0.1719 7.4467 3.2276 1.1464 4.9977 0.1720 0.0924 1.3517 0.0446 1.0461 0.0705
-#> 131: 92.7780 -6.0551 -2.2647 -4.1894 -0.9579 0.1391 7.0744 3.7584 1.1291 4.7478 0.1714 0.0995 1.2542 0.0438 0.9139 0.0777
-#> 132: 92.7157 -6.1161 -2.2501 -4.1784 -0.9651 0.1146 6.7207 3.9259 1.1674 4.5104 0.1712 0.0957 1.2549 0.0473 0.8964 0.0803
-#> 133: 92.2696 -5.8545 -2.2717 -4.1907 -0.9782 0.0985 6.3846 3.7296 1.1652 4.2849 0.1626 0.1198 1.2208 0.0498 0.9730 0.0822
-#> 134: 92.2067 -5.8603 -2.2743 -4.2095 -0.9754 0.1398 6.0654 3.5431 1.1551 4.0706 0.1695 0.1138 1.3022 0.0432 0.9960 0.0795
-#> 135: 92.3979 -5.9500 -2.3053 -4.1938 -0.9425 0.1134 5.7621 3.3660 1.1771 3.8671 0.1610 0.1081 1.3373 0.0462 1.1323 0.0665
-#> 136: 92.3749 -5.8701 -2.2979 -4.2493 -0.9386 0.1504 5.4740 3.3090 1.1638 3.9609 0.1724 0.1027 1.3578 0.0389 1.1943 0.0650
-#> 137: 92.6942 -5.9020 -2.2755 -4.2318 -0.9464 0.1541 5.2003 3.5521 1.1704 3.8948 0.1685 0.0976 1.4170 0.0399 1.1472 0.0626
-#> 138: 92.7234 -5.8085 -2.2653 -4.2164 -0.9662 0.1808 4.9403 3.3745 1.1977 3.8348 0.1694 0.0927 1.4229 0.0387 1.0934 0.0708
-#> 139: 92.7341 -5.7737 -2.2685 -4.1759 -0.9334 0.1554 4.6933 3.2057 1.1971 3.6962 0.1917 0.0881 1.4324 0.0363 1.1669 0.0652
-#> 140: 92.1593 -5.6287 -2.2576 -4.1977 -0.9232 0.1345 4.6967 3.0455 1.1676 3.8133 0.2060 0.0837 1.5032 0.0349 1.1418 0.0678
-#> 141: 92.3199 -5.8323 -2.2451 -4.1948 -0.9447 0.1295 4.9624 3.3893 1.1408 3.8423 0.1957 0.0795 1.4470 0.0325 1.0892 0.0739
-#> 142: 92.7246 -6.1252 -2.2304 -4.1984 -0.9160 0.0816 4.7143 4.6501 1.1420 3.8554 0.1901 0.0755 1.4847 0.0386 1.2815 0.0576
-#> 143: 92.4130 -6.0231 -2.2261 -4.2205 -0.9495 0.1020 4.4786 4.4176 1.1454 4.0301 0.1929 0.0717 1.4103 0.0410 1.0418 0.0739
-#> 144: 92.4006 -5.9898 -2.2232 -4.2429 -0.9553 0.1131 4.2547 4.1967 1.1579 4.2583 0.1904 0.0681 1.4272 0.0339 1.0591 0.0737
-#> 145: 92.5011 -6.2340 -2.2232 -4.1872 -0.9560 0.1322 6.1775 4.8941 1.1594 4.0453 0.1811 0.0647 1.4059 0.0298 1.0219 0.0752
-#> 146: 92.7460 -6.2989 -2.2417 -4.2501 -0.9650 0.1527 5.8686 5.6454 1.1154 4.0076 0.1720 0.0758 1.4027 0.0348 1.1220 0.0689
-#> 147: 93.0630 -6.0839 -2.2217 -4.1822 -0.9661 0.1634 5.5752 5.3631 1.0596 3.8072 0.1743 0.0733 1.3682 0.0393 1.0992 0.0700
-#> 148: 92.7639 -5.8682 -2.2550 -4.1926 -0.9440 0.1599 5.8048 5.0950 1.0858 3.6230 0.1749 0.0696 1.3364 0.0436 1.0967 0.0721
-#> 149: 92.6183 -6.1270 -2.2379 -4.1103 -0.9643 0.1202 5.8027 4.8402 1.1089 3.4860 0.1661 0.0661 1.3061 0.0457 1.0014 0.0724
-#> 150: 92.7472 -6.1515 -2.2199 -4.1027 -0.9611 0.1014 5.6767 4.5982 1.1061 3.6113 0.1578 0.0654 1.3543 0.0405 1.0847 0.0707
-#> 151: 92.9566 -5.8911 -2.2174 -4.0722 -0.9516 0.0992 5.9638 4.3683 1.1057 3.5122 0.1767 0.0621 1.3619 0.0396 1.0158 0.0734
-#> 152: 93.0035 -5.8395 -2.2559 -4.0650 -0.9389 0.0928 4.4799 3.2331 1.0387 3.4826 0.1713 0.0604 1.3425 0.0428 1.1101 0.0635
-#> 153: 92.7242 -5.7832 -2.2538 -4.1288 -0.9159 0.1047 4.6102 3.0838 1.0527 3.8052 0.1718 0.0597 1.3905 0.0398 1.1371 0.0635
-#> 154: 92.2125 -5.9077 -2.2400 -4.0922 -0.9106 0.1033 4.4732 3.8350 1.0261 3.6148 0.1955 0.0643 1.3176 0.0419 1.1130 0.0635
-#> 155: 92.6226 -5.6271 -2.2239 -4.0122 -0.8948 0.0647 4.5553 2.5675 1.0412 3.0513 0.1845 0.0866 1.3266 0.0459 1.0244 0.0680
-#> 156: 92.6532 -5.5576 -2.2251 -4.0066 -0.9006 0.0922 3.8517 2.3273 1.0455 3.0971 0.1928 0.0863 1.4000 0.0394 0.9203 0.0754
-#> 157: 92.5192 -5.4834 -2.2356 -4.0069 -0.9321 0.0904 3.0410 1.8841 0.9867 3.1990 0.1905 0.0816 1.3927 0.0407 1.1517 0.0614
-#> 158: 92.5628 -5.5318 -2.2044 -4.0269 -0.9319 0.0742 3.5124 1.9585 1.0692 3.1835 0.1958 0.0934 1.4038 0.0324 0.9680 0.0758
-#> 159: 92.9690 -5.6416 -2.2134 -4.0156 -0.9556 0.0560 4.3830 2.2442 1.0543 3.2358 0.1873 0.0951 1.3624 0.0375 1.1207 0.0696
-#> 160: 92.9861 -5.5872 -2.2207 -3.9908 -0.9190 0.0417 4.1202 2.1685 1.0711 3.1521 0.1766 0.0913 1.3760 0.0371 1.0970 0.0713
-#> 161: 93.3139 -5.5349 -2.1972 -3.9860 -0.9365 0.0011 4.2865 1.8741 1.0759 3.0304 0.2007 0.0750 1.3650 0.0411 1.1220 0.0662
-#> 162: 93.3324 -5.6135 -2.1579 -4.0151 -0.9507 -0.0091 4.6402 2.0208 1.0535 3.0349 0.1935 0.0764 1.4069 0.0383 1.2550 0.0598
-#> 163: 93.0110 -5.5253 -2.1419 -4.0151 -0.9197 -0.0072 5.8946 1.9087 1.0965 3.0349 0.1833 0.0814 1.5095 0.0290 1.1314 0.0665
-#> 164: 93.0848 -5.4980 -2.1670 -4.0213 -0.9345 0.0150 4.9128 1.8293 1.0379 3.0653 0.1728 0.0835 1.4913 0.0343 1.0589 0.0687
-#> 165: 92.9407 -5.3978 -2.1707 -4.0090 -0.9480 0.0126 3.4620 1.3870 1.0594 3.0115 0.1702 0.0982 1.5550 0.0296 1.0978 0.0694
-#> 166: 93.1504 -5.4880 -2.1890 -3.9958 -0.9511 0.0316 2.7859 1.8457 1.0294 3.0739 0.1738 0.1031 1.5109 0.0308 1.1800 0.0651
-#> 167: 92.8442 -5.4673 -2.1984 -4.0259 -0.9262 0.0243 2.0497 1.6348 1.0469 3.1258 0.1650 0.0981 1.6185 0.0291 1.1733 0.0655
-#> 168: 92.9484 -5.6255 -2.2012 -4.0136 -0.9309 0.0199 1.8121 2.0784 1.0415 3.1795 0.1816 0.0929 1.5727 0.0268 1.4222 0.0543
-#> 169: 93.0266 -5.6135 -2.1677 -4.0179 -0.9279 0.0375 1.7553 2.1663 1.0298 3.1675 0.2013 0.0926 1.5356 0.0274 1.2960 0.0596
-#> 170: 92.9844 -5.6286 -2.1839 -4.0509 -0.9471 0.0414 1.9485 2.4078 1.0656 3.2787 0.2112 0.0950 1.5210 0.0265 1.3069 0.0616
-#> 171: 92.6832 -5.6238 -2.2059 -4.0710 -0.9175 0.0383 1.5941 2.2918 1.1095 3.3435 0.1921 0.0895 1.4678 0.0345 1.2189 0.0618
-#> 172: 92.5302 -5.5653 -2.2086 -4.0429 -0.9412 0.0773 1.5302 2.2565 1.1293 3.2157 0.1924 0.0680 1.4438 0.0367 1.2084 0.0661
-#> 173: 92.3877 -5.5357 -2.2141 -4.0246 -0.9268 0.0866 1.2153 2.0588 1.0844 3.2941 0.2060 0.0726 1.4686 0.0359 1.3683 0.0596
-#> 174: 92.4410 -5.4921 -2.1955 -4.0398 -0.9269 0.0645 1.6903 2.0042 1.1236 3.3646 0.1847 0.0804 1.5533 0.0310 1.2320 0.0675
-#> 175: 92.4192 -5.4726 -2.1945 -4.0271 -0.9222 0.0728 1.1344 1.9292 1.1085 3.3173 0.1875 0.0912 1.5350 0.0302 1.2461 0.0679
-#> 176: 92.3581 -5.5256 -2.2055 -3.9958 -0.9211 0.0720 1.1140 1.8097 1.0898 3.1459 0.2018 0.1104 1.4391 0.0323 1.2240 0.0677
-#> 177: 92.2144 -5.6699 -2.2357 -4.0017 -0.9402 0.0785 1.1932 2.6190 1.0355 3.1852 0.2266 0.1125 1.4705 0.0327 1.2866 0.0621
-#> 178: 92.3608 -5.7040 -2.2245 -4.0242 -0.9642 0.0596 0.7932 2.6061 0.9408 3.1080 0.1958 0.1180 1.5158 0.0365 1.3571 0.0600
-#> 179: 92.4358 -5.6877 -2.2243 -4.0166 -0.9486 0.0595 0.7591 2.3791 0.9241 3.0638 0.1900 0.1257 1.4317 0.0363 1.2359 0.0686
-#> 180: 92.5146 -5.7856 -2.2343 -4.0098 -0.9522 0.0522 0.4573 2.6882 0.9636 3.0406 0.1835 0.1270 1.4631 0.0361 1.2192 0.0701
-#> 181: 92.5469 -5.7684 -2.2220 -4.0549 -0.9488 0.0901 0.4189 2.4963 0.9873 3.1470 0.1744 0.1268 1.5165 0.0336 1.1359 0.0760
-#> 182: 92.5829 -5.7658 -2.2385 -4.0362 -0.9723 0.0572 0.3720 2.5387 0.9203 3.0397 0.1769 0.1636 1.4781 0.0375 1.2697 0.0677
-#> 183: 92.5737 -5.9187 -2.2130 -4.0638 -0.9876 0.0797 0.3084 3.3137 0.9467 3.0532 0.1737 0.1599 1.4288 0.0309 1.3024 0.0617
-#> 184: 92.4989 -5.9837 -2.1994 -4.0476 -0.9737 0.0594 0.2533 3.6658 0.9248 3.1230 0.1776 0.1552 1.3829 0.0316 1.2818 0.0621
-#> 185: 92.5677 -6.0227 -2.2084 -4.0403 -0.9584 0.0609 0.2215 3.8810 0.9134 3.0961 0.1739 0.1473 1.4202 0.0319 1.2731 0.0579
-#> 186: 92.7090 -5.9641 -2.2218 -4.0319 -0.9573 0.0575 0.2917 3.9574 0.9373 3.0666 0.1691 0.1703 1.4378 0.0296 1.2775 0.0601
-#> 187: 92.7358 -6.2503 -2.2003 -4.0534 -0.9742 0.0691 0.3037 5.2011 0.9333 3.0796 0.1647 0.1553 1.4254 0.0293 1.1987 0.0629
-#> 188: 92.6733 -6.1434 -2.1988 -4.0792 -0.9878 0.0860 0.3122 4.9451 0.9080 3.1891 0.1628 0.1558 1.4099 0.0317 1.3162 0.0593
-#> 189: 92.7256 -6.0886 -2.1766 -4.0419 -0.9672 0.0550 0.3758 4.3461 0.9140 3.0795 0.1697 0.1649 1.5310 0.0301 1.3258 0.0566
-#> 190: 92.5144 -6.1827 -2.2159 -4.0525 -0.9677 0.0728 0.3855 4.3370 0.9706 3.0518 0.1486 0.1841 1.4390 0.0295 1.1259 0.0740
-#> 191: 92.6209 -6.1257 -2.2287 -4.1095 -0.9670 0.1034 0.3340 4.3051 0.9486 3.1970 0.1549 0.1776 1.4397 0.0296 1.2004 0.0684
-#> 192: 92.6156 -6.1289 -2.2067 -4.1191 -0.9900 0.1090 0.3069 4.1314 0.9134 3.1476 0.1596 0.1912 1.4380 0.0301 1.1238 0.0720
-#> 193: 92.5434 -5.9782 -2.1800 -4.0845 -0.9547 0.1173 0.2694 3.6834 0.9005 2.9479 0.1582 0.1733 1.4538 0.0294 0.8798 0.0866
-#> 194: 92.5884 -5.7815 -2.2110 -4.0714 -0.9510 0.0928 0.2493 2.8236 0.9615 2.9852 0.1488 0.1730 1.4409 0.0297 1.1446 0.0677
-#> 195: 92.6180 -5.9277 -2.2213 -4.0714 -0.9379 0.1177 0.1993 3.5172 0.8976 2.9852 0.1449 0.1735 1.5012 0.0299 1.2131 0.0618
-#> 196: 92.5920 -5.7723 -2.2496 -4.0669 -0.9184 0.1262 0.2595 3.2454 0.9419 2.9697 0.1600 0.1881 1.4017 0.0338 0.9594 0.0790
-#> 197: 92.6292 -5.8658 -2.2434 -4.0640 -0.9365 0.1216 0.2491 3.3540 0.9267 2.9523 0.1598 0.1749 1.3953 0.0383 1.0788 0.0702
-#> 198: 92.6911 -5.8407 -2.2605 -4.0640 -0.9319 0.1264 0.1930 3.2321 0.8884 2.9523 0.1320 0.1940 1.4026 0.0358 1.0613 0.0704
-#> 199: 92.6480 -5.6988 -2.2599 -4.0668 -0.9395 0.1328 0.1412 2.6535 0.8915 2.9610 0.1573 0.2052 1.4353 0.0360 0.9900 0.0742
-#> 200: 92.7139 -5.6152 -2.2522 -4.0684 -0.9192 0.1589 0.1686 2.4362 0.9098 3.0185 0.1702 0.1705 1.4153 0.0338 1.1747 0.0705
-#> 201: 92.7134 -5.7029 -2.2504 -4.0502 -0.9270 0.1453 0.1499 2.6851 0.8909 2.9484 0.1749 0.1772 1.3851 0.0363 1.1255 0.0714
-#> 202: 92.7087 -5.7236 -2.2421 -4.0499 -0.9364 0.1238 0.1324 2.7215 0.8810 2.9507 0.1694 0.1913 1.3864 0.0365 1.1192 0.0705
-#> 203: 92.7013 -5.7563 -2.2293 -4.0494 -0.9394 0.1134 0.1269 2.8279 0.8866 2.9501 0.1618 0.1915 1.3981 0.0356 1.0942 0.0710
-#> 204: 92.6964 -5.8134 -2.2208 -4.0646 -0.9373 0.1144 0.1192 3.1058 0.8973 3.0279 0.1523 0.1983 1.4126 0.0345 1.0629 0.0723
-#> 205: 92.6936 -5.8441 -2.2195 -4.0787 -0.9373 0.1144 0.1068 3.2553 0.9029 3.0962 0.1473 0.2001 1.4217 0.0344 1.0532 0.0719
-#> 206: 92.6881 -5.8805 -2.2209 -4.0887 -0.9432 0.1187 0.1016 3.4269 0.9126 3.1477 0.1479 0.1957 1.4251 0.0348 1.0697 0.0712
-#> 207: 92.6929 -5.9304 -2.2259 -4.0987 -0.9473 0.1234 0.1028 3.6444 0.9261 3.1982 0.1469 0.1910 1.4170 0.0348 1.0586 0.0717
-#> 208: 92.6907 -5.9413 -2.2275 -4.1043 -0.9482 0.1267 0.1038 3.6864 0.9313 3.2244 0.1467 0.1889 1.4121 0.0343 1.0499 0.0718
-#> 209: 92.6917 -5.9265 -2.2304 -4.1109 -0.9498 0.1289 0.1022 3.5975 0.9363 3.2487 0.1478 0.1863 1.4053 0.0344 1.0521 0.0716
-#> 210: 92.6966 -5.9218 -2.2322 -4.1164 -0.9516 0.1337 0.0984 3.5650 0.9413 3.2688 0.1493 0.1874 1.3949 0.0342 1.0499 0.0719
-#> 211: 92.7020 -5.9160 -2.2351 -4.1209 -0.9542 0.1385 0.0958 3.5091 0.9390 3.2968 0.1503 0.1873 1.3925 0.0345 1.0547 0.0718
-#> 212: 92.7065 -5.9119 -2.2376 -4.1247 -0.9564 0.1432 0.0933 3.4520 0.9373 3.3205 0.1531 0.1901 1.3869 0.0346 1.0625 0.0717
-#> 213: 92.7107 -5.9047 -2.2402 -4.1286 -0.9575 0.1455 0.0930 3.3990 0.9361 3.3369 0.1536 0.1932 1.3814 0.0349 1.0698 0.0712
-#> 214: 92.7110 -5.9061 -2.2415 -4.1321 -0.9585 0.1483 0.0921 3.3864 0.9364 3.3517 0.1542 0.1963 1.3794 0.0348 1.0721 0.0712
-#> 215: 92.7116 -5.9128 -2.2417 -4.1360 -0.9581 0.1510 0.0941 3.4201 0.9347 3.3646 0.1545 0.1988 1.3764 0.0350 1.0731 0.0712
-#> 216: 92.7135 -5.9184 -2.2432 -4.1383 -0.9589 0.1540 0.0957 3.4623 0.9337 3.3698 0.1541 0.2016 1.3761 0.0353 1.0737 0.0714
-#> 217: 92.7143 -5.9262 -2.2453 -4.1428 -0.9604 0.1568 0.0981 3.5202 0.9323 3.3854 0.1542 0.2053 1.3770 0.0352 1.0779 0.0716
-#> 218: 92.7102 -5.9169 -2.2463 -4.1446 -0.9606 0.1604 0.1000 3.4823 0.9305 3.3851 0.1530 0.2083 1.3802 0.0353 1.0819 0.0716
-#> 219: 92.7062 -5.9089 -2.2470 -4.1481 -0.9597 0.1636 0.1000 3.4465 0.9295 3.3874 0.1529 0.2125 1.3779 0.0352 1.0836 0.0716
-#> 220: 92.7027 -5.9052 -2.2480 -4.1509 -0.9594 0.1668 0.1020 3.4302 0.9264 3.3877 0.1531 0.2168 1.3780 0.0352 1.0893 0.0713
-#> 221: 92.7029 -5.8990 -2.2497 -4.1541 -0.9586 0.1696 0.1017 3.4007 0.9227 3.3916 0.1535 0.2208 1.3781 0.0354 1.0925 0.0709
-#> 222: 92.7063 -5.8993 -2.2519 -4.1604 -0.9582 0.1732 0.1025 3.4099 0.9190 3.4135 0.1537 0.2268 1.3791 0.0355 1.1031 0.0702
-#> 223: 92.7090 -5.8932 -2.2537 -4.1669 -0.9573 0.1757 0.1022 3.3946 0.9157 3.4424 0.1543 0.2319 1.3802 0.0356 1.1040 0.0701
-#> 224: 92.7116 -5.8930 -2.2545 -4.1712 -0.9561 0.1774 0.1017 3.3964 0.9133 3.4673 0.1550 0.2355 1.3795 0.0356 1.1018 0.0701
-#> 225: 92.7136 -5.8911 -2.2564 -4.1715 -0.9551 0.1788 0.1016 3.4013 0.9125 3.4628 0.1548 0.2380 1.3756 0.0359 1.1003 0.0700
-#> 226: 92.7153 -5.8883 -2.2569 -4.1711 -0.9536 0.1793 0.1016 3.4046 0.9134 3.4575 0.1549 0.2398 1.3737 0.0360 1.1016 0.0699
-#> 227: 92.7163 -5.8830 -2.2575 -4.1720 -0.9526 0.1796 0.1019 3.3952 0.9129 3.4575 0.1545 0.2407 1.3718 0.0363 1.1015 0.0698
-#> 228: 92.7182 -5.8865 -2.2578 -4.1728 -0.9528 0.1804 0.1017 3.4198 0.9113 3.4576 0.1538 0.2433 1.3722 0.0363 1.1068 0.0695
-#> 229: 92.7199 -5.8965 -2.2578 -4.1718 -0.9523 0.1812 0.1023 3.5030 0.9097 3.4503 0.1529 0.2463 1.3749 0.0363 1.1093 0.0694
-#> 230: 92.7205 -5.8997 -2.2578 -4.1712 -0.9514 0.1825 0.1025 3.5337 0.9071 3.4446 0.1519 0.2497 1.3802 0.0362 1.1115 0.0693
-#> 231: 92.7208 -5.9001 -2.2581 -4.1711 -0.9511 0.1838 0.1044 3.5537 0.9037 3.4423 0.1510 0.2533 1.3834 0.0361 1.1125 0.0693
-#> 232: 92.7183 -5.9041 -2.2588 -4.1715 -0.9504 0.1855 0.1061 3.5958 0.9001 3.4391 0.1503 0.2572 1.3871 0.0362 1.1161 0.0690
-#> 233: 92.7169 -5.9106 -2.2593 -4.1725 -0.9490 0.1866 0.1073 3.6433 0.8968 3.4367 0.1496 0.2609 1.3900 0.0362 1.1179 0.0688
-#> 234: 92.7125 -5.9165 -2.2594 -4.1728 -0.9479 0.1873 0.1098 3.6870 0.8932 3.4321 0.1498 0.2641 1.3907 0.0363 1.1177 0.0687
-#> 235: 92.7072 -5.9203 -2.2592 -4.1729 -0.9472 0.1876 0.1128 3.7229 0.8899 3.4269 0.1506 0.2676 1.3913 0.0364 1.1212 0.0686
-#> 236: 92.7048 -5.9319 -2.2603 -4.1724 -0.9467 0.1879 0.1147 3.7863 0.8879 3.4175 0.1510 0.2705 1.3898 0.0365 1.1181 0.0688
-#> 237: 92.7037 -5.9349 -2.2609 -4.1720 -0.9461 0.1881 0.1152 3.8047 0.8862 3.4096 0.1512 0.2731 1.3891 0.0367 1.1164 0.0688
-#> 238: 92.7027 -5.9359 -2.2605 -4.1715 -0.9459 0.1884 0.1151 3.7997 0.8842 3.4023 0.1516 0.2755 1.3905 0.0366 1.1171 0.0688
-#> 239: 92.7027 -5.9375 -2.2599 -4.1712 -0.9463 0.1881 0.1143 3.8187 0.8835 3.3954 0.1521 0.2780 1.3923 0.0366 1.1193 0.0688
-#> 240: 92.7025 -5.9409 -2.2593 -4.1710 -0.9467 0.1884 0.1135 3.8437 0.8830 3.3888 0.1530 0.2797 1.3939 0.0366 1.1266 0.0685
-#> 241: 92.7006 -5.9429 -2.2589 -4.1703 -0.9469 0.1887 0.1130 3.8580 0.8825 3.3820 0.1529 0.2815 1.3967 0.0364 1.1299 0.0685
-#> 242: 92.6977 -5.9366 -2.2594 -4.1693 -0.9471 0.1887 0.1130 3.8245 0.8810 3.3742 0.1534 0.2833 1.3967 0.0364 1.1323 0.0685
-#> 243: 92.6951 -5.9310 -2.2605 -4.1683 -0.9473 0.1891 0.1131 3.7904 0.8807 3.3666 0.1541 0.2853 1.3953 0.0364 1.1380 0.0683
-#> 244: 92.6928 -5.9289 -2.2610 -4.1680 -0.9471 0.1899 0.1130 3.7709 0.8797 3.3604 0.1545 0.2880 1.3947 0.0364 1.1399 0.0683
-#> 245: 92.6902 -5.9291 -2.2615 -4.1677 -0.9472 0.1914 0.1129 3.7637 0.8787 3.3538 0.1549 0.2898 1.3942 0.0364 1.1440 0.0681
-#> 246: 92.6880 -5.9271 -2.2617 -4.1677 -0.9472 0.1926 0.1131 3.7457 0.8785 3.3500 0.1549 0.2916 1.3938 0.0364 1.1468 0.0681
-#> 247: 92.6865 -5.9264 -2.2613 -4.1676 -0.9471 0.1930 0.1127 3.7331 0.8793 3.3487 0.1551 0.2918 1.3931 0.0364 1.1464 0.0683
-#> 248: 92.6855 -5.9212 -2.2604 -4.1671 -0.9476 0.1935 0.1116 3.7055 0.8795 3.3451 0.1549 0.2923 1.3942 0.0363 1.1453 0.0684
-#> 249: 92.6848 -5.9190 -2.2600 -4.1667 -0.9482 0.1939 0.1110 3.6857 0.8801 3.3428 0.1548 0.2923 1.3942 0.0363 1.1440 0.0685
-#> 250: 92.6858 -5.9194 -2.2605 -4.1663 -0.9489 0.1945 0.1109 3.6821 0.8806 3.3397 0.1547 0.2920 1.3932 0.0363 1.1430 0.0686
-#> 251: 92.6849 -5.9179 -2.2610 -4.1665 -0.9492 0.1950 0.1111 3.6795 0.8814 3.3392 0.1550 0.2919 1.3922 0.0364 1.1434 0.0685
-#> 252: 92.6848 -5.9141 -2.2615 -4.1660 -0.9493 0.1957 0.1110 3.6611 0.8818 3.3363 0.1548 0.2918 1.3919 0.0364 1.1423 0.0686
-#> 253: 92.6837 -5.9110 -2.2637 -4.1634 -0.9493 0.1952 0.1114 3.6462 0.8788 3.3481 0.1550 0.2920 1.3941 0.0363 1.1417 0.0688
-#> 254: 92.6827 -5.9082 -2.2650 -4.1608 -0.9492 0.1944 0.1117 3.6309 0.8753 3.3595 0.1548 0.2921 1.3964 0.0361 1.1415 0.0688
-#> 255: 92.6829 -5.9076 -2.2662 -4.1585 -0.9495 0.1934 0.1118 3.6221 0.8723 3.3737 0.1547 0.2923 1.3977 0.0359 1.1397 0.0689
-#> 256: 92.6821 -5.9079 -2.2672 -4.1559 -0.9495 0.1923 0.1118 3.6279 0.8697 3.3865 0.1547 0.2925 1.3990 0.0357 1.1387 0.0691
-#> 257: 92.6822 -5.9054 -2.2686 -4.1534 -0.9499 0.1914 0.1119 3.6202 0.8673 3.3988 0.1548 0.2923 1.4010 0.0356 1.1438 0.0690
-#> 258: 92.6828 -5.9054 -2.2700 -4.1509 -0.9498 0.1900 0.1121 3.6166 0.8651 3.4085 0.1547 0.2926 1.4028 0.0356 1.1473 0.0688
-#> 259: 92.6842 -5.9087 -2.2710 -4.1474 -0.9496 0.1890 0.1128 3.6314 0.8629 3.4154 0.1548 0.2923 1.4040 0.0355 1.1482 0.0689
-#> 260: 92.6852 -5.9118 -2.2717 -4.1444 -0.9493 0.1885 0.1124 3.6485 0.8606 3.4227 0.1544 0.2919 1.4073 0.0354 1.1518 0.0688
-#> 261: 92.6858 -5.9137 -2.2721 -4.1419 -0.9493 0.1882 0.1122 3.6641 0.8581 3.4314 0.1543 0.2913 1.4106 0.0353 1.1577 0.0684
-#> 262: 92.6861 -5.9117 -2.2726 -4.1394 -0.9493 0.1881 0.1116 3.6572 0.8558 3.4391 0.1541 0.2908 1.4137 0.0352 1.1613 0.0682
-#> 263: 92.6855 -5.9124 -2.2730 -4.1372 -0.9494 0.1875 0.1113 3.6626 0.8533 3.4465 0.1541 0.2905 1.4152 0.0351 1.1636 0.0681
-#> 264: 92.6841 -5.9137 -2.2734 -4.1351 -0.9496 0.1871 0.1109 3.6703 0.8505 3.4529 0.1538 0.2903 1.4156 0.0350 1.1632 0.0681
-#> 265: 92.6833 -5.9153 -2.2741 -4.1327 -0.9498 0.1867 0.1108 3.6816 0.8472 3.4581 0.1535 0.2899 1.4168 0.0350 1.1647 0.0679
-#> 266: 92.6835 -5.9147 -2.2752 -4.1307 -0.9497 0.1865 0.1107 3.6768 0.8450 3.4641 0.1531 0.2896 1.4176 0.0349 1.1640 0.0679
-#> 267: 92.6835 -5.9167 -2.2761 -4.1283 -0.9499 0.1862 0.1105 3.6851 0.8430 3.4700 0.1530 0.2892 1.4178 0.0348 1.1639 0.0679
-#> 268: 92.6841 -5.9141 -2.2767 -4.1269 -0.9503 0.1860 0.1107 3.6718 0.8407 3.4775 0.1533 0.2891 1.4187 0.0348 1.1673 0.0677
-#> 269: 92.6845 -5.9094 -2.2774 -4.1253 -0.9503 0.1855 0.1112 3.6520 0.8384 3.4840 0.1535 0.2890 1.4192 0.0348 1.1686 0.0675
-#> 270: 92.6847 -5.9042 -2.2779 -4.1239 -0.9505 0.1853 0.1107 3.6288 0.8365 3.4895 0.1536 0.2889 1.4192 0.0347 1.1698 0.0675
-#> 271: 92.6849 -5.9000 -2.2785 -4.1228 -0.9506 0.1853 0.1102 3.6083 0.8348 3.4956 0.1536 0.2889 1.4191 0.0346 1.1692 0.0676
-#> 272: 92.6850 -5.8965 -2.2794 -4.1223 -0.9507 0.1853 0.1092 3.5892 0.8331 3.5071 0.1538 0.2889 1.4194 0.0345 1.1700 0.0676
-#> 273: 92.6851 -5.8916 -2.2805 -4.1222 -0.9508 0.1850 0.1089 3.5697 0.8315 3.5211 0.1538 0.2889 1.4209 0.0345 1.1720 0.0675
-#> 274: 92.6849 -5.8898 -2.2815 -4.1218 -0.9506 0.1852 0.1084 3.5607 0.8301 3.5339 0.1542 0.2886 1.4221 0.0344 1.1728 0.0675
-#> 275: 92.6844 -5.8885 -2.2830 -4.1215 -0.9504 0.1855 0.1080 3.5514 0.8284 3.5491 0.1545 0.2883 1.4238 0.0343 1.1756 0.0673
-#> 276: 92.6834 -5.8885 -2.2843 -4.1210 -0.9501 0.1859 0.1077 3.5477 0.8272 3.5648 0.1547 0.2878 1.4243 0.0343 1.1749 0.0674
-#> 277: 92.6829 -5.8892 -2.2858 -4.1208 -0.9500 0.1862 0.1071 3.5505 0.8257 3.5807 0.1552 0.2872 1.4244 0.0343 1.1747 0.0674
-#> 278: 92.6825 -5.8885 -2.2871 -4.1205 -0.9499 0.1862 0.1072 3.5463 0.8245 3.5960 0.1555 0.2866 1.4247 0.0343 1.1742 0.0675
-#> 279: 92.6815 -5.8887 -2.2883 -4.1201 -0.9501 0.1864 0.1072 3.5433 0.8239 3.6088 0.1556 0.2860 1.4247 0.0343 1.1737 0.0676
-#> 280: 92.6800 -5.8901 -2.2896 -4.1211 -0.9503 0.1865 0.1078 3.5481 0.8238 3.6285 0.1556 0.2848 1.4252 0.0344 1.1742 0.0676
-#> 281: 92.6779 -5.8914 -2.2907 -4.1218 -0.9502 0.1865 0.1084 3.5491 0.8240 3.6471 0.1558 0.2838 1.4251 0.0343 1.1732 0.0677
-#> 282: 92.6767 -5.8906 -2.2919 -4.1236 -0.9501 0.1862 0.1091 3.5462 0.8248 3.6747 0.1558 0.2825 1.4250 0.0344 1.1732 0.0677
-#> 283: 92.6750 -5.8895 -2.2928 -4.1253 -0.9499 0.1857 0.1097 3.5418 0.8260 3.7025 0.1555 0.2814 1.4253 0.0344 1.1712 0.0678
-#> 284: 92.6736 -5.8903 -2.2934 -4.1271 -0.9497 0.1854 0.1107 3.5438 0.8269 3.7297 0.1553 0.2800 1.4257 0.0343 1.1698 0.0678
-#> 285: 92.6730 -5.8917 -2.2942 -4.1284 -0.9497 0.1852 0.1116 3.5481 0.8274 3.7528 0.1551 0.2787 1.4260 0.0343 1.1689 0.0678
-#> 286: 92.6715 -5.8913 -2.2947 -4.1285 -0.9492 0.1849 0.1122 3.5473 0.8274 3.7660 0.1550 0.2775 1.4265 0.0342 1.1678 0.0679
-#> 287: 92.6702 -5.8925 -2.2952 -4.1290 -0.9489 0.1846 0.1125 3.5531 0.8268 3.7818 0.1549 0.2764 1.4269 0.0342 1.1673 0.0678
-#> 288: 92.6688 -5.8918 -2.2959 -4.1290 -0.9490 0.1843 0.1126 3.5495 0.8262 3.7946 0.1546 0.2756 1.4275 0.0341 1.1673 0.0678
-#> 289: 92.6673 -5.8907 -2.2966 -4.1295 -0.9490 0.1841 0.1124 3.5445 0.8260 3.8067 0.1543 0.2750 1.4280 0.0342 1.1690 0.0677
-#> 290: 92.6657 -5.8909 -2.2973 -4.1302 -0.9490 0.1838 0.1123 3.5433 0.8260 3.8201 0.1540 0.2744 1.4279 0.0342 1.1687 0.0676
-#> 291: 92.6642 -5.8902 -2.2978 -4.1312 -0.9493 0.1835 0.1124 3.5399 0.8262 3.8365 0.1538 0.2738 1.4279 0.0342 1.1695 0.0676
-#> 292: 92.6635 -5.8917 -2.2983 -4.1316 -0.9495 0.1831 0.1121 3.5453 0.8263 3.8517 0.1535 0.2733 1.4275 0.0342 1.1695 0.0675
-#> 293: 92.6622 -5.8936 -2.2991 -4.1323 -0.9497 0.1830 0.1121 3.5526 0.8265 3.8692 0.1533 0.2728 1.4274 0.0342 1.1701 0.0675
-#> 294: 92.6604 -5.8936 -2.2999 -4.1328 -0.9499 0.1826 0.1126 3.5505 0.8263 3.8838 0.1533 0.2723 1.4273 0.0342 1.1712 0.0675
-#> 295: 92.6593 -5.8924 -2.3007 -4.1329 -0.9498 0.1823 0.1131 3.5443 0.8262 3.9004 0.1531 0.2717 1.4276 0.0342 1.1718 0.0674
-#> 296: 92.6586 -5.8906 -2.3016 -4.1323 -0.9496 0.1822 0.1133 3.5374 0.8266 3.9103 0.1530 0.2707 1.4272 0.0343 1.1714 0.0674
-#> 297: 92.6578 -5.8889 -2.3026 -4.1329 -0.9494 0.1819 0.1139 3.5315 0.8271 3.9280 0.1528 0.2697 1.4267 0.0343 1.1697 0.0675
-#> 298: 92.6575 -5.8885 -2.3036 -4.1330 -0.9490 0.1814 0.1143 3.5303 0.8275 3.9410 0.1527 0.2689 1.4263 0.0344 1.1688 0.0675
-#> 299: 92.6566 -5.8879 -2.3047 -4.1329 -0.9488 0.1807 0.1147 3.5286 0.8282 3.9507 0.1526 0.2679 1.4263 0.0345 1.1680 0.0674
-#> 300: 92.6555 -5.8862 -2.3057 -4.1325 -0.9483 0.1802 0.1151 3.5225 0.8293 3.9582 0.1527 0.2671 1.4261 0.0345 1.1677 0.0674
-#> 301: 92.6545 -5.8854 -2.3067 -4.1326 -0.9480 0.1795 0.1156 3.5191 0.8300 3.9691 0.1530 0.2665 1.4257 0.0346 1.1672 0.0674
-#> 302: 92.6539 -5.8839 -2.3078 -4.1322 -0.9477 0.1788 0.1161 3.5154 0.8309 3.9769 0.1532 0.2657 1.4252 0.0346 1.1664 0.0675
-#> 303: 92.6541 -5.8799 -2.3089 -4.1327 -0.9474 0.1782 0.1161 3.5012 0.8319 3.9913 0.1534 0.2649 1.4242 0.0347 1.1653 0.0675
-#> 304: 92.6554 -5.8766 -2.3096 -4.1326 -0.9472 0.1774 0.1164 3.4879 0.8328 3.9978 0.1536 0.2641 1.4234 0.0348 1.1644 0.0675
-#> 305: 92.6559 -5.8732 -2.3104 -4.1325 -0.9470 0.1764 0.1161 3.4740 0.8334 4.0037 0.1535 0.2633 1.4231 0.0348 1.1634 0.0676
-#> 306: 92.6564 -5.8717 -2.3113 -4.1322 -0.9470 0.1758 0.1161 3.4705 0.8341 4.0097 0.1537 0.2622 1.4236 0.0348 1.1628 0.0676
-#> 307: 92.6573 -5.8703 -2.3121 -4.1320 -0.9469 0.1748 0.1158 3.4630 0.8349 4.0154 0.1538 0.2614 1.4231 0.0348 1.1617 0.0677
-#> 308: 92.6578 -5.8695 -2.3129 -4.1318 -0.9465 0.1738 0.1154 3.4585 0.8356 4.0210 0.1540 0.2607 1.4229 0.0348 1.1604 0.0677
-#> 309: 92.6577 -5.8691 -2.3132 -4.1317 -0.9465 0.1732 0.1151 3.4548 0.8369 4.0270 0.1540 0.2596 1.4233 0.0348 1.1589 0.0678
-#> 310: 92.6580 -5.8680 -2.3135 -4.1309 -0.9466 0.1727 0.1147 3.4472 0.8377 4.0280 0.1540 0.2587 1.4231 0.0348 1.1569 0.0679
-#> 311: 92.6575 -5.8681 -2.3141 -4.1303 -0.9466 0.1722 0.1144 3.4477 0.8384 4.0303 0.1539 0.2577 1.4236 0.0348 1.1557 0.0679
-#> 312: 92.6571 -5.8685 -2.3145 -4.1299 -0.9467 0.1720 0.1143 3.4498 0.8393 4.0328 0.1538 0.2566 1.4237 0.0348 1.1545 0.0680
-#> 313: 92.6559 -5.8685 -2.3150 -4.1296 -0.9469 0.1718 0.1142 3.4483 0.8403 4.0358 0.1537 0.2555 1.4234 0.0348 1.1532 0.0681
-#> 314: 92.6543 -5.8699 -2.3155 -4.1294 -0.9471 0.1715 0.1142 3.4526 0.8404 4.0401 0.1537 0.2546 1.4236 0.0347 1.1522 0.0681
-#> 315: 92.6528 -5.8713 -2.3161 -4.1289 -0.9472 0.1712 0.1144 3.4584 0.8402 4.0427 0.1537 0.2538 1.4234 0.0347 1.1520 0.0682
-#> 316: 92.6510 -5.8726 -2.3166 -4.1283 -0.9472 0.1705 0.1146 3.4647 0.8404 4.0443 0.1537 0.2528 1.4236 0.0347 1.1511 0.0682
-#> 317: 92.6496 -5.8736 -2.3170 -4.1281 -0.9474 0.1699 0.1147 3.4701 0.8406 4.0497 0.1536 0.2520 1.4238 0.0347 1.1504 0.0683
-#> 318: 92.6479 -5.8745 -2.3174 -4.1276 -0.9475 0.1695 0.1153 3.4729 0.8410 4.0511 0.1535 0.2510 1.4238 0.0347 1.1503 0.0683
-#> 319: 92.6463 -5.8773 -2.3175 -4.1272 -0.9476 0.1690 0.1155 3.4868 0.8409 4.0527 0.1535 0.2502 1.4234 0.0347 1.1484 0.0685
-#> 320: 92.6447 -5.8770 -2.3179 -4.1263 -0.9478 0.1684 0.1158 3.4849 0.8407 4.0516 0.1534 0.2493 1.4238 0.0347 1.1483 0.0685
-#> 321: 92.6433 -5.8768 -2.3181 -4.1255 -0.9479 0.1679 0.1161 3.4850 0.8405 4.0511 0.1533 0.2485 1.4238 0.0346 1.1474 0.0686
-#> 322: 92.6425 -5.8766 -2.3182 -4.1246 -0.9480 0.1673 0.1161 3.4839 0.8403 4.0505 0.1530 0.2474 1.4243 0.0346 1.1458 0.0687
-#> 323: 92.6414 -5.8778 -2.3183 -4.1241 -0.9481 0.1669 0.1162 3.4888 0.8402 4.0517 0.1530 0.2466 1.4244 0.0346 1.1454 0.0687
-#> 324: 92.6404 -5.8771 -2.3186 -4.1236 -0.9482 0.1666 0.1161 3.4855 0.8401 4.0525 0.1529 0.2459 1.4247 0.0345 1.1446 0.0687
-#> 325: 92.6396 -5.8753 -2.3188 -4.1231 -0.9483 0.1664 0.1156 3.4767 0.8396 4.0533 0.1529 0.2454 1.4253 0.0345 1.1438 0.0689
-#> 326: 92.6397 -5.8766 -2.3192 -4.1226 -0.9484 0.1663 0.1152 3.4798 0.8389 4.0542 0.1527 0.2449 1.4253 0.0345 1.1431 0.0690
-#> 327: 92.6395 -5.8785 -2.3197 -4.1224 -0.9483 0.1660 0.1151 3.4880 0.8382 4.0557 0.1528 0.2445 1.4250 0.0345 1.1430 0.0690
-#> 328: 92.6397 -5.8805 -2.3202 -4.1221 -0.9483 0.1657 0.1153 3.5011 0.8373 4.0568 0.1528 0.2442 1.4246 0.0345 1.1427 0.0690
-#> 329: 92.6390 -5.8838 -2.3208 -4.1219 -0.9482 0.1655 0.1161 3.5176 0.8365 4.0580 0.1530 0.2439 1.4241 0.0345 1.1429 0.0690
-#> 330: 92.6380 -5.8862 -2.3215 -4.1216 -0.9484 0.1653 0.1166 3.5286 0.8355 4.0584 0.1529 0.2437 1.4234 0.0346 1.1428 0.0690
-#> 331: 92.6367 -5.8867 -2.3223 -4.1206 -0.9484 0.1651 0.1165 3.5288 0.8348 4.0577 0.1528 0.2435 1.4233 0.0346 1.1429 0.0690
-#> 332: 92.6360 -5.8859 -2.3230 -4.1199 -0.9485 0.1650 0.1165 3.5235 0.8343 4.0572 0.1527 0.2433 1.4227 0.0346 1.1429 0.0689
-#> 333: 92.6361 -5.8839 -2.3237 -4.1194 -0.9485 0.1649 0.1162 3.5142 0.8340 4.0564 0.1527 0.2430 1.4224 0.0347 1.1429 0.0689
-#> 334: 92.6359 -5.8824 -2.3244 -4.1190 -0.9486 0.1649 0.1158 3.5070 0.8337 4.0567 0.1527 0.2424 1.4218 0.0347 1.1442 0.0689
-#> 335: 92.6366 -5.8826 -2.3250 -4.1186 -0.9485 0.1645 0.1157 3.5069 0.8334 4.0574 0.1527 0.2419 1.4214 0.0347 1.1448 0.0688
-#> 336: 92.6374 -5.8816 -2.3253 -4.1182 -0.9486 0.1644 0.1158 3.5034 0.8330 4.0580 0.1528 0.2415 1.4212 0.0347 1.1471 0.0687
-#> 337: 92.6378 -5.8810 -2.3258 -4.1176 -0.9487 0.1642 0.1159 3.5023 0.8325 4.0582 0.1528 0.2410 1.4212 0.0347 1.1467 0.0688
-#> 338: 92.6383 -5.8814 -2.3262 -4.1168 -0.9488 0.1637 0.1160 3.5028 0.8322 4.0571 0.1526 0.2409 1.4216 0.0346 1.1456 0.0689
-#> 339: 92.6392 -5.8808 -2.3266 -4.1160 -0.9490 0.1631 0.1161 3.4989 0.8318 4.0566 0.1524 0.2408 1.4220 0.0346 1.1441 0.0690
-#> 340: 92.6393 -5.8810 -2.3269 -4.1152 -0.9491 0.1626 0.1157 3.4997 0.8316 4.0564 0.1524 0.2407 1.4216 0.0346 1.1419 0.0692
-#> 341: 92.6394 -5.8807 -2.3272 -4.1148 -0.9492 0.1619 0.1153 3.4966 0.8308 4.0552 0.1523 0.2405 1.4218 0.0346 1.1415 0.0692
-#> 342: 92.6394 -5.8806 -2.3274 -4.1141 -0.9493 0.1612 0.1146 3.4936 0.8303 4.0537 0.1522 0.2405 1.4221 0.0346 1.1406 0.0692
-#> 343: 92.6398 -5.8819 -2.3277 -4.1134 -0.9494 0.1606 0.1141 3.4961 0.8297 4.0519 0.1522 0.2402 1.4219 0.0347 1.1404 0.0692
-#> 344: 92.6401 -5.8823 -2.3280 -4.1128 -0.9497 0.1599 0.1137 3.4963 0.8293 4.0504 0.1523 0.2400 1.4214 0.0346 1.1404 0.0692
-#> 345: 92.6404 -5.8829 -2.3283 -4.1124 -0.9498 0.1593 0.1136 3.4958 0.8289 4.0494 0.1523 0.2396 1.4214 0.0346 1.1398 0.0692
-#> 346: 92.6405 -5.8829 -2.3283 -4.1119 -0.9499 0.1587 0.1135 3.4953 0.8287 4.0484 0.1522 0.2394 1.4216 0.0346 1.1397 0.0692
-#> 347: 92.6404 -5.8833 -2.3288 -4.1117 -0.9500 0.1582 0.1133 3.4965 0.8289 4.0480 0.1521 0.2391 1.4211 0.0346 1.1388 0.0692
-#> 348: 92.6407 -5.8838 -2.3293 -4.1113 -0.9502 0.1578 0.1132 3.4978 0.8290 4.0471 0.1520 0.2388 1.4209 0.0346 1.1385 0.0692
-#> 349: 92.6409 -5.8847 -2.3299 -4.1110 -0.9503 0.1571 0.1128 3.5024 0.8290 4.0474 0.1519 0.2386 1.4207 0.0347 1.1379 0.0692
-#> 350: 92.6413 -5.8853 -2.3304 -4.1107 -0.9504 0.1567 0.1125 3.5037 0.8287 4.0478 0.1519 0.2383 1.4207 0.0347 1.1366 0.0693
-#> 351: 92.6415 -5.8868 -2.3310 -4.1104 -0.9504 0.1562 0.1122 3.5109 0.8287 4.0490 0.1518 0.2378 1.4208 0.0347 1.1364 0.0693
-#> 352: 92.6413 -5.8882 -2.3316 -4.1103 -0.9504 0.1557 0.1120 3.5196 0.8287 4.0517 0.1517 0.2375 1.4207 0.0346 1.1361 0.0693
-#> 353: 92.6414 -5.8890 -2.3322 -4.1101 -0.9503 0.1553 0.1117 3.5237 0.8290 4.0533 0.1517 0.2371 1.4202 0.0346 1.1345 0.0693
-#> 354: 92.6417 -5.8879 -2.3327 -4.1099 -0.9502 0.1548 0.1115 3.5206 0.8294 4.0546 0.1515 0.2368 1.4200 0.0346 1.1336 0.0694
-#> 355: 92.6417 -5.8882 -2.3333 -4.1096 -0.9500 0.1541 0.1115 3.5265 0.8296 4.0548 0.1514 0.2364 1.4203 0.0346 1.1325 0.0694
-#> 356: 92.6414 -5.8881 -2.3338 -4.1093 -0.9497 0.1535 0.1115 3.5339 0.8299 4.0553 0.1513 0.2362 1.4204 0.0346 1.1318 0.0694
-#> 357: 92.6414 -5.8874 -2.3343 -4.1087 -0.9497 0.1529 0.1117 3.5320 0.8302 4.0548 0.1512 0.2358 1.4205 0.0346 1.1315 0.0694
-#> 358: 92.6415 -5.8865 -2.3349 -4.1087 -0.9497 0.1523 0.1118 3.5274 0.8308 4.0583 0.1510 0.2354 1.4206 0.0346 1.1308 0.0695
-#> 359: 92.6415 -5.8855 -2.3352 -4.1085 -0.9497 0.1518 0.1123 3.5208 0.8308 4.0597 0.1509 0.2349 1.4205 0.0346 1.1298 0.0695
-#> 360: 92.6413 -5.8851 -2.3356 -4.1080 -0.9496 0.1513 0.1125 3.5176 0.8308 4.0606 0.1508 0.2344 1.4207 0.0346 1.1289 0.0695
-#> 361: 92.6412 -5.8854 -2.3359 -4.1076 -0.9498 0.1508 0.1126 3.5187 0.8308 4.0618 0.1508 0.2338 1.4214 0.0345 1.1279 0.0695
-#> 362: 92.6415 -5.8861 -2.3362 -4.1072 -0.9499 0.1503 0.1126 3.5210 0.8306 4.0636 0.1507 0.2333 1.4218 0.0345 1.1273 0.0695
-#> 363: 92.6412 -5.8884 -2.3364 -4.1066 -0.9499 0.1498 0.1126 3.5327 0.8305 4.0646 0.1507 0.2328 1.4221 0.0345 1.1273 0.0695
-#> 364: 92.6411 -5.8895 -2.3367 -4.1062 -0.9501 0.1494 0.1126 3.5366 0.8306 4.0659 0.1507 0.2322 1.4227 0.0345 1.1280 0.0695
-#> 365: 92.6411 -5.8908 -2.3367 -4.1060 -0.9502 0.1489 0.1125 3.5405 0.8307 4.0690 0.1507 0.2317 1.4228 0.0344 1.1280 0.0695
-#> 366: 92.6412 -5.8926 -2.3366 -4.1062 -0.9502 0.1484 0.1125 3.5483 0.8307 4.0724 0.1507 0.2311 1.4228 0.0344 1.1280 0.0695
-#> 367: 92.6406 -5.8940 -2.3366 -4.1059 -0.9503 0.1483 0.1124 3.5557 0.8308 4.0738 0.1507 0.2305 1.4228 0.0344 1.1273 0.0695
-#> 368: 92.6402 -5.8940 -2.3365 -4.1059 -0.9504 0.1483 0.1122 3.5538 0.8306 4.0773 0.1507 0.2299 1.4228 0.0344 1.1266 0.0696
-#> 369: 92.6398 -5.8933 -2.3366 -4.1058 -0.9504 0.1482 0.1122 3.5489 0.8303 4.0796 0.1507 0.2295 1.4228 0.0343 1.1261 0.0696
-#> 370: 92.6394 -5.8928 -2.3366 -4.1059 -0.9504 0.1481 0.1123 3.5445 0.8302 4.0819 0.1506 0.2291 1.4229 0.0343 1.1258 0.0696
-#> 371: 92.6390 -5.8930 -2.3369 -4.1062 -0.9503 0.1481 0.1125 3.5446 0.8299 4.0854 0.1506 0.2285 1.4230 0.0343 1.1257 0.0696
-#> 372: 92.6387 -5.8926 -2.3372 -4.1064 -0.9503 0.1482 0.1125 3.5424 0.8298 4.0887 0.1505 0.2281 1.4234 0.0343 1.1262 0.0696
-#> 373: 92.6385 -5.8927 -2.3376 -4.1067 -0.9502 0.1483 0.1126 3.5447 0.8297 4.0919 0.1504 0.2275 1.4236 0.0343 1.1268 0.0696
-#> 374: 92.6382 -5.8932 -2.3380 -4.1064 -0.9502 0.1481 0.1131 3.5490 0.8295 4.0929 0.1503 0.2272 1.4238 0.0343 1.1267 0.0696
-#> 375: 92.6385 -5.8944 -2.3383 -4.1062 -0.9502 0.1481 0.1136 3.5562 0.8292 4.0936 0.1503 0.2269 1.4240 0.0343 1.1274 0.0695
-#> 376: 92.6388 -5.8942 -2.3387 -4.1061 -0.9502 0.1481 0.1141 3.5575 0.8295 4.0942 0.1502 0.2267 1.4236 0.0343 1.1272 0.0695
-#> 377: 92.6389 -5.8942 -2.3392 -4.1060 -0.9502 0.1482 0.1145 3.5579 0.8298 4.0950 0.1501 0.2264 1.4233 0.0344 1.1272 0.0695
-#> 378: 92.6388 -5.8939 -2.3397 -4.1060 -0.9502 0.1481 0.1150 3.5558 0.8298 4.0959 0.1500 0.2261 1.4232 0.0344 1.1271 0.0695
-#> 379: 92.6388 -5.8934 -2.3399 -4.1062 -0.9500 0.1483 0.1153 3.5521 0.8294 4.0980 0.1500 0.2257 1.4236 0.0344 1.1279 0.0694
-#> 380: 92.6390 -5.8920 -2.3402 -4.1065 -0.9499 0.1484 0.1155 3.5446 0.8292 4.1007 0.1500 0.2254 1.4241 0.0344 1.1285 0.0694
-#> 381: 92.6394 -5.8906 -2.3404 -4.1069 -0.9498 0.1485 0.1157 3.5378 0.8290 4.1040 0.1500 0.2250 1.4249 0.0343 1.1296 0.0694
-#> 382: 92.6403 -5.8893 -2.3406 -4.1085 -0.9498 0.1487 0.1157 3.5319 0.8289 4.1195 0.1500 0.2246 1.4250 0.0343 1.1301 0.0694
-#> 383: 92.6402 -5.8882 -2.3408 -4.1096 -0.9499 0.1488 0.1155 3.5269 0.8287 4.1290 0.1500 0.2243 1.4253 0.0343 1.1300 0.0694
-#> 384: 92.6401 -5.8871 -2.3412 -4.1102 -0.9498 0.1490 0.1155 3.5219 0.8285 4.1340 0.1499 0.2241 1.4254 0.0343 1.1297 0.0694
-#> 385: 92.6396 -5.8867 -2.3417 -4.1105 -0.9497 0.1493 0.1155 3.5195 0.8281 4.1364 0.1498 0.2238 1.4252 0.0343 1.1297 0.0695
-#> 386: 92.6393 -5.8863 -2.3423 -4.1116 -0.9496 0.1497 0.1153 3.5190 0.8280 4.1452 0.1497 0.2235 1.4251 0.0343 1.1307 0.0694
-#> 387: 92.6391 -5.8865 -2.3429 -4.1124 -0.9495 0.1498 0.1155 3.5219 0.8280 4.1502 0.1497 0.2234 1.4247 0.0343 1.1301 0.0695
-#> 388: 92.6389 -5.8861 -2.3436 -4.1129 -0.9494 0.1501 0.1158 3.5228 0.8278 4.1540 0.1496 0.2233 1.4243 0.0343 1.1293 0.0695
-#> 389: 92.6384 -5.8849 -2.3442 -4.1132 -0.9491 0.1504 0.1159 3.5195 0.8276 4.1571 0.1496 0.2231 1.4242 0.0343 1.1284 0.0696
-#> 390: 92.6382 -5.8838 -2.3447 -4.1134 -0.9489 0.1506 0.1159 3.5172 0.8276 4.1603 0.1497 0.2230 1.4242 0.0343 1.1273 0.0697
-#> 391: 92.6380 -5.8821 -2.3454 -4.1140 -0.9486 0.1509 0.1159 3.5134 0.8274 4.1661 0.1498 0.2228 1.4238 0.0343 1.1266 0.0697
-#> 392: 92.6374 -5.8800 -2.3460 -4.1140 -0.9485 0.1513 0.1158 3.5069 0.8274 4.1673 0.1499 0.2226 1.4235 0.0343 1.1258 0.0698
-#> 393: 92.6372 -5.8785 -2.3467 -4.1140 -0.9485 0.1514 0.1159 3.5019 0.8275 4.1684 0.1499 0.2223 1.4232 0.0343 1.1258 0.0698
-#> 394: 92.6372 -5.8765 -2.3473 -4.1142 -0.9485 0.1515 0.1161 3.4955 0.8275 4.1710 0.1499 0.2221 1.4228 0.0344 1.1260 0.0697
-#> 395: 92.6371 -5.8761 -2.3476 -4.1145 -0.9485 0.1515 0.1164 3.4940 0.8273 4.1739 0.1498 0.2220 1.4227 0.0344 1.1254 0.0698
-#> 396: 92.6370 -5.8759 -2.3480 -4.1147 -0.9485 0.1516 0.1166 3.4942 0.8269 4.1764 0.1498 0.2217 1.4222 0.0344 1.1252 0.0698
-#> 397: 92.6371 -5.8756 -2.3483 -4.1149 -0.9486 0.1516 0.1167 3.4914 0.8267 4.1796 0.1498 0.2214 1.4219 0.0344 1.1253 0.0697
-#> 398: 92.6371 -5.8756 -2.3486 -4.1155 -0.9486 0.1518 0.1167 3.4909 0.8268 4.1840 0.1498 0.2210 1.4216 0.0344 1.1250 0.0697
-#> 399: 92.6368 -5.8765 -2.3489 -4.1157 -0.9485 0.1519 0.1170 3.4958 0.8266 4.1866 0.1498 0.2205 1.4213 0.0344 1.1245 0.0698
-#> 400: 92.6368 -5.8769 -2.3491 -4.1158 -0.9485 0.1522 0.1174 3.4972 0.8266 4.1888 0.1499 0.2200 1.4209 0.0344 1.1242 0.0698
-#> 401: 92.6366 -5.8768 -2.3493 -4.1161 -0.9484 0.1524 0.1175 3.4964 0.8267 4.1913 0.1499 0.2196 1.4204 0.0344 1.1240 0.0698
-#> 402: 92.6362 -5.8767 -2.3495 -4.1164 -0.9483 0.1525 0.1176 3.4961 0.8267 4.1937 0.1499 0.2192 1.4201 0.0344 1.1240 0.0698
-#> 403: 92.6362 -5.8769 -2.3497 -4.1166 -0.9483 0.1526 0.1178 3.4981 0.8270 4.1960 0.1499 0.2187 1.4197 0.0345 1.1236 0.0698
-#> 404: 92.6359 -5.8772 -2.3499 -4.1166 -0.9483 0.1527 0.1179 3.4997 0.8272 4.1968 0.1499 0.2183 1.4193 0.0345 1.1232 0.0698
-#> 405: 92.6355 -5.8763 -2.3501 -4.1165 -0.9483 0.1527 0.1180 3.4946 0.8273 4.1976 0.1500 0.2180 1.4189 0.0345 1.1230 0.0698
-#> 406: 92.6351 -5.8768 -2.3503 -4.1164 -0.9482 0.1528 0.1184 3.4953 0.8274 4.1979 0.1500 0.2176 1.4184 0.0345 1.1227 0.0698
-#> 407: 92.6346 -5.8772 -2.3505 -4.1165 -0.9481 0.1527 0.1187 3.4965 0.8275 4.1999 0.1500 0.2173 1.4182 0.0344 1.1222 0.0698
-#> 408: 92.6344 -5.8786 -2.3508 -4.1167 -0.9482 0.1528 0.1190 3.5025 0.8276 4.2020 0.1500 0.2171 1.4178 0.0344 1.1215 0.0699
-#> 409: 92.6342 -5.8806 -2.3511 -4.1168 -0.9484 0.1529 0.1193 3.5134 0.8277 4.2037 0.1500 0.2167 1.4176 0.0344 1.1212 0.0699
-#> 410: 92.6341 -5.8826 -2.3514 -4.1170 -0.9486 0.1531 0.1193 3.5229 0.8279 4.2061 0.1500 0.2163 1.4175 0.0344 1.1212 0.0699
-#> 411: 92.6339 -5.8840 -2.3517 -4.1172 -0.9488 0.1532 0.1192 3.5280 0.8280 4.2087 0.1499 0.2159 1.4175 0.0345 1.1208 0.0699
-#> 412: 92.6338 -5.8850 -2.3520 -4.1175 -0.9489 0.1534 0.1193 3.5311 0.8280 4.2121 0.1497 0.2155 1.4177 0.0345 1.1204 0.0699
-#> 413: 92.6343 -5.8859 -2.3523 -4.1177 -0.9491 0.1536 0.1191 3.5337 0.8282 4.2156 0.1497 0.2151 1.4176 0.0345 1.1198 0.0699
-#> 414: 92.6350 -5.8861 -2.3526 -4.1184 -0.9491 0.1540 0.1191 3.5350 0.8283 4.2209 0.1496 0.2147 1.4177 0.0345 1.1196 0.0699
-#> 415: 92.6354 -5.8866 -2.3528 -4.1191 -0.9492 0.1543 0.1191 3.5373 0.8284 4.2258 0.1496 0.2142 1.4179 0.0345 1.1191 0.0699
-#> 416: 92.6360 -5.8873 -2.3531 -4.1201 -0.9493 0.1548 0.1193 3.5431 0.8286 4.2328 0.1495 0.2137 1.4178 0.0345 1.1187 0.0699
-#> 417: 92.6361 -5.8878 -2.3533 -4.1213 -0.9494 0.1551 0.1192 3.5465 0.8288 4.2415 0.1494 0.2131 1.4182 0.0345 1.1189 0.0699
-#> 418: 92.6366 -5.8883 -2.3535 -4.1221 -0.9495 0.1555 0.1194 3.5499 0.8291 4.2477 0.1493 0.2127 1.4180 0.0345 1.1184 0.0699
-#> 419: 92.6367 -5.8885 -2.3536 -4.1236 -0.9495 0.1560 0.1195 3.5517 0.8292 4.2588 0.1492 0.2123 1.4179 0.0345 1.1180 0.0700
-#> 420: 92.6371 -5.8874 -2.3536 -4.1249 -0.9495 0.1564 0.1197 3.5474 0.8293 4.2666 0.1491 0.2118 1.4181 0.0345 1.1182 0.0700
-#> 421: 92.6374 -5.8860 -2.3537 -4.1263 -0.9494 0.1569 0.1197 3.5416 0.8292 4.2759 0.1492 0.2114 1.4184 0.0345 1.1188 0.0699
-#> 422: 92.6377 -5.8850 -2.3538 -4.1279 -0.9493 0.1572 0.1197 3.5365 0.8292 4.2865 0.1491 0.2110 1.4185 0.0345 1.1188 0.0700
-#> 423: 92.6380 -5.8844 -2.3540 -4.1299 -0.9494 0.1576 0.1196 3.5323 0.8290 4.2999 0.1491 0.2106 1.4186 0.0345 1.1192 0.0699
-#> 424: 92.6382 -5.8842 -2.3541 -4.1312 -0.9495 0.1581 0.1198 3.5309 0.8290 4.3092 0.1491 0.2103 1.4184 0.0345 1.1197 0.0699
-#> 425: 92.6382 -5.8838 -2.3543 -4.1320 -0.9495 0.1584 0.1197 3.5281 0.8289 4.3140 0.1491 0.2099 1.4185 0.0346 1.1196 0.0699
-#> 426: 92.6380 -5.8829 -2.3545 -4.1327 -0.9494 0.1587 0.1196 3.5234 0.8293 4.3183 0.1491 0.2096 1.4182 0.0346 1.1194 0.0699
-#> 427: 92.6375 -5.8823 -2.3548 -4.1335 -0.9494 0.1589 0.1197 3.5189 0.8295 4.3233 0.1492 0.2092 1.4180 0.0346 1.1196 0.0699
-#> 428: 92.6370 -5.8813 -2.3552 -4.1343 -0.9494 0.1592 0.1199 3.5140 0.8295 4.3286 0.1491 0.2088 1.4182 0.0346 1.1198 0.0699
-#> 429: 92.6368 -5.8802 -2.3556 -4.1356 -0.9495 0.1597 0.1202 3.5093 0.8296 4.3372 0.1491 0.2086 1.4182 0.0346 1.1208 0.0699
-#> 430: 92.6370 -5.8794 -2.3560 -4.1366 -0.9496 0.1602 0.1201 3.5058 0.8297 4.3439 0.1492 0.2084 1.4183 0.0346 1.1216 0.0698
-#> 431: 92.6371 -5.8792 -2.3564 -4.1372 -0.9497 0.1606 0.1201 3.5029 0.8298 4.3473 0.1493 0.2082 1.4182 0.0346 1.1215 0.0698
-#> 432: 92.6371 -5.8793 -2.3567 -4.1377 -0.9499 0.1609 0.1201 3.5008 0.8297 4.3499 0.1494 0.2080 1.4180 0.0346 1.1218 0.0698
-#> 433: 92.6370 -5.8799 -2.3570 -4.1387 -0.9501 0.1612 0.1201 3.5014 0.8298 4.3560 0.1495 0.2078 1.4180 0.0346 1.1218 0.0699
-#> 434: 92.6371 -5.8790 -2.3573 -4.1398 -0.9501 0.1615 0.1200 3.4982 0.8300 4.3624 0.1496 0.2076 1.4179 0.0346 1.1213 0.0699
-#> 435: 92.6368 -5.8789 -2.3576 -4.1409 -0.9501 0.1619 0.1199 3.4979 0.8302 4.3697 0.1496 0.2074 1.4176 0.0346 1.1205 0.0699
-#> 436: 92.6365 -5.8792 -2.3579 -4.1424 -0.9500 0.1623 0.1197 3.4987 0.8304 4.3798 0.1497 0.2073 1.4173 0.0346 1.1198 0.0699
-#> 437: 92.6364 -5.8798 -2.3582 -4.1439 -0.9500 0.1627 0.1195 3.5017 0.8307 4.3905 0.1497 0.2071 1.4172 0.0346 1.1191 0.0700
-#> 438: 92.6362 -5.8803 -2.3585 -4.1450 -0.9499 0.1631 0.1193 3.5053 0.8309 4.3973 0.1497 0.2070 1.4172 0.0346 1.1186 0.0700
-#> 439: 92.6361 -5.8811 -2.3588 -4.1463 -0.9498 0.1634 0.1190 3.5101 0.8312 4.4052 0.1496 0.2069 1.4172 0.0346 1.1188 0.0700
-#> 440: 92.6360 -5.8816 -2.3591 -4.1477 -0.9498 0.1637 0.1187 3.5127 0.8315 4.4145 0.1495 0.2068 1.4172 0.0346 1.1189 0.0700
-#> 441: 92.6357 -5.8816 -2.3594 -4.1492 -0.9499 0.1640 0.1185 3.5136 0.8319 4.4252 0.1494 0.2069 1.4175 0.0346 1.1191 0.0700
-#> 442: 92.6356 -5.8819 -2.3596 -4.1501 -0.9500 0.1642 0.1181 3.5151 0.8323 4.4310 0.1494 0.2070 1.4176 0.0346 1.1193 0.0700
-#> 443: 92.6356 -5.8825 -2.3598 -4.1512 -0.9501 0.1643 0.1180 3.5178 0.8324 4.4379 0.1493 0.2071 1.4179 0.0346 1.1196 0.0700
-#> 444: 92.6352 -5.8827 -2.3602 -4.1525 -0.9502 0.1644 0.1180 3.5169 0.8327 4.4458 0.1493 0.2073 1.4178 0.0346 1.1198 0.0700
-#> 445: 92.6348 -5.8828 -2.3605 -4.1534 -0.9502 0.1643 0.1180 3.5178 0.8329 4.4505 0.1493 0.2074 1.4178 0.0346 1.1202 0.0700
-#> 446: 92.6342 -5.8830 -2.3609 -4.1541 -0.9503 0.1643 0.1183 3.5182 0.8331 4.4539 0.1494 0.2077 1.4176 0.0346 1.1199 0.0700
-#> 447: 92.6334 -5.8832 -2.3613 -4.1548 -0.9503 0.1643 0.1188 3.5188 0.8333 4.4571 0.1494 0.2079 1.4172 0.0346 1.1198 0.0700
-#> 448: 92.6331 -5.8833 -2.3616 -4.1557 -0.9503 0.1643 0.1190 3.5190 0.8335 4.4613 0.1494 0.2080 1.4170 0.0346 1.1198 0.0700
-#> 449: 92.6327 -5.8835 -2.3619 -4.1563 -0.9504 0.1641 0.1192 3.5191 0.8335 4.4636 0.1493 0.2081 1.4172 0.0346 1.1196 0.0700
-#> 450: 92.6322 -5.8831 -2.3620 -4.1566 -0.9505 0.1639 0.1194 3.5152 0.8340 4.4647 0.1492 0.2083 1.4172 0.0346 1.1189 0.0700
-#> 451: 92.6315 -5.8835 -2.3622 -4.1569 -0.9505 0.1635 0.1194 3.5192 0.8343 4.4648 0.1492 0.2084 1.4169 0.0346 1.1187 0.0700
-#> 452: 92.6312 -5.8834 -2.3625 -4.1572 -0.9506 0.1632 0.1193 3.5173 0.8345 4.4654 0.1492 0.2086 1.4166 0.0346 1.1183 0.0700
-#> 453: 92.6309 -5.8838 -2.3628 -4.1574 -0.9506 0.1629 0.1193 3.5175 0.8348 4.4660 0.1493 0.2087 1.4166 0.0346 1.1180 0.0700
-#> 454: 92.6307 -5.8832 -2.3629 -4.1574 -0.9507 0.1625 0.1193 3.5128 0.8354 4.4658 0.1493 0.2087 1.4164 0.0346 1.1176 0.0700
-#> 455: 92.6305 -5.8821 -2.3632 -4.1579 -0.9508 0.1624 0.1192 3.5071 0.8360 4.4678 0.1494 0.2089 1.4164 0.0346 1.1171 0.0701
-#> 456: 92.6307 -5.8811 -2.3634 -4.1589 -0.9509 0.1623 0.1190 3.5014 0.8364 4.4730 0.1494 0.2088 1.4168 0.0346 1.1168 0.0701
-#> 457: 92.6307 -5.8808 -2.3636 -4.1597 -0.9509 0.1621 0.1188 3.4980 0.8368 4.4772 0.1494 0.2089 1.4168 0.0347 1.1166 0.0701
-#> 458: 92.6308 -5.8813 -2.3638 -4.1607 -0.9510 0.1621 0.1185 3.4994 0.8369 4.4823 0.1494 0.2088 1.4168 0.0347 1.1161 0.0701
-#> 459: 92.6308 -5.8819 -2.3639 -4.1615 -0.9511 0.1620 0.1184 3.5008 0.8371 4.4861 0.1494 0.2086 1.4167 0.0347 1.1155 0.0701
-#> 460: 92.6309 -5.8824 -2.3642 -4.1621 -0.9511 0.1621 0.1182 3.5024 0.8374 4.4886 0.1493 0.2085 1.4164 0.0347 1.1148 0.0702
-#> 461: 92.6309 -5.8821 -2.3647 -4.1631 -0.9511 0.1621 0.1181 3.5000 0.8378 4.4937 0.1493 0.2084 1.4160 0.0347 1.1141 0.0702
-#> 462: 92.6309 -5.8825 -2.3651 -4.1638 -0.9511 0.1623 0.1180 3.5006 0.8381 4.4975 0.1492 0.2082 1.4156 0.0348 1.1133 0.0702
-#> 463: 92.6307 -5.8824 -2.3656 -4.1654 -0.9510 0.1624 0.1179 3.5000 0.8382 4.5074 0.1491 0.2081 1.4154 0.0348 1.1124 0.0702
-#> 464: 92.6305 -5.8825 -2.3660 -4.1668 -0.9510 0.1625 0.1178 3.5001 0.8384 4.5171 0.1491 0.2080 1.4149 0.0348 1.1115 0.0703
-#> 465: 92.6302 -5.8828 -2.3664 -4.1681 -0.9511 0.1626 0.1179 3.5012 0.8386 4.5247 0.1490 0.2079 1.4151 0.0348 1.1107 0.0703
-#> 466: 92.6300 -5.8827 -2.3668 -4.1697 -0.9511 0.1626 0.1179 3.5005 0.8390 4.5370 0.1490 0.2079 1.4148 0.0349 1.1098 0.0704
-#> 467: 92.6301 -5.8828 -2.3671 -4.1721 -0.9512 0.1628 0.1180 3.4991 0.8393 4.5562 0.1490 0.2078 1.4148 0.0349 1.1092 0.0704
-#> 468: 92.6303 -5.8833 -2.3675 -4.1745 -0.9513 0.1630 0.1181 3.4996 0.8397 4.5756 0.1489 0.2078 1.4148 0.0349 1.1086 0.0704
-#> 469: 92.6304 -5.8835 -2.3680 -4.1759 -0.9513 0.1630 0.1181 3.4991 0.8401 4.5829 0.1490 0.2080 1.4145 0.0349 1.1082 0.0704
-#> 470: 92.6304 -5.8839 -2.3685 -4.1772 -0.9512 0.1630 0.1183 3.4993 0.8405 4.5904 0.1490 0.2081 1.4142 0.0349 1.1079 0.0704
-#> 471: 92.6304 -5.8838 -2.3690 -4.1786 -0.9511 0.1631 0.1182 3.4992 0.8408 4.5981 0.1489 0.2082 1.4143 0.0350 1.1075 0.0704
-#> 472: 92.6301 -5.8839 -2.3695 -4.1800 -0.9511 0.1631 0.1182 3.5005 0.8413 4.6063 0.1488 0.2083 1.4143 0.0350 1.1072 0.0704
-#> 473: 92.6296 -5.8841 -2.3699 -4.1811 -0.9510 0.1630 0.1182 3.5019 0.8417 4.6119 0.1487 0.2085 1.4142 0.0350 1.1065 0.0704
-#> 474: 92.6293 -5.8843 -2.3704 -4.1823 -0.9510 0.1629 0.1184 3.5038 0.8422 4.6182 0.1487 0.2087 1.4145 0.0350 1.1060 0.0704
-#> 475: 92.6293 -5.8851 -2.3709 -4.1839 -0.9509 0.1628 0.1185 3.5084 0.8426 4.6277 0.1487 0.2089 1.4142 0.0351 1.1057 0.0704
-#> 476: 92.6293 -5.8854 -2.3713 -4.1847 -0.9509 0.1627 0.1185 3.5137 0.8430 4.6318 0.1486 0.2092 1.4139 0.0351 1.1057 0.0704
-#> 477: 92.6292 -5.8858 -2.3718 -4.1859 -0.9508 0.1627 0.1183 3.5201 0.8430 4.6397 0.1485 0.2095 1.4139 0.0351 1.1060 0.0704
-#> 478: 92.6291 -5.8871 -2.3722 -4.1867 -0.9508 0.1625 0.1181 3.5291 0.8432 4.6449 0.1483 0.2098 1.4140 0.0351 1.1058 0.0704
-#> 479: 92.6293 -5.8891 -2.3726 -4.1873 -0.9509 0.1623 0.1178 3.5422 0.8435 4.6486 0.1482 0.2100 1.4139 0.0352 1.1056 0.0704
-#> 480: 92.6294 -5.8910 -2.3730 -4.1881 -0.9509 0.1622 0.1175 3.5568 0.8437 4.6535 0.1482 0.2102 1.4140 0.0352 1.1053 0.0705
-#> 481: 92.6297 -5.8919 -2.3734 -4.1888 -0.9509 0.1621 0.1174 3.5650 0.8440 4.6572 0.1482 0.2104 1.4138 0.0353 1.1051 0.0705
-#> 482: 92.6293 -5.8929 -2.3737 -4.1894 -0.9509 0.1619 0.1173 3.5745 0.8444 4.6620 0.1482 0.2107 1.4134 0.0353 1.1047 0.0705
-#> 483: 92.6284 -5.8939 -2.3741 -4.1901 -0.9508 0.1616 0.1176 3.5832 0.8446 4.6672 0.1482 0.2109 1.4131 0.0353 1.1044 0.0705
-#> 484: 92.6276 -5.8943 -2.3744 -4.1904 -0.9507 0.1615 0.1179 3.5877 0.8447 4.6692 0.1483 0.2113 1.4128 0.0353 1.1041 0.0705
-#> 485: 92.6266 -5.8947 -2.3746 -4.1912 -0.9507 0.1616 0.1182 3.5903 0.8448 4.6751 0.1483 0.2115 1.4126 0.0354 1.1042 0.0705
-#> 486: 92.6258 -5.8952 -2.3749 -4.1918 -0.9508 0.1615 0.1185 3.5929 0.8450 4.6799 0.1485 0.2115 1.4125 0.0354 1.1045 0.0704
-#> 487: 92.6250 -5.8956 -2.3750 -4.1923 -0.9509 0.1614 0.1189 3.5922 0.8452 4.6835 0.1486 0.2115 1.4122 0.0354 1.1050 0.0704
-#> 488: 92.6242 -5.8956 -2.3752 -4.1927 -0.9510 0.1613 0.1191 3.5898 0.8453 4.6866 0.1487 0.2115 1.4119 0.0354 1.1051 0.0704
-#> 489: 92.6238 -5.8954 -2.3753 -4.1932 -0.9511 0.1611 0.1190 3.5871 0.8454 4.6905 0.1487 0.2115 1.4118 0.0354 1.1057 0.0704
-#> 490: 92.6237 -5.8951 -2.3754 -4.1936 -0.9511 0.1611 0.1188 3.5839 0.8454 4.6945 0.1487 0.2114 1.4117 0.0354 1.1064 0.0703
-#> 491: 92.6235 -5.8942 -2.3755 -4.1941 -0.9511 0.1610 0.1187 3.5790 0.8455 4.6981 0.1488 0.2115 1.4118 0.0354 1.1068 0.0703
-#> 492: 92.6234 -5.8938 -2.3755 -4.1952 -0.9512 0.1609 0.1186 3.5760 0.8454 4.7074 0.1488 0.2115 1.4119 0.0354 1.1074 0.0703
-#> 493: 92.6236 -5.8938 -2.3755 -4.1958 -0.9512 0.1608 0.1186 3.5747 0.8454 4.7121 0.1488 0.2114 1.4120 0.0354 1.1078 0.0702
-#> 494: 92.6239 -5.8945 -2.3756 -4.1964 -0.9513 0.1607 0.1186 3.5772 0.8455 4.7167 0.1488 0.2115 1.4120 0.0354 1.1082 0.0702
-#> 495: 92.6242 -5.8950 -2.3756 -4.1971 -0.9514 0.1605 0.1187 3.5798 0.8454 4.7227 0.1489 0.2117 1.4122 0.0354 1.1084 0.0702
-#> 496: 92.6242 -5.8962 -2.3757 -4.1978 -0.9514 0.1603 0.1189 3.5870 0.8455 4.7283 0.1489 0.2119 1.4121 0.0354 1.1090 0.0702
-#> 497: 92.6241 -5.8972 -2.3757 -4.1981 -0.9514 0.1602 0.1191 3.5934 0.8454 4.7298 0.1488 0.2120 1.4123 0.0354 1.1096 0.0701
-#> 498: 92.6244 -5.8973 -2.3758 -4.1981 -0.9514 0.1601 0.1190 3.5947 0.8454 4.7296 0.1488 0.2121 1.4123 0.0354 1.1101 0.0701
-#> 499: 92.6244 -5.8968 -2.3759 -4.1980 -0.9514 0.1600 0.1188 3.5935 0.8453 4.7290 0.1488 0.2124 1.4123 0.0354 1.1108 0.0701
-#> 500: 92.6245 -5.8959 -2.3759 -4.1978 -0.9513 0.1597 0.1188 3.5912 0.8452 4.7282 0.1488 0.2126 1.4123 0.0354 1.1111 0.0701#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"#> Calculating residuals/tables#> done#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> Timing stopped at: 0.843 0.028 0.871f_nlmixr_dfop_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei",
error_model = "obs_tc")
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
-#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#> F: Forward difference gradient approximation
-#> C: Central difference gradient approximation
-#> M: Mixed forward and central difference gradient approximation
-#> Unscaled parameters for Omegas=chol(solve(omega));
-#> Diagonals are transformed, as specified by foceiControl(diagXform=)
-#> |-----+---------------+-----------+-----------+-----------+-----------|
-#> | #| Objective Fun | parent_0 | log_k_A1 |f_parent_qlogis | log_k1 |
-#> |.....................| log_k2 | g_qlogis |sigma_low_parent |rsd_high_parent |
-#> |.....................|sigma_low_A1 |rsd_high_A1 | o1 | o2 |
-#> |.....................| o3 | o4 | o5 | o6 |
-#> | 1| 495.80376 | 1.000 | -1.000 | -0.9110 | -0.9380 |
-#> |.....................| -0.9885 | -0.8832 | -0.8755 | -0.8915 |
-#> |.....................| -0.8755 | -0.8915 | -0.8776 | -0.8741 |
-#> |.....................| -0.8681 | -0.8727 | -0.8749 | -0.8675 |
-#> | U| 495.80376 | 91.48 | -5.189 | -0.8875 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8280 | 0.05769 |
-#> |.....................| 0.8280 | 0.05769 | 0.7296 | 0.8969 |
-#> |.....................| 1.185 | 0.9628 | 0.8582 | 1.216 |
-#> | X| 495.80376 | 91.48 | 0.005580 | 0.2916 | 0.1119 |
-#> |.....................| 0.009750 | 0.6128 | 0.8280 | 0.05769 |
-#> |.....................| 0.8280 | 0.05769 | 0.7296 | 0.8969 |
-#> |.....................| 1.185 | 0.9628 | 0.8582 | 1.216 |
-#> | G| Gill Diff. | 40.10 | 2.344 | -0.09792 | 0.01304 |
-#> |.....................| -0.4854 | 0.6353 | -23.92 | -17.76 |
-#> |.....................| -5.723 | -2.232 | 1.261 | 9.993 |
-#> |.....................| -12.68 | -0.7774 | 8.106 | -12.55 |
-#> | 2| 3318.3701 | 0.2710 | -1.043 | -0.9092 | -0.9382 |
-#> |.....................| -0.9796 | -0.8947 | -0.4406 | -0.5686 |
-#> |.....................| -0.7715 | -0.8509 | -0.9005 | -1.056 |
-#> |.....................| -0.6376 | -0.8586 | -1.022 | -0.6393 |
-#> | U| 3318.3701 | 24.79 | -5.231 | -0.8859 | -2.190 |
-#> |.....................| -4.622 | 0.4536 | 1.008 | 0.06701 |
-#> |.....................| 0.8711 | 0.05887 | 0.7129 | 0.7340 |
-#> |.....................| 1.458 | 0.9764 | 0.7317 | 1.493 |
-#> | X| 3318.3701 | 24.79 | 0.005347 | 0.2920 | 0.1119 |
-#> |.....................| 0.009837 | 0.6115 | 1.008 | 0.06701 |
-#> |.....................| 0.8711 | 0.05887 | 0.7129 | 0.7340 |
-#> |.....................| 1.458 | 0.9764 | 0.7317 | 1.493 |
-#> | 3| 512.37365 | 0.9271 | -1.004 | -0.9108 | -0.9380 |
-#> |.....................| -0.9876 | -0.8843 | -0.8320 | -0.8592 |
