From 6653ff2507f45eae909f491a9af3f1eb5358a600 Mon Sep 17 00:00:00 2001
From: Johannes Ranke The R package mkin provides calculation routines for the analysis of chemical degradation data, including multicompartment kinetics as needed for modelling the formation and decline of transformation products, or if several compartments are involved. You can install the latest released version from CRAN from within R: In the regulatory evaluation of chemical substances like plant protection products (pesticides), biocides and other chemicals, degradation data play an important role. For the evaluation of pesticide degradation experiments, detailed guidance and helpful tools have been developed as detailed in ‘Credits and historical remarks’ below. For a start, have a look a the code examples provided for There is a graphical user interface that I consider useful for real work. Please refer to its documentation page for installation instructions and a manual. There is a ChangeLog, for the latest CRAN release and one for the github master branch. It could not have been written without me being introduced to regulatory fate modelling of pesticides by Adrian Gurney during my time at Harlan Laboratories Ltd (formerly RCC Ltd). Also, it was inspired by the first version of KinGUI developed by BayerCropScience, which is based on the MatLab runtime environment. The companion package kinfit (now deprecated) was started in 2008 and first published on CRAN on 01 May 2010. The first In 2011, Bayer Crop Science started to distribute an R based successor to KinGUI named KinGUII whose R code is based on Somewhat in parallel, Syngenta has sponsored the development of an Finally, there is KineticEval, which contains a further development of the scripts used for KinGUII, so the different tools will hopefully be able to learn from each other in the future as well. Contributions are welcome! Your mkin fork is just a mouse click away… The master branch on github should always be in good shape, I implement new features in separate branches now. If you prefer subversion, project members for the r-forge project are welcome as well. Generally, the source code of the latest CRAN version should be available there. You can also browse the source code at cgit.jrwb.de/mkin. This is just a very simple vignette showing how to fit a degradation model for a parent compound with one transformation product using The call to mkinmod returns a degradation model. The differential equations represented in R code can be found in the character vector We do the fitting without progress report ( A plot of the fit including a residual plot for both observed variables is obtained using the A comprehensive report of the results is obtained using the The following code defines example dataset L1 from the FOCUS kinetics report, p. 284: Here we use the assumptions of simple first order (SFO), the case of declining rate constant over time (FOMC) and the case of two different phases of the kinetics (DFOP). For a more detailed discussion of the models, please see the FOCUS kinetics report. Since mkin version 0.9-32 (July 2014), we can use shorthand notation like For comparison, the FOMC model is fitted as well, and the \(\chi^2\) error level is checked. The following code defines example dataset L2 from the FOCUS kinetics report, p. 287: Again, the SFO model is fitted and the result is plotted. The residual plot can be obtained simply by adding the argument For comparison, the FOMC model is fitted as well, and the \(\chi^2\) error level is checked. Fitting the four parameter DFOP model further reduces the \(\chi^2\) error level. The following code defines example dataset L3 from the FOCUS kinetics report, p. 290. As of mkin version 0.9-39 (June 2015), we can fit several models to one or more datasets in one call to the function The \(\chi^2\) error level of 21% as well as the plot suggest that the SFO model does not fit very well. The FOMC model performs better, with an error level at which the \(\chi^2\) test passes of 7%. Fitting the four parameter DFOP model further reduces the \(\chi^2\) error level considerably. The following code defines example dataset L4 from the FOCUS kinetics report, p. 293: Fits of the SFO and FOMC models, plots and summaries are produced below: The \(\chi^2\) error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the \(\chi^2\) test passes is slightly lower for the FOMC model. However, the difference appears negligible. The following code defines the example dataset from Appendix 7 to the FOCUS kinetics report (FOCUS Work Group on Degradation Kinetics 2014, 354). The next step is to set up the models used for the kinetic analysis. As the simultaneous fit of parent and the first metabolite is usually straightforward, Step 1 (SFO for parent only) is skipped here. We start with the model 2a, with formation and decline of metabolite Z1 and the pathway from parent directly to sink included (default in mkin). As obvious from the parameter summary (the component of the summary), the kinetic rate constant from parent compound Z to sink is very small and the t-test for this parameter suggests that it is not significantly different from zero. This suggests, in agreement with the analysis in the FOCUS kinetics report, to simplify the model by removing the pathway to sink. A similar result can be obtained when formation fractions are used in the model formulation: Here, the ilr transformed formation fraction fitted in the model takes a very large value, and the backtransformed formation fraction from parent Z to Z1 is practically unity. Here, the covariance matrix used for the calculation of confidence intervals is not returned as the model is overparameterised. A simplified model is obtained by removing the pathway to the sink. In the following, we use the parameterisation with formation fractions in order to be able to compare with the results in the FOCUS guidance, and as it makes it easier to use parameters obtained in a previous fit when adding a further metabolite. As there is only one transformation product for Z0 and no pathway to sink, the formation fraction is internally fixed to unity. Finally, metabolite Z3 is added to the model. We use the optimised differential equation parameter values from the previous fit in order to accelerate the optimization. Therefore, a further stepwise model building is performed starting from the stage of parent and two metabolites, starting from the assumption that the model fit for the parent compound can be improved by using the SFORB model. This results in a much better representation of the behaviour of the parent compound Z0. The summary view of the backtransformed parameters shows that we get no confidence intervals due to overparameterisation. As the optimized is excessively small, it seems reasonable to fix it to zero. As expected, the residual plots for Z0 and Z3 are more random than in the case of the all SFO model for which they were shown above. In conclusion, the model is proposed as the best-fit model for the dataset from Appendix 7 of the FOCUS report. A graphical representation of the confidence intervals can finally be obtained. The endpoints obtained with this model are We can compare the performance of the Eigenvalue based solution against the compiled version and the R implementation of the differential equations using the benchmark package. We see that using the compiled model is by a factor of around 7 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs. We see that using the compiled model is by a factor of around NA faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs. This evaluation is also taken from the example section of mkinfit. Here we get a performance benefit of a factor of 8 using the version of the differential equation model compiled from C code! This vignette was built with mkin 0.9.47.1 on Here we get a performance benefit of a factor of NA using the version of the differential equation model compiled from C code! This vignette was built with mkin 0.9.46.3 on Johannes Ranke. Author, maintainer, copyright holder.
- Katrin Lindenberger. Contributor.
+ Katrin Lindenberger. Contributor.
René Lehmann. Contributor.
+ René Lehmann. Contributor.
Eurofins Regulatory AG. Copyright holder.
+ Eurofins Regulatory AG. Copyright holder.
