From 317fd7514e638780c09ed6349a165a854ba2deea Mon Sep 17 00:00:00 2001
From: Johannes Ranke Ranke J (2022).
mkin: Kinetic Evaluation of Chemical Degradation Data.
-R package version 1.2.0, https://pkgdown.jrwb.de/mkin/.
+R package version 1.2.1, https://pkgdown.jrwb.de/mkin/.
‘tests/testthat/setup_script.R’: Excluded another ill-defined random effect for the DFOP fit with ‘saem’, in an attempt to avoid a platform dependence that surfaced on Fedora systems on the CRAN check farm ‘tests/testthat/test_mixed.R’: Round parameters found by saemix to two significant digits before printing, to also help to avoid platform dependence of tests ‘R/saem.R’: Fix a bug that prevented that ‘error.ini’ is passed to ‘saemix_model’, and set default to c(1, 1) to avoid changing test results ‘R/parplot.R’: Show initial values for error model parameters ‘R/loglik.mkinfit.R’: Add ‘nobs’ attribute to the resulting ‘logLik’ object, in order to make test_AIC.R succeed on current R-devel ‘R/saem.R’: ‘logLik’, ‘update’ and ‘anova’ methods for ‘saem.mmkin’ objects. The R code used to create this data object is installed with this package in
+the 'dataset_generation' directory.@Manual{,
title = {mkin: Kinetic Evaluation of Chemical Degradation Data},
author = {Johannes Ranke},
year = {2022},
- note = {R package version 1.2.0},
+ note = {R package version 1.2.1},
url = {https://pkgdown.jrwb.de/mkin/},
}
diff --git a/docs/index.html b/docs/index.html
index 9048bc38..bb14906d 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -44,7 +44,7 @@
diff --git a/docs/news/index.html b/docs/news/index.html
index 90768141..6b9a7d51 100644
--- a/docs/news/index.html
+++ b/docs/news/index.html
@@ -17,7 +17,7 @@
@@ -87,6 +87,14 @@
Source: NEWS.md
+ mkin 1.2.1 (unreleased)
+mkin 1.2.0 (2022-11-17)
Examples
+ # \dontrun{
+ sfo_mmkin <- mmkin("SFO", ds_sfo, quiet = TRUE, error_model = "tc", cores = 15)
+ sfo_saem <- saem(sfo_mmkin, no_random_effect = "parent_0")
+ plot(sfo_saem)
+
+# }
+
+# This is the code used to generate the datasets
+cat(readLines(system.file("dataset_generation/ds_mixed.R", package = "mkin")), sep = "\n")
+#> # Synthetic data for hierarchical kinetic models
+#> # Refactored version of the code previously in tests/testthat/setup_script.R
+#> # The number of datasets was 3 for FOMC, and 10 for HS in that script, now it
+#> # is always 15 for consistency
+#>
+#> library(mkin) # We use mkinmod and mkinpredict
+#> sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+#> n <- 15
+#> log_sd <- 0.3
+#> err_1 = list(const = 1, prop = 0.05)
+#> tc <- function(value) sigma_twocomp(value, err_1$const, err_1$prop)
+#> const <- function(value) 2
+#>
+#> set.seed(123456)
+#> SFO <- mkinmod(parent = mkinsub("SFO"))
+#> sfo_pop <- list(parent_0 = 100, k_parent = 0.03)
+#> sfo_parms <- as.matrix(data.frame(
+#> k_parent = rlnorm(n, log(sfo_pop$k_parent), log_sd)))
+#> set.seed(123456)
+#> ds_sfo <- lapply(1:n, function(i) {
+#> ds_mean <- mkinpredict(SFO, sfo_parms[i, ],
+#> c(parent = sfo_pop$parent_0), sampling_times)
+#> add_err(ds_mean, tc, n = 1)[[1]]
+#> })
+#> attr(ds_sfo, "pop") <- sfo_pop
+#> attr(ds_sfo, "parms") <- sfo_parms
+#>
+#> set.seed(123456)