-#> |.....................| -0.8651 | -0.8874 | -0.8799 | -0.8923 |
-#> |.....................| -0.8451 | -0.8713 | -0.8896 | -0.8447 |
-#> | U| 512.37365 | 84.82 | -5.193 | -0.8873 | -2.190 |
-#> |.....................| -4.630 | 0.4584 | 0.8460 | 0.05863 |
-#> |.....................| 0.8323 | 0.05781 | 0.7279 | 0.8806 |
-#> |.....................| 1.212 | 0.9641 | 0.8455 | 1.244 |
-#> | X| 512.37365 | 84.82 | 0.005556 | 0.2917 | 0.1119 |
-#> |.....................| 0.009759 | 0.6126 | 0.8460 | 0.05863 |
-#> |.....................| 0.8323 | 0.05781 | 0.7279 | 0.8806 |
-#> |.....................| 1.212 | 0.9641 | 0.8455 | 1.244 |
-#> | 4| 495.44913 | 0.9909 | -1.001 | -0.9110 | -0.9380 |
-#> |.....................| -0.9883 | -0.8833 | -0.8701 | -0.8874 |
-#> |.....................| -0.8742 | -0.8910 | -0.8778 | -0.8764 |
-#> |.....................| -0.8653 | -0.8726 | -0.8767 | -0.8647 |
-#> | U| 495.44913 | 90.65 | -5.189 | -0.8874 | -2.190 |
-#> |.....................| -4.630 | 0.4589 | 0.8303 | 0.05781 |
-#> |.....................| 0.8286 | 0.05771 | 0.7294 | 0.8949 |
-#> |.....................| 1.189 | 0.9629 | 0.8566 | 1.219 |
-#> | X| 495.44913 | 90.65 | 0.005577 | 0.2916 | 0.1119 |
-#> |.....................| 0.009751 | 0.6127 | 0.8303 | 0.05781 |
-#> |.....................| 0.8286 | 0.05771 | 0.7294 | 0.8949 |
-#> |.....................| 1.189 | 0.9629 | 0.8566 | 1.219 |
-#> | F| Forward Diff. | -32.24 | 2.221 | -0.3999 | 0.1183 |
-#> |.....................| -0.4367 | 0.6696 | -24.35 | -18.50 |
-#> |.....................| -5.733 | -2.007 | 1.154 | 9.098 |
-#> |.....................| -12.48 | -0.2426 | 8.051 | -12.28 |
-#> | 5| 495.09570 | 0.9990 | -1.001 | -0.9109 | -0.9380 |
-#> |.....................| -0.9882 | -0.8835 | -0.8640 | -0.8828 |
-#> |.....................| -0.8728 | -0.8905 | -0.8781 | -0.8786 |
-#> |.....................| -0.8621 | -0.8725 | -0.8788 | -0.8616 |
-#> | U| 495.0957 | 91.39 | -5.190 | -0.8874 | -2.190 |
-#> |.....................| -4.630 | 0.4588 | 0.8328 | 0.05794 |
-#> |.....................| 0.8291 | 0.05772 | 0.7292 | 0.8928 |
-#> |.....................| 1.192 | 0.9630 | 0.8549 | 1.223 |
-#> | X| 495.0957 | 91.39 | 0.005574 | 0.2917 | 0.1119 |
-#> |.....................| 0.009752 | 0.6127 | 0.8328 | 0.05794 |
-#> |.....................| 0.8291 | 0.05772 | 0.7292 | 0.8928 |
-#> |.....................| 1.192 | 0.9630 | 0.8549 | 1.223 |
-#> | F| Forward Diff. | 32.16 | 2.311 | -0.1335 | 0.03619 |
-#> |.....................| -0.4432 | 0.6445 | -23.23 | -17.46 |
-#> |.....................| -5.567 | -2.162 | 1.281 | 9.656 |
-#> |.....................| -12.09 | -0.7018 | 7.779 | -12.29 |
-#> | 6| 494.75975 | 0.9908 | -1.002 | -0.9109 | -0.9380 |
-#> |.....................| -0.9881 | -0.8836 | -0.8581 | -0.8783 |
-#> |.....................| -0.8714 | -0.8899 | -0.8785 | -0.8811 |
-#> |.....................| -0.8590 | -0.8723 | -0.8807 | -0.8584 |
-#> | U| 494.75975 | 90.64 | -5.190 | -0.8873 | -2.190 |
-#> |.....................| -4.630 | 0.4587 | 0.8352 | 0.05807 |
-#> |.....................| 0.8297 | 0.05774 | 0.7290 | 0.8906 |
-#> |.....................| 1.196 | 0.9632 | 0.8532 | 1.227 |
-#> | X| 494.75975 | 90.64 | 0.005570 | 0.2917 | 0.1119 |
-#> |.....................| 0.009754 | 0.6127 | 0.8352 | 0.05807 |
-#> |.....................| 0.8297 | 0.05774 | 0.7290 | 0.8906 |
-#> |.....................| 1.196 | 0.9632 | 0.8532 | 1.227 |
-#> | F| Forward Diff. | -33.18 | 2.192 | -0.4095 | 0.1210 |
-#> |.....................| -0.4089 | 0.6743 | -23.19 | -17.83 |
-#> |.....................| -5.624 | -1.860 | 1.146 | 8.868 |
-#> |.....................| -11.42 | -0.05808 | 7.519 | -12.11 |
-#> | 7| 494.42957 | 0.9992 | -1.002 | -0.9108 | -0.9380 |
-#> |.....................| -0.9880 | -0.8838 | -0.8522 | -0.8738 |
-#> |.....................| -0.8699 | -0.8894 | -0.8788 | -0.8834 |
-#> |.....................| -0.8561 | -0.8723 | -0.8827 | -0.8554 |
-#> | U| 494.42957 | 91.41 | -5.191 | -0.8872 | -2.190 |
-#> |.....................| -4.630 | 0.4586 | 0.8377 | 0.05820 |
-#> |.....................| 0.8303 | 0.05775 | 0.7287 | 0.8886 |
-#> |.....................| 1.199 | 0.9632 | 0.8515 | 1.231 |
-#> | X| 494.42957 | 91.41 | 0.005567 | 0.2917 | 0.1119 |
-#> |.....................| 0.009755 | 0.6127 | 0.8377 | 0.05820 |
-#> |.....................| 0.8303 | 0.05775 | 0.7287 | 0.8886 |
-#> |.....................| 1.199 | 0.9632 | 0.8515 | 1.231 |
-#> | F| Forward Diff. | 33.60 | 2.291 | -0.1177 | 0.03548 |
-#> |.....................| -0.4327 | 0.6500 | -23.13 | -16.67 |
-#> |.....................| -5.444 | -2.054 | 1.165 | 9.367 |
-#> |.....................| -12.23 | 0.1305 | 7.522 | -12.12 |
-#> | 8| 494.10805 | 0.9907 | -1.003 | -0.9107 | -0.9380 |
-#> |.....................| -0.9879 | -0.8840 | -0.8463 | -0.8696 |
-#> |.....................| -0.8686 | -0.8889 | -0.8791 | -0.8857 |
-#> |.....................| -0.8530 | -0.8723 | -0.8846 | -0.8523 |
-#> | U| 494.10805 | 90.63 | -5.191 | -0.8872 | -2.190 |
-#> |.....................| -4.630 | 0.4586 | 0.8401 | 0.05833 |
-#> |.....................| 0.8309 | 0.05777 | 0.7285 | 0.8865 |
-#> |.....................| 1.203 | 0.9632 | 0.8499 | 1.234 |
-#> | X| 494.10805 | 90.63 | 0.005564 | 0.2917 | 0.1119 |
-#> |.....................| 0.009756 | 0.6127 | 0.8401 | 0.05833 |
-#> |.....................| 0.8309 | 0.05777 | 0.7285 | 0.8865 |
-#> |.....................| 1.203 | 0.9632 | 0.8499 | 1.234 |
-#> | F| Forward Diff. | -33.55 | 2.169 | -0.4095 | 0.1317 |
-#> |.....................| -0.3875 | 0.6809 | -22.57 | -17.16 |
-#> |.....................| -5.560 | -1.906 | 1.113 | 8.554 |
-#> |.....................| -12.00 | -0.1191 | 7.606 | -11.94 |
-#> | 9| 493.79074 | 0.9992 | -1.003 | -0.9106 | -0.9381 |
-#> |.....................| -0.9878 | -0.8841 | -0.8406 | -0.8652 |
-#> |.....................| -0.8671 | -0.8884 | -0.8793 | -0.8879 |
-#> |.....................| -0.8500 | -0.8723 | -0.8865 | -0.8493 |
-#> | U| 493.79074 | 91.41 | -5.192 | -0.8871 | -2.190 |
-#> |.....................| -4.630 | 0.4585 | 0.8425 | 0.05845 |
-#> |.....................| 0.8315 | 0.05778 | 0.7283 | 0.8845 |
-#> |.....................| 1.207 | 0.9632 | 0.8482 | 1.238 |
-#> | X| 493.79074 | 91.41 | 0.005561 | 0.2917 | 0.1119 |
-#> |.....................| 0.009757 | 0.6127 | 0.8425 | 0.05845 |
-#> |.....................| 0.8315 | 0.05778 | 0.7283 | 0.8845 |
-#> |.....................| 1.207 | 0.9632 | 0.8482 | 1.238 |
-#> | F| Forward Diff. | 33.91 | 2.267 | -0.1078 | 0.03893 |
-#> |.....................| -0.4090 | 0.6560 | -22.34 | -15.94 |
-#> |.....................| -5.274 | -2.001 | 1.140 | 9.131 |
-#> |.....................| -12.00 | -0.1724 | 7.294 | -11.95 |
-#> | 10| 493.48645 | 0.9905 | -1.004 | -0.9106 | -0.9381 |
-#> |.....................| -0.9877 | -0.8843 | -0.8348 | -0.8611 |
-#> |.....................| -0.8658 | -0.8879 | -0.8796 | -0.8903 |
-#> |.....................| -0.8469 | -0.8723 | -0.8884 | -0.8462 |
-#> | U| 493.48645 | 90.62 | -5.193 | -0.8871 | -2.190 |
-#> |.....................| -4.630 | 0.4584 | 0.8449 | 0.05857 |
-#> |.....................| 0.8320 | 0.05780 | 0.7281 | 0.8824 |
-#> |.....................| 1.210 | 0.9632 | 0.8466 | 1.242 |
-#> | X| 493.48645 | 90.62 | 0.005558 | 0.2917 | 0.1119 |
-#> |.....................| 0.009758 | 0.6126 | 0.8449 | 0.05857 |
-#> |.....................| 0.8320 | 0.05780 | 0.7281 | 0.8824 |
-#> |.....................| 1.210 | 0.9632 | 0.8466 | 1.242 |
-#> | F| Forward Diff. | -34.40 | 2.145 | -0.4154 | 0.1312 |
-#> |.....................| -0.3648 | 0.6865 | -22.08 | -16.36 |
-#> |.....................| -5.345 | -1.756 | 1.231 | 8.303 |
-#> |.....................| -11.76 | -0.07864 | 7.355 | -11.77 |
-#> | 11| 493.18511 | 0.9993 | -1.004 | -0.9105 | -0.9381 |
-#> |.....................| -0.9876 | -0.8845 | -0.8292 | -0.8570 |
-#> |.....................| -0.8644 | -0.8875 | -0.8799 | -0.8924 |
-#> |.....................| -0.8439 | -0.8722 | -0.8902 | -0.8432 |
-#> | U| 493.18511 | 91.42 | -5.193 | -0.8870 | -2.190 |
-#> |.....................| -4.630 | 0.4583 | 0.8472 | 0.05869 |
-#> |.....................| 0.8326 | 0.05781 | 0.7279 | 0.8805 |
-#> |.....................| 1.214 | 0.9633 | 0.8450 | 1.246 |
-#> | X| 493.18511 | 91.42 | 0.005555 | 0.2917 | 0.1119 |
-#> |.....................| 0.009759 | 0.6126 | 0.8472 | 0.05869 |
-#> |.....................| 0.8326 | 0.05781 | 0.7279 | 0.8805 |
-#> |.....................| 1.214 | 0.9633 | 0.8450 | 1.246 |
-#> | F| Forward Diff. | 34.43 | 2.240 | -0.1040 | 0.04282 |
-#> |.....................| -0.3912 | 0.6547 | -21.84 | -15.27 |
-#> |.....................| -5.158 | -1.914 | 1.030 | 8.876 |
-#> |.....................| -11.77 | -0.1415 | 7.047 | -11.78 |
-#> | 12| 492.89407 | 0.9905 | -1.005 | -0.9105 | -0.9381 |
-#> |.....................| -0.9875 | -0.8847 | -0.8236 | -0.8530 |
-#> |.....................| -0.8631 | -0.8870 | -0.8802 | -0.8947 |
-#> |.....................| -0.8409 | -0.8722 | -0.8921 | -0.8401 |
-#> | U| 492.89407 | 90.61 | -5.194 | -0.8870 | -2.190 |
-#> |.....................| -4.630 | 0.4582 | 0.8495 | 0.05880 |
-#> |.....................| 0.8332 | 0.05782 | 0.7277 | 0.8785 |
-#> |.....................| 1.217 | 0.9633 | 0.8434 | 1.249 |
-#> | X| 492.89407 | 90.61 | 0.005551 | 0.2917 | 0.1119 |
-#> |.....................| 0.009760 | 0.6126 | 0.8495 | 0.05880 |
-#> |.....................| 0.8332 | 0.05782 | 0.7277 | 0.8785 |
-#> |.....................| 1.217 | 0.9633 | 0.8434 | 1.249 |
-#> | F| Forward Diff. | -34.81 | 2.117 | -0.4182 | 0.1353 |
-#> |.....................| -0.3428 | 0.6933 | -21.54 | -15.66 |
-#> |.....................| -5.188 | -1.708 | 1.147 | 8.020 |
-#> |.....................| -11.52 | -0.06705 | 7.151 | -11.60 |
-#> | 13| 492.59250 | 0.9992 | -1.006 | -0.9104 | -0.9382 |
-#> |.....................| -0.9874 | -0.8848 | -0.8179 | -0.8489 |
-#> |.....................| -0.8617 | -0.8865 | -0.8805 | -0.8968 |
-#> |.....................| -0.8378 | -0.8722 | -0.8940 | -0.8371 |
-#> | U| 492.5925 | 91.41 | -5.194 | -0.8869 | -2.190 |
-#> |.....................| -4.629 | 0.4582 | 0.8519 | 0.05892 |
-#> |.....................| 0.8337 | 0.05784 | 0.7275 | 0.8766 |
-#> |.....................| 1.221 | 0.9633 | 0.8418 | 1.253 |
-#> | X| 492.5925 | 91.41 | 0.005548 | 0.2918 | 0.1119 |
-#> |.....................| 0.009760 | 0.6126 | 0.8519 | 0.05892 |
-#> |.....................| 0.8337 | 0.05784 | 0.7275 | 0.8766 |
-#> |.....................| 1.221 | 0.9633 | 0.8418 | 1.253 |
-#> | F| Forward Diff. | 33.40 | 2.217 | -0.09736 | 0.04377 |
-#> |.....................| -0.3664 | 0.6618 | -21.29 | -14.62 |
-#> |.....................| -5.018 | -1.838 | 0.9818 | 8.628 |
-#> |.....................| -11.52 | -0.1307 | 6.857 | -11.62 |
-#> | 14| 492.30478 | 0.9905 | -1.006 | -0.9103 | -0.9382 |
-#> |.....................| -0.9873 | -0.8850 | -0.8121 | -0.8449 |
-#> |.....................| -0.8604 | -0.8860 | -0.8808 | -0.8991 |
-#> |.....................| -0.8347 | -0.8722 | -0.8958 | -0.8339 |
-#> | U| 492.30478 | 90.62 | -5.195 | -0.8868 | -2.190 |
-#> |.....................| -4.629 | 0.4581 | 0.8543 | 0.05904 |
-#> |.....................| 0.8343 | 0.05785 | 0.7273 | 0.8745 |
-#> |.....................| 1.225 | 0.9633 | 0.8402 | 1.257 |
-#> | X| 492.30478 | 90.62 | 0.005545 | 0.2918 | 0.1119 |
-#> |.....................| 0.009761 | 0.6126 | 0.8543 | 0.05904 |
-#> |.....................| 0.8343 | 0.05785 | 0.7273 | 0.8745 |
-#> |.....................| 1.225 | 0.9633 | 0.8402 | 1.257 |
-#> | F| Forward Diff. | -34.08 | 2.096 | -0.4157 | 0.1370 |
-#> |.....................| -0.3212 | 0.6979 | -20.95 | -14.99 |
-#> |.....................| -5.046 | -1.607 | 1.055 | 8.026 |
-#> |.....................| -11.31 | 0.3535 | 6.819 | -11.49 |
-#> | 15| 492.00325 | 0.9991 | -1.007 | -0.9102 | -0.9382 |
-#> |.....................| -0.9872 | -0.8852 | -0.8063 | -0.8408 |
-#> |.....................| -0.8590 | -0.8856 | -0.8811 | -0.9014 |
-#> |.....................| -0.8316 | -0.8723 | -0.8977 | -0.8307 |
-#> | U| 492.00325 | 91.40 | -5.195 | -0.8867 | -2.190 |
-#> |.....................| -4.629 | 0.4580 | 0.8567 | 0.05916 |
-#> |.....................| 0.8349 | 0.05786 | 0.7271 | 0.8725 |
-#> |.....................| 1.229 | 0.9632 | 0.8386 | 1.261 |
-#> | X| 492.00325 | 91.40 | 0.005542 | 0.2918 | 0.1119 |
-#> |.....................| 0.009762 | 0.6125 | 0.8567 | 0.05916 |
-#> |.....................| 0.8349 | 0.05786 | 0.7271 | 0.8725 |
-#> |.....................| 1.229 | 0.9632 | 0.8386 | 1.261 |
-#> | F| Forward Diff. | 32.19 | 2.189 | -0.09620 | 0.04245 |
-#> |.....................| -0.3450 | 0.6659 | -21.28 | -14.00 |
-#> |.....................| -4.881 | -1.759 | 1.243 | 8.359 |
-#> |.....................| -10.62 | -0.07477 | 6.614 | -11.44 |
-#> | 16| 491.72015 | 0.9906 | -1.007 | -0.9102 | -0.9382 |
-#> |.....................| -0.9871 | -0.8854 | -0.8003 | -0.8368 |
-#> |.....................| -0.8576 | -0.8851 | -0.8814 | -0.9037 |
-#> |.....................| -0.8285 | -0.8722 | -0.8996 | -0.8275 |
-#> | U| 491.72015 | 90.62 | -5.196 | -0.8867 | -2.190 |
-#> |.....................| -4.629 | 0.4579 | 0.8592 | 0.05927 |
-#> |.....................| 0.8354 | 0.05788 | 0.7268 | 0.8703 |
-#> |.....................| 1.232 | 0.9633 | 0.8370 | 1.265 |
-#> | X| 491.72015 | 90.62 | 0.005538 | 0.2918 | 0.1119 |
-#> |.....................| 0.009763 | 0.6125 | 0.8592 | 0.05927 |
-#> |.....................| 0.8354 | 0.05788 | 0.7268 | 0.8703 |
-#> |.....................| 1.232 | 0.9633 | 0.8370 | 1.265 |
-#> | F| Forward Diff. | -33.41 | 2.074 | -0.4123 | 0.1389 |
-#> |.....................| -0.2981 | 0.7039 | -20.39 | -14.31 |
-#> |.....................| -4.887 | -1.550 | 0.9656 | 7.818 |
-#> |.....................| -11.05 | -0.4282 | 6.582 | -11.31 |
-#> | 17| 491.42294 | 0.9990 | -1.008 | -0.9101 | -0.9383 |
-#> |.....................| -0.9870 | -0.8856 | -0.7943 | -0.8327 |
-#> |.....................| -0.8562 | -0.8846 | -0.8817 | -0.9060 |
-#> |.....................| -0.8254 | -0.8721 | -0.9015 | -0.8242 |
-#> | U| 491.42294 | 91.39 | -5.197 | -0.8866 | -2.190 |
-#> |.....................| -4.629 | 0.4578 | 0.8616 | 0.05939 |
-#> |.....................| 0.8360 | 0.05789 | 0.7266 | 0.8683 |
-#> |.....................| 1.236 | 0.9634 | 0.8354 | 1.269 |
-#> | X| 491.42294 | 91.39 | 0.005535 | 0.2918 | 0.1119 |
-#> |.....................| 0.009764 | 0.6125 | 0.8616 | 0.05939 |
-#> |.....................| 0.8360 | 0.05789 | 0.7266 | 0.8683 |
-#> |.....................| 1.236 | 0.9634 | 0.8354 | 1.269 |
-#> | F| Forward Diff. | 31.50 | 2.165 | -0.08876 | 0.04676 |
-#> |.....................| -0.3226 | 0.6753 | -20.70 | -13.34 |
-#> |.....................| -4.747 | -1.707 | 0.9017 | 8.141 |
-#> |.....................| -10.29 | -0.02981 | 6.402 | -11.28 |
-#> | 18| 491.14065 | 0.9907 | -1.009 | -0.9100 | -0.9383 |
-#> |.....................| -0.9870 | -0.8858 | -0.7882 | -0.8287 |
-#> |.....................| -0.8548 | -0.8841 | -0.8820 | -0.9084 |
-#> |.....................| -0.8223 | -0.8721 | -0.9034 | -0.8208 |
-#> | U| 491.14065 | 90.64 | -5.197 | -0.8866 | -2.190 |
-#> |.....................| -4.629 | 0.4577 | 0.8642 | 0.05950 |
-#> |.....................| 0.8366 | 0.05791 | 0.7264 | 0.8661 |
-#> |.....................| 1.240 | 0.9634 | 0.8337 | 1.273 |
-#> | X| 491.14065 | 90.64 | 0.005531 | 0.2918 | 0.1119 |
-#> |.....................| 0.009765 | 0.6125 | 0.8642 | 0.05950 |
-#> |.....................| 0.8366 | 0.05791 | 0.7264 | 0.8661 |
-#> |.....................| 1.240 | 0.9634 | 0.8337 | 1.273 |
-#> | F| Forward Diff. | -32.29 | 2.052 | -0.4043 | 0.1403 |
-#> |.....................| -0.2785 | 0.7107 | -20.12 | -13.83 |
-#> |.....................| -4.879 | -1.515 | 0.4622 | 7.293 |
-#> |.....................| -10.82 | -0.3681 | 6.384 | -11.14 |
-#> | 19| 490.84537 | 0.9989 | -1.009 | -0.9099 | -0.9383 |
-#> |.....................| -0.9869 | -0.8860 | -0.7821 | -0.8246 |
-#> |.....................| -0.8533 | -0.8837 | -0.8821 | -0.9106 |
-#> |.....................| -0.8190 | -0.8720 | -0.9053 | -0.8174 |
-#> | U| 490.84537 | 91.38 | -5.198 | -0.8865 | -2.190 |
-#> |.....................| -4.629 | 0.4576 | 0.8667 | 0.05962 |
-#> |.....................| 0.8372 | 0.05792 | 0.7263 | 0.8641 |
-#> |.....................| 1.243 | 0.9635 | 0.8321 | 1.277 |
-#> | X| 490.84537 | 91.38 | 0.005528 | 0.2918 | 0.1119 |
-#> |.....................| 0.009766 | 0.6124 | 0.8667 | 0.05962 |
-#> |.....................| 0.8372 | 0.05792 | 0.7263 | 0.8641 |
-#> |.....................| 1.243 | 0.9635 | 0.8321 | 1.277 |
-#> | F| Forward Diff. | 30.35 | 2.134 | -0.08371 | 0.04933 |
-#> |.....................| -0.3000 | 0.6785 | -20.24 | -12.73 |
-#> |.....................| -4.623 | -1.604 | 1.054 | 8.092 |
-#> |.....................| -10.77 | -0.4405 | 6.181 | -11.10 |
-#> | 20| 490.56963 | 0.9908 | -1.010 | -0.9099 | -0.9383 |
-#> |.....................| -0.9868 | -0.8862 | -0.7758 | -0.8207 |
-#> |.....................| -0.8519 | -0.8832 | -0.8824 | -0.9131 |
-#> |.....................| -0.8157 | -0.8719 | -0.9072 | -0.8140 |
-#> | U| 490.56963 | 90.64 | -5.199 | -0.8865 | -2.190 |
-#> |.....................| -4.629 | 0.4575 | 0.8693 | 0.05974 |
-#> |.....................| 0.8378 | 0.05793 | 0.7261 | 0.8619 |
-#> |.....................| 1.247 | 0.9636 | 0.8305 | 1.281 |
-#> | X| 490.56963 | 90.64 | 0.005524 | 0.2918 | 0.1119 |
-#> |.....................| 0.009767 | 0.6124 | 0.8693 | 0.05974 |
-#> |.....................| 0.8378 | 0.05793 | 0.7261 | 0.8619 |
-#> |.....................| 1.247 | 0.9636 | 0.8305 | 1.281 |
-#> | F| Forward Diff. | -31.85 | 2.030 | -0.4014 | 0.1424 |
-#> |.....................| -0.2574 | 0.7152 | -19.39 | -13.12 |
-#> |.....................| -4.602 | -1.387 | 0.5883 | 7.042 |
-#> |.....................| -10.56 | -0.3115 | 6.249 | -10.92 |
-#> | 21| 490.28521 | 0.9989 | -1.011 | -0.9098 | -0.9384 |
-#> |.....................| -0.9867 | -0.8865 | -0.7697 | -0.8166 |
-#> |.....................| -0.8504 | -0.8827 | -0.8826 | -0.9153 |
-#> |.....................| -0.8124 | -0.8718 | -0.9092 | -0.8105 |
-#> | U| 490.28521 | 91.39 | -5.199 | -0.8864 | -2.190 |
-#> |.....................| -4.629 | 0.4574 | 0.8718 | 0.05985 |
-#> |.....................| 0.8384 | 0.05795 | 0.7259 | 0.8599 |
-#> |.....................| 1.251 | 0.9637 | 0.8288 | 1.285 |
-#> | X| 490.28521 | 91.39 | 0.005521 | 0.2919 | 0.1119 |
-#> |.....................| 0.009767 | 0.6124 | 0.8718 | 0.05985 |
-#> |.....................| 0.8384 | 0.05795 | 0.7259 | 0.8599 |
-#> |.....................| 1.251 | 0.9637 | 0.8288 | 1.285 |
-#> | F| Forward Diff. | 30.53 | 2.112 | -0.07114 | 0.05276 |
-#> |.....................| -0.2779 | 0.6845 | -19.81 | -12.13 |
-#> |.....................| -4.498 | -1.539 | 0.6449 | 7.769 |
-#> |.....................| -10.55 | -0.3696 | 5.980 | -10.93 |
-#> | 22| 489.99923 | 0.9911 | -1.011 | -0.9097 | -0.9384 |
-#> |.....................| -0.9866 | -0.8867 | -0.7633 | -0.8127 |
-#> |.....................| -0.8489 | -0.8823 | -0.8828 | -0.9178 |
-#> |.....................| -0.8089 | -0.8716 | -0.9111 | -0.8070 |
-#> | U| 489.99923 | 90.67 | -5.200 | -0.8863 | -2.190 |
-#> |.....................| -4.629 | 0.4573 | 0.8745 | 0.05997 |
-#> |.....................| 0.8390 | 0.05796 | 0.7258 | 0.8577 |
-#> |.....................| 1.255 | 0.9638 | 0.8271 | 1.290 |
-#> | X| 489.99923 | 90.67 | 0.005517 | 0.2919 | 0.1119 |
-#> |.....................| 0.009768 | 0.6124 | 0.8745 | 0.05997 |
-#> |.....................| 0.8390 | 0.05796 | 0.7258 | 0.8577 |
-#> |.....................| 1.255 | 0.9638 | 0.8271 | 1.290 |
-#> | F| Forward Diff. | -29.14 | 2.012 | -0.3844 | 0.1417 |
-#> |.....................| -0.2358 | 0.7218 | -18.90 | -12.37 |
-#> |.....................| -4.517 | -1.329 | 0.4904 | 6.799 |
-#> |.....................| -10.31 | -0.2514 | 6.013 | -10.75 |
-#> | 23| 489.73483 | 0.9991 | -1.012 | -0.9096 | -0.9384 |
-#> |.....................| -0.9865 | -0.8869 | -0.7571 | -0.8087 |
-#> |.....................| -0.8475 | -0.8818 | -0.8829 | -0.9201 |
-#> |.....................| -0.8055 | -0.8715 | -0.9131 | -0.8034 |
-#> | U| 489.73483 | 91.40 | -5.201 | -0.8862 | -2.190 |
-#> |.....................| -4.629 | 0.4572 | 0.8771 | 0.06008 |
-#> |.....................| 0.8396 | 0.05797 | 0.7257 | 0.8557 |
-#> |.....................| 1.259 | 0.9639 | 0.8254 | 1.294 |
-#> | X| 489.73483 | 91.40 | 0.005513 | 0.2919 | 0.1119 |
-#> |.....................| 0.009769 | 0.6123 | 0.8771 | 0.06008 |
-#> |.....................| 0.8396 | 0.05797 | 0.7257 | 0.8557 |
-#> |.....................| 1.259 | 0.9639 | 0.8254 | 1.294 |
-#> | F| Forward Diff. | 31.68 | 2.089 | -0.05219 | 0.05312 |
-#> |.....................| -0.2568 | 0.6912 | -19.25 | -11.50 |
-#> |.....................| -4.291 | -1.478 | 0.6044 | 7.316 |
-#> |.....................| -10.30 | -0.3159 | 5.756 | -10.75 |
-#> | 24| 489.43925 | 0.9914 | -1.013 | -0.9096 | -0.9385 |
-#> |.....................| -0.9865 | -0.8872 | -0.7505 | -0.8049 |
-#> |.....................| -0.8460 | -0.8813 | -0.8831 | -0.9225 |
-#> |.....................| -0.8020 | -0.8714 | -0.9150 | -0.7997 |
-#> | U| 489.43925 | 90.70 | -5.201 | -0.8862 | -2.190 |
-#> |.....................| -4.628 | 0.4571 | 0.8798 | 0.06019 |
-#> |.....................| 0.8402 | 0.05799 | 0.7256 | 0.8535 |
-#> |.....................| 1.264 | 0.9640 | 0.8238 | 1.298 |
-#> | X| 489.43925 | 90.70 | 0.005509 | 0.2919 | 0.1119 |
-#> |.....................| 0.009770 | 0.6123 | 0.8798 | 0.06019 |
-#> |.....................| 0.8402 | 0.05799 | 0.7256 | 0.8535 |
-#> |.....................| 1.264 | 0.9640 | 0.8238 | 1.298 |
-#> | F| Forward Diff. | -26.48 | 1.993 | -0.3684 | 0.1403 |
-#> |.....................| -0.2166 | 0.7270 | -18.36 | -11.77 |
-#> |.....................| -4.393 | -1.275 | 0.4390 | 6.578 |
-#> |.....................| -10.04 | -0.2187 | 5.799 | -10.58 |
-#> | 25| 489.19181 | 0.9992 | -1.013 | -0.9095 | -0.9385 |
-#> |.....................| -0.9864 | -0.8874 | -0.7441 | -0.8009 |
-#> |.....................| -0.8445 | -0.8809 | -0.8833 | -0.9248 |
-#> |.....................| -0.7985 | -0.8714 | -0.9170 | -0.7960 |
-#> | U| 489.19181 | 91.41 | -5.202 | -0.8861 | -2.190 |
-#> |.....................| -4.628 | 0.4570 | 0.8824 | 0.06031 |
-#> |.....................| 0.8409 | 0.05800 | 0.7255 | 0.8514 |
-#> |.....................| 1.268 | 0.9641 | 0.8221 | 1.303 |
-#> | X| 489.19181 | 91.41 | 0.005505 | 0.2919 | 0.1119 |
-#> |.....................| 0.009770 | 0.6123 | 0.8824 | 0.06031 |
-#> |.....................| 0.8409 | 0.05800 | 0.7255 | 0.8514 |
-#> |.....................| 1.268 | 0.9641 | 0.8221 | 1.303 |
-#> | F| Forward Diff. | 32.48 | 2.067 | -0.03453 | 0.05414 |
-#> |.....................| -0.2360 | 0.6938 | -18.67 | -10.89 |
-#> |.....................| -4.178 | -1.425 | 0.5548 | 7.078 |
-#> |.....................| -10.01 | -0.2144 | 5.548 | -10.57 |
-#> | 26| 488.89118 | 0.9917 | -1.014 | -0.9094 | -0.9385 |
-#> |.....................| -0.9863 | -0.8877 | -0.7375 | -0.7972 |
-#> |.....................| -0.8430 | -0.8804 | -0.8834 | -0.9272 |
-#> |.....................| -0.7949 | -0.8713 | -0.9189 | -0.7921 |
-#> | U| 488.89118 | 90.73 | -5.203 | -0.8860 | -2.190 |
-#> |.....................| -4.628 | 0.4568 | 0.8852 | 0.06041 |
-#> |.....................| 0.8415 | 0.05801 | 0.7253 | 0.8493 |
-#> |.....................| 1.272 | 0.9642 | 0.8204 | 1.308 |
-#> | X| 488.89118 | 90.73 | 0.005501 | 0.2919 | 0.1119 |
-#> |.....................| 0.009771 | 0.6123 | 0.8852 | 0.06041 |
-#> |.....................| 0.8415 | 0.05801 | 0.7253 | 0.8493 |
-#> |.....................| 1.272 | 0.9642 | 0.8204 | 1.308 |
-#> | F| Forward Diff. | -24.34 | 1.974 | -0.3522 | 0.1400 |
-#> |.....................| -0.1957 | 0.7323 | -17.88 | -11.06 |
-#> |.....................| -4.245 | -1.195 | 0.3418 | 6.336 |
-#> |.....................| -9.795 | -0.1748 | 5.588 | -10.40 |
-#> | 27| 488.65823 | 0.9993 | -1.015 | -0.9093 | -0.9386 |
-#> |.....................| -0.9862 | -0.8880 | -0.7310 | -0.7933 |
-#> |.....................| -0.8415 | -0.8800 | -0.8835 | -0.9295 |
-#> |.....................| -0.7913 | -0.8712 | -0.9210 | -0.7883 |
-#> | U| 488.65823 | 91.42 | -5.204 | -0.8859 | -2.190 |
-#> |.....................| -4.628 | 0.4567 | 0.8878 | 0.06053 |
-#> |.....................| 0.8421 | 0.05803 | 0.7253 | 0.8472 |
-#> |.....................| 1.276 | 0.9642 | 0.8187 | 1.312 |
-#> | X| 488.65823 | 91.42 | 0.005497 | 0.2919 | 0.1119 |
-#> |.....................| 0.009772 | 0.6122 | 0.8878 | 0.06053 |
-#> |.....................| 0.8421 | 0.05803 | 0.7253 | 0.8472 |
-#> |.....................| 1.276 | 0.9642 | 0.8187 | 1.312 |
-#> | F| Forward Diff. | 33.05 | 2.045 | -0.01570 | 0.05526 |
-#> |.....................| -0.2154 | 0.6997 | -18.21 | -10.28 |
-#> |.....................| -4.052 | -1.334 | 0.4619 | 6.811 |
-#> |.....................| -9.752 | -0.1974 | 5.317 | -10.39 |
-#> | 28| 488.35451 | 0.9920 | -1.016 | -0.9093 | -0.9386 |
-#> |.....................| -0.9862 | -0.8883 | -0.7243 | -0.7897 |
-#> |.....................| -0.8399 | -0.8795 | -0.8836 | -0.9319 |
-#> |.....................| -0.7876 | -0.8712 | -0.9229 | -0.7844 |
-#> | U| 488.35451 | 90.75 | -5.204 | -0.8859 | -2.190 |
-#> |.....................| -4.628 | 0.4566 | 0.8906 | 0.06063 |
-#> |.....................| 0.8427 | 0.05804 | 0.7252 | 0.8450 |
-#> |.....................| 1.281 | 0.9643 | 0.8170 | 1.317 |
-#> | X| 488.35451 | 90.75 | 0.005493 | 0.2920 | 0.1119 |
-#> |.....................| 0.009772 | 0.6122 | 0.8906 | 0.06063 |
-#> |.....................| 0.8427 | 0.05804 | 0.7252 | 0.8450 |
-#> |.....................| 1.281 | 0.9643 | 0.8170 | 1.317 |
-#> | F| Forward Diff. | -22.42 | 1.954 | -0.3353 | 0.1391 |
-#> |.....................| -0.1757 | 0.7405 | -17.32 | -10.46 |
-#> |.....................| -4.053 | -1.161 | 0.2825 | 6.114 |
-#> |.....................| -9.506 | -0.1281 | 5.370 | -10.21 |
-#> | 29| 488.13711 | 0.9995 | -1.016 | -0.9092 | -0.9387 |
-#> |.....................| -0.9861 | -0.8886 | -0.7177 | -0.7858 |
-#> |.....................| -0.8384 | -0.8791 | -0.8837 | -0.9342 |
-#> |.....................| -0.7840 | -0.8711 | -0.9249 | -0.7804 |
-#> | U| 488.13711 | 91.44 | -5.205 | -0.8858 | -2.190 |
-#> |.....................| -4.628 | 0.4565 | 0.8934 | 0.06074 |
-#> |.....................| 0.8434 | 0.05805 | 0.7251 | 0.8430 |
-#> |.....................| 1.285 | 0.9643 | 0.8153 | 1.322 |
-#> | X| 488.13711 | 91.44 | 0.005489 | 0.2920 | 0.1119 |
-#> |.....................| 0.009773 | 0.6122 | 0.8934 | 0.06074 |
-#> |.....................| 0.8434 | 0.05805 | 0.7251 | 0.8430 |
-#> |.....................| 1.285 | 0.9643 | 0.8153 | 1.322 |
-#> | F| Forward Diff. | 33.81 | 2.022 | 0.006720 | 0.05587 |
-#> |.....................| -0.1935 | 0.7042 | -17.76 | -9.667 |
-#> |.....................| -3.890 | -1.276 | 0.4404 | 6.589 |
-#> |.....................| -9.459 | -0.1517 | 5.102 | -10.20 |
-#> | 30| 487.82953 | 0.9922 | -1.017 | -0.9091 | -0.9387 |
-#> |.....................| -0.9861 | -0.8889 | -0.7108 | -0.7824 |
-#> |.....................| -0.8369 | -0.8787 | -0.8838 | -0.9367 |
-#> |.....................| -0.7803 | -0.8711 | -0.9268 | -0.7763 |
-#> | U| 487.82953 | 90.77 | -5.206 | -0.8858 | -2.190 |
-#> |.....................| -4.628 | 0.4563 | 0.8962 | 0.06084 |
-#> |.....................| 0.8440 | 0.05806 | 0.7251 | 0.8408 |
-#> |.....................| 1.289 | 0.9644 | 0.8136 | 1.327 |
-#> | X| 487.82953 | 90.77 | 0.005484 | 0.2920 | 0.1119 |
-#> |.....................| 0.009774 | 0.6121 | 0.8962 | 0.06084 |
-#> |.....................| 0.8440 | 0.05806 | 0.7251 | 0.8408 |
-#> |.....................| 1.289 | 0.9644 | 0.8136 | 1.327 |
-#> | F| Forward Diff. | -20.31 | 1.935 | -0.3119 | 0.1382 |
-#> |.....................| -0.1555 | 0.7438 | -16.49 | -9.852 |
-#> |.....................| -3.955 | -1.103 | 0.2044 | 5.876 |
-#> |.....................| -9.237 | -0.1098 | 5.167 | -10.02 |
-#> | 31| 487.63293 | 0.9997 | -1.018 | -0.9090 | -0.9388 |
-#> |.....................| -0.9860 | -0.8892 | -0.7043 | -0.7786 |
-#> |.....................| -0.8354 | -0.8782 | -0.8838 | -0.9390 |
-#> |.....................| -0.7766 | -0.8711 | -0.9289 | -0.7723 |
-#> | U| 487.63293 | 91.46 | -5.207 | -0.8857 | -2.191 |
-#> |.....................| -4.628 | 0.4562 | 0.8989 | 0.06095 |
-#> |.....................| 0.8446 | 0.05808 | 0.7250 | 0.8387 |
-#> |.....................| 1.294 | 0.9644 | 0.8119 | 1.332 |
-#> | X| 487.63293 | 91.46 | 0.005480 | 0.2920 | 0.1119 |
-#> |.....................| 0.009774 | 0.6121 | 0.8989 | 0.06095 |
-#> |.....................| 0.8446 | 0.05808 | 0.7250 | 0.8387 |
-#> |.....................| 1.294 | 0.9644 | 0.8119 | 1.332 |
-#> | F| Forward Diff. | 35.34 | 2.001 | 0.03668 | 0.05608 |
-#> |.....................| -0.1731 | 0.7098 | -16.98 | -9.135 |
-#> |.....................| -3.742 | -1.209 | 0.3780 | 6.351 |
-#> |.....................| -9.183 | 0.6525 | 4.885 | -10.01 |
-#> | 32| 487.31820 | 0.9926 | -1.019 | -0.9090 | -0.9388 |
-#> |.....................| -0.9860 | -0.8895 | -0.6975 | -0.7753 |
-#> |.....................| -0.8338 | -0.8778 | -0.8838 | -0.9414 |
-#> |.....................| -0.7728 | -0.8714 | -0.9308 | -0.7679 |
-#> | U| 487.3182 | 90.81 | -5.208 | -0.8856 | -2.191 |
-#> |.....................| -4.628 | 0.4560 | 0.9017 | 0.06104 |
-#> |.....................| 0.8453 | 0.05809 | 0.7250 | 0.8366 |
-#> |.....................| 1.298 | 0.9641 | 0.8102 | 1.337 |
-#> | X| 487.3182 | 90.81 | 0.005475 | 0.2920 | 0.1119 |
-#> |.....................| 0.009775 | 0.6121 | 0.9017 | 0.06104 |
-#> |.....................| 0.8453 | 0.05809 | 0.7250 | 0.8366 |
-#> |.....................| 1.298 | 0.9641 | 0.8102 | 1.337 |
-#> | F| Forward Diff. | -17.75 | 1.917 | -0.2852 | 0.1361 |
-#> |.....................| -0.1360 | 0.7493 | -16.63 | -9.386 |
-#> |.....................| -3.766 | -1.006 | 0.1674 | 5.665 |
-#> |.....................| -8.945 | 0.7251 | 4.960 | -9.828 |
-#> | 33| 487.13531 | 0.9998 | -1.020 | -0.9089 | -0.9389 |
-#> |.....................| -0.9859 | -0.8898 | -0.6907 | -0.7715 |
-#> |.....................| -0.8323 | -0.8774 | -0.8839 | -0.9437 |
-#> |.....................| -0.7691 | -0.8717 | -0.9328 | -0.7639 |
-#> | U| 487.13531 | 91.47 | -5.208 | -0.8855 | -2.191 |
-#> |.....................| -4.628 | 0.4559 | 0.9045 | 0.06116 |
-#> |.....................| 0.8459 | 0.05810 | 0.7250 | 0.8345 |
-#> |.....................| 1.303 | 0.9638 | 0.8084 | 1.342 |
-#> | X| 487.13531 | 91.47 | 0.005471 | 0.2920 | 0.1118 |
-#> |.....................| 0.009775 | 0.6120 | 0.9045 | 0.06116 |
-#> |.....................| 0.8459 | 0.05810 | 0.7250 | 0.8345 |
-#> |.....................| 1.303 | 0.9638 | 0.8084 | 1.342 |
-#> | F| Forward Diff. | 35.92 | 1.979 | 0.06301 | 0.05698 |
-#> |.....................| -0.1526 | 0.7131 | -16.77 | -8.520 |
-#> |.....................| -3.634 | -1.163 | 0.3177 | 6.099 |
-#> |.....................| -8.917 | 0.6421 | 4.685 | -9.820 |
-#> | 34| 486.82694 | 0.9926 | -1.021 | -0.9088 | -0.9389 |
-#> |.....................| -0.9859 | -0.8902 | -0.6837 | -0.7686 |
-#> |.....................| -0.8308 | -0.8770 | -0.8839 | -0.9460 |
-#> |.....................| -0.7654 | -0.8723 | -0.9347 | -0.7596 |
-#> | U| 486.82694 | 90.81 | -5.209 | -0.8855 | -2.191 |
-#> |.....................| -4.628 | 0.4557 | 0.9074 | 0.06124 |
-#> |.....................| 0.8465 | 0.05811 | 0.7250 | 0.8324 |
-#> |.....................| 1.307 | 0.9632 | 0.8069 | 1.347 |
-#> | X| 486.82694 | 90.81 | 0.005466 | 0.2920 | 0.1118 |
-#> |.....................| 0.009775 | 0.6120 | 0.9074 | 0.06124 |
-#> |.....................| 0.8465 | 0.05811 | 0.7250 | 0.8324 |
-#> |.....................| 1.307 | 0.9632 | 0.8069 | 1.347 |
-#> | F| Forward Diff. | -17.49 | 1.895 | -0.2726 | 0.1382 |
-#> |.....................| -0.1159 | 0.7566 | -16.14 | -8.833 |
-#> |.....................| -3.638 | -0.9303 | 0.1285 | 5.442 |
-#> |.....................| -8.630 | 0.7091 | 4.774 | -9.639 |
-#> | 35| 486.64804 | 0.9998 | -1.021 | -0.9087 | -0.9390 |
-#> |.....................| -0.9858 | -0.8905 | -0.6768 | -0.7649 |
-#> |.....................| -0.8293 | -0.8767 | -0.8839 | -0.9483 |
-#> |.....................| -0.7617 | -0.8727 | -0.9367 | -0.7554 |
-#> | U| 486.64804 | 91.46 | -5.210 | -0.8854 | -2.191 |
-#> |.....................| -4.628 | 0.4556 | 0.9103 | 0.06135 |
-#> |.....................| 0.8472 | 0.05812 | 0.7250 | 0.8304 |
-#> |.....................| 1.311 | 0.9629 | 0.8051 | 1.352 |
-#> | X| 486.64804 | 91.46 | 0.005462 | 0.2921 | 0.1118 |
-#> |.....................| 0.009776 | 0.6120 | 0.9103 | 0.06135 |
-#> |.....................| 0.8472 | 0.05812 | 0.7250 | 0.8304 |
-#> |.....................| 1.311 | 0.9629 | 0.8051 | 1.352 |
-#> | F| Forward Diff. | 35.26 | 1.955 | 0.07649 | 0.05940 |
-#> |.....................| -0.1319 | 0.7217 | -16.38 | -8.030 |
-#> |.....................| -3.491 | -1.078 | 0.2504 | 5.851 |
-#> |.....................| -8.624 | 0.5993 | 4.494 | -9.625 |
-#> | 36| 486.34524 | 0.9928 | -1.022 | -0.9087 | -0.9390 |
-#> |.....................| -0.9858 | -0.8909 | -0.6696 | -0.7621 |
-#> |.....................| -0.8278 | -0.8763 | -0.8838 | -0.9506 |
-#> |.....................| -0.7579 | -0.8733 | -0.9385 | -0.7509 |
-#> | U| 486.34524 | 90.82 | -5.211 | -0.8854 | -2.191 |
-#> |.....................| -4.628 | 0.4554 | 0.9133 | 0.06143 |
-#> |.....................| 0.8478 | 0.05813 | 0.7251 | 0.8283 |
-#> |.....................| 1.316 | 0.9622 | 0.8036 | 1.358 |
-#> | X| 486.34524 | 90.82 | 0.005456 | 0.2921 | 0.1118 |
-#> |.....................| 0.009776 | 0.6119 | 0.9133 | 0.06143 |
-#> |.....................| 0.8478 | 0.05813 | 0.7251 | 0.8283 |
-#> |.....................| 1.316 | 0.9622 | 0.8036 | 1.358 |
-#> | F| Forward Diff. | -16.53 | 1.875 | -0.2661 | 0.1390 |
-#> |.....................| -0.09763 | 0.7654 | -15.70 | -8.237 |
-#> |.....................| -3.491 | -0.9040 | 0.06392 | 5.213 |
-#> |.....................| -8.361 | 0.6621 | 4.584 | -9.445 |
-#> | 37| 486.17476 | 0.9998 | -1.023 | -0.9086 | -0.9391 |
-#> |.....................| -0.9858 | -0.8913 | -0.6626 | -0.7586 |
-#> |.....................| -0.8262 | -0.8759 | -0.8838 | -0.9529 |
-#> |.....................| -0.7542 | -0.8736 | -0.9406 | -0.7467 |
-#> | U| 486.17476 | 91.47 | -5.212 | -0.8853 | -2.191 |
-#> |.....................| -4.628 | 0.4552 | 0.9162 | 0.06153 |
-#> |.....................| 0.8484 | 0.05814 | 0.7250 | 0.8263 |
-#> |.....................| 1.320 | 0.9619 | 0.8018 | 1.363 |
-#> | X| 486.17476 | 91.47 | 0.005452 | 0.2921 | 0.1118 |
-#> |.....................| 0.009776 | 0.6119 | 0.9162 | 0.06153 |
-#> |.....................| 0.8484 | 0.05814 | 0.7250 | 0.8263 |
-#> |.....................| 1.320 | 0.9619 | 0.8018 | 1.363 |
-#> | F| Forward Diff. | 35.23 | 1.932 | 0.08715 | 0.05955 |
-#> |.....................| -0.1122 | 0.7274 | -16.01 | -7.627 |
-#> |.....................| -3.363 | -1.024 | 0.1942 | 5.616 |
-#> |.....................| -8.345 | 0.5641 | 4.322 | -9.424 |
-#> | 38| 485.87468 | 0.9930 | -1.024 | -0.9086 | -0.9392 |
-#> |.....................| -0.9858 | -0.8917 | -0.6553 | -0.7561 |
-#> |.....................| -0.8248 | -0.8756 | -0.8837 | -0.9551 |
-#> |.....................| -0.7504 | -0.8743 | -0.9424 | -0.7420 |
-#> | U| 485.87468 | 90.84 | -5.213 | -0.8853 | -2.191 |
-#> |.....................| -4.628 | 0.4550 | 0.9192 | 0.06160 |
-#> |.....................| 0.8490 | 0.05815 | 0.7252 | 0.8243 |
-#> |.....................| 1.325 | 0.9613 | 0.8003 | 1.369 |
-#> | X| 485.87468 | 90.84 | 0.005446 | 0.2921 | 0.1118 |
-#> |.....................| 0.009776 | 0.6118 | 0.9192 | 0.06160 |
-#> |.....................| 0.8490 | 0.05815 | 0.7252 | 0.8243 |
-#> |.....................| 1.325 | 0.9613 | 0.8003 | 1.369 |
-#> | F| Forward Diff. | -15.16 | 1.855 | -0.2494 | 0.1393 |
-#> |.....................| -0.07811 | 0.7704 | -15.31 | -7.716 |
-#> |.....................| -3.357 | -0.8175 | -0.03012 | 4.971 |
-#> |.....................| -8.100 | 0.5955 | 4.407 | -9.242 |
-#> | 39| 485.71812 | 1.000 | -1.025 | -0.9085 | -0.9392 |
-#> |.....................| -0.9858 | -0.8921 | -0.6482 | -0.7526 |
-#> |.....................| -0.8232 | -0.8752 | -0.8836 | -0.9573 |
-#> |.....................| -0.7467 | -0.8746 | -0.9444 | -0.7377 |
-#> | U| 485.71812 | 91.48 | -5.214 | -0.8852 | -2.191 |
-#> |.....................| -4.628 | 0.4548 | 0.9221 | 0.06170 |
-#> |.....................| 0.8497 | 0.05816 | 0.7252 | 0.8222 |
-#> |.....................| 1.329 | 0.9610 | 0.7985 | 1.374 |
-#> | X| 485.71812 | 91.48 | 0.005442 | 0.2921 | 0.1118 |
-#> |.....................| 0.009776 | 0.6118 | 0.9221 | 0.06170 |
-#> |.....................| 0.8497 | 0.05816 | 0.7252 | 0.8222 |
-#> |.....................| 1.329 | 0.9610 | 0.7985 | 1.374 |
-#> | F| Forward Diff. | 36.02 | 1.911 | 0.1144 | 0.05926 |
-#> |.....................| -0.09370 | 0.7314 | -15.47 | -7.071 |
-#> |.....................| -3.248 | -0.9743 | 0.1265 | 5.377 |
-#> |.....................| -7.775 | 0.5175 | 4.130 | -9.229 |
-#> | 40| 485.42108 | 0.9931 | -1.026 | -0.9085 | -0.9393 |
-#> |.....................| -0.9858 | -0.8926 | -0.6408 | -0.7505 |
-#> |.....................| -0.8218 | -0.8750 | -0.8834 | -0.9594 |
-#> |.....................| -0.7430 | -0.8752 | -0.9461 | -0.7328 |
-#> | U| 485.42108 | 90.85 | -5.215 | -0.8852 | -2.191 |
-#> |.....................| -4.628 | 0.4546 | 0.9252 | 0.06176 |
-#> |.....................| 0.8503 | 0.05817 | 0.7254 | 0.8204 |
-#> |.....................| 1.333 | 0.9604 | 0.7970 | 1.380 |
-#> | X| 485.42108 | 90.85 | 0.005436 | 0.2921 | 0.1118 |
-#> |.....................| 0.009776 | 0.6117 | 0.9252 | 0.06176 |
-#> |.....................| 0.8503 | 0.05817 | 0.7254 | 0.8204 |
-#> |.....................| 1.333 | 0.9604 | 0.7970 | 1.380 |
-#> | F| Forward Diff. | -14.37 | 1.836 | -0.2333 | 0.1389 |
-#> |.....................| -0.05951 | 0.7785 | -14.33 | -7.292 |
-#> |.....................| -3.229 | -0.7699 | -0.05471 | 4.764 |
-#> |.....................| -7.801 | 0.5597 | 4.229 | -9.048 |
-#> | 41| 485.26815 | 0.9999 | -1.027 | -0.9084 | -0.9394 |
-#> |.....................| -0.9858 | -0.8930 | -0.6338 | -0.7470 |
-#> |.....................| -0.8202 | -0.8746 | -0.8833 | -0.9618 |
-#> |.....................| -0.7392 | -0.8755 | -0.9482 | -0.7284 |
-#> | U| 485.26815 | 91.48 | -5.216 | -0.8851 | -2.191 |
-#> |.....................| -4.628 | 0.4544 | 0.9281 | 0.06186 |
-#> |.....................| 0.8509 | 0.05818 | 0.7254 | 0.8183 |
-#> |.....................| 1.338 | 0.9601 | 0.7953 | 1.385 |
-#> | X| 485.26815 | 91.48 | 0.005431 | 0.2921 | 0.1118 |
-#> |.....................| 0.009776 | 0.6117 | 0.9281 | 0.06186 |
-#> |.....................| 0.8509 | 0.05818 | 0.7254 | 0.8183 |
-#> |.....................| 1.338 | 0.9601 | 0.7953 | 1.385 |
-#> | F| Forward Diff. | 35.37 | 1.889 | 0.1323 | 0.06297 |
-#> |.....................| -0.07437 | 0.7390 | -14.80 | -6.641 |
-#> |.....................| -3.116 | -0.8690 | 0.09880 | 5.162 |
-#> |.....................| -7.761 | 0.4865 | 3.967 | -9.019 |
-#> | 42| 484.97448 | 0.9934 | -1.028 | -0.9084 | -0.9395 |
-#> |.....................| -0.9859 | -0.8935 | -0.6264 | -0.7452 |
-#> |.....................| -0.8188 | -0.8744 | -0.8830 | -0.9639 |
-#> |.....................| -0.7352 | -0.8762 | -0.9500 | -0.7231 |
-#> | U| 484.97448 | 90.88 | -5.217 | -0.8851 | -2.191 |
-#> |.....................| -4.628 | 0.4542 | 0.9311 | 0.06191 |
-#> |.....................| 0.8515 | 0.05819 | 0.7257 | 0.8164 |
-#> |.....................| 1.343 | 0.9594 | 0.7937 | 1.392 |
-#> | X| 484.97448 | 90.88 | 0.005424 | 0.2921 | 0.1118 |
-#> |.....................| 0.009776 | 0.6116 | 0.9311 | 0.06191 |
-#> |.....................| 0.8515 | 0.05819 | 0.7257 | 0.8164 |
-#> |.....................| 1.343 | 0.9594 | 0.7937 | 1.392 |
-#> | F| Forward Diff. | -12.51 | 1.817 | -0.2072 | 0.1320 |
-#> |.....................| -0.04147 | 0.7868 | -13.90 | -6.839 |
-#> |.....................| -3.097 | -0.6966 | -0.09701 | 4.567 |
-#> |.....................| -7.500 | 0.5336 | 4.059 | -8.839 |
-#> | 43| 484.82513 | 0.9998 | -1.029 | -0.9083 | -0.9395 |
-#> |.....................| -0.9858 | -0.8939 | -0.6193 | -0.7417 |
-#> |.....................| -0.8172 | -0.8741 | -0.8829 | -0.9662 |
-#> |.....................| -0.7313 | -0.8765 | -0.9521 | -0.7185 |
-#> | U| 484.82513 | 91.47 | -5.218 | -0.8851 | -2.191 |
-#> |.....................| -4.628 | 0.4540 | 0.9341 | 0.06202 |
-#> |.....................| 0.8522 | 0.05820 | 0.7257 | 0.8143 |
-#> |.....................| 1.347 | 0.9592 | 0.7919 | 1.397 |
-#> | X| 484.82513 | 91.47 | 0.005419 | 0.2921 | 0.1118 |
-#> |.....................| 0.009776 | 0.6116 | 0.9341 | 0.06202 |
-#> |.....................| 0.8522 | 0.05820 | 0.7257 | 0.8143 |
-#> |.....................| 1.347 | 0.9592 | 0.7919 | 1.397 |
-#> | F| Forward Diff. | 34.86 | 1.871 | 0.1566 | 0.07097 |
-#> |.....................| -0.05046 | 0.7508 | -14.35 | -6.106 |
-#> |.....................| -2.960 | -0.8322 | 0.03576 | 4.926 |
-#> |.....................| -7.463 | 0.4624 | 3.813 | -8.806 |
-#> | 44| 484.54032 | 0.9935 | -1.030 | -0.9084 | -0.9396 |
-#> |.....................| -0.9859 | -0.8946 | -0.6118 | -0.7403 |
-#> |.....................| -0.8157 | -0.8739 | -0.8825 | -0.9682 |
-#> |.....................| -0.7274 | -0.8772 | -0.9538 | -0.7130 |
-#> | U| 484.54032 | 90.89 | -5.219 | -0.8851 | -2.191 |
-#> |.....................| -4.628 | 0.4537 | 0.9372 | 0.06206 |
-#> |.....................| 0.8528 | 0.05820 | 0.7260 | 0.8125 |
-#> |.....................| 1.352 | 0.9585 | 0.7904 | 1.404 |
-#> | X| 484.54032 | 90.89 | 0.005412 | 0.2921 | 0.1118 |
-#> |.....................| 0.009775 | 0.6115 | 0.9372 | 0.06206 |
-#> |.....................| 0.8528 | 0.05820 | 0.7260 | 0.8125 |
-#> |.....................| 1.352 | 0.9585 | 0.7904 | 1.404 |
-#> | F| Forward Diff. | -11.88 | 1.798 | -0.1931 | 0.1288 |
-#> |.....................| -0.02100 | 0.7941 | -13.56 | -6.327 |
-#> |.....................| -2.985 | -0.6346 | -0.1369 | 4.355 |
-#> |.....................| -7.207 | 0.4876 | 3.910 | -8.603 |
-#> | 45| 484.39828 | 0.9999 | -1.031 | -0.9082 | -0.9397 |
-#> |.....................| -0.9859 | -0.8950 | -0.6045 | -0.7369 |
-#> |.....................| -0.8141 | -0.8736 | -0.8824 | -0.9706 |
-#> |.....................| -0.7235 | -0.8774 | -0.9559 | -0.7084 |
-#> | U| 484.39828 | 91.47 | -5.220 | -0.8850 | -2.191 |
-#> |.....................| -4.628 | 0.4535 | 0.9402 | 0.06215 |
-#> |.....................| 0.8534 | 0.05821 | 0.7261 | 0.8104 |
-#> |.....................| 1.357 | 0.9582 | 0.7886 | 1.409 |
-#> | X| 484.39828 | 91.47 | 0.005407 | 0.2921 | 0.1118 |
-#> |.....................| 0.009775 | 0.6115 | 0.9402 | 0.06215 |
-#> |.....................| 0.8534 | 0.05821 | 0.7261 | 0.8104 |
-#> |.....................| 1.357 | 0.9582 | 0.7886 | 1.409 |
-#> | F| Forward Diff. | 34.75 | 1.847 | 0.1787 | 0.06647 |
-#> |.....................| -0.03069 | 0.7556 | -13.39 | -5.638 |
-#> |.....................| -2.842 | -0.7351 | -0.07352 | 4.648 |
-#> |.....................| -7.153 | 0.4383 | 3.662 | -8.575 |
-#> | 46| 484.12389 | 0.9935 | -1.033 | -0.9083 | -0.9398 |
-#> |.....................| -0.9861 | -0.8957 | -0.5972 | -0.7360 |
-#> |.....................| -0.8127 | -0.8736 | -0.8818 | -0.9724 |
-#> |.....................| -0.7196 | -0.8781 | -0.9577 | -0.7026 |
-#> | U| 484.12389 | 90.89 | -5.221 | -0.8851 | -2.192 |
-#> |.....................| -4.628 | 0.4532 | 0.9432 | 0.06218 |
-#> |.....................| 0.8540 | 0.05821 | 0.7265 | 0.8087 |
-#> |.....................| 1.361 | 0.9576 | 0.7871 | 1.416 |
-#> | X| 484.12389 | 90.89 | 0.005400 | 0.2921 | 0.1117 |
-#> |.....................| 0.009773 | 0.6114 | 0.9432 | 0.06218 |
-#> |.....................| 0.8540 | 0.05821 | 0.7265 | 0.8087 |
-#> |.....................| 1.361 | 0.9576 | 0.7871 | 1.416 |
-#> | F| Forward Diff. | -12.23 | 1.776 | -0.1772 | 0.1286 |
-#> |.....................| -0.003904 | 0.8005 | -13.23 | -5.967 |
-#> |.....................| -2.801 | -0.5825 | -0.1993 | 4.126 |
-#> |.....................| -6.930 | 0.4309 | 3.746 | -8.373 |
-#> | 47| 483.96910 | 0.9995 | -1.034 | -0.9082 | -0.9399 |
-#> |.....................| -0.9861 | -0.8963 | -0.5897 | -0.7331 |
-#> |.....................| -0.8111 | -0.8733 | -0.8815 | -0.9747 |
-#> |.....................| -0.7157 | -0.8785 | -0.9598 | -0.6976 |
-#> | U| 483.9691 | 91.44 | -5.222 | -0.8850 | -2.192 |
-#> |.....................| -4.628 | 0.4529 | 0.9464 | 0.06226 |
-#> |.....................| 0.8547 | 0.05822 | 0.7267 | 0.8067 |
-#> |.....................| 1.366 | 0.9573 | 0.7854 | 1.423 |
-#> | X| 483.9691 | 91.44 | 0.005394 | 0.2921 | 0.1117 |
-#> |.....................| 0.009773 | 0.6113 | 0.9464 | 0.06226 |
-#> |.....................| 0.8547 | 0.05822 | 0.7267 | 0.8067 |
-#> |.....................| 1.366 | 0.9573 | 0.7854 | 1.423 |
-#> | F| Forward Diff. | 31.42 | 1.822 | 0.1778 | 0.07033 |
-#> |.....................| -0.01094 | 0.7681 | -13.66 | -5.343 |
-#> |.....................| -2.704 | -0.6601 | -0.05834 | 4.483 |
-#> |.....................| -6.846 | 0.3977 | 3.514 | -8.343 |
-#> | 48| 483.71026 | 0.9937 | -1.035 | -0.9084 | -0.9400 |
-#> |.....................| -0.9863 | -0.8970 | -0.5817 | -0.7327 |
-#> |.....................| -0.8099 | -0.8734 | -0.8808 | -0.9764 |
-#> |.....................| -0.7120 | -0.8790 | -0.9614 | -0.6918 |
-#> | U| 483.71026 | 90.90 | -5.224 | -0.8851 | -2.192 |
-#> |.....................| -4.628 | 0.4526 | 0.9497 | 0.06228 |
-#> |.....................| 0.8552 | 0.05822 | 0.7272 | 0.8052 |
-#> |.....................| 1.370 | 0.9567 | 0.7840 | 1.430 |
-#> | X| 483.71026 | 90.90 | 0.005386 | 0.2921 | 0.1117 |
-#> |.....................| 0.009771 | 0.6112 | 0.9497 | 0.06228 |
-#> |.....................| 0.8552 | 0.05822 | 0.7272 | 0.8052 |
-#> |.....................| 1.370 | 0.9567 | 0.7840 | 1.430 |
-#> | F| Forward Diff. | -11.41 | 1.753 | -0.1608 | 0.1222 |
-#> |.....................| 0.01159 | 0.8050 | -10.44 | -3.810 |
-#> |.....................| -1.727 | 0.1311 | 2.133 | 3.863 |
-#> |.....................| -5.017 | 1.937 | 3.587 | -8.159 |
-#> | 49| 483.59835 | 1.000 | -1.037 | -0.9083 | -0.9401 |
-#> |.....................| -0.9863 | -0.8977 | -0.5748 | -0.7309 |
-#> |.....................| -0.8089 | -0.8737 | -0.8826 | -0.9789 |
-#> |.....................| -0.7088 | -0.8807 | -0.9637 | -0.6861 |
-#> | U| 483.59835 | 91.50 | -5.225 | -0.8850 | -2.192 |
-#> |.....................| -4.628 | 0.4523 | 0.9525 | 0.06233 |
-#> |.....................| 0.8556 | 0.05821 | 0.7260 | 0.8029 |
-#> |.....................| 1.374 | 0.9551 | 0.7819 | 1.437 |
-#> | X| 483.59835 | 91.50 | 0.005379 | 0.2921 | 0.1117 |
-#> |.....................| 0.009771 | 0.6112 | 0.9525 | 0.06233 |
-#> |.....................| 0.8556 | 0.05821 | 0.7260 | 0.8029 |
-#> |.....................| 1.374 | 0.9551 | 0.7819 | 1.437 |
-#> | F| Forward Diff. | 35.70 | 1.806 | 0.2381 | 0.06477 |
-#> |.....................| 0.008951 | 0.7715 | -12.71 | -4.946 |
-#> |.....................| -2.552 | -0.6506 | -0.07612 | 4.309 |
-#> |.....................| -6.609 | 0.2622 | 3.318 | -8.104 |
-#> | 50| 483.34903 | 0.9946 | -1.038 | -0.9084 | -0.9402 |
-#> |.....................| -0.9865 | -0.8986 | -0.5687 | -0.7321 |
-#> |.....................| -0.8087 | -0.8746 | -0.8853 | -0.9811 |
-#> |.....................| -0.7064 | -0.8834 | -0.9659 | -0.6790 |
-#> | U| 483.34903 | 90.99 | -5.227 | -0.8851 | -2.192 |
-#> |.....................| -4.629 | 0.4518 | 0.9551 | 0.06229 |
-#> |.....................| 0.8557 | 0.05818 | 0.7240 | 0.8009 |
-#> |.....................| 1.377 | 0.9526 | 0.7800 | 1.445 |
-#> | X| 483.34903 | 90.99 | 0.005370 | 0.2921 | 0.1117 |
-#> |.....................| 0.009769 | 0.6111 | 0.9551 | 0.06229 |
-#> |.....................| 0.8557 | 0.05818 | 0.7240 | 0.8009 |
-#> |.....................| 1.377 | 0.9526 | 0.7800 | 1.445 |
-#> | F| Forward Diff. | -5.120 | 1.736 | -0.09503 | 0.1090 |
-#> |.....................| 0.03046 | 0.8092 | -12.63 | -5.226 |
-#> |.....................| -2.620 | -0.5304 | -0.3057 | 3.753 |
-#> |.....................| -6.427 | 0.07650 | 3.398 | -7.915 |
-#> | 51| 483.15597 | 0.9980 | -1.040 | -0.9083 | -0.9402 |
-#> |.....................| -0.9866 | -0.8991 | -0.5603 | -0.7286 |
-#> |.....................| -0.8069 | -0.8742 | -0.8851 | -0.9836 |
-#> |.....................| -0.7022 | -0.8834 | -0.9682 | -0.6737 |
-#> | U| 483.15597 | 91.30 | -5.228 | -0.8851 | -2.192 |
-#> |.....................| -4.629 | 0.4516 | 0.9585 | 0.06239 |
-#> |.....................| 0.8564 | 0.05819 | 0.7241 | 0.7987 |
-#> |.....................| 1.382 | 0.9525 | 0.7781 | 1.452 |
-#> | X| 483.15597 | 91.30 | 0.005364 | 0.2921 | 0.1117 |
-#> |.....................| 0.009769 | 0.6110 | 0.9585 | 0.06239 |
-#> |.....................| 0.8564 | 0.05819 | 0.7241 | 0.7987 |
-#> |.....................| 1.382 | 0.9525 | 0.7781 | 1.452 |
-#> | 52| 483.02721 | 1.004 | -1.042 | -0.9082 | -0.9404 |
-#> |.....................| -0.9866 | -0.9001 | -0.5449 | -0.7222 |
-#> |.....................| -0.8037 | -0.8736 | -0.8847 | -0.9882 |
-#> |.....................| -0.6943 | -0.8835 | -0.9723 | -0.6641 |
-#> | U| 483.02721 | 91.87 | -5.230 | -0.8850 | -2.192 |