GPLmkin
-
-Installation
-
-install.packages("mkin")Background
-Usage
-plot.mkinfit and plot.mmkin, and at the package vignettes FOCUS L and FOCUS D.Features
-
-
-mkinmod, including equilibrium reactions and using the single first-order reversible binding (SFORB) model, which will automatically create two latent state variables for the observed variable.plot.mmkin.mkinpredict is performed either using the analytical solution for the case of parent only degradation, an eigenvalue based solution if only simple first-order (SFO) or SFORB kinetics are used in the model, or using a numeric solver from the deSolve package (default is lsoda).compiled_models. The autogeneration of C code was inspired by the ccSolve package. Thanks to Karline Soetaert for her work on that.transform_odeparms so their estimators can more reasonably be expected to follow a normal distribution. This has the side effect that no constraints are needed in the optimisation. Thanks to René Lehmann for the nice cooperation on this, especially the isometric logration transformation that is now used for the formation fractions.summary of an mkinfit object is in fact a full report that should give enough information to be able to approximately reproduce the fit with other tools.reweight.method = "obs" to your call to mkinfit and a separate variance componenent for each of the observed variables will be optimised in a second stage after the primary optimisation algorithm has converged.reweight.method = "tc".GUI
-News
-Credits and historical remarks
-mkin would not be possible without the underlying software stack consisting of R and the packages deSolve and FME, to say the least.mkin greatly profits from and largely follows the work done by the FOCUS Degradation Kinetics Workgroup, as detailed in their guidance document from 2006, slightly updated in 2011 and in 2014.mkin code was published on 11 May 2010 and the first CRAN version on 18 May 2010.mkin, but which added, amongst other refinements, a closed source graphical user interface (GUI), iteratively reweighted least squares (IRLS) optimisation of the variance for each of the observed variables, and Markov Chain Monte Carlo (MCMC) simulation functionality, similar to what is available e.g. in the FME package.mkin and KinGUII based GUI application called CAKE, which also adds IRLS and MCMC, is more limited in the model formulation, but puts more weight on usability. CAKE is available for download from the CAKE website, where you can also find a zip archive of the R scripts derived from mkin, published under the GPL license.Development
-Example evaluation of FOCUS Example Dataset D
Johannes Ranke
- 2018-01-16
+ 2018-03-01
@@ -85,7 +88,7 @@
mkin. After loading the library we look a the data. We have observed concentrations in the column named value at the times specified in column time for the two observed variables named parent and m1.library("mkin", quietly = TRUE)
-print(FOCUS_2006_D)## name time value
## 1 parent 0 99.46
## 2 parent 0 102.04
@@ -135,13 +138,13 @@
$diffs of the mkinmod object. If a C compiler (gcc) is installed and functional, the differential equation model will be compiled from auto-generated C code.
-## Successfully compiled differential equation model from auto-generated C code.print(SFO_SFO$diffs)print(SFO_SFO$diffs)## parent
## "d_parent = - k_parent_sink * parent - k_parent_m1 * parent"
## m1
## "d_m1 = + k_parent_m1 * parent - k_m1_sink * m1"quiet = TRUE).fit <- mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE)fit <- mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE)plot_sep method for mkinfit objects, which shows separate graphs for all compounds and their residuals.plot_sep(fit, lpos = c("topright", "bottomright"))

summary method for mkinfit objects.summary(fit)## mkin version: 0.9.46.1
-## R version: 3.4.1
-## Date of fit: Thu Sep 14 12:15:01 2017
-## Date of summary: Thu Sep 14 12:15:02 2017
+## mkin version: 0.9.46.3
+## R version: 3.4.3
+## Date of fit: Thu Mar 1 14:17:55 2018
+## Date of summary: Thu Mar 1 14:17:55 2018
##
## Equations:
## d_parent/dt = - k_parent_sink * parent - k_parent_m1 * parent
@@ -161,7 +164,7 @@
##
## Model predictions using solution type deSolve
##
-## Fitted with method Port using 153 model solutions performed in 1.14 s
+## Fitted with method Port using 153 model solutions performed in 0.993 s
##
## Weighting: none
##
@@ -286,7 +289,7 @@
diff --git a/docs/articles/FOCUS_D_files/figure-html/plot-1.png b/docs/articles/FOCUS_D_files/figure-html/plot-1.png
index 75c4c299..b4fa2ff4 100644
Binary files a/docs/articles/FOCUS_D_files/figure-html/plot-1.png and b/docs/articles/FOCUS_D_files/figure-html/plot-1.png differ
diff --git a/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png b/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png
index 94e7e2b3..ba06ce31 100644
Binary files a/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png and b/docs/articles/FOCUS_D_files/figure-html/plot_2-1.png differ
diff --git a/docs/articles/FOCUS_L.html b/docs/articles/FOCUS_L.html
index 42ec2df1..5de06ad5 100644
--- a/docs/articles/FOCUS_L.html
+++ b/docs/articles/FOCUS_L.html
@@ -8,8 +8,11 @@
Example evaluation of FOCUS Laboratory Data L1 to L3
Johannes Ranke
- 2018-01-16
+ 2018-03-01
@@ -88,27 +91,27 @@
Laboratory Data L1
library("mkin", quietly = TRUE)
-FOCUS_2006_L1 = data.frame(
+FOCUS_2006_L1 = data.frame(
t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2),
parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6,
72.0, 71.9, 50.3, 59.4, 47.0, 45.1,
27.7, 27.3, 10.0, 10.4, 2.9, 4.0))
-FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)"SFO" for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet = TRUE)
+m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet = TRUE)
summary(m.L1.SFO)## mkin version: 0.9.47.1
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Tue Jan 16 06:11:06 2018
-## Date of summary: Tue Jan 16 06:11:06 2018
+## Date of fit: Thu Mar 1 14:31:57 2018
+## Date of summary: Thu Mar 1 14:31:57 2018
##
## Equations:
## d_parent/dt = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 37 model solutions performed in 0.245 s
+## Fitted with method Port using 37 model solutions performed in 0.24 s
##
## Weighting: none
##
@@ -185,28 +188,21 @@ FOCUS_2006_L1_mkin <- mkinresplot(m.L1.SFO, ylab = "Observed", xlab = "Time")
m.L1.FOMC <- mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet=TRUE)
-## Warning in mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation by method Port did not converge.
-## Convergence code is 1plot(m.L1.FOMC, show_errmin = TRUE, main = "FOCUS L1 - FOMC")m.L1.FOMC <- mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet=TRUE)
+plot(m.L1.FOMC, show_errmin = TRUE, main = "FOCUS L1 - FOMC")
summary(m.L1.FOMC, data = FALSE)## mkin version: 0.9.47.1
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Tue Jan 16 06:11:07 2018
-## Date of summary: Tue Jan 16 06:11:07 2018
-##
-##
-## Warning: Optimisation by method Port did not converge.