+#> FOMC <- mkinmod(parent = mkinsub("FOMC"))
+#> fomc_pop <- list(parent_0 = 100, alpha = 2, beta = 8)
+#> fomc_parms <- as.matrix(data.frame(
+#> alpha = rlnorm(n, log(fomc_pop$alpha), 0.4),
+#> beta = rlnorm(n, log(fomc_pop$beta), 0.2)))
+#> set.seed(123456)
+#> ds_fomc <- lapply(1:n, function(i) {
+#> ds_mean <- mkinpredict(FOMC, fomc_parms[i, ],
+#> c(parent = fomc_pop$parent_0), sampling_times)
+#> add_err(ds_mean, tc, n = 1)[[1]]
+#> })
+#> attr(ds_fomc, "pop") <- fomc_pop
+#> attr(ds_fomc, "parms") <- fomc_parms
+#>
+#> set.seed(123456)
+#> DFOP <- mkinmod(parent = mkinsub("DFOP"))
+#> dfop_pop <- list(parent_0 = 100, k1 = 0.06, k2 = 0.015, g = 0.4)
+#> dfop_parms <- as.matrix(data.frame(
+#> k1 = rlnorm(n, log(dfop_pop$k1), log_sd),
+#> k2 = rlnorm(n, log(dfop_pop$k2), log_sd),
+#> g = plogis(rnorm(n, qlogis(dfop_pop$g), log_sd))))
+#> set.seed(123456)
+#> ds_dfop <- lapply(1:n, function(i) {
+#> ds_mean <- mkinpredict(DFOP, dfop_parms[i, ],
+#> c(parent = dfop_pop$parent_0), sampling_times)
+#> add_err(ds_mean, tc, n = 1)[[1]]
+#> })
+#> attr(ds_dfop, "pop") <- dfop_pop
+#> attr(ds_dfop, "parms") <- dfop_parms
+#>
+#> set.seed(123456)
+#> HS <- mkinmod(parent = mkinsub("HS"))
+#> hs_pop <- list(parent_0 = 100, k1 = 0.08, k2 = 0.01, tb = 15)
+#> hs_parms <- as.matrix(data.frame(
+#> k1 = rlnorm(n, log(hs_pop$k1), log_sd),
+#> k2 = rlnorm(n, log(hs_pop$k2), log_sd),
+#> tb = rlnorm(n, log(hs_pop$tb), 0.1)))
+#> set.seed(123456)
+#> ds_hs <- lapply(1:n, function(i) {
+#> ds_mean <- mkinpredict(HS, hs_parms[i, ],
+#> c(parent = hs_pop$parent_0), sampling_times)
+#> add_err(ds_mean, const, n = 1)[[1]]
+#> })
+#> attr(ds_hs, "pop") <- hs_pop
+#> attr(ds_hs, "parms") <- hs_parms
+#>
+#> set.seed(123456)
+#> DFOP_SFO <- mkinmod(
+#> parent = mkinsub("DFOP", "m1"),
+#> m1 = mkinsub("SFO"),
+#> quiet = TRUE)
+#> dfop_sfo_pop <- list(parent_0 = 100,
+#> k_m1 = 0.007, f_parent_to_m1 = 0.5,
+#> k1 = 0.1, k2 = 0.02, g = 0.5)
+#> dfop_sfo_parms <- as.matrix(data.frame(
+#> k1 = rlnorm(n, log(dfop_sfo_pop$k1), log_sd),
+#> k2 = rlnorm(n, log(dfop_sfo_pop$k2), log_sd),
+#> g = plogis(rnorm(n, qlogis(dfop_sfo_pop$g), log_sd)),
+#> f_parent_to_m1 = plogis(rnorm(n,
+#> qlogis(dfop_sfo_pop$f_parent_to_m1), log_sd)),
+#> k_m1 = rlnorm(n, log(dfop_sfo_pop$k_m1), log_sd)))
+#> ds_dfop_sfo_mean <- lapply(1:n,
+#> function(i) {
+#> mkinpredict(DFOP_SFO, dfop_sfo_parms[i, ],
+#> c(parent = dfop_sfo_pop$parent_0, m1 = 0), sampling_times)
+#> }
+#> )
+#> set.seed(123456)
+#> ds_dfop_sfo <- lapply(ds_dfop_sfo_mean, function(ds) {
+#> add_err(ds,
+#> sdfunc = function(value) sqrt(err_1$const^2 + value^2 * err_1$prop^2),
+#> n = 1, secondary = "m1")[[1]]
+#> })
+#> attr(ds_dfop_sfo, "pop") <- dfop_sfo_pop
+#> attr(ds_dfop_sfo, "parms") <- dfop_sfo_parms
+#>
+#> #save(ds_sfo, ds_fomc, ds_dfop, ds_hs, ds_dfop_sfo, file = "data/ds_mixed.rda", version = 2)
+
FOCUS default values for soil moisture contents at field capacity, MWHC and 1/3 bar
Synthetic data for hierarchical kinetic degradation models
Three experimental datasets from two water sediment systems and one soil
FOCUS default values for soil moisture contents at field capacity, MWHC and 1/3 bar