-#> |.....................| -4.629 | 0.4511 | 0.9649 | 0.06258 |
-#> |.....................| 0.8577 | 0.05821 | 0.7244 | 0.7946 |
-#> |.....................| 1.391 | 0.9524 | 0.7746 | 1.463 |
-#> | X| 483.02721 | 91.87 | 0.005352 | 0.2921 | 0.1117 |
-#> |.....................| 0.009768 | 0.6109 | 0.9649 | 0.06258 |
-#> |.....................| 0.8577 | 0.05821 | 0.7244 | 0.7946 |
-#> |.....................| 1.391 | 0.9524 | 0.7746 | 1.463 |
-#> | F| Forward Diff. | 64.04 | 1.793 | 0.5284 | 0.01389 |
-#> |.....................| 0.02898 | 0.7509 | -12.63 | -3.976 |
-#> |.....................| -2.339 | -0.6213 | 0.1061 | 4.124 |
-#> |.....................| -6.092 | 0.06517 | 2.880 | -7.726 |
-#> | 53| 482.23689 | 0.9946 | -1.047 | -0.9090 | -0.9407 |
-#> |.....................| -0.9878 | -0.9036 | -0.5201 | -0.7284 |
-#> |.....................| -0.8010 | -0.8752 | -0.8830 | -0.9901 |
-#> |.....................| -0.6858 | -0.8831 | -0.9756 | -0.6451 |
-#> | U| 482.23689 | 90.99 | -5.236 | -0.8857 | -2.192 |
-#> |.....................| -4.630 | 0.4496 | 0.9752 | 0.06240 |
-#> |.....................| 0.8589 | 0.05816 | 0.7257 | 0.7929 |
-#> |.....................| 1.401 | 0.9528 | 0.7717 | 1.486 |
-#> | X| 482.23689 | 90.99 | 0.005323 | 0.2920 | 0.1116 |
-#> |.....................| 0.009757 | 0.6105 | 0.9752 | 0.06240 |
-#> |.....................| 0.8589 | 0.05816 | 0.7257 | 0.7929 |
-#> |.....................| 1.401 | 0.9528 | 0.7717 | 1.486 |
-#> | F| Forward Diff. | -6.401 | 1.688 | -0.06693 | 0.1101 |
-#> |.....................| 0.07752 | 0.8485 | -12.38 | -4.258 |
-#> |.....................| -2.381 | -0.3971 | -0.4532 | 3.327 |
-#> |.....................| -5.692 | 0.09795 | 3.049 | -7.221 |
-#> | 54| 481.84664 | 1.002 | -1.052 | -0.9094 | -0.9410 |
-#> |.....................| -0.9885 | -0.9064 | -0.4925 | -0.7287 |
-#> |.....................| -0.7974 | -0.8758 | -0.8811 | -0.9941 |
-#> |.....................| -0.6765 | -0.8831 | -0.9802 | -0.6288 |
-#> | U| 481.84664 | 91.67 | -5.240 | -0.8860 | -2.193 |
-#> |.....................| -4.631 | 0.4482 | 0.9866 | 0.06239 |
-#> |.....................| 0.8604 | 0.05815 | 0.7270 | 0.7893 |
-#> |.....................| 1.412 | 0.9528 | 0.7678 | 1.506 |
-#> | X| 481.84664 | 91.67 | 0.005298 | 0.2919 | 0.1116 |
-#> |.....................| 0.009749 | 0.6102 | 0.9866 | 0.06239 |
-#> |.....................| 0.8604 | 0.05815 | 0.7270 | 0.7893 |
-#> |.....................| 1.412 | 0.9528 | 0.7678 | 1.506 |
-#> | F| Forward Diff. | 47.13 | 1.726 | 0.4206 | 0.02536 |
-#> |.....................| 0.06828 | 0.8062 | -11.83 | -3.346 |
-#> |.....................| -2.102 | -0.4847 | -0.09759 | 3.731 |
-#> |.....................| -5.096 | -0.5769 | 2.736 | -6.997 |
-#> | 55| 481.27209 | 0.9943 | -1.058 | -0.9105 | -0.9413 |
-#> |.....................| -0.9900 | -0.9106 | -0.4653 | -0.7394 |
-#> |.....................| -0.7957 | -0.8780 | -0.8782 | -0.9956 |
-#> |.....................| -0.6736 | -0.8789 | -0.9829 | -0.6135 |
-#> | U| 481.27209 | 90.96 | -5.246 | -0.8870 | -2.193 |
-#> |.....................| -4.632 | 0.4464 | 0.9978 | 0.06208 |
-#> |.....................| 0.8611 | 0.05808 | 0.7292 | 0.7879 |
-#> |.....................| 1.416 | 0.9569 | 0.7655 | 1.525 |
-#> | X| 481.27209 | 90.96 | 0.005268 | 0.2917 | 0.1116 |
-#> |.....................| 0.009735 | 0.6098 | 0.9978 | 0.06208 |
-#> |.....................| 0.8611 | 0.05808 | 0.7292 | 0.7879 |
-#> |.....................| 1.416 | 0.9569 | 0.7655 | 1.525 |
-#> | F| Forward Diff. | -10.35 | 1.643 | -0.1028 | 0.1091 |
-#> |.....................| 0.1039 | 0.8949 | -11.59 | -3.607 |
-#> |.....................| -2.172 | -0.3207 | -0.4703 | 3.042 |
-#> |.....................| -5.188 | 0.5388 | 2.890 | -6.602 |
-#> | 56| 480.86800 | 0.9992 | -1.064 | -0.9113 | -0.9415 |
-#> |.....................| -0.9915 | -0.9152 | -0.4371 | -0.7498 |
-#> |.....................| -0.7937 | -0.8800 | -0.8752 | -0.9980 |
-#> |.....................| -0.6700 | -0.8785 | -0.9867 | -0.5989 |
-#> | U| 480.868 | 91.41 | -5.252 | -0.8877 | -2.193 |
-#> |.....................| -4.634 | 0.4442 | 1.010 | 0.06178 |
-#> |.....................| 0.8619 | 0.05803 | 0.7313 | 0.7858 |
-#> |.....................| 1.420 | 0.9572 | 0.7622 | 1.543 |
-#> | X| 480.868 | 91.41 | 0.005236 | 0.2916 | 0.1115 |
-#> |.....................| 0.009720 | 0.6093 | 1.010 | 0.06178 |
-#> |.....................| 0.8619 | 0.05803 | 0.7313 | 0.7858 |
-#> |.....................| 1.420 | 0.9572 | 0.7622 | 1.543 |
-#> | 57| 480.18757 | 0.9994 | -1.075 | -0.9131 | -0.9420 |
-#> |.....................| -0.9946 | -0.9242 | -0.3882 | -0.7756 |
-#> |.....................| -0.7917 | -0.8845 | -0.8694 | -1.000 |
-#> |.....................| -0.6674 | -0.8772 | -0.9919 | -0.5742 |
-#> | U| 480.18757 | 91.43 | -5.264 | -0.8893 | -2.194 |
-#> |.....................| -4.637 | 0.4401 | 1.030 | 0.06104 |
-#> |.....................| 0.8627 | 0.05790 | 0.7356 | 0.7839 |
-#> |.....................| 1.423 | 0.9585 | 0.7577 | 1.573 |
-#> | X| 480.18757 | 91.43 | 0.005177 | 0.2913 | 0.1115 |
-#> |.....................| 0.009690 | 0.6083 | 1.030 | 0.06104 |
-#> |.....................| 0.8627 | 0.05790 | 0.7356 | 0.7839 |
-#> |.....................| 1.423 | 0.9585 | 0.7577 | 1.573 |
-#> | 58| 477.33677 | 1.000 | -1.128 | -0.9215 | -0.9444 |
-#> |.....................| -1.009 | -0.9662 | -0.1601 | -0.8958 |
-#> |.....................| -0.7824 | -0.9055 | -0.8420 | -1.010 |
-#> |.....................| -0.6551 | -0.8713 | -1.016 | -0.4591 |
-#> | U| 477.33677 | 91.51 | -5.317 | -0.8967 | -2.196 |
-#> |.....................| -4.651 | 0.4208 | 1.124 | 0.05757 |
-#> |.....................| 0.8666 | 0.05729 | 0.7556 | 0.7749 |
-#> |.....................| 1.438 | 0.9642 | 0.7367 | 1.713 |
-#> | X| 477.33677 | 91.51 | 0.004910 | 0.2897 | 0.1112 |
-#> |.....................| 0.009550 | 0.6037 | 1.124 | 0.05757 |
-#> |.....................| 0.8666 | 0.05729 | 0.7556 | 0.7749 |
-#> |.....................| 1.438 | 0.9642 | 0.7367 | 1.713 |
-#> | 59| 470.34077 | 1.005 | -1.340 | -0.9551 | -0.9536 |
-#> |.....................| -1.067 | -1.134 | 0.7520 | -1.376 |
-#> |.....................| -0.7448 | -0.9894 | -0.7326 | -1.050 |
-#> |.....................| -0.6055 | -0.8475 | -1.115 | 0.001078 |
-#> | U| 470.34077 | 91.93 | -5.528 | -0.9265 | -2.205 |
-#> |.....................| -4.709 | 0.3439 | 1.502 | 0.04372 |
-#> |.....................| 0.8821 | 0.05487 | 0.8354 | 0.7391 |
-#> |.....................| 1.496 | 0.9871 | 0.6524 | 2.272 |
-#> | X| 470.34077 | 91.93 | 0.003973 | 0.2836 | 0.1102 |
-#> |.....................| 0.009011 | 0.5851 | 1.502 | 0.04372 |
-#> |.....................| 0.8821 | 0.05487 | 0.8354 | 0.7391 |
-#> |.....................| 1.496 | 0.9871 | 0.6524 | 2.272 |
-#> | F| Forward Diff. | 26.15 | 0.9841 | -0.2917 | -0.5557 |
-#> |.....................| 0.1743 | 0.07961 | -5.483 | -2.977 |
-#> |.....................| -1.594 | -1.883 | 1.921 | 2.622 |
-#> |.....................| -2.684 | 3.199 | -3.516 | -0.2713 |
-#> | 60| 503.34963 | 1.001 | -1.624 | -0.8890 | -0.8555 |
-#> |.....................| -1.160 | -1.269 | 1.871 | -1.579 |
-#> |.....................| -0.5570 | -0.7566 | -0.9888 | -1.205 |
-#> |.....................| -0.4219 | -1.204 | -0.3205 | 0.003684 |
-#> | U| 503.34963 | 91.54 | -5.813 | -0.8679 | -2.107 |
-#> |.....................| -4.802 | 0.2817 | 1.965 | 0.03787 |
-#> |.....................| 0.9599 | 0.06159 | 0.6484 | 0.5998 |
-#> |.....................| 1.714 | 0.6438 | 1.334 | 2.275 |
-#> | X| 503.34963 | 91.54 | 0.002989 | 0.2957 | 0.1216 |
-#> |.....................| 0.008214 | 0.5700 | 1.965 | 0.03787 |
-#> |.....................| 0.9599 | 0.06159 | 0.6484 | 0.5998 |
-#> |.....................| 1.714 | 0.6438 | 1.334 | 2.275 |
-#> | 61| 469.52776 | 1.001 | -1.377 | -0.9480 | -0.9425 |
-#> |.....................| -1.079 | -1.153 | 0.9014 | -1.405 |
-#> |.....................| -0.7213 | -0.9635 | -0.7590 | -1.066 |
-#> |.....................| -0.5863 | -0.9260 | -1.020 | 0.002305 |
-#> | U| 469.52776 | 91.55 | -5.565 | -0.9203 | -2.194 |
-#> |.....................| -4.721 | 0.3353 | 1.564 | 0.04288 |
-#> |.....................| 0.8919 | 0.05562 | 0.8161 | 0.7248 |
-#> |.....................| 1.519 | 0.9115 | 0.7335 | 2.274 |
-#> | X| 469.52776 | 91.55 | 0.003829 | 0.2849 | 0.1114 |
-#> |.....................| 0.008907 | 0.5831 | 1.564 | 0.04288 |
-#> |.....................| 0.8919 | 0.05562 | 0.8161 | 0.7248 |
-#> |.....................| 1.519 | 0.9115 | 0.7335 | 2.274 |
-#> | F| Forward Diff. | -33.46 | 0.8466 | -0.2714 | -0.3437 |
-#> |.....................| -0.005169 | 0.9674 | -4.363 | -2.175 |
-#> |.....................| -0.4723 | -1.194 | 1.668 | 1.180 |
-#> |.....................| -1.975 | -3.231 | 4.715 | 0.6860 |
-#> | 62| 468.69396 | 1.009 | -1.417 | -0.9407 | -0.9181 |
-#> |.....................| -1.088 | -1.184 | 1.029 | -1.410 |
-#> |.....................| -0.7106 | -0.9016 | -0.8502 | -1.110 |
-#> |.....................| -0.5641 | -0.8957 | -1.025 | -0.08379 |
-#> | U| 468.69396 | 92.28 | -5.606 | -0.9138 | -2.170 |
-#> |.....................| -4.730 | 0.3207 | 1.617 | 0.04273 |
-#> |.....................| 0.8963 | 0.05740 | 0.7496 | 0.6857 |
-#> |.....................| 1.546 | 0.9407 | 0.7298 | 2.169 |
-#> | X| 468.69396 | 92.28 | 0.003677 | 0.2862 | 0.1142 |
-#> |.....................| 0.008826 | 0.5795 | 1.617 | 0.04273 |
-#> |.....................| 0.8963 | 0.05740 | 0.7496 | 0.6857 |
-#> |.....................| 1.546 | 0.9407 | 0.7298 | 2.169 |
-#> | F| Forward Diff. | 44.64 | 0.7919 | 0.8591 | -0.3536 |
-#> |.....................| -0.1337 | 0.2061 | -3.251 | 1.076 |
-#> |.....................| 0.6486 | -0.6734 | -0.006662 | -4.031 |
-#> |.....................| -0.9510 | -1.369 | 2.636 | 0.2207 |
-#> | 63| 468.25975 | 1.001 | -1.457 | -0.9435 | -0.8944 |
-#> |.....................| -1.092 | -1.207 | 1.162 | -1.430 |
-#> |.....................| -0.7163 | -0.8453 | -0.9089 | -1.031 |
-#> |.....................| -0.5350 | -0.9084 | -1.055 | -0.1705 |
-#> | U| 468.25975 | 91.62 | -5.645 | -0.9163 | -2.146 |
-#> |.....................| -4.734 | 0.3104 | 1.671 | 0.04217 |
-#> |.....................| 0.8939 | 0.05903 | 0.7067 | 0.7562 |
-#> |.....................| 1.580 | 0.9284 | 0.7040 | 2.064 |
-#> | X| 468.25975 | 91.62 | 0.003534 | 0.2857 | 0.1169 |
-#> |.....................| 0.008791 | 0.5770 | 1.671 | 0.04217 |
-#> |.....................| 0.8939 | 0.05903 | 0.7067 | 0.7562 |
-#> |.....................| 1.580 | 0.9284 | 0.7040 | 2.064 |
-#> | F| Forward Diff. | -27.10 | 0.6132 | -0.09159 | -0.08800 |
-#> |.....................| -0.1078 | -0.3202 | -2.388 | 1.638 |
-#> |.....................| 1.140 | 0.1171 | 0.1600 | 3.377 |
-#> |.....................| 1.163 | -2.226 | -0.6898 | -0.6683 |
-#> | 64| 467.71969 | 1.007 | -1.501 | -0.9546 | -0.8725 |
-#> |.....................| -1.088 | -1.196 | 1.309 | -1.518 |
-#> |.....................| -0.7729 | -0.8084 | -0.9408 | -1.028 |
-#> |.....................| -0.5596 | -0.8715 | -1.022 | -0.2167 |
-#> | U| 467.71969 | 92.14 | -5.690 | -0.9262 | -2.124 |
-#> |.....................| -4.730 | 0.3152 | 1.732 | 0.03962 |
-#> |.....................| 0.8705 | 0.06009 | 0.6835 | 0.7588 |
-#> |.....................| 1.551 | 0.9640 | 0.7321 | 2.007 |
-#> | X| 467.71969 | 92.14 | 0.003381 | 0.2837 | 0.1195 |
-#> |.....................| 0.008831 | 0.5781 | 1.732 | 0.03962 |
-#> |.....................| 0.8705 | 0.06009 | 0.6835 | 0.7588 |
-#> |.....................| 1.551 | 0.9640 | 0.7321 | 2.007 |
-#> | F| Forward Diff. | 13.64 | 0.5263 | -0.09449 | -0.03300 |
-#> |.....................| -0.2497 | 0.5177 | -1.944 | 1.719 |
-#> |.....................| 0.02781 | -0.4546 | 0.1053 | 4.139 |
-#> |.....................| 0.2369 | 0.8861 | 1.752 | -0.4404 |
-#> | 65| 467.30536 | 1.004 | -1.542 | -0.9574 | -0.8551 |
-#> |.....................| -1.078 | -1.202 | 1.437 | -1.633 |
-#> |.....................| -0.8162 | -0.7674 | -0.9588 | -1.081 |
-#> |.....................| -0.5907 | -0.8860 | -1.037 | -0.2723 |
-#> | U| 467.30536 | 91.87 | -5.731 | -0.9286 | -2.107 |
-#> |.....................| -4.720 | 0.3124 | 1.785 | 0.03631 |
-#> |.....................| 0.8526 | 0.06127 | 0.6704 | 0.7116 |
-#> |.....................| 1.514 | 0.9500 | 0.7187 | 1.940 |
-#> | X| 467.30536 | 91.87 | 0.003244 | 0.2832 | 0.1216 |
-#> |.....................| 0.008917 | 0.5775 | 1.785 | 0.03631 |
-#> |.....................| 0.8526 | 0.06127 | 0.6704 | 0.7116 |
-#> |.....................| 1.514 | 0.9500 | 0.7187 | 1.940 |
-#> | F| Forward Diff. | -28.84 | 0.5077 | -0.1377 | 0.05990 |
-#> |.....................| -0.2272 | 0.7424 | -2.070 | -0.4026 |
-#> |.....................| -0.6342 | -0.6074 | -0.7367 | -1.927 |
-#> |.....................| -1.174 | -0.4282 | -0.2913 | -0.8226 |
-#> | 66| 467.70919 | 1.018 | -1.590 | -0.9528 | -0.8478 |
-#> |.....................| -1.050 | -1.273 | 1.541 | -1.746 |
-#> |.....................| -0.7981 | -0.6862 | -0.9431 | -1.082 |
-#> |.....................| -0.5846 | -0.9179 | -1.062 | -0.3171 |
-#> | U| 467.70919 | 93.14 | -5.778 | -0.9245 | -2.100 |
-#> |.....................| -4.692 | 0.2799 | 1.829 | 0.03305 |
-#> |.....................| 0.8601 | 0.06362 | 0.6818 | 0.7103 |
-#> |.....................| 1.521 | 0.9193 | 0.6977 | 1.885 |
-#> | X| 467.70919 | 93.14 | 0.003094 | 0.2840 | 0.1225 |
-#> |.....................| 0.009168 | 0.5695 | 1.829 | 0.03305 |
-#> |.....................| 0.8601 | 0.06362 | 0.6818 | 0.7103 |
-#> |.....................| 1.521 | 0.9193 | 0.6977 | 1.885 |
-#> | 67| 467.47896 | 1.015 | -1.557 | -0.9559 | -0.8529 |
-#> |.....................| -1.069 | -1.224 | 1.469 | -1.667 |
-#> |.....................| -0.8105 | -0.7423 | -0.9538 | -1.081 |
-#> |.....................| -0.5885 | -0.8957 | -1.045 | -0.2858 |
-#> | U| 467.47896 | 92.90 | -5.746 | -0.9273 | -2.105 |
-#> |.....................| -4.711 | 0.3023 | 1.799 | 0.03531 |
-#> |.....................| 0.8550 | 0.06200 | 0.6740 | 0.7117 |
-#> |.....................| 1.517 | 0.9407 | 0.7123 | 1.923 |
-#> | X| 467.47896 | 92.90 | 0.003197 | 0.2835 | 0.1219 |
-#> |.....................| 0.008994 | 0.5750 | 1.799 | 0.03531 |
-#> |.....................| 0.8550 | 0.06200 | 0.6740 | 0.7117 |
-#> |.....................| 1.517 | 0.9407 | 0.7123 | 1.923 |
-#> | 68| 467.47242 | 1.015 | -1.547 | -0.9569 | -0.8545 |
-#> |.....................| -1.075 | -1.209 | 1.447 | -1.644 |
-#> |.....................| -0.8142 | -0.7594 | -0.9570 | -1.080 |
-#> |.....................| -0.5898 | -0.8890 | -1.040 | -0.2763 |
-#> | U| 467.47242 | 92.83 | -5.736 | -0.9282 | -2.106 |
-#> |.....................| -4.717 | 0.3092 | 1.790 | 0.03600 |
-#> |.....................| 0.8534 | 0.06150 | 0.6716 | 0.7121 |
-#> |.....................| 1.515 | 0.9472 | 0.7168 | 1.935 |
-#> | X| 467.47242 | 92.83 | 0.003229 | 0.2833 | 0.1217 |
-#> |.....................| 0.008942 | 0.5767 | 1.790 | 0.03600 |
-#> |.....................| 0.8534 | 0.06150 | 0.6716 | 0.7121 |
-#> |.....................| 1.515 | 0.9472 | 0.7168 | 1.935 |
-#> | 69| 467.34503 | 1.012 | -1.542 | -0.9574 | -0.8552 |
-#> |.....................| -1.078 | -1.203 | 1.437 | -1.633 |
-#> |.....................| -0.8160 | -0.7673 | -0.9586 | -1.080 |
-#> |.....................| -0.5904 | -0.8859 | -1.037 | -0.2720 |
-#> | U| 467.34503 | 92.56 | -5.731 | -0.9286 | -2.107 |
-#> |.....................| -4.720 | 0.3123 | 1.786 | 0.03631 |
-#> |.....................| 0.8527 | 0.06128 | 0.6705 | 0.7121 |
-#> |.....................| 1.514 | 0.9501 | 0.7188 | 1.940 |
-#> | X| 467.34503 | 92.56 | 0.003244 | 0.2832 | 0.1216 |
-#> |.....................| 0.008918 | 0.5775 | 1.786 | 0.03631 |
-#> |.....................| 0.8527 | 0.06128 | 0.6705 | 0.7121 |
-#> |.....................| 1.514 | 0.9501 | 0.7188 | 1.940 |
-#> | 70| 467.25859 | 1.007 | -1.542 | -0.9574 | -0.8552 |
-#> |.....................| -1.078 | -1.202 | 1.437 | -1.633 |
-#> |.....................| -0.8161 | -0.7674 | -0.9587 | -1.080 |
-#> |.....................| -0.5906 | -0.8860 | -1.037 | -0.2722 |
-#> | U| 467.25859 | 92.16 | -5.731 | -0.9286 | -2.107 |
-#> |.....................| -4.720 | 0.3124 | 1.785 | 0.03631 |
-#> |.....................| 0.8526 | 0.06127 | 0.6704 | 0.7118 |
-#> |.....................| 1.514 | 0.9500 | 0.7187 | 1.940 |
-#> | X| 467.25859 | 92.16 | 0.003244 | 0.2832 | 0.1216 |
-#> |.....................| 0.008918 | 0.5775 | 1.785 | 0.03631 |
-#> |.....................| 0.8526 | 0.06127 | 0.6704 | 0.7118 |
-#> |.....................| 1.514 | 0.9500 | 0.7187 | 1.940 |
-#> | F| Forward Diff. | 0.4422 | 0.5213 | 0.04284 | 0.02840 |
-#> |.....................| -0.2383 | 0.7531 | -2.043 | -0.07081 |
-#> |.....................| -0.6548 | -0.6872 | -0.7073 | -1.773 |
-#> |.....................| -1.488 | -0.4400 | -0.3907 | -0.8156 |
-#> | 71| 467.25330 | 1.007 | -1.543 | -0.9574 | -0.8552 |
-#> |.....................| -1.078 | -1.203 | 1.439 | -1.633 |
-#> |.....................| -0.8155 | -0.7668 | -0.9581 | -1.079 |
-#> |.....................| -0.5893 | -0.8856 | -1.037 | -0.2714 |
-#> | U| 467.2533 | 92.12 | -5.731 | -0.9287 | -2.107 |
-#> |.....................| -4.720 | 0.3121 | 1.786 | 0.03631 |
-#> |.....................| 0.8529 | 0.06129 | 0.6709 | 0.7133 |
-#> |.....................| 1.516 | 0.9504 | 0.7190 | 1.941 |
-#> | X| 467.2533 | 92.12 | 0.003243 | 0.2832 | 0.1216 |
-#> |.....................| 0.008919 | 0.5774 | 1.786 | 0.03631 |
-#> |.....................| 0.8529 | 0.06129 | 0.6709 | 0.7133 |
-#> |.....................| 1.516 | 0.9504 | 0.7190 | 1.941 |
-#> | F| Forward Diff. | -3.065 | 0.5175 | 0.01752 | 0.03302 |
-#> |.....................| -0.2370 | 0.7457 | -1.985 | -0.01476 |
-#> |.....................| -0.5869 | -0.6438 | -0.7222 | -1.672 |
-#> |.....................| -1.086 | -0.3942 | -0.3461 | -0.8075 |
-#> | 72| 467.24583 | 1.008 | -1.544 | -0.9571 | -0.8551 |
-#> |.....................| -1.077 | -1.206 | 1.442 | -1.635 |
-#> |.....................| -0.8142 | -0.7642 | -0.9569 | -1.078 |
-#> |.....................| -0.5901 | -0.8857 | -1.037 | -0.2715 |
-#> | U| 467.24583 | 92.22 | -5.733 | -0.9284 | -2.107 |
-#> |.....................| -4.719 | 0.3108 | 1.788 | 0.03626 |
-#> |.....................| 0.8534 | 0.06137 | 0.6718 | 0.7144 |
-#> |.....................| 1.515 | 0.9503 | 0.7191 | 1.941 |
-#> | X| 467.24583 | 92.22 | 0.003238 | 0.2832 | 0.1216 |
-#> |.....................| 0.008927 | 0.5771 | 1.788 | 0.03626 |
-#> |.....................| 0.8534 | 0.06137 | 0.6718 | 0.7144 |
-#> |.....................| 1.515 | 0.9503 | 0.7191 | 1.941 |
-#> | F| Forward Diff. | 6.834 | 0.5162 | 0.08982 | 0.01752 |
-#> |.....................| -0.2436 | 0.7158 | -2.020 | -0.04939 |
-#> |.....................| -0.5459 | -0.6263 | -0.5712 | -1.499 |
-#> |.....................| -1.429 | -0.4150 | -0.4098 | -0.8001 |
-#> | 73| 467.23713 | 1.007 | -1.546 | -0.9569 | -0.8551 |
-#> |.....................| -1.076 | -1.209 | 1.446 | -1.636 |
-#> |.....................| -0.8132 | -0.7618 | -0.9559 | -1.076 |
-#> |.....................| -0.5919 | -0.8860 | -1.037 | -0.2716 |
-#> | U| 467.23713 | 92.12 | -5.734 | -0.9282 | -2.107 |
-#> |.....................| -4.718 | 0.3095 | 1.789 | 0.03621 |
-#> |.....................| 0.8538 | 0.06143 | 0.6724 | 0.7154 |
-#> |.....................| 1.513 | 0.9500 | 0.7191 | 1.941 |
-#> | X| 467.23713 | 92.12 | 0.003233 | 0.2833 | 0.1216 |
-#> |.....................| 0.008936 | 0.5768 | 1.789 | 0.03621 |
-#> |.....................| 0.8538 | 0.06143 | 0.6724 | 0.7154 |
-#> |.....................| 1.513 | 0.9500 | 0.7191 | 1.941 |
-#> | F| Forward Diff. | -3.249 | 0.5067 | 0.04417 | 0.02698 |
-#> |.....................| -0.2393 | 0.6753 | -1.942 | -0.1419 |
-#> |.....................| -0.5001 | -0.5983 | -0.6679 | -1.518 |
-#> |.....................| -1.576 | -0.4506 | -0.4091 | -0.8075 |
-#> | 74| 467.22826 | 1.008 | -1.548 | -0.9568 | -0.8550 |
-#> |.....................| -1.074 | -1.212 | 1.450 | -1.638 |
-#> |.....................| -0.8127 | -0.7593 | -0.9548 | -1.076 |
-#> |.....................| -0.5925 | -0.8862 | -1.037 | -0.2718 |
-#> | U| 467.22826 | 92.20 | -5.736 | -0.9281 | -2.107 |
-#> |.....................| -4.716 | 0.3080 | 1.791 | 0.03615 |
-#> |.....................| 0.8540 | 0.06151 | 0.6733 | 0.7160 |
-#> |.....................| 1.512 | 0.9499 | 0.7192 | 1.940 |
-#> | X| 467.22826 | 92.20 | 0.003227 | 0.2833 | 0.1216 |
-#> |.....................| 0.008947 | 0.5764 | 1.791 | 0.03615 |
-#> |.....................| 0.8540 | 0.06151 | 0.6733 | 0.7160 |
-#> |.....................| 1.512 | 0.9499 | 0.7192 | 1.940 |
-#> | F| Forward Diff. | 4.158 | 0.5052 | 0.09162 | 0.01474 |
-#> |.....................| -0.2441 | 0.6411 | -1.927 | 0.008374 |
-#> |.....................| -0.4204 | -0.5681 | -0.5325 | -1.398 |
-#> |.....................| -1.545 | -0.4616 | -0.4623 | -0.8062 |
-#> | 75| 467.21798 | 1.007 | -1.549 | -0.9567 | -0.8549 |
-#> |.....................| -1.073 | -1.215 | 1.453 | -1.641 |
-#> |.....................| -0.8130 | -0.7568 | -0.9541 | -1.075 |
-#> |.....................| -0.5920 | -0.8862 | -1.036 | -0.2722 |
-#> | U| 467.21798 | 92.13 | -5.738 | -0.9280 | -2.107 |
-#> |.....................| -4.715 | 0.3065 | 1.792 | 0.03607 |
-#> |.....................| 0.8539 | 0.06158 | 0.6738 | 0.7163 |
-#> |.....................| 1.512 | 0.9498 | 0.7195 | 1.940 |
-#> | X| 467.21798 | 92.13 | 0.003221 | 0.2833 | 0.1216 |
-#> |.....................| 0.008959 | 0.5760 | 1.792 | 0.03607 |
-#> |.....................| 0.8539 | 0.06158 | 0.6738 | 0.7163 |
-#> |.....................| 1.512 | 0.9498 | 0.7195 | 1.940 |
-#> | F| Forward Diff. | -2.820 | 0.4989 | 0.05960 | 0.01935 |
-#> |.....................| -0.2421 | 0.6061 | -1.914 | -0.2151 |
-#> |.....................| -0.5103 | -0.6093 | -0.7625 | -1.437 |
-#> |.....................| -1.510 | -0.4672 | -0.4489 | -0.8043 |
-#> | 76| 467.20848 | 1.008 | -1.551 | -0.9569 | -0.8547 |
-#> |.....................| -1.072 | -1.218 | 1.456 | -1.643 |
-#> |.....................| -0.8130 | -0.7539 | -0.9520 | -1.075 |
-#> |.....................| -0.5920 | -0.8859 | -1.036 | -0.2725 |
-#> | U| 467.20848 | 92.20 | -5.740 | -0.9282 | -2.106 |
-#> |.....................| -4.714 | 0.3053 | 1.793 | 0.03601 |
-#> |.....................| 0.8539 | 0.06166 | 0.6753 | 0.7165 |
-#> |.....................| 1.512 | 0.9501 | 0.7200 | 1.939 |
-#> | X| 467.20848 | 92.20 | 0.003215 | 0.2833 | 0.1217 |
-#> |.....................| 0.008973 | 0.5757 | 1.793 | 0.03601 |
-#> |.....................| 0.8539 | 0.06166 | 0.6753 | 0.7165 |
-#> |.....................| 1.512 | 0.9501 | 0.7200 | 1.939 |
-#> | F| Forward Diff. | 3.706 | 0.4993 | 0.1020 | 0.01046 |
-#> |.....................| -0.2448 | 0.5847 | -1.899 | -0.1702 |
-#> |.....................| -0.3837 | -0.5516 | -0.5275 | -1.370 |
-#> |.....................| -1.509 | -0.4527 | -0.4630 | -0.7991 |
-#> | 77| 467.20140 | 1.007 | -1.554 | -0.9572 | -0.8545 |
-#> |.....................| -1.070 | -1.221 | 1.459 | -1.644 |
-#> |.....................| -0.8137 | -0.7511 | -0.9495 | -1.075 |
-#> |.....................| -0.5926 | -0.8856 | -1.035 | -0.2726 |
-#> | U| 467.2014 | 92.12 | -5.742 | -0.9285 | -2.106 |
-#> |.....................| -4.712 | 0.3041 | 1.795 | 0.03600 |
-#> |.....................| 0.8536 | 0.06174 | 0.6772 | 0.7169 |
-#> |.....................| 1.512 | 0.9504 | 0.7205 | 1.939 |
-#> | X| 467.2014 | 92.12 | 0.003207 | 0.2832 | 0.1217 |
-#> |.....................| 0.008990 | 0.5754 | 1.795 | 0.03600 |
-#> |.....................| 0.8536 | 0.06174 | 0.6772 | 0.7169 |
-#> |.....................| 1.512 | 0.9504 | 0.7205 | 1.939 |
-#> | F| Forward Diff. | -4.697 | 0.4875 | 0.03394 | 0.01314 |
-#> |.....................| -0.2450 | 0.5527 | -1.903 | -0.2230 |
-#> |.....................| -0.3367 | -0.5055 | -0.4386 | -1.334 |
-#> |.....................| -1.570 | -0.4518 | -0.4312 | -0.7987 |
-#> | 78| 467.19155 | 1.008 | -1.556 | -0.9574 | -0.8545 |
-#> |.....................| -1.067 | -1.224 | 1.462 | -1.645 |
-#> |.....................| -0.8159 | -0.7492 | -0.9499 | -1.074 |
-#> |.....................| -0.5924 | -0.8858 | -1.035 | -0.2722 |
-#> | U| 467.19155 | 92.18 | -5.745 | -0.9286 | -2.106 |
-#> |.....................| -4.709 | 0.3027 | 1.796 | 0.03596 |
-#> |.....................| 0.8527 | 0.06180 | 0.6768 | 0.7173 |
-#> |.....................| 1.512 | 0.9502 | 0.7208 | 1.940 |
-#> | X| 467.19155 | 92.18 | 0.003200 | 0.2832 | 0.1217 |
-#> |.....................| 0.009010 | 0.5751 | 1.796 | 0.03596 |
-#> |.....................| 0.8527 | 0.06180 | 0.6768 | 0.7173 |
-#> |.....................| 1.512 | 0.9502 | 0.7208 | 1.940 |
-#> | F| Forward Diff. | 2.102 | 0.4867 | 0.07498 | 0.004893 |
-#> |.....................| -0.2442 | 0.5250 | -1.879 | -0.1740 |
-#> |.....................| -0.3775 | -0.5383 | -0.4109 | -1.255 |
-#> |.....................| -1.562 | -0.4584 | -0.4426 | -0.7882 |
-#> | 79| 467.18237 | 1.007 | -1.558 | -0.9574 | -0.8544 |
-#> |.....................| -1.065 | -1.226 | 1.465 | -1.647 |
-#> |.....................| -0.8177 | -0.7470 | -0.9510 | -1.074 |
-#> |.....................| -0.5912 | -0.8859 | -1.035 | -0.2717 |
-#> | U| 467.18237 | 92.12 | -5.747 | -0.9286 | -2.106 |
-#> |.....................| -4.707 | 0.3016 | 1.797 | 0.03591 |
-#> |.....................| 0.8519 | 0.06186 | 0.6761 | 0.7177 |
-#> |.....................| 1.513 | 0.9501 | 0.7212 | 1.940 |
-#> | X| 467.18237 | 92.12 | 0.003193 | 0.2832 | 0.1217 |
-#> |.....................| 0.009031 | 0.5748 | 1.797 | 0.03591 |
-#> |.....................| 0.8519 | 0.06186 | 0.6761 | 0.7177 |
-#> |.....................| 1.513 | 0.9501 | 0.7212 | 1.940 |
-#> | F| Forward Diff. | -4.940 | 0.4761 | 0.03110 | 0.006161 |
-#> |.....................| -0.2415 | 0.4988 | -1.880 | -0.2651 |
-#> |.....................| -0.3787 | -0.5263 | -0.4799 | -1.241 |
-#> |.....................| -1.481 | -0.4641 | -0.4124 | -0.7761 |
-#> | 80| 467.17113 | 1.008 | -1.561 | -0.9574 | -0.8542 |
-#> |.....................| -1.062 | -1.228 | 1.469 | -1.648 |
-#> |.....................| -0.8192 | -0.7442 | -0.9515 | -1.074 |
-#> |.....................| -0.5909 | -0.8858 | -1.034 | -0.2714 |
-#> | U| 467.17113 | 92.19 | -5.749 | -0.9286 | -2.106 |
-#> |.....................| -4.704 | 0.3008 | 1.799 | 0.03586 |
-#> |.....................| 0.8513 | 0.06194 | 0.6757 | 0.7179 |
-#> |.....................| 1.514 | 0.9502 | 0.7215 | 1.941 |
-#> | X| 467.17113 | 92.19 | 0.003185 | 0.2832 | 0.1217 |
-#> |.....................| 0.009056 | 0.5746 | 1.799 | 0.03586 |
-#> |.....................| 0.8513 | 0.06194 | 0.6757 | 0.7179 |
-#> |.....................| 1.514 | 0.9502 | 0.7215 | 1.941 |
-#> | 81| 467.15723 | 1.008 | -1.564 | -0.9575 | -0.8538 |
-#> |.....................| -1.058 | -1.230 | 1.473 | -1.651 |
-#> |.....................| -0.8215 | -0.7400 | -0.9524 | -1.074 |
-#> |.....................| -0.5906 | -0.8857 | -1.034 | -0.2712 |
-#> | U| 467.15723 | 92.19 | -5.753 | -0.9287 | -2.106 |
-#> |.....................| -4.700 | 0.2996 | 1.800 | 0.03578 |
-#> |.....................| 0.8504 | 0.06206 | 0.6750 | 0.7179 |
-#> |.....................| 1.514 | 0.9503 | 0.7219 | 1.941 |
-#> | X| 467.15723 | 92.19 | 0.003173 | 0.2832 | 0.1218 |
-#> |.....................| 0.009093 | 0.5743 | 1.800 | 0.03578 |
-#> |.....................| 0.8504 | 0.06206 | 0.6750 | 0.7179 |
-#> |.....................| 1.514 | 0.9503 | 0.7219 | 1.941 |
-#> | 82| 467.09153 | 1.008 | -1.583 | -0.9578 | -0.8521 |
-#> |.....................| -1.038 | -1.244 | 1.497 | -1.664 |
-#> |.....................| -0.8331 | -0.7187 | -0.9572 | -1.074 |
-#> |.....................| -0.5894 | -0.8854 | -1.031 | -0.2699 |
-#> | U| 467.09153 | 92.20 | -5.772 | -0.9290 | -2.104 |
-#> |.....................| -4.680 | 0.2934 | 1.810 | 0.03540 |
-#> |.....................| 0.8456 | 0.06268 | 0.6715 | 0.7181 |
-#> |.....................| 1.516 | 0.9506 | 0.7239 | 1.943 |
-#> | X| 467.09153 | 92.20 | 0.003114 | 0.2831 | 0.1220 |
-#> |.....................| 0.009282 | 0.5728 | 1.810 | 0.03540 |
-#> |.....................| 0.8456 | 0.06268 | 0.6715 | 0.7181 |
-#> |.....................| 1.516 | 0.9506 | 0.7239 | 1.943 |
-#> | 83| 466.89701 | 1.009 | -1.658 | -0.9591 | -0.8451 |
-#> |.....................| -0.9556 | -1.297 | 1.590 | -1.717 |
-#> |.....................| -0.8794 | -0.6338 | -0.9760 | -1.073 |
-#> |.....................| -0.5844 | -0.8840 | -1.022 | -0.2647 |
-#> | U| 466.89701 | 92.27 | -5.846 | -0.9301 | -2.097 |
-#> |.....................| -4.598 | 0.2688 | 1.849 | 0.03388 |
-#> |.....................| 0.8264 | 0.06513 | 0.6578 | 0.7186 |
-#> |.....................| 1.521 | 0.9519 | 0.7320 | 1.949 |
-#> | X| 466.89701 | 92.27 | 0.002890 | 0.2829 | 0.1228 |
-#> |.....................| 0.01008 | 0.5668 | 1.849 | 0.03388 |
-#> |.....................| 0.8264 | 0.06513 | 0.6578 | 0.7186 |
-#> |.....................| 1.521 | 0.9519 | 0.7320 | 1.949 |
-#> | 84| 466.81525 | 1.010 | -1.758 | -0.9608 | -0.8357 |
-#> |.....................| -0.8455 | -1.369 | 1.715 | -1.787 |
-#> |.....................| -0.9414 | -0.5201 | -1.001 | -1.072 |
-#> |.....................| -0.5775 | -0.8822 | -1.009 | -0.2576 |
-#> | U| 466.81525 | 92.41 | -5.946 | -0.9316 | -2.087 |
-#> |.....................| -4.488 | 0.2358 | 1.901 | 0.03185 |
-#> |.....................| 0.8007 | 0.06841 | 0.6394 | 0.7195 |
-#> |.....................| 1.530 | 0.9537 | 0.7428 | 1.958 |
-#> | X| 466.81525 | 92.41 | 0.002615 | 0.2826 | 0.1240 |
-#> |.....................| 0.01125 | 0.5587 | 1.901 | 0.03185 |
-#> |.....................| 0.8007 | 0.06841 | 0.6394 | 0.7195 |
-#> |.....................| 1.530 | 0.9537 | 0.7428 | 1.958 |
-#> | F| Forward Diff. | 1.005 | 0.03859 | 0.3281 | -0.1495 |
-#> |.....................| 0.1126 | -0.4190 | -0.9638 | -1.159 |
-#> |.....................| -0.4187 | -0.1084 | -1.236 | 1.865 |
-#> |.....................| -0.3960 | -0.4043 | -0.1671 | 0.1635 |
-#> | 85| 467.22945 | 1.009 | -1.931 | -1.059 | -0.7851 |
-#> |.....................| -0.6667 | -1.418 | 1.962 | -1.804 |
-#> |.....................| -1.038 | -0.3298 | -0.7816 | -1.157 |
-#> |.....................| -0.5368 | -0.8226 | -0.9633 | -0.3812 |
-#> | U| 467.22945 | 92.33 | -6.120 | -1.019 | -2.037 |
-#> |.....................| -4.309 | 0.2137 | 2.003 | 0.03136 |
-#> |.....................| 0.7606 | 0.07390 | 0.7997 | 0.6429 |
-#> |.....................| 1.578 | 1.011 | 0.7823 | 1.807 |
-#> | X| 467.22945 | 92.33 | 0.002199 | 0.2652 | 0.1304 |
-#> |.....................| 0.01345 | 0.5532 | 2.003 | 0.03136 |
-#> |.....................| 0.7606 | 0.07390 | 0.7997 | 0.6429 |
-#> |.....................| 1.578 | 1.011 | 0.7823 | 1.807 |
-#> | 86| 466.68655 | 1.009 | -1.812 | -0.9919 | -0.8198 |
-#> |.....................| -0.7896 | -1.384 | 1.793 | -1.792 |
-#> |.....................| -0.9716 | -0.4604 | -0.9317 | -1.100 |
-#> |.....................| -0.5645 | -0.8633 | -0.9948 | -0.2964 |
-#> | U| 466.68655 | 92.33 | -6.001 | -0.9592 | -2.072 |
-#> |.....................| -4.432 | 0.2290 | 1.933 | 0.03172 |
-#> |.....................| 0.7883 | 0.07013 | 0.6901 | 0.6945 |
-#> |.....................| 1.545 | 0.9719 | 0.7553 | 1.910 |
-#> | X| 466.68655 | 92.33 | 0.002477 | 0.2770 | 0.1260 |
-#> |.....................| 0.01190 | 0.5570 | 1.933 | 0.03172 |
-#> |.....................| 0.7883 | 0.07013 | 0.6901 | 0.6945 |
-#> |.....................| 1.545 | 0.9719 | 0.7553 | 1.910 |
-#> | F| Forward Diff. | -11.18 | 0.05254 | -0.8763 | -0.07569 |
-#> |.....................| 0.1998 | -0.2059 | -0.4605 | -0.7124 |
-#> |.....................| -0.3271 | 0.07217 | 0.9692 | 1.710 |
-#> |.....................| -0.7229 | 0.7265 | 0.2517 | -0.09129 |
-#> | 87| 466.82655 | 1.009 | -1.865 | -0.9192 | -0.7946 |
-#> |.....................| -0.7769 | -1.362 | 1.859 | -1.827 |
-#> |.....................| -0.9838 | -0.4392 | -0.9155 | -1.146 |
-#> |.....................| -0.4995 | -0.8511 | -1.000 | -0.3560 |
-#> | U| 466.82655 | 92.34 | -6.054 | -0.8947 | -2.046 |
-#> |.....................| -4.419 | 0.2394 | 1.960 | 0.03072 |
-#> |.....................| 0.7832 | 0.07074 | 0.7019 | 0.6527 |
-#> |.....................| 1.622 | 0.9836 | 0.7506 | 1.838 |
-#> | X| 466.82655 | 92.34 | 0.002349 | 0.2901 | 0.1292 |
-#> |.....................| 0.01205 | 0.5596 | 1.960 | 0.03072 |
-#> |.....................| 0.7832 | 0.07074 | 0.7019 | 0.6527 |
-#> |.....................| 1.622 | 0.9836 | 0.7506 | 1.838 |
-#> | 88| 466.65072 | 1.010 | -1.827 | -0.9719 | -0.8129 |
-#> |.....................| -0.7861 | -1.378 | 1.811 | -1.801 |
-#> |.....................| -0.9749 | -0.4546 | -0.9274 | -1.113 |
-#> |.....................| -0.5467 | -0.8600 | -0.9963 | -0.3127 |
-#> | U| 466.65072 | 92.43 | -6.015 | -0.9415 | -2.065 |
-#> |.....................| -4.428 | 0.2318 | 1.940 | 0.03144 |
-#> |.....................| 0.7869 | 0.07030 | 0.6933 | 0.6830 |
-#> |.....................| 1.566 | 0.9750 | 0.7540 | 1.891 |
-#> | X| 466.65072 | 92.43 | 0.002441 | 0.2806 | 0.1269 |
-#> |.....................| 0.01194 | 0.5577 | 1.940 | 0.03144 |
-#> |.....................| 0.7869 | 0.07030 | 0.6933 | 0.6830 |
-#> |.....................| 1.566 | 0.9750 | 0.7540 | 1.891 |
-#> | F| Forward Diff. | -1.340 | 0.07863 | 0.1180 | -0.03302 |
-#> |.....................| 0.1973 | -0.03638 | -0.4314 | -0.7320 |
-#> |.....................| -0.3719 | 0.04356 | 0.7597 | 1.009 |
-#> |.....................| 0.3079 | 0.4883 | -0.4019 | -0.3069 |
-#> | 89| 466.64054 | 1.012 | -1.843 | -0.9769 | -0.8069 |
-#> |.....................| -0.7968 | -1.376 | 1.833 | -1.786 |
-#> |.....................| -0.9571 | -0.4600 | -0.9463 | -1.118 |
-#> |.....................| -0.5553 | -0.8554 | -0.9954 | -0.3119 |
-#> | U| 466.64054 | 92.56 | -6.031 | -0.9459 | -2.059 |
-#> |.....................| -4.439 | 0.2329 | 1.949 | 0.03189 |
-#> |.....................| 0.7943 | 0.07014 | 0.6795 | 0.6783 |
-#> |.....................| 1.556 | 0.9795 | 0.7548 | 1.892 |
-#> | X| 466.64054 | 92.56 | 0.002403 | 0.2797 | 0.1276 |
-#> |.....................| 0.01181 | 0.5580 | 1.949 | 0.03189 |
-#> |.....................| 0.7943 | 0.07014 | 0.6795 | 0.6783 |
-#> |.....................| 1.556 | 0.9795 | 0.7548 | 1.892 |
-#> | F| Forward Diff. | 13.35 | 0.06546 | -0.02976 | 0.01632 |
-#> |.....................| 0.1680 | -0.06031 | -0.2101 | 0.2297 |
-#> |.....................| -0.01975 | 0.1913 | 0.1108 | 0.6100 |
-#> |.....................| -0.008263 | 1.320 | 0.06198 | -0.2490 |
-#> | 90| 466.63994 | 1.010 | -1.856 | -0.9836 | -0.8023 |
-#> |.....................| -0.8121 | -1.369 | 1.859 | -1.781 |
-#> |.....................| -0.9548 | -0.4699 | -0.9506 | -1.117 |
-#> |.....................| -0.5644 | -0.8726 | -1.009 | -0.3176 |
-#> | U| 466.63994 | 92.43 | -6.045 | -0.9518 | -2.054 |
-#> |.....................| -4.454 | 0.2360 | 1.960 | 0.03203 |
-#> |.....................| 0.7952 | 0.06986 | 0.6763 | 0.6795 |
-#> |.....................| 1.545 | 0.9629 | 0.7430 | 1.885 |
-#> | X| 466.63994 | 92.43 | 0.002371 | 0.2785 | 0.1282 |
-#> |.....................| 0.01163 | 0.5587 | 1.960 | 0.03203 |
-#> |.....................| 0.7952 | 0.06986 | 0.6763 | 0.6795 |
-#> |.....................| 1.545 | 0.9629 | 0.7430 | 1.885 |
-#> | F| Forward Diff. | 0.1431 | 0.02593 | -0.4247 | 0.08835 |
-#> |.....................| 0.1490 | -0.08497 | 0.03702 | 0.4153 |
-#> |.....................| -0.04754 | 0.2015 | 0.06787 | -0.3581 |
-#> |.....................| -0.4069 | 0.09362 | -0.9227 | -0.5264 |
-#> | 91| 466.65402 | 1.008 | -1.856 | -0.9767 | -0.8037 |
-#> |.....................| -0.8145 | -1.367 | 1.858 | -1.788 |
-#> |.....................| -0.9540 | -0.4731 | -0.9517 | -1.111 |
-#> |.....................| -0.5579 | -0.8741 | -0.9943 | -0.3092 |
-#> | U| 466.65402 | 92.22 | -6.045 | -0.9458 | -2.055 |
-#> |.....................| -4.457 | 0.2367 | 1.960 | 0.03184 |
-#> |.....................| 0.7955 | 0.06976 | 0.6755 | 0.6846 |
-#> |.....................| 1.553 | 0.9615 | 0.7557 | 1.895 |
-#> | X| 466.65402 | 92.22 | 0.002370 | 0.2797 | 0.1280 |
-#> |.....................| 0.01160 | 0.5589 | 1.960 | 0.03184 |
-#> |.....................| 0.7955 | 0.06976 | 0.6755 | 0.6846 |
-#> |.....................| 1.553 | 0.9615 | 0.7557 | 1.895 |
-#> | 92| 466.63541 | 1.010 | -1.856 | -0.9812 | -0.8028 |
-#> |.....................| -0.8129 | -1.368 | 1.858 | -1.783 |
-#> |.....................| -0.9545 | -0.4710 | -0.9509 | -1.115 |
-#> |.....................| -0.5622 | -0.8731 | -1.004 | -0.3147 |
-#> | U| 466.63541 | 92.36 | -6.045 | -0.9498 | -2.055 |
-#> |.....................| -4.455 | 0.2363 | 1.960 | 0.03197 |
-#> |.....................| 0.7953 | 0.06982 | 0.6761 | 0.6812 |
-#> |.....................| 1.548 | 0.9624 | 0.7474 | 1.888 |
-#> | X| 466.63541 | 92.36 | 0.002371 | 0.2789 | 0.1281 |
-#> |.....................| 0.01162 | 0.5588 | 1.960 | 0.03197 |
-#> |.....................| 0.7953 | 0.06982 | 0.6761 | 0.6812 |
-#> |.....................| 1.548 | 0.9624 | 0.7474 | 1.888 |
-#> | F| Forward Diff. | -7.597 | 0.01585 | -0.3721 | 0.09081 |
-#> |.....................| 0.1473 | -0.05128 | 0.01723 | 0.2650 |
-#> |.....................| -0.04930 | 0.2121 | 0.3911 | -0.1952 |
-#> |.....................| -0.2951 | 0.01195 | -0.4116 | -0.4404 |
-#> | 93| 466.62967 | 1.010 | -1.857 | -0.9822 | -0.8038 |
-#> |.....................| -0.8179 | -1.367 | 1.859 | -1.785 |
-#> |.....................| -0.9524 | -0.4748 | -0.9515 | -1.114 |
-#> |.....................| -0.5617 | -0.8740 | -1.004 | -0.3130 |
-#> | U| 466.62967 | 92.43 | -6.045 | -0.9507 | -2.056 |
-#> |.....................| -4.460 | 0.2370 | 1.960 | 0.03192 |
-#> |.....................| 0.7962 | 0.06971 | 0.6756 | 0.6815 |
-#> |.....................| 1.548 | 0.9616 | 0.7476 | 1.890 |
-#> | X| 466.62967 | 92.43 | 0.002369 | 0.2787 | 0.1280 |
-#> |.....................| 0.01156 | 0.5590 | 1.960 | 0.03192 |
-#> |.....................| 0.7962 | 0.06971 | 0.6756 | 0.6815 |
-#> |.....................| 1.548 | 0.9616 | 0.7476 | 1.890 |
-#> | F| Forward Diff. | 0.1737 | 0.01712 | -0.3712 | 0.07555 |
-#> |.....................| 0.1320 | -0.03330 | -0.1756 | 0.3015 |
-#> |.....................| -0.06297 | 0.1717 | 0.09645 | -0.1674 |
-#> |.....................| -0.2756 | -0.01624 | -0.3459 | -0.4307 |
-#> | 94| 466.62779 | 1.010 | -1.856 | -0.9797 | -0.8047 |
-#> |.....................| -0.8221 | -1.366 | 1.862 | -1.786 |
-#> |.....................| -0.9500 | -0.4779 | -0.9517 | -1.113 |
-#> |.....................| -0.5623 | -0.8742 | -1.003 | -0.3111 |
-#> | U| 466.62779 | 92.40 | -6.045 | -0.9484 | -2.056 |
-#> |.....................| -4.464 | 0.2375 | 1.961 | 0.03188 |
-#> |.....................| 0.7972 | 0.06963 | 0.6755 | 0.6823 |
-#> |.....................| 1.548 | 0.9614 | 0.7480 | 1.893 |
-#> | X| 466.62779 | 92.40 | 0.002370 | 0.2792 | 0.1279 |
-#> |.....................| 0.01152 | 0.5591 | 1.961 | 0.03188 |
-#> |.....................| 0.7972 | 0.06963 | 0.6755 | 0.6823 |
-#> |.....................| 1.548 | 0.9614 | 0.7480 | 1.893 |
-#> | F| Forward Diff. | -2.926 | 0.01199 | -0.2808 | 0.07297 |
-#> |.....................| 0.1250 | -0.02504 | 0.02207 | 0.2419 |
-#> |.....................| -0.03068 | 0.1983 | 0.3271 | -0.08125 |
-#> |.....................| -0.2841 | -0.05347 | -0.2873 | -0.3919 |
-#> | 95| 466.62386 | 1.010 | -1.856 | -0.9811 | -0.8057 |
-#> |.....................| -0.8267 | -1.365 | 1.862 | -1.788 |
-#> |.....................| -0.9479 | -0.4822 | -0.9526 | -1.114 |
-#> |.....................| -0.5610 | -0.8741 | -1.003 | -0.3093 |
-#> | U| 466.62386 | 92.43 | -6.045 | -0.9497 | -2.057 |
-#> |.....................| -4.469 | 0.2377 | 1.961 | 0.03183 |
-#> |.....................| 0.7980 | 0.06950 | 0.6749 | 0.6820 |
-#> |.....................| 1.549 | 0.9614 | 0.7483 | 1.895 |
-#> | X| 466.62386 | 92.43 | 0.002370 | 0.2789 | 0.1278 |
-#> |.....................| 0.01146 | 0.5592 | 1.961 | 0.03183 |
-#> |.....................| 0.7980 | 0.06950 | 0.6749 | 0.6820 |
-#> |.....................| 1.549 | 0.9614 | 0.7483 | 1.895 |
-#> | F| Forward Diff. | 0.1137 | 0.01564 | -0.3265 | 0.06191 |
-#> |.....................| 0.1094 | -0.02529 | 0.01125 | 0.2123 |
-#> |.....................| -0.07598 | 0.1365 | 0.2003 | -0.1363 |
-#> |.....................| -0.2276 | -0.05501 | -0.2526 | -0.4116 |
-#> | 96| 466.62386 | 1.010 | -1.856 | -0.9811 | -0.8057 |
-#> |.....................| -0.8267 | -1.365 | 1.862 | -1.788 |
-#> |.....................| -0.9479 | -0.4822 | -0.9526 | -1.114 |
-#> |.....................| -0.5610 | -0.8741 | -1.003 | -0.3093 |
-#> | U| 466.62386 | 92.43 | -6.045 | -0.9497 | -2.057 |
-#> |.....................| -4.469 | 0.2377 | 1.961 | 0.03183 |
-#> |.....................| 0.7980 | 0.06950 | 0.6749 | 0.6820 |
-#> |.....................| 1.549 | 0.9614 | 0.7483 | 1.895 |
-#> | X| 466.62386 | 92.43 | 0.002370 | 0.2789 | 0.1278 |
-#> |.....................| 0.01146 | 0.5592 | 1.961 | 0.03183 |
-#> |.....................| 0.7980 | 0.06950 | 0.6749 | 0.6820 |
-#> |.....................| 1.549 | 0.9614 | 0.7483 | 1.895 |
-#> calculating covariance matrix
-#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))#> Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo
+#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
+#> cmt(A1);
+#> rx_expr_6~ETA[1]+THETA[1];
+#> parent(0)=rx_expr_6;
+#> rx_expr_7~ETA[4]+THETA[4];
+#> rx_expr_8~ETA[6]+THETA[6];
+#> rx_expr_9~ETA[5]+THETA[5];
+#> rx_expr_12~exp(rx_expr_7);
+#> rx_expr_13~exp(rx_expr_9);
+#> rx_expr_15~t*rx_expr_12;
+#> rx_expr_16~t*rx_expr_13;
+#> rx_expr_17~exp(-(rx_expr_8));
+#> rx_expr_19~1+rx_expr_17;
+#> rx_expr_24~1/(rx_expr_19);
+#> rx_expr_26~(rx_expr_24);
+#> rx_expr_27~1-rx_expr_26;
+#> d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));
+#> rx_expr_10~ETA[2]+THETA[2];
+#> rx_expr_14~exp(rx_expr_10);
+#> d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));
+#> rx_expr_0~CMT==2;
+#> rx_expr_1~CMT==1;
+#> rx_expr_2~1-(rx_expr_0);
+#> rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);
+#> rx_expr_3~(rx_expr_0);
+#> rx_expr_5~(rx_expr_2);
+#> rx_expr_18~rx_expr_5*(rx_expr_1);
+#> rx_lambda_~rx_expr_18+rx_expr_3;
+#> rx_hi_~rx_expr_18+rx_expr_3;
+#> rx_low_~0;
+#> rx_expr_4~A1*(rx_expr_0);
+#> rx_expr_11~parent*(rx_expr_2);
+#> rx_expr_22~rx_expr_11*(rx_expr_1);
+#> rx_pred_=(rx_expr_4+rx_expr_22)*(rx_expr_0)+(rx_expr_4+rx_expr_22)*(rx_expr_2)*(rx_expr_1);
+#> rx_r_=(rx_expr_0)*(Rx_pow_di(((rx_expr_4+rx_expr_22)*(rx_expr_0)+(rx_expr_4+rx_expr_22)*(rx_expr_2)*(rx_expr_1)),2)*Rx_pow_di(THETA[10],2)+Rx_pow_di(THETA[9],2))+(Rx_pow_di(THETA[8],2)*Rx_pow_di(((rx_expr_4+rx_expr_22)*(rx_expr_1)),2)+Rx_pow_di(THETA[7],2))*(rx_expr_2)*(rx_expr_1);
+#> parent_0=THETA[1];
+#> log_k_A1=THETA[2];
+#> f_parent_qlogis=THETA[3];
+#> log_k1=THETA[4];
+#> log_k2=THETA[5];
+#> g_qlogis=THETA[6];
+#> sigma_low_parent=THETA[7];
+#> rsd_high_parent=THETA[8];
+#> sigma_low_A1=THETA[9];
+#> rsd_high_A1=THETA[10];
+#> eta.parent_0=ETA[1];
+#> eta.log_k_A1=ETA[2];
+#> eta.f_parent_qlogis=ETA[3];
+#> eta.log_k1=ETA[4];
+#> eta.log_k2=ETA[5];
+#> eta.g_qlogis=ETA[6];
+#> parent_0_model=rx_expr_6;
+#> k_A1=rx_expr_14;
+#> k1=rx_expr_12;
+#> k2=rx_expr_13;
+#> f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
+#> g=1/(rx_expr_19);
+#> tad=tad();
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 17.73 0.411 18.14
AIC(
f_nlmixr_sfo_sfo_focei_const$nm,
f_nlmixr_fomc_sfo_focei_const$nm,
@@ -13656,110 +4965,11 @@ obtained by fitting the same model to a list of datasets using f_nlmixr_dfop_sfo_saem_obs_tc$nm,
f_nlmixr_dfop_sfo_focei_obs_tc$nm
)
-#> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> df AIC
-#> f_nlmixr_sfo_sfo_focei_const$nm 9 1082.4868
-#> f_nlmixr_fomc_sfo_focei_const$nm 11 814.4317
-#> f_nlmixr_dfop_sfo_focei_const$nm 13 866.0485
-#> f_nlmixr_fomc_sfo_saem_obs$nm 12 791.7256
-#> f_nlmixr_fomc_sfo_focei_obs$nm 12 794.5998
-#> f_nlmixr_dfop_sfo_saem_obs$nm 14 812.0463
-#> f_nlmixr_dfop_sfo_focei_obs$nm 14 846.9228
-#> f_nlmixr_fomc_sfo_focei_tc$nm 12 812.3585
-#> f_nlmixr_dfop_sfo_focei_tc$nm 14 842.3479
-#> f_nlmixr_fomc_sfo_saem_obs_tc$nm 14 817.1261
-#> f_nlmixr_fomc_sfo_focei_obs_tc$nm 14 787.4863
-#> f_nlmixr_dfop_sfo_saem_obs_tc$nm 16 858.3213
-#> f_nlmixr_dfop_sfo_focei_obs_tc$nm 16 811.0630# Currently, FOMC-SFO with two-component error by variable fitted by focei gives the
+#> Error in AIC(f_nlmixr_sfo_sfo_focei_const$nm, f_nlmixr_fomc_sfo_focei_const$nm, f_nlmixr_dfop_sfo_focei_const$nm, f_nlmixr_fomc_sfo_saem_obs$nm, f_nlmixr_fomc_sfo_focei_obs$nm, f_nlmixr_dfop_sfo_saem_obs$nm, f_nlmixr_dfop_sfo_focei_obs$nm, f_nlmixr_fomc_sfo_focei_tc$nm, f_nlmixr_dfop_sfo_focei_tc$nm, f_nlmixr_fomc_sfo_saem_obs_tc$nm, f_nlmixr_fomc_sfo_focei_obs_tc$nm, f_nlmixr_dfop_sfo_saem_obs_tc$nm, f_nlmixr_dfop_sfo_focei_obs_tc$nm): object 'f_nlmixr_sfo_sfo_focei_const' not found# Currently, FOMC-SFO with two-component error by variable fitted by focei gives the
# lowest AIC
plot(f_nlmixr_fomc_sfo_focei_obs_tc)
-#> nlmixr version used for fitting: 2.0.4
-#> mkin version used for pre-fitting: 1.0.5
-#> R version used for fitting: 4.1.0
-#> Date of fit: Fri Jun 11 10:54:54 2021
-#> Date of summary: Fri Jun 11 10:56:12 2021
-#>
-#> Equations:
-#> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
-#> d_A1/dt = + f_parent_to_A1 * (alpha/beta) * 1/((time/beta) + 1) *
-#> parent - k_A1 * A1
-#>
-#> Data:
-#> 170 observations of 2 variable(s) grouped in 5 datasets
-#>
-#> Degradation model predictions using RxODE
-#>
-#> Fitted in 23.28 s
-#>
-#> Variance model: Two-component variance unique to each observed variable
-#>
-#> Mean of starting values for individual parameters:
-#> parent_0 log_k_A1 f_parent_qlogis log_alpha log_beta
-#> 93.1168 -5.3034 -0.9442 -0.1065 2.2909
-#>
-#> Mean of starting values for error model parameters:
-#> sigma_low_parent rsd_high_parent sigma_low_A1 rsd_high_A1
-#> 1.15958 0.03005 1.15958 0.03005
-#>
-#> Fixed degradation parameter values:
-#> None
-#>
-#> Results:
-#>
-#> Likelihood calculated by focei
-#> AIC BIC logLik
-#> 787.5 831.4 -379.7
-#>
-#> Optimised parameters:
-#> est. lower upper
-#> parent_0 93.6898 91.2681 96.1114
-#> log_k_A1 -6.2923 -8.3662 -4.2185
-#> f_parent_qlogis -1.0019 -1.3760 -0.6278
-#> log_alpha -0.1639 -0.6641 0.3363
-#> log_beta 2.2031 1.6723 2.7340
-#>
-#> Correlation:
-#> prnt_0 lg__A1 f_prn_ lg_lph
-#> log_k_A1 0.368
-#> f_parent_qlogis -0.788 -0.401
-#> log_alpha 0.338 0.942 -0.307
-#> log_beta -0.401 -0.761 0.253 -0.555
-#>
-#> Random effects (omega):
-#> eta.parent_0 eta.log_k_A1 eta.f_parent_qlogis eta.log_alpha
-#> eta.parent_0 4.74 0.00 0.0000 0.0000
-#> eta.log_k_A1 0.00 5.57 0.0000 0.0000
-#> eta.f_parent_qlogis 0.00 0.00 0.1646 0.0000
-#> eta.log_alpha 0.00 0.00 0.0000 0.3312
-#> eta.log_beta 0.00 0.00 0.0000 0.0000
-#> eta.log_beta
-#> eta.parent_0 0.0000
-#> eta.log_k_A1 0.0000
-#> eta.f_parent_qlogis 0.0000
-#> eta.log_alpha 0.0000
-#> eta.log_beta 0.3438
-#>
-#> Variance model:
-#> sigma_low_parent rsd_high_parent sigma_low_A1 rsd_high_A1
-#> 2.35467 0.00261 0.64525 0.08456
-#>
-#> Backtransformed parameters:
-#> est. lower upper
-#> parent_0 93.68976 9.127e+01 96.11140
-#> k_A1 0.00185 2.326e-04 0.01472
-#> f_parent_to_A1 0.26857 2.017e-01 0.34801
-#> alpha 0.84879 5.147e-01 1.39971
-#> beta 9.05342 5.325e+00 15.39359
-#>
-#> Resulting formation fractions:
-#> ff
-#> parent_A1 0.2686
-#> parent_sink 0.7314
-#>
-#> Estimated disappearance times:
-#> DT50 DT90 DT50back
-#> parent 11.43 127.4 38.35
-#> A1 374.59 1244.4 NA# }
+#> Error in plot(f_nlmixr_fomc_sfo_focei_obs_tc): object 'f_nlmixr_fomc_sfo_focei_obs_tc' not found#> Error in summary(f_nlmixr_fomc_sfo_focei_obs_tc): object 'f_nlmixr_fomc_sfo_focei_obs_tc' not found# }
diff --git a/docs/dev/reference/tffm0.html b/docs/dev/reference/tffm0.html
new file mode 100644
index 00000000..d993e8ff
--- /dev/null
+++ b/docs/dev/reference/tffm0.html
@@ -0,0 +1,226 @@
+
+
+
+
+
+
+
+
+Transform formation fractions as in the first published mkin version — tffm0 • mkin
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ mkin
+ 1.0.5
+
+
+
+
+
+ -
+ Functions and data
+
+-
+
+ Articles
+
+
+
+
+ -
+ Introduction to mkin
+
+ -
+ Example evaluation of FOCUS Example Dataset D
+
+ -
+ Example evaluation of FOCUS Laboratory Data L1 to L3
+
+ -
+ Example evaluation of FOCUS Example Dataset Z
+
+ -
+ Performance benefit by using compiled model definitions in mkin
+
+ -
+ Calculation of time weighted average concentrations with mkin
+
+ -
+ Example evaluation of NAFTA SOP Attachment examples
+
+ -
+ Some benchmark timings
+
+
+
+-
+ News
+
+
+
+ -
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Transform formation fractions as in the first published mkin version
+ Source: R/tffm0.R
+ tffm0.Rd
+
+
+
+ The transformed fractions can be restricted between 0 and 1 in model
+optimisations. Therefore this transformation was used originally in mkin. It
+was later replaced by the ilr transformation because the ilr transformed
+fractions can assumed to follow normal distribution. As the ilr
+transformation is not available in RxODE and can therefore not be used in
+the nlmixr modelling language, this transformation is currently used for
+translating mkin models with formation fractions to more than one target
+compartment for fitting with nlmixr in nlmixr_model. However,
+this implementation cannot be used there, as it is not accessible
+from RxODE.