-## Convergence code is 1
-##
+## Date of fit: Thu Mar 1 14:31:59 2018
+## Date of summary: Thu Mar 1 14:32:00 2018
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 155 model solutions performed in 0.424 s
+## Fitted with method Port using 611 model solutions performed in 1.375 s
##
## Weighting: none
##
@@ -226,16 +222,16 @@ FOCUS_2006_L1_mkin <-
Laboratory Data L2
FOCUS_2006_L2 = data.frame(
+FOCUS_2006_L2 = data.frame(
t = rep(c(0, 1, 3, 7, 14, 28), each = 2),
parent = c(96.1, 91.8, 41.4, 38.7,
19.3, 22.3, 4.6, 4.6,
2.6, 1.2, 0.3, 0.6))
-FOCUS_2006_L2_mkin <- mkin_wide_to_long(FOCUS_2006_L2)
SFO fit for L2
show_residuals to the plot command.m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE)
+m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE)
plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
main = "FOCUS L2 - SFO")
m.L2.FOMC <- mkinfit("FOMC", FOCUS_2006_L2_mkin, quiet = TRUE)
+m.L2.FOMC <- mkinfit("FOMC", FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.FOMC, show_residuals = TRUE,
main = "FOCUS L2 - FOMC")
summary(m.L2.FOMC, data = FALSE)## mkin version: 0.9.47.1
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Tue Jan 16 06:11:08 2018
-## Date of summary: Tue Jan 16 06:11:08 2018
+## Date of fit: Thu Mar 1 14:32:00 2018
+## Date of summary: Thu Mar 1 14:32:00 2018
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 81 model solutions performed in 0.168 s
+## Fitted with method Port using 81 model solutions performed in 0.158 s
##
## Weighting: none
##
@@ -357,15 +353,15 @@ FOCUS_2006_L2_mkin <-
DFOP fit for L2
m.L2.DFOP <- mkinfit("DFOP", FOCUS_2006_L2_mkin, quiet = TRUE)
+m.L2.DFOP <- mkinfit("DFOP", FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
main = "FOCUS L2 - DFOP")
summary(m.L2.DFOP, data = FALSE)## mkin version: 0.9.47.1
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Tue Jan 16 06:11:09 2018
-## Date of summary: Tue Jan 16 06:11:09 2018
+## Date of fit: Thu Mar 1 14:32:01 2018
+## Date of summary: Thu Mar 1 14:32:01 2018
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
@@ -374,7 +370,7 @@ FOCUS_2006_L2_mkin <-
Laboratory Data L3
FOCUS_2006_L3 = data.frame(
+FOCUS_2006_L3 = data.frame(
t = c(0, 3, 7, 14, 30, 60, 91, 120),
parent = c(97.8, 60, 51, 43, 35, 22, 15, 12))
-FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3)
Fit multiple models
mmkin. The datasets have to be passed in a list, in this case a named list holding only the L3 dataset prepared above.# Only use one core here, not to offend the CRAN checks
mm.L3 <- mmkin(c("SFO", "FOMC", "DFOP"), cores = 1,
- list("FOCUS L3" = FOCUS_2006_L3_mkin), quiet = TRUE)
+ list("FOCUS L3" = FOCUS_2006_L3_mkin), quiet = TRUE)
plot(mm.L3)
summary(mm.L3[["DFOP", 1]])## mkin version: 0.9.47.1
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Tue Jan 16 06:11:10 2018
-## Date of summary: Tue Jan 16 06:11:10 2018
+## Date of fit: Thu Mar 1 14:32:02 2018
+## Date of summary: Thu Mar 1 14:32:02 2018
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
@@ -542,30 +538,30 @@ mm.L3 <-
Laboratory Data L4
FOCUS_2006_L4 = data.frame(
+FOCUS_2006_L4 = data.frame(
t = c(0, 3, 7, 14, 30, 60, 91, 120),
parent = c(96.6, 96.3, 94.3, 88.8, 74.9, 59.9, 53.5, 49.0))
-FOCUS_2006_L4_mkin <- mkin_wide_to_long(FOCUS_2006_L4)# Only use one core here, not to offend the CRAN checks
mm.L4 <- mmkin(c("SFO", "FOMC"), cores = 1,
- list("FOCUS L4" = FOCUS_2006_L4_mkin),
+ list("FOCUS L4" = FOCUS_2006_L4_mkin),
quiet = TRUE)
plot(mm.L4)
summary(mm.L4[["SFO", 1]], data = FALSE)## mkin version: 0.9.47.1
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Tue Jan 16 06:11:10 2018
-## Date of summary: Tue Jan 16 06:11:10 2018
+## Date of fit: Thu Mar 1 14:32:03 2018
+## Date of summary: Thu Mar 1 14:32:03 2018
##
## Equations:
## d_parent/dt = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 46 model solutions performed in 0.094 s
+## Fitted with method Port using 46 model solutions performed in 0.089 s
##
## Weighting: none
##
@@ -615,17 +611,17 @@ mm.L4 <- summary(mm.L4[["FOMC", 1]], data = FALSE)## mkin version: 0.9.47.1
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Tue Jan 16 06:11:10 2018
-## Date of summary: Tue Jan 16 06:11:10 2018
+## Date of fit: Thu Mar 1 14:32:03 2018
+## Date of summary: Thu Mar 1 14:32:03 2018
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 66 model solutions performed in 0.139 s
+## Fitted with method Port using 66 model solutions performed in 0.134 s
##
## Weighting: none
##
@@ -690,7 +686,8 @@ mm.L4 <-
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png
index f5f45ac6..c9da66ac 100644
Binary files a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png and b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-10-1.png differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png
index 22f3a530..aa728f0f 100644
Binary files a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png and b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-12-1.png differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png
index 9eb0378f..4eb7f3b1 100644
Binary files a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png and b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-13-1.png differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png
index 93966e70..56654730 100644
Binary files a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png and b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-15-1.png differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png
index 1a9c8457..b143282b 100644
Binary files a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png and b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-4-1.png differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png
index 12b4beea..a4753a7e 100644
Binary files a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png and b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-5-1.png differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png
index 55e96a9e..50528c8a 100644
Binary files a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png and b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-6-1.png differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png
index 7b8e7f95..95a5bc5c 100644
Binary files a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png and b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-8-1.png differ