+
+
+ tffm0(ff)
+
+invtffm0(ff_trans)
+
+ Arguments
+
+
+
+ ff
+ Vector of untransformed formation fractions. The sum
+must be smaller or equal to one
+
+
+ ff_trans
+ Vector of transformed formation fractions that can be
+restricted to the interval from 0 to 1
+
+
+
+ Value
+
+ A vector of the transformed formation fractions
+A vector of backtransformed formation fractions for natural use in degradation models
+
+ Examples
+ ff_example <- c(
+ 0.10983681, 0.09035905, 0.08399383
+)
+ff_example_trans <- tffm0(ff_example)
+invtffm0(ff_example_trans)
+#> [1] 0.10983681 0.09035905 0.08399383
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/docs/dev/sitemap.xml b/docs/dev/sitemap.xml
index 425e18ad..150840e1 100644
--- a/docs/dev/sitemap.xml
+++ b/docs/dev/sitemap.xml
@@ -213,6 +213,9 @@
https://pkgdown.jrwb.de/mkin/reference/test_data_from_UBA_2014.html
+
+ https://pkgdown.jrwb.de/mkin/reference/tffm0.html
+
https://pkgdown.jrwb.de/mkin/reference/transform_odeparms.html
--
cgit v1.2.1
From d9577db290a7fb8944d9a79af59ae90fc00a3eaa Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Wed, 23 Jun 2021 17:01:25 +0200
Subject: Fix documentation of default random effects for nlme.mmkin
---
R/nlme.mmkin.R | 7 +++----
1 file changed, 3 insertions(+), 4 deletions(-)
diff --git a/R/nlme.mmkin.R b/R/nlme.mmkin.R
index a1aa32e5..7049a9a1 100644
--- a/R/nlme.mmkin.R
+++ b/R/nlme.mmkin.R
@@ -34,10 +34,9 @@ get_deg_func <- function() {
#' @param data Ignored, data are taken from the mmkin model
#' @param fixed Ignored, all degradation parameters fitted in the
#' mmkin model are used as fixed parameters
-#' @param random If not specified, correlated random effects are set up
-#' for all optimised degradation model parameters using the log-Cholesky
-#' parameterization [nlme::pdLogChol] that is also the default of
-#' the generic [nlme] method.
+#' @param random If not specified, no correlations between random effects are
+#' set up for the optimised degradation model parameters. This is
+#' achieved by using the [nlme::pdDiag] method.
#' @param groups See the documentation of nlme
#' @param start If not specified, mean values of the fitted degradation
#' parameters taken from the mmkin object are used
--
cgit v1.2.1
From 8f015900156981ecc2f1f6a1d5a078277ef3f454 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Wed, 23 Jun 2021 17:02:20 +0200
Subject: Test log parameters by default when deriving saemix starting
parameters
---
R/saem.R | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
diff --git a/R/saem.R b/R/saem.R
index 5daf4be8..9db2c04a 100644
--- a/R/saem.R
+++ b/R/saem.R
@@ -115,7 +115,7 @@ saem <- function(object, ...) UseMethod("saem")
saem.mmkin <- function(object,
transformations = c("mkin", "saemix"),
degparms_start = numeric(),
- test_log_parms = FALSE,
+ test_log_parms = TRUE,
conf.level = 0.6,
solution_type = "auto",
nbiter.saemix = c(300, 100),
--
cgit v1.2.1
From 40b78bed232798ecbeb72759cdf8d400ea35b31f Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Fri, 23 Jul 2021 13:55:34 +0200
Subject: Some example evaluations of dimethenamid data
Evaluations with nlme, saemix and nlmixr are included
---
DESCRIPTION | 4 +-
R/dimethenamid_2018.R | 33 +-
R/mkinsub.R | 5 -
vignettes/references.bib | 23 +-
vignettes/web_only/.build.timestamp | 0
vignettes/web_only/dimethenamid_2018.R | 66 +
vignettes/web_only/dimethenamid_2018.html | 1864 ++++++++++++++++++++
vignettes/web_only/dimethenamid_2018.rmd | 374 ++++
.../figure-html/f_parent_mkin_dfop_const-1.png | Bin 0 -> 60693 bytes
.../f_parent_mkin_dfop_const_test-1.png | Bin 0 -> 60929 bytes
.../figure-html/f_parent_mkin_dfop_tc_test-1.png | Bin 0 -> 62234 bytes
.../figure-html/f_parent_mkin_sfo_const-1.png | Bin 0 -> 58445 bytes
.../f_parent_nlmixr_saem_dfop_const-1.png | Bin 0 -> 92167 bytes
.../figure-html/f_parent_nlmixr_saem_dfop_tc-1.png | Bin 0 -> 76934 bytes
.../f_parent_nlmixr_saem_sfo_const-1.png | Bin 0 -> 62426 bytes
.../figure-html/f_parent_nlmixr_saem_sfo_tc-1.png | Bin 0 -> 70230 bytes
.../figure-html/f_parent_saemix_dfop_const-1.png | Bin 0 -> 41208 bytes
.../f_parent_saemix_dfop_const_moreiter-1.png | Bin 0 -> 39456 bytes
.../figure-html/f_parent_saemix_dfop_tc-1.png | Bin 0 -> 31646 bytes
.../f_parent_saemix_dfop_tc_moreiter-1.png | Bin 0 -> 32077 bytes
.../figure-html/f_parent_saemix_sfo_const-1.png | Bin 0 -> 35758 bytes
.../figure-html/f_parent_saemix_sfo_tc-1.png | Bin 0 -> 30708 bytes
.../f_parent_saemix_sfo_tc_moreiter-1.png | Bin 0 -> 30416 bytes
.../figure-html/plot_parent_nlme-1.png | Bin 0 -> 60491 bytes
24 files changed, 2349 insertions(+), 20 deletions(-)
create mode 100644 vignettes/web_only/.build.timestamp
create mode 100644 vignettes/web_only/dimethenamid_2018.R
create mode 100644 vignettes/web_only/dimethenamid_2018.html
create mode 100644 vignettes/web_only/dimethenamid_2018.rmd
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_const-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_tc-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_const-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_tc-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const_moreiter-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc_moreiter-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_const-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc_moreiter-1.png
create mode 100644 vignettes/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png
diff --git a/DESCRIPTION b/DESCRIPTION
index c6151839..4689cb2a 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,8 +1,8 @@
Package: mkin
Type: Package
Title: Kinetic Evaluation of Chemical Degradation Data
-Version: 1.0.5
-Date: 2021-06-11
+Version: 1.1.0
+Date: 2021-06-23
Authors@R: c(
person("Johannes", "Ranke", role = c("aut", "cre", "cph"),
email = "jranke@uni-bremen.de",
diff --git a/R/dimethenamid_2018.R b/R/dimethenamid_2018.R
index 6e0bda0c..770649e2 100644
--- a/R/dimethenamid_2018.R
+++ b/R/dimethenamid_2018.R
@@ -15,7 +15,7 @@
#' @source Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria (2018)
#' Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour
#' Rev. 2 - November 2017
-#' \url{http://registerofquestions.efsa.europa.eu/roqFrontend/outputLoader?output=ON-5211}
+#' \url{https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716}
#' @examples
#' print(dimethenamid_2018)
#' dmta_ds <- lapply(1:8, function(i) {
@@ -43,15 +43,30 @@
#' list("DFOP-SFO3+" = dfop_sfo3_plus),
#' dmta_ds, quiet = TRUE, error_model = "tc")
#' nlmixr_model(f_dmta_mkin_tc)
-#' f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei",
-#' control = nlmixr::foceiControl(print = 500))
+#' # The focei fit takes about four minutes on my system
+#' system.time(
+#' f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei",
+#' control = nlmixr::foceiControl(print = 500))
+#' )
#' summary(f_dmta_nlmixr_focei)
#' plot(f_dmta_nlmixr_focei)
-#' # saem has a problem with this model/data combination, maybe because of the
-#' # overparameterised error model, to be investigated
-#' #f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem",
-#' # control = saemControl(print = 500))
-#' #summary(f_dmta_nlmixr_saem)
-#' #plot(f_dmta_nlmixr_saem)
+#' # Using saemix takes about 18 minutes
+#' system.time(
+#' f_dmta_saemix <- saem(f_dmta_mkin_tc, test_log_parms = TRUE)
+#' )
+#'
+#' # nlmixr with est = "saem" is pretty fast with default iteration numbers, most
+#' # of the time (about 2.5 minutes) is spent for calculating the log likelihood at the end
+#' # The likelihood calculated for the nlmixr fit is much lower than that found by saemix
+#' # Also, the trace plot and the plot of the individual predictions is not
+#' # convincing for the parent. It seems we are fitting an overparameterised
+#' # model, so the result we get strongly depends on starting parameters and control settings.
+#' system.time(
+#' f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem",
+#' control = nlmixr::saemControl(print = 500, logLik = TRUE, nmc = 9))
+#' )
+#' traceplot(f_dmta_nlmixr_saem$nm)
+#' summary(f_dmta_nlmixr_saem)
+#' plot(f_dmta_nlmixr_saem)
#' }
"dimethenamid_2018"
diff --git a/R/mkinsub.R b/R/mkinsub.R
index 886f712c..93af3f16 100644
--- a/R/mkinsub.R
+++ b/R/mkinsub.R
@@ -1,8 +1,3 @@
-#' Function to set up a kinetic submodel for one state variable
-#'
-#' This is a convenience function to set up the lists used as arguments for
-#' \code{\link{mkinmod}}.
-#'
#' @rdname mkinmod
#' @param submodel Character vector of length one to specify the submodel type.
#' See \code{\link{mkinmod}} for the list of allowed submodel names.
diff --git a/vignettes/references.bib b/vignettes/references.bib
index 18b93fd3..f7eb4692 100644
--- a/vignettes/references.bib
+++ b/vignettes/references.bib
@@ -1,6 +1,3 @@
-% This file was originally created with JabRef 2.7b.
-% Encoding: ISO8859_1
-
@BOOK{bates1988,
title = {Nonlinear regression and its applications},
publisher = {Wiley-Interscience},
@@ -97,7 +94,7 @@
@Techreport{ranke2014,
title = {{Prüfung und Validierung von Modellierungssoftware als Alternative zu
ModelMaker 4.0}},
- author = {J. Ranke},
+ author = {J. Ranke},
year = 2014,
institution = {Umweltbundesamt},
volume = {Projektnummer 27452}
@@ -146,3 +143,21 @@
Volume = {45},
Type = {Journal}
}
+
+
+@article{efsa_2018_dimethenamid,
+ author = {EFSA},
+ issue = {4},
+ journal = {EFSA Journal},
+ pages = {5211},
+ title = {Peer review of the pesticide risk assessment of the active substance dimethenamid-P},
+ volume = {16},
+ year = {2018}
+}
+
+@techreport{dimethenamid_rar_2018_b8,
+ author = {{Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria}},
+ year = {2018},
+ title = {{Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour, Rev. 2 - November 2017}},
+ url = {https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716}
+}
diff --git a/vignettes/web_only/.build.timestamp b/vignettes/web_only/.build.timestamp
new file mode 100644
index 00000000..e69de29b
diff --git a/vignettes/web_only/dimethenamid_2018.R b/vignettes/web_only/dimethenamid_2018.R
new file mode 100644
index 00000000..625cceb8
--- /dev/null
+++ b/vignettes/web_only/dimethenamid_2018.R
@@ -0,0 +1,66 @@
+## ---- include = FALSE---------------------------------------------------------
+require(knitr)
+options(digits = 5)
+opts_chunk$set(
+ comment = "",
+ tidy = FALSE,
+ cache = TRUE
+)
+
+## ----dimethenamid_data--------------------------------------------------------
+library(mkin)
+dmta_ds <- lapply(1:8, function(i) {
+ ds_i <- dimethenamid_2018$ds[[i]]$data
+ ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
+ ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
+ ds_i
+})
+names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]])
+dmta_ds[["Borstel 1"]] <- NULL
+dmta_ds[["Borstel 2"]] <- NULL
+dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
+dmta_ds[["Elliot 1"]] <- NULL
+dmta_ds[["Elliot 2"]] <- NULL
+
+## ----f_parent_mkin------------------------------------------------------------
+f_parent_mkin_const <- mmkin(c("SFO", "DFOP"), dmta_ds,
+ error_model = "const", quiet = TRUE)
+f_parent_mkin_tc <- mmkin(c("SFO", "DFOP"), dmta_ds,
+ error_model = "tc", quiet = TRUE)
+
+## ----f_parent_mkin_sfo_const--------------------------------------------------
+plot(mixed(f_parent_mkin_const["SFO", ]))
+
+## ----f_parent_mkin_dfop_const-------------------------------------------------
+plot(mixed(f_parent_mkin_const["DFOP", ]))
+
+## ----f_parent_mkin_dfop_const_test--------------------------------------------
+plot(mixed(f_parent_mkin_const["DFOP", ]), test_log_parms = TRUE)
+
+## ----f_parent_mkin_dfop_tc_test-----------------------------------------------
+plot(mixed(f_parent_mkin_tc["DFOP", ]), test_log_parms = TRUE)
+
+## ----f_parent_nlme, warning = FALSE-------------------------------------------
+f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ])
+#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ]) # error
+f_parent_nlme_sfo_tc <- nlme(f_parent_mkin_tc["SFO", ])
+f_parent_nlme_dfop_tc <- nlme(f_parent_mkin_tc["DFOP", ])
+
+## ----f_parent_nlme_logchol, warning = FALSE, eval = FALSE---------------------
+# f_parent_nlme_sfo_const_logchol <- nlme(f_parent_mkin_const["SFO", ],
+# random = pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1)))
+# anova(f_parent_nlme_sfo_const, f_parent_nlme_sfo_const_logchol) # not better
+# f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc,
+# random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
+# # using log Cholesky parameterisation for random effects (nlme default) does
+# # not converge and gives lots of warnings about the LME step not converging
+
+## ----AIC_parent_nlme----------------------------------------------------------
+anova(
+ f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
+)
+
+## ----plot_parent_nlme---------------------------------------------------------
+plot(f_parent_nlme_dfop_tc)
+
diff --git a/vignettes/web_only/dimethenamid_2018.html b/vignettes/web_only/dimethenamid_2018.html
new file mode 100644
index 00000000..e84a435c
--- /dev/null
+++ b/vignettes/web_only/dimethenamid_2018.html
@@ -0,0 +1,1864 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Example evaluations of the dimethenamid data from 2018
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+Example evaluations of the dimethenamid data from 2018
+Johannes Ranke
+Last change 23 June 2021, built on 25 Jun 2021
+
+
+
+
+Wissenschaftlicher Berater, Kronacher Str. 12, 79639 Grenzach-Wyhlen, Germany
Privatdozent at the University of Bremen
+
+Introduction
+During the preparation of the journal article on nonlinear mixed-effects models in degradation kinetics (submitted) and the analysis of the dimethenamid degradation data analysed therein, a need for a more detailed analysis using not only nlme and saemix, but also nlmixr for fitting the mixed-effects models was identified.
+This vignette is an attempt to satisfy this need.
+
+
+Data
+Residue data forming the basis for the endpoints derived in the conclusion on the peer review of the pesticide risk assessment of dimethenamid-P published by the European Food Safety Authority (EFSA) in 2018 (EFSA 2018) were transcribed from the risk assessment report (Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria 2018) which can be downloaded from the EFSA register of questions.
+The data are available in the mkin package. The following code (hidden by default, please use the button to the right to show it) treats the data available for the racemic mixture dimethenamid (DMTA) and its enantiomer dimethenamid-P (DMTAP) in the same way, as no difference between their degradation behaviour was identified in the EU risk assessment. The observation times of each dataset are multiplied with the corresponding normalisation factor also available in the dataset, in order to make it possible to describe all datasets with a single set of parameters.
+Also, datasets observed in the same soil are merged, resulting in dimethenamid (DMTA) data from six soils.
+library(mkin)
+dmta_ds <- lapply(1:8, function(i) {
+ ds_i <- dimethenamid_2018$ds[[i]]$data
+ ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
+ ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
+ ds_i
+})
+names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]])
+dmta_ds[["Borstel 1"]] <- NULL
+dmta_ds[["Borstel 2"]] <- NULL
+dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
+dmta_ds[["Elliot 1"]] <- NULL
+dmta_ds[["Elliot 2"]] <- NULL
+
+
+Parent degradation
+We evaluate the observed degradation of the parent compound using simple exponential decline (SFO) and biexponential decline (DFOP), using constant variance (const) and a two-component variance (tc) as error models.
+
+Separate evaluations
+As a first step, to get a visual impression of the fit of the different models, we do separate evaluations for each soil using the mmkin function from the mkin package:
+f_parent_mkin_const <- mmkin(c("SFO", "DFOP"), dmta_ds,
+ error_model = "const", quiet = TRUE)
+f_parent_mkin_tc <- mmkin(c("SFO", "DFOP"), dmta_ds,
+ error_model = "tc", quiet = TRUE)
+The plot of the individual SFO fits shown below suggests that at least in some datasets the degradation slows down towards later time points, and that the scatter of the residuals error is smaller for smaller values (panel to the right):
+plot(mixed(f_parent_mkin_const["SFO", ]))
+
+Using biexponential decline (DFOP) results in a slightly more random scatter of the residuals:
+plot(mixed(f_parent_mkin_const["DFOP", ]))
+
+The population curve (bold line) in the above plot results from taking the mean of the individual transformed parameters, i.e. of log k1 and log k2, as well as of the logit of the g parameter of the DFOP model). Here, this procedure does not result in parameters that represent the degradation well, because in some datasets the fitted value for k2 is extremely close to zero, leading to a log k2 value that dominates the average. This is alleviated if only rate constants that pass the t-test for significant difference from zero (on the untransformed scale) are considered in the averaging:
+plot(mixed(f_parent_mkin_const["DFOP", ]), test_log_parms = TRUE)
+
+While this is visually much more satisfactory, such an average procedure could introduce a bias, as not all results from the individual fits enter the population curve with the same weight. This is where nonlinear mixed-effects models can help out by treating all datasets with equally by fitting a parameter distribution model together with the degradation model and the error model (see below).
+The remaining trend of the residuals to be higher for higher predicted residues is reduced by using the two-component error model:
+plot(mixed(f_parent_mkin_tc["DFOP", ]), test_log_parms = TRUE)
+
+
+
+Nonlinear mixed-effects models
+Instead of taking a model selection decision for each of the individual fits, we fit nonlinear mixed-effects models (using different fitting algorithms as implemented in different packages) and do model selection using all available data at the same time. In order to make sure that these decisions are not unduly influenced by the type of algorithm used, by implementation details or by the use of wrong control parameters, we compare the model selection results obtained with different R packages, with different algorithms and checking control parameters.
+
+nlme
+The nlme package was the first R extension providing facilities to fit nonlinear mixed-effects models. We use would like to do model selection from all four combinations of degradation models and error models based on the AIC. However, fitting the DFOP model with constant variance and using default control parameters results in an error, signalling that the maximum number of 50 iterations was reached, potentially indicating overparameterisation. However, the algorithm converges when the two-component error model is used in combination with the DFOP model. This can be explained by the fact that the smaller residues observed at later sampling times get more weight when using the two-component error model which will counteract the tendency of the algorithm to try parameter combinations unsuitable for fitting these data.
+f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ])
+#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ]) # error
+f_parent_nlme_sfo_tc <- nlme(f_parent_mkin_tc["SFO", ])
+f_parent_nlme_dfop_tc <- nlme(f_parent_mkin_tc["DFOP", ])
+Note that overparameterisation is also indicated by warnings obtained when fitting SFO or DFOP with the two-component error model (‘false convergence’ in the ‘LME step’ in some iterations). In addition to these fits, attempts were also made to include correlations between random effects by using the log Cholesky parameterisation of the matrix specifying them. The code used for these attempts can be made visible below.
+f_parent_nlme_sfo_const_logchol <- nlme(f_parent_mkin_const["SFO", ],
+ random = pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1)))
+anova(f_parent_nlme_sfo_const, f_parent_nlme_sfo_const_logchol) # not better
+f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc,
+ random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
+# using log Cholesky parameterisation for random effects (nlme default) does
+# not converge and gives lots of warnings about the LME step not converging
+The model comparison function of the nlme package can directly be applied to these fits showing a similar goodness-of-fit of the SFO model, but a much lower AIC for the DFOP model fitted with the two-component error model. Also, the likelihood ratio test indicates that this difference is significant. as the p-value is below 0.0001.
+anova(
+ f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
+)
+ Model df AIC BIC logLik Test L.Ratio p-value
+f_parent_nlme_sfo_const 1 5 818.63 834.00 -404.31
+f_parent_nlme_sfo_tc 2 6 820.61 839.06 -404.31 1 vs 2 0.014 0.9049
+f_parent_nlme_dfop_tc 3 10 687.84 718.59 -333.92 2 vs 3 140.771 <.0001
+The selected model (DFOP with two-component error) fitted to the data assuming no correlations between random effects is shown below.
+plot(f_parent_nlme_dfop_tc)
+
+
+
+saemix
+The saemix package provided the first Open Source implementation of the Stochastic Approximation to the Expectation Maximisation (SAEM) algorithm. SAEM fits of degradation models can be performed using an interface to the saemix package available in current development versions of the mkin package.
+The corresponding SAEM fits of the four combinations of degradation and error models are fitted below. As there is no convergence criterion implemented in the saemix package, the convergence plots need to be manually checked for every fit.
+The convergence plot for the SFO model using constant variance is shown below.
+library(saemix)
+f_parent_saemix_sfo_const <- saem(f_parent_mkin_const["SFO", ], quiet = TRUE,
+ transformations = "saemix")
+plot(f_parent_saemix_sfo_const$so, plot.type = "convergence")
+
+Obviously the default number of iterations is sufficient to reach convergence. This can also be said for the SFO fit using the two-component error model.
+f_parent_saemix_sfo_tc <- saem(f_parent_mkin_tc["SFO", ], quiet = TRUE,
+ transformations = "saemix")
+plot(f_parent_saemix_sfo_tc$so, plot.type = "convergence")
+
+When fitting the DFOP model with constant variance, parameter convergence is not as unambiguous. Therefore, the number of iterations in the first phase of the algorithm was increased, leading to visually satisfying convergence.
+f_parent_saemix_dfop_const <- saem(f_parent_mkin_const["DFOP", ], quiet = TRUE,
+ control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
+ save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
+ transformations = "saemix")
+plot(f_parent_saemix_dfop_const$so, plot.type = "convergence")
+
+The same applies to the case where the DFOP model is fitted with the two-component error model.
+f_parent_saemix_dfop_tc_moreiter <- saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE,
+ control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
+ save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
+ transformations = "saemix")
+plot(f_parent_saemix_dfop_tc_moreiter$so, plot.type = "convergence")
+
+The four combinations can be compared using the model comparison function from the saemix package:
+compare.saemix(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so,
+ f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc$so)
+Likelihoods calculated by importance sampling
+ AIC BIC
+1 818.37 817.33
+2 820.38 819.14
+3 725.91 724.04
+4 688.09 686.01
+As in the case of nlme fits, the DFOP model fitted with two-component error (number 4) gives the lowest AIC. The numeric values are reasonably close to the ones obtained using nlme, considering that the algorithms for fitting the model and for the likelihood calculation are quite different.
+
+
+nlmixr
+In the last years, a lot of effort has been put into the nlmixr package which is designed for pharmacokinetics, where nonlinear mixed-effects models are routinely used, but which can also be used for related data like chemical degradation data. A current development branch of the mkin package provides an interface between mkin and nlmixr. Here, we check if we get equivalent results when using a refined version of the First Order Conditional Estimation (FOCE) algorithm used in nlme, namely First Order Conditional Estimation with Interaction (FOCEI), and the SAEM algorithm as implemented in nlmixr.
+First, the focei algorithm is used for the four model combinations and the goodness of fit of the results is compared.
+f_parent_nlmixr_focei_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "focei")
+f_parent_nlmixr_focei_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "focei")
+f_parent_nlmixr_focei_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "focei")
+f_parent_nlmixr_focei_dfop_tc<- nlmixr(f_parent_mkin_tc["DFOP", ], est = "focei")
+AIC(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm,
+ f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm)
+ df AIC
+f_parent_nlmixr_focei_sfo_const$nm 5 818.63
+f_parent_nlmixr_focei_sfo_tc$nm 6 820.61
+f_parent_nlmixr_focei_dfop_const$nm 9 728.11
+f_parent_nlmixr_focei_dfop_tc$nm 10 687.82
+The AIC values are very close to the ones obtained with nlme.
+Secondly, we use the SAEM estimation routine and check the convergence plots for SFO with constant variance
+f_parent_nlmixr_saem_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "saem",
+ control = nlmixr::saemControl(logLik = TRUE))
+traceplot(f_parent_nlmixr_saem_sfo_const$nm)
+
+for SFO with two-component error
+f_parent_nlmixr_saem_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "saem",
+ control = nlmixr::saemControl(logLik = TRUE))
+nlmixr::traceplot(f_parent_nlmixr_saem_sfo_tc$nm)
+
+For DFOP with constant variance, the convergence plots show considerable instability of the fit, which can be alleviated by increasing the number of iterations and the number of parallel chains for the first phase of algorithm.
+f_parent_nlmixr_saem_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "saem",
+ control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000), nmc = 15)
+nlmixr::traceplot(f_parent_nlmixr_saem_dfop_const$nm)
+
+For DFOP with two-component error, the same increase in iterations and parallel chains was used, but using the two-component error appears to lead to a less erratic convergence, so this may not be necessary to this degree.
+f_parent_nlmixr_saem_dfop_tc <- nlmixr(f_parent_mkin_tc["DFOP", ], est = "saem",
+ control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000, nmc = 15))
+nlmixr::traceplot(f_parent_nlmixr_saem_dfop_tc$nm)
+
+The AIC values are internally calculated using Gaussian quadrature. For an unknown reason, the AIC value obtained for the DFOP fit using the two-component error model is given as Infinity.
+AIC(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm,
+ f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm)
+ df AIC
+f_parent_nlmixr_saem_sfo_const$nm 5 820.54
+f_parent_nlmixr_saem_sfo_tc$nm 6 835.26
+f_parent_nlmixr_saem_dfop_const$nm 9 850.72
+f_parent_nlmixr_saem_dfop_tc$nm 10 Inf
+
+
+
+
+References
+
+
+
+EFSA. 2018. “Peer Review of the Pesticide Risk Assessment of the Active Substance Dimethenamid-P.” EFSA Journal 16 (4): 5211.
+
+
+Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria. 2018. “Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour, Rev. 2 - November 2017.” https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/vignettes/web_only/dimethenamid_2018.rmd b/vignettes/web_only/dimethenamid_2018.rmd
new file mode 100644
index 00000000..d3541a34
--- /dev/null
+++ b/vignettes/web_only/dimethenamid_2018.rmd
@@ -0,0 +1,374 @@
+---
+title: Example evaluations of the dimethenamid data from 2018
+author: Johannes Ranke
+date: Last change 23 June 2021, built on `r format(Sys.Date(), format = "%d %b %Y")`
+output:
+ html_document:
+ toc: true
+ toc_float: true
+ code_folding: hide
+ fig_retina: null
+bibliography: ../references.bib
+vignette: >
+ %\VignetteEngine{knitr::rmarkdown}
+ %\VignetteEncoding{UTF-8}
+---
+
+[Wissenschaftlicher Berater, Kronacher Str. 12, 79639 Grenzach-Wyhlen, Germany](http://www.jrwb.de)
+[Privatdozent at the University of Bremen](http://chem.uft.uni-bremen.de/ranke)
+
+```{r, include = FALSE}
+require(knitr)
+options(digits = 5)
+opts_chunk$set(
+ comment = "",
+ tidy = FALSE,
+ cache = TRUE
+)
+```
+
+# Introduction
+
+During the preparation of the journal article on nonlinear mixed-effects models in
+degradation kinetics (submitted) and the analysis of the dimethenamid degradation
+data analysed therein, a need for a more detailed analysis using not only nlme and saemix,
+but also nlmixr for fitting the mixed-effects models was identified.
+
+This vignette is an attempt to satisfy this need.
+
+# Data
+
+Residue data forming the basis for the endpoints derived in the conclusion on
+the peer review of the pesticide risk assessment of dimethenamid-P published by
+the European Food Safety Authority (EFSA) in 2018 [@efsa_2018_dimethenamid]
+were transcribed from the risk assessment report [@dimethenamid_rar_2018_b8]
+which can be downloaded from the
+[EFSA register of questions](https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716).
+
+The data are [available in the mkin
+package](https://pkgdown.jrwb.de/mkin/reference/dimethenamid_2018.html). The
+following code (hidden by default, please use the button to the right to show
+it) treats the data available for the racemic mixture dimethenamid (DMTA) and
+its enantiomer dimethenamid-P (DMTAP) in the same way, as no difference between
+their degradation behaviour was identified in the EU risk assessment. The
+observation times of each dataset are multiplied with the corresponding
+normalisation factor also available in the dataset, in order to make it
+possible to describe all datasets with a single set of parameters.
+
+Also, datasets observed in the same soil are merged, resulting in dimethenamid
+(DMTA) data from six soils.
+
+```{r dimethenamid_data}
+library(mkin)
+dmta_ds <- lapply(1:8, function(i) {
+ ds_i <- dimethenamid_2018$ds[[i]]$data
+ ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
+ ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
+ ds_i
+})
+names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]])
+dmta_ds[["Borstel 1"]] <- NULL
+dmta_ds[["Borstel 2"]] <- NULL
+dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
+dmta_ds[["Elliot 1"]] <- NULL
+dmta_ds[["Elliot 2"]] <- NULL
+```
+
+# Parent degradation
+
+We evaluate the observed degradation of the parent compound using simple
+exponential decline (SFO) and biexponential decline (DFOP), using constant
+variance (const) and a two-component variance (tc) as error models.
+
+## Separate evaluations
+
+As a first step, to get a visual impression of the fit of the different models,
+we do separate evaluations for each soil using the mmkin function from the
+mkin package:
+
+```{r f_parent_mkin}
+f_parent_mkin_const <- mmkin(c("SFO", "DFOP"), dmta_ds,
+ error_model = "const", quiet = TRUE)
+f_parent_mkin_tc <- mmkin(c("SFO", "DFOP"), dmta_ds,
+ error_model = "tc", quiet = TRUE)
+```
+
+The plot of the individual SFO fits shown below suggests that at least in some
+datasets the degradation slows down towards later time points, and that the
+scatter of the residuals error is smaller for smaller values (panel to the
+right):
+
+```{r f_parent_mkin_sfo_const}
+plot(mixed(f_parent_mkin_const["SFO", ]))
+```
+
+Using biexponential decline (DFOP) results in a slightly more random
+scatter of the residuals:
+
+```{r f_parent_mkin_dfop_const}
+plot(mixed(f_parent_mkin_const["DFOP", ]))
+```
+
+The population curve (bold line) in the above plot results from taking the mean
+of the individual transformed parameters, i.e. of log k1 and log k2, as well as
+of the logit of the g parameter of the DFOP model). Here, this procedure
+does not result in parameters that represent the degradation well, because in some
+datasets the fitted value for k2 is extremely close to zero, leading to a log
+k2 value that dominates the average. This is alleviated if only rate constants
+that pass the t-test for significant difference from zero (on the untransformed
+scale) are considered in the averaging:
+
+```{r f_parent_mkin_dfop_const_test}
+plot(mixed(f_parent_mkin_const["DFOP", ]), test_log_parms = TRUE)
+```
+
+While this is visually much more satisfactory, such an average procedure could
+introduce a bias, as not all results from the individual fits enter the
+population curve with the same weight. This is where nonlinear mixed-effects
+models can help out by treating all datasets with equally by fitting a
+parameter distribution model together with the degradation model and the error
+model (see below).
+
+The remaining trend of the residuals to be higher for higher predicted residues
+is reduced by using the two-component error model:
+
+```{r f_parent_mkin_dfop_tc_test}
+plot(mixed(f_parent_mkin_tc["DFOP", ]), test_log_parms = TRUE)
+```
+
+## Nonlinear mixed-effects models
+
+Instead of taking a model selection decision for each of the individual fits, we fit
+nonlinear mixed-effects models (using different fitting algorithms as implemented in
+different packages) and do model selection using all available data at the same time.
+In order to make sure that these decisions are not unduly influenced by the
+type of algorithm used, by implementation details or by the use of wrong control
+parameters, we compare the model selection results obtained with different R
+packages, with different algorithms and checking control parameters.
+
+### nlme
+
+The nlme package was the first R extension providing facilities to fit nonlinear
+mixed-effects models. We use would like to do model selection from all four
+combinations of degradation models and error models based on the AIC.
+However, fitting the DFOP model with constant variance and using default
+control parameters results in an error, signalling that the maximum number
+of 50 iterations was reached, potentially indicating overparameterisation.
+However, the algorithm converges when the two-component error model is
+used in combination with the DFOP model. This can be explained by the fact
+that the smaller residues observed at later sampling times get more
+weight when using the two-component error model which will counteract the
+tendency of the algorithm to try parameter combinations unsuitable for
+fitting these data.
+
+```{r f_parent_nlme, warning = FALSE}
+f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ])
+#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ]) # error
+f_parent_nlme_sfo_tc <- nlme(f_parent_mkin_tc["SFO", ])
+f_parent_nlme_dfop_tc <- nlme(f_parent_mkin_tc["DFOP", ])
+```
+
+Note that overparameterisation is also indicated by warnings obtained when
+fitting SFO or DFOP with the two-component error model ('false convergence' in
+the 'LME step' in some iterations). In addition to these fits, attempts
+were also made to include correlations between random effects by using the
+log Cholesky parameterisation of the matrix specifying them. The code
+used for these attempts can be made visible below.
+
+```{r f_parent_nlme_logchol, warning = FALSE, eval = FALSE}
+f_parent_nlme_sfo_const_logchol <- nlme(f_parent_mkin_const["SFO", ],
+ random = pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1)))
+anova(f_parent_nlme_sfo_const, f_parent_nlme_sfo_const_logchol) # not better
+f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc,
+ random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
+# using log Cholesky parameterisation for random effects (nlme default) does
+# not converge and gives lots of warnings about the LME step not converging
+```
+
+The model comparison function of the nlme package can directly be applied
+to these fits showing a similar goodness-of-fit of the SFO model, but a much
+lower AIC for the DFOP model fitted with the two-component error model.
+Also, the likelihood ratio test indicates that this difference is significant.
+as the p-value is below 0.0001.
+
+```{r AIC_parent_nlme}
+anova(
+ f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
+)
+```
+
+The selected model (DFOP with two-component error) fitted to the data assuming
+no correlations between random effects is shown below.
+
+```{r plot_parent_nlme}
+plot(f_parent_nlme_dfop_tc)
+```
+
+### saemix
+
+The saemix package provided the first Open Source implementation of the
+Stochastic Approximation to the Expectation Maximisation (SAEM) algorithm.
+SAEM fits of degradation models can be performed using an interface to the
+saemix package available in current development versions of the mkin package.
+
+The corresponding SAEM fits of the four combinations of degradation and error
+models are fitted below. As there is no convergence criterion implemented in
+the saemix package, the convergence plots need to be manually checked for every
+fit.
+
+The convergence plot for the SFO model using constant variance is shown below.
+
+```{r f_parent_saemix_sfo_const, results = 'hide'}
+library(saemix)
+f_parent_saemix_sfo_const <- saem(f_parent_mkin_const["SFO", ], quiet = TRUE,
+ transformations = "saemix")
+plot(f_parent_saemix_sfo_const$so, plot.type = "convergence")
+```
+
+Obviously the default number of iterations is sufficient to reach convergence.
+This can also be said for the SFO fit using the two-component error model.
+
+```{r f_parent_saemix_sfo_tc, results = 'hide'}
+f_parent_saemix_sfo_tc <- saem(f_parent_mkin_tc["SFO", ], quiet = TRUE,
+ transformations = "saemix")
+plot(f_parent_saemix_sfo_tc$so, plot.type = "convergence")
+```
+
+When fitting the DFOP model with constant variance, parameter convergence
+is not as unambiguous. Therefore, the number of iterations in the first
+phase of the algorithm was increased, leading to visually satisfying
+convergence.
+
+```{r f_parent_saemix_dfop_const, results = 'hide'}
+f_parent_saemix_dfop_const <- saem(f_parent_mkin_const["DFOP", ], quiet = TRUE,
+ control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
+ save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
+ transformations = "saemix")
+plot(f_parent_saemix_dfop_const$so, plot.type = "convergence")
+```
+
+The same applies to the case where the DFOP model is fitted with the
+two-component error model. Convergence of the variance of k2 is enhanced
+by using the two-component error, it remains pretty stable already after 200
+iterations of the first phase.
+
+```{r f_parent_saemix_dfop_tc_moreiter, results = 'hide'}
+f_parent_saemix_dfop_tc_moreiter <- saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE,
+ control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
+ save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
+ transformations = "saemix")
+plot(f_parent_saemix_dfop_tc_moreiter$so, plot.type = "convergence")
+```
+
+The four combinations can be compared using the model comparison function from the
+saemix package:
+
+```{r AIC_parent_saemix}
+compare.saemix(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so,
+ f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc_moreiter$so)
+```
+
+As in the case of nlme fits, the DFOP model fitted with two-component error
+(number 4) gives the lowest AIC. The numeric values are reasonably close to
+the ones obtained using nlme, considering that the algorithms for fitting the
+model and for the likelihood calculation are quite different.
+
+In order to check the influence of the likelihood calculation algorithms
+implemented in saemix, the likelihood from Gaussian quadrature is added
+to the best fit, and the AIC values obtained from the three methods
+are compared.
+
+```{r AIC_parent_saemix_methods}
+f_parent_saemix_dfop_tc_moreiter$so <-
+ llgq.saemix(f_parent_saemix_dfop_tc_moreiter$so)
+AIC(f_parent_saemix_dfop_tc_moreiter$so)
+AIC(f_parent_saemix_dfop_tc_moreiter$so, method = "gq")
+AIC(f_parent_saemix_dfop_tc_moreiter$so, method = "lin")
+```
+
+The AIC values based on importance sampling and Gaussian quadrature are quite
+similar. Using linearisation is less accurate, but still gives a similar value.
+
+
+### nlmixr
+
+In the last years, a lot of effort has been put into the nlmixr package which
+is designed for pharmacokinetics, where nonlinear mixed-effects models are
+routinely used, but which can also be used for related data like chemical
+degradation data. A current development branch of the mkin package provides
+an interface between mkin and nlmixr. Here, we check if we get equivalent
+results when using a refined version of the First Order Conditional Estimation
+(FOCE) algorithm used in nlme, namely First Order Conditional Estimation with
+Interaction (FOCEI), and the SAEM algorithm as implemented in nlmixr.
+
+First, the focei algorithm is used for the four model combinations and the
+goodness of fit of the results is compared.
+
+```{r f_parent_nlmixr_focei, results = "hide", message = FALSE, warning = FALSE}
+f_parent_nlmixr_focei_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "focei")
+f_parent_nlmixr_focei_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "focei")
+f_parent_nlmixr_focei_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "focei")
+f_parent_nlmixr_focei_dfop_tc<- nlmixr(f_parent_mkin_tc["DFOP", ], est = "focei")
+```
+
+```{r AIC_parent_nlmixr_focei}
+AIC(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm,
+ f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm)
+```
+
+The AIC values are very close to the ones obtained with nlme.
+
+Secondly, we use the SAEM estimation routine and check the convergence plots for
+SFO with constant variance
+
+```{r f_parent_nlmixr_saem_sfo_const, results = "hide", warning = FALSE, message = FALSE}
+f_parent_nlmixr_saem_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "saem",
+ control = nlmixr::saemControl(logLik = TRUE))
+traceplot(f_parent_nlmixr_saem_sfo_const$nm)
+```
+
+for SFO with two-component error
+
+```{r f_parent_nlmixr_saem_sfo_tc, results = "hide", warning = FALSE, message = FALSE}
+f_parent_nlmixr_saem_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "saem",
+ control = nlmixr::saemControl(logLik = TRUE))
+nlmixr::traceplot(f_parent_nlmixr_saem_sfo_tc$nm)
+```
+
+For DFOP with constant variance, the convergence plots show considerable instability
+of the fit, which can be alleviated by increasing the number of iterations and
+the number of parallel chains for the first phase of algorithm.
+
+```{r f_parent_nlmixr_saem_dfop_const, results = "hide", warning = FALSE, message = FALSE}
+f_parent_nlmixr_saem_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "saem",
+ control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000), nmc = 15)
+nlmixr::traceplot(f_parent_nlmixr_saem_dfop_const$nm)
+```
+
+For DFOP with two-component error, the same increase in iterations and parallel
+chains was used, but using the two-component error appears to lead to a less
+erratic convergence, so this may not be necessary to this degree.
+
+
+```{r f_parent_nlmixr_saem_dfop_tc, results = "hide", warning = FALSE, message = FALSE}
+f_parent_nlmixr_saem_dfop_tc <- nlmixr(f_parent_mkin_tc["DFOP", ], est = "saem",
+ control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000, nmc = 15))
+nlmixr::traceplot(f_parent_nlmixr_saem_dfop_tc$nm)
+```
+
+The AIC values are internally calculated using Gaussian quadrature. For an
+unknown reason, the AIC value obtained for the DFOP fit using the two-component
+error model is given as Infinity.
+
+```{r AIC_parent_nlmixr_saem}
+AIC(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm,
+ f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm)
+```
+
+
+
+
+# References
+
+
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png
new file mode 100644
index 00000000..de699f30
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png
new file mode 100644
index 00000000..5f752168
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png
new file mode 100644
index 00000000..0265c22f
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png
new file mode 100644
index 00000000..9bbb57c7
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_const-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_const-1.png
new file mode 100644
index 00000000..043a1fca
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_const-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_tc-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_tc-1.png
new file mode 100644
index 00000000..7d2aea59
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_tc-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_const-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_const-1.png
new file mode 100644
index 00000000..032d6043
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_const-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_tc-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_tc-1.png
new file mode 100644
index 00000000..a602715c
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_tc-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const-1.png
new file mode 100644
index 00000000..621d34f2
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const_moreiter-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const_moreiter-1.png
new file mode 100644
index 00000000..e127b354
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const_moreiter-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc-1.png
new file mode 100644
index 00000000..ecc6ccf3
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc_moreiter-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc_moreiter-1.png
new file mode 100644
index 00000000..1337ea8f
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc_moreiter-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_const-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_const-1.png
new file mode 100644
index 00000000..492a7888
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_const-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png
new file mode 100644
index 00000000..5e3b9c13
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc_moreiter-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc_moreiter-1.png
new file mode 100644
index 00000000..3ca2804d
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc_moreiter-1.png differ
diff --git a/vignettes/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png b/vignettes/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png
new file mode 100644
index 00000000..a48f41b2
Binary files /dev/null and b/vignettes/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png differ
--
cgit v1.2.1
From 0b754ffa91b9496bdd2f892cf3ca2bd887028dea Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Tue, 27 Jul 2021 18:22:01 +0200
Subject: Fix dimethenamid vignette problems and update docs
---
docs/dev/404.html | 2 +-
docs/dev/articles/index.html | 4 +-
docs/dev/articles/web_only/dimethenamid_2018.html | 420 +++++++++++
.../accessible-code-block-0.0.1/empty-anchor.js | 15 +
.../figure-html/f_parent_mkin_dfop_const-1.png | Bin 0 -> 145534 bytes
.../f_parent_mkin_dfop_const_test-1.png | Bin 0 -> 146181 bytes
.../figure-html/f_parent_mkin_dfop_tc_test-1.png | Bin 0 -> 150274 bytes
.../figure-html/f_parent_mkin_sfo_const-1.png | Bin 0 -> 141499 bytes
.../f_parent_nlmixr_saem_dfop_const-1.png | Bin 0 -> 180061 bytes
.../figure-html/f_parent_nlmixr_saem_dfop_tc-1.png | Bin 0 -> 151832 bytes
.../f_parent_nlmixr_saem_sfo_const-1.png | Bin 0 -> 124946 bytes
.../figure-html/f_parent_nlmixr_saem_sfo_tc-1.png | Bin 0 -> 140491 bytes
.../figure-html/f_parent_saemix_dfop_const-1.png | Bin 0 -> 58759 bytes
.../f_parent_saemix_dfop_tc_moreiter-1.png | Bin 0 -> 45420 bytes
.../figure-html/f_parent_saemix_sfo_const-1.png | Bin 0 -> 59913 bytes
.../figure-html/f_parent_saemix_sfo_tc-1.png | Bin 0 -> 53550 bytes
.../figure-html/plot_parent_nlme-1.png | Bin 0 -> 147409 bytes
.../header-attrs-2.9/header-attrs.js | 12 +
docs/dev/authors.html | 2 +-
docs/dev/index.html | 2 +-
docs/dev/news/index.html | 2 +-
docs/dev/pkgdown.yml | 3 +-
docs/dev/reference/Rplot005.png | Bin 59049 -> 59600 bytes
docs/dev/reference/dimethenamid_2018-2.png | Bin 0 -> 245108 bytes
docs/dev/reference/dimethenamid_2018.html | 217 +++++-
docs/dev/reference/endpoints.html | 2 +-
docs/dev/reference/index.html | 2 +-
docs/dev/reference/mean_degparms.html | 2 +-
docs/dev/reference/mkinmod.html | 12 +-
docs/dev/reference/nlme-1.png | Bin 68943 -> 69667 bytes
docs/dev/reference/nlme-2.png | Bin 94409 -> 93394 bytes
docs/dev/reference/nlme.html | 18 +-
docs/dev/reference/nlme.mmkin.html | 9 +-
docs/dev/reference/nlmixr.mmkin.html | 28 +-
docs/dev/reference/plot.mixed.mmkin-3.png | Bin 173260 -> 173794 bytes
docs/dev/reference/plot.mixed.mmkin-4.png | Bin 176346 -> 176972 bytes
docs/dev/reference/plot.mixed.mmkin.html | 6 +-
docs/dev/reference/reexports.html | 2 +-
docs/dev/reference/saem-5.png | Bin 174406 -> 174405 bytes
docs/dev/reference/saem.html | 480 ++++++-------
docs/dev/reference/summary.nlmixr.mmkin.html | 792 ++-------------------
docs/dev/reference/tffm0.html | 2 +-
docs/dev/sitemap.xml | 3 +
vignettes/web_only/dimethenamid_2018.html | 109 ++-
vignettes/web_only/dimethenamid_2018.rmd | 57 +-
45 files changed, 1131 insertions(+), 1072 deletions(-)
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018.html
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/accessible-code-block-0.0.1/empty-anchor.js
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_const-1.png
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_tc-1.png
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_const-1.png
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_tc-1.png
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const-1.png
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc_moreiter-1.png
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_const-1.png
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png
create mode 100644 docs/dev/articles/web_only/dimethenamid_2018_files/header-attrs-2.9/header-attrs.js
create mode 100644 docs/dev/reference/dimethenamid_2018-2.png
diff --git a/docs/dev/404.html b/docs/dev/404.html
index 98c0b1e0..38898979 100644
--- a/docs/dev/404.html
+++ b/docs/dev/404.html
@@ -71,7 +71,7 @@
mkin
- 1.0.5
+ 1.1.0
diff --git a/docs/dev/articles/index.html b/docs/dev/articles/index.html
index 3896120a..c0338df8 100644
--- a/docs/dev/articles/index.html
+++ b/docs/dev/articles/index.html
@@ -71,7 +71,7 @@
mkin
- 1.0.5
+ 1.1.0
@@ -161,6 +161,8 @@
-
- Performance benefit by using compiled model definitions in mkin
-
+
- Example evaluations of the dimethenamid data from 2018
+ -
diff --git a/docs/dev/articles/web_only/dimethenamid_2018.html b/docs/dev/articles/web_only/dimethenamid_2018.html
new file mode 100644
index 00000000..7648f75a
--- /dev/null
+++ b/docs/dev/articles/web_only/dimethenamid_2018.html
@@ -0,0 +1,420 @@
+
+
+
+
+
+
+
+
Example evaluations of the dimethenamid data from 2018 • mkin
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ mkin
+ 1.1.0
+
+
+
+
+
+-
+ Functions and data
+
+-
+
+ Articles
+
+
+
+
+-
+ Introduction to mkin
+
+ -
+ Example evaluation of FOCUS Example Dataset D
+
+ -
+ Example evaluation of FOCUS Laboratory Data L1 to L3
+
+ -
+ Example evaluation of FOCUS Example Dataset Z
+
+ -
+ Performance benefit by using compiled model definitions in mkin
+
+ -
+ Calculation of time weighted average concentrations with mkin
+
+ -
+ Example evaluation of NAFTA SOP Attachment examples
+
+ -
+ Some benchmark timings
+
+
+
+-
+ News
+
+
+
+-
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ Example evaluations of the dimethenamid data from 2018
+ Johannes Ranke
+
+ Last change 27 July 2021, built on 27 Jul 2021
+
+ Source: vignettes/web_only/dimethenamid_2018.rmd
+ dimethenamid_2018.rmd
+
+
+
+
+
+Wissenschaftlicher Berater, Kronacher Str. 12, 79639 Grenzach-Wyhlen, Germany
Privatdozent at the University of Bremen
+
+
+Introduction
+During the preparation of the journal article on nonlinear mixed-effects models in degradation kinetics (submitted) and the analysis of the dimethenamid degradation data analysed therein, a need for a more detailed analysis using not only nlme and saemix, but also nlmixr for fitting the mixed-effects models was identified.
+This vignette is an attempt to satisfy this need.
+
+
+
+Data
+Residue data forming the basis for the endpoints derived in the conclusion on the peer review of the pesticide risk assessment of dimethenamid-P published by the European Food Safety Authority (EFSA) in 2018 (EFSA 2018) were transcribed from the risk assessment report (Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria 2018) which can be downloaded from the EFSA register of questions.
+The data are available in the mkin package. The following code (hidden by default, please use the button to the right to show it) treats the data available for the racemic mixture dimethenamid (DMTA) and its enantiomer dimethenamid-P (DMTAP) in the same way, as no difference between their degradation behaviour was identified in the EU risk assessment. The observation times of each dataset are multiplied with the corresponding normalisation factor also available in the dataset, in order to make it possible to describe all datasets with a single set of parameters.
+Also, datasets observed in the same soil are merged, resulting in dimethenamid (DMTA) data from six soils.
+
+library(mkin)
+dmta_ds <- lapply(1:8, function(i) {
+ ds_i <- dimethenamid_2018$ds[[i]]$data
+ ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
+ ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
+ ds_i
+})
+names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+dmta_ds[["Borstel"]] <- rbind(dmta_ds[["Borstel 1"]], dmta_ds[["Borstel 2"]])
+dmta_ds[["Borstel 1"]] <- NULL
+dmta_ds[["Borstel 2"]] <- NULL
+dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
+dmta_ds[["Elliot 1"]] <- NULL
+dmta_ds[["Elliot 2"]] <- NULL
+
+
+
+Parent degradation
+We evaluate the observed degradation of the parent compound using simple exponential decline (SFO) and biexponential decline (DFOP), using constant variance (const) and a two-component variance (tc) as error models.
+
+
+Separate evaluations
+As a first step, to get a visual impression of the fit of the different models, we do separate evaluations for each soil using the mmkin function from the mkin package:
+
+f_parent_mkin_const <- mmkin(c("SFO", "DFOP"), dmta_ds,
+ error_model = "const", quiet = TRUE)
+f_parent_mkin_tc <- mmkin(c("SFO", "DFOP"), dmta_ds,
+ error_model = "tc", quiet = TRUE)
+The plot of the individual SFO fits shown below suggests that at least in some datasets the degradation slows down towards later time points, and that the scatter of the residuals error is smaller for smaller values (panel to the right):
+
+
+Using biexponential decline (DFOP) results in a slightly more random scatter of the residuals:
+
+
+The population curve (bold line) in the above plot results from taking the mean of the individual transformed parameters, i.e. of log k1 and log k2, as well as of the logit of the g parameter of the DFOP model). Here, this procedure does not result in parameters that represent the degradation well, because in some datasets the fitted value for k2 is extremely close to zero, leading to a log k2 value that dominates the average. This is alleviated if only rate constants that pass the t-test for significant difference from zero (on the untransformed scale) are considered in the averaging:
+
+
+While this is visually much more satisfactory, such an average procedure could introduce a bias, as not all results from the individual fits enter the population curve with the same weight. This is where nonlinear mixed-effects models can help out by treating all datasets with equally by fitting a parameter distribution model together with the degradation model and the error model (see below).
+The remaining trend of the residuals to be higher for higher predicted residues is reduced by using the two-component error model:
+
+
+
+
+
+Nonlinear mixed-effects models
+Instead of taking a model selection decision for each of the individual fits, we fit nonlinear mixed-effects models (using different fitting algorithms as implemented in different packages) and do model selection using all available data at the same time. In order to make sure that these decisions are not unduly influenced by the type of algorithm used, by implementation details or by the use of wrong control parameters, we compare the model selection results obtained with different R packages, with different algorithms and checking control parameters.
+
+
+nlme
+The nlme package was the first R extension providing facilities to fit nonlinear mixed-effects models. We use would like to do model selection from all four combinations of degradation models and error models based on the AIC. However, fitting the DFOP model with constant variance and using default control parameters results in an error, signalling that the maximum number of 50 iterations was reached, potentially indicating overparameterisation. However, the algorithm converges when the two-component error model is used in combination with the DFOP model. This can be explained by the fact that the smaller residues observed at later sampling times get more weight when using the two-component error model which will counteract the tendency of the algorithm to try parameter combinations unsuitable for fitting these data.
+
+library(nlme)
+f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ])
+#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ])
+# maxIter = 50 reached
+f_parent_nlme_sfo_tc <- nlme(f_parent_mkin_tc["SFO", ])
+f_parent_nlme_dfop_tc <- nlme(f_parent_mkin_tc["DFOP", ])
+Note that overparameterisation is also indicated by warnings obtained when fitting SFO or DFOP with the two-component error model (‘false convergence’ in the ‘LME step’ in some iterations). In addition to these fits, attempts were also made to include correlations between random effects by using the log Cholesky parameterisation of the matrix specifying them. The code used for these attempts can be made visible below.
+
+f_parent_nlme_sfo_const_logchol <- nlme(f_parent_mkin_const["SFO", ],
+ random = pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1)))
+anova(f_parent_nlme_sfo_const, f_parent_nlme_sfo_const_logchol) # not better
+#f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc,
+# random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
+# using log Cholesky parameterisation for random effects (nlme default) does
+# not converge here and gives lots of warnings about the LME step not converging
+The model comparison function of the nlme package can directly be applied to these fits showing a similar goodness-of-fit of the SFO model, but a much lower AIC for the DFOP model fitted with the two-component error model. Also, the likelihood ratio test indicates that this difference is significant. as the p-value is below 0.0001.
+
+anova(
+ f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
+)
+ Model df AIC BIC logLik Test L.Ratio p-value
+f_parent_nlme_sfo_const 1 5 818.63 834.00 -404.31
+f_parent_nlme_sfo_tc 2 6 820.61 839.06 -404.31 1 vs 2 0.014 0.9049
+f_parent_nlme_dfop_tc 3 10 687.84 718.59 -333.92 2 vs 3 140.771 <.0001
+The selected model (DFOP with two-component error) fitted to the data assuming no correlations between random effects is shown below.
+
+plot(f_parent_nlme_dfop_tc)
+
+
+
+
+saemix
+The saemix package provided the first Open Source implementation of the Stochastic Approximation to the Expectation Maximisation (SAEM) algorithm. SAEM fits of degradation models can be performed using an interface to the saemix package available in current development versions of the mkin package.
+The corresponding SAEM fits of the four combinations of degradation and error models are fitted below. As there is no convergence criterion implemented in the saemix package, the convergence plots need to be manually checked for every fit.
+The convergence plot for the SFO model using constant variance is shown below.
+
+library(saemix)
+f_parent_saemix_sfo_const <- mkin::saem(f_parent_mkin_const["SFO", ], quiet = TRUE,
+ transformations = "saemix")
+plot(f_parent_saemix_sfo_const$so, plot.type = "convergence")
+
+Obviously the default number of iterations is sufficient to reach convergence. This can also be said for the SFO fit using the two-component error model.
+
+f_parent_saemix_sfo_tc <- mkin::saem(f_parent_mkin_tc["SFO", ], quiet = TRUE,
+ transformations = "saemix")
+plot(f_parent_saemix_sfo_tc$so, plot.type = "convergence")
+
+When fitting the DFOP model with constant variance, parameter convergence is not as unambiguous (see the failure of nlme with the default number of iterations above). Therefore, the number of iterations in the first phase of the algorithm was increased, leading to visually satisfying convergence.
+
+f_parent_saemix_dfop_const <- mkin::saem(f_parent_mkin_const["DFOP", ], quiet = TRUE,
+ control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
+ save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
+ transformations = "saemix")
+plot(f_parent_saemix_dfop_const$so, plot.type = "convergence")
+
+The same applies to the case where the DFOP model is fitted with the two-component error model. Convergence of the variance of k2 is enhanced by using the two-component error, it remains more or less stable already after 200 iterations of the first phase.
+
+f_parent_saemix_dfop_tc_moreiter <- mkin::saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE,
+ control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
+ save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
+ transformations = "saemix")
+plot(f_parent_saemix_dfop_tc_moreiter$so, plot.type = "convergence")
+
+The four combinations can be compared using the model comparison function from the saemix package:
+
+compare.saemix(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so,
+ f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc_moreiter$so)
+Likelihoods calculated by importance sampling
+ AIC BIC
+1 818.37 817.33
+2 820.38 819.14
+3 725.91 724.04
+4 683.64 681.55
+As in the case of nlme fits, the DFOP model fitted with two-component error (number 4) gives the lowest AIC. The numeric values are reasonably close to the ones obtained using nlme, considering that the algorithms for fitting the model and for the likelihood calculation are quite different.
+In order to check the influence of the likelihood calculation algorithms implemented in saemix, the likelihood from Gaussian quadrature is added to the best fit, and the AIC values obtained from the three methods are compared.
+
+f_parent_saemix_dfop_tc_moreiter$so <-
+ llgq.saemix(f_parent_saemix_dfop_tc_moreiter$so)
+AIC(f_parent_saemix_dfop_tc_moreiter$so)
+[1] 683.64
+
+AIC(f_parent_saemix_dfop_tc_moreiter$so, method = "gq")
+[1] 683.7
+
+AIC(f_parent_saemix_dfop_tc_moreiter$so, method = "lin")
+[1] 683.17
+The AIC values based on importance sampling and Gaussian quadrature are quite similar. Using linearisation is less accurate, but still gives a similar value.
+
+
+
+nlmixr
+In the last years, a lot of effort has been put into the nlmixr package which is designed for pharmacokinetics, where nonlinear mixed-effects models are routinely used, but which can also be used for related data like chemical degradation data. A current development branch of the mkin package provides an interface between mkin and nlmixr. Here, we check if we get equivalent results when using a refined version of the First Order Conditional Estimation (FOCE) algorithm used in nlme, namely First Order Conditional Estimation with Interaction (FOCEI), and the SAEM algorithm as implemented in nlmixr.
+First, the focei algorithm is used for the four model combinations and the goodness of fit of the results is compared.
+
+library(nlmixr)
+f_parent_nlmixr_focei_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "focei")
+f_parent_nlmixr_focei_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "focei")
+f_parent_nlmixr_focei_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "focei")
+f_parent_nlmixr_focei_dfop_tc<- nlmixr(f_parent_mkin_tc["DFOP", ], est = "focei")
+
+AIC(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm,
+ f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm)
+ df AIC
+f_parent_nlmixr_focei_sfo_const$nm 5 818.63
+f_parent_nlmixr_focei_sfo_tc$nm 6 820.61
+f_parent_nlmixr_focei_dfop_const$nm 9 728.11
+f_parent_nlmixr_focei_dfop_tc$nm 10 687.82
+The AIC values are very close to the ones obtained with nlme which are repeated below for convenience.
+
+AIC(
+ f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
+)
+ df AIC
+f_parent_nlme_sfo_const 5 818.63
+f_parent_nlme_sfo_tc 6 820.61
+f_parent_nlme_dfop_tc 10 687.84
+Secondly, we use the SAEM estimation routine and check the convergence plots for SFO with constant variance
+
+f_parent_nlmixr_saem_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "saem",
+ control = nlmixr::saemControl(logLik = TRUE))
+traceplot(f_parent_nlmixr_saem_sfo_const$nm)
+
+for SFO with two-component error
+
+f_parent_nlmixr_saem_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "saem",
+ control = nlmixr::saemControl(logLik = TRUE))
+traceplot(f_parent_nlmixr_saem_sfo_tc$nm)
+
+For DFOP with constant variance, the convergence plots show considerable instability of the fit, which can be alleviated by increasing the number of iterations and the number of parallel chains for the first phase of algorithm.
+
+f_parent_nlmixr_saem_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "saem",
+ control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000), nmc = 15)
+traceplot(f_parent_nlmixr_saem_dfop_const$nm)
+
+For DFOP with two-component error, the same increase in iterations and parallel chains was used, but using the two-component error appears to lead to a less erratic convergence, so this may not be necessary to this degree.
+
+f_parent_nlmixr_saem_dfop_tc <- nlmixr(f_parent_mkin_tc["DFOP", ], est = "saem",
+ control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000, nmc = 15))
+traceplot(f_parent_nlmixr_saem_dfop_tc$nm)
+
+The AIC values are internally calculated using Gaussian quadrature. For an unknown reason, the AIC value obtained for the DFOP fit using the two-component error model is given as Infinity.
+
+AIC(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm,
+ f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm)
+ df AIC
+f_parent_nlmixr_saem_sfo_const$nm 5 820.54
+f_parent_nlmixr_saem_sfo_tc$nm 6 835.26
+f_parent_nlmixr_saem_dfop_const$nm 9 842.84
+f_parent_nlmixr_saem_dfop_tc$nm 10 684.51
+The following table gives the AIC values obtained with the three packages.
+
+AIC_all <- data.frame(
+ nlme = c(AIC(f_parent_nlme_sfo_const), AIC(f_parent_nlme_sfo_tc), NA, AIC(f_parent_nlme_dfop_tc)),
+ nlmixr_focei = sapply(list(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm,
+ f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm), AIC),
+ saemix = sapply(list(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so,
+ f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc_moreiter$so), AIC),
+ nlmixr_saem = sapply(list(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm,
+ f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm), AIC)
+)
+kable(AIC_all)
+
+
+nlme
+nlmixr_focei
+saemix
+nlmixr_saem
+
+
+
+818.63
+818.63
+818.37
+820.54
+
+
+820.61
+820.61
+820.38
+835.26
+
+
+NA
+728.11
+725.91
+842.84
+
+
+687.84
+687.82
+683.64
+684.51
+
+
+
+
+
+
+
+
+References
+
+
+
+EFSA. 2018. “Peer Review of the Pesticide Risk Assessment of the Active Substance Dimethenamid-P.” EFSA Journal 16 (4): 5211.
+
+
+Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria. 2018. “Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour, Rev. 2 - November 2017.” https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/accessible-code-block-0.0.1/empty-anchor.js b/docs/dev/articles/web_only/dimethenamid_2018_files/accessible-code-block-0.0.1/empty-anchor.js
new file mode 100644
index 00000000..ca349fd6
--- /dev/null
+++ b/docs/dev/articles/web_only/dimethenamid_2018_files/accessible-code-block-0.0.1/empty-anchor.js
@@ -0,0 +1,15 @@
+// Hide empty tag within highlighted CodeBlock for screen reader accessibility (see https://github.com/jgm/pandoc/issues/6352#issuecomment-626106786) -->
+// v0.0.1
+// Written by JooYoung Seo (jooyoung@psu.edu) and Atsushi Yasumoto on June 1st, 2020.
+
+document.addEventListener('DOMContentLoaded', function() {
+ const codeList = document.getElementsByClassName("sourceCode");
+ for (var i = 0; i < codeList.length; i++) {
+ var linkList = codeList[i].getElementsByTagName('a');
+ for (var j = 0; j < linkList.length; j++) {
+ if (linkList[j].innerHTML === "") {
+ linkList[j].setAttribute('aria-hidden', 'true');
+ }
+ }
+ }
+});
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png
new file mode 100644
index 00000000..c51afe54
Binary files /dev/null and b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const-1.png differ
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png
new file mode 100644
index 00000000..080f0dde
Binary files /dev/null and b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_const_test-1.png differ
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png
new file mode 100644
index 00000000..a3933e54
Binary files /dev/null and b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_dfop_tc_test-1.png differ
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png
new file mode 100644
index 00000000..8dee2e3c
Binary files /dev/null and b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_mkin_sfo_const-1.png differ
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_const-1.png b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_const-1.png
new file mode 100644
index 00000000..54a8c1a6
Binary files /dev/null and b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_const-1.png differ
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_tc-1.png b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_tc-1.png
new file mode 100644
index 00000000..91f3d977
Binary files /dev/null and b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_dfop_tc-1.png differ
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_const-1.png b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_const-1.png
new file mode 100644
index 00000000..c84f2926
Binary files /dev/null and b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_const-1.png differ
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_tc-1.png b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_tc-1.png
new file mode 100644
index 00000000..cfef9dfc
Binary files /dev/null and b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_nlmixr_saem_sfo_tc-1.png differ
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const-1.png b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const-1.png
new file mode 100644
index 00000000..a4695eea
Binary files /dev/null and b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_const-1.png differ
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc_moreiter-1.png b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc_moreiter-1.png
new file mode 100644
index 00000000..1c8fc837
Binary files /dev/null and b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_dfop_tc_moreiter-1.png differ
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_const-1.png b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_const-1.png
new file mode 100644
index 00000000..469ebafd
Binary files /dev/null and b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_const-1.png differ
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png
new file mode 100644
index 00000000..d26bcc09
Binary files /dev/null and b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/f_parent_saemix_sfo_tc-1.png differ
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png
new file mode 100644
index 00000000..6edeb794
Binary files /dev/null and b/docs/dev/articles/web_only/dimethenamid_2018_files/figure-html/plot_parent_nlme-1.png differ
diff --git a/docs/dev/articles/web_only/dimethenamid_2018_files/header-attrs-2.9/header-attrs.js b/docs/dev/articles/web_only/dimethenamid_2018_files/header-attrs-2.9/header-attrs.js
new file mode 100644
index 00000000..dd57d92e
--- /dev/null
+++ b/docs/dev/articles/web_only/dimethenamid_2018_files/header-attrs-2.9/header-attrs.js
@@ -0,0 +1,12 @@
+// Pandoc 2.9 adds attributes on both header and div. We remove the former (to
+// be compatible with the behavior of Pandoc < 2.8).
+document.addEventListener('DOMContentLoaded', function(e) {
+ var hs = document.querySelectorAll("div.section[class*='level'] > :first-child");
+ var i, h, a;
+ for (i = 0; i < hs.length; i++) {
+ h = hs[i];
+ if (!/^h[1-6]$/i.test(h.tagName)) continue; // it should be a header h1-h6
+ a = h.attributes;
+ while (a.length > 0) h.removeAttribute(a[0].name);
+ }
+});
diff --git a/docs/dev/authors.html b/docs/dev/authors.html
index 4208dc24..943cba1b 100644
--- a/docs/dev/authors.html
+++ b/docs/dev/authors.html
@@ -71,7 +71,7 @@
mkin
- 1.0.5
+ 1.1.0
diff --git a/docs/dev/index.html b/docs/dev/index.html
index 6e3fa6e1..8049b3a1 100644
--- a/docs/dev/index.html
+++ b/docs/dev/index.html
@@ -38,7 +38,7 @@
mkin
- 1.0.5
+ 1.1.0
diff --git a/docs/dev/news/index.html b/docs/dev/news/index.html
index 234ba02f..cfe577cf 100644
--- a/docs/dev/news/index.html
+++ b/docs/dev/news/index.html
@@ -71,7 +71,7 @@
mkin
- 1.0.5
+ 1.1.0
diff --git a/docs/dev/pkgdown.yml b/docs/dev/pkgdown.yml
index b2c50e79..16f7f0d6 100644
--- a/docs/dev/pkgdown.yml
+++ b/docs/dev/pkgdown.yml
@@ -10,7 +10,8 @@ articles:
web_only/NAFTA_examples: NAFTA_examples.html
web_only/benchmarks: benchmarks.html
web_only/compiled_models: compiled_models.html
-last_built: 2021-06-17T12:41Z
+ web_only/dimethenamid_2018: dimethenamid_2018.html
+last_built: 2021-07-27T15:54Z
urls:
reference: https://pkgdown.jrwb.de/mkin/reference
article: https://pkgdown.jrwb.de/mkin/articles
diff --git a/docs/dev/reference/Rplot005.png b/docs/dev/reference/Rplot005.png
index 55aa7eec..92c7cc2d 100644
Binary files a/docs/dev/reference/Rplot005.png and b/docs/dev/reference/Rplot005.png differ
diff --git a/docs/dev/reference/dimethenamid_2018-2.png b/docs/dev/reference/dimethenamid_2018-2.png
new file mode 100644
index 00000000..a81b2aaf
Binary files /dev/null and b/docs/dev/reference/dimethenamid_2018-2.png differ
diff --git a/docs/dev/reference/dimethenamid_2018.html b/docs/dev/reference/dimethenamid_2018.html
index e255765e..160dcaa3 100644
--- a/docs/dev/reference/dimethenamid_2018.html
+++ b/docs/dev/reference/dimethenamid_2018.html
@@ -77,7 +77,7 @@ constrained by data protection regulations." />
mkin
- 1.0.5
+ 1.1.0
@@ -168,7 +168,7 @@ constrained by data protection regulations.
Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria (2018)
Renewal Assessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour
Rev. 2 - November 2017
-http://registerofquestions.efsa.europa.eu/roqFrontend/outputLoader?output=ON-5211
+https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716
Details
The R code used to create this data object is installed with this package
@@ -295,8 +295,11 @@ specific pieces of information in the comments.
#> M31 ~ add(sigma_low_M31) + prop(rsd_high_M31)
#> })
#> }
-#> <environment: 0x555559c2bd78>f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei",
- control = nlmixr::foceiControl(print = 500))
+#> <environment: 0x555559c00ce8># The focei fit takes about four minutes on my system
+system.time(
+ f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei",
+ control = nlmixr::foceiControl(print = 500))
+)
#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> [====|====|====|====|====|====|====|====|====|====] 0:00:02
#> #> → calculate sensitivities#> [====|====|====|====|====|====|====|====|====|====] 0:00:04
#> #> → calculate ∂(f)/∂(η)#> [====|====|====|====|====|====|====|====|====|====] 0:00:01
@@ -320,12 +323,13 @@ specific pieces of information in the comments.
#> |.....................| o5 | o6 | o7 | o8 |
#> |.....................| o9 | o10 |...........|...........|
#> calculating covariance matrix
-#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: S matrix non-positive definite#> Warning: using R matrix to calculate covariance#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: S matrix non-positive definite#> Warning: using R matrix to calculate covariance#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> user system elapsed
+#> 227.879 9.742 237.728 #> nlmixr version used for fitting: 2.0.4
-#> mkin version used for pre-fitting: 1.0.5
+#> mkin version used for pre-fitting: 1.1.0
#> R version used for fitting: 4.1.0
-#> Date of fit: Thu Jun 17 14:04:58 2021
-#> Date of summary: Thu Jun 17 14:04:58 2021
+#> Date of fit: Tue Jul 27 16:02:33 2021
+#> Date of summary: Tue Jul 27 16:02:34 2021
#>
#> Equations:
#> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -346,7 +350,7 @@ specific pieces of information in the comments.
#>
#> Degradation model predictions using RxODE
#>
-#> Fitted in 242.937 s
+#> Fitted in 237.547 s
#>
#> Variance model: Two-component variance function
#>
@@ -480,13 +484,194 @@ specific pieces of information in the comments.
#> M23 34.99 116.24 NA NA NA
#> M27 53.05 176.23 NA NA NA
#> M31 48.48 161.05 NA NA NA# saem has a problem with this model/data combination, maybe because of the
-# overparameterised error model, to be investigated
-#f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem",
-# control = saemControl(print = 500))
-#summary(f_dmta_nlmixr_saem)
-#plot(f_dmta_nlmixr_saem)
-# }
+# Using saemix takes about 18 minutes
+system.time(
+ f_dmta_saemix <- saem(f_dmta_mkin_tc, test_log_parms = TRUE)
+)
+#> Running main SAEM algorithm
+#> [1] "Tue Jul 27 16:02:34 2021"
+#> ....
+#> Minimisation finished
+#> [1] "Tue Jul 27 16:21:39 2021"#> user system elapsed
+#> 1213.394 0.087 1213.578
+# nlmixr with est = "saem" is pretty fast with default iteration numbers, most
+# of the time (about 2.5 minutes) is spent for calculating the log likelihood at the end
+# The likelihood calculated for the nlmixr fit is much lower than that found by saemix
+# Also, the trace plot and the plot of the individual predictions is not
+# convincing for the parent. It seems we are fitting an overparameterised
+# model, so the result we get strongly depends on starting parameters and control settings.
+system.time(
+ f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem",
+ control = nlmixr::saemControl(print = 500, logLik = TRUE, nmc = 9))
+)
+#> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> 1: 98.3427 -3.5148 -3.3187 -3.7728 -2.1163 -2.8457 0.9482 -2.8064 -2.7412 -2.8745 2.7912 0.6805 0.8213 0.8055 0.8578 1.4980 2.9309 0.2850 0.2854 0.2850 4.0990 0.3821 3.5349 0.6537 5.4143 0.0002 4.5093 0.1905
+#> 500: 97.8277 -4.3506 -4.0318 -4.1520 -3.0553 -3.5843 1.1326 -2.0873 -2.0421 -2.0751 0.2960 1.2515 0.2531 0.3807 0.7928 0.8863 6.5211 0.1433 0.1082 0.3353 0.8960 0.0470 0.7501 0.0475 0.9527 0.0281 0.7321 0.0594#> Calculating covariance matrix#> #> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"#> Calculating residuals/tables#> done#> user system elapsed
+#> 818.782 3.808 154.926 traceplot(f_dmta_nlmixr_saem$nm)
+#> Error in traceplot(f_dmta_nlmixr_saem$nm): could not find function "traceplot"#> nlmixr version used for fitting: 2.0.4
+#> mkin version used for pre-fitting: 1.1.0
+#> R version used for fitting: 4.1.0
+#> Date of fit: Tue Jul 27 16:25:23 2021
+#> Date of summary: Tue Jul 27 16:25:23 2021
+#>
+#> Equations:
+#> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+#> time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+#> * DMTA
+#> d_M23/dt = + f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
+#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+#> exp(-k2 * time))) * DMTA - k_M23 * M23
+#> d_M27/dt = + f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
+#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+#> exp(-k2 * time))) * DMTA - k_M27 * M27 + k_M31 * M31
+#> d_M31/dt = + f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
+#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+#> exp(-k2 * time))) * DMTA - k_M31 * M31
+#>
+#> Data:
+#> 568 observations of 4 variable(s) grouped in 6 datasets
+#>
+#> Degradation model predictions using RxODE
+#>
+#> Fitted in 154.632 s
+#>
+#> Variance model: Two-component variance function
+#>
+#> Mean of starting values for individual parameters:
+#> DMTA_0 log_k_M23 log_k_M27 log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2
+#> 98.7698 -3.9216 -4.3377 -4.2477 0.1380 0.1393
+#> f_DMTA_ilr_3 log_k1 log_k2 g_qlogis
+#> -1.7571 -2.2341 -3.7763 0.4502
+#>
+#> Mean of starting values for error model parameters:
+#> sigma_low_DMTA rsd_high_DMTA sigma_low_M23 rsd_high_M23 sigma_low_M27
+#> 0.69793 0.02577 0.69793 0.02577 0.69793
+#> rsd_high_M27 sigma_low_M31 rsd_high_M31
+#> 0.02577 0.69793 0.02577
+#>
+#> Fixed degradation parameter values:
+#> None
+#>
+#> Results:
+#>
+#> Likelihood calculated by focei
+#> AIC BIC logLik
+#> 2036 2157 -989.8
+#>
+#> Optimised parameters:
+#> est. lower upper
+#> DMTA_0 97.828 96.121 99.535
+#> log_k_M23 -4.351 -5.300 -3.401
+#> log_k_M27 -4.032 -4.470 -3.594
+#> log_k_M31 -4.152 -4.689 -3.615
+#> log_k1 -3.055 -3.785 -2.325
+#> log_k2 -3.584 -4.517 -2.651
+#> g_qlogis 1.133 -2.165 4.430
+#> f_DMTA_tffm0_1_qlogis -2.087 -2.407 -1.768
+#> f_DMTA_tffm0_2_qlogis -2.042 -2.336 -1.748
+#> f_DMTA_tffm0_3_qlogis -2.075 -2.557 -1.593
+#>
+#> Correlation:
+#> DMTA_0 l__M23 l__M27 l__M31 log_k1 log_k2 g_qlgs
+#> log_k_M23 -0.031
+#> log_k_M27 -0.050 0.004
+#> log_k_M31 -0.032 0.003 0.078
+#> log_k1 0.014 -0.002 -0.002 -0.001
+#> log_k2 0.059 0.006 -0.001 0.002 -0.037
+#> g_qlogis -0.077 0.005 0.009 0.004 0.035 -0.201
+#> f_DMTA_tffm0_1_qlogis -0.104 0.066 0.009 0.006 0.000 -0.011 0.014
+#> f_DMTA_tffm0_2_qlogis -0.120 0.013 0.081 -0.033 -0.002 -0.013 0.017
+#> f_DMTA_tffm0_3_qlogis -0.086 0.010 0.060 0.078 -0.002 -0.005 0.010
+#> f_DMTA_0_1 f_DMTA_0_2
+#> log_k_M23
+#> log_k_M27
+#> log_k_M31
+#> log_k1
+#> log_k2
+#> g_qlogis
+#> f_DMTA_tffm0_1_qlogis
+#> f_DMTA_tffm0_2_qlogis 0.026
+#> f_DMTA_tffm0_3_qlogis 0.019 0.002
+#>
+#> Random effects (omega):
+#> eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31
+#> eta.DMTA_0 0.296 0.000 0.0000 0.0000
+#> eta.log_k_M23 0.000 1.252 0.0000 0.0000
+#> eta.log_k_M27 0.000 0.000 0.2531 0.0000
+#> eta.log_k_M31 0.000 0.000 0.0000 0.3807
+#> eta.log_k1 0.000 0.000 0.0000 0.0000
+#> eta.log_k2 0.000 0.000 0.0000 0.0000
+#> eta.g_qlogis 0.000 0.000 0.0000 0.0000
+#> eta.f_DMTA_tffm0_1_qlogis 0.000 0.000 0.0000 0.0000
+#> eta.f_DMTA_tffm0_2_qlogis 0.000 0.000 0.0000 0.0000
+#> eta.f_DMTA_tffm0_3_qlogis 0.000 0.000 0.0000 0.0000
+#> eta.log_k1 eta.log_k2 eta.g_qlogis
+#> eta.DMTA_0 0.0000 0.0000 0.000
+#> eta.log_k_M23 0.0000 0.0000 0.000
+#> eta.log_k_M27 0.0000 0.0000 0.000
+#> eta.log_k_M31 0.0000 0.0000 0.000
+#> eta.log_k1 0.7928 0.0000 0.000
+#> eta.log_k2 0.0000 0.8863 0.000
+#> eta.g_qlogis 0.0000 0.0000 6.521
+#> eta.f_DMTA_tffm0_1_qlogis 0.0000 0.0000 0.000
+#> eta.f_DMTA_tffm0_2_qlogis 0.0000 0.0000 0.000
+#> eta.f_DMTA_tffm0_3_qlogis 0.0000 0.0000 0.000
+#> eta.f_DMTA_tffm0_1_qlogis eta.f_DMTA_tffm0_2_qlogis
+#> eta.DMTA_0 0.0000 0.0000
+#> eta.log_k_M23 0.0000 0.0000
+#> eta.log_k_M27 0.0000 0.0000
+#> eta.log_k_M31 0.0000 0.0000
+#> eta.log_k1 0.0000 0.0000
+#> eta.log_k2 0.0000 0.0000
+#> eta.g_qlogis 0.0000 0.0000
+#> eta.f_DMTA_tffm0_1_qlogis 0.1433 0.0000
+#> eta.f_DMTA_tffm0_2_qlogis 0.0000 0.1082
+#> eta.f_DMTA_tffm0_3_qlogis 0.0000 0.0000
+#> eta.f_DMTA_tffm0_3_qlogis
+#> eta.DMTA_0 0.0000
+#> eta.log_k_M23 0.0000
+#> eta.log_k_M27 0.0000
+#> eta.log_k_M31 0.0000
+#> eta.log_k1 0.0000
+#> eta.log_k2 0.0000
+#> eta.g_qlogis 0.0000
+#> eta.f_DMTA_tffm0_1_qlogis 0.0000
+#> eta.f_DMTA_tffm0_2_qlogis 0.0000
+#> eta.f_DMTA_tffm0_3_qlogis 0.3353
+#>
+#> Variance model:
+#> sigma_low_DMTA rsd_high_DMTA sigma_low_M23 rsd_high_M23 sigma_low_M27
+#> 0.89603 0.04704 0.75015 0.04753 0.95265
+#> rsd_high_M27 sigma_low_M31 rsd_high_M31
+#> 0.02810 0.73212 0.05942
+#>
+#> Backtransformed parameters:
+#> est. lower upper
+#> DMTA_0 97.82774 96.120503 99.53498
+#> k_M23 0.01290 0.004991 0.03334
+#> k_M27 0.01774 0.011451 0.02749
+#> k_M31 0.01573 0.009195 0.02692
+#> f_DMTA_to_M23 0.11033 NA NA
+#> f_DMTA_to_M27 0.10218 NA NA
+#> f_DMTA_to_M31 0.08784 NA NA
+#> k1 0.04711 0.022707 0.09773
+#> k2 0.02775 0.010918 0.07056
+#> g 0.75632 0.102960 0.98823
+#>
+#> Resulting formation fractions:
+#> ff
+#> DMTA_M23 0.11033
+#> DMTA_M27 0.10218
+#> DMTA_M31 0.08784
+#> DMTA_sink 0.69965
+#>
+#> Estimated disappearance times:
+#> DT50 DT90 DT50back DT50_k1 DT50_k2
+#> DMTA 16.59 57.44 17.29 14.71 24.97
+#> M23 53.74 178.51 NA NA NA
+#> M27 39.07 129.78 NA NA NA
+#> M31 44.06 146.36 NA NA NA# }
diff --git a/docs/dev/reference/endpoints.html b/docs/dev/reference/endpoints.html
index dc1d1f17..aa5bd773 100644
--- a/docs/dev/reference/endpoints.html
+++ b/docs/dev/reference/endpoints.html
@@ -78,7 +78,7 @@ advantage that the SFORB model can also be used for metabolites." />
mkin
- 1.0.5
+ 1.1.0
diff --git a/docs/dev/reference/index.html b/docs/dev/reference/index.html
index bb030605..d5ec387a 100644
--- a/docs/dev/reference/index.html
+++ b/docs/dev/reference/index.html
@@ -71,7 +71,7 @@
mkin
- 1.0.5
+ 1.1.0
diff --git a/docs/dev/reference/mean_degparms.html b/docs/dev/reference/mean_degparms.html
index f63dbc31..5981c625 100644
--- a/docs/dev/reference/mean_degparms.html
+++ b/docs/dev/reference/mean_degparms.html
@@ -72,7 +72,7 @@
mkin
- 1.0.5
+ 1.1.0
diff --git a/docs/dev/reference/mkinmod.html b/docs/dev/reference/mkinmod.html
index 413f0ae1..e57e7062 100644
--- a/docs/dev/reference/mkinmod.html
+++ b/docs/dev/reference/mkinmod.html
@@ -44,9 +44,7 @@
variable, specifying the corresponding submodel as well as outgoing pathways
(see examples).
Print mkinmod objects in a way that the user finds his way to get to its
-components.
-This is a convenience function to set up the lists used as arguments for
-mkinmod." />
+components." />
@@ -78,7 +76,7 @@ mkinmod." />
mkin
- 1.0.3.9000
+ 1.1.0
@@ -155,8 +153,6 @@ variable, specifying the corresponding submodel as well as outgoing pathways
(see examples).
Print mkinmod objects in a way that the user finds his way to get to its
components.
-This is a convenience function to set up the lists used as arguments for
-mkinmod
.
mkinmod(
@@ -348,7 +344,7 @@ Evaluating and Calculating Degradation Kinetics in Environmental Media
parent = mkinsub("SFO", "m1", full_name = "Test compound"),
m1 = mkinsub("SFO", full_name = "Metabolite M1"),
name = "SFO_SFO", dll_dir = DLL_dir, unload = TRUE, overwrite = TRUE)
-#> Copied DLL from /tmp/Rtmp92fCb2/file133ad522561845.so to /home/jranke/.local/share/mkin/SFO_SFO.so# Now we can save the model and restore it in a new session
+#> Copied DLL from /tmp/RtmpPWWdbW/fileccff46a6d9773.so to /home/jranke/.local/share/mkin/SFO_SFO.so# Now we can save the model and restore it in a new session
saveRDS(SFO_SFO.2, file = "~/SFO_SFO.rds")
# Terminate the R session here if you would like to check, and then do
library(mkin)
@@ -397,7 +393,7 @@ Evaluating and Calculating Degradation Kinetics in Environmental Media
#> })
#> return(predicted)
#> }
-#> <environment: 0x5555572517f8>
+#> <environment: 0x5555645abab8>
# If we have several parallel metabolites
# (compare tests/testthat/test_synthetic_data_for_UBA_2014.R)
m_synth_DFOP_par <- mkinmod(
diff --git a/docs/dev/reference/nlme-1.png b/docs/dev/reference/nlme-1.png
index 365aaef0..f739089a 100644
Binary files a/docs/dev/reference/nlme-1.png and b/docs/dev/reference/nlme-1.png differ
diff --git a/docs/dev/reference/nlme-2.png b/docs/dev/reference/nlme-2.png
index 40841404..d3b29bb0 100644
Binary files a/docs/dev/reference/nlme-2.png and b/docs/dev/reference/nlme-2.png differ
diff --git a/docs/dev/reference/nlme.html b/docs/dev/reference/nlme.html
index 55a94443..184585df 100644
--- a/docs/dev/reference/nlme.html
+++ b/docs/dev/reference/nlme.html
@@ -75,7 +75,7 @@ datasets. They are used internally by the nlme.mmkin() method." />
mkin
- 1.0.5
+ 1.1.0
@@ -216,28 +216,28 @@ datasets. They are used internally by the nlme.m
#> Model: value ~ nlme_f(name, time, parent_0, log_k_parent_sink)
#> Data: grouped_data
#> AIC BIC logLik
-#> 300.6824 310.2426 -145.3412
+#> 278.1355 287.7946 -134.0677
#>
#> Random effects:
#> Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1)
#> Level: ds
#> Structure: Diagonal
#> parent_0 log_k_parent_sink Residual
-#> StdDev: 1.697361 0.6801209 3.666073
+#> StdDev: 3.406042 0.6437579 2.620833
#>
#> Fixed effects: parent_0 + log_k_parent_sink ~ 1
#> Value Std.Error DF t-value p-value
-#> parent_0 100.99378 1.3890416 46 72.70753 0
-#> log_k_parent_sink -3.07521 0.4018589 46 -7.65246 0
+#> parent_0 101.50173 2.123709 47 47.79457 0
+#> log_k_parent_sink -3.07597 0.379775 47 -8.09945 0
#> Correlation:
#> prnt_0
-#> log_k_parent_sink 0.027
+#> log_k_parent_sink 0.01
#>
#> Standardized Within-Group Residuals:
-#> Min Q1 Med Q3 Max
-#> -1.9942823 -0.5622565 0.1791579 0.7165038 2.0704781
+#> Min Q1 Med Q3 Max
+#> -2.06889303 -0.50100169 -0.06268253 0.62557544 2.19922001
#>
-#> Number of Observations: 50
+#> Number of Observations: 51
#> Number of Groups: 3 # augPred does not work on fits with more than one state
# variable
diff --git a/docs/dev/reference/nlme.mmkin.html b/docs/dev/reference/nlme.mmkin.html
index 2bbf4f80..866091ca 100644
--- a/docs/dev/reference/nlme.mmkin.html
+++ b/docs/dev/reference/nlme.mmkin.html
@@ -74,7 +74,7 @@ have been obtained by fitting the same model to a list of datasets." />
mkin
- 1.0.5
+ 1.1.0
@@ -194,10 +194,9 @@ mmkin model are used as fixed parameters
random
- If not specified, correlated random effects are set up
-for all optimised degradation model parameters using the log-Cholesky
-parameterization nlme::pdLogChol that is also the default of
-the generic nlme method.
+ If not specified, no correlations between random effects are
+set up for the optimised degradation model parameters. This is
+achieved by using the nlme::pdDiag method.
groups
diff --git a/docs/dev/reference/nlmixr.mmkin.html b/docs/dev/reference/nlmixr.mmkin.html
index d09f2ad4..328bad43 100644
--- a/docs/dev/reference/nlmixr.mmkin.html
+++ b/docs/dev/reference/nlmixr.mmkin.html
@@ -74,7 +74,7 @@ Expectation Maximisation algorithm (SAEM)." />
mkin
- 1.0.5
+ 1.1.0
@@ -4501,7 +4501,7 @@ obtained by fitting the same model to a list of datasets using k_A1=rx_expr_11;
#> f_parent=1/(1+exp(-(ETA[4]+THETA[4])));
#> tad=tad();
-#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 5.607 0.474 6.078f_nlmixr_fomc_sfo_focei_const <- nlmixr(f_mmkin_const["FOMC-SFO", ], est = "focei")
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 5.548 0.415 5.961#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
#> cmt(A1);
#> rx_expr_6~ETA[1]+THETA[1];
@@ -4550,7 +4550,7 @@ obtained by fitting the same model to a list of datasets using beta=exp(rx_expr_8);
#> f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
#> tad=tad();
-#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 6.853 0.393 7.242f_nlmixr_dfop_sfo_focei_const <- nlmixr(f_mmkin_const["DFOP-SFO", ], est = "focei")
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 6.895 0.416 7.309#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
#> cmt(A1);
#> rx_expr_6~ETA[1]+THETA[1];
@@ -4607,10 +4607,10 @@ obtained by fitting the same model to a list of datasets using f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
#> g=1/(rx_expr_20);
#> tad=tad();
-#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 15.18 0.414 15.6
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 15.03 0.478 15.51
# Variance by variable is supported by 'saem' and 'focei'
f_nlmixr_fomc_sfo_saem_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "saem")
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> Timing stopped at: 1.22 0.089 1.31#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> Timing stopped at: 1.294 0.134 1.427#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
#> cmt(A1);
#> rx_expr_6~ETA[1]+THETA[1];
@@ -4659,8 +4659,8 @@ obtained by fitting the same model to a list of datasets using beta=exp(rx_expr_8);
#> f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
#> tad=tad();
-#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 6.784 0.418 7.2#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> Timing stopped at: 1.357 0.096 1.452f_nlmixr_dfop_sfo_focei_obs <- nlmixr(f_mmkin_obs["DFOP-SFO", ], est = "focei")
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 6.584 0.393 6.976#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> Timing stopped at: 1.302 0.142 1.443#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
#> cmt(A1);
#> rx_expr_6~ETA[1]+THETA[1];
@@ -4717,7 +4717,7 @@ obtained by fitting the same model to a list of datasets using f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
#> g=1/(rx_expr_19);
#> tad=tad();
-#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 15.17 0.353 15.52
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 14.58 0.482 15.06
# Identical two-component error for all variables is only possible with
# est = 'focei' in nlmixr
f_nlmixr_fomc_sfo_focei_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei")
@@ -4771,7 +4771,7 @@ obtained by fitting the same model to a list of datasets using beta=exp(rx_expr_8);
#> f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
#> tad=tad();
-#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 8.708 0.429 9.135f_nlmixr_dfop_sfo_focei_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei")
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 8.484 0.401 8.883#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
#> cmt(A1);
#> rx_expr_6~ETA[1]+THETA[1];
@@ -4830,12 +4830,12 @@ obtained by fitting the same model to a list of datasets using f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
#> g=1/(rx_expr_21);
#> tad=tad();
-#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 18.05 0.446 18.5
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 18.44 0.438 18.87
# Two-component error by variable is possible with both estimation methods
# Variance by variable is supported by 'saem' and 'focei'
f_nlmixr_fomc_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "saem",
error_model = "obs_tc")
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> Timing stopped at: 0.763 0.036 0.799#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> Timing stopped at: 0.784 0.028 0.812f_nlmixr_fomc_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei",
error_model = "obs_tc")
#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
#> cmt(A1);
@@ -4887,9 +4887,9 @@ obtained by fitting the same model to a list of datasets using beta=exp(rx_expr_8);
#> f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
#> tad=tad();
-#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 8.196 0.388 8.584f_nlmixr_dfop_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "saem",
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 8.157 0.51 8.664f_nlmixr_dfop_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "saem",
error_model = "obs_tc")
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> Timing stopped at: 0.843 0.028 0.871#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1#> Timing stopped at: 0.81 0.045 0.854f_nlmixr_dfop_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei",
error_model = "obs_tc")
#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
#> cmt(A1);
@@ -4949,7 +4949,7 @@ obtained by fitting the same model to a list of datasets using f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
#> g=1/(rx_expr_19);
#> tad=tad();
-#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 17.73 0.411 18.14
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_A1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 17.34 0.397 17.73
AIC(
f_nlmixr_sfo_sfo_focei_const$nm,
f_nlmixr_fomc_sfo_focei_const$nm,
diff --git a/docs/dev/reference/plot.mixed.mmkin-3.png b/docs/dev/reference/plot.mixed.mmkin-3.png
index a9b96726..7e2876b3 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-3.png and b/docs/dev/reference/plot.mixed.mmkin-3.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin-4.png b/docs/dev/reference/plot.mixed.mmkin-4.png
index 22219e5e..945c4d41 100644
Binary files a/docs/dev/reference/plot.mixed.mmkin-4.png and b/docs/dev/reference/plot.mixed.mmkin-4.png differ
diff --git a/docs/dev/reference/plot.mixed.mmkin.html b/docs/dev/reference/plot.mixed.mmkin.html
index a4222991..7f3faa90 100644
--- a/docs/dev/reference/plot.mixed.mmkin.html
+++ b/docs/dev/reference/plot.mixed.mmkin.html
@@ -72,7 +72,7 @@
mkin
- 1.0.5
+ 1.1.0
@@ -296,10 +296,10 @@ corresponding model prediction lines for the different datasets.
#> Running main SAEM algorithm
-#> [1] "Fri Jun 11 10:56:37 2021"
+#> [1] "Tue Jul 27 16:30:50 2021"
#> ....
#> Minimisation finished
-#> [1] "Fri Jun 11 10:56:44 2021"
f_obs <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, error_model = "obs")
f_nlmix <- nlmix(f_obs)
diff --git a/docs/dev/reference/reexports.html b/docs/dev/reference/reexports.html
index f5ace044..ac4fa4d9 100644
--- a/docs/dev/reference/reexports.html
+++ b/docs/dev/reference/reexports.html
@@ -81,7 +81,7 @@ below to see their documentation.
mkin
- 1.0.5
+ 1.1.0
diff --git a/docs/dev/reference/saem-5.png b/docs/dev/reference/saem-5.png
index 8212ec67..d22e7285 100644
Binary files a/docs/dev/reference/saem-5.png and b/docs/dev/reference/saem-5.png differ
diff --git a/docs/dev/reference/saem.html b/docs/dev/reference/saem.html
index 98faad6f..15271c8a 100644
--- a/docs/dev/reference/saem.html
+++ b/docs/dev/reference/saem.html
@@ -74,7 +74,7 @@ Expectation Maximisation algorithm (SAEM)." />
mkin
- 1.0.5
+ 1.1.0
@@ -158,7 +158,7 @@ Expectation Maximisation algorithm (SAEM).
object,
transformations = c("mkin", "saemix"),
degparms_start = numeric(),
- test_log_parms = FALSE,
+ test_log_parms = TRUE,
conf.level = 0.6,
solution_type = "auto",
nbiter.saemix = c(300, 100),
@@ -288,27 +288,27 @@ using mmkin.
state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)
#> Running main SAEM algorithm
-#> [1] "Fri Jun 11 10:56:49 2021"
+#> [1] "Tue Jul 27 16:31:02 2021"
#> ....
#> Minimisation finished
-#> [1] "Fri Jun 11 10:56:51 2021"
+#> [1] "Tue Jul 27 16:31:04 2021"
f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
f_saem_sfo <- saem(f_mmkin_parent["SFO", ])
#> Running main SAEM algorithm
-#> [1] "Fri Jun 11 10:56:53 2021"
+#> [1] "Tue Jul 27 16:31:06 2021"
#> ....
#> Minimisation finished
-#> [1] "Fri Jun 11 10:56:54 2021"f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
+#> [1] "Tue Jul 27 16:31:07 2021"f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
#> Running main SAEM algorithm
-#> [1] "Fri Jun 11 10:56:54 2021"
+#> [1] "Tue Jul 27 16:31:07 2021"
#> ....
#> Minimisation finished
-#> [1] "Fri Jun 11 10:56:57 2021"f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
+#> [1] "Tue Jul 27 16:31:09 2021"f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
#> Running main SAEM algorithm
-#> [1] "Fri Jun 11 10:56:57 2021"
+#> [1] "Tue Jul 27 16:31:10 2021"
#> ....
#> Minimisation finished
-#> [1] "Fri Jun 11 10:57:00 2021"
+#> [1] "Tue Jul 27 16:31:12 2021"
# The returned saem.mmkin object contains an SaemixObject, therefore we can use
# functions from saemix
library(saemix)
@@ -357,10 +357,10 @@ using mmkin.
f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ])
#> Running main SAEM algorithm
-#> [1] "Fri Jun 11 10:57:03 2021"
+#> [1] "Tue Jul 27 16:31:16 2021"
#> ....
#> Minimisation finished
-#> [1] "Fri Jun 11 10:57:09 2021"#> Likelihoods calculated by importance sampling#> AIC BIC
#> 1 467.7096 464.9757
#> 2 469.6831 466.5586#> Running main SAEM algorithm
-#> [1] "Fri Jun 11 10:57:12 2021"
+#> [1] "Tue Jul 27 16:31:24 2021"
#> ....
#> Minimisation finished
-#> [1] "Fri Jun 11 10:57:17 2021"f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
+#> [1] "Tue Jul 27 16:31:29 2021"f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
#> Running main SAEM algorithm
-#> [1] "Fri Jun 11 10:57:17 2021"
+#> [1] "Tue Jul 27 16:31:30 2021"
#> ....
#> Minimisation finished
-#> [1] "Fri Jun 11 10:57:26 2021"# We can use print, plot and summary methods to check the results
+#> [1] "Tue Jul 27 16:31:38 2021"#> Kinetic nonlinear mixed-effects model fit by SAEM
#> Structural model:
@@ -405,35 +405,35 @@ using mmkin.
#>
#> Likelihood computed by importance sampling
#> AIC BIC logLik
-#> 841.6 836.5 -407.8
+#> 839.6 834.6 -406.8
#>
#> Fitted parameters:
#> estimate lower upper
-#> parent_0 93.76647 91.15312 96.3798
-#> log_k_A1 -6.13235 -8.45788 -3.8068
-#> f_parent_qlogis -0.97364 -1.36940 -0.5779
-#> log_k1 -2.53176 -3.80372 -1.2598
-#> log_k2 -3.58667 -5.29524 -1.8781
-#> g_qlogis 0.01238 -1.07968 1.1044
-#> Var.parent_0 7.61106 -3.34955 18.5717
-#> Var.log_k_A1 4.64679 -2.73133 12.0249
-#> Var.f_parent_qlogis 0.19693 -0.05498 0.4488
-#> Var.log_k1 2.01717 -0.51980 4.5542
-#> Var.log_k2 3.63412 -0.92964 8.1979
-#> Var.g_qlogis 0.20045 -0.97425 1.3751
-#> a.1 1.88335 1.66636 2.1004
-#> SD.parent_0 2.75881 0.77234 4.7453
-#> SD.log_k_A1 2.15564 0.44429 3.8670
-#> SD.f_parent_qlogis 0.44377 0.15994 0.7276
-#> SD.log_k1 1.42027 0.52714 2.3134
-#> SD.log_k2 1.90634 0.70934 3.1033
-#> SD.g_qlogis 0.44771 -0.86417 1.7596plot(f_saem_dfop_sfo)
+#> parent_0 93.80521 91.22487 96.3856
+#> log_k_A1 -6.06244 -8.26517 -3.8597
+#> f_parent_qlogis -0.97319 -1.37024 -0.5761
+#> log_k1 -2.55394 -4.00815 -1.0997
+#> log_k2 -3.47160 -5.18763 -1.7556
+#> g_qlogis -0.09324 -1.42737 1.2409
+#> Var.parent_0 7.42157 -3.25683 18.1000
+#> Var.log_k_A1 4.22850 -2.46339 10.9204
+#> Var.f_parent_qlogis 0.19803 -0.05541 0.4515
+#> Var.log_k1 2.28644 -0.86079 5.4337
+#> Var.log_k2 3.35626 -1.14639 7.8589
+#> Var.g_qlogis 0.20084 -1.32516 1.7268
+#> a.1 1.88399 1.66794 2.1000
+#> SD.parent_0 2.72425 0.76438 4.6841
+#> SD.log_k_A1 2.05633 0.42919 3.6835
+#> SD.f_parent_qlogis 0.44501 0.16025 0.7298
+#> SD.log_k1 1.51210 0.47142 2.5528
+#> SD.log_k2 1.83201 0.60313 3.0609
+#> SD.g_qlogis 0.44816 -1.25437 2.1507#> saemix version used for fitting: 3.1.9000
-#> mkin version used for pre-fitting: 1.0.5
+#> mkin version used for pre-fitting: 1.1.0
#> R version used for fitting: 4.1.0
-#> Date of fit: Fri Jun 11 10:57:27 2021
-#> Date of summary: Fri Jun 11 10:57:27 2021
+#> Date of fit: Tue Jul 27 16:31:39 2021
+#> Date of summary: Tue Jul 27 16:31:39 2021
#>
#> Equations:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -448,13 +448,13 @@ using mmkin.
#>
#> Model predictions using solution type analytical
#>
-#> Fitted in 9.712 s using 300, 100 iterations
+#> Fitted in 9.479 s using 300, 100 iterations
#>
#> Variance model: Constant variance
#>
#> Mean of starting values for individual parameters:
#> parent_0 log_k_A1 f_parent_qlogis log_k1 log_k2
-#> 93.8102 -9.7647 -0.9711 -1.8799 -4.2708
+#> 93.8102 -5.3734 -0.9711 -1.8799 -4.2708
#> g_qlogis
#> 0.1356
#>
@@ -465,46 +465,46 @@ using mmkin.
#>
#> Likelihood computed by importance sampling
#> AIC BIC logLik
-#> 841.6 836.5 -407.8
+#> 839.6 834.6 -406.8
#>
#> Optimised parameters:
#> est. lower upper
-#> parent_0 93.76647 91.153 96.3798
-#> log_k_A1 -6.13235 -8.458 -3.8068
-#> f_parent_qlogis -0.97364 -1.369 -0.5779
-#> log_k1 -2.53176 -3.804 -1.2598
-#> log_k2 -3.58667 -5.295 -1.8781
-#> g_qlogis 0.01238 -1.080 1.1044
+#> parent_0 93.80521 91.225 96.3856
+#> log_k_A1 -6.06244 -8.265 -3.8597
+#> f_parent_qlogis -0.97319 -1.370 -0.5761
+#> log_k1 -2.55394 -4.008 -1.0997
+#> log_k2 -3.47160 -5.188 -1.7556
+#> g_qlogis -0.09324 -1.427 1.2409
#>
#> Correlation:
#> prnt_0 lg__A1 f_prn_ log_k1 log_k2
-#> log_k_A1 -0.013
-#> f_parent_qlogis -0.025 0.050
-#> log_k1 0.030 0.000 -0.005
-#> log_k2 0.010 0.005 -0.003 0.032
-#> g_qlogis -0.063 -0.015 0.010 -0.167 -0.177
+#> log_k_A1 -0.014
+#> f_parent_qlogis -0.025 0.054
+#> log_k1 0.027 -0.003 -0.005
+#> log_k2 0.011 0.005 -0.002 -0.070
+#> g_qlogis -0.067 -0.009 0.011 -0.189 -0.171
#>
#> Random effects:
#> est. lower upper
-#> SD.parent_0 2.7588 0.7723 4.7453
-#> SD.log_k_A1 2.1556 0.4443 3.8670
-#> SD.f_parent_qlogis 0.4438 0.1599 0.7276
-#> SD.log_k1 1.4203 0.5271 2.3134
-#> SD.log_k2 1.9063 0.7093 3.1033
-#> SD.g_qlogis 0.4477 -0.8642 1.7596
+#> SD.parent_0 2.7243 0.7644 4.6841
+#> SD.log_k_A1 2.0563 0.4292 3.6835
+#> SD.f_parent_qlogis 0.4450 0.1602 0.7298
+#> SD.log_k1 1.5121 0.4714 2.5528
+#> SD.log_k2 1.8320 0.6031 3.0609
+#> SD.g_qlogis 0.4482 -1.2544 2.1507
#>
#> Variance model:
#> est. lower upper
-#> a.1 1.883 1.666 2.1
+#> a.1 1.884 1.668 2.1
#>
#> Backtransformed parameters:
#> est. lower upper
-#> parent_0 93.766473 9.115e+01 96.37983
-#> k_A1 0.002171 2.122e-04 0.02222
-#> f_parent_to_A1 0.274156 2.027e-01 0.35942
-#> k1 0.079519 2.229e-02 0.28371
-#> k2 0.027691 5.015e-03 0.15288
-#> g 0.503095 2.536e-01 0.75109
+#> parent_0 93.805214 9.122e+01 96.38556
+#> k_A1 0.002329 2.573e-04 0.02107
+#> f_parent_to_A1 0.274245 2.026e-01 0.35982
+#> k1 0.077775 1.817e-02 0.33296
+#> k2 0.031067 5.585e-03 0.17281
+#> g 0.476707 1.935e-01 0.77572
#>
#> Resulting formation fractions:
#> ff
@@ -512,182 +512,182 @@ using mmkin.
#> parent_sink 0.7258
#>
#> Estimated disappearance times:
-#> DT50 DT90 DT50back DT50_k1 DT50_k2
-#> parent 14.11 59.53 17.92 8.717 25.03
-#> A1 319.21 1060.38 NA NA NA
+#> DT50 DT90 DT50back DT50_k1 DT50_k2
+#> parent 13.96 55.4 16.68 8.912 22.31
+#> A1 297.65 988.8 NA NA NA
#>
#> Data:
-#> ds name time observed predicted residual std standardized
-#> Dataset 6 parent 0 97.2 95.79523 1.40477 1.883 0.745888
-#> Dataset 6 parent 0 96.4 95.79523 0.60477 1.883 0.321114
-#> Dataset 6 parent 3 71.1 71.32042 -0.22042 1.883 -0.117035
-#> Dataset 6 parent 3 69.2 71.32042 -2.12042 1.883 -1.125873
-#> Dataset 6 parent 6 58.1 56.45256 1.64744 1.883 0.874739
-#> Dataset 6 parent 6 56.6 56.45256 0.14744 1.883 0.078288
-#> Dataset 6 parent 10 44.4 44.48523 -0.08523 1.883 -0.045257
-#> Dataset 6 parent 10 43.4 44.48523 -1.08523 1.883 -0.576224
-#> Dataset 6 parent 20 33.3 29.75774 3.54226 1.883 1.880826
-#> Dataset 6 parent 20 29.2 29.75774 -0.55774 1.883 -0.296141
-#> Dataset 6 parent 34 17.6 19.35710 -1.75710 1.883 -0.932966
-#> Dataset 6 parent 34 18.0 19.35710 -1.35710 1.883 -0.720579
-#> Dataset 6 parent 55 10.5 10.48443 0.01557 1.883 0.008266
-#> Dataset 6 parent 55 9.3 10.48443 -1.18443 1.883 -0.628895
-#> Dataset 6 parent 90 4.5 3.78622 0.71378 1.883 0.378995
-#> Dataset 6 parent 90 4.7 3.78622 0.91378 1.883 0.485188
-#> Dataset 6 parent 112 3.0 1.99608 1.00392 1.883 0.533048
-#> Dataset 6 parent 112 3.4 1.99608 1.40392 1.883 0.745435
-#> Dataset 6 parent 132 2.3 1.11539 1.18461 1.883 0.628990
-#> Dataset 6 parent 132 2.7 1.11539 1.58461 1.883 0.841377
-#> Dataset 6 A1 3 4.3 4.66132 -0.36132 1.883 -0.191849
-#> Dataset 6 A1 3 4.6 4.66132 -0.06132 1.883 -0.032559
-#> Dataset 6 A1 6 7.0 7.41087 -0.41087 1.883 -0.218157
-#> Dataset 6 A1 6 7.2 7.41087 -0.21087 1.883 -0.111964
-#> Dataset 6 A1 10 8.2 9.50878 -1.30878 1.883 -0.694921
-#> Dataset 6 A1 10 8.0 9.50878 -1.50878 1.883 -0.801114
-#> Dataset 6 A1 20 11.0 11.69902 -0.69902 1.883 -0.371157
-#> Dataset 6 A1 20 13.7 11.69902 2.00098 1.883 1.062455
-#> Dataset 6 A1 34 11.5 12.67784 -1.17784 1.883 -0.625396
-#> Dataset 6 A1 34 12.7 12.67784 0.02216 1.883 0.011765
-#> Dataset 6 A1 55 14.9 12.78556 2.11444 1.883 1.122701
-#> Dataset 6 A1 55 14.5 12.78556 1.71444 1.883 0.910314
-#> Dataset 6 A1 90 12.1 11.52954 0.57046 1.883 0.302898
-#> Dataset 6 A1 90 12.3 11.52954 0.77046 1.883 0.409092
-#> Dataset 6 A1 112 9.9 10.43825 -0.53825 1.883 -0.285793
-#> Dataset 6 A1 112 10.2 10.43825 -0.23825 1.883 -0.126503
-#> Dataset 6 A1 132 8.8 9.42830 -0.62830 1.883 -0.333609
-#> Dataset 6 A1 132 7.8 9.42830 -1.62830 1.883 -0.864577
-#> Dataset 7 parent 0 93.6 90.91477 2.68523 1.883 1.425772
-#> Dataset 7 parent 0 92.3 90.91477 1.38523 1.883 0.735514
-#> Dataset 7 parent 3 87.0 84.76874 2.23126 1.883 1.184726
-#> Dataset 7 parent 3 82.2 84.76874 -2.56874 1.883 -1.363919
-#> Dataset 7 parent 7 74.0 77.62735 -3.62735 1.883 -1.926003
-#> Dataset 7 parent 7 73.9 77.62735 -3.72735 1.883 -1.979100
-#> Dataset 7 parent 14 64.2 67.52266 -3.32266 1.883 -1.764224
-#> Dataset 7 parent 14 69.5 67.52266 1.97734 1.883 1.049904
-#> Dataset 7 parent 30 54.0 52.41949 1.58051 1.883 0.839202
-#> Dataset 7 parent 30 54.6 52.41949 2.18051 1.883 1.157783
-#> Dataset 7 parent 60 41.1 39.36582 1.73418 1.883 0.920794
-#> Dataset 7 parent 60 38.4 39.36582 -0.96582 1.883 -0.512818
-#> Dataset 7 parent 90 32.5 33.75388 -1.25388 1.883 -0.665771
-#> Dataset 7 parent 90 35.5 33.75388 1.74612 1.883 0.927132
-#> Dataset 7 parent 120 28.1 30.41716 -2.31716 1.883 -1.230335
-#> Dataset 7 parent 120 29.0 30.41716 -1.41716 1.883 -0.752464
-#> Dataset 7 parent 180 26.5 25.66046 0.83954 1.883 0.445767
-#> Dataset 7 parent 180 27.6 25.66046 1.93954 1.883 1.029832
-#> Dataset 7 A1 3 3.9 2.69355 1.20645 1.883 0.640585
-#> Dataset 7 A1 3 3.1 2.69355 0.40645 1.883 0.215811
-#> Dataset 7 A1 7 6.9 5.81807 1.08193 1.883 0.574470
-#> Dataset 7 A1 7 6.6 5.81807 0.78193 1.883 0.415180
-#> Dataset 7 A1 14 10.4 10.22529 0.17471 1.883 0.092767
-#> Dataset 7 A1 14 8.3 10.22529 -1.92529 1.883 -1.022265
-#> Dataset 7 A1 30 14.4 16.75484 -2.35484 1.883 -1.250345
-#> Dataset 7 A1 30 13.7 16.75484 -3.05484 1.883 -1.622022
-#> Dataset 7 A1 60 22.1 22.22540 -0.12540 1.883 -0.066583
-#> Dataset 7 A1 60 22.3 22.22540 0.07460 1.883 0.039610
-#> Dataset 7 A1 90 27.5 24.38799 3.11201 1.883 1.652376
-#> Dataset 7 A1 90 25.4 24.38799 1.01201 1.883 0.537344
-#> Dataset 7 A1 120 28.0 25.53294 2.46706 1.883 1.309927
-#> Dataset 7 A1 120 26.6 25.53294 1.06706 1.883 0.566572
-#> Dataset 7 A1 180 25.8 26.94943 -1.14943 1.883 -0.610309
-#> Dataset 7 A1 180 25.3 26.94943 -1.64943 1.883 -0.875793
-#> Dataset 8 parent 0 91.9 91.53246 0.36754 1.883 0.195151
-#> Dataset 8 parent 0 90.8 91.53246 -0.73246 1.883 -0.388914
-#> Dataset 8 parent 1 64.9 67.73197 -2.83197 1.883 -1.503686
-#> Dataset 8 parent 1 66.2 67.73197 -1.53197 1.883 -0.813428
-#> Dataset 8 parent 3 43.5 41.58448 1.91552 1.883 1.017081
-#> Dataset 8 parent 3 44.1 41.58448 2.51552 1.883 1.335662
-#> Dataset 8 parent 8 18.3 19.62286 -1.32286 1.883 -0.702395
-#> Dataset 8 parent 8 18.1 19.62286 -1.52286 1.883 -0.808588
-#> Dataset 8 parent 14 10.2 10.77819 -0.57819 1.883 -0.306999
-#> Dataset 8 parent 14 10.8 10.77819 0.02181 1.883 0.011582
-#> Dataset 8 parent 27 4.9 3.26977 1.63023 1.883 0.865599
-#> Dataset 8 parent 27 3.3 3.26977 0.03023 1.883 0.016051
-#> Dataset 8 parent 48 1.6 0.48024 1.11976 1.883 0.594557
-#> Dataset 8 parent 48 1.5 0.48024 1.01976 1.883 0.541460
-#> Dataset 8 parent 70 1.1 0.06438 1.03562 1.883 0.549881
-#> Dataset 8 parent 70 0.9 0.06438 0.83562 1.883 0.443688
-#> Dataset 8 A1 1 9.6 7.61539 1.98461 1.883 1.053761
-#> Dataset 8 A1 1 7.7 7.61539 0.08461 1.883 0.044923
-#> Dataset 8 A1 3 15.0 15.47954 -0.47954 1.883 -0.254622
-#> Dataset 8 A1 3 15.1 15.47954 -0.37954 1.883 -0.201525
-#> Dataset 8 A1 8 21.2 20.22616 0.97384 1.883 0.517075
-#> Dataset 8 A1 8 21.1 20.22616 0.87384 1.883 0.463979
-#> Dataset 8 A1 14 19.7 20.00067 -0.30067 1.883 -0.159645
-#> Dataset 8 A1 14 18.9 20.00067 -1.10067 1.883 -0.584419
-#> Dataset 8 A1 27 17.5 16.38142 1.11858 1.883 0.593928
-#> Dataset 8 A1 27 15.9 16.38142 -0.48142 1.883 -0.255620
-#> Dataset 8 A1 48 9.5 10.25357 -0.75357 1.883 -0.400124
-#> Dataset 8 A1 48 9.8 10.25357 -0.45357 1.883 -0.240833
-#> Dataset 8 A1 70 6.2 5.95728 0.24272 1.883 0.128878
-#> Dataset 8 A1 70 6.1 5.95728 0.14272 1.883 0.075781
-#> Dataset 9 parent 0 99.8 97.47274 2.32726 1.883 1.235697
-#> Dataset 9 parent 0 98.3 97.47274 0.82726 1.883 0.439246
-#> Dataset 9 parent 1 77.1 79.72257 -2.62257 1.883 -1.392500
-#> Dataset 9 parent 1 77.2 79.72257 -2.52257 1.883 -1.339404
-#> Dataset 9 parent 3 59.0 56.26497 2.73503 1.883 1.452212
-#> Dataset 9 parent 3 58.1 56.26497 1.83503 1.883 0.974342
-#> Dataset 9 parent 8 27.4 31.66985 -4.26985 1.883 -2.267151
-#> Dataset 9 parent 8 29.2 31.66985 -2.46985 1.883 -1.311410
-#> Dataset 9 parent 14 19.1 22.39789 -3.29789 1.883 -1.751071
-#> Dataset 9 parent 14 29.6 22.39789 7.20211 1.883 3.824090
-#> Dataset 9 parent 27 10.1 14.21758 -4.11758 1.883 -2.186301
-#> Dataset 9 parent 27 18.2 14.21758 3.98242 1.883 2.114537
-#> Dataset 9 parent 48 4.5 7.27921 -2.77921 1.883 -1.475671
-#> Dataset 9 parent 48 9.1 7.27921 1.82079 1.883 0.966780
-#> Dataset 9 parent 70 2.3 3.61470 -1.31470 1.883 -0.698065
-#> Dataset 9 parent 70 2.9 3.61470 -0.71470 1.883 -0.379485
-#> Dataset 9 parent 91 2.0 1.85303 0.14697 1.883 0.078038
-#> Dataset 9 parent 91 1.8 1.85303 -0.05303 1.883 -0.028155
-#> Dataset 9 parent 120 2.0 0.73645 1.26355 1.883 0.670906
-#> Dataset 9 parent 120 2.2 0.73645 1.46355 1.883 0.777099
-#> Dataset 9 A1 1 4.2 3.87843 0.32157 1.883 0.170743
-#> Dataset 9 A1 1 3.9 3.87843 0.02157 1.883 0.011453
-#> Dataset 9 A1 3 7.4 8.90535 -1.50535 1.883 -0.799291
-#> Dataset 9 A1 3 7.9 8.90535 -1.00535 1.883 -0.533807
-#> Dataset 9 A1 8 14.5 13.75172 0.74828 1.883 0.397312
-#> Dataset 9 A1 8 13.7 13.75172 -0.05172 1.883 -0.027462
-#> Dataset 9 A1 14 14.2 14.97541 -0.77541 1.883 -0.411715
-#> Dataset 9 A1 14 12.2 14.97541 -2.77541 1.883 -1.473650
-#> Dataset 9 A1 27 13.7 14.94728 -1.24728 1.883 -0.662266
-#> Dataset 9 A1 27 13.2 14.94728 -1.74728 1.883 -0.927750
-#> Dataset 9 A1 48 13.6 13.66078 -0.06078 1.883 -0.032272
-#> Dataset 9 A1 48 15.4 13.66078 1.73922 1.883 0.923470
-#> Dataset 9 A1 70 10.4 11.84899 -1.44899 1.883 -0.769365
-#> Dataset 9 A1 70 11.6 11.84899 -0.24899 1.883 -0.132204
-#> Dataset 9 A1 91 10.0 10.09177 -0.09177 1.883 -0.048727
-#> Dataset 9 A1 91 9.5 10.09177 -0.59177 1.883 -0.314211
-#> Dataset 9 A1 120 9.1 7.91379 1.18621 1.883 0.629841
-#> Dataset 9 A1 120 9.0 7.91379 1.08621 1.883 0.576744
-#> Dataset 10 parent 0 96.1 93.65257 2.44743 1.883 1.299505
-#> Dataset 10 parent 0 94.3 93.65257 0.64743 1.883 0.343763
-#> Dataset 10 parent 8 73.9 77.85906 -3.95906 1.883 -2.102132
-#> Dataset 10 parent 8 73.9 77.85906 -3.95906 1.883 -2.102132
-#> Dataset 10 parent 14 69.4 70.17143 -0.77143 1.883 -0.409606
-#> Dataset 10 parent 14 73.1 70.17143 2.92857 1.883 1.554974
-#> Dataset 10 parent 21 65.6 63.99188 1.60812 1.883 0.853862
-#> Dataset 10 parent 21 65.3 63.99188 1.30812 1.883 0.694572
-#> Dataset 10 parent 41 55.9 54.64292 1.25708 1.883 0.667467
-#> Dataset 10 parent 41 54.4 54.64292 -0.24292 1.883 -0.128985
-#> Dataset 10 parent 63 47.0 49.61303 -2.61303 1.883 -1.387433
-#> Dataset 10 parent 63 49.3 49.61303 -0.31303 1.883 -0.166207
-#> Dataset 10 parent 91 44.7 45.17807 -0.47807 1.883 -0.253839
-#> Dataset 10 parent 91 46.7 45.17807 1.52193 1.883 0.808096
-#> Dataset 10 parent 120 42.1 41.27970 0.82030 1.883 0.435552
-#> Dataset 10 parent 120 41.3 41.27970 0.02030 1.883 0.010778
-#> Dataset 10 A1 8 3.3 3.99294 -0.69294 1.883 -0.367929
-#> Dataset 10 A1 8 3.4 3.99294 -0.59294 1.883 -0.314832
-#> Dataset 10 A1 14 3.9 5.92756 -2.02756 1.883 -1.076570
-#> Dataset 10 A1 14 2.9 5.92756 -3.02756 1.883 -1.607538
-#> Dataset 10 A1 21 6.4 7.47313 -1.07313 1.883 -0.569799
-#> Dataset 10 A1 21 7.2 7.47313 -0.27313 1.883 -0.145025
-#> Dataset 10 A1 41 9.1 9.76819 -0.66819 1.883 -0.354786
-#> Dataset 10 A1 41 8.5 9.76819 -1.26819 1.883 -0.673367
-#> Dataset 10 A1 63 11.7 10.94733 0.75267 1.883 0.399643
-#> Dataset 10 A1 63 12.0 10.94733 1.05267 1.883 0.558933
-#> Dataset 10 A1 91 13.3 11.93773 1.36227 1.883 0.723321
-#> Dataset 10 A1 91 13.2 11.93773 1.26227 1.883 0.670224
-#> Dataset 10 A1 120 14.3 12.77666 1.52334 1.883 0.808847
-#> Dataset 10 A1 120 12.1 12.77666 -0.67666 1.883 -0.359282
+#> ds name time observed predicted residual std standardized
+#> Dataset 6 parent 0 97.2 95.75408 1.445920 1.884 0.767479
+#> Dataset 6 parent 0 96.4 95.75408 0.645920 1.884 0.342847
+#> Dataset 6 parent 3 71.1 71.22466 -0.124662 1.884 -0.066169
+#> Dataset 6 parent 3 69.2 71.22466 -2.024662 1.884 -1.074669
+#> Dataset 6 parent 6 58.1 56.42290 1.677100 1.884 0.890187
+#> Dataset 6 parent 6 56.6 56.42290 0.177100 1.884 0.094003
+#> Dataset 6 parent 10 44.4 44.55255 -0.152554 1.884 -0.080974
+#> Dataset 6 parent 10 43.4 44.55255 -1.152554 1.884 -0.611763
+#> Dataset 6 parent 20 33.3 29.88846 3.411537 1.884 1.810807
+#> Dataset 6 parent 20 29.2 29.88846 -0.688463 1.884 -0.365429
+#> Dataset 6 parent 34 17.6 19.40826 -1.808260 1.884 -0.959805
+#> Dataset 6 parent 34 18.0 19.40826 -1.408260 1.884 -0.747489
+#> Dataset 6 parent 55 10.5 10.45560 0.044398 1.884 0.023566
+#> Dataset 6 parent 55 9.3 10.45560 -1.155602 1.884 -0.613381
+#> Dataset 6 parent 90 4.5 3.74026 0.759744 1.884 0.403264
+#> Dataset 6 parent 90 4.7 3.74026 0.959744 1.884 0.509421
+#> Dataset 6 parent 112 3.0 1.96015 1.039853 1.884 0.551943
+#> Dataset 6 parent 112 3.4 1.96015 1.439853 1.884 0.764258
+#> Dataset 6 parent 132 2.3 1.08940 1.210603 1.884 0.642575
+#> Dataset 6 parent 132 2.7 1.08940 1.610603 1.884 0.854890
+#> Dataset 6 A1 3 4.3 4.75601 -0.456009 1.884 -0.242045
+#> Dataset 6 A1 3 4.6 4.75601 -0.156009 1.884 -0.082808
+#> Dataset 6 A1 6 7.0 7.53839 -0.538391 1.884 -0.285772
+#> Dataset 6 A1 6 7.2 7.53839 -0.338391 1.884 -0.179614
+#> Dataset 6 A1 10 8.2 9.64728 -1.447276 1.884 -0.768198
+#> Dataset 6 A1 10 8.0 9.64728 -1.647276 1.884 -0.874356
+#> Dataset 6 A1 20 11.0 11.83954 -0.839545 1.884 -0.445621
+#> Dataset 6 A1 20 13.7 11.83954 1.860455 1.884 0.987509
+#> Dataset 6 A1 34 11.5 12.81233 -1.312327 1.884 -0.696569
+#> Dataset 6 A1 34 12.7 12.81233 -0.112327 1.884 -0.059622
+#> Dataset 6 A1 55 14.9 12.87919 2.020809 1.884 1.072624
+#> Dataset 6 A1 55 14.5 12.87919 1.620809 1.884 0.860308
+#> Dataset 6 A1 90 12.1 11.52464 0.575364 1.884 0.305397
+#> Dataset 6 A1 90 12.3 11.52464 0.775364 1.884 0.411555
+#> Dataset 6 A1 112 9.9 10.37694 -0.476938 1.884 -0.253153
+#> Dataset 6 A1 112 10.2 10.37694 -0.176938 1.884 -0.093917
+#> Dataset 6 A1 132 8.8 9.32474 -0.524742 1.884 -0.278528
+#> Dataset 6 A1 132 7.8 9.32474 -1.524742 1.884 -0.809317
+#> Dataset 7 parent 0 93.6 90.16918 3.430816 1.884 1.821040
+#> Dataset 7 parent 0 92.3 90.16918 2.130816 1.884 1.131014
+#> Dataset 7 parent 3 87.0 84.05442 2.945583 1.884 1.563483
+#> Dataset 7 parent 3 82.2 84.05442 -1.854417 1.884 -0.984304
+#> Dataset 7 parent 7 74.0 77.00960 -3.009596 1.884 -1.597461
+#> Dataset 7 parent 7 73.9 77.00960 -3.109596 1.884 -1.650540
+#> Dataset 7 parent 14 64.2 67.15684 -2.956840 1.884 -1.569459
+#> Dataset 7 parent 14 69.5 67.15684 2.343160 1.884 1.243724
+#> Dataset 7 parent 30 54.0 52.66290 1.337101 1.884 0.709719
+#> Dataset 7 parent 30 54.6 52.66290 1.937101 1.884 1.028192
+#> Dataset 7 parent 60 41.1 40.04995 1.050050 1.884 0.557355
+#> Dataset 7 parent 60 38.4 40.04995 -1.649950 1.884 -0.875775
+#> Dataset 7 parent 90 32.5 34.09675 -1.596746 1.884 -0.847535
+#> Dataset 7 parent 90 35.5 34.09675 1.403254 1.884 0.744832
+#> Dataset 7 parent 120 28.1 30.12281 -2.022814 1.884 -1.073688
+#> Dataset 7 parent 120 29.0 30.12281 -1.122814 1.884 -0.595977
+#> Dataset 7 parent 180 26.5 24.10888 2.391123 1.884 1.269182
+#> Dataset 7 parent 180 27.6 24.10888 3.491123 1.884 1.853050
+#> Dataset 7 A1 3 3.9 2.77684 1.123161 1.884 0.596161
+#> Dataset 7 A1 3 3.1 2.77684 0.323161 1.884 0.171530
+#> Dataset 7 A1 7 6.9 5.96705 0.932950 1.884 0.495200
+#> Dataset 7 A1 7 6.6 5.96705 0.632950 1.884 0.335963
+#> Dataset 7 A1 14 10.4 10.40535 -0.005348 1.884 -0.002839
+#> Dataset 7 A1 14 8.3 10.40535 -2.105348 1.884 -1.117496
+#> Dataset 7 A1 30 14.4 16.83722 -2.437216 1.884 -1.293648
+#> Dataset 7 A1 30 13.7 16.83722 -3.137216 1.884 -1.665200
+#> Dataset 7 A1 60 22.1 22.15018 -0.050179 1.884 -0.026635
+#> Dataset 7 A1 60 22.3 22.15018 0.149821 1.884 0.079523
+#> Dataset 7 A1 90 27.5 24.36286 3.137143 1.884 1.665161
+#> Dataset 7 A1 90 25.4 24.36286 1.037143 1.884 0.550504
+#> Dataset 7 A1 120 28.0 25.64064 2.359361 1.884 1.252323
+#> Dataset 7 A1 120 26.6 25.64064 0.959361 1.884 0.509218
+#> Dataset 7 A1 180 25.8 27.25486 -1.454858 1.884 -0.772223
+#> Dataset 7 A1 180 25.3 27.25486 -1.954858 1.884 -1.037617
+#> Dataset 8 parent 0 91.9 91.72652 0.173479 1.884 0.092081
+#> Dataset 8 parent 0 90.8 91.72652 -0.926521 1.884 -0.491787
+#> Dataset 8 parent 1 64.9 67.22810 -2.328104 1.884 -1.235732
+#> Dataset 8 parent 1 66.2 67.22810 -1.028104 1.884 -0.545706
+#> Dataset 8 parent 3 43.5 41.46375 2.036251 1.884 1.080820
+#> Dataset 8 parent 3 44.1 41.46375 2.636251 1.884 1.399293
+#> Dataset 8 parent 8 18.3 19.83597 -1.535968 1.884 -0.815275
+#> Dataset 8 parent 8 18.1 19.83597 -1.735968 1.884 -0.921433
+#> Dataset 8 parent 14 10.2 10.34793 -0.147927 1.884 -0.078518
+#> Dataset 8 parent 14 10.8 10.34793 0.452073 1.884 0.239956
+#> Dataset 8 parent 27 4.9 2.67641 2.223595 1.884 1.180260
+#> Dataset 8 parent 27 3.3 2.67641 0.623595 1.884 0.330997
+#> Dataset 8 parent 48 1.6 0.30218 1.297822 1.884 0.688870
+#> Dataset 8 parent 48 1.5 0.30218 1.197822 1.884 0.635791
+#> Dataset 8 parent 70 1.1 0.03075 1.069248 1.884 0.567545
+#> Dataset 8 parent 70 0.9 0.03075 0.869248 1.884 0.461388
+#> Dataset 8 A1 1 9.6 7.74066 1.859342 1.884 0.986918
+#> Dataset 8 A1 1 7.7 7.74066 -0.040658 1.884 -0.021581
+#> Dataset 8 A1 3 15.0 15.37549 -0.375495 1.884 -0.199309
+#> Dataset 8 A1 3 15.1 15.37549 -0.275495 1.884 -0.146230
+#> Dataset 8 A1 8 21.2 19.95900 1.241003 1.884 0.658711
+#> Dataset 8 A1 8 21.1 19.95900 1.141003 1.884 0.605632
+#> Dataset 8 A1 14 19.7 19.92898 -0.228978 1.884 -0.121539
+#> Dataset 8 A1 14 18.9 19.92898 -1.028978 1.884 -0.546170
+#> Dataset 8 A1 27 17.5 16.34046 1.159536 1.884 0.615469
+#> Dataset 8 A1 27 15.9 16.34046 -0.440464 1.884 -0.233793
+#> Dataset 8 A1 48 9.5 10.12131 -0.621313 1.884 -0.329786
+#> Dataset 8 A1 48 9.8 10.12131 -0.321313 1.884 -0.170550
+#> Dataset 8 A1 70 6.2 5.84753 0.352469 1.884 0.187087
+#> Dataset 8 A1 70 6.1 5.84753 0.252469 1.884 0.134008
+#> Dataset 9 parent 0 99.8 98.23600 1.564002 1.884 0.830155
+#> Dataset 9 parent 0 98.3 98.23600 0.064002 1.884 0.033972
+#> Dataset 9 parent 1 77.1 79.68007 -2.580074 1.884 -1.369475
+#> Dataset 9 parent 1 77.2 79.68007 -2.480074 1.884 -1.316396
+#> Dataset 9 parent 3 59.0 55.81142 3.188584 1.884 1.692465
+#> Dataset 9 parent 3 58.1 55.81142 2.288584 1.884 1.214755
+#> Dataset 9 parent 8 27.4 31.81995 -4.419948 1.884 -2.346060
+#> Dataset 9 parent 8 29.2 31.81995 -2.619948 1.884 -1.390640
+#> Dataset 9 parent 14 19.1 22.78328 -3.683282 1.884 -1.955046
+#> Dataset 9 parent 14 29.6 22.78328 6.816718 1.884 3.618240
+#> Dataset 9 parent 27 10.1 14.15172 -4.051720 1.884 -2.150609
+#> Dataset 9 parent 27 18.2 14.15172 4.048280 1.884 2.148783
+#> Dataset 9 parent 48 4.5 6.86094 -2.360941 1.884 -1.253162
+#> Dataset 9 parent 48 9.1 6.86094 2.239059 1.884 1.188468
+#> Dataset 9 parent 70 2.3 3.21580 -0.915798 1.884 -0.486096
+#> Dataset 9 parent 70 2.9 3.21580 -0.315798 1.884 -0.167622
+#> Dataset 9 parent 91 2.0 1.56010 0.439897 1.884 0.233492
+#> Dataset 9 parent 91 1.8 1.56010 0.239897 1.884 0.127335
+#> Dataset 9 parent 120 2.0 0.57458 1.425424 1.884 0.756600
+#> Dataset 9 parent 120 2.2 0.57458 1.625424 1.884 0.862757
+#> Dataset 9 A1 1 4.2 4.01796 0.182037 1.884 0.096623
+#> Dataset 9 A1 1 3.9 4.01796 -0.117963 1.884 -0.062613
+#> Dataset 9 A1 3 7.4 9.08527 -1.685270 1.884 -0.894523
+#> Dataset 9 A1 3 7.9 9.08527 -1.185270 1.884 -0.629129
+#> Dataset 9 A1 8 14.5 13.75054 0.749457 1.884 0.397804
+#> Dataset 9 A1 8 13.7 13.75054 -0.050543 1.884 -0.026827
+#> Dataset 9 A1 14 14.2 14.91180 -0.711804 1.884 -0.377818
+#> Dataset 9 A1 14 12.2 14.91180 -2.711804 1.884 -1.439396
+#> Dataset 9 A1 27 13.7 14.97813 -1.278129 1.884 -0.678417
+#> Dataset 9 A1 27 13.2 14.97813 -1.778129 1.884 -0.943812
+#> Dataset 9 A1 48 13.6 13.75574 -0.155745 1.884 -0.082668
+#> Dataset 9 A1 48 15.4 13.75574 1.644255 1.884 0.872753
+#> Dataset 9 A1 70 10.4 11.92861 -1.528608 1.884 -0.811369
+#> Dataset 9 A1 70 11.6 11.92861 -0.328608 1.884 -0.174422
+#> Dataset 9 A1 91 10.0 10.14395 -0.143947 1.884 -0.076405
+#> Dataset 9 A1 91 9.5 10.14395 -0.643947 1.884 -0.341800
+#> Dataset 9 A1 120 9.1 7.93869 1.161307 1.884 0.616409
+#> Dataset 9 A1 120 9.0 7.93869 1.061307 1.884 0.563330
+#> Dataset 10 parent 0 96.1 93.65914 2.440862 1.884 1.295583
+#> Dataset 10 parent 0 94.3 93.65914 0.640862 1.884 0.340163
+#> Dataset 10 parent 8 73.9 77.83065 -3.930647 1.884 -2.086344
+#> Dataset 10 parent 8 73.9 77.83065 -3.930647 1.884 -2.086344
+#> Dataset 10 parent 14 69.4 70.15862 -0.758619 1.884 -0.402667
+#> Dataset 10 parent 14 73.1 70.15862 2.941381 1.884 1.561253
+#> Dataset 10 parent 21 65.6 64.00840 1.591600 1.884 0.844804
+#> Dataset 10 parent 21 65.3 64.00840 1.291600 1.884 0.685567
+#> Dataset 10 parent 41 55.9 54.71192 1.188076 1.884 0.630618
+#> Dataset 10 parent 41 54.4 54.71192 -0.311924 1.884 -0.165566
+#> Dataset 10 parent 63 47.0 49.66775 -2.667747 1.884 -1.416011
+#> Dataset 10 parent 63 49.3 49.66775 -0.367747 1.884 -0.195196
+#> Dataset 10 parent 91 44.7 45.17119 -0.471186 1.884 -0.250101
+#> Dataset 10 parent 91 46.7 45.17119 1.528814 1.884 0.811478
+#> Dataset 10 parent 120 42.1 41.20430 0.895699 1.884 0.475427
+#> Dataset 10 parent 120 41.3 41.20430 0.095699 1.884 0.050796
+#> Dataset 10 A1 8 3.3 4.00920 -0.709204 1.884 -0.376438
+#> Dataset 10 A1 8 3.4 4.00920 -0.609204 1.884 -0.323359
+#> Dataset 10 A1 14 3.9 5.94267 -2.042668 1.884 -1.084226
+#> Dataset 10 A1 14 2.9 5.94267 -3.042668 1.884 -1.615015
+#> Dataset 10 A1 21 6.4 7.48222 -1.082219 1.884 -0.574430
+#> Dataset 10 A1 21 7.2 7.48222 -0.282219 1.884 -0.149799
+#> Dataset 10 A1 41 9.1 9.76246 -0.662460 1.884 -0.351626
+#> Dataset 10 A1 41 8.5 9.76246 -1.262460 1.884 -0.670100
+#> Dataset 10 A1 63 11.7 10.93972 0.760278 1.884 0.403547
+#> Dataset 10 A1 63 12.0 10.93972 1.060278 1.884 0.562784
+#> Dataset 10 A1 91 13.3 11.93666 1.363337 1.884 0.723645
+#> Dataset 10 A1 91 13.2 11.93666 1.263337 1.884 0.670566
+#> Dataset 10 A1 120 14.3 12.78218 1.517817 1.884 0.805641
+#> Dataset 10 A1 120 12.1 12.78218 -0.682183 1.884 -0.362095
# The following takes about 6 minutes
#f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve",
# control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))
diff --git a/docs/dev/reference/summary.nlmixr.mmkin.html b/docs/dev/reference/summary.nlmixr.mmkin.html
index 0fead0df..373ce75f 100644
--- a/docs/dev/reference/summary.nlmixr.mmkin.html
+++ b/docs/dev/reference/summary.nlmixr.mmkin.html
@@ -76,7 +76,7 @@ endpoints such as formation fractions and DT50 values. Optionally
mkin
- 1.0.5
+ 1.1.0
@@ -258,737 +258,73 @@ nlmixr authors for the parts inherited from nlmixr.