diff --git a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png
index 49c48168..745477a3 100644
Binary files a/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png and b/docs/articles/FOCUS_L_files/figure-html/unnamed-chunk-9-1.png differ
diff --git a/docs/articles/FOCUS_Z.R b/docs/articles/FOCUS_Z.R
deleted file mode 100644
index 4d2dffca..00000000
--- a/docs/articles/FOCUS_Z.R
+++ /dev/null
@@ -1,115 +0,0 @@
-## ---- include = FALSE----------------------------------------------------
-require(knitr)
-options(digits = 5)
-opts_chunk$set(engine='R', tidy = FALSE)
-
-## ---- echo = TRUE, fig = TRUE, fig.width = 8, fig.height = 7-------------
-library(mkin, quietly = TRUE)
-LOD = 0.5
-FOCUS_2006_Z = data.frame(
- t = c(0, 0.04, 0.125, 0.29, 0.54, 1, 2, 3, 4, 7, 10, 14, 21,
- 42, 61, 96, 124),
- Z0 = c(100, 81.7, 70.4, 51.1, 41.2, 6.6, 4.6, 3.9, 4.6, 4.3, 6.8,
- 2.9, 3.5, 5.3, 4.4, 1.2, 0.7),
- Z1 = c(0, 18.3, 29.6, 46.3, 55.1, 65.7, 39.1, 36, 15.3, 5.6, 1.1,
- 1.6, 0.6, 0.5 * LOD, NA, NA, NA),
- Z2 = c(0, NA, 0.5 * LOD, 2.6, 3.8, 15.3, 37.2, 31.7, 35.6, 14.5,
- 0.8, 2.1, 1.9, 0.5 * LOD, NA, NA, NA),
- Z3 = c(0, NA, NA, NA, NA, 0.5 * LOD, 9.2, 13.1, 22.3, 28.4, 32.5,
- 25.2, 17.2, 4.8, 4.5, 2.8, 4.4))
-
-FOCUS_2006_Z_mkin <- mkin_wide_to_long(FOCUS_2006_Z)
-
-## ----FOCUS_2006_Z_fits_1, echo=TRUE, fig.height=6------------------------
-Z.2a <- mkinmod(Z0 = mkinsub("SFO", "Z1"),
- Z1 = mkinsub("SFO"))
-m.Z.2a <- mkinfit(Z.2a, FOCUS_2006_Z_mkin, quiet = TRUE)
-plot_sep(m.Z.2a)
-summary(m.Z.2a, data = FALSE)$bpar
-
-## ----FOCUS_2006_Z_fits_2, echo=TRUE, fig.height=6------------------------
-Z.2a.ff <- mkinmod(Z0 = mkinsub("SFO", "Z1"),
- Z1 = mkinsub("SFO"),
- use_of_ff = "max")
-
-m.Z.2a.ff <- mkinfit(Z.2a.ff, FOCUS_2006_Z_mkin, quiet = TRUE)
-plot_sep(m.Z.2a.ff)
-summary(m.Z.2a.ff, data = FALSE)$bpar
-
-## ----FOCUS_2006_Z_fits_3, echo=TRUE, fig.height=6------------------------
-Z.3 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE),
- Z1 = mkinsub("SFO"), use_of_ff = "max")
-m.Z.3 <- mkinfit(Z.3, FOCUS_2006_Z_mkin, quiet = TRUE)
-plot_sep(m.Z.3)
-summary(m.Z.3, data = FALSE)$bpar
-
-## ----FOCUS_2006_Z_fits_5, echo=TRUE, fig.height=7------------------------
-Z.5 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE),
- Z1 = mkinsub("SFO", "Z2", sink = FALSE),
- Z2 = mkinsub("SFO"), use_of_ff = "max")
-m.Z.5 <- mkinfit(Z.5, FOCUS_2006_Z_mkin, quiet = TRUE)
-plot_sep(m.Z.5)
-
-## ----FOCUS_2006_Z_fits_6, echo=TRUE, fig.height=8------------------------
-Z.FOCUS <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE),
- Z1 = mkinsub("SFO", "Z2", sink = FALSE),
- Z2 = mkinsub("SFO", "Z3"),
- Z3 = mkinsub("SFO"),
- use_of_ff = "max")
-m.Z.FOCUS <- mkinfit(Z.FOCUS, FOCUS_2006_Z_mkin,
- parms.ini = m.Z.5$bparms.ode,
- quiet = TRUE)
-plot_sep(m.Z.FOCUS)
-summary(m.Z.FOCUS, data = FALSE)$bpar
-endpoints(m.Z.FOCUS)
-
-## ----FOCUS_2006_Z_fits_7, echo=TRUE, fig.height=8------------------------
-Z.mkin.1 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE),
- Z1 = mkinsub("SFO", "Z2", sink = FALSE),
- Z2 = mkinsub("SFO", "Z3"),
- Z3 = mkinsub("SFORB"))
-m.Z.mkin.1 <- mkinfit(Z.mkin.1, FOCUS_2006_Z_mkin, quiet = TRUE)
-plot_sep(m.Z.mkin.1)
-summary(m.Z.mkin.1, data = FALSE)$cov.unscaled
-
-## ----FOCUS_2006_Z_fits_9, echo=TRUE, fig.height=8------------------------
-Z.mkin.3 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE),
- Z1 = mkinsub("SFO", "Z2", sink = FALSE),
- Z2 = mkinsub("SFO"))
-m.Z.mkin.3 <- mkinfit(Z.mkin.3, FOCUS_2006_Z_mkin, quiet = TRUE)
-plot_sep(m.Z.mkin.3)
-
-## ----FOCUS_2006_Z_fits_10, echo=TRUE, fig.height=8-----------------------
-Z.mkin.4 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE),
- Z1 = mkinsub("SFO", "Z2", sink = FALSE),
- Z2 = mkinsub("SFO", "Z3"),
- Z3 = mkinsub("SFO"))
-m.Z.mkin.4 <- mkinfit(Z.mkin.4, FOCUS_2006_Z_mkin,
- parms.ini = m.Z.mkin.3$bparms.ode,
- quiet = TRUE)
-plot_sep(m.Z.mkin.4)
-
-## ----FOCUS_2006_Z_fits_11, echo=TRUE, fig.height=8-----------------------
-Z.mkin.5 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE),
- Z1 = mkinsub("SFO", "Z2", sink = FALSE),
- Z2 = mkinsub("SFO", "Z3"),
- Z3 = mkinsub("SFORB"))
-m.Z.mkin.5 <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin,
- parms.ini = m.Z.mkin.4$bparms.ode[1:4],
- quiet = TRUE)
-plot_sep(m.Z.mkin.5)
-
-## ----FOCUS_2006_Z_fits_11a, echo=TRUE------------------------------------
-m.Z.mkin.5a <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin,
- parms.ini = c(m.Z.mkin.5$bparms.ode[1:7],
- k_Z3_bound_free = 0),
- fixed_parms = "k_Z3_bound_free",
- quiet = TRUE)
-plot_sep(m.Z.mkin.5a)
-
-## ----FOCUS_2006_Z_fits_11b, echo=TRUE------------------------------------
-mkinparplot(m.Z.mkin.5a)
-
-## ----FOCUS_2006_Z_fits_11b_endpoints, echo=TRUE--------------------------
-endpoints(m.Z.mkin.5a)
-
diff --git a/docs/articles/FOCUS_Z.Rnw b/docs/articles/FOCUS_Z.Rnw
deleted file mode 100644
index 5abda0e1..00000000
--- a/docs/articles/FOCUS_Z.Rnw
+++ /dev/null
@@ -1,274 +0,0 @@
-%\VignetteIndexEntry{Example evaluation of FOCUS dataset Z}
-%\VignetteEngine{knitr::knitr}
-\documentclass[12pt,a4paper]{article}
-\usepackage{a4wide}
-\input{header}
-\hypersetup{
- pdftitle = {Example evaluation of FOCUS dataset Z},
- pdfsubject = {Manuscript},
- pdfauthor = {Johannes Ranke},
- colorlinks = {true},
- linkcolor = {blue},
- citecolor = {blue},
- urlcolor = {red},
- hyperindex = {true},
- linktocpage = {true},
-}
-
-\begin{document}
-
-<Example evaluation of FOCUS dataset Z
Johannes Ranke
- 2018-01-16
+ 2018-03-01
library(mkin, quietly = TRUE)
LOD = 0.5
-FOCUS_2006_Z = data.frame(
+FOCUS_2006_Z = data.frame(
t = c(0, 0.04, 0.125, 0.29, 0.54, 1, 2, 3, 4, 7, 10, 14, 21,
42, 61, 96, 124),
Z0 = c(100, 81.7, 70.4, 51.1, 41.2, 6.6, 4.6, 3.9, 4.6, 4.3, 6.8,
2.9, 3.5, 5.3, 4.4, 1.2, 0.7),
Z1 = c(0, 18.3, 29.6, 46.3, 55.1, 65.7, 39.1, 36, 15.3, 5.6, 1.1,
- 1.6, 0.6, 0.5 * LOD, NA, NA, NA),
- Z2 = c(0, NA, 0.5 * LOD, 2.6, 3.8, 15.3, 37.2, 31.7, 35.6, 14.5,
- 0.8, 2.1, 1.9, 0.5 * LOD, NA, NA, NA),
- Z3 = c(0, NA, NA, NA, NA, 0.5 * LOD, 9.2, 13.1, 22.3, 28.4, 32.5,
+ 1.6, 0.6, 0.5 * LOD, NA, NA, NA),
+ Z2 = c(0, NA, 0.5 * LOD, 2.6, 3.8, 15.3, 37.2, 31.7, 35.6, 14.5,
+ 0.8, 2.1, 1.9, 0.5 * LOD, NA, NA, NA),
+ Z3 = c(0, NA, NA, NA, NA, 0.5 * LOD, 9.2, 13.1, 22.3, 28.4, 32.5,
25.2, 17.2, 4.8, 4.5, 2.8, 4.4))
-FOCUS_2006_Z_mkin <- mkin_wide_to_long(FOCUS_2006_Z)
Parent and one metabolite
Z.2a <- mkinmod(Z0 = mkinsub("SFO", "Z1"),
+
-
+
## Successfully compiled differential equation model from auto-generated C code.
summary(m.Z.2a, data = FALSE)$bpar
+## Estimate se_notrans t value Pr(>t) Lower Upper
-## Z0_0 9.7015e+01 3.553135 2.7304e+01 1.6792e-21 91.4014 102.62838
-## k_Z0_sink 6.2135e-10 0.226894 2.7385e-09 5.0000e-01 0.0000 Inf
-## k_Z0_Z1 2.2360e+00 0.165073 1.3546e+01 7.3939e-14 1.8374 2.72107
-## k_Z1_sink 4.8212e-01 0.065854 7.3212e+00 3.5520e-08 0.4006 0.58024summary(m.Z.2a, data = FALSE)$bpar## Estimate se_notrans t value Pr(>t) Lower Upper
+## Z0_0 9.7015e+01 3.553140 2.7304e+01 1.6793e-21 NA NA
+## k_Z0_sink 1.2790e-11 0.226895 5.6368e-11 5.0000e-01 NA NA
+## k_Z0_Z1 2.2360e+00 0.165073 1.3546e+01 7.3938e-14 NA NA
+## k_Z1_sink 4.8212e-01 0.065854 7.3212e+00 3.5520e-08 NA NAZ.2a.ff <- mkinmod(Z0 = mkinsub("SFO", "Z1"),
+
-
+
## Successfully compiled differential equation model from auto-generated C code.
summary(m.Z.2a.ff, data = FALSE)$bparsummary(m.Z.2a.ff, data = FALSE)$bpar
+## f_Z0_to_Z1 1.00000 0.101473 9.8548 9.7068e-11 NA NA## Estimate se_notrans t value Pr(>t) Lower Upper
-## Z0_0 97.01488 3.553146 27.3039 1.6793e-21 NA NA
-## k_Z0 2.23601 0.216847 10.3114 3.6617e-11 NA NA
+## Z0_0 97.01488 3.553145 27.3039 1.6793e-21 NA NA
+## k_Z0 2.23601 0.216849 10.3114 3.6623e-11 NA NA
## k_Z1 0.48212 0.065854 7.3211 3.5520e-08 NA NA
-## f_Z0_to_Z1 1.00000 0.101473 9.8548 9.7071e-11 NA NA
-## Successfully compiled differential equation model from auto-generated C code.m.Z.3 <- mkinfit(Z.3, FOCUS_2006_Z_mkin, quiet = TRUE)
+

summary(m.Z.3, data = FALSE)$bparsummary(m.Z.3, data = FALSE)$bpar## Estimate se_notrans t value Pr(>t) Lower Upper
-## Z0_0 97.01488 2.681771 36.176 2.3636e-25 91.52152 102.508
-## k_Z0 2.23601 0.146862 15.225 2.2470e-15 1.95453 2.558
+## Z0_0 97.01488 2.681772 36.176 2.3636e-25 91.52152 102.508
+## k_Z0 2.23601 0.146861 15.225 2.2464e-15 1.95453 2.558
## k_Z1 0.48212 0.042687 11.294 3.0686e-12 0.40216 0.578
-## Successfully compiled differential equation model from auto-generated C code.m.Z.5 <- mkinfit(Z.5, FOCUS_2006_Z_mkin, quiet = TRUE)
+

-## Successfully compiled differential equation model from auto-generated C code.m.Z.FOCUS <- mkinfit(Z.FOCUS, FOCUS_2006_Z_mkin,
- parms.ini = m.Z.5$bparms.ode,
+m.Z.FOCUS <- mkinfit(Z.FOCUS, FOCUS_2006_Z_mkin,
+ parms.ini = m.Z.5$bparms.ode,
quiet = TRUE)## Warning in mkinfit(Z.FOCUS, FOCUS_2006_Z_mkin, parms.ini = m.Z.5$bparms.ode, : Optimisation by method Port did not converge.
## Convergence code is 1plot_sep(m.Z.FOCUS)
summary(m.Z.FOCUS, data = FALSE)$bpar
+## Estimate se_notrans t value Pr(>t) Lower Upper
-## Z0_0 96.84024 2.058814 47.0369 5.5723e-44 92.706852 100.973637
-## k_Z0 2.21540 0.118128 18.7543 7.7369e-25 1.990504 2.465708
-## k_Z1 0.47836 0.029294 16.3298 3.3443e-22 0.423035 0.540918
-## k_Z2 0.45166 0.044186 10.2218 3.0364e-14 0.371065 0.549767
-## k_Z3 0.05869 0.014290 4.1072 7.2560e-05 0.035983 0.095725
-## f_Z2_to_Z3 0.47147 0.057027 8.2676 2.7790e-11 0.360295 0.585556summary(m.Z.FOCUS, data = FALSE)$bpar## Estimate se_notrans t value Pr(>t) Lower Upper
+## Z0_0 96.837112 2.058861 47.0343 5.5877e-44 92.703779 100.970445
+## k_Z0 2.215368 0.118098 18.7587 7.6563e-25 1.990525 2.465609
+## k_Z1 0.478302 0.029289 16.3302 3.3408e-22 0.422977 0.540864
+## k_Z2 0.451617 0.044214 10.2144 3.1133e-14 0.371034 0.549702
+## k_Z3 0.058693 0.014296 4.1056 7.2924e-05 0.035994 0.095705
+## f_Z2_to_Z3 0.471516 0.057057 8.2639 2.8156e-11 0.360381 0.585548endpoints(m.Z.FOCUS)## $ff
## Z2_Z3 Z2_sink
-## 0.47147 0.52853
+## 0.47152 0.52848
##
## $SFORB
## logical(0)
@@ -195,9 +198,9 @@ FOCUS_2006_Z_mkin <-
@@ -210,17 +213,17 @@ FOCUS_2006_Z_mkin <- Z2 = mkinsub("SFO", "Z3"),
Z3 = mkinsub("SFORB"))
-## Successfully compiled differential equation model from auto-generated C code.m.Z.mkin.1 <- mkinfit(Z.mkin.1, FOCUS_2006_Z_mkin, quiet = TRUE)
+

summary(m.Z.mkin.1, data = FALSE)$cov.unscaledsummary(m.Z.mkin.1, data = FALSE)$cov.unscaled## NULLZ.mkin.3 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE),
Z1 = mkinsub("SFO", "Z2", sink = FALSE),
Z2 = mkinsub("SFO"))
-## Successfully compiled differential equation model from auto-generated C code.m.Z.mkin.3 <- mkinfit(Z.mkin.3, FOCUS_2006_Z_mkin, quiet = TRUE)
+

-## Successfully compiled differential equation model from auto-generated C code.m.Z.mkin.4 <- mkinfit(Z.mkin.4, FOCUS_2006_Z_mkin,
- parms.ini = m.Z.mkin.3$bparms.ode,
+m.Z.mkin.4 <- mkinfit(Z.mkin.4, FOCUS_2006_Z_mkin,
+ parms.ini = m.Z.mkin.3$bparms.ode,
quiet = TRUE)
plot_sep(m.Z.mkin.4)
-## Successfully compiled differential equation model from auto-generated C code.m.Z.mkin.5 <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin,
- parms.ini = m.Z.mkin.4$bparms.ode[1:4],
+m.Z.mkin.5 <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin,
+ parms.ini = m.Z.mkin.4$bparms.ode[1:4],
quiet = TRUE)
plot_sep(m.Z.mkin.5)
m.Z.mkin.5a <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin,
- parms.ini = c(m.Z.mkin.5$bparms.ode[1:7],
+m.Z.mkin.5a <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin,
+ parms.ini = c(m.Z.mkin.5$bparms.ode[1:7],
k_Z3_bound_free = 0),
fixed_parms = "k_Z3_bound_free",
quiet = TRUE)
-plot_sep(m.Z.mkin.5a)
mkinparplot(m.Z.mkin.5a)mkinparplot(m.Z.mkin.5a)
endpoints(m.Z.mkin.5a)endpoints(m.Z.mkin.5a)
@@ -291,7 +294,8 @@ FOCUS_2006_Z_mkin <-
diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png
index cb32b3c6..b66289d9 100644
Binary files a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png and b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_1-1.png differ
diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png
index 7ce8a39c..af26f416 100644
Binary files a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png and b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_10-1.png differ
diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png
index a7528057..d4e7a647 100644
Binary files a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png and b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11-1.png differ
diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png
index 3fe80d42..8c6d81ef 100644
Binary files a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png and b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11a-1.png differ
diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png
index ff0dbbbd..fffb4892 100644