quiet = TRUE, error_model = "tc", cores = 5)
f_saemix_dfop_sfo <- mkin::saem(f_mmkin_dfop_sfo)
#> Running main SAEM algorithm
-#> [1] "Fri Jun 11 10:57:31 2021"
+#> [1] "Tue Jul 27 16:31:43 2021"
#> ....
#> Minimisation finished
-#> [1] "Fri Jun 11 10:57:43 2021"#> Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)#> Warning: Iteration 6, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)#> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> 1: 1.0127e+02 -3.8515e+00 -2.0719e+00 -3.7271e+00 -1.9335e+00 4.0311e-01 6.9594e+00 1.5021e-01 5.3947e-01 1.9686e-01 3.7429e-01 5.4209e-01 8.4121e+00 7.3391e-02 7.1185e+00 2.5869e-01
-#> 2: 1.0136e+02 -3.8005e+00 -2.3424e+00 -4.0759e+00 -1.6475e+00 1.1598e-01 6.6115e+00 1.4406e-01 5.1249e-01 1.8701e-01 3.5786e-01 5.1499e-01 4.9102e+00 6.2829e-02 4.7230e+00 7.8901e-02
-#> 3: 1.0126e+02 -4.0285e+00 -2.3629e+00 -4.1271e+00 -1.1733e+00 1.7634e-02 6.2809e+00 1.6892e-01 4.8687e-01 1.7766e-01 3.3997e-01 4.8924e-01 3.2256e+00 6.6693e-02 3.3261e+00 8.7190e-02
-#> 4: 1.0105e+02 -4.0894e+00 -2.5516e+00 -4.1037e+00 -1.0816e+00 4.5377e-02 5.9668e+00 1.6048e-01 4.6252e-01 1.6878e-01 3.2297e-01 4.6478e-01 2.4343e+00 7.0557e-02 2.2610e+00 9.2498e-02
-#> 5: 1.0101e+02 -4.1364e+00 -2.4605e+00 -4.0737e+00 -1.0920e+00 -4.7953e-03 5.9593e+00 1.5245e-01 4.3940e-01 1.8078e-01 3.0682e-01 5.4688e-01 1.7424e+00 7.4776e-02 1.5144e+00 1.0787e-01
-#> 6: 1.0042e+02 -4.0933e+00 -2.4472e+00 -4.1090e+00 -9.7996e-01 -9.0472e-02 6.0175e+00 1.4483e-01 4.1743e-01 1.8824e-01 2.9148e-01 5.3033e-01 1.5545e+00 6.8588e-02 1.3401e+00 9.8865e-02
-#> 7: 1.0078e+02 -4.0911e+00 -2.4335e+00 -4.0758e+00 -9.9422e-01 -7.8849e-02 6.6318e+00 1.3759e-01 3.9656e-01 1.7882e-01 2.7691e-01 5.0381e-01 1.3780e+00 6.9978e-02 1.1346e+00 9.6162e-02
-#> 8: 1.0077e+02 -4.0196e+00 -2.4345e+00 -4.0444e+00 -9.3483e-01 -1.1032e-01 6.3002e+00 1.3071e-01 3.7673e-01 1.6988e-01 2.6306e-01 4.8191e-01 1.1774e+00 7.4232e-02 1.0270e+00 9.5616e-02
-#> 9: 1.0118e+02 -4.0436e+00 -2.4649e+00 -4.0207e+00 -8.9829e-01 -1.7784e-01 5.9852e+00 1.2417e-01 3.5789e-01 1.6139e-01 2.4991e-01 5.5466e-01 1.1040e+00 7.1515e-02 1.0342e+00 9.3972e-02
-#> 10: 1.0143e+02 -4.0523e+00 -2.3737e+00 -4.0184e+00 -9.1167e-01 -2.3828e-01 5.8520e+00 1.1797e-01 3.4196e-01 1.5332e-01 2.3741e-01 5.2849e-01 1.0510e+00 7.5719e-02 1.0638e+00 9.3973e-02
-#> 11: 1.0119e+02 -4.0699e+00 -2.3680e+00 -4.0191e+00 -9.4858e-01 -1.7310e-01 6.9958e+00 1.1207e-01 3.6891e-01 1.4565e-01 2.2554e-01 5.0206e-01 1.0247e+00 7.5497e-02 1.0292e+00 9.3707e-02
-#> 12: 1.0121e+02 -4.0189e+00 -2.4198e+00 -4.0139e+00 -9.1693e-01 -2.0613e-01 6.6460e+00 1.0646e-01 3.5046e-01 1.3837e-01 2.1427e-01 5.7696e-01 1.1046e+00 7.6090e-02 9.3689e-01 9.4115e-02
-#> 13: 1.0083e+02 -4.0451e+00 -2.4395e+00 -4.0235e+00 -9.4535e-01 -1.4723e-01 6.3137e+00 1.0114e-01 3.3294e-01 1.3145e-01 2.0355e-01 5.4811e-01 1.0360e+00 7.3381e-02 9.7078e-01 9.1659e-02
-#> 14: 1.0056e+02 -4.0401e+00 -2.4045e+00 -4.0054e+00 -9.4191e-01 -1.3928e-01 5.9980e+00 9.6084e-02 3.4934e-01 1.2488e-01 1.9338e-01 5.2071e-01 1.0303e+00 7.7118e-02 8.8372e-01 9.0469e-02
-#> 15: 1.0070e+02 -4.0388e+00 -2.4210e+00 -4.0113e+00 -9.1136e-01 -1.2702e-01 5.6981e+00 9.1279e-02 3.3187e-01 1.1864e-01 1.8371e-01 4.9467e-01 1.0486e+00 7.2427e-02 7.8179e-01 9.1572e-02
-#> 16: 1.0078e+02 -4.0175e+00 -2.4766e+00 -4.0191e+00 -9.0733e-01 -1.1952e-01 5.4132e+00 8.6716e-02 3.1528e-01 1.1270e-01 1.7452e-01 4.8928e-01 9.7799e-01 8.1464e-02 8.2935e-01 8.6520e-02
-#> 17: 1.0069e+02 -4.0533e+00 -2.5110e+00 -4.0294e+00 -9.1841e-01 -6.8363e-03 5.1426e+00 8.2380e-02 2.9952e-01 1.0707e-01 1.6580e-01 4.6482e-01 9.1609e-01 8.1008e-02 8.1783e-01 8.8818e-02
-#> 18: 99.9647 -4.0672 -2.5327 -4.0416 -0.9273 0.0097 4.8854 0.0783 0.2970 0.1280 0.1941 0.5053 0.9306 0.0764 0.8097 0.0881
-#> 19: 1.0027e+02 -4.0667e+00 -2.4653e+00 -4.0579e+00 -9.2776e-01 3.0417e-02 4.6412e+00 7.4348e-02 3.3694e-01 1.2164e-01 1.8435e-01 5.1797e-01 9.7386e-01 7.4954e-02 7.9297e-01 8.9915e-02
-#> 20: 1.0006e+02 -4.0935e+00 -2.4804e+00 -4.0721e+00 -9.3737e-01 1.9496e-02 4.4091e+00 7.0630e-02 3.3728e-01 1.2544e-01 1.7513e-01 6.0925e-01 1.0232e+00 7.4618e-02 7.9988e-01 8.9642e-02
-#> 21: 1.0043e+02 -4.0542e+00 -2.5168e+00 -4.0623e+00 -9.1553e-01 3.9474e-02 4.1887e+00 6.7099e-02 3.4553e-01 1.1917e-01 1.6638e-01 6.0827e-01 1.0155e+00 8.0771e-02 7.8424e-01 8.6213e-02
-#> 22: 1.0049e+02 -4.0449e+00 -2.5082e+00 -4.0849e+00 -9.2553e-01 4.5424e-02 3.9792e+00 6.3744e-02 3.2825e-01 1.2365e-01 1.5806e-01 5.8922e-01 8.2860e-01 8.3384e-02 8.2525e-01 8.9218e-02
-#> 23: 1.0067e+02 -4.0411e+00 -2.5460e+00 -4.0736e+00 -9.2578e-01 5.2422e-02 3.7803e+00 6.0557e-02 3.1661e-01 1.2306e-01 1.5016e-01 5.8274e-01 9.3412e-01 8.0508e-02 8.1829e-01 8.6377e-02
-#> 24: 1.0091e+02 -4.0314e+00 -2.5298e+00 -4.0566e+00 -8.9743e-01 3.7634e-02 3.5913e+00 5.7529e-02 3.5267e-01 1.2194e-01 1.4265e-01 5.5360e-01 9.6271e-01 7.6960e-02 8.8466e-01 8.5693e-02
-#> 25: 1.0100e+02 -4.0442e+00 -2.5399e+00 -4.0568e+00 -8.9494e-01 1.7415e-02 3.4117e+00 5.4652e-02 3.3504e-01 1.2781e-01 1.3552e-01 5.2592e-01 9.6040e-01 7.7299e-02 8.9561e-01 8.6893e-02
-#> 26: 1.0111e+02 -4.0354e+00 -2.5182e+00 -4.0899e+00 -9.0799e-01 7.6464e-02 4.8614e+00 5.1920e-02 3.1829e-01 1.2142e-01 1.3110e-01 4.9963e-01 9.6997e-01 7.4932e-02 8.2521e-01 9.3659e-02
-#> 27: 1.0159e+02 -4.0653e+00 -2.4934e+00 -4.0803e+00 -9.5632e-01 2.8659e-03 4.6184e+00 4.9324e-02 3.0237e-01 1.1535e-01 1.4743e-01 4.7465e-01 9.4314e-01 7.7860e-02 8.9820e-01 8.8210e-02
-#> 28: 1.0154e+02 -4.0487e+00 -2.4844e+00 -4.0511e+00 -9.6473e-01 -4.7382e-02 4.3874e+00 4.6858e-02 3.2049e-01 1.0958e-01 1.5243e-01 4.5091e-01 9.8808e-01 7.4786e-02 8.6833e-01 8.8720e-02
-#> 29: 1.0144e+02 -4.0414e+00 -2.4105e+00 -4.0504e+00 -9.4039e-01 -3.6753e-02 4.1681e+00 4.4515e-02 3.2754e-01 1.0410e-01 1.4940e-01 4.2837e-01 9.5520e-01 7.8507e-02 8.2408e-01 8.5998e-02
-#> 30: 1.0137e+02 -4.0292e+00 -2.4174e+00 -4.0382e+00 -9.3180e-01 -7.1482e-02 5.4636e+00 4.2289e-02 3.2074e-01 9.8896e-02 1.6877e-01 4.0695e-01 8.8153e-01 7.5106e-02 8.5239e-01 8.8266e-02
-#> 31: 1.0105e+02 -4.0387e+00 -2.4368e+00 -4.0346e+00 -9.1098e-01 -5.4730e-02 5.1904e+00 4.0175e-02 3.0470e-01 9.3951e-02 1.6034e-01 3.8660e-01 8.7853e-01 8.0278e-02 8.7981e-01 8.6404e-02
-#> 32: 1.0147e+02 -4.0435e+00 -2.4530e+00 -4.0365e+00 -9.1241e-01 -7.1281e-02 4.9309e+00 3.8166e-02 2.8947e-01 9.4694e-02 1.7475e-01 3.6727e-01 8.7005e-01 8.1398e-02 8.7784e-01 8.8976e-02
-#> 33: 1.0144e+02 -4.0092e+00 -2.4279e+00 -4.0090e+00 -8.8656e-01 -1.4017e-01 5.2945e+00 3.6258e-02 2.9770e-01 1.0169e-01 1.6601e-01 3.4891e-01 9.2202e-01 7.8841e-02 8.7551e-01 8.4011e-02
-#> 34: 1.0157e+02 -3.9839e+00 -2.4469e+00 -4.0180e+00 -8.3877e-01 -1.4664e-01 6.3506e+00 3.4445e-02 2.8282e-01 1.0831e-01 1.6850e-01 3.3146e-01 8.4403e-01 7.9056e-02 8.4620e-01 8.6363e-02
-#> 35: 1.0149e+02 -3.9928e+00 -2.4771e+00 -4.0106e+00 -8.6974e-01 -1.4219e-01 6.2039e+00 3.2722e-02 2.8123e-01 1.1283e-01 1.6008e-01 3.1489e-01 9.1308e-01 7.8685e-02 7.8939e-01 8.7289e-02
-#> 36: 1.0162e+02 -4.0099e+00 -2.4822e+00 -3.9880e+00 -8.7959e-01 -1.3237e-01 5.8937e+00 3.1086e-02 3.2200e-01 1.0719e-01 1.6077e-01 2.9914e-01 9.0821e-01 8.4066e-02 7.5559e-01 8.4838e-02
-#> 37: 1.0102e+02 -3.9962e+00 -2.4852e+00 -3.9954e+00 -8.8307e-01 -9.2070e-02 5.5991e+00 2.9532e-02 3.3713e-01 1.0183e-01 1.5333e-01 2.8419e-01 8.3918e-01 8.5231e-02 7.6007e-01 8.9541e-02
-#> 38: 1.0102e+02 -3.9987e+00 -2.5129e+00 -3.9833e+00 -8.7454e-01 -1.6469e-01 5.3191e+00 2.8055e-02 3.2027e-01 1.0792e-01 1.4707e-01 2.6998e-01 9.1490e-01 8.4715e-02 7.6778e-01 8.9241e-02
-#> 39: 1.0054e+02 -3.9875e+00 -2.4301e+00 -3.9797e+00 -8.7222e-01 -1.9597e-01 7.3800e+00 2.6653e-02 3.0426e-01 1.0801e-01 1.4393e-01 2.5648e-01 9.5901e-01 7.8320e-02 8.1559e-01 9.2429e-02
-#> 40: 1.0077e+02 -4.0057e+00 -2.4630e+00 -3.9849e+00 -8.6788e-01 -1.9606e-01 7.0110e+00 2.5320e-02 3.0385e-01 1.3164e-01 1.4567e-01 3.0284e-01 9.7123e-01 7.6328e-02 8.3681e-01 8.9349e-02
-#> 41: 1.0069e+02 -4.0143e+00 -2.3805e+00 -3.9962e+00 -8.7503e-01 -1.8532e-01 6.6604e+00 2.4054e-02 3.0707e-01 1.4668e-01 1.5021e-01 3.0404e-01 1.0072e+00 7.3629e-02 9.4494e-01 8.4745e-02
-#> 42: 1.0073e+02 -3.9861e+00 -2.4464e+00 -3.9919e+00 -8.7912e-01 -1.8435e-01 6.3274e+00 2.2851e-02 2.9171e-01 1.3935e-01 1.5080e-01 2.8883e-01 9.6502e-01 7.7470e-02 9.4221e-01 8.2459e-02
-#> 43: 1.0104e+02 -3.9881e+00 -2.4156e+00 -3.9688e+00 -8.9448e-01 -2.3739e-01 6.0110e+00 2.1709e-02 2.7713e-01 1.3238e-01 1.5603e-01 2.7439e-01 9.7714e-01 7.1720e-02 8.5890e-01 8.6635e-02
-#> 44: 1.0084e+02 -4.0117e+00 -2.4455e+00 -3.9753e+00 -8.8716e-01 -2.0112e-01 5.7105e+00 2.0623e-02 2.6327e-01 1.2741e-01 1.5200e-01 2.6067e-01 9.3289e-01 8.0543e-02 8.5055e-01 8.2921e-02
-#> 45: 1.0071e+02 -3.9996e+00 -2.4359e+00 -3.9764e+00 -9.1082e-01 -2.4578e-01 5.4250e+00 1.9592e-02 2.5011e-01 1.3254e-01 1.6132e-01 2.8273e-01 9.5805e-01 7.7734e-02 7.8171e-01 8.4571e-02
-#> 46: 1.0018e+02 -4.0077e+00 -2.4835e+00 -3.9739e+00 -8.6079e-01 -1.6592e-01 5.1537e+00 1.8613e-02 2.3760e-01 1.3830e-01 1.5392e-01 3.0295e-01 1.0931e+00 7.3274e-02 8.9544e-01 8.8388e-02
-#> 47: 99.9834 -3.9991 -2.5292 -3.9863 -0.8820 -0.0796 4.8960 0.0177 0.2348 0.1376 0.1639 0.2878 0.9864 0.0837 0.9094 0.0832
-#> 48: 99.9155 -4.0224 -2.5422 -3.9854 -0.8719 -0.0750 4.6512 0.0184 0.2251 0.1307 0.1596 0.2734 0.9841 0.0835 0.8696 0.0843
-#> 49: 99.6136 -4.0397 -2.5172 -4.0115 -0.8774 -0.0922 5.2402 0.0175 0.2558 0.1242 0.1551 0.2597 0.9060 0.0816 0.8365 0.0869
-#> 50: 99.4747 -4.0542 -2.4192 -3.9834 -0.9041 -0.1798 4.9782 0.0219 0.2695 0.1234 0.1474 0.2468 0.9269 0.0783 0.8593 0.0854
-#> 51: 99.3401 -4.0386 -2.3951 -3.9661 -0.9181 -0.1887 4.7574 0.0213 0.2746 0.1522 0.1400 0.2344 0.9901 0.0781 0.8863 0.0928
-#> 52: 99.7109 -4.0509 -2.4227 -3.9770 -0.9247 -0.1431 4.9004 0.0203 0.2688 0.1446 0.1330 0.2227 0.8999 0.0791 1.0265 0.0890
-#> 53: 99.6496 -4.0397 -2.4398 -3.9752 -0.9193 -0.2119 5.1106 0.0193 0.2795 0.1527 0.1325 0.2116 0.8949 0.0788 0.9447 0.0872
-#> 54: 99.9071 -4.0211 -2.3887 -3.9812 -0.9233 -0.1946 5.0887 0.0183 0.2763 0.1450 0.1365 0.2010 0.8793 0.0875 0.8643 0.0903
-#> 55: 1.0012e+02 -4.0401e+00 -2.4203e+00 -3.9511e+00 -9.0712e-01 -2.5566e-01 5.7301e+00 1.7375e-02 2.7324e-01 1.3780e-01 1.6204e-01 1.9094e-01 9.7803e-01 7.6146e-02 9.0756e-01 8.7636e-02
-#> 56: 1.0032e+02 -4.0207e+00 -2.4263e+00 -3.9533e+00 -8.7574e-01 -2.3076e-01 6.5321e+00 1.6507e-02 3.0821e-01 1.3091e-01 1.5394e-01 1.8139e-01 8.8520e-01 7.6350e-02 9.2796e-01 8.5283e-02
-#> 57: 1.0028e+02 -4.0037e+00 -2.4301e+00 -3.9655e+00 -8.8472e-01 -1.8969e-01 9.8969e+00 1.5681e-02 2.9280e-01 1.2436e-01 1.4624e-01 1.7232e-01 9.2902e-01 7.4974e-02 8.9204e-01 8.4563e-02
-#> 58: 1.0048e+02 -3.9928e+00 -2.4961e+00 -3.9709e+00 -9.0263e-01 -1.4516e-01 9.4021e+00 1.6151e-02 2.7816e-01 1.1814e-01 1.4165e-01 1.6370e-01 9.5145e-01 8.0233e-02 8.2896e-01 8.3498e-02
-#> 59: 1.0060e+02 -4.0181e+00 -2.4963e+00 -3.9751e+00 -9.0684e-01 -1.1186e-01 8.9320e+00 1.9914e-02 3.0097e-01 1.1224e-01 1.4109e-01 1.5552e-01 9.9121e-01 7.3120e-02 8.6454e-01 8.2239e-02
-#> 60: 1.0047e+02 -3.9976e+00 -2.4797e+00 -3.9780e+00 -8.9328e-01 -1.0814e-01 8.4854e+00 1.8918e-02 3.2275e-01 1.1591e-01 1.3404e-01 1.4774e-01 9.6968e-01 7.4984e-02 8.9831e-01 8.1655e-02
-#> 61: 1.0040e+02 -4.0068e+00 -2.5217e+00 -3.9844e+00 -8.6447e-01 -1.0567e-01 8.0611e+00 1.7972e-02 3.1372e-01 1.1011e-01 1.2973e-01 1.4036e-01 9.1698e-01 7.8118e-02 9.1811e-01 8.4420e-02
-#> 62: 1.0076e+02 -4.0080e+00 -2.4931e+00 -3.9623e+00 -8.9789e-01 -8.3896e-02 7.6580e+00 1.7073e-02 3.0460e-01 1.1254e-01 1.2324e-01 1.3334e-01 9.9032e-01 7.7618e-02 8.3808e-01 8.5031e-02
-#> 63: 1.0064e+02 -4.0129e+00 -2.4731e+00 -3.9561e+00 -8.9103e-01 -8.8987e-02 7.2751e+00 1.6220e-02 2.8944e-01 1.1647e-01 1.4845e-01 1.2667e-01 1.0745e+00 7.6375e-02 8.4316e-01 8.6681e-02
-#> 64: 1.0098e+02 -4.0094e+00 -2.4541e+00 -3.9604e+00 -9.1524e-01 -9.3413e-02 6.9114e+00 1.5409e-02 2.7497e-01 1.2065e-01 1.7095e-01 1.2034e-01 1.0963e+00 7.8304e-02 8.7104e-01 8.5727e-02
-#> 65: 1.0070e+02 -4.0433e+00 -2.4793e+00 -3.9722e+00 -9.3012e-01 -6.5917e-02 6.5658e+00 1.4638e-02 2.7040e-01 1.1462e-01 1.9067e-01 1.1432e-01 9.7444e-01 8.4510e-02 8.7028e-01 8.6292e-02
-#> 66: 1.0049e+02 -4.0656e+00 -2.4659e+00 -3.9898e+00 -9.4278e-01 -7.5929e-02 6.2375e+00 1.3906e-02 2.9347e-01 1.1997e-01 1.8114e-01 1.0860e-01 9.9830e-01 8.0902e-02 9.3551e-01 8.5261e-02
-#> 67: 1.0046e+02 -4.0477e+00 -2.4685e+00 -3.9907e+00 -9.1503e-01 -9.8019e-02 5.9256e+00 1.3211e-02 3.2166e-01 1.1506e-01 1.7208e-01 1.0317e-01 8.6453e-01 9.0533e-02 8.3598e-01 8.6343e-02
-#> 68: 1.0077e+02 -4.0575e+00 -2.4709e+00 -3.9523e+00 -9.2903e-01 -8.1099e-02 5.6294e+00 1.2818e-02 3.1005e-01 1.3665e-01 1.6347e-01 9.8015e-02 9.0181e-01 8.7058e-02 8.4937e-01 8.3248e-02
-#> 69: 1.0086e+02 -4.0626e+00 -2.3922e+00 -3.9557e+00 -9.6741e-01 -3.5986e-02 5.3479e+00 1.2844e-02 3.3024e-01 1.2982e-01 1.5530e-01 9.3115e-02 9.8180e-01 8.3132e-02 8.6549e-01 8.8939e-02
-#> 70: 1.0082e+02 -4.0640e+00 -2.4449e+00 -3.9787e+00 -9.5159e-01 -3.2904e-02 5.0805e+00 1.4346e-02 3.1373e-01 1.2333e-01 1.4754e-01 8.8459e-02 1.0129e+00 7.4856e-02 8.6688e-01 8.4769e-02
-#> 71: 1.0072e+02 -4.0642e+00 -2.5069e+00 -3.9493e+00 -9.3453e-01 -4.4116e-02 4.8265e+00 1.3628e-02 3.0428e-01 1.2122e-01 1.4091e-01 8.4036e-02 1.0454e+00 7.7023e-02 8.9566e-01 8.1639e-02
-#> 72: 1.0049e+02 -4.0609e+00 -2.4472e+00 -3.9669e+00 -9.3972e-01 -7.7498e-02 4.5852e+00 1.4441e-02 3.2552e-01 1.3911e-01 1.4144e-01 8.1899e-02 1.0114e+00 7.7019e-02 8.2312e-01 8.2494e-02
-#> 73: 1.0022e+02 -4.0598e+00 -2.4410e+00 -3.9952e+00 -9.2810e-01 -1.1309e-01 4.3559e+00 1.3719e-02 3.3556e-01 1.3303e-01 1.4990e-01 1.1303e-01 9.6726e-01 7.6776e-02 8.6331e-01 8.3048e-02
-#> 74: 1.0024e+02 -4.0628e+00 -2.4358e+00 -3.9977e+00 -9.1347e-01 -9.1966e-02 4.1381e+00 1.3033e-02 3.4332e-01 1.3418e-01 1.8099e-01 1.0738e-01 1.0158e+00 7.4697e-02 8.6366e-01 8.4370e-02
-#> 75: 99.7847 -4.0500 -2.4401 -4.0018 -0.9252 -0.1013 4.4651 0.0124 0.3365 0.1399 0.1817 0.1020 1.0278 0.0779 0.9008 0.0841
-#> 76: 99.9526 -4.0482 -2.4819 -3.9947 -0.9049 -0.0557 4.2419 0.0126 0.3248 0.1494 0.1726 0.1135 1.0493 0.0778 0.9341 0.0804
-#> 77: 99.9982 -4.0184 -2.4951 -4.0043 -0.8927 -0.0688 5.2538 0.0120 0.3696 0.1419 0.1817 0.1078 1.0402 0.0839 0.9605 0.0848
-#> 78: 1.0007e+02 -4.0210e+00 -2.4725e+00 -4.0040e+00 -8.9827e-01 2.3164e-03 6.4464e+00 1.1395e-02 3.7410e-01 1.3481e-01 2.0294e-01 1.0879e-01 9.7822e-01 8.7445e-02 9.9990e-01 8.2845e-02
-#> 79: 99.3513 -4.0171 -2.5065 -4.0078 -0.8962 -0.0029 7.7527 0.0108 0.3554 0.1281 0.1928 0.1069 1.0455 0.0866 0.9982 0.0870
-#> 80: 98.9945 -4.0172 -2.5412 -4.0341 -0.8891 -0.0187 9.8218 0.0103 0.3376 0.1217 0.1831 0.1457 0.9733 0.0894 1.0164 0.0832
-#> 81: 99.0936 -4.0275 -2.5134 -4.0127 -0.8552 -0.0614 12.1567 0.0098 0.3494 0.1156 0.1740 0.1384 0.9509 0.0843 1.0171 0.0855
-#> 82: 99.2481 -3.9996 -2.4945 -4.0011 -0.8914 -0.0492 11.5489 0.0128 0.3792 0.1098 0.1653 0.1315 0.9915 0.0818 1.0405 0.0928
-#> 83: 99.6941 -3.9998 -2.4851 -3.9845 -0.8802 -0.0560 10.9714 0.0146 0.3602 0.1043 0.1570 0.1249 0.9934 0.0852 0.9707 0.0866
-#> 84: 99.2185 -3.9920 -2.4843 -4.0051 -0.8546 -0.0642 10.4228 0.0153 0.3422 0.0991 0.1492 0.1187 0.9923 0.0833 0.9799 0.0873
-#> 85: 98.8470 -3.9956 -2.4652 -4.0201 -0.8483 -0.0414 9.9017 0.0146 0.3251 0.0941 0.1417 0.1128 0.9732 0.0901 0.9035 0.0858
-#> 86: 98.5012 -3.9841 -2.5148 -4.0250 -0.8408 -0.0551 9.4066 0.0148 0.3088 0.0962 0.1346 0.1071 0.8570 0.0932 0.8532 0.0896
-#> 87: 99.0868 -4.0055 -2.5058 -4.0249 -0.8522 -0.0311 10.3528 0.0175 0.2934 0.1013 0.1411 0.1018 0.8802 0.0838 0.8849 0.0862
-#> 88: 99.5158 -4.0031 -2.4437 -3.9866 -0.8894 -0.0963 9.9832 0.0167 0.3049 0.1030 0.1447 0.0967 0.9955 0.0834 0.8861 0.0893
-#> 89: 99.5538 -4.0347 -2.4494 -4.0213 -0.8695 -0.0494 9.4841 0.0158 0.2897 0.0978 0.1543 0.0918 0.8597 0.0904 0.8959 0.0880
-#> 90: 99.4422 -4.0453 -2.4398 -4.0114 -0.9279 -0.0745 9.8221 0.0150 0.2842 0.0929 0.1466 0.0944 0.9009 0.0871 0.8696 0.0924
-#> 91: 98.8721 -4.0328 -2.4996 -4.0041 -0.8832 -0.0689 9.3310 0.0143 0.2700 0.0896 0.1444 0.1137 0.9567 0.0904 0.8680 0.0891
-#> 92: 99.8390 -4.0418 -2.4914 -4.0182 -0.9279 -0.0460 10.9801 0.0136 0.2585 0.0949 0.1461 0.1210 1.0043 0.0908 0.8310 0.0939
-#> 93: 1.0029e+02 -4.0313e+00 -2.4620e+00 -4.0187e+00 -8.9083e-01 -1.0908e-01 1.0431e+01 1.2890e-02 2.4559e-01 9.5757e-02 1.3878e-01 1.1565e-01 9.9174e-01 9.0056e-02 8.9538e-01 8.8925e-02
-#> 94: 99.3285 -4.0295 -2.4523 -4.0235 -0.8828 -0.1190 10.9003 0.0137 0.2333 0.0915 0.1318 0.1212 1.0729 0.0779 0.9543 0.0907
-#> 95: 99.4117 -4.0422 -2.3807 -4.0870 -0.8960 -0.0889 10.3553 0.0130 0.2216 0.0870 0.1253 0.1366 0.9127 0.0864 0.8901 0.0911
-#> 96: 99.3348 -4.0401 -2.4009 -4.0698 -0.8730 -0.0622 9.8375 0.0123 0.2106 0.0826 0.1241 0.1297 0.8504 0.0836 0.9140 0.0881
-#> 97: 99.4898 -4.0419 -2.4310 -4.0589 -0.8932 -0.0634 9.3456 0.0132 0.2000 0.0785 0.1224 0.1233 0.8770 0.0836 0.8715 0.0837
-#> 98: 99.3750 -4.0704 -2.4353 -4.0616 -0.9333 -0.0846 8.8783 0.0136 0.1900 0.0746 0.1245 0.1171 0.8907 0.0838 0.9066 0.0832
-#> 99: 99.6234 -4.0366 -2.3740 -4.0657 -0.9242 -0.0675 8.4344 0.0129 0.1805 0.0708 0.1182 0.1112 0.8814 0.0808 0.9511 0.0863
-#> 100: 1.0025e+02 -4.0420e+00 -2.3557e+00 -4.0579e+00 -9.5051e-01 -6.3418e-02 8.0319e+00 1.2286e-02 1.7150e-01 6.7291e-02 1.1232e-01 1.0568e-01 8.5851e-01 8.7881e-02 8.9363e-01 8.5897e-02
-#> 101: 1.0041e+02 -4.0461e+00 -2.3840e+00 -4.0384e+00 -9.3752e-01 -7.7594e-02 9.5649e+00 1.1672e-02 1.7509e-01 6.3926e-02 1.2760e-01 1.0039e-01 8.6733e-01 8.2748e-02 9.6277e-01 8.4274e-02
-#> 102: 1.0095e+02 -4.0372e+00 -2.3633e+00 -4.0286e+00 -9.1961e-01 -6.5350e-02 1.1428e+01 1.1088e-02 1.8557e-01 6.0730e-02 1.3211e-01 9.5374e-02 9.3928e-01 8.0161e-02 9.7913e-01 8.4081e-02
-#> 103: 1.0019e+02 -4.0236e+00 -2.4105e+00 -4.0337e+00 -9.1362e-01 -7.3859e-02 1.0856e+01 1.0534e-02 1.7629e-01 5.7693e-02 1.2695e-01 9.1362e-02 9.8491e-01 8.1430e-02 9.7682e-01 8.2250e-02
-#> 104: 99.7755 -4.0280 -2.4452 -4.0197 -0.9112 -0.0810 11.0317 0.0100 0.1796 0.0548 0.1301 0.0868 0.9418 0.0816 0.9170 0.0806
-#> 105: 1.0010e+02 -4.0418e+00 -2.4294e+00 -4.0225e+00 -9.1111e-01 -8.9920e-02 1.0480e+01 9.5070e-03 1.7060e-01 5.2068e-02 1.3987e-01 8.2454e-02 9.1944e-01 7.8110e-02 8.9266e-01 8.7228e-02
-#> 106: 1.0025e+02 -4.0507e+00 -2.4134e+00 -4.0343e+00 -9.0244e-01 -8.4683e-02 1.3506e+01 9.0316e-03 1.6207e-01 4.9465e-02 1.5337e-01 7.8331e-02 9.9609e-01 8.4473e-02 8.7046e-01 8.5479e-02
-#> 107: 1.0014e+02 -4.0468e+00 -2.3972e+00 -4.0196e+00 -9.3650e-01 -2.4087e-02 1.2830e+01 8.5801e-03 1.6027e-01 4.6992e-02 1.5429e-01 8.2493e-02 9.8959e-01 8.2626e-02 8.3427e-01 8.8197e-02
-#> 108: 1.0114e+02 -4.0338e+00 -2.4307e+00 -4.0724e+00 -9.1363e-01 1.1952e-02 1.2189e+01 8.1511e-03 1.5563e-01 4.4854e-02 1.7315e-01 7.8368e-02 9.8589e-01 7.8130e-02 9.0460e-01 8.2870e-02
-#> 109: 1.0066e+02 -4.0550e+00 -2.4094e+00 -4.0641e+00 -9.0945e-01 -1.5401e-03 1.3149e+01 7.7435e-03 1.4785e-01 4.2612e-02 1.7232e-01 7.4450e-02 1.0942e+00 7.4816e-02 9.1706e-01 8.5333e-02
-#> 110: 1.0111e+02 -4.0266e+00 -2.4047e+00 -4.0646e+00 -9.0541e-01 -1.7212e-02 1.2492e+01 7.3563e-03 1.4046e-01 4.0481e-02 1.8132e-01 7.0727e-02 1.0508e+00 7.9457e-02 9.8990e-01 8.2975e-02
-#> 111: 1.0155e+02 -4.0274e+00 -2.3645e+00 -4.0663e+00 -9.4902e-01 -1.8882e-02 1.1867e+01 8.7757e-03 1.4436e-01 3.8457e-02 1.7225e-01 6.7191e-02 1.0217e+00 7.7437e-02 9.9196e-01 8.1580e-02
-#> 112: 1.0209e+02 -4.0230e+00 -2.3938e+00 -4.0375e+00 -9.5447e-01 -5.0888e-02 1.4321e+01 8.3370e-03 1.4863e-01 3.6534e-02 1.6778e-01 8.2186e-02 9.3085e-01 8.3291e-02 9.8775e-01 7.9492e-02
-#> 113: 1.0188e+02 -4.0173e+00 -2.3804e+00 -4.0403e+00 -9.6152e-01 -7.7453e-02 1.3605e+01 7.9201e-03 1.5060e-01 3.4708e-02 1.7341e-01 8.4506e-02 9.0783e-01 8.7383e-02 9.4854e-01 8.2648e-02
-#> 114: 1.0239e+02 -4.0081e+00 -2.3724e+00 -4.0332e+00 -9.4315e-01 -7.4933e-02 1.2925e+01 7.5241e-03 1.4307e-01 3.2972e-02 1.6695e-01 8.0281e-02 9.2775e-01 8.4314e-02 9.6195e-01 7.9448e-02
-#> 115: 1.0199e+02 -4.0127e+00 -2.3773e+00 -4.0472e+00 -9.5157e-01 -2.0947e-02 1.2279e+01 7.4483e-03 1.3592e-01 3.1324e-02 1.6705e-01 7.6267e-02 9.4956e-01 7.6989e-02 1.0340e+00 8.5564e-02
-#> 116: 1.0122e+02 -4.0264e+00 -2.4014e+00 -4.0509e+00 -9.1462e-01 -2.3511e-02 1.1665e+01 7.0759e-03 1.2912e-01 2.9757e-02 1.5870e-01 7.2453e-02 9.3580e-01 8.2952e-02 9.3341e-01 8.3302e-02
-#> 117: 1.0112e+02 -4.0326e+00 -2.4093e+00 -4.0559e+00 -8.9743e-01 -2.0572e-02 1.1082e+01 6.7221e-03 1.2266e-01 2.8269e-02 1.5339e-01 6.8831e-02 9.0879e-01 8.4441e-02 9.1432e-01 8.0538e-02
-#> 118: 1.0123e+02 -4.0411e+00 -2.4077e+00 -4.0556e+00 -9.2971e-01 -2.1885e-02 1.0528e+01 6.3860e-03 1.1653e-01 3.3123e-02 1.6947e-01 6.5389e-02 9.7140e-01 8.6671e-02 8.9874e-01 8.1670e-02
-#> 119: 1.0098e+02 -4.0538e+00 -2.3515e+00 -4.0607e+00 -9.5433e-01 -7.5743e-02 1.0001e+01 6.0667e-03 1.1070e-01 3.1467e-02 1.8338e-01 6.2120e-02 9.1537e-01 8.4827e-02 9.2420e-01 8.2769e-02
-#> 120: 1.0076e+02 -4.0573e+00 -2.3627e+00 -4.0329e+00 -9.3251e-01 -6.7669e-02 9.5011e+00 5.7634e-03 1.0517e-01 3.2868e-02 1.7422e-01 6.6096e-02 9.5247e-01 8.5343e-02 9.4678e-01 8.5335e-02
-#> 121: 1.0085e+02 -4.0450e+00 -2.3478e+00 -4.0692e+00 -9.2333e-01 -9.8005e-03 9.0261e+00 5.4752e-03 9.9911e-02 3.1225e-02 1.6550e-01 7.1593e-02 8.5572e-01 8.8654e-02 1.0248e+00 8.0646e-02
-#> 122: 1.0164e+02 -4.0325e+00 -2.3562e+00 -4.0680e+00 -9.4287e-01 -1.2103e-02 8.5748e+00 5.3493e-03 9.4915e-02 2.9663e-02 1.6347e-01 6.8014e-02 8.4872e-01 8.6803e-02 1.0282e+00 8.0381e-02
-#> 123: 1.0184e+02 -4.0521e+00 -2.3504e+00 -4.0714e+00 -9.5966e-01 -9.1996e-05 8.1460e+00 5.0818e-03 9.8247e-02 3.0007e-02 1.7746e-01 6.4613e-02 9.7181e-01 8.0986e-02 9.8860e-01 8.0317e-02
-#> 124: 1.0235e+02 -4.0674e+00 -2.3315e+00 -4.0874e+00 -9.9802e-01 3.8818e-02 7.7387e+00 4.8277e-03 9.3335e-02 2.8506e-02 1.7611e-01 6.8940e-02 9.7376e-01 7.6658e-02 9.9156e-01 8.4407e-02
-#> 125: 1.0257e+02 -4.0718e+00 -2.3604e+00 -4.0627e+00 -1.0591e+00 2.4685e-02 7.3518e+00 4.5863e-03 8.8668e-02 3.0650e-02 1.8671e-01 6.5493e-02 1.0275e+00 8.2278e-02 1.0896e+00 8.0976e-02
-#> 126: 1.0287e+02 -4.0691e+00 -2.3103e+00 -4.0552e+00 -1.0174e+00 2.1863e-02 7.5644e+00 4.3570e-03 1.0937e-01 2.9117e-02 1.7738e-01 6.2218e-02 9.2668e-01 7.9560e-02 9.5409e-01 8.4671e-02
-#> 127: 1.0327e+02 -4.0528e+00 -2.3141e+00 -4.0522e+00 -1.0108e+00 4.4779e-03 7.1862e+00 4.1392e-03 1.2239e-01 2.7661e-02 1.6925e-01 5.9107e-02 9.1372e-01 7.9536e-02 9.9164e-01 8.2999e-02
-#> 128: 1.0352e+02 -4.0496e+00 -2.2880e+00 -4.0496e+00 -1.0063e+00 -1.3248e-02 7.6721e+00 3.9613e-03 1.1627e-01 2.6278e-02 1.7517e-01 8.0231e-02 8.4407e-01 8.5078e-02 9.4382e-01 8.7530e-02
-#> 129: 1.0345e+02 -4.0715e+00 -2.3090e+00 -4.0400e+00 -1.0276e+00 -1.8301e-02 8.2197e+00 3.7633e-03 1.1046e-01 2.7141e-02 1.9366e-01 7.6220e-02 9.3357e-01 8.2674e-02 9.7064e-01 8.6011e-02
-#> 130: 1.0245e+02 -4.0787e+00 -2.3263e+00 -4.0106e+00 -1.0200e+00 -8.5976e-02 7.8087e+00 4.0830e-03 1.3607e-01 2.6631e-02 2.2700e-01 7.2409e-02 9.8233e-01 7.9348e-02 9.6780e-01 8.2658e-02
-#> 131: 1.0217e+02 -4.0760e+00 -2.2525e+00 -4.0082e+00 -1.0099e+00 -1.6111e-01 7.4183e+00 3.8789e-03 1.3972e-01 2.5299e-02 2.2508e-01 6.8788e-02 1.0066e+00 7.8692e-02 9.4684e-01 8.4349e-02
-#> 132: 1.0185e+02 -4.0792e+00 -2.2309e+00 -3.9996e+00 -9.8302e-01 -2.2504e-01 7.0474e+00 4.0356e-03 1.3743e-01 2.4034e-02 2.1383e-01 7.7346e-02 9.4225e-01 7.9110e-02 9.5160e-01 8.4398e-02
-#> 133: 1.0135e+02 -4.0818e+00 -2.2219e+00 -4.0054e+00 -9.7264e-01 -1.8912e-01 7.1932e+00 3.8338e-03 1.3056e-01 2.2833e-02 2.0314e-01 7.6769e-02 1.0031e+00 8.5400e-02 1.0034e+00 8.4805e-02
-#> 134: 1.0148e+02 -4.0782e+00 -2.2492e+00 -3.9886e+00 -9.5184e-01 -1.5049e-01 6.8336e+00 3.6422e-03 1.2403e-01 2.3398e-02 1.9298e-01 7.2931e-02 9.3696e-01 8.3566e-02 9.4742e-01 8.9137e-02
-#> 135: 1.0145e+02 -4.0852e+00 -2.3062e+00 -4.0011e+00 -9.4444e-01 -1.6803e-01 6.4919e+00 3.4600e-03 1.1783e-01 2.2228e-02 1.8333e-01 6.9284e-02 9.4846e-01 8.3087e-02 9.7774e-01 8.2610e-02
-#> 136: 1.0177e+02 -4.0861e+00 -2.2785e+00 -3.9890e+00 -9.9625e-01 -1.8938e-01 6.1673e+00 3.2870e-03 1.1752e-01 2.1116e-02 1.8815e-01 6.5820e-02 9.3634e-01 8.5255e-02 1.1001e+00 8.5332e-02
-#> 137: 1.0200e+02 -4.0928e+00 -2.1946e+00 -3.9974e+00 -1.0098e+00 -1.8810e-01 5.8589e+00 3.1227e-03 1.2394e-01 2.1203e-02 1.7874e-01 7.2232e-02 1.0048e+00 7.3422e-02 1.0222e+00 8.3484e-02
-#> 138: 1.0214e+02 -4.0820e+00 -2.2052e+00 -3.9737e+00 -1.0420e+00 -2.0594e-01 5.5660e+00 3.8937e-03 1.9164e-01 2.0143e-02 1.6980e-01 6.8621e-02 1.0126e+00 7.6106e-02 1.0780e+00 8.2960e-02
-#> 139: 1.0249e+02 -4.0785e+00 -2.1649e+00 -3.9567e+00 -1.0095e+00 -2.8807e-01 5.2877e+00 3.6990e-03 1.8647e-01 1.9135e-02 1.6131e-01 6.5190e-02 1.0030e+00 7.9858e-02 1.0611e+00 8.4109e-02
-#> 140: 1.0184e+02 -4.0847e+00 -2.1800e+00 -3.9565e+00 -9.9415e-01 -2.8869e-01 5.0233e+00 4.0857e-03 1.9502e-01 1.8179e-02 1.6676e-01 6.2879e-02 9.5962e-01 7.8117e-02 9.9649e-01 8.4914e-02
-#> 141: 1.0195e+02 -4.1012e+00 -2.1831e+00 -3.9488e+00 -9.9515e-01 -3.1864e-01 4.7721e+00 3.8814e-03 1.8527e-01 1.7270e-02 1.6797e-01 6.1084e-02 9.0969e-01 8.2722e-02 1.0122e+00 8.2518e-02
-#> 142: 1.0233e+02 -4.1139e+00 -2.1692e+00 -3.9542e+00 -1.0023e+00 -3.3242e-01 4.5335e+00 3.6873e-03 2.0662e-01 1.6406e-02 1.5957e-01 5.8030e-02 9.4761e-01 8.4629e-02 1.0342e+00 8.3954e-02
-#> 143: 1.0217e+02 -4.1103e+00 -2.1380e+00 -3.9511e+00 -1.0300e+00 -2.5992e-01 5.2035e+00 4.7053e-03 1.9629e-01 1.5586e-02 1.5979e-01 5.5128e-02 8.9255e-01 7.9042e-02 1.0461e+00 8.6952e-02
-#> 144: 1.0185e+02 -4.1335e+00 -2.1911e+00 -3.9650e+00 -1.0440e+00 -2.4451e-01 5.0998e+00 4.4700e-03 1.8648e-01 1.9590e-02 1.5534e-01 5.2372e-02 9.7863e-01 8.3932e-02 1.0197e+00 8.7673e-02
-#> 145: 1.0242e+02 -4.1445e+00 -2.1203e+00 -3.9616e+00 -1.0426e+00 -2.7120e-01 4.8448e+00 4.2465e-03 1.7715e-01 1.8611e-02 1.4757e-01 4.9753e-02 1.0024e+00 8.4131e-02 1.0768e+00 8.5388e-02
-#> 146: 1.0236e+02 -4.1519e+00 -2.1958e+00 -3.9779e+00 -9.8615e-01 -2.5863e-01 4.6026e+00 4.0718e-03 1.6829e-01 1.7680e-02 1.6407e-01 4.7266e-02 1.0740e+00 8.2413e-02 1.0706e+00 8.3410e-02
-#> 147: 1.0251e+02 -4.1465e+00 -2.2042e+00 -3.9775e+00 -1.0317e+00 -2.2757e-01 4.3725e+00 3.8682e-03 1.5988e-01 1.6796e-02 1.7016e-01 4.4902e-02 9.7748e-01 8.3376e-02 1.0880e+00 8.1968e-02
-#> 148: 1.0244e+02 -4.1432e+00 -2.1786e+00 -3.9792e+00 -1.0442e+00 -2.2002e-01 4.9671e+00 3.6748e-03 1.5189e-01 1.5956e-02 2.2196e-01 4.2657e-02 1.0412e+00 7.8051e-02 1.1051e+00 8.1618e-02
-#> 149: 1.0219e+02 -4.1384e+00 -2.2318e+00 -3.9757e+00 -1.0438e+00 -2.4124e-01 4.7187e+00 3.4910e-03 1.4429e-01 1.6061e-02 2.1086e-01 4.0524e-02 1.0082e+00 8.0377e-02 1.1455e+00 8.0545e-02
-#> 150: 1.0264e+02 -4.1498e+00 -2.2352e+00 -3.9915e+00 -1.0669e+00 -2.1255e-01 4.4828e+00 3.3165e-03 1.3708e-01 1.7218e-02 2.0032e-01 3.8498e-02 9.5031e-01 8.7248e-02 9.8770e-01 8.3250e-02
-#> 151: 1.0250e+02 -4.1365e+00 -2.1876e+00 -3.9939e+00 -1.0568e+00 -1.8159e-01 4.2587e+00 3.1507e-03 1.3022e-01 1.7383e-02 1.9030e-01 3.6573e-02 9.6938e-01 8.0203e-02 1.0578e+00 8.3430e-02
-#> 152: 1.0256e+02 -4.1370e+00 -2.2238e+00 -4.0047e+00 -1.0406e+00 -1.8764e-01 1.9609e+00 1.4191e-03 1.1882e-01 1.7924e-02 1.6889e-01 4.1216e-02 9.1972e-01 7.8573e-02 1.0717e+00 8.0882e-02
-#> 153: 1.0219e+02 -4.1299e+00 -2.2139e+00 -3.9917e+00 -9.9964e-01 -2.0505e-01 1.8258e+00 1.0432e-03 8.4660e-02 2.1446e-02 1.7634e-01 3.5573e-02 9.3702e-01 8.4860e-02 1.0145e+00 8.3329e-02
-#> 154: 1.0199e+02 -4.1354e+00 -2.2231e+00 -3.9779e+00 -1.0155e+00 -2.2573e-01 2.6463e+00 5.8153e-04 8.8101e-02 2.3167e-02 1.6103e-01 3.3874e-02 9.5360e-01 8.6215e-02 9.5723e-01 8.4603e-02
-#> 155: 1.0234e+02 -4.1239e+00 -2.2137e+00 -3.9802e+00 -1.0070e+00 -2.3158e-01 2.9697e+00 6.6709e-04 1.1190e-01 2.0949e-02 1.8298e-01 3.1557e-02 9.2910e-01 8.2509e-02 9.8680e-01 8.5206e-02
-#> 156: 1.0253e+02 -4.1269e+00 -2.2370e+00 -3.9682e+00 -1.0420e+00 -2.1219e-01 2.7267e+00 6.8451e-04 8.9651e-02 2.4380e-02 1.6613e-01 3.4846e-02 9.3608e-01 8.7506e-02 9.0446e-01 8.1755e-02
-#> 157: 1.0265e+02 -4.1241e+00 -2.2179e+00 -3.9676e+00 -1.0308e+00 -2.2480e-01 2.1278e+00 4.9811e-04 6.7161e-02 1.9758e-02 1.5607e-01 4.4198e-02 9.4162e-01 8.7311e-02 9.9147e-01 7.9857e-02
-#> 158: 1.0239e+02 -4.1219e+00 -2.1615e+00 -3.9781e+00 -1.0384e+00 -2.6750e-01 2.5310e+00 4.8270e-04 6.5662e-02 1.8085e-02 1.7665e-01 4.4020e-02 8.8632e-01 8.6004e-02 1.0425e+00 8.2894e-02
-#> 159: 1.0270e+02 -4.1204e+00 -2.1837e+00 -3.9530e+00 -1.0587e+00 -2.5809e-01 3.4348e+00 5.6788e-04 6.5500e-02 1.9540e-02 1.8629e-01 4.0730e-02 9.5079e-01 8.2399e-02 9.9316e-01 8.3381e-02
-#> 160: 1.0282e+02 -4.1223e+00 -2.1325e+00 -3.9734e+00 -1.0068e+00 -2.8751e-01 3.9652e+00 7.6565e-04 8.5246e-02 1.7068e-02 1.7587e-01 3.0778e-02 9.1802e-01 8.0158e-02 9.9642e-01 8.1564e-02
-#> 161: 1.0330e+02 -4.1180e+00 -2.1879e+00 -3.9743e+00 -1.0268e+00 -2.8812e-01 4.9153e+00 5.8033e-04 8.0457e-02 1.8555e-02 1.7312e-01 3.3941e-02 8.6920e-01 8.2509e-02 9.5632e-01 8.1798e-02
-#> 162: 1.0335e+02 -4.1182e+00 -2.2089e+00 -3.9566e+00 -1.0409e+00 -2.7390e-01 3.6169e+00 2.8392e-04 1.0776e-01 1.9589e-02 1.6479e-01 2.8481e-02 8.8603e-01 8.7799e-02 9.5197e-01 7.9563e-02
-#> 163: 1.0294e+02 -4.1181e+00 -2.2025e+00 -3.9462e+00 -9.9783e-01 -3.0753e-01 3.7234e+00 1.6293e-04 9.6922e-02 2.4842e-02 1.9367e-01 3.1473e-02 9.0380e-01 9.1697e-02 9.4394e-01 8.2786e-02
-#> 164: 1.0246e+02 -4.1155e+00 -2.2157e+00 -3.9736e+00 -9.9866e-01 -2.9356e-01 3.9439e+00 1.9405e-04 1.0404e-01 2.8435e-02 1.9043e-01 3.1239e-02 8.9853e-01 8.9427e-02 9.2586e-01 8.3170e-02
-#> 165: 1.0204e+02 -4.1117e+00 -2.2133e+00 -3.9674e+00 -1.0079e+00 -2.6996e-01 3.0774e+00 1.6591e-04 7.0005e-02 2.8285e-02 2.0813e-01 2.4574e-02 8.9719e-01 9.1629e-02 9.8242e-01 8.3692e-02
-#> 166: 1.0207e+02 -4.1164e+00 -2.2192e+00 -3.9893e+00 -1.0354e+00 -2.7396e-01 1.8145e+00 8.4168e-05 9.0739e-02 2.7410e-02 2.1403e-01 2.4311e-02 8.9386e-01 9.2727e-02 9.4636e-01 8.4238e-02
-#> 167: 1.0187e+02 -4.1149e+00 -2.2185e+00 -3.9708e+00 -1.0036e+00 -2.5751e-01 1.5355e+00 4.0974e-05 9.9346e-02 2.2030e-02 2.1916e-01 2.6726e-02 9.1055e-01 8.1030e-02 1.0098e+00 7.9180e-02
-#> 168: 1.0172e+02 -4.1167e+00 -2.2673e+00 -3.9702e+00 -9.8388e-01 -2.1404e-01 1.4836e+00 2.7779e-05 7.7509e-02 2.9513e-02 1.9543e-01 3.4526e-02 1.0152e+00 8.1248e-02 9.7482e-01 8.0746e-02
-#> 169: 1.0175e+02 -4.1171e+00 -2.2634e+00 -3.9701e+00 -9.5962e-01 -2.4130e-01 1.4263e+00 4.7370e-05 5.0986e-02 2.8211e-02 2.2554e-01 3.9909e-02 9.8519e-01 7.8842e-02 1.0023e+00 8.5684e-02
-#> 170: 1.0177e+02 -4.1189e+00 -2.2417e+00 -3.9834e+00 -1.0059e+00 -2.6551e-01 9.9010e-01 3.7247e-05 4.2517e-02 2.9791e-02 1.8705e-01 4.2435e-02 9.6604e-01 8.8427e-02 9.6699e-01 8.3986e-02
-#> 171: 1.0182e+02 -4.1187e+00 -2.2464e+00 -3.9953e+00 -9.8154e-01 -2.5146e-01 7.4179e-01 3.2420e-05 5.0690e-02 3.0483e-02 1.7888e-01 6.3177e-02 9.2784e-01 8.4814e-02 1.0018e+00 8.4070e-02
-#> 172: 1.0184e+02 -4.1178e+00 -2.2483e+00 -4.0009e+00 -1.0096e+00 -2.2636e-01 9.6710e-01 2.6981e-05 3.1321e-02 2.7772e-02 1.9767e-01 7.4969e-02 9.9720e-01 8.1434e-02 9.5483e-01 8.3419e-02
-#> 173: 1.0160e+02 -4.1183e+00 -2.2513e+00 -3.9920e+00 -9.8456e-01 -2.0144e-01 4.9964e-01 2.1222e-05 4.1909e-02 2.8101e-02 2.1163e-01 1.2811e-01 9.6384e-01 8.0352e-02 9.2496e-01 8.2328e-02
-#> 174: 1.0159e+02 -4.1179e+00 -2.2334e+00 -4.0068e+00 -1.0316e+00 -2.0656e-01 4.6608e-01 1.8044e-05 4.4647e-02 2.8273e-02 2.0083e-01 1.2780e-01 9.4612e-01 8.3630e-02 8.9385e-01 8.3930e-02
-#> 175: 1.0159e+02 -4.1182e+00 -2.2567e+00 -3.9972e+00 -1.0299e+00 -1.6534e-01 4.5228e-01 2.0060e-05 8.5751e-02 2.5343e-02 1.7864e-01 8.6977e-02 9.5795e-01 7.8867e-02 8.9213e-01 8.4362e-02
-#> 176: 1.0159e+02 -4.1183e+00 -2.2109e+00 -3.9983e+00 -1.0210e+00 -2.0879e-01 5.3694e-01 2.0264e-05 1.2835e-01 2.5563e-02 1.9469e-01 6.0808e-02 9.1537e-01 7.8520e-02 9.3355e-01 8.3608e-02
-#> 177: 1.0155e+02 -4.1193e+00 -2.2587e+00 -3.9825e+00 -1.0180e+00 -1.6859e-01 4.4935e-01 3.0321e-05 1.3509e-01 2.4979e-02 2.0113e-01 6.3617e-02 9.7277e-01 7.8515e-02 9.2667e-01 8.5309e-02
-#> 178: 1.0158e+02 -4.1196e+00 -2.2679e+00 -4.0231e+00 -1.0143e+00 -1.6084e-01 6.7629e-01 3.2855e-05 6.8816e-02 2.7808e-02 1.8944e-01 8.1814e-02 8.8319e-01 8.0114e-02 9.5183e-01 8.2195e-02
-#> 179: 1.0166e+02 -4.1190e+00 -2.2764e+00 -3.9875e+00 -1.0061e+00 -1.8260e-01 7.1129e-01 3.8250e-05 7.5489e-02 2.4148e-02 1.8082e-01 7.1172e-02 9.1387e-01 8.0813e-02 9.6660e-01 8.2457e-02
-#> 180: 1.0179e+02 -4.1202e+00 -2.2848e+00 -3.9974e+00 -9.9825e-01 -2.0277e-01 5.5755e-01 2.8041e-05 8.6779e-02 2.7193e-02 1.8826e-01 6.5133e-02 8.8812e-01 8.2655e-02 9.2100e-01 7.9919e-02
-#> 181: 1.0176e+02 -4.1200e+00 -2.2704e+00 -3.9954e+00 -1.0194e+00 -1.6896e-01 4.3842e-01 2.2428e-05 7.4093e-02 3.0526e-02 2.3473e-01 1.0537e-01 9.2303e-01 8.2141e-02 9.2941e-01 8.4699e-02
-#> 182: 1.0182e+02 -4.1211e+00 -2.3159e+00 -4.0259e+00 -1.0162e+00 -1.2876e-01 3.4993e-01 1.5716e-05 5.9887e-02 2.6422e-02 2.1757e-01 1.0488e-01 9.1725e-01 9.4143e-02 9.7674e-01 8.8668e-02
-#> 183: 1.0184e+02 -4.1216e+00 -2.2985e+00 -4.0278e+00 -1.0136e+00 -1.3154e-01 2.6456e-01 1.2552e-05 5.7149e-02 3.2712e-02 2.0632e-01 1.5501e-01 9.2464e-01 8.5394e-02 8.8699e-01 8.4279e-02
-#> 184: 1.0172e+02 -4.1212e+00 -2.2726e+00 -4.0189e+00 -1.0280e+00 -1.2967e-01 3.0582e-01 7.5239e-06 8.2812e-02 2.9556e-02 1.9725e-01 1.3753e-01 9.0862e-01 8.1319e-02 9.0031e-01 8.3491e-02
-#> 185: 1.0178e+02 -4.1208e+00 -2.2858e+00 -4.0272e+00 -1.0063e+00 -1.6155e-01 3.0856e-01 4.5894e-06 8.8870e-02 2.5817e-02 1.9251e-01 1.0670e-01 9.1157e-01 7.7834e-02 9.6258e-01 7.8990e-02
-#> 186: 1.0198e+02 -4.1208e+00 -2.2682e+00 -4.0401e+00 -9.8523e-01 -1.1556e-01 2.4761e-01 3.2640e-06 7.5614e-02 2.1067e-02 1.9085e-01 9.0045e-02 8.5090e-01 8.6621e-02 1.0145e+00 8.1864e-02
-#> 187: 1.0197e+02 -4.1208e+00 -2.2788e+00 -4.0281e+00 -1.0066e+00 -1.0149e-01 2.0460e-01 4.5073e-06 7.8797e-02 2.3861e-02 2.0725e-01 7.9771e-02 9.6253e-01 8.2363e-02 9.3855e-01 8.3939e-02
-#> 188: 1.0196e+02 -4.1207e+00 -2.3105e+00 -4.0149e+00 -1.0217e+00 -9.0603e-02 2.2178e-01 3.6903e-06 8.9793e-02 2.1775e-02 1.9248e-01 8.2415e-02 9.4078e-01 8.1247e-02 9.1756e-01 8.2786e-02
-#> 189: 1.0202e+02 -4.1204e+00 -2.2702e+00 -4.0430e+00 -1.0032e+00 -1.1308e-01 2.2944e-01 3.5141e-06 7.8575e-02 2.4885e-02 2.0968e-01 8.2380e-02 9.5115e-01 8.1619e-02 9.2134e-01 8.9958e-02
-#> 190: 1.0195e+02 -4.1207e+00 -2.3126e+00 -4.0312e+00 -1.0154e+00 -6.3842e-02 2.5129e-01 2.6517e-06 4.2267e-02 2.2084e-02 1.9361e-01 7.0492e-02 9.3985e-01 8.5817e-02 9.3893e-01 8.7011e-02
-#> 191: 1.0203e+02 -4.1206e+00 -2.2758e+00 -4.0290e+00 -1.0102e+00 -3.1042e-02 1.7935e-01 3.4489e-06 5.7444e-02 2.3544e-02 1.9651e-01 7.9509e-02 9.5213e-01 8.2030e-02 1.0054e+00 8.7523e-02
-#> 192: 1.0199e+02 -4.1205e+00 -2.2969e+00 -4.0329e+00 -1.0364e+00 -8.3705e-02 1.5785e-01 3.5081e-06 7.4305e-02 2.2992e-02 1.9662e-01 7.7684e-02 9.2601e-01 8.3027e-02 9.8642e-01 8.3428e-02
-#> 193: 1.0196e+02 -4.1205e+00 -2.2661e+00 -4.0513e+00 -9.9271e-01 -4.6516e-02 1.2084e-01 2.6911e-06 6.8360e-02 3.5444e-02 1.9649e-01 7.5188e-02 9.1949e-01 7.9194e-02 1.0046e+00 8.5964e-02
-#> 194: 1.0198e+02 -4.1207e+00 -2.2817e+00 -4.0520e+00 -9.9852e-01 -8.4466e-02 1.3596e-01 1.5511e-06 6.5142e-02 4.1562e-02 1.9137e-01 9.6992e-02 9.6709e-01 7.6757e-02 9.7566e-01 8.3784e-02
-#> 195: 1.0200e+02 -4.1207e+00 -2.3076e+00 -4.0637e+00 -1.0028e+00 -7.2489e-02 1.0942e-01 1.6451e-06 6.1364e-02 4.6242e-02 1.9470e-01 9.3546e-02 9.9614e-01 8.1292e-02 9.7814e-01 8.1909e-02
-#> 196: 1.0194e+02 -4.1205e+00 -2.2970e+00 -4.0482e+00 -9.8816e-01 -6.8493e-02 1.1918e-01 1.2629e-06 4.2775e-02 3.6925e-02 2.3565e-01 7.7784e-02 8.9524e-01 9.2250e-02 9.8003e-01 8.2408e-02
-#> 197: 1.0199e+02 -4.1205e+00 -2.3075e+00 -4.0418e+00 -1.0196e+00 -6.8458e-02 1.7674e-01 7.5205e-07 5.2125e-02 2.9288e-02 2.1892e-01 8.4416e-02 8.9857e-01 9.1154e-02 1.0377e+00 8.3604e-02
-#> 198: 1.0197e+02 -4.1206e+00 -2.3051e+00 -4.0367e+00 -1.0252e+00 -6.9200e-02 9.1625e-02 6.6068e-07 4.7665e-02 2.8907e-02 1.8679e-01 7.5787e-02 9.0272e-01 8.8077e-02 9.2929e-01 8.0385e-02
-#> 199: 1.0192e+02 -4.1204e+00 -2.3163e+00 -4.0506e+00 -1.0152e+00 -5.3872e-02 6.8196e-02 5.5789e-07 6.0471e-02 3.1730e-02 2.0053e-01 6.8557e-02 9.0478e-01 8.5910e-02 9.3814e-01 8.2211e-02
-#> 200: 1.0195e+02 -4.1205e+00 -2.3141e+00 -4.0728e+00 -1.0010e+00 -2.5675e-03 6.5235e-02 6.9762e-07 5.8458e-02 2.8504e-02 2.0377e-01 4.9513e-02 8.5640e-01 8.6640e-02 9.5731e-01 8.4390e-02
-#> 201: 1.0195e+02 -4.1205e+00 -2.3106e+00 -4.0774e+00 -9.9012e-01 5.1724e-03 5.1225e-02 5.4222e-07 6.0577e-02 3.3554e-02 2.0505e-01 4.4738e-02 8.8073e-01 8.5488e-02 9.6928e-01 8.4895e-02
-#> 202: 1.0194e+02 -4.1205e+00 -2.3078e+00 -4.0767e+00 -9.9283e-01 3.9328e-03 4.5461e-02 4.8520e-07 6.7405e-02 3.4599e-02 2.1312e-01 4.6664e-02 9.0528e-01 8.4189e-02 9.8043e-01 8.5266e-02
-#> 203: 1.0193e+02 -4.1205e+00 -2.3029e+00 -4.0790e+00 -9.8990e-01 -9.1380e-03 4.7128e-02 5.0468e-07 6.8524e-02 3.6050e-02 2.1378e-01 5.1774e-02 9.0923e-01 8.4899e-02 9.8928e-01 8.4613e-02
-#> 204: 1.0192e+02 -4.1205e+00 -2.3080e+00 -4.0760e+00 -9.8833e-01 -1.2434e-02 4.8184e-02 4.9472e-07 6.4152e-02 3.5604e-02 2.0954e-01 5.1354e-02 9.1294e-01 8.5219e-02 9.8301e-01 8.4374e-02
-#> 205: 1.0192e+02 -4.1205e+00 -2.3100e+00 -4.0712e+00 -9.9253e-01 -2.3365e-02 4.5888e-02 5.0564e-07 5.9894e-02 3.5053e-02 2.0322e-01 5.4423e-02 9.0925e-01 8.5899e-02 9.8418e-01 8.3421e-02
-#> 206: 1.0192e+02 -4.1205e+00 -2.3095e+00 -4.0715e+00 -9.9721e-01 -2.6262e-02 4.3985e-02 5.1954e-07 5.8681e-02 3.4539e-02 2.0202e-01 5.8248e-02 9.1301e-01 8.5459e-02 9.8621e-01 8.3465e-02
-#> 207: 1.0192e+02 -4.1205e+00 -2.3179e+00 -4.0731e+00 -9.9906e-01 -2.3191e-02 4.3649e-02 5.3824e-07 5.7537e-02 3.4790e-02 2.0220e-01 6.0242e-02 9.1783e-01 8.5307e-02 9.8436e-01 8.3111e-02
-#> 208: 1.0191e+02 -4.1205e+00 -2.3238e+00 -4.0734e+00 -9.9920e-01 -1.9434e-02 4.3223e-02 5.3831e-07 5.7908e-02 3.4909e-02 2.0126e-01 6.0353e-02 9.2010e-01 8.5244e-02 9.8002e-01 8.2975e-02
-#> 209: 1.0191e+02 -4.1205e+00 -2.3279e+00 -4.0726e+00 -1.0053e+00 -1.5390e-02 4.1064e-02 5.3171e-07 5.8749e-02 3.4510e-02 1.9942e-01 6.3063e-02 9.3192e-01 8.4436e-02 9.8298e-01 8.3187e-02
-#> 210: 1.0191e+02 -4.1205e+00 -2.3310e+00 -4.0705e+00 -1.0061e+00 -1.3507e-02 3.8265e-02 5.2762e-07 5.9344e-02 3.3374e-02 1.9612e-01 6.7006e-02 9.3199e-01 8.4573e-02 9.8382e-01 8.3227e-02
-#> 211: 1.0191e+02 -4.1205e+00 -2.3383e+00 -4.0683e+00 -1.0043e+00 -1.3973e-02 3.6076e-02 5.2584e-07 6.1568e-02 3.2369e-02 1.9504e-01 6.9982e-02 9.4179e-01 8.4625e-02 9.9145e-01 8.3067e-02
-#> 212: 1.0192e+02 -4.1204e+00 -2.3396e+00 -4.0662e+00 -1.0055e+00 -1.8011e-02 3.4746e-02 5.4375e-07 6.2747e-02 3.1588e-02 1.9405e-01 7.2360e-02 9.4525e-01 8.4466e-02 9.9581e-01 8.2952e-02
-#> 213: 1.0192e+02 -4.1204e+00 -2.3407e+00 -4.0649e+00 -1.0066e+00 -2.1077e-02 3.4708e-02 5.5843e-07 6.1940e-02 3.0715e-02 1.9382e-01 7.4602e-02 9.4611e-01 8.4322e-02 9.9397e-01 8.2717e-02
-#> 214: 1.0192e+02 -4.1204e+00 -2.3392e+00 -4.0648e+00 -1.0076e+00 -2.3417e-02 3.4282e-02 5.8157e-07 6.1893e-02 3.0158e-02 1.9322e-01 7.8942e-02 9.5250e-01 8.3922e-02 9.9723e-01 8.2793e-02
-#> 215: 1.0192e+02 -4.1204e+00 -2.3410e+00 -4.0645e+00 -1.0087e+00 -2.1950e-02 3.5820e-02 6.0691e-07 6.2032e-02 2.9890e-02 1.9172e-01 8.3774e-02 9.5617e-01 8.3280e-02 1.0003e+00 8.2881e-02
-#> 216: 1.0192e+02 -4.1203e+00 -2.3425e+00 -4.0628e+00 -1.0069e+00 -2.4268e-02 3.7597e-02 6.4187e-07 6.1733e-02 2.9353e-02 1.9092e-01 8.8150e-02 9.5834e-01 8.3091e-02 1.0027e+00 8.2753e-02
-#> 217: 1.0192e+02 -4.1203e+00 -2.3439e+00 -4.0613e+00 -1.0064e+00 -2.4197e-02 3.9291e-02 6.5775e-07 6.2318e-02 2.8903e-02 1.8958e-01 9.0470e-02 9.5766e-01 8.3234e-02 1.0020e+00 8.2707e-02
-#> 218: 1.0191e+02 -4.1203e+00 -2.3441e+00 -4.0619e+00 -1.0065e+00 -2.2460e-02 4.0043e-02 6.4921e-07 6.2280e-02 2.8349e-02 1.8800e-01 9.4476e-02 9.5499e-01 8.3416e-02 1.0036e+00 8.2628e-02
-#> 219: 1.0191e+02 -4.1203e+00 -2.3437e+00 -4.0624e+00 -1.0066e+00 -1.9698e-02 3.9735e-02 6.3365e-07 6.2264e-02 2.7720e-02 1.8768e-01 9.7275e-02 9.4994e-01 8.3350e-02 1.0047e+00 8.2572e-02
-#> 220: 1.0191e+02 -4.1203e+00 -2.3447e+00 -4.0630e+00 -1.0070e+00 -1.5871e-02 4.0198e-02 6.3507e-07 6.1981e-02 2.7259e-02 1.8786e-01 9.9168e-02 9.4781e-01 8.3355e-02 1.0046e+00 8.2752e-02
-#> 221: 1.0191e+02 -4.1203e+00 -2.3459e+00 -4.0638e+00 -1.0069e+00 -1.4298e-02 4.0161e-02 6.2865e-07 6.2113e-02 2.7201e-02 1.8810e-01 1.0163e-01 9.4863e-01 8.3154e-02 1.0042e+00 8.2670e-02
-#> 222: 1.0191e+02 -4.1203e+00 -2.3472e+00 -4.0646e+00 -1.0064e+00 -1.0921e-02 4.0310e-02 6.2450e-07 6.2436e-02 2.6979e-02 1.8736e-01 1.0306e-01 9.4914e-01 8.3081e-02 1.0050e+00 8.2757e-02
-#> 223: 1.0191e+02 -4.1203e+00 -2.3478e+00 -4.0650e+00 -1.0063e+00 -1.1053e-02 3.9741e-02 6.1973e-07 6.2918e-02 2.6636e-02 1.8806e-01 1.0506e-01 9.4996e-01 8.2927e-02 1.0054e+00 8.2579e-02
-#> 224: 1.0191e+02 -4.1203e+00 -2.3478e+00 -4.0653e+00 -1.0061e+00 -1.0324e-02 3.9480e-02 6.1421e-07 6.4180e-02 2.6403e-02 1.8833e-01 1.0733e-01 9.4750e-01 8.2697e-02 1.0033e+00 8.2517e-02
-#> 225: 1.0191e+02 -4.1203e+00 -2.3479e+00 -4.0654e+00 -1.0060e+00 -1.0650e-02 3.9188e-02 6.0959e-07 6.3862e-02 2.6122e-02 1.8815e-01 1.0786e-01 9.4504e-01 8.2833e-02 1.0002e+00 8.2398e-02
-#> 226: 1.0192e+02 -4.1204e+00 -2.3469e+00 -4.0657e+00 -1.0052e+00 -1.0205e-02 3.9129e-02 6.0577e-07 6.4045e-02 2.5875e-02 1.8762e-01 1.0921e-01 9.4663e-01 8.2599e-02 9.9857e-01 8.2472e-02
-#> 227: 1.0192e+02 -4.1203e+00 -2.3467e+00 -4.0658e+00 -1.0053e+00 -1.0189e-02 3.8797e-02 6.0837e-07 6.5125e-02 2.5679e-02 1.8721e-01 1.1060e-01 9.4729e-01 8.2470e-02 9.9802e-01 8.2753e-02
-#> 228: 1.0192e+02 -4.1204e+00 -2.3469e+00 -4.0657e+00 -1.0054e+00 -1.0575e-02 3.8741e-02 6.0738e-07 6.5467e-02 2.5448e-02 1.8548e-01 1.1134e-01 9.4840e-01 8.2580e-02 9.9829e-01 8.2888e-02
-#> 229: 1.0192e+02 -4.1204e+00 -2.3479e+00 -4.0650e+00 -1.0056e+00 -1.1215e-02 3.9360e-02 6.0182e-07 6.4817e-02 2.5237e-02 1.8448e-01 1.1090e-01 9.5039e-01 8.2625e-02 9.9900e-01 8.2896e-02
-#> 230: 1.0192e+02 -4.1204e+00 -2.3482e+00 -4.0652e+00 -1.0060e+00 -9.9775e-03 3.9501e-02 5.9385e-07 6.4132e-02 2.5093e-02 1.8510e-01 1.1122e-01 9.4938e-01 8.2763e-02 9.9961e-01 8.2886e-02
-#> 231: 1.0192e+02 -4.1204e+00 -2.3479e+00 -4.0654e+00 -1.0070e+00 -8.9509e-03 3.9907e-02 5.9290e-07 6.3744e-02 2.4829e-02 1.8560e-01 1.1062e-01 9.4790e-01 8.2872e-02 1.0022e+00 8.2955e-02
-#> 232: 1.0192e+02 -4.1204e+00 -2.3484e+00 -4.0657e+00 -1.0081e+00 -6.9066e-03 4.0738e-02 5.7862e-07 6.3242e-02 2.4729e-02 1.8626e-01 1.0975e-01 9.4866e-01 8.2846e-02 1.0036e+00 8.3065e-02
-#> 233: 1.0191e+02 -4.1204e+00 -2.3487e+00 -4.0660e+00 -1.0080e+00 -5.1163e-03 4.0708e-02 5.7326e-07 6.2392e-02 2.4475e-02 1.8701e-01 1.0932e-01 9.4816e-01 8.2933e-02 1.0059e+00 8.3155e-02
-#> 234: 1.0191e+02 -4.1204e+00 -2.3500e+00 -4.0660e+00 -1.0077e+00 -4.0637e-03 4.1065e-02 5.6885e-07 6.1938e-02 2.4418e-02 1.8673e-01 1.0923e-01 9.5001e-01 8.3005e-02 1.0080e+00 8.3207e-02
-#> 235: 1.0191e+02 -4.1204e+00 -2.3526e+00 -4.0653e+00 -1.0074e+00 -3.6541e-03 4.1151e-02 5.6498e-07 6.2228e-02 2.4447e-02 1.8667e-01 1.0995e-01 9.5059e-01 8.3101e-02 1.0055e+00 8.3101e-02
-#> 236: 1.0191e+02 -4.1204e+00 -2.3540e+00 -4.0648e+00 -1.0078e+00 -4.0127e-03 4.0966e-02 5.7047e-07 6.1779e-02 2.4457e-02 1.8777e-01 1.0971e-01 9.4919e-01 8.3203e-02 1.0044e+00 8.3078e-02
-#> 237: 1.0191e+02 -4.1204e+00 -2.3528e+00 -4.0645e+00 -1.0078e+00 -4.4251e-03 4.0491e-02 5.6811e-07 6.1507e-02 2.4421e-02 1.8827e-01 1.1047e-01 9.4870e-01 8.3149e-02 1.0031e+00 8.3008e-02
-#> 238: 1.0190e+02 -4.1204e+00 -2.3517e+00 -4.0647e+00 -1.0076e+00 -5.2540e-03 3.9988e-02 5.6832e-07 6.1612e-02 2.4262e-02 1.8801e-01 1.1019e-01 9.4737e-01 8.3172e-02 1.0037e+00 8.2959e-02
-#> 239: 1.0190e+02 -4.1204e+00 -2.3509e+00 -4.0650e+00 -1.0089e+00 -5.1598e-03 3.9373e-02 5.6396e-07 6.1635e-02 2.4040e-02 1.8812e-01 1.1055e-01 9.4885e-01 8.3140e-02 1.0053e+00 8.2956e-02
-#> 240: 1.0190e+02 -4.1204e+00 -2.3515e+00 -4.0643e+00 -1.0095e+00 -4.5817e-03 3.9031e-02 5.5929e-07 6.2233e-02 2.3840e-02 1.8766e-01 1.1014e-01 9.5018e-01 8.3172e-02 1.0066e+00 8.2937e-02
-#> 241: 1.0190e+02 -4.1204e+00 -2.3524e+00 -4.0642e+00 -1.0097e+00 -3.9061e-03 3.8686e-02 5.5496e-07 6.3349e-02 2.3663e-02 1.8759e-01 1.1046e-01 9.4922e-01 8.3162e-02 1.0064e+00 8.2940e-02