Binary files a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png and b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_11b-1.png differ
diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png
index dfe447ed..0ac5b6ce 100644
Binary files a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png and b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_2-1.png differ
diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png
index 8f7102aa..87226454 100644
Binary files a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png and b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_3-1.png differ
diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png
index 74a82e2b..58241d1d 100644
Binary files a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png and b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_5-1.png differ
diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png
index 7042e390..381e7df5 100644
Binary files a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png and b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_6-1.png differ
diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png
index 29824228..19e73f1c 100644
Binary files a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png and b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_7-1.png differ
diff --git a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png
index 79f1b87e..891d8d92 100644
Binary files a/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png and b/docs/articles/FOCUS_Z_files/figure-html/FOCUS_2006_Z_fits_9-1.png differ
diff --git a/docs/articles/compiled_models.R b/docs/articles/compiled_models.R
deleted file mode 100644
index c5b06c11..00000000
--- a/docs/articles/compiled_models.R
+++ /dev/null
@@ -1,55 +0,0 @@
-## ---- include = FALSE----------------------------------------------------
-library(knitr)
-opts_chunk$set(tidy = FALSE, cache = FALSE)
-
-## ----check_gcc-----------------------------------------------------------
-Sys.which("gcc")
-
-## ----create_SFO_SFO------------------------------------------------------
-library("mkin", quietly = TRUE)
-SFO_SFO <- mkinmod(
- parent = mkinsub("SFO", "m1"),
- m1 = mkinsub("SFO"))
-
-## ----benchmark_SFO_SFO, fig.height = 3-----------------------------------
-if (require(rbenchmark)) {
- b.1 <- benchmark(
- "deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D,
- solution_type = "deSolve",
- use_compiled = FALSE, quiet = TRUE),
- "Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D,
- solution_type = "eigen", quiet = TRUE),
- "deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D,
- solution_type = "deSolve", quiet = TRUE),
- replications = 3)
- print(b.1)
- factor_SFO_SFO <- round(b.1["1", "relative"])
-} else {
- factor_SFO_SFO <- NA
- print("R package benchmark is not available")
-}
-
-## ----benchmark_FOMC_SFO, fig.height = 3----------------------------------
-if (require(rbenchmark)) {
- FOMC_SFO <- mkinmod(
- parent = mkinsub("FOMC", "m1"),
- m1 = mkinsub( "SFO"))
-
- b.2 <- benchmark(
- "deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D,
- use_compiled = FALSE, quiet = TRUE),
- "deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE),
- replications = 3)
- print(b.2)
- factor_FOMC_SFO <- round(b.2["1", "relative"])
-} else {
- factor_FOMC_SFO <- NA
- print("R package benchmark is not available")
-}
-
-## ----sessionInfo, echo = FALSE-------------------------------------------
-cat(capture.output(sessionInfo())[1:3], sep = "\n")
-if(!inherits(try(cpuinfo <- readLines("/proc/cpuinfo")), "try-error")) {
- cat(gsub("model name\t: ", "CPU model: ", cpuinfo[grep("model name", cpuinfo)[1]]))
-}
-
diff --git a/docs/articles/compiled_models.html b/docs/articles/compiled_models.html
index d5d29a1a..9f0b5708 100644
--- a/docs/articles/compiled_models.html
+++ b/docs/articles/compiled_models.html
@@ -8,8 +8,11 @@
## $ff
## Z0_free_Z1 Z1_Z2 Z2_sink Z2_Z3_free Z3_free_sink
## 1.00000 1.00000 0.46344 0.53656 1.00000
##
## $SFORB
## Z0_b1 Z0_b2 Z3_b1 Z3_b2
-## 2.4471373 0.0075126 0.0800076 0.0000000
+## 2.4471382 0.0075127 0.0800075 0.0000000
##
## $distimes
## DT50 DT90 DT50_Z0_b1 DT50_Z0_b2 DT50_Z3_b1 DT50_Z3_b2
-## Z0 0.3043 1.1848 0.28325 92.265 NA NA
+## Z0 0.3043 1.1848 0.28325 92.264 NA NA
## Z1 1.5148 5.0320 NA NA NA NA
## Z2 1.6414 5.4526 NA NA NA NA
## Z3 NA NA NA NA 8.6635 InfPerformance benefit by using compiled model definitions in mkin
Johannes Ranke
- 2018-01-16
+ 2018-03-01
## Successfully compiled differential equation model from auto-generated C code.if (require(rbenchmark)) {
+if (require(rbenchmark)) {
b.1 <- benchmark(
- "deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D,
+ "deSolve, not compiled" = mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = "deSolve",
use_compiled = FALSE, quiet = TRUE),
- "Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D,
+ "Eigenvalue based" = mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = "eigen", quiet = TRUE),
- "deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D,
+ "deSolve, compiled" = mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = "deSolve", quiet = TRUE),
replications = 3)
print(b.1)
factor_SFO_SFO <- round(b.1["1", "relative"])
-} else {
+} else {
factor_SFO_SFO <- NA
print("R package benchmark is not available")
}
-## Lade nötiges Paket: rbenchmark
-## test replications elapsed relative user.self sys.self
-## 3 deSolve, compiled 3 1.940 1.000 1.940 0
-## 1 deSolve, not compiled 3 13.865 7.147 13.864 0
-## 2 Eigenvalue based 3 2.427 1.251 2.428 0
-## user.child sys.child
-## 3 0 0
-## 1 0 0
-## 2 0 0
+## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
+## logical.return = TRUE, : es gibt kein Paket namens 'rbenchmark'
+## [1] "R package benchmark is not available"
Model that can not be solved with Eigenvalues
if (require(rbenchmark)) {
+if (require(rbenchmark)) {
FOMC_SFO <- mkinmod(
parent = mkinsub("FOMC", "m1"),
m1 = mkinsub( "SFO"))
b.2 <- benchmark(
- "deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D,
+ "deSolve, not compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D,
use_compiled = FALSE, quiet = TRUE),
- "deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE),
+ "deSolve, compiled" = mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE),
replications = 3)
print(b.2)
factor_FOMC_SFO <- round(b.2["1", "relative"])
-} else {
+} else {
factor_FOMC_SFO <- NA
print("R package benchmark is not available")
}
-## Successfully compiled differential equation model from auto-generated C code.
-## test replications elapsed relative user.self sys.self
-## 2 deSolve, compiled 3 3.432 1.000 3.428 0
-## 1 deSolve, not compiled 3 28.844 8.404 28.840 0
-## user.child sys.child
-## 2 0 0
-## 1 0 0
+## Lade nötiges Paket: rbenchmark
+## Warning in library(package, lib.loc = lib.loc, character.only = TRUE,
+## logical.return = TRUE, : es gibt kein Paket namens 'rbenchmark'
+## [1] "R package benchmark is not available"
-## R version 3.4.3 (2017-11-30)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Debian GNU/Linux 9 (stretch)
+## CPU model: Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz## CPU model: AMD Ryzen 7 1700 Eight-Core ProcessorIntroduction to mkin
Johannes Ranke
- 2018-01-16
+ 2018-03-01
Calculation of time weighted average concentrations with mkin
Johannes Ranke
- 2018-01-16
+ 2018-03-01
@@ -126,7 +129,7 @@
diff --git a/docs/authors.html b/docs/authors.html
index 7f3918c8..7abb53de 100644
--- a/docs/authors.html
+++ b/docs/authors.html
@@ -18,12 +18,16 @@
+
+
-
+
+
+
@@ -103,19 +107,19 @@
@@ -131,7 +135,7 @@
diff --git a/docs/index.html b/docs/index.html
index 2f46d730..c20d124b 100644
--- a/docs/index.html
+++ b/docs/index.html
@@ -8,8 +8,18 @@
0000-0003-4371-6538Developers
-
Author, maintainer, copyright holder
(0000-0003-4371-6538)
-
Author, maintainer, copyright holder
Dev status
@@ -176,7 +185,7 @@
diff --git a/docs/news/index.html b/docs/news/index.html
index 64e4e9bc..dfb70875 100644
--- a/docs/news/index.html
+++ b/docs/news/index.html
@@ -18,12 +18,16 @@
+
+
-
+
+
+
@@ -629,7 +633,7 @@
diff --git a/docs/pkgdown.css b/docs/pkgdown.css
index fd7b0ba4..181fe639 100644
--- a/docs/pkgdown.css
+++ b/docs/pkgdown.css
@@ -34,13 +34,14 @@ img.icon {
float: right;
}
-/* Section anchors ---------------------------------*/
-
-.hasAnchor {
- margin-left: -30px;
+img {
+ max-width: 100%;
}
+/* Section anchors ---------------------------------*/
+
a.anchor {
+ margin-left: -30px;
display:inline-block;
width: 30px;
height: 30px;
@@ -56,6 +57,13 @@ a.anchor {
visibility: visible;
}
+@media (max-width: 767px) {
+ .hasAnchor:hover a.anchor {
+ visibility: hidden;
+ }
+}
+
+
/* Fixes for fixed navbar --------------------------*/
.contents h1, .contents h2, .contents h3, .contents h4 {
@@ -63,6 +71,17 @@ a.anchor {
margin-top: -60px;
}
+/* Static header placement on mobile devices */
+@media (max-width: 767px) {
+ .navbar-fixed-top {
+ position: absolute;
+ }
+ .navbar {
+ padding: 0;
+ }
+}
+
+
/* Sidebar --------------------------*/
#sidebar {
@@ -81,33 +100,95 @@ a.anchor {
margin-bottom: 0.5em;
}
+.orcid {
+ height: 16px;
+ vertical-align: middle;
+}
+
+/* Reference index & topics ----------------------------------------------- */
+
+.ref-index th {font-weight: normal;}
+.ref-index h2 {font-size: 20px;}
+
+.ref-index td {vertical-align: top;}
+.ref-index .alias {width: 40%;}
+.ref-index .title {width: 60%;}
+
+.ref-index .alias {width: 40%;}
+.ref-index .title {width: 60%;}
+
+.ref-arguments th {text-align: right; padding-right: 10px;}
+.ref-arguments th, .ref-arguments td {vertical-align: top;}
+.ref-arguments .name {width: 20%;}
+.ref-arguments .desc {width: 80%;}
+
+/* Nice scrolling for wide elements --------------------------------------- */
+
+table {
+ display: block;
+ overflow: auto;
+}
+
/* Syntax highlighting ---------------------------------------------------- */
-code {
- background-color: #f7f7f7;
- color: #333;
+pre {
+ word-wrap: normal;
+ word-break: normal;
+ border: 1px solid #eee;
}
-code a {
- color: #375f84;
+
+pre, code {
+ background-color: #f8f8f8;
+ color: #333;
}
-.warning { color: red; }
-.message { font-weight: bolder; }
-.error { color: red; font-weight: bolder; }
+pre code {
+ overflow: auto;
+ word-wrap: normal;
+ white-space: pre;
+}
-.fl,.number {color:rgb(21,20,181);}
-.fu,.functioncall {color:#264D66 ;}
-.ch,.st,.string {color:#375D81 ;}
-.kw,.keyword {color:black;}
-.argument {color:#264D66 ;}
-.co,.comment {color: #777;}
-.formalargs {color: #264D66;}
-.eqformalargs {color:#264D66;}
-.slot {font-style:italic;}
-.symbol {color:black ;}
-.prompt {color:black ;}
+pre .img {
+ margin: 5px 0;
+}
-pre img {
+pre .img img {
background-color: #fff;
display: block;
+ height: auto;
+}
+
+code a, pre a {
+ color: #375f84;
+}
+
+a.sourceLine:hover {
+ text-decoration: none;
+}
+
+.fl {color: #1514b5;}
+.fu {color: #000000;} /* function */
+.ch,.st {color: #036a07;} /* string */
+.kw {color: #264D66;} /* keyword */
+.co {color: #888888;} /* comment */
+
+.message { color: black; font-weight: bolder;}
+.error { color: orange; font-weight: bolder;}
+.warning { color: #6A0366; font-weight: bolder;}
+
+/* Clipboard --------------------------*/
+
+.hasCopyButton {
+ position: relative;
+}
+
+.btn-copy-ex {
+ position: absolute;
+ right: 0;
+ top: 0;
+ visibility: hidden;
+}
+
+.hasCopyButton:hover button.btn-copy-ex {
+ visibility: visible;
}
diff --git a/docs/pkgdown.js b/docs/pkgdown.js
index c8b38c49..64b20df4 100644
--- a/docs/pkgdown.js
+++ b/docs/pkgdown.js
@@ -1,8 +1,94 @@
$(function() {
- $("#sidebar").stick_in_parent({offset_top: 40});
+
+ $("#sidebar")
+ .stick_in_parent({offset_top: 40})
+ .on('sticky_kit:bottom', function(e) {
+ $(this).parent().css('position', 'static');
+ })
+ .on('sticky_kit:unbottom', function(e) {
+ $(this).parent().css('position', 'relative');
+ });
+
$('body').scrollspy({
target: '#sidebar',
offset: 60
});
+ var cur_path = paths(location.pathname);
+ $("#navbar ul li a").each(function(index, value) {
+ if (value.text == "Home")
+ return;
+ if (value.getAttribute("href") === "#")
+ return;
+
+ var path = paths(value.pathname);
+ if (is_prefix(cur_path, path)) {
+ // Add class to parent
+plot(function(x) DFOP.solution(x, 100, 5, 0.5, 0.3), 0, 4, ylim=c(0,100))
diff --git a/docs/reference/Extract.mmkin.html b/docs/reference/Extract.mmkin.html index 5d4eca29..11738484 100644 --- a/docs/reference/Extract.mmkin.html +++ b/docs/reference/Extract.mmkin.html @@ -18,12 +18,19 @@ + + + + + + + @@ -69,6 +76,9 @@plot(function(x) DFOP.solution(x, 100, 5, 0.5, 0.3), 0, 4, ylim=c(0,100))