-#> 242: 1.0190e+02 -4.1204e+00 -2.3535e+00 -4.0642e+00 -1.0092e+00 -2.9411e-03 3.8674e-02 5.5359e-07 6.3930e-02 2.3604e-02 1.8742e-01 1.1027e-01 9.4748e-01 8.3177e-02 1.0052e+00 8.2955e-02
-#> 243: 1.0190e+02 -4.1204e+00 -2.3551e+00 -4.0642e+00 -1.0089e+00 -1.6071e-03 3.8635e-02 5.4669e-07 6.4141e-02 2.3570e-02 1.8666e-01 1.1022e-01 9.4770e-01 8.3208e-02 1.0048e+00 8.2962e-02
-#> 244: 1.0190e+02 -4.1204e+00 -2.3566e+00 -4.0645e+00 -1.0093e+00 -7.0474e-04 3.8502e-02 5.4194e-07 6.4399e-02 2.3591e-02 1.8627e-01 1.0938e-01 9.4615e-01 8.3402e-02 1.0043e+00 8.2891e-02
-#> 245: 1.0189e+02 -4.1204e+00 -2.3575e+00 -4.0649e+00 -1.0093e+00 1.3351e-03 3.8372e-02 5.4266e-07 6.4935e-02 2.3511e-02 1.8609e-01 1.0840e-01 9.4586e-01 8.3393e-02 1.0041e+00 8.2835e-02
-#> 246: 1.0189e+02 -4.1204e+00 -2.3595e+00 -4.0655e+00 -1.0085e+00 4.2316e-03 3.8487e-02 5.4393e-07 6.5284e-02 2.3457e-02 1.8581e-01 1.0811e-01 9.4656e-01 8.3372e-02 1.0036e+00 8.2746e-02
-#> 247: 1.0189e+02 -4.1204e+00 -2.3608e+00 -4.0659e+00 -1.0081e+00 6.1314e-03 3.8249e-02 5.4752e-07 6.5440e-02 2.3455e-02 1.8584e-01 1.0706e-01 9.4795e-01 8.3330e-02 1.0025e+00 8.2710e-02
-#> 248: 1.0189e+02 -4.1204e+00 -2.3617e+00 -4.0662e+00 -1.0084e+00 8.1978e-03 3.8017e-02 5.4713e-07 6.5853e-02 2.3439e-02 1.8637e-01 1.0634e-01 9.4748e-01 8.3377e-02 1.0016e+00 8.2677e-02
-#> 249: 1.0189e+02 -4.1204e+00 -2.3633e+00 -4.0667e+00 -1.0085e+00 9.8011e-03 3.7934e-02 5.5069e-07 6.6442e-02 2.3533e-02 1.8652e-01 1.0606e-01 9.4761e-01 8.3449e-02 1.0009e+00 8.2712e-02
-#> 250: 1.0189e+02 -4.1204e+00 -2.3644e+00 -4.0668e+00 -1.0087e+00 1.0992e-02 3.8199e-02 5.5486e-07 6.6746e-02 2.3638e-02 1.8739e-01 1.0611e-01 9.4838e-01 8.3442e-02 9.9958e-01 8.2692e-02
-#> 251: 1.0189e+02 -4.1204e+00 -2.3644e+00 -4.0671e+00 -1.0097e+00 1.2215e-02 3.8648e-02 5.5448e-07 6.6916e-02 2.3592e-02 1.8753e-01 1.0607e-01 9.4773e-01 8.3511e-02 9.9919e-01 8.2701e-02
-#> 252: 1.0189e+02 -4.1204e+00 -2.3645e+00 -4.0671e+00 -1.0100e+00 1.2881e-02 3.8792e-02 5.5615e-07 6.7323e-02 2.3559e-02 1.8811e-01 1.0641e-01 9.4665e-01 8.3575e-02 9.9809e-01 8.2743e-02
-#> 253: 1.0189e+02 -4.1204e+00 -2.3646e+00 -4.0675e+00 -1.0100e+00 1.3605e-02 3.9013e-02 5.5568e-07 6.7625e-02 2.3432e-02 1.8825e-01 1.0688e-01 9.4424e-01 8.3598e-02 9.9825e-01 8.2702e-02
-#> 254: 1.0189e+02 -4.1204e+00 -2.3642e+00 -4.0677e+00 -1.0101e+00 1.3119e-02 3.8838e-02 5.5231e-07 6.7802e-02 2.3429e-02 1.8849e-01 1.0680e-01 9.4281e-01 8.3706e-02 9.9829e-01 8.2631e-02
-#> 255: 1.0189e+02 -4.1204e+00 -2.3627e+00 -4.0679e+00 -1.0104e+00 1.2490e-02 3.8574e-02 5.4955e-07 6.8395e-02 2.3368e-02 1.8890e-01 1.0661e-01 9.4101e-01 8.3756e-02 9.9798e-01 8.2674e-02
-#> 256: 1.0189e+02 -4.1204e+00 -2.3615e+00 -4.0677e+00 -1.0102e+00 1.1525e-02 3.8502e-02 5.4764e-07 6.8824e-02 2.3405e-02 1.8912e-01 1.0649e-01 9.4109e-01 8.3709e-02 9.9811e-01 8.2698e-02
-#> 257: 1.0189e+02 -4.1204e+00 -2.3604e+00 -4.0673e+00 -1.0104e+00 1.0381e-02 3.8286e-02 5.4694e-07 6.9020e-02 2.3338e-02 1.8925e-01 1.0614e-01 9.4075e-01 8.3695e-02 9.9738e-01 8.2689e-02
-#> 258: 1.0189e+02 -4.1204e+00 -2.3591e+00 -4.0670e+00 -1.0103e+00 8.9559e-03 3.7972e-02 5.4665e-07 6.9077e-02 2.3267e-02 1.8919e-01 1.0590e-01 9.4089e-01 8.3618e-02 9.9742e-01 8.2681e-02
-#> 259: 1.0189e+02 -4.1204e+00 -2.3585e+00 -4.0669e+00 -1.0099e+00 8.6011e-03 3.7874e-02 5.4788e-07 6.9455e-02 2.3264e-02 1.8885e-01 1.0519e-01 9.3952e-01 8.3583e-02 9.9610e-01 8.2650e-02
-#> 260: 1.0189e+02 -4.1204e+00 -2.3584e+00 -4.0666e+00 -1.0098e+00 8.0471e-03 3.7771e-02 5.5294e-07 7.0269e-02 2.3292e-02 1.8877e-01 1.0442e-01 9.3898e-01 8.3519e-02 9.9504e-01 8.2641e-02
-#> 261: 1.0189e+02 -4.1204e+00 -2.3583e+00 -4.0664e+00 -1.0100e+00 7.9344e-03 3.7597e-02 5.5650e-07 7.1087e-02 2.3370e-02 1.8867e-01 1.0399e-01 9.3810e-01 8.3488e-02 9.9419e-01 8.2673e-02
-#> 262: 1.0189e+02 -4.1204e+00 -2.3575e+00 -4.0662e+00 -1.0106e+00 7.2123e-03 3.7203e-02 5.5375e-07 7.1794e-02 2.3393e-02 1.8855e-01 1.0356e-01 9.3773e-01 8.3458e-02 9.9406e-01 8.2739e-02
-#> 263: 1.0189e+02 -4.1204e+00 -2.3564e+00 -4.0659e+00 -1.0112e+00 6.6044e-03 3.6977e-02 5.5306e-07 7.2290e-02 2.3475e-02 1.8847e-01 1.0316e-01 9.3744e-01 8.3383e-02 9.9341e-01 8.2818e-02
-#> 264: 1.0189e+02 -4.1204e+00 -2.3549e+00 -4.0657e+00 -1.0118e+00 6.0119e-03 3.6749e-02 5.5152e-07 7.2896e-02 2.3530e-02 1.8849e-01 1.0277e-01 9.3658e-01 8.3443e-02 9.9248e-01 8.2877e-02
-#> 265: 1.0189e+02 -4.1204e+00 -2.3545e+00 -4.0655e+00 -1.0121e+00 5.6547e-03 3.6562e-02 5.4816e-07 7.3238e-02 2.3560e-02 1.8863e-01 1.0269e-01 9.3597e-01 8.3434e-02 9.9139e-01 8.2879e-02
-#> 266: 1.0189e+02 -4.1204e+00 -2.3545e+00 -4.0651e+00 -1.0121e+00 5.0995e-03 3.6357e-02 5.4458e-07 7.3522e-02 2.3561e-02 1.8883e-01 1.0270e-01 9.3607e-01 8.3407e-02 9.9133e-01 8.2857e-02
-#> 267: 1.0189e+02 -4.1204e+00 -2.3541e+00 -4.0648e+00 -1.0122e+00 4.0105e-03 3.6306e-02 5.4160e-07 7.3833e-02 2.3499e-02 1.8889e-01 1.0317e-01 9.3624e-01 8.3359e-02 9.9151e-01 8.2865e-02
-#> 268: 1.0189e+02 -4.1204e+00 -2.3530e+00 -4.0646e+00 -1.0122e+00 3.0925e-03 3.6248e-02 5.3845e-07 7.4663e-02 2.3413e-02 1.8895e-01 1.0371e-01 9.3624e-01 8.3277e-02 9.9210e-01 8.2909e-02
-#> 269: 1.0189e+02 -4.1204e+00 -2.3518e+00 -4.0643e+00 -1.0123e+00 2.0507e-03 3.6181e-02 5.3602e-07 7.5442e-02 2.3291e-02 1.8886e-01 1.0397e-01 9.3581e-01 8.3260e-02 9.9238e-01 8.2898e-02
-#> 270: 1.0189e+02 -4.1204e+00 -2.3513e+00 -4.0640e+00 -1.0127e+00 1.3309e-03 3.5900e-02 5.3234e-07 7.6677e-02 2.3220e-02 1.8860e-01 1.0367e-01 9.3573e-01 8.3250e-02 9.9169e-01 8.2904e-02
-#> 271: 1.0189e+02 -4.1204e+00 -2.3514e+00 -4.0637e+00 -1.0129e+00 1.1237e-03 3.5608e-02 5.3092e-07 7.7065e-02 2.3102e-02 1.8826e-01 1.0384e-01 9.3645e-01 8.3228e-02 9.9173e-01 8.2896e-02
-#> 272: 1.0189e+02 -4.1204e+00 -2.3510e+00 -4.0639e+00 -1.0134e+00 9.7855e-04 3.5328e-02 5.3100e-07 7.7173e-02 2.3014e-02 1.8817e-01 1.0367e-01 9.3538e-01 8.3266e-02 9.9139e-01 8.2943e-02
-#> 273: 1.0189e+02 -4.1204e+00 -2.3501e+00 -4.0643e+00 -1.0133e+00 1.1275e-03 3.5187e-02 5.3298e-07 7.7467e-02 2.2923e-02 1.8793e-01 1.0344e-01 9.3474e-01 8.3194e-02 9.9249e-01 8.2973e-02
-#> 274: 1.0189e+02 -4.1204e+00 -2.3498e+00 -4.0643e+00 -1.0134e+00 1.4524e-03 3.4996e-02 5.3407e-07 7.7929e-02 2.2819e-02 1.8837e-01 1.0316e-01 9.3399e-01 8.3168e-02 9.9307e-01 8.2981e-02
-#> 275: 1.0189e+02 -4.1204e+00 -2.3500e+00 -4.0641e+00 -1.0136e+00 1.3605e-03 3.4786e-02 5.3269e-07 7.8177e-02 2.2747e-02 1.8855e-01 1.0305e-01 9.3319e-01 8.3205e-02 9.9277e-01 8.2938e-02
-#> 276: 1.0189e+02 -4.1204e+00 -2.3504e+00 -4.0641e+00 -1.0136e+00 1.5273e-03 3.4581e-02 5.3172e-07 7.8495e-02 2.2764e-02 1.8824e-01 1.0297e-01 9.3267e-01 8.3223e-02 9.9204e-01 8.2884e-02
-#> 277: 1.0189e+02 -4.1204e+00 -2.3506e+00 -4.0643e+00 -1.0133e+00 1.2961e-03 3.4373e-02 5.2917e-07 7.8721e-02 2.2791e-02 1.8801e-01 1.0288e-01 9.3253e-01 8.3185e-02 9.9192e-01 8.2854e-02
-#> 278: 1.0189e+02 -4.1204e+00 -2.3508e+00 -4.0643e+00 -1.0129e+00 1.1750e-03 3.4396e-02 5.2693e-07 7.8999e-02 2.2787e-02 1.8793e-01 1.0278e-01 9.3279e-01 8.3113e-02 9.9144e-01 8.2856e-02
-#> 279: 1.0189e+02 -4.1204e+00 -2.3507e+00 -4.0642e+00 -1.0126e+00 1.2755e-03 3.4381e-02 5.2405e-07 7.9351e-02 2.2804e-02 1.8779e-01 1.0255e-01 9.3319e-01 8.3049e-02 9.9099e-01 8.2875e-02
-#> 280: 1.0189e+02 -4.1204e+00 -2.3507e+00 -4.0641e+00 -1.0127e+00 6.3408e-04 3.4519e-02 5.2180e-07 7.9825e-02 2.2801e-02 1.8775e-01 1.0292e-01 9.3349e-01 8.2970e-02 9.9076e-01 8.2918e-02
-#> 281: 1.0189e+02 -4.1204e+00 -2.3508e+00 -4.0639e+00 -1.0124e+00 6.2438e-04 3.4782e-02 5.1859e-07 8.0328e-02 2.2816e-02 1.8757e-01 1.0299e-01 9.3299e-01 8.3025e-02 9.9050e-01 8.2897e-02
-#> 282: 1.0189e+02 -4.1205e+00 -2.3511e+00 -4.0641e+00 -1.0122e+00 1.1770e-03 3.4754e-02 5.1798e-07 8.0649e-02 2.2836e-02 1.8766e-01 1.0297e-01 9.3351e-01 8.2989e-02 9.9171e-01 8.2893e-02
-#> 283: 1.0189e+02 -4.1205e+00 -2.3519e+00 -4.0644e+00 -1.0120e+00 2.1716e-03 3.4711e-02 5.1567e-07 8.0910e-02 2.2836e-02 1.8774e-01 1.0270e-01 9.3288e-01 8.3029e-02 9.9246e-01 8.2853e-02
-#> 284: 1.0189e+02 -4.1205e+00 -2.3524e+00 -4.0647e+00 -1.0115e+00 2.6623e-03 3.4646e-02 5.1350e-07 8.1153e-02 2.2950e-02 1.8775e-01 1.0277e-01 9.3238e-01 8.2990e-02 9.9212e-01 8.2836e-02
-#> 285: 1.0189e+02 -4.1205e+00 -2.3531e+00 -4.0649e+00 -1.0116e+00 3.7830e-03 3.4626e-02 5.1216e-07 8.1058e-02 2.3007e-02 1.8782e-01 1.0270e-01 9.3232e-01 8.3017e-02 9.9094e-01 8.2829e-02
-#> 286: 1.0189e+02 -4.1205e+00 -2.3539e+00 -4.0651e+00 -1.0111e+00 5.1752e-03 3.4599e-02 5.0989e-07 8.0970e-02 2.3004e-02 1.8757e-01 1.0254e-01 9.3280e-01 8.3006e-02 9.9130e-01 8.2818e-02
-#> 287: 1.0189e+02 -4.1205e+00 -2.3541e+00 -4.0654e+00 -1.0112e+00 6.3747e-03 3.4592e-02 5.0930e-07 8.1117e-02 2.2959e-02 1.8756e-01 1.0222e-01 9.3212e-01 8.3146e-02 9.9183e-01 8.2863e-02
-#> 288: 1.0189e+02 -4.1205e+00 -2.3540e+00 -4.0656e+00 -1.0115e+00 6.5668e-03 3.4598e-02 5.0976e-07 8.1125e-02 2.2895e-02 1.8782e-01 1.0183e-01 9.3310e-01 8.3169e-02 9.9404e-01 8.2836e-02
-#> 289: 1.0189e+02 -4.1205e+00 -2.3539e+00 -4.0658e+00 -1.0119e+00 7.3521e-03 3.4525e-02 5.1097e-07 8.1097e-02 2.2869e-02 1.8753e-01 1.0126e-01 9.3336e-01 8.3244e-02 9.9435e-01 8.2833e-02
-#> 290: 1.0189e+02 -4.1205e+00 -2.3539e+00 -4.0659e+00 -1.0122e+00 7.5226e-03 3.4377e-02 5.0846e-07 8.1212e-02 2.2831e-02 1.8724e-01 1.0073e-01 9.3292e-01 8.3261e-02 9.9415e-01 8.2837e-02
-#> 291: 1.0189e+02 -4.1205e+00 -2.3536e+00 -4.0659e+00 -1.0122e+00 7.2889e-03 3.4263e-02 5.0823e-07 8.1182e-02 2.2801e-02 1.8711e-01 1.0056e-01 9.3309e-01 8.3300e-02 9.9427e-01 8.2805e-02
-#> 292: 1.0189e+02 -4.1205e+00 -2.3531e+00 -4.0659e+00 -1.0123e+00 7.1827e-03 3.4146e-02 5.0825e-07 8.1696e-02 2.2760e-02 1.8703e-01 1.0039e-01 9.3324e-01 8.3306e-02 9.9379e-01 8.2784e-02
-#> 293: 1.0189e+02 -4.1205e+00 -2.3528e+00 -4.0660e+00 -1.0125e+00 7.7142e-03 3.4126e-02 5.0971e-07 8.2026e-02 2.2705e-02 1.8721e-01 1.0036e-01 9.3316e-01 8.3316e-02 9.9357e-01 8.2756e-02
-#> 294: 1.0188e+02 -4.1204e+00 -2.3529e+00 -4.0663e+00 -1.0126e+00 8.5146e-03 3.4314e-02 5.0823e-07 8.2197e-02 2.2608e-02 1.8743e-01 1.0009e-01 9.3356e-01 8.3308e-02 9.9367e-01 8.2719e-02
-#> 295: 1.0188e+02 -4.1204e+00 -2.3532e+00 -4.0666e+00 -1.0123e+00 9.2199e-03 3.4472e-02 5.0839e-07 8.2550e-02 2.2529e-02 1.8745e-01 9.9731e-02 9.3393e-01 8.3255e-02 9.9373e-01 8.2686e-02
-#> 296: 1.0188e+02 -4.1204e+00 -2.3537e+00 -4.0667e+00 -1.0121e+00 9.7869e-03 3.4678e-02 5.0983e-07 8.3059e-02 2.2497e-02 1.8729e-01 9.9260e-02 9.3395e-01 8.3198e-02 9.9300e-01 8.2681e-02
-#> 297: 1.0188e+02 -4.1204e+00 -2.3540e+00 -4.0670e+00 -1.0118e+00 1.0166e-02 3.4957e-02 5.1049e-07 8.3080e-02 2.2448e-02 1.8710e-01 9.8969e-02 9.3321e-01 8.3178e-02 9.9255e-01 8.2663e-02
-#> 298: 1.0188e+02 -4.1204e+00 -2.3544e+00 -4.0673e+00 -1.0117e+00 1.0649e-02 3.5259e-02 5.1103e-07 8.3179e-02 2.2383e-02 1.8704e-01 9.8442e-02 9.3227e-01 8.3199e-02 9.9266e-01 8.2646e-02
-#> 299: 1.0188e+02 -4.1204e+00 -2.3542e+00 -4.0676e+00 -1.0117e+00 1.0927e-02 3.5438e-02 5.1128e-07 8.3068e-02 2.2378e-02 1.8699e-01 9.8203e-02 9.3263e-01 8.3138e-02 9.9353e-01 8.2671e-02
-#> 300: 1.0188e+02 -4.1204e+00 -2.3544e+00 -4.0678e+00 -1.0116e+00 1.1083e-02 3.5694e-02 5.1107e-07 8.2896e-02 2.2344e-02 1.8733e-01 9.7775e-02 9.3179e-01 8.3124e-02 9.9379e-01 8.2657e-02
-#> 301: 1.0188e+02 -4.1204e+00 -2.3542e+00 -4.0680e+00 -1.0115e+00 1.0992e-02 3.5896e-02 5.1262e-07 8.2816e-02 2.2349e-02 1.8753e-01 9.7431e-02 9.3209e-01 8.3086e-02 9.9388e-01 8.2674e-02
-#> 302: 1.0188e+02 -4.1204e+00 -2.3540e+00 -4.0681e+00 -1.0113e+00 1.0410e-02 3.6050e-02 5.1256e-07 8.2817e-02 2.2308e-02 1.8734e-01 9.7153e-02 9.3221e-01 8.3073e-02 9.9402e-01 8.2670e-02
-#> 303: 1.0188e+02 -4.1204e+00 -2.3540e+00 -4.0681e+00 -1.0112e+00 1.0301e-02 3.6150e-02 5.1127e-07 8.2826e-02 2.2325e-02 1.8730e-01 9.6656e-02 9.3192e-01 8.3040e-02 9.9393e-01 8.2665e-02
-#> 304: 1.0188e+02 -4.1204e+00 -2.3536e+00 -4.0681e+00 -1.0113e+00 1.0235e-02 3.6393e-02 5.1176e-07 8.2606e-02 2.2353e-02 1.8724e-01 9.6171e-02 9.3161e-01 8.3068e-02 9.9361e-01 8.2698e-02
-#> 305: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0683e+00 -1.0112e+00 9.9655e-03 3.6369e-02 5.1442e-07 8.2520e-02 2.2378e-02 1.8707e-01 9.5656e-02 9.3113e-01 8.3109e-02 9.9338e-01 8.2731e-02
-#> 306: 1.0188e+02 -4.1204e+00 -2.3531e+00 -4.0684e+00 -1.0110e+00 9.9701e-03 3.6346e-02 5.1546e-07 8.2789e-02 2.2360e-02 1.8702e-01 9.5116e-02 9.3102e-01 8.3065e-02 9.9405e-01 8.2761e-02
-#> 307: 1.0188e+02 -4.1204e+00 -2.3530e+00 -4.0684e+00 -1.0112e+00 1.0194e-02 3.6300e-02 5.1196e-07 8.3035e-02 2.2381e-02 1.8704e-01 9.4760e-02 9.3082e-01 8.3003e-02 9.9410e-01 8.2779e-02
-#> 308: 1.0189e+02 -4.1204e+00 -2.3530e+00 -4.0685e+00 -1.0109e+00 9.9531e-03 3.6400e-02 5.1140e-07 8.3511e-02 2.2334e-02 1.8726e-01 9.4494e-02 9.3151e-01 8.2910e-02 9.9484e-01 8.2760e-02
-#> 309: 1.0188e+02 -4.1204e+00 -2.3530e+00 -4.0685e+00 -1.0107e+00 1.0089e-02 3.6382e-02 5.1081e-07 8.3917e-02 2.2276e-02 1.8728e-01 9.4285e-02 9.3133e-01 8.2875e-02 9.9545e-01 8.2757e-02
-#> 310: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0685e+00 -1.0105e+00 1.0805e-02 3.6375e-02 5.1041e-07 8.4245e-02 2.2246e-02 1.8753e-01 9.3894e-02 9.3052e-01 8.2899e-02 9.9500e-01 8.2743e-02
-#> 311: 1.0188e+02 -4.1204e+00 -2.3534e+00 -4.0685e+00 -1.0103e+00 1.1449e-02 3.6311e-02 5.0884e-07 8.4434e-02 2.2231e-02 1.8783e-01 9.3542e-02 9.3039e-01 8.2864e-02 9.9458e-01 8.2733e-02
-#> 312: 1.0188e+02 -4.1204e+00 -2.3535e+00 -4.0685e+00 -1.0102e+00 1.2173e-02 3.6373e-02 5.0821e-07 8.4730e-02 2.2176e-02 1.8769e-01 9.3317e-02 9.2982e-01 8.2916e-02 9.9438e-01 8.2740e-02
-#> 313: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0688e+00 -1.0103e+00 1.2812e-02 3.6558e-02 5.0751e-07 8.5211e-02 2.2131e-02 1.8754e-01 9.3387e-02 9.2962e-01 8.2892e-02 9.9458e-01 8.2741e-02
-#> 314: 1.0188e+02 -4.1204e+00 -2.3534e+00 -4.0690e+00 -1.0103e+00 1.3241e-02 3.6680e-02 5.0887e-07 8.5667e-02 2.2079e-02 1.8772e-01 9.3442e-02 9.2941e-01 8.2947e-02 9.9511e-01 8.2743e-02
-#> 315: 1.0188e+02 -4.1204e+00 -2.3534e+00 -4.0691e+00 -1.0104e+00 1.3699e-02 3.6924e-02 5.0965e-07 8.5865e-02 2.2028e-02 1.8766e-01 9.3264e-02 9.2904e-01 8.2986e-02 9.9543e-01 8.2763e-02
-#> 316: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0693e+00 -1.0103e+00 1.4121e-02 3.7218e-02 5.1041e-07 8.6216e-02 2.2076e-02 1.8773e-01 9.3035e-02 9.2917e-01 8.3013e-02 9.9486e-01 8.2782e-02
-#> 317: 1.0188e+02 -4.1204e+00 -2.3533e+00 -4.0694e+00 -1.0102e+00 1.4588e-02 3.7304e-02 5.0994e-07 8.6513e-02 2.2128e-02 1.8773e-01 9.2766e-02 9.2943e-01 8.3025e-02 9.9441e-01 8.2779e-02
-#> 318: 1.0188e+02 -4.1204e+00 -2.3534e+00 -4.0693e+00 -1.0101e+00 1.4714e-02 3.7538e-02 5.0773e-07 8.6801e-02 2.2128e-02 1.8767e-01 9.2698e-02 9.2907e-01 8.3052e-02 9.9378e-01 8.2780e-02
-#> 319: 1.0187e+02 -4.1204e+00 -2.3533e+00 -4.0692e+00 -1.0099e+00 1.4582e-02 3.7563e-02 5.0550e-07 8.6669e-02 2.2135e-02 1.8775e-01 9.2604e-02 9.2925e-01 8.3042e-02 9.9356e-01 8.2773e-02
-#> 320: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0690e+00 -1.0102e+00 1.4511e-02 3.7580e-02 5.0281e-07 8.6617e-02 2.2121e-02 1.8780e-01 9.2508e-02 9.3001e-01 8.3032e-02 9.9322e-01 8.2780e-02
-#> 321: 1.0187e+02 -4.1204e+00 -2.3534e+00 -4.0688e+00 -1.0100e+00 1.4288e-02 3.7624e-02 5.0172e-07 8.6311e-02 2.2115e-02 1.8783e-01 9.2445e-02 9.3011e-01 8.3054e-02 9.9288e-01 8.2772e-02
-#> 322: 1.0187e+02 -4.1204e+00 -2.3532e+00 -4.0687e+00 -1.0098e+00 1.3834e-02 3.7497e-02 5.0086e-07 8.6187e-02 2.2111e-02 1.8791e-01 9.2699e-02 9.3037e-01 8.3069e-02 9.9284e-01 8.2773e-02
-#> 323: 1.0187e+02 -4.1204e+00 -2.3524e+00 -4.0683e+00 -1.0097e+00 1.2977e-02 3.7420e-02 4.9925e-07 8.6082e-02 2.2084e-02 1.8818e-01 9.3123e-02 9.3036e-01 8.3012e-02 9.9265e-01 8.2813e-02
-#> 324: 1.0187e+02 -4.1204e+00 -2.3523e+00 -4.0682e+00 -1.0096e+00 1.2679e-02 3.7420e-02 4.9836e-07 8.5721e-02 2.2071e-02 1.8829e-01 9.3535e-02 9.3062e-01 8.3011e-02 9.9241e-01 8.2827e-02
-#> 325: 1.0187e+02 -4.1204e+00 -2.3520e+00 -4.0680e+00 -1.0094e+00 1.2196e-02 3.7298e-02 4.9735e-07 8.5411e-02 2.2028e-02 1.8848e-01 9.3706e-02 9.3043e-01 8.3020e-02 9.9256e-01 8.2826e-02
-#> 326: 1.0187e+02 -4.1204e+00 -2.3517e+00 -4.0678e+00 -1.0091e+00 1.1924e-02 3.7185e-02 4.9661e-07 8.5453e-02 2.1983e-02 1.8830e-01 9.3688e-02 9.3050e-01 8.2996e-02 9.9284e-01 8.2806e-02
-#> 327: 1.0187e+02 -4.1204e+00 -2.3516e+00 -4.0677e+00 -1.0090e+00 1.1449e-02 3.7155e-02 4.9755e-07 8.5761e-02 2.1967e-02 1.8819e-01 9.3936e-02 9.3052e-01 8.2912e-02 9.9245e-01 8.2806e-02
-#> 328: 1.0187e+02 -4.1204e+00 -2.3514e+00 -4.0675e+00 -1.0089e+00 1.0758e-02 3.7146e-02 4.9892e-07 8.6019e-02 2.1971e-02 1.8806e-01 9.4361e-02 9.3070e-01 8.2833e-02 9.9182e-01 8.2840e-02
-#> 329: 1.0187e+02 -4.1204e+00 -2.3515e+00 -4.0672e+00 -1.0087e+00 1.0256e-02 3.7342e-02 5.0019e-07 8.5965e-02 2.1989e-02 1.8796e-01 9.4614e-02 9.3067e-01 8.2818e-02 9.9159e-01 8.2858e-02
-#> 330: 1.0187e+02 -4.1204e+00 -2.3520e+00 -4.0670e+00 -1.0086e+00 1.0021e-02 3.7376e-02 4.9911e-07 8.6124e-02 2.1978e-02 1.8796e-01 9.4836e-02 9.3036e-01 8.2819e-02 9.9148e-01 8.2866e-02
-#> 331: 1.0187e+02 -4.1204e+00 -2.3521e+00 -4.0668e+00 -1.0086e+00 9.5790e-03 3.7296e-02 4.9753e-07 8.6122e-02 2.1951e-02 1.8782e-01 9.5042e-02 9.3064e-01 8.2783e-02 9.9196e-01 8.2863e-02
-#> 332: 1.0187e+02 -4.1204e+00 -2.3523e+00 -4.0667e+00 -1.0085e+00 9.2971e-03 3.7221e-02 4.9729e-07 8.6215e-02 2.1952e-02 1.8787e-01 9.5082e-02 9.3103e-01 8.2782e-02 9.9224e-01 8.2861e-02
-#> 333: 1.0187e+02 -4.1204e+00 -2.3524e+00 -4.0667e+00 -1.0084e+00 9.2591e-03 3.7097e-02 4.9556e-07 8.6302e-02 2.1922e-02 1.8792e-01 9.5155e-02 9.3058e-01 8.2798e-02 9.9202e-01 8.2831e-02
-#> 334: 1.0187e+02 -4.1204e+00 -2.3528e+00 -4.0667e+00 -1.0082e+00 9.5799e-03 3.6997e-02 4.9398e-07 8.6409e-02 2.1911e-02 1.8792e-01 9.5231e-02 9.3035e-01 8.2810e-02 9.9157e-01 8.2803e-02
-#> 335: 1.0187e+02 -4.1204e+00 -2.3529e+00 -4.0667e+00 -1.0080e+00 9.5724e-03 3.6912e-02 4.9206e-07 8.6310e-02 2.1923e-02 1.8791e-01 9.5379e-02 9.3054e-01 8.2759e-02 9.9143e-01 8.2776e-02
-#> 336: 1.0187e+02 -4.1204e+00 -2.3525e+00 -4.0667e+00 -1.0082e+00 9.5794e-03 3.6983e-02 4.9255e-07 8.6282e-02 2.1882e-02 1.8789e-01 9.5422e-02 9.3064e-01 8.2705e-02 9.9138e-01 8.2778e-02
-#> 337: 1.0187e+02 -4.1204e+00 -2.3525e+00 -4.0669e+00 -1.0083e+00 1.0008e-02 3.6943e-02 4.9278e-07 8.6483e-02 2.1844e-02 1.8794e-01 9.5240e-02 9.2981e-01 8.2753e-02 9.9100e-01 8.2774e-02
-#> 338: 1.0187e+02 -4.1204e+00 -2.3525e+00 -4.0669e+00 -1.0084e+00 1.0297e-02 3.6869e-02 4.9309e-07 8.6547e-02 2.1803e-02 1.8808e-01 9.5094e-02 9.2978e-01 8.2764e-02 9.9113e-01 8.2759e-02
-#> 339: 1.0187e+02 -4.1204e+00 -2.3528e+00 -4.0669e+00 -1.0083e+00 1.0465e-02 3.6822e-02 4.9257e-07 8.6779e-02 2.1769e-02 1.8813e-01 9.5062e-02 9.3020e-01 8.2702e-02 9.9135e-01 8.2750e-02
-#> 340: 1.0187e+02 -4.1204e+00 -2.3531e+00 -4.0668e+00 -1.0083e+00 1.0321e-02 3.6733e-02 4.9228e-07 8.7033e-02 2.1721e-02 1.8827e-01 9.4862e-02 9.3062e-01 8.2698e-02 9.9195e-01 8.2729e-02
-#> 341: 1.0187e+02 -4.1204e+00 -2.3531e+00 -4.0670e+00 -1.0085e+00 1.0501e-02 3.6671e-02 4.9236e-07 8.7297e-02 2.1733e-02 1.8820e-01 9.4558e-02 9.3121e-01 8.2677e-02 9.9238e-01 8.2713e-02
-#> 342: 1.0187e+02 -4.1204e+00 -2.3534e+00 -4.0670e+00 -1.0085e+00 1.0818e-02 3.6715e-02 4.9084e-07 8.7450e-02 2.1726e-02 1.8801e-01 9.4252e-02 9.3160e-01 8.2657e-02 9.9232e-01 8.2708e-02
-#> 343: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0670e+00 -1.0087e+00 1.1046e-02 3.6784e-02 4.8872e-07 8.7718e-02 2.1718e-02 1.8799e-01 9.3887e-02 9.3187e-01 8.2645e-02 9.9225e-01 8.2722e-02
-#> 344: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0670e+00 -1.0087e+00 1.0652e-02 3.6736e-02 4.8852e-07 8.7725e-02 2.1730e-02 1.8792e-01 9.3731e-02 9.3202e-01 8.2618e-02 9.9218e-01 8.2712e-02
-#> 345: 1.0187e+02 -4.1204e+00 -2.3536e+00 -4.0669e+00 -1.0090e+00 1.0445e-02 3.6714e-02 4.8690e-07 8.7782e-02 2.1751e-02 1.8798e-01 9.3450e-02 9.3223e-01 8.2582e-02 9.9239e-01 8.2706e-02
-#> 346: 1.0187e+02 -4.1204e+00 -2.3536e+00 -4.0668e+00 -1.0089e+00 1.0173e-02 3.6743e-02 4.8656e-07 8.7733e-02 2.1810e-02 1.8814e-01 9.3151e-02 9.3257e-01 8.2575e-02 9.9181e-01 8.2708e-02
-#> 347: 1.0187e+02 -4.1205e+00 -2.3532e+00 -4.0668e+00 -1.0089e+00 9.9457e-03 3.6808e-02 4.8756e-07 8.7948e-02 2.1819e-02 1.8813e-01 9.3040e-02 9.3255e-01 8.2599e-02 9.9124e-01 8.2727e-02
-#> 348: 1.0187e+02 -4.1205e+00 -2.3534e+00 -4.0667e+00 -1.0090e+00 9.8498e-03 3.6967e-02 4.8883e-07 8.7998e-02 2.1841e-02 1.8820e-01 9.3180e-02 9.3259e-01 8.2612e-02 9.9148e-01 8.2750e-02
-#> 349: 1.0187e+02 -4.1205e+00 -2.3535e+00 -4.0668e+00 -1.0091e+00 9.6211e-03 3.6891e-02 4.8867e-07 8.8006e-02 2.1930e-02 1.8819e-01 9.3390e-02 9.3232e-01 8.2612e-02 9.9073e-01 8.2738e-02
-#> 350: 1.0187e+02 -4.1205e+00 -2.3534e+00 -4.0669e+00 -1.0090e+00 9.7176e-03 3.6813e-02 4.8925e-07 8.7923e-02 2.1964e-02 1.8820e-01 9.3434e-02 9.3224e-01 8.2600e-02 9.9031e-01 8.2734e-02
-#> 351: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0669e+00 -1.0090e+00 9.6652e-03 3.6769e-02 4.8873e-07 8.7985e-02 2.2046e-02 1.8814e-01 9.3529e-02 9.3220e-01 8.2558e-02 9.8978e-01 8.2728e-02
-#> 352: 1.0187e+02 -4.1204e+00 -2.3536e+00 -4.0669e+00 -1.0089e+00 9.8745e-03 3.6732e-02 4.8969e-07 8.8016e-02 2.2094e-02 1.8799e-01 9.3644e-02 9.3168e-01 8.2577e-02 9.8913e-01 8.2722e-02
-#> 353: 1.0187e+02 -4.1204e+00 -2.3537e+00 -4.0669e+00 -1.0088e+00 9.7530e-03 3.6700e-02 4.9008e-07 8.7949e-02 2.2116e-02 1.8798e-01 9.3769e-02 9.3165e-01 8.2559e-02 9.8871e-01 8.2711e-02
-#> 354: 1.0187e+02 -4.1204e+00 -2.3538e+00 -4.0667e+00 -1.0089e+00 9.4103e-03 3.6653e-02 4.9045e-07 8.7894e-02 2.2118e-02 1.8793e-01 9.3872e-02 9.3188e-01 8.2551e-02 9.8887e-01 8.2692e-02
-#> 355: 1.0187e+02 -4.1204e+00 -2.3540e+00 -4.0666e+00 -1.0088e+00 9.1684e-03 3.6536e-02 4.9125e-07 8.7920e-02 2.2107e-02 1.8812e-01 9.4123e-02 9.3223e-01 8.2517e-02 9.8893e-01 8.2687e-02
-#> 356: 1.0187e+02 -4.1204e+00 -2.3542e+00 -4.0664e+00 -1.0086e+00 8.9025e-03 3.6431e-02 4.9325e-07 8.7949e-02 2.2110e-02 1.8827e-01 9.4135e-02 9.3252e-01 8.2503e-02 9.8907e-01 8.2649e-02
-#> 357: 1.0187e+02 -4.1204e+00 -2.3542e+00 -4.0663e+00 -1.0085e+00 8.6757e-03 3.6417e-02 4.9505e-07 8.8052e-02 2.2096e-02 1.8848e-01 9.4192e-02 9.3281e-01 8.2490e-02 9.8957e-01 8.2624e-02
-#> 358: 1.0187e+02 -4.1204e+00 -2.3542e+00 -4.0661e+00 -1.0084e+00 8.1812e-03 3.6349e-02 4.9610e-07 8.8344e-02 2.2104e-02 1.8844e-01 9.4129e-02 9.3294e-01 8.2493e-02 9.8977e-01 8.2614e-02
-#> 359: 1.0187e+02 -4.1204e+00 -2.3541e+00 -4.0659e+00 -1.0083e+00 8.0905e-03 3.6475e-02 4.9675e-07 8.8647e-02 2.2116e-02 1.8831e-01 9.4146e-02 9.3322e-01 8.2473e-02 9.8978e-01 8.2622e-02
-#> 360: 1.0187e+02 -4.1204e+00 -2.3542e+00 -4.0657e+00 -1.0082e+00 7.8390e-03 3.6468e-02 4.9649e-07 8.8981e-02 2.2120e-02 1.8815e-01 9.4249e-02 9.3361e-01 8.2430e-02 9.8997e-01 8.2616e-02
-#> 361: 1.0187e+02 -4.1204e+00 -2.3545e+00 -4.0656e+00 -1.0083e+00 7.9104e-03 3.6434e-02 4.9737e-07 8.9447e-02 2.2133e-02 1.8808e-01 9.4085e-02 9.3387e-01 8.2426e-02 9.9025e-01 8.2616e-02
-#> 362: 1.0187e+02 -4.1204e+00 -2.3547e+00 -4.0655e+00 -1.0087e+00 7.6341e-03 3.6428e-02 4.9748e-07 8.9872e-02 2.2148e-02 1.8805e-01 9.4025e-02 9.3407e-01 8.2456e-02 9.9070e-01 8.2609e-02
-#> 363: 1.0187e+02 -4.1204e+00 -2.3546e+00 -4.0653e+00 -1.0087e+00 7.2351e-03 3.6392e-02 4.9842e-07 9.0125e-02 2.2179e-02 1.8818e-01 9.4157e-02 9.3437e-01 8.2439e-02 9.9051e-01 8.2626e-02
-#> 364: 1.0187e+02 -4.1204e+00 -2.3543e+00 -4.0651e+00 -1.0089e+00 6.7851e-03 3.6303e-02 4.9890e-07 9.0448e-02 2.2189e-02 1.8831e-01 9.4432e-02 9.3513e-01 8.2433e-02 9.9051e-01 8.2655e-02
-#> 365: 1.0187e+02 -4.1204e+00 -2.3538e+00 -4.0650e+00 -1.0089e+00 6.2935e-03 3.6267e-02 4.9829e-07 9.0718e-02 2.2204e-02 1.8818e-01 9.4507e-02 9.3580e-01 8.2387e-02 9.9049e-01 8.2678e-02
-#> 366: 1.0187e+02 -4.1204e+00 -2.3535e+00 -4.0649e+00 -1.0088e+00 5.8910e-03 3.6339e-02 4.9911e-07 9.0727e-02 2.2231e-02 1.8801e-01 9.4683e-02 9.3567e-01 8.2359e-02 9.8997e-01 8.2681e-02
-#> 367: 1.0187e+02 -4.1204e+00 -2.3533e+00 -4.0649e+00 -1.0088e+00 5.8610e-03 3.6366e-02 5.0123e-07 9.0732e-02 2.2245e-02 1.8793e-01 9.4666e-02 9.3556e-01 8.2339e-02 9.8945e-01 8.2691e-02
-#> 368: 1.0187e+02 -4.1204e+00 -2.3531e+00 -4.0650e+00 -1.0088e+00 6.1043e-03 3.6424e-02 5.0107e-07 9.0729e-02 2.2248e-02 1.8780e-01 9.4599e-02 9.3554e-01 8.2315e-02 9.8903e-01 8.2705e-02
-#> 369: 1.0187e+02 -4.1204e+00 -2.3530e+00 -4.0650e+00 -1.0088e+00 6.1767e-03 3.6436e-02 5.0046e-07 9.0617e-02 2.2226e-02 1.8787e-01 9.4410e-02 9.3504e-01 8.2361e-02 9.8843e-01 8.2694e-02
-#> 370: 1.0187e+02 -4.1204e+00 -2.3528e+00 -4.0651e+00 -1.0088e+00 6.2532e-03 3.6467e-02 5.0024e-07 9.0741e-02 2.2223e-02 1.8794e-01 9.4288e-02 9.3472e-01 8.2374e-02 9.8781e-01 8.2703e-02
-#> 371: 1.0186e+02 -4.1204e+00 -2.3525e+00 -4.0652e+00 -1.0088e+00 6.2117e-03 3.6465e-02 4.9964e-07 9.0904e-02 2.2220e-02 1.8788e-01 9.4310e-02 9.3470e-01 8.2367e-02 9.8730e-01 8.2731e-02
-#> 372: 1.0186e+02 -4.1204e+00 -2.3524e+00 -4.0651e+00 -1.0089e+00 6.1363e-03 3.6367e-02 5.0037e-07 9.1177e-02 2.2230e-02 1.8783e-01 9.4288e-02 9.3496e-01 8.2365e-02 9.8699e-01 8.2729e-02
-#> 373: 1.0186e+02 -4.1204e+00 -2.3523e+00 -4.0650e+00 -1.0089e+00 6.0384e-03 3.6353e-02 5.0195e-07 9.1402e-02 2.2219e-02 1.8764e-01 9.4343e-02 9.3478e-01 8.2430e-02 9.8641e-01 8.2747e-02
-#> 374: 1.0186e+02 -4.1204e+00 -2.3523e+00 -4.0650e+00 -1.0091e+00 5.9821e-03 3.6377e-02 5.0424e-07 9.1532e-02 2.2243e-02 1.8761e-01 9.4219e-02 9.3466e-01 8.2418e-02 9.8614e-01 8.2735e-02
-#> 375: 1.0186e+02 -4.1204e+00 -2.3524e+00 -4.0649e+00 -1.0091e+00 5.8843e-03 3.6358e-02 5.0568e-07 9.1556e-02 2.2250e-02 1.8768e-01 9.4173e-02 9.3432e-01 8.2413e-02 9.8592e-01 8.2728e-02
-#> 376: 1.0186e+02 -4.1204e+00 -2.3526e+00 -4.0649e+00 -1.0090e+00 5.7256e-03 3.6406e-02 5.0673e-07 9.1590e-02 2.2260e-02 1.8765e-01 9.4159e-02 9.3417e-01 8.2400e-02 9.8565e-01 8.2701e-02
-#> 377: 1.0186e+02 -4.1204e+00 -2.3527e+00 -4.0647e+00 -1.0091e+00 5.2782e-03 3.6397e-02 5.0740e-07 9.1564e-02 2.2263e-02 1.8765e-01 9.4084e-02 9.3434e-01 8.2395e-02 9.8563e-01 8.2680e-02
-#> 378: 1.0186e+02 -4.1204e+00 -2.3524e+00 -4.0646e+00 -1.0091e+00 4.8184e-03 3.6478e-02 5.0759e-07 9.1590e-02 2.2213e-02 1.8766e-01 9.4162e-02 9.3432e-01 8.2353e-02 9.8595e-01 8.2681e-02
-#> 379: 1.0186e+02 -4.1204e+00 -2.3521e+00 -4.0646e+00 -1.0089e+00 4.4861e-03 3.6557e-02 5.0710e-07 9.1595e-02 2.2159e-02 1.8767e-01 9.3894e-02 9.3395e-01 8.2341e-02 9.8636e-01 8.2671e-02
-#> 380: 1.0186e+02 -4.1204e+00 -2.3517e+00 -4.0644e+00 -1.0089e+00 3.9799e-03 3.6543e-02 5.0682e-07 9.1532e-02 2.2143e-02 1.8768e-01 9.3854e-02 9.3372e-01 8.2331e-02 9.8640e-01 8.2678e-02
-#> 381: 1.0186e+02 -4.1204e+00 -2.3515e+00 -4.0643e+00 -1.0089e+00 3.6269e-03 3.6531e-02 5.0770e-07 9.1364e-02 2.2157e-02 1.8768e-01 9.3897e-02 9.3383e-01 8.2326e-02 9.8630e-01 8.2675e-02
-#> 382: 1.0186e+02 -4.1204e+00 -2.3513e+00 -4.0643e+00 -1.0090e+00 3.1691e-03 3.6469e-02 5.0860e-07 9.1318e-02 2.2188e-02 1.8767e-01 9.3787e-02 9.3433e-01 8.2306e-02 9.8643e-01 8.2670e-02
-#> 383: 1.0186e+02 -4.1204e+00 -2.3508e+00 -4.0642e+00 -1.0090e+00 2.6209e-03 3.6416e-02 5.0893e-07 9.1374e-02 2.2165e-02 1.8759e-01 9.3654e-02 9.3443e-01 8.2289e-02 9.8663e-01 8.2672e-02
-#> 384: 1.0186e+02 -4.1204e+00 -2.3505e+00 -4.0640e+00 -1.0090e+00 2.1556e-03 3.6403e-02 5.0834e-07 9.1550e-02 2.2148e-02 1.8750e-01 9.3422e-02 9.3444e-01 8.2277e-02 9.8639e-01 8.2670e-02
-#> 385: 1.0186e+02 -4.1204e+00 -2.3505e+00 -4.0638e+00 -1.0089e+00 1.7048e-03 3.6391e-02 5.0788e-07 9.1717e-02 2.2160e-02 1.8746e-01 9.3178e-02 9.3457e-01 8.2261e-02 9.8616e-01 8.2636e-02
-#> 386: 1.0186e+02 -4.1204e+00 -2.3504e+00 -4.0637e+00 -1.0089e+00 1.4309e-03 3.6372e-02 5.0847e-07 9.1895e-02 2.2157e-02 1.8754e-01 9.2918e-02 9.3439e-01 8.2246e-02 9.8601e-01 8.2617e-02
-#> 387: 1.0186e+02 -4.1204e+00 -2.3505e+00 -4.0636e+00 -1.0089e+00 1.3524e-03 3.6446e-02 5.0896e-07 9.2022e-02 2.2182e-02 1.8768e-01 9.2684e-02 9.3470e-01 8.2216e-02 9.8593e-01 8.2620e-02
-#> 388: 1.0186e+02 -4.1204e+00 -2.3506e+00 -4.0635e+00 -1.0089e+00 1.2887e-03 3.6478e-02 5.0904e-07 9.2117e-02 2.2174e-02 1.8761e-01 9.2506e-02 9.3463e-01 8.2221e-02 9.8563e-01 8.2609e-02
-#> 389: 1.0186e+02 -4.1204e+00 -2.3505e+00 -4.0635e+00 -1.0089e+00 1.2044e-03 3.6479e-02 5.0969e-07 9.2068e-02 2.2180e-02 1.8751e-01 9.2308e-02 9.3438e-01 8.2241e-02 9.8516e-01 8.2592e-02
-#> 390: 1.0186e+02 -4.1204e+00 -2.3506e+00 -4.0635e+00 -1.0087e+00 1.1442e-03 3.6497e-02 5.0878e-07 9.1995e-02 2.2156e-02 1.8744e-01 9.2169e-02 9.3410e-01 8.2257e-02 9.8511e-01 8.2581e-02
-#> 391: 1.0186e+02 -4.1204e+00 -2.3508e+00 -4.0635e+00 -1.0089e+00 1.0925e-03 3.6454e-02 5.0876e-07 9.1945e-02 2.2177e-02 1.8739e-01 9.1989e-02 9.3439e-01 8.2254e-02 9.8472e-01 8.2579e-02
-#> 392: 1.0186e+02 -4.1204e+00 -2.3506e+00 -4.0633e+00 -1.0091e+00 7.9940e-04 3.6417e-02 5.0874e-07 9.1956e-02 2.2185e-02 1.8730e-01 9.1977e-02 9.3422e-01 8.2244e-02 9.8463e-01 8.2589e-02
-#> 393: 1.0186e+02 -4.1204e+00 -2.3504e+00 -4.0632e+00 -1.0093e+00 4.2112e-04 3.6433e-02 5.0843e-07 9.1868e-02 2.2211e-02 1.8739e-01 9.2106e-02 9.3464e-01 8.2217e-02 9.8458e-01 8.2594e-02
-#> 394: 1.0186e+02 -4.1204e+00 -2.3502e+00 -4.0631e+00 -1.0093e+00 1.4926e-04 3.6534e-02 5.0862e-07 9.1713e-02 2.2244e-02 1.8735e-01 9.2105e-02 9.3454e-01 8.2239e-02 9.8410e-01 8.2601e-02
-#> 395: 1.0186e+02 -4.1204e+00 -2.3499e+00 -4.0630e+00 -1.0095e+00 5.2506e-05 3.6667e-02 5.0955e-07 9.1548e-02 2.2269e-02 1.8733e-01 9.2151e-02 9.3450e-01 8.2256e-02 9.8389e-01 8.2612e-02
-#> 396: 1.0186e+02 -4.1204e+00 -2.3497e+00 -4.0630e+00 -1.0097e+00 1.6581e-05 3.6789e-02 5.1002e-07 9.1431e-02 2.2299e-02 1.8742e-01 9.2120e-02 9.3450e-01 8.2252e-02 9.8367e-01 8.2620e-02
-#> 397: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0629e+00 -1.0098e+00 -5.0310e-05 3.6860e-02 5.0949e-07 9.1311e-02 2.2323e-02 1.8738e-01 9.2130e-02 9.3467e-01 8.2250e-02 9.8388e-01 8.2628e-02
-#> 398: 1.0186e+02 -4.1205e+00 -2.3494e+00 -4.0629e+00 -1.0097e+00 -1.4918e-04 3.6902e-02 5.0935e-07 9.1211e-02 2.2330e-02 1.8747e-01 9.2144e-02 9.3478e-01 8.2260e-02 9.8420e-01 8.2632e-02
-#> 399: 1.0186e+02 -4.1205e+00 -2.3497e+00 -4.0628e+00 -1.0097e+00 -2.2152e-04 3.6932e-02 5.0927e-07 9.1209e-02 2.2377e-02 1.8750e-01 9.2136e-02 9.3481e-01 8.2286e-02 9.8431e-01 8.2622e-02
-#> 400: 1.0186e+02 -4.1205e+00 -2.3499e+00 -4.0629e+00 -1.0097e+00 3.2878e-05 3.6943e-02 5.0892e-07 9.1092e-02 2.2388e-02 1.8752e-01 9.2072e-02 9.3534e-01 8.2276e-02 9.8472e-01 8.2615e-02
-#> 401: 1.0186e+02 -4.1205e+00 -2.3501e+00 -4.0630e+00 -1.0097e+00 2.6776e-04 3.6950e-02 5.0860e-07 9.1038e-02 2.2395e-02 1.8740e-01 9.1911e-02 9.3515e-01 8.2331e-02 9.8459e-01 8.2615e-02
-#> 402: 1.0186e+02 -4.1205e+00 -2.3502e+00 -4.0632e+00 -1.0097e+00 3.9988e-04 3.6912e-02 5.0849e-07 9.0944e-02 2.2401e-02 1.8737e-01 9.1701e-02 9.3494e-01 8.2353e-02 9.8479e-01 8.2609e-02
-#> 403: 1.0186e+02 -4.1205e+00 -2.3503e+00 -4.0633e+00 -1.0098e+00 4.9714e-04 3.6935e-02 5.0805e-07 9.0895e-02 2.2404e-02 1.8741e-01 9.1609e-02 9.3444e-01 8.2372e-02 9.8505e-01 8.2638e-02
-#> 404: 1.0186e+02 -4.1205e+00 -2.3504e+00 -4.0633e+00 -1.0100e+00 5.8465e-04 3.6978e-02 5.0889e-07 9.0862e-02 2.2453e-02 1.8746e-01 9.1650e-02 9.3491e-01 8.2364e-02 9.8484e-01 8.2653e-02
-#> 405: 1.0186e+02 -4.1205e+00 -2.3505e+00 -4.0634e+00 -1.0099e+00 5.5970e-04 3.6999e-02 5.0964e-07 9.0930e-02 2.2480e-02 1.8742e-01 9.1823e-02 9.3458e-01 8.2371e-02 9.8465e-01 8.2670e-02
-#> 406: 1.0186e+02 -4.1205e+00 -2.3507e+00 -4.0634e+00 -1.0098e+00 5.4464e-04 3.7123e-02 5.1046e-07 9.1008e-02 2.2478e-02 1.8749e-01 9.1930e-02 9.3449e-01 8.2361e-02 9.8440e-01 8.2666e-02
-#> 407: 1.0186e+02 -4.1205e+00 -2.3506e+00 -4.0634e+00 -1.0097e+00 3.5564e-04 3.7226e-02 5.0978e-07 9.0891e-02 2.2469e-02 1.8751e-01 9.2130e-02 9.3444e-01 8.2380e-02 9.8462e-01 8.2660e-02
-#> 408: 1.0186e+02 -4.1205e+00 -2.3506e+00 -4.0635e+00 -1.0097e+00 3.8362e-04 3.7354e-02 5.0967e-07 9.0892e-02 2.2461e-02 1.8747e-01 9.2230e-02 9.3453e-01 8.2363e-02 9.8466e-01 8.2661e-02
-#> 409: 1.0186e+02 -4.1205e+00 -2.3505e+00 -4.0635e+00 -1.0097e+00 2.6671e-04 3.7473e-02 5.0928e-07 9.0894e-02 2.2519e-02 1.8751e-01 9.2243e-02 9.3447e-01 8.2347e-02 9.8449e-01 8.2667e-02
-#> 410: 1.0186e+02 -4.1205e+00 -2.3506e+00 -4.0634e+00 -1.0098e+00 1.7963e-04 3.7438e-02 5.0981e-07 9.0898e-02 2.2600e-02 1.8764e-01 9.2237e-02 9.3502e-01 8.2320e-02 9.8430e-01 8.2663e-02
-#> 411: 1.0186e+02 -4.1205e+00 -2.3506e+00 -4.0634e+00 -1.0098e+00 1.0085e-04 3.7381e-02 5.0970e-07 9.0820e-02 2.2618e-02 1.8767e-01 9.2103e-02 9.3480e-01 8.2324e-02 9.8427e-01 8.2652e-02
-#> 412: 1.0186e+02 -4.1205e+00 -2.3508e+00 -4.0633e+00 -1.0097e+00 1.9452e-04 3.7315e-02 5.0984e-07 9.0784e-02 2.2605e-02 1.8772e-01 9.2118e-02 9.3504e-01 8.2314e-02 9.8431e-01 8.2636e-02
-#> 413: 1.0186e+02 -4.1205e+00 -2.3508e+00 -4.0632e+00 -1.0097e+00 1.8432e-04 3.7243e-02 5.0946e-07 9.0798e-02 2.2604e-02 1.8765e-01 9.2206e-02 9.3499e-01 8.2299e-02 9.8426e-01 8.2636e-02
-#> 414: 1.0186e+02 -4.1205e+00 -2.3505e+00 -4.0632e+00 -1.0097e+00 2.1744e-04 3.7203e-02 5.0880e-07 9.0769e-02 2.2604e-02 1.8757e-01 9.2403e-02 9.3516e-01 8.2279e-02 9.8414e-01 8.2659e-02
-#> 415: 1.0186e+02 -4.1205e+00 -2.3505e+00 -4.0633e+00 -1.0097e+00 1.9330e-04 3.7197e-02 5.0896e-07 9.0657e-02 2.2618e-02 1.8764e-01 9.2565e-02 9.3514e-01 8.2264e-02 9.8435e-01 8.2655e-02
-#> 416: 1.0186e+02 -4.1205e+00 -2.3501e+00 -4.0634e+00 -1.0097e+00 2.1450e-04 3.7144e-02 5.0882e-07 9.0762e-02 2.2645e-02 1.8761e-01 9.2614e-02 9.3511e-01 8.2277e-02 9.8415e-01 8.2669e-02
-#> 417: 1.0186e+02 -4.1205e+00 -2.3498e+00 -4.0634e+00 -1.0099e+00 1.0737e-04 3.7092e-02 5.0932e-07 9.0804e-02 2.2631e-02 1.8754e-01 9.2581e-02 9.3509e-01 8.2284e-02 9.8430e-01 8.2667e-02
-#> 418: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0633e+00 -1.0099e+00 2.4734e-05 3.7061e-02 5.0972e-07 9.0913e-02 2.2624e-02 1.8736e-01 9.2572e-02 9.3482e-01 8.2275e-02 9.8413e-01 8.2682e-02
-#> 419: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0633e+00 -1.0099e+00 -3.9197e-05 3.7070e-02 5.1000e-07 9.1084e-02 2.2644e-02 1.8727e-01 9.2636e-02 9.3494e-01 8.2259e-02 9.8382e-01 8.2673e-02
-#> 420: 1.0186e+02 -4.1205e+00 -2.3494e+00 -4.0633e+00 -1.0098e+00 -1.2434e-04 3.7103e-02 5.1037e-07 9.1152e-02 2.2631e-02 1.8733e-01 9.2862e-02 9.3515e-01 8.2244e-02 9.8388e-01 8.2656e-02
-#> 421: 1.0186e+02 -4.1205e+00 -2.3494e+00 -4.0632e+00 -1.0097e+00 -1.5440e-04 3.7123e-02 5.1205e-07 9.1233e-02 2.2626e-02 1.8744e-01 9.2935e-02 9.3523e-01 8.2241e-02 9.8360e-01 8.2652e-02
-#> 422: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0633e+00 -1.0095e+00 -8.9184e-05 3.7182e-02 5.1296e-07 9.1123e-02 2.2617e-02 1.8749e-01 9.2915e-02 9.3509e-01 8.2276e-02 9.8367e-01 8.2637e-02
-#> 423: 1.0186e+02 -4.1205e+00 -2.3497e+00 -4.0634e+00 -1.0095e+00 6.7469e-05 3.7194e-02 5.1323e-07 9.1083e-02 2.2642e-02 1.8739e-01 9.3097e-02 9.3529e-01 8.2270e-02 9.8367e-01 8.2642e-02
-#> 424: 1.0186e+02 -4.1205e+00 -2.3498e+00 -4.0635e+00 -1.0094e+00 1.5970e-04 3.7258e-02 5.1292e-07 9.0998e-02 2.2667e-02 1.8730e-01 9.3311e-02 9.3525e-01 8.2262e-02 9.8362e-01 8.2648e-02
-#> 425: 1.0186e+02 -4.1205e+00 -2.3499e+00 -4.0636e+00 -1.0095e+00 2.7004e-04 3.7298e-02 5.1307e-07 9.0839e-02 2.2665e-02 1.8744e-01 9.3429e-02 9.3497e-01 8.2282e-02 9.8395e-01 8.2657e-02
-#> 426: 1.0186e+02 -4.1205e+00 -2.3499e+00 -4.0636e+00 -1.0094e+00 3.9201e-04 3.7303e-02 5.1305e-07 9.0647e-02 2.2675e-02 1.8743e-01 9.3523e-02 9.3477e-01 8.2314e-02 9.8371e-01 8.2655e-02
-#> 427: 1.0186e+02 -4.1205e+00 -2.3496e+00 -4.0636e+00 -1.0093e+00 2.9359e-04 3.7366e-02 5.1245e-07 9.0630e-02 2.2673e-02 1.8738e-01 9.3813e-02 9.3495e-01 8.2291e-02 9.8368e-01 8.2653e-02
-#> 428: 1.0186e+02 -4.1204e+00 -2.3496e+00 -4.0635e+00 -1.0094e+00 2.5099e-04 3.7411e-02 5.1144e-07 9.0647e-02 2.2674e-02 1.8732e-01 9.3993e-02 9.3493e-01 8.2273e-02 9.8373e-01 8.2652e-02
-#> 429: 1.0186e+02 -4.1204e+00 -2.3495e+00 -4.0635e+00 -1.0095e+00 2.4723e-04 3.7543e-02 5.1084e-07 9.0600e-02 2.2677e-02 1.8723e-01 9.4269e-02 9.3518e-01 8.2286e-02 9.8396e-01 8.2659e-02
-#> 430: 1.0186e+02 -4.1204e+00 -2.3494e+00 -4.0635e+00 -1.0096e+00 2.7711e-04 3.7579e-02 5.1022e-07 9.0496e-02 2.2679e-02 1.8708e-01 9.4484e-02 9.3525e-01 8.2309e-02 9.8433e-01 8.2672e-02
-#> 431: 1.0186e+02 -4.1204e+00 -2.3494e+00 -4.0634e+00 -1.0095e+00 1.3934e-05 3.7631e-02 5.0908e-07 9.0378e-02 2.2671e-02 1.8708e-01 9.4770e-02 9.3528e-01 8.2302e-02 9.8470e-01 8.2682e-02
-#> 432: 1.0186e+02 -4.1204e+00 -2.3495e+00 -4.0633e+00 -1.0096e+00 -8.9401e-05 3.7677e-02 5.0861e-07 9.0278e-02 2.2654e-02 1.8702e-01 9.4882e-02 9.3518e-01 8.2318e-02 9.8488e-01 8.2667e-02
-#> 433: 1.0186e+02 -4.1205e+00 -2.3495e+00 -4.0633e+00 -1.0096e+00 -3.6841e-04 3.7706e-02 5.0854e-07 9.0108e-02 2.2652e-02 1.8703e-01 9.5039e-02 9.3487e-01 8.2331e-02 9.8494e-01 8.2669e-02
-#> 434: 1.0186e+02 -4.1205e+00 -2.3493e+00 -4.0632e+00 -1.0096e+00 -4.3399e-04 3.7671e-02 5.0796e-07 9.0036e-02 2.2661e-02 1.8701e-01 9.5122e-02 9.3474e-01 8.2331e-02 9.8474e-01 8.2675e-02
-#> 435: 1.0186e+02 -4.1205e+00 -2.3491e+00 -4.0632e+00 -1.0096e+00 -6.1398e-04 3.7654e-02 5.0727e-07 8.9940e-02 2.2664e-02 1.8691e-01 9.5242e-02 9.3451e-01 8.2346e-02 9.8466e-01 8.2677e-02
-#> 436: 1.0186e+02 -4.1205e+00 -2.3487e+00 -4.0632e+00 -1.0094e+00 -7.2148e-04 3.7647e-02 5.0649e-07 8.9838e-02 2.2661e-02 1.8694e-01 9.5465e-02 9.3429e-01 8.2365e-02 9.8475e-01 8.2683e-02
-#> 437: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0632e+00 -1.0093e+00 -1.1480e-03 3.7613e-02 5.0662e-07 8.9719e-02 2.2674e-02 1.8698e-01 9.5631e-02 9.3419e-01 8.2380e-02 9.8490e-01 8.2684e-02
-#> 438: 1.0186e+02 -4.1204e+00 -2.3482e+00 -4.0631e+00 -1.0092e+00 -1.5547e-03 3.7583e-02 5.0753e-07 8.9612e-02 2.2680e-02 1.8703e-01 9.5913e-02 9.3413e-01 8.2394e-02 9.8523e-01 8.2678e-02
-#> 439: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0630e+00 -1.0093e+00 -1.9392e-03 3.7463e-02 5.0769e-07 8.9410e-02 2.2706e-02 1.8706e-01 9.6149e-02 9.3392e-01 8.2425e-02 9.8512e-01 8.2670e-02
-#> 440: 1.0186e+02 -4.1205e+00 -2.3482e+00 -4.0629e+00 -1.0094e+00 -2.1940e-03 3.7360e-02 5.0743e-07 8.9245e-02 2.2742e-02 1.8710e-01 9.6213e-02 9.3400e-01 8.2445e-02 9.8490e-01 8.2676e-02
-#> 441: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0629e+00 -1.0095e+00 -2.3414e-03 3.7297e-02 5.0838e-07 8.9137e-02 2.2806e-02 1.8721e-01 9.6155e-02 9.3405e-01 8.2450e-02 9.8470e-01 8.2684e-02
-#> 442: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0628e+00 -1.0095e+00 -2.6378e-03 3.7241e-02 5.0923e-07 8.9066e-02 2.2846e-02 1.8727e-01 9.6135e-02 9.3389e-01 8.2465e-02 9.8454e-01 8.2686e-02
-#> 443: 1.0186e+02 -4.1205e+00 -2.3482e+00 -4.0627e+00 -1.0094e+00 -2.8716e-03 3.7214e-02 5.1026e-07 8.9128e-02 2.2901e-02 1.8740e-01 9.6077e-02 9.3386e-01 8.2444e-02 9.8421e-01 8.2692e-02
-#> 444: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0627e+00 -1.0092e+00 -2.9147e-03 3.7196e-02 5.1104e-07 8.9190e-02 2.2985e-02 1.8744e-01 9.5999e-02 9.3390e-01 8.2424e-02 9.8381e-01 8.2696e-02
-#> 445: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0626e+00 -1.0090e+00 -2.9638e-03 3.7251e-02 5.1283e-07 8.9335e-02 2.3004e-02 1.8756e-01 9.5788e-02 9.3382e-01 8.2416e-02 9.8347e-01 8.2683e-02
-#> 446: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0627e+00 -1.0090e+00 -2.8796e-03 3.7331e-02 5.1479e-07 8.9470e-02 2.3017e-02 1.8762e-01 9.5656e-02 9.3368e-01 8.2405e-02 9.8325e-01 8.2680e-02
-#> 447: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0628e+00 -1.0091e+00 -2.7695e-03 3.7473e-02 5.1656e-07 8.9568e-02 2.3030e-02 1.8757e-01 9.5575e-02 9.3379e-01 8.2386e-02 9.8306e-01 8.2690e-02
-#> 448: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0629e+00 -1.0091e+00 -2.6293e-03 3.7498e-02 5.1814e-07 8.9776e-02 2.3052e-02 1.8762e-01 9.5422e-02 9.3373e-01 8.2372e-02 9.8274e-01 8.2685e-02
-#> 449: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0628e+00 -1.0092e+00 -2.5640e-03 3.7542e-02 5.1867e-07 8.9888e-02 2.3056e-02 1.8763e-01 9.5364e-02 9.3400e-01 8.2365e-02 9.8239e-01 8.2691e-02
-#> 450: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0628e+00 -1.0093e+00 -2.5816e-03 3.7622e-02 5.1849e-07 9.0050e-02 2.3061e-02 1.8765e-01 9.5274e-02 9.3435e-01 8.2341e-02 9.8235e-01 8.2699e-02
-#> 451: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0627e+00 -1.0094e+00 -2.4837e-03 3.7631e-02 5.1931e-07 9.0177e-02 2.3053e-02 1.8766e-01 9.5103e-02 9.3459e-01 8.2322e-02 9.8226e-01 8.2715e-02
-#> 452: 1.0186e+02 -4.1205e+00 -2.3482e+00 -4.0627e+00 -1.0094e+00 -2.4156e-03 3.7606e-02 5.1901e-07 9.0333e-02 2.3047e-02 1.8763e-01 9.4959e-02 9.3485e-01 8.2289e-02 9.8210e-01 8.2713e-02
-#> 453: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0627e+00 -1.0093e+00 -2.4619e-03 3.7552e-02 5.1874e-07 9.0495e-02 2.3066e-02 1.8761e-01 9.4960e-02 9.3485e-01 8.2293e-02 9.8178e-01 8.2703e-02
-#> 454: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0627e+00 -1.0092e+00 -2.4816e-03 3.7514e-02 5.1835e-07 9.0606e-02 2.3073e-02 1.8754e-01 9.4896e-02 9.3491e-01 8.2277e-02 9.8154e-01 8.2696e-02
-#> 455: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0627e+00 -1.0092e+00 -2.3708e-03 3.7457e-02 5.1742e-07 9.0715e-02 2.3099e-02 1.8756e-01 9.4804e-02 9.3481e-01 8.2272e-02 9.8122e-01 8.2688e-02
-#> 456: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0627e+00 -1.0093e+00 -2.2313e-03 3.7409e-02 5.1680e-07 9.0906e-02 2.3131e-02 1.8743e-01 9.4814e-02 9.3476e-01 8.2261e-02 9.8108e-01 8.2694e-02
-#> 457: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0628e+00 -1.0095e+00 -2.1182e-03 3.7342e-02 5.1630e-07 9.0986e-02 2.3158e-02 1.8733e-01 9.4843e-02 9.3488e-01 8.2244e-02 9.8094e-01 8.2700e-02
-#> 458: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0628e+00 -1.0095e+00 -1.9242e-03 3.7244e-02 5.1605e-07 9.1085e-02 2.3168e-02 1.8720e-01 9.4820e-02 9.3509e-01 8.2228e-02 9.8093e-01 8.2703e-02
-#> 459: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0629e+00 -1.0095e+00 -1.7643e-03 3.7203e-02 5.1566e-07 9.1179e-02 2.3175e-02 1.8715e-01 9.4809e-02 9.3516e-01 8.2216e-02 9.8087e-01 8.2690e-02
-#> 460: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0629e+00 -1.0094e+00 -1.5479e-03 3.7151e-02 5.1547e-07 9.1211e-02 2.3155e-02 1.8712e-01 9.4703e-02 9.3539e-01 8.2201e-02 9.8100e-01 8.2683e-02
-#> 461: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0630e+00 -1.0095e+00 -1.4993e-03 3.7111e-02 5.1446e-07 9.1225e-02 2.3159e-02 1.8705e-01 9.4569e-02 9.3555e-01 8.2183e-02 9.8078e-01 8.2680e-02
-#> 462: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0629e+00 -1.0094e+00 -1.4890e-03 3.7056e-02 5.1361e-07 9.1446e-02 2.3158e-02 1.8694e-01 9.4494e-02 9.3557e-01 8.2171e-02 9.8058e-01 8.2688e-02
-#> 463: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0629e+00 -1.0094e+00 -1.3999e-03 3.6996e-02 5.1319e-07 9.1659e-02 2.3176e-02 1.8695e-01 9.4436e-02 9.3570e-01 8.2153e-02 9.8053e-01 8.2686e-02
-#> 464: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0630e+00 -1.0095e+00 -1.1544e-03 3.6949e-02 5.1300e-07 9.1885e-02 2.3162e-02 1.8688e-01 9.4378e-02 9.3599e-01 8.2134e-02 9.8051e-01 8.2694e-02
-#> 465: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0630e+00 -1.0097e+00 -9.7372e-04 3.6943e-02 5.1235e-07 9.2014e-02 2.3136e-02 1.8692e-01 9.4288e-02 9.3605e-01 8.2141e-02 9.8053e-01 8.2693e-02
-#> 466: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0630e+00 -1.0097e+00 -9.2442e-04 3.6916e-02 5.1246e-07 9.2074e-02 2.3132e-02 1.8688e-01 9.4254e-02 9.3590e-01 8.2131e-02 9.8016e-01 8.2691e-02
-#> 467: 1.0186e+02 -4.1205e+00 -2.3485e+00 -4.0631e+00 -1.0098e+00 -8.2540e-04 3.6928e-02 5.1340e-07 9.2164e-02 2.3141e-02 1.8690e-01 9.4382e-02 9.3620e-01 8.2106e-02 9.7996e-01 8.2705e-02
-#> 468: 1.0186e+02 -4.1205e+00 -2.3484e+00 -4.0631e+00 -1.0097e+00 -7.3368e-04 3.6925e-02 5.1395e-07 9.2218e-02 2.3136e-02 1.8695e-01 9.4504e-02 9.3629e-01 8.2094e-02 9.7985e-01 8.2716e-02
-#> 469: 1.0186e+02 -4.1205e+00 -2.3483e+00 -4.0630e+00 -1.0096e+00 -7.4343e-04 3.6891e-02 5.1401e-07 9.2204e-02 2.3114e-02 1.8700e-01 9.4639e-02 9.3643e-01 8.2078e-02 9.7996e-01 8.2709e-02
-#> 470: 1.0186e+02 -4.1205e+00 -2.3482e+00 -4.0630e+00 -1.0096e+00 -7.8250e-04 3.6874e-02 5.1370e-07 9.2209e-02 2.3083e-02 1.8702e-01 9.4728e-02 9.3646e-01 8.2073e-02 9.7989e-01 8.2703e-02
-#> 471: 1.0186e+02 -4.1205e+00 -2.3480e+00 -4.0629e+00 -1.0095e+00 -1.0440e-03 3.6843e-02 5.1358e-07 9.2194e-02 2.3062e-02 1.8710e-01 9.4741e-02 9.3649e-01 8.2082e-02 9.8003e-01 8.2701e-02
-#> 472: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0629e+00 -1.0096e+00 -9.5438e-04 3.6869e-02 5.1330e-07 9.2176e-02 2.3050e-02 1.8712e-01 9.4766e-02 9.3666e-01 8.2080e-02 9.7996e-01 8.2691e-02
-#> 473: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0630e+00 -1.0096e+00 -8.2178e-04 3.6877e-02 5.1283e-07 9.2191e-02 2.3021e-02 1.8703e-01 9.4747e-02 9.3670e-01 8.2072e-02 9.8007e-01 8.2693e-02
-#> 474: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0630e+00 -1.0096e+00 -7.0189e-04 3.6927e-02 5.1196e-07 9.2195e-02 2.2989e-02 1.8702e-01 9.4746e-02 9.3669e-01 8.2054e-02 9.8029e-01 8.2689e-02
-#> 475: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0630e+00 -1.0095e+00 -7.1989e-04 3.6993e-02 5.1125e-07 9.2159e-02 2.2963e-02 1.8700e-01 9.4813e-02 9.3681e-01 8.2051e-02 9.8027e-01 8.2680e-02
-#> 476: 1.0186e+02 -4.1205e+00 -2.3481e+00 -4.0629e+00 -1.0096e+00 -7.1806e-04 3.7018e-02 5.1105e-07 9.2091e-02 2.2933e-02 1.8696e-01 9.4837e-02 9.3713e-01 8.2067e-02 9.8033e-01 8.2674e-02
-#> 477: 1.0186e+02 -4.1205e+00 -2.3479e+00 -4.0630e+00 -1.0097e+00 -7.3438e-04 3.6986e-02 5.1121e-07 9.2046e-02 2.2909e-02 1.8698e-01 9.4809e-02 9.3743e-01 8.2059e-02 9.8045e-01 8.2693e-02
-#> 478: 1.0186e+02 -4.1205e+00 -2.3478e+00 -4.0630e+00 -1.0096e+00 -7.9338e-04 3.6912e-02 5.1224e-07 9.2056e-02 2.2881e-02 1.8698e-01 9.4791e-02 9.3757e-01 8.2042e-02 9.8072e-01 8.2682e-02
-#> 479: 1.0186e+02 -4.1205e+00 -2.3476e+00 -4.0629e+00 -1.0096e+00 -8.6158e-04 3.6882e-02 5.1284e-07 9.2159e-02 2.2867e-02 1.8694e-01 9.4774e-02 9.3749e-01 8.2051e-02 9.8088e-01 8.2679e-02
-#> 480: 1.0186e+02 -4.1205e+00 -2.3474e+00 -4.0629e+00 -1.0096e+00 -1.1334e-03 3.6851e-02 5.1423e-07 9.2253e-02 2.2869e-02 1.8696e-01 9.4820e-02 9.3751e-01 8.2063e-02 9.8097e-01 8.2693e-02
-#> 481: 1.0186e+02 -4.1205e+00 -2.3470e+00 -4.0629e+00 -1.0096e+00 -1.2444e-03 3.6785e-02 5.1490e-07 9.2397e-02 2.2853e-02 1.8694e-01 9.4838e-02 9.3770e-01 8.2031e-02 9.8124e-01 8.2707e-02
-#> 482: 1.0186e+02 -4.1205e+00 -2.3467e+00 -4.0629e+00 -1.0095e+00 -1.3612e-03 3.6750e-02 5.1658e-07 9.2440e-02 2.2842e-02 1.8683e-01 9.4800e-02 9.3786e-01 8.2041e-02 9.8107e-01 8.2719e-02
-#> 483: 1.0186e+02 -4.1205e+00 -2.3467e+00 -4.0628e+00 -1.0096e+00 -1.5168e-03 3.6783e-02 5.1708e-07 9.2590e-02 2.2804e-02 1.8674e-01 9.4804e-02 9.3790e-01 8.2042e-02 9.8116e-01 8.2719e-02
-#> 484: 1.0186e+02 -4.1205e+00 -2.3466e+00 -4.0628e+00 -1.0097e+00 -1.5218e-03 3.6848e-02 5.1669e-07 9.2717e-02 2.2775e-02 1.8670e-01 9.4940e-02 9.3798e-01 8.2028e-02 9.8106e-01 8.2719e-02
-#> 485: 1.0186e+02 -4.1205e+00 -2.3464e+00 -4.0628e+00 -1.0097e+00 -1.4177e-03 3.6867e-02 5.1615e-07 9.2806e-02 2.2765e-02 1.8669e-01 9.5018e-02 9.3816e-01 8.2020e-02 9.8090e-01 8.2721e-02
-#> 486: 1.0186e+02 -4.1205e+00 -2.3462e+00 -4.0628e+00 -1.0098e+00 -1.5257e-03 3.6968e-02 5.1513e-07 9.3019e-02 2.2762e-02 1.8663e-01 9.5111e-02 9.3816e-01 8.2013e-02 9.8071e-01 8.2732e-02
-#> 487: 1.0186e+02 -4.1205e+00 -2.3460e+00 -4.0628e+00 -1.0097e+00 -1.7055e-03 3.7021e-02 5.1446e-07 9.3161e-02 2.2732e-02 1.8652e-01 9.5373e-02 9.3832e-01 8.1997e-02 9.8078e-01 8.2737e-02
-#> 488: 1.0186e+02 -4.1205e+00 -2.3459e+00 -4.0628e+00 -1.0097e+00 -1.8502e-03 3.7069e-02 5.1391e-07 9.3282e-02 2.2741e-02 1.8641e-01 9.5414e-02 9.3818e-01 8.2001e-02 9.8064e-01 8.2738e-02
-#> 489: 1.0186e+02 -4.1205e+00 -2.3458e+00 -4.0628e+00 -1.0097e+00 -1.9091e-03 3.7017e-02 5.1291e-07 9.3286e-02 2.2738e-02 1.8639e-01 9.5453e-02 9.3808e-01 8.1991e-02 9.8047e-01 8.2728e-02
-#> 490: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0628e+00 -1.0097e+00 -1.8766e-03 3.6969e-02 5.1220e-07 9.3297e-02 2.2728e-02 1.8635e-01 9.5468e-02 9.3793e-01 8.1988e-02 9.8034e-01 8.2726e-02
-#> 491: 1.0186e+02 -4.1205e+00 -2.3457e+00 -4.0627e+00 -1.0097e+00 -1.7736e-03 3.6915e-02 5.1153e-07 9.3298e-02 2.2716e-02 1.8634e-01 9.5548e-02 9.3772e-01 8.2005e-02 9.8025e-01 8.2722e-02
-#> 492: 1.0186e+02 -4.1205e+00 -2.3457e+00 -4.0627e+00 -1.0097e+00 -1.7747e-03 3.6877e-02 5.1077e-07 9.3336e-02 2.2697e-02 1.8635e-01 9.5593e-02 9.3778e-01 8.2001e-02 9.8013e-01 8.2725e-02
-#> 493: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0628e+00 -1.0094e+00 -1.6324e-03 3.6857e-02 5.1020e-07 9.3348e-02 2.2668e-02 1.8636e-01 9.5735e-02 9.3764e-01 8.1984e-02 9.8019e-01 8.2723e-02
-#> 494: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0629e+00 -1.0094e+00 -1.5393e-03 3.6842e-02 5.1022e-07 9.3359e-02 2.2649e-02 1.8637e-01 9.5812e-02 9.3739e-01 8.1982e-02 9.8033e-01 8.2708e-02
-#> 495: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0629e+00 -1.0094e+00 -1.5166e-03 3.6841e-02 5.1004e-07 9.3321e-02 2.2642e-02 1.8640e-01 9.5849e-02 9.3716e-01 8.1979e-02 9.8016e-01 8.2700e-02
-#> 496: 1.0186e+02 -4.1205e+00 -2.3456e+00 -4.0630e+00 -1.0095e+00 -1.4947e-03 3.6841e-02 5.0969e-07 9.3236e-02 2.2646e-02 1.8640e-01 9.5916e-02 9.3719e-01 8.1963e-02 9.8028e-01 8.2702e-02
-#> 497: 1.0186e+02 -4.1205e+00 -2.3457e+00 -4.0629e+00 -1.0094e+00 -1.4507e-03 3.6827e-02 5.0937e-07 9.3185e-02 2.2663e-02 1.8638e-01 9.5991e-02 9.3707e-01 8.1954e-02 9.8047e-01 8.2718e-02
-#> 498: 1.0186e+02 -4.1205e+00 -2.3459e+00 -4.0630e+00 -1.0094e+00 -1.2569e-03 3.6805e-02 5.0854e-07 9.3089e-02 2.2677e-02 1.8634e-01 9.5931e-02 9.3719e-01 8.1952e-02 9.8051e-01 8.2718e-02
-#> 499: 1.0186e+02 -4.1205e+00 -2.3460e+00 -4.0630e+00 -1.0093e+00 -1.0466e-03 3.6769e-02 5.0789e-07 9.3029e-02 2.2690e-02 1.8631e-01 9.5862e-02 9.3729e-01 8.1956e-02 9.8046e-01 8.2731e-02
-#> 500: 1.0186e+02 -4.1205e+00 -2.3464e+00 -4.0630e+00 -1.0093e+00 -7.3346e-04 3.6766e-02 5.0769e-07 9.3093e-02 2.2701e-02 1.8633e-01 9.5687e-02 9.3739e-01 8.1977e-02 9.8039e-01 8.2728e-02#> Calculating covariance matrix#> #> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → compiling EBE model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"#> Calculating residuals/tables#> done# The following takes a very long time but gives
+#> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> #> → generate SAEM model#> ✔ done#> Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc, ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG, addProp = .addProp, tol = .tol, itmax = .itmax, type = .type, powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_m1#> Timing stopped at: 1.281 0.142 1.422# The following takes a very long time but gives
f_nlmixr_dfop_sfo_focei <- nlmixr(f_mmkin_dfop_sfo, est = "focei")
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Needed Covariates:#> [1] "CMT"
-#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#> F: Forward difference gradient approximation
-#> C: Central difference gradient approximation
-#> M: Mixed forward and central difference gradient approximation
-#> Unscaled parameters for Omegas=chol(solve(omega));
-#> Diagonals are transformed, as specified by foceiControl(diagXform=)
-#> |-----+---------------+-----------+-----------+-----------+-----------|
-#> | #| Objective Fun | parent_0 | log_k_m1 |f_parent_qlogis | log_k1 |
-#> |.....................| log_k2 | g_qlogis | sigma_low | rsd_high |
-#> |.....................| o1 | o2 | o3 | o4 |
-#> |.....................| o5 | o6 |...........|...........|
-#> | 1| 496.98032 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
-#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
-#> |.....................| -0.8950 | -0.9012 |...........|...........|
-#> | U| 496.98032 | 101.7 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 496.98032 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | G| Gill Diff. | 57.10 | -0.1453 | -0.1275 | 0.2854 |
-#> |.....................| -0.6156 | 0.007043 | -23.49 | -32.87 |
-#> |.....................| 3.669 | -17.46 | -13.05 | -13.08 |
-#> |.....................| -16.16 | -9.766 |...........|...........|
-#> | 2| 3094.8373 | 0.2572 | -0.9978 | -0.9392 | -0.9714 |
-#> |.....................| -0.9920 | -0.9233 | -0.6037 | -0.4942 |
-#> |.....................| -0.9579 | -0.6658 | -0.7293 | -0.7310 |
-#> |.....................| -0.6848 | -0.7742 |...........|...........|
-#> | U| 3094.8373 | 26.15 | -4.052 | -0.9415 | -2.363 |
-#> |.....................| -4.062 | -0.01133 | 0.8386 | 0.08074 |
-#> |.....................| 0.6445 | 1.946 | 1.477 | 1.348 |
-#> |.....................| 1.794 | 1.297 |...........|...........|
-#> | X| 3094.8373 | 26.15 | 0.01739 | 0.2806 | 0.09412 |
-#> |.....................| 0.01721 | 0.4972 | 0.8386 | 0.08074 |
-#> |.....................| 0.6445 | 1.946 | 1.477 | 1.348 |
-#> |.....................| 1.794 | 1.297 |...........|...........|
-#> | 3| 557.60681 | 0.9257 | -0.9995 | -0.9407 | -0.9680 |
-#> |.....................| -0.9992 | -0.9232 | -0.8787 | -0.8790 |
-#> |.....................| -0.9150 | -0.8703 | -0.8821 | -0.8842 |
-#> |.....................| -0.8739 | -0.8885 |...........|...........|
-#> | U| 557.60681 | 94.11 | -4.053 | -0.9430 | -2.360 |
-#> |.....................| -4.069 | -0.01133 | 0.7386 | 0.06794 |
-#> |.....................| 0.6735 | 1.622 | 1.284 | 1.172 |
-#> |.....................| 1.513 | 1.165 |...........|...........|
-#> | X| 557.60681 | 94.11 | 0.01736 | 0.2803 | 0.09444 |
-#> |.....................| 0.01709 | 0.4972 | 0.7386 | 0.06794 |
-#> |.....................| 0.6735 | 1.622 | 1.284 | 1.172 |
-#> |.....................| 1.513 | 1.165 |...........|...........|
-#> | 4| 543.47785 | 0.9926 | -0.9997 | -0.9408 | -0.9677 |
-#> |.....................| -0.9999 | -0.9232 | -0.9062 | -0.9175 |
-#> |.....................| -0.9107 | -0.8907 | -0.8974 | -0.8995 |
-#> |.....................| -0.8929 | -0.9000 |...........|...........|
-#> | U| 543.47785 | 100.9 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7286 | 0.06666 |
-#> |.....................| 0.6764 | 1.589 | 1.264 | 1.154 |
-#> |.....................| 1.485 | 1.152 |...........|...........|
-#> | X| 543.47785 | 100.9 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7286 | 0.06666 |
-#> |.....................| 0.6764 | 1.589 | 1.264 | 1.154 |
-#> |.....................| 1.485 | 1.152 |...........|...........|
-#> | 5| 544.09017 | 0.9993 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9089 | -0.9213 |
-#> |.....................| -0.9103 | -0.8928 | -0.8990 | -0.9010 |
-#> |.....................| -0.8948 | -0.9011 |...........|...........|
-#> | U| 544.09017 | 101.6 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7276 | 0.06654 |
-#> |.....................| 0.6767 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 544.09017 | 101.6 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7276 | 0.06654 |
-#> |.....................| 0.6767 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | 6| 544.17109 | 0.9999 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
-#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
-#> |.....................| -0.8949 | -0.9012 |...........|...........|
-#> | U| 544.17109 | 101.6 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 544.17109 | 101.6 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | 7| 544.17937 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
-#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
-#> |.....................| -0.8950 | -0.9012 |...........|...........|
-#> | U| 544.17937 | 101.7 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 544.17937 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | 8| 544.18025 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
-#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
-#> |.....................| -0.8950 | -0.9012 |...........|...........|
-#> | U| 544.18025 | 101.7 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 544.18025 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | 9| 544.18033 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
-#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
-#> |.....................| -0.8950 | -0.9012 |...........|...........|
-#> | U| 544.18033 | 101.7 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 544.18033 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | 10| 544.18034 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
-#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
-#> |.....................| -0.8950 | -0.9012 |...........|...........|
-#> | U| 544.18034 | 101.7 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 544.18034 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | 11| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
-#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
-#> |.....................| -0.8950 | -0.9012 |...........|...........|
-#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | 12| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
-#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
-#> |.....................| -0.8950 | -0.9012 |...........|...........|
-#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | 13| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
-#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
-#> |.....................| -0.8950 | -0.9012 |...........|...........|
-#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | 14| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
-#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
-#> |.....................| -0.8950 | -0.9012 |...........|...........|
-#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | 15| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
-#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
-#> |.....................| -0.8950 | -0.9012 |...........|...........|
-#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | 16| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
-#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
-#> |.....................| -0.8950 | -0.9012 |...........|...........|
-#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | 17| 544.18036 | 1.000 | -0.9997 | -0.9408 | -0.9676 |
-#> |.....................| -1.000 | -0.9232 | -0.9092 | -0.9217 |
-#> |.....................| -0.9102 | -0.8930 | -0.8991 | -0.9012 |
-#> |.....................| -0.8950 | -0.9012 |...........|...........|
-#> | U| 544.18036 | 101.7 | -4.054 | -0.9431 | -2.359 |
-#> |.....................| -4.070 | -0.01132 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> | X| 544.18036 | 101.7 | 0.01736 | 0.2803 | 0.09447 |
-#> |.....................| 0.01708 | 0.4972 | 0.7275 | 0.06652 |
-#> |.....................| 0.6768 | 1.586 | 1.262 | 1.152 |
-#> |.....................| 1.482 | 1.151 |...........|...........|
-#> calculating covariance matrix
-#> done#> Calculating residuals/tables#> done#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))#> Warning: last objective function was not at minimum, possible problems in optimization#> Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo#> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)#> #> df AIC
-#> f_nlmixr_dfop_sfo_saem$nm 16 Inf
-#> f_nlmixr_dfop_sfo_focei$nm 14 886.4573#> ℹ parameter labels from comments are typically ignored in non-interactive mode#> ℹ Need to run with the source intact to parse comments#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → creating full model...#> → pruning branches (`if`/`else`)...#> ✔ done#> → loading into symengine environment...#> ✔ done#> → calculate jacobian#> #> → calculate sensitivities#> #> → calculate ∂(f)/∂(η)#> #> → calculate ∂(R²)/∂(η)#> #> → finding duplicate expressions in inner model...#> #> → optimizing duplicate expressions in inner model...#> #> → finding duplicate expressions in EBE model...#> #> → optimizing duplicate expressions in EBE model...#> #> → compiling inner model...#> #> ✔ done#> → finding duplicate expressions in FD model...#> #> → optimizing duplicate expressions in FD model...#> #> → compiling EBE model...#> #> ✔ done#> → compiling events FD model...#> #> ✔ done#> Model:#> cmt(parent);
+#> cmt(m1);
+#> rx_expr_6~ETA[1]+THETA[1];
+#> parent(0)=rx_expr_6;
+#> rx_expr_7~ETA[4]+THETA[4];
+#> rx_expr_8~ETA[6]+THETA[6];
+#> rx_expr_9~ETA[5]+THETA[5];
+#> rx_expr_12~exp(rx_expr_7);
+#> rx_expr_13~exp(rx_expr_9);
+#> rx_expr_15~t*rx_expr_12;
+#> rx_expr_16~t*rx_expr_13;
+#> rx_expr_19~exp(-(rx_expr_8));
+#> rx_expr_21~1+rx_expr_19;
+#> rx_expr_26~1/(rx_expr_21);
+#> rx_expr_28~(rx_expr_26);
+#> rx_expr_29~1-rx_expr_28;
+#> d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_21)+exp(rx_expr_9-rx_expr_16)*(rx_expr_29))/(exp(-t*rx_expr_12)/(rx_expr_21)+exp(-t*rx_expr_13)*(rx_expr_29));
+#> rx_expr_10~ETA[2]+THETA[2];
+#> rx_expr_14~exp(rx_expr_10);
+#> d/dt(m1)=-rx_expr_14*m1+parent*f_parent_to_m1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_21)+exp(rx_expr_9-rx_expr_16)*(rx_expr_29))/(exp(-t*rx_expr_12)/(rx_expr_21)+exp(-t*rx_expr_13)*(rx_expr_29));
+#> rx_expr_0~CMT==2;
+#> rx_expr_1~CMT==1;
+#> rx_expr_2~1-(rx_expr_0);
+#> rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);
+#> rx_expr_3~(rx_expr_0);
+#> rx_expr_5~(rx_expr_2);
+#> rx_expr_20~rx_expr_5*(rx_expr_1);
+#> rx_lambda_~rx_expr_20+rx_expr_3;
+#> rx_hi_~rx_expr_20+rx_expr_3;
+#> rx_low_~0;
+#> rx_expr_4~m1*(rx_expr_0);
+#> rx_expr_11~parent*(rx_expr_2);
+#> rx_expr_24~rx_expr_11*(rx_expr_1);
+#> rx_pred_=(rx_expr_4+rx_expr_24)*(rx_expr_0)+(rx_expr_4+rx_expr_24)*(rx_expr_2)*(rx_expr_1);
+#> rx_expr_17~Rx_pow_di(THETA[8],2);
+#> rx_expr_18~Rx_pow_di(THETA[7],2);
+#> rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_24)*(rx_expr_0)+(rx_expr_4+rx_expr_24)*(rx_expr_2)*(rx_expr_1)),2)*rx_expr_17+rx_expr_18)*(rx_expr_0)+(Rx_pow_di(((rx_expr_4+rx_expr_24)*(rx_expr_1)),2)*rx_expr_17+rx_expr_18)*(rx_expr_2)*(rx_expr_1);
+#> parent_0=THETA[1];
+#> log_k_m1=THETA[2];
+#> f_parent_qlogis=THETA[3];
+#> log_k1=THETA[4];
+#> log_k2=THETA[5];
+#> g_qlogis=THETA[6];
+#> sigma_low=THETA[7];
+#> rsd_high=THETA[8];
+#> eta.parent_0=ETA[1];
+#> eta.log_k_m1=ETA[2];
+#> eta.f_parent_qlogis=ETA[3];
+#> eta.log_k1=ETA[4];
+#> eta.log_k2=ETA[5];
+#> eta.g_qlogis=ETA[6];
+#> parent_0_model=rx_expr_6;
+#> k_m1=rx_expr_14;
+#> k1=rx_expr_12;
+#> k2=rx_expr_13;
+#> f_parent=1/(1+exp(-(ETA[3]+THETA[3])));
+#> g=1/(rx_expr_21);
+#> tad=tad();
+#> dosenum=dosenum();#> Needed Covariates:#> [1] "f_parent_to_m1" "CMT" #> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.#> Timing stopped at: 19.01 0.403 19.42#> Error in AIC(f_nlmixr_dfop_sfo_saem$nm, f_nlmixr_dfop_sfo_focei$nm): object 'f_nlmixr_dfop_sfo_saem' not found#> Error in h(simpleError(msg, call)): error in evaluating the argument 'object' in selecting a method for function 'summary': object 'f_nlmixr_dfop_sfo_sfo' not found# }
diff --git a/docs/dev/reference/tffm0.html b/docs/dev/reference/tffm0.html
index d993e8ff..67f26b85 100644
--- a/docs/dev/reference/tffm0.html
+++ b/docs/dev/reference/tffm0.html
@@ -81,7 +81,7 @@ from RxODE." />
mkin
- 1.0.5
+ 1.1.0
diff --git a/docs/dev/sitemap.xml b/docs/dev/sitemap.xml
index 150840e1..b5e83f34 100644
--- a/docs/dev/sitemap.xml
+++ b/docs/dev/sitemap.xml
@@ -246,4 +246,7 @@
https://pkgdown.jrwb.de/mkin/articles/web_only/compiled_models.html
+
+ https://pkgdown.jrwb.de/mkin/articles/web_only/dimethenamid_2018.html
+
diff --git a/vignettes/web_only/dimethenamid_2018.html b/vignettes/web_only/dimethenamid_2018.html
index e84a435c..df8200eb 100644
--- a/vignettes/web_only/dimethenamid_2018.html
+++ b/vignettes/web_only/dimethenamid_2018.html
@@ -1594,7 +1594,7 @@ div.tocify {
Example evaluations of the dimethenamid data from 2018
Johannes Ranke
-Last change 23 June 2021, built on 25 Jun 2021
+Last change 27 July 2021, built on 27 Jul 2021
@@ -1655,18 +1655,20 @@ f_parent_mkin_tc <- mmkin(c("SFO", "DFOP"), dmta_ds,
nlme
The nlme package was the first R extension providing facilities to fit nonlinear mixed-effects models. We use would like to do model selection from all four combinations of degradation models and error models based on the AIC. However, fitting the DFOP model with constant variance and using default control parameters results in an error, signalling that the maximum number of 50 iterations was reached, potentially indicating overparameterisation. However, the algorithm converges when the two-component error model is used in combination with the DFOP model. This can be explained by the fact that the smaller residues observed at later sampling times get more weight when using the two-component error model which will counteract the tendency of the algorithm to try parameter combinations unsuitable for fitting these data.
-f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ])
-#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ]) # error
+library(nlme)
+f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ])
+#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ])
+# maxIter = 50 reached
f_parent_nlme_sfo_tc <- nlme(f_parent_mkin_tc["SFO", ])
f_parent_nlme_dfop_tc <- nlme(f_parent_mkin_tc["DFOP", ])
Note that overparameterisation is also indicated by warnings obtained when fitting SFO or DFOP with the two-component error model (‘false convergence’ in the ‘LME step’ in some iterations). In addition to these fits, attempts were also made to include correlations between random effects by using the log Cholesky parameterisation of the matrix specifying them. The code used for these attempts can be made visible below.
f_parent_nlme_sfo_const_logchol <- nlme(f_parent_mkin_const["SFO", ],
random = pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1)))
anova(f_parent_nlme_sfo_const, f_parent_nlme_sfo_const_logchol) # not better
-f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc,
- random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
+#f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc,
+# random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
# using log Cholesky parameterisation for random effects (nlme default) does
-# not converge and gives lots of warnings about the LME step not converging
+# not converge here and gives lots of warnings about the LME step not converging
The model comparison function of the nlme package can directly be applied to these fits showing a similar goodness-of-fit of the SFO model, but a much lower AIC for the DFOP model fitted with the two-component error model. Also, the likelihood ratio test indicates that this difference is significant. as the p-value is below 0.0001.
anova(
f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
@@ -1685,24 +1687,24 @@ f_parent_nlme_dfop_tc 3 10 687.84 718.59 -333.92 2 vs 3 140.771 <.0001
The corresponding SAEM fits of the four combinations of degradation and error models are fitted below. As there is no convergence criterion implemented in the saemix package, the convergence plots need to be manually checked for every fit.
The convergence plot for the SFO model using constant variance is shown below.
library(saemix)
-f_parent_saemix_sfo_const <- saem(f_parent_mkin_const["SFO", ], quiet = TRUE,
+f_parent_saemix_sfo_const <- mkin::saem(f_parent_mkin_const["SFO", ], quiet = TRUE,
transformations = "saemix")
plot(f_parent_saemix_sfo_const$so, plot.type = "convergence")
Obviously the default number of iterations is sufficient to reach convergence. This can also be said for the SFO fit using the two-component error model.
-f_parent_saemix_sfo_tc <- saem(f_parent_mkin_tc["SFO", ], quiet = TRUE,
+f_parent_saemix_sfo_tc <- mkin::saem(f_parent_mkin_tc["SFO", ], quiet = TRUE,
transformations = "saemix")
plot(f_parent_saemix_sfo_tc$so, plot.type = "convergence")
-When fitting the DFOP model with constant variance, parameter convergence is not as unambiguous. Therefore, the number of iterations in the first phase of the algorithm was increased, leading to visually satisfying convergence.
-f_parent_saemix_dfop_const <- saem(f_parent_mkin_const["DFOP", ], quiet = TRUE,
+When fitting the DFOP model with constant variance, parameter convergence is not as unambiguous (see the failure of nlme with the default number of iterations above). Therefore, the number of iterations in the first phase of the algorithm was increased, leading to visually satisfying convergence.
+f_parent_saemix_dfop_const <- mkin::saem(f_parent_mkin_const["DFOP", ], quiet = TRUE,
control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
transformations = "saemix")
plot(f_parent_saemix_dfop_const$so, plot.type = "convergence")
-The same applies to the case where the DFOP model is fitted with the two-component error model.
-f_parent_saemix_dfop_tc_moreiter <- saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE,
+The same applies to the case where the DFOP model is fitted with the two-component error model. Convergence of the variance of k2 is enhanced by using the two-component error, it remains more or less stable already after 200 iterations of the first phase.
+f_parent_saemix_dfop_tc_moreiter <- mkin::saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE,
control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
transformations = "saemix")
@@ -1710,20 +1712,31 @@ plot(f_parent_saemix_dfop_tc_moreiter$so, plot.type = "convergence")
The four combinations can be compared using the model comparison function from the saemix package:
compare.saemix(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so,
- f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc$so)
+ f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc_moreiter$so)
Likelihoods calculated by importance sampling
AIC BIC
1 818.37 817.33
2 820.38 819.14
3 725.91 724.04
-4 688.09 686.01
+4 683.64 681.55
As in the case of nlme fits, the DFOP model fitted with two-component error (number 4) gives the lowest AIC. The numeric values are reasonably close to the ones obtained using nlme, considering that the algorithms for fitting the model and for the likelihood calculation are quite different.
+In order to check the influence of the likelihood calculation algorithms implemented in saemix, the likelihood from Gaussian quadrature is added to the best fit, and the AIC values obtained from the three methods are compared.
+f_parent_saemix_dfop_tc_moreiter$so <-
+ llgq.saemix(f_parent_saemix_dfop_tc_moreiter$so)
+AIC(f_parent_saemix_dfop_tc_moreiter$so)
+[1] 683.64
+AIC(f_parent_saemix_dfop_tc_moreiter$so, method = "gq")
+[1] 683.7
+AIC(f_parent_saemix_dfop_tc_moreiter$so, method = "lin")
+[1] 683.17
+The AIC values based on importance sampling and Gaussian quadrature are quite similar. Using linearisation is less accurate, but still gives a similar value.
nlmixr
In the last years, a lot of effort has been put into the nlmixr package which is designed for pharmacokinetics, where nonlinear mixed-effects models are routinely used, but which can also be used for related data like chemical degradation data. A current development branch of the mkin package provides an interface between mkin and nlmixr. Here, we check if we get equivalent results when using a refined version of the First Order Conditional Estimation (FOCE) algorithm used in nlme, namely First Order Conditional Estimation with Interaction (FOCEI), and the SAEM algorithm as implemented in nlmixr.
First, the focei algorithm is used for the four model combinations and the goodness of fit of the results is compared.
-f_parent_nlmixr_focei_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "focei")
+library(nlmixr)
+f_parent_nlmixr_focei_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "focei")
f_parent_nlmixr_focei_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "focei")
f_parent_nlmixr_focei_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "focei")
f_parent_nlmixr_focei_dfop_tc<- nlmixr(f_parent_mkin_tc["DFOP", ], est = "focei")
@@ -1734,7 +1747,14 @@ f_parent_nlmixr_focei_sfo_const$nm 5 818.63
f_parent_nlmixr_focei_sfo_tc$nm 6 820.61
f_parent_nlmixr_focei_dfop_const$nm 9 728.11
f_parent_nlmixr_focei_dfop_tc$nm 10 687.82
-The AIC values are very close to the ones obtained with nlme.
+The AIC values are very close to the ones obtained with nlme which are repeated below for convenience.
+AIC(
+ f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
+)
+ df AIC
+f_parent_nlme_sfo_const 5 818.63
+f_parent_nlme_sfo_tc 6 820.61
+f_parent_nlme_dfop_tc 10 687.84
Secondly, we use the SAEM estimation routine and check the convergence plots for SFO with constant variance
f_parent_nlmixr_saem_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "saem",
control = nlmixr::saemControl(logLik = TRUE))
@@ -1743,17 +1763,17 @@ traceplot(f_parent_nlmixr_saem_sfo_const$nm)
for SFO with two-component error
f_parent_nlmixr_saem_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "saem",
control = nlmixr::saemControl(logLik = TRUE))
-nlmixr::traceplot(f_parent_nlmixr_saem_sfo_tc$nm)
+traceplot(f_parent_nlmixr_saem_sfo_tc$nm)
For DFOP with constant variance, the convergence plots show considerable instability of the fit, which can be alleviated by increasing the number of iterations and the number of parallel chains for the first phase of algorithm.
f_parent_nlmixr_saem_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "saem",
control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000), nmc = 15)
-nlmixr::traceplot(f_parent_nlmixr_saem_dfop_const$nm)
+traceplot(f_parent_nlmixr_saem_dfop_const$nm)
For DFOP with two-component error, the same increase in iterations and parallel chains was used, but using the two-component error appears to lead to a less erratic convergence, so this may not be necessary to this degree.
f_parent_nlmixr_saem_dfop_tc <- nlmixr(f_parent_mkin_tc["DFOP", ], est = "saem",
control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000, nmc = 15))
-nlmixr::traceplot(f_parent_nlmixr_saem_dfop_tc$nm)
+traceplot(f_parent_nlmixr_saem_dfop_tc$nm)
The AIC values are internally calculated using Gaussian quadrature. For an unknown reason, the AIC value obtained for the DFOP fit using the two-component error model is given as Infinity.
AIC(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm,
@@ -1761,8 +1781,55 @@ nlmixr::traceplot(f_parent_nlmixr_saem_dfop_tc$nm)
df AIC
f_parent_nlmixr_saem_sfo_const$nm 5 820.54
f_parent_nlmixr_saem_sfo_tc$nm 6 835.26
-f_parent_nlmixr_saem_dfop_const$nm 9 850.72
-f_parent_nlmixr_saem_dfop_tc$nm 10 Inf
+f_parent_nlmixr_saem_dfop_const$nm 9 842.84
+f_parent_nlmixr_saem_dfop_tc$nm 10 684.51
+The following table gives the AIC values obtained with the three packages.
+AIC_all <- data.frame(
+ nlme = c(AIC(f_parent_nlme_sfo_const), AIC(f_parent_nlme_sfo_tc), NA, AIC(f_parent_nlme_dfop_tc)),
+ nlmixr_focei = sapply(list(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm,
+ f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm), AIC),
+ saemix = sapply(list(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so,
+ f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc_moreiter$so), AIC),
+ nlmixr_saem = sapply(list(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm,
+ f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm), AIC)
+)
+kable(AIC_all)
+
+
+
+nlme
+nlmixr_focei
+saemix
+nlmixr_saem
+
+
+
+
+818.63
+818.63
+818.37
+820.54
+
+
+820.61
+820.61
+820.38
+835.26
+
+
+NA
+728.11
+725.91
+842.84
+
+
+687.84
+687.82
+683.64
+684.51
+
+
+
diff --git a/vignettes/web_only/dimethenamid_2018.rmd b/vignettes/web_only/dimethenamid_2018.rmd
index d3541a34..30325044 100644
--- a/vignettes/web_only/dimethenamid_2018.rmd
+++ b/vignettes/web_only/dimethenamid_2018.rmd
@@ -1,7 +1,7 @@
---
title: Example evaluations of the dimethenamid data from 2018
author: Johannes Ranke
-date: Last change 23 June 2021, built on `r format(Sys.Date(), format = "%d %b %Y")`
+date: Last change 27 July 2021, built on `r format(Sys.Date(), format = "%d %b %Y")`
output:
html_document:
toc: true
@@ -163,8 +163,10 @@ tendency of the algorithm to try parameter combinations unsuitable for
fitting these data.
```{r f_parent_nlme, warning = FALSE}
+library(nlme)
f_parent_nlme_sfo_const <- nlme(f_parent_mkin_const["SFO", ])
-#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ]) # error
+#f_parent_nlme_dfop_const <- nlme(f_parent_mkin_const["DFOP", ])
+# maxIter = 50 reached
f_parent_nlme_sfo_tc <- nlme(f_parent_mkin_tc["SFO", ])
f_parent_nlme_dfop_tc <- nlme(f_parent_mkin_tc["DFOP", ])
```
@@ -180,10 +182,10 @@ used for these attempts can be made visible below.
f_parent_nlme_sfo_const_logchol <- nlme(f_parent_mkin_const["SFO", ],
random = pdLogChol(list(DMTA_0 ~ 1, log_k_DMTA ~ 1)))
anova(f_parent_nlme_sfo_const, f_parent_nlme_sfo_const_logchol) # not better
-f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc,
- random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
+#f_parent_nlme_dfop_tc_logchol <- update(f_parent_nlme_dfop_tc,
+# random = pdLogChol(list(DMTA_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)))
# using log Cholesky parameterisation for random effects (nlme default) does
-# not converge and gives lots of warnings about the LME step not converging
+# not converge here and gives lots of warnings about the LME step not converging
```
The model comparison function of the nlme package can directly be applied
@@ -221,7 +223,7 @@ The convergence plot for the SFO model using constant variance is shown below.
```{r f_parent_saemix_sfo_const, results = 'hide'}
library(saemix)
-f_parent_saemix_sfo_const <- saem(f_parent_mkin_const["SFO", ], quiet = TRUE,
+f_parent_saemix_sfo_const <- mkin::saem(f_parent_mkin_const["SFO", ], quiet = TRUE,
transformations = "saemix")
plot(f_parent_saemix_sfo_const$so, plot.type = "convergence")
```
@@ -230,18 +232,19 @@ Obviously the default number of iterations is sufficient to reach convergence.
This can also be said for the SFO fit using the two-component error model.
```{r f_parent_saemix_sfo_tc, results = 'hide'}
-f_parent_saemix_sfo_tc <- saem(f_parent_mkin_tc["SFO", ], quiet = TRUE,
+f_parent_saemix_sfo_tc <- mkin::saem(f_parent_mkin_tc["SFO", ], quiet = TRUE,
transformations = "saemix")
plot(f_parent_saemix_sfo_tc$so, plot.type = "convergence")
```
When fitting the DFOP model with constant variance, parameter convergence
-is not as unambiguous. Therefore, the number of iterations in the first
+is not as unambiguous (see the failure of nlme with the default number of
+iterations above). Therefore, the number of iterations in the first
phase of the algorithm was increased, leading to visually satisfying
convergence.
```{r f_parent_saemix_dfop_const, results = 'hide'}
-f_parent_saemix_dfop_const <- saem(f_parent_mkin_const["DFOP", ], quiet = TRUE,
+f_parent_saemix_dfop_const <- mkin::saem(f_parent_mkin_const["DFOP", ], quiet = TRUE,
control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
transformations = "saemix")
@@ -250,11 +253,11 @@ plot(f_parent_saemix_dfop_const$so, plot.type = "convergence")
The same applies to the case where the DFOP model is fitted with the
two-component error model. Convergence of the variance of k2 is enhanced
-by using the two-component error, it remains pretty stable already after 200
+by using the two-component error, it remains more or less stable already after 200
iterations of the first phase.
```{r f_parent_saemix_dfop_tc_moreiter, results = 'hide'}
-f_parent_saemix_dfop_tc_moreiter <- saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE,
+f_parent_saemix_dfop_tc_moreiter <- mkin::saem(f_parent_mkin_tc["DFOP", ], quiet = TRUE,
control = saemixControl(nbiter.saemix = c(800, 200), print = FALSE,
save = FALSE, save.graphs = FALSE, displayProgress = FALSE),
transformations = "saemix")
@@ -306,6 +309,7 @@ First, the focei algorithm is used for the four model combinations and the
goodness of fit of the results is compared.
```{r f_parent_nlmixr_focei, results = "hide", message = FALSE, warning = FALSE}
+library(nlmixr)
f_parent_nlmixr_focei_sfo_const <- nlmixr(f_parent_mkin_const["SFO", ], est = "focei")
f_parent_nlmixr_focei_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "focei")
f_parent_nlmixr_focei_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "focei")
@@ -317,7 +321,14 @@ AIC(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm,
f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm)
```
-The AIC values are very close to the ones obtained with nlme.
+The AIC values are very close to the ones obtained with nlme which are repeated below
+for convenience.
+
+```{r AIC_parent_nlme_rep}
+AIC(
+ f_parent_nlme_sfo_const, f_parent_nlme_sfo_tc, f_parent_nlme_dfop_tc
+)
+```
Secondly, we use the SAEM estimation routine and check the convergence plots for
SFO with constant variance
@@ -333,7 +344,7 @@ for SFO with two-component error
```{r f_parent_nlmixr_saem_sfo_tc, results = "hide", warning = FALSE, message = FALSE}
f_parent_nlmixr_saem_sfo_tc <- nlmixr(f_parent_mkin_tc["SFO", ], est = "saem",
control = nlmixr::saemControl(logLik = TRUE))
-nlmixr::traceplot(f_parent_nlmixr_saem_sfo_tc$nm)
+traceplot(f_parent_nlmixr_saem_sfo_tc$nm)
```
For DFOP with constant variance, the convergence plots show considerable instability
@@ -343,7 +354,7 @@ the number of parallel chains for the first phase of algorithm.
```{r f_parent_nlmixr_saem_dfop_const, results = "hide", warning = FALSE, message = FALSE}
f_parent_nlmixr_saem_dfop_const <- nlmixr(f_parent_mkin_const["DFOP", ], est = "saem",
control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000), nmc = 15)
-nlmixr::traceplot(f_parent_nlmixr_saem_dfop_const$nm)
+traceplot(f_parent_nlmixr_saem_dfop_const$nm)
```
For DFOP with two-component error, the same increase in iterations and parallel
@@ -354,7 +365,7 @@ erratic convergence, so this may not be necessary to this degree.
```{r f_parent_nlmixr_saem_dfop_tc, results = "hide", warning = FALSE, message = FALSE}
f_parent_nlmixr_saem_dfop_tc <- nlmixr(f_parent_mkin_tc["DFOP", ], est = "saem",
control = nlmixr::saemControl(logLik = TRUE, nBurn = 1000, nmc = 15))
-nlmixr::traceplot(f_parent_nlmixr_saem_dfop_tc$nm)
+traceplot(f_parent_nlmixr_saem_dfop_tc$nm)
```
The AIC values are internally calculated using Gaussian quadrature. For an
@@ -366,8 +377,20 @@ AIC(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm,
f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm)
```
-
-
+The following table gives the AIC values obtained with the three packages.
+
+```{r AIC_all}
+AIC_all <- data.frame(
+ nlme = c(AIC(f_parent_nlme_sfo_const), AIC(f_parent_nlme_sfo_tc), NA, AIC(f_parent_nlme_dfop_tc)),
+ nlmixr_focei = sapply(list(f_parent_nlmixr_focei_sfo_const$nm, f_parent_nlmixr_focei_sfo_tc$nm,
+ f_parent_nlmixr_focei_dfop_const$nm, f_parent_nlmixr_focei_dfop_tc$nm), AIC),
+ saemix = sapply(list(f_parent_saemix_sfo_const$so, f_parent_saemix_sfo_tc$so,
+ f_parent_saemix_dfop_const$so, f_parent_saemix_dfop_tc_moreiter$so), AIC),
+ nlmixr_saem = sapply(list(f_parent_nlmixr_saem_sfo_const$nm, f_parent_nlmixr_saem_sfo_tc$nm,
+ f_parent_nlmixr_saem_dfop_const$nm, f_parent_nlmixr_saem_dfop_tc$nm), AIC)
+)
+kable(AIC_all)
+```
# References
--
cgit v1.2.1
From 137612045c23198f10d6e8612c32e266c2a6c00e Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Thu, 29 Jul 2021 12:17:56 +0200
Subject: Go back to 1.0.x version, update docs
---
DESCRIPTION | 4 +--
NEWS.md | 2 ++
docs/dev/404.html | 2 +-
docs/dev/articles/index.html | 2 +-
docs/dev/articles/web_only/dimethenamid_2018.html | 14 ++++----
docs/dev/authors.html | 2 +-
docs/dev/index.html | 7 +++-
docs/dev/news/index.html | 3 +-
docs/dev/pkgdown.yml | 2 +-
docs/dev/reference/dimethenamid_2018.html | 32 +++++++++---------
docs/dev/reference/endpoints.html | 2 +-
docs/dev/reference/index.html | 2 +-
docs/dev/reference/mean_degparms.html | 2 +-
docs/dev/reference/mkinmod.html | 6 ++--
docs/dev/reference/nlme-1.png | Bin 69667 -> 68943 bytes
docs/dev/reference/nlme-2.png | Bin 93394 -> 94409 bytes
docs/dev/reference/nlme.html | 18 +++++-----
docs/dev/reference/nlme.mmkin.html | 2 +-
docs/dev/reference/nlmixr.mmkin.html | 28 ++++++++--------
docs/dev/reference/plot.mixed.mmkin.html | 6 ++--
docs/dev/reference/reexports.html | 2 +-
docs/dev/reference/saem.html | 38 +++++++++++-----------
docs/dev/reference/summary.nlmixr.mmkin.html | 10 +++---
docs/dev/reference/summary.saem.mmkin.html | 10 +++---
docs/dev/reference/tffm0.html | 2 +-
25 files changed, 103 insertions(+), 95 deletions(-)
diff --git a/DESCRIPTION b/DESCRIPTION
index 4689cb2a..2364ee75 100644
--- a/DESCRIPTION
+++ b/DESCRIPTION
@@ -1,8 +1,8 @@
Package: mkin
Type: Package
Title: Kinetic Evaluation of Chemical Degradation Data
-Version: 1.1.0
-Date: 2021-06-23
+Version: 1.0.5
+Date: 2021-07-29
Authors@R: c(
person("Johannes", "Ranke", role = c("aut", "cre", "cph"),
email = "jranke@uni-bremen.de",
diff --git a/NEWS.md b/NEWS.md
index e668f1e5..7ecd7f96 100644
--- a/NEWS.md
+++ b/NEWS.md
@@ -10,6 +10,8 @@
- 'plot.mixed.mmkin': Gains arguments 'test_log_parms' and 'conf.level'
+- 'vignettes/web_only/dimethenamid_2018.rmd': Example evaluations of the dimethenamid data.
+
# mkin 1.0.4 (2021-04-20)
- All plotting functions setting graphical parameters: Use on.exit() for resetting graphical parameters
diff --git a/docs/dev/404.html b/docs/dev/404.html
index 38898979..98c0b1e0 100644
--- a/docs/dev/404.html
+++ b/docs/dev/404.html
@@ -71,7 +71,7 @@
mkin
- 1.1.0
+ 1.0.5
diff --git a/docs/dev/articles/index.html b/docs/dev/articles/index.html
index c0338df8..99ce950b 100644
--- a/docs/dev/articles/index.html
+++ b/docs/dev/articles/index.html
@@ -71,7 +71,7 @@
mkin
- 1.1.0
+ 1.0.5
diff --git a/docs/dev/articles/web_only/dimethenamid_2018.html b/docs/dev/articles/web_only/dimethenamid_2018.html
index 7648f75a..34d882a4 100644
--- a/docs/dev/articles/web_only/dimethenamid_2018.html
+++ b/docs/dev/articles/web_only/dimethenamid_2018.html
@@ -32,7 +32,7 @@
mkin
- 1.1.0
+ 1.0.5
@@ -101,7 +101,7 @@
Example evaluations of the dimethenamid data from 2018
Johannes Ranke
- Last change 27 July 2021, built on 27 Jul 2021
+ Last change 27 July 2021, built on 29 Jul 2021
Source: vignettes/web_only/dimethenamid_2018.rmd
dimethenamid_2018.rmd
@@ -154,20 +154,20 @@
error_model = "tc", quiet = TRUE)
The plot of the individual SFO fits shown below suggests that at least in some datasets the degradation slows down towards later time points, and that the scatter of the residuals error is smaller for smaller values (panel to the right):
+plot(mixed(f_parent_mkin_const["SFO", ]))
Using biexponential decline (DFOP) results in a slightly more random scatter of the residuals:
+plot(mixed(f_parent_mkin_const["DFOP", ]))
The population curve (bold line) in the above plot results from taking the mean of the individual transformed parameters, i.e. of log k1 and log k2, as well as of the logit of the g parameter of the DFOP model). Here, this procedure does not result in parameters that represent the degradation well, because in some datasets the fitted value for k2 is extremely close to zero, leading to a log k2 value that dominates the average. This is alleviated if only rate constants that pass the t-test for significant difference from zero (on the untransformed scale) are considered in the averaging:
+plot(mixed(f_parent_mkin_const["DFOP", ]), test_log_parms = TRUE)
While this is visually much more satisfactory, such an average procedure could introduce a bias, as not all results from the individual fits enter the population curve with the same weight. This is where nonlinear mixed-effects models can help out by treating all datasets with equally by fitting a parameter distribution model together with the degradation model and the error model (see below).
The remaining trend of the residuals to be higher for higher predicted residues is reduced by using the two-component error model:
+plot(mixed(f_parent_mkin_tc["DFOP", ]), test_log_parms = TRUE)
@@ -205,7 +205,7 @@ f_parent_nlme_sfo_tc 2 6 820.61 839.06 -404.31 1 vs 2 0.014 0.9049
f_parent_nlme_dfop_tc 3 10 687.84 718.59 -333.92 2 vs 3 140.771 <.0001
The selected model (DFOP with two-component error) fitted to the data assuming no correlations between random effects is shown below.
-plot(f_parent_nlme_dfop_tc)
+plot(f_parent_nlme_dfop_tc)
diff --git a/docs/dev/authors.html b/docs/dev/authors.html
index 943cba1b..4208dc24 100644
--- a/docs/dev/authors.html
+++ b/docs/dev/authors.html
@@ -71,7 +71,7 @@
mkin
- 1.1.0
+ 1.0.5
diff --git a/docs/dev/index.html b/docs/dev/index.html
index 8049b3a1..ddfce971 100644
--- a/docs/dev/index.html
+++ b/docs/dev/index.html
@@ -38,7 +38,7 @@
mkin
- 1.1.0
+ 1.0.5
@@ -206,6 +206,11 @@