Gustafson DI and Holden LR (1990) Nonlinear pesticide dissipation in soil: A new model based on spatial variability. Environmental Science and Technology 24, 1032-1038
+plot(function(x) FOMC.solution(x, 100, 10, 2), 0, 2, ylim = c(0, 100))
diff --git a/docs/reference/HS.solution-1.png b/docs/reference/HS.solution-1.png new file mode 100644 index 00000000..e259134e Binary files /dev/null and b/docs/reference/HS.solution-1.png differ diff --git a/docs/reference/HS.solution-2.png b/docs/reference/HS.solution-2.png deleted file mode 100644 index 2e516447..00000000 Binary files a/docs/reference/HS.solution-2.png and /dev/null differ diff --git a/docs/reference/HS.solution.html b/docs/reference/HS.solution.html index 8f6bbbe2..79358efb 100644 --- a/docs/reference/HS.solution.html +++ b/docs/reference/HS.solution.html @@ -18,12 +18,20 @@ + + + + + + + @@ -69,6 +77,9 @@plot(function(x) FOMC.solution(x, 100, 10, 2), 0, 2, ylim = c(0, 100))
+plot(function(x) HS.solution(x, 100, 2, 0.3, 0.5), 0, 2, ylim=c(0,100))
diff --git a/docs/reference/IORE.solution-1.png b/docs/reference/IORE.solution-1.png new file mode 100644 index 00000000..674c25d3 Binary files /dev/null and b/docs/reference/IORE.solution-1.png differ diff --git a/docs/reference/IORE.solution-2.png b/docs/reference/IORE.solution-2.png deleted file mode 100644 index a83d49c7..00000000 Binary files a/docs/reference/IORE.solution-2.png and /dev/null differ diff --git a/docs/reference/IORE.solution.html b/docs/reference/IORE.solution.html index 45e090c0..f705ab2f 100644 --- a/docs/reference/IORE.solution.html +++ b/docs/reference/IORE.solution.html @@ -18,12 +18,20 @@ + + + + + + + @@ -86,12 +94,7 @@ @@ -154,7 +157,7 @@plot(function(x) HS.solution(x, 100, 2, 0.3, 0.5), 0, 2, ylim=c(0,100))
plot(function(x) IORE.solution(x, 100, 0.2, 1.3), 0, 2, - ylim = c(0, 100))diff --git a/docs/reference/SFO.solution-2.png b/docs/reference/SFO.solution-2.png deleted file mode 100644 index 9626091f..00000000 Binary files a/docs/reference/SFO.solution-2.png and /dev/null differ diff --git a/docs/reference/SFO.solution.html b/docs/reference/SFO.solution.html index ef9b8eb7..a7934a35 100644 --- a/docs/reference/SFO.solution.html +++ b/docs/reference/SFO.solution.html @@ -18,12 +18,19 @@ + + + + + + + @@ -69,6 +76,9 @@
+plot(function(x) SFO.solution(x, 100, 3), 0, 2)
diff --git a/docs/reference/SFORB.solution-2.png b/docs/reference/SFORB.solution-2.png deleted file mode 100644 index 63a50bf9..00000000 Binary files a/docs/reference/SFORB.solution-2.png and /dev/null differ diff --git a/docs/reference/SFORB.solution.html b/docs/reference/SFORB.solution.html index ebe67733..aaae7cdd 100644 --- a/docs/reference/SFORB.solution.html +++ b/docs/reference/SFORB.solution.html @@ -18,12 +18,23 @@ + + + + + + + @@ -69,6 +80,9 @@# NOT RUN { +plot(function(x) SFO.solution(x, 100, 3), 0, 2) +# }
+plot(function(x) SFORB.solution(x, 100, 0.5, 2, 3), 0, 2)
diff --git a/docs/reference/add_err-1.png b/docs/reference/add_err-1.png new file mode 100644 index 00000000..4f9b1534 Binary files /dev/null and b/docs/reference/add_err-1.png differ diff --git a/docs/reference/add_err-2.png b/docs/reference/add_err-2.png new file mode 100644 index 00000000..8fcf4625 Binary files /dev/null and b/docs/reference/add_err-2.png differ diff --git a/docs/reference/add_err-3.png b/docs/reference/add_err-3.png new file mode 100644 index 00000000..e44839a6 Binary files /dev/null and b/docs/reference/add_err-3.png differ diff --git a/docs/reference/add_err-4.png b/docs/reference/add_err-4.png deleted file mode 100644 index 8bbd1758..00000000 Binary files a/docs/reference/add_err-4.png and /dev/null differ diff --git a/docs/reference/add_err-6.png b/docs/reference/add_err-6.png deleted file mode 100644 index 2a4fe33f..00000000 Binary files a/docs/reference/add_err-6.png and /dev/null differ diff --git a/docs/reference/add_err-8.png b/docs/reference/add_err-8.png deleted file mode 100644 index 49c4a5f0..00000000 Binary files a/docs/reference/add_err-8.png and /dev/null differ diff --git a/docs/reference/add_err.html b/docs/reference/add_err.html index d56a8728..42bec993 100644 --- a/docs/reference/add_err.html +++ b/docs/reference/add_err.html @@ -18,12 +18,21 @@ + + - + + + + + + @@ -195,14 +204,14 @@ d_SFO_SFO_err, cores = 1, quiet = TRUE, method.modFit = "Marq") -plot(f_SFO_SFO)# NOT RUN { +plot(function(x) SFORB.solution(x, 100, 0.5, 2, 3), 0, 2) +# }






McCall P, Vrona SA, Kelley SS (1981) Fate of uniformly carbon-14 ring labeled 2,4,5-Trichlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid. J Agric Chem 29, 100-107 - http://dx.doi.org/10.1021/jf00103a026
+ http://dx.doi.org/10.1021/jf00103a026@@ -165,7 +168,7 @@ diff --git a/docs/reference/mkinds.html b/docs/reference/mkinds.html index 2d8d64a5..ab06e903 100644 --- a/docs/reference/mkinds.html +++ b/docs/reference/mkinds.html @@ -18,12 +18,19 @@ + + + + + + + @@ -86,12 +93,7 @@ @@ -154,7 +156,7 @@ in order to be compatible with mkinfit diff --git a/docs/reference/mkinerrmin.html b/docs/reference/mkinerrmin.html index 67b7a35e..496cce15 100644 --- a/docs/reference/mkinerrmin.html +++ b/docs/reference/mkinerrmin.html @@ -18,12 +18,20 @@ + + + + + + + @@ -69,6 +77,9 @@SFO_SFO_SFO <- mkinmod(T245 = list(type = "SFO", to = "phenol"), phenol = list(type = "SFO", to = "anisole"), - anisole = list(type = "SFO"))#>+ anisole = list(type = "SFO"))#># NOT RUN { fit.1 <- mkinfit(SFO_SFO_SFO, subset(mccall81_245T, soil == "Commerce"), quiet = TRUE) - summary(fit.1, data = FALSE)#> mkin version: 0.9.46 -#> R version: 3.4.1 -#> Date of fit: Sat Jul 29 15:14:14 2017 -#> Date of summary: Sat Jul 29 15:14:14 2017 -#> -#> Equations: -#> d_T245/dt = - k_T245_sink * T245 - k_T245_phenol * T245 -#> d_phenol/dt = + k_T245_phenol * T245 - k_phenol_sink * phenol - -#> k_phenol_anisole * phenol -#> d_anisole/dt = + k_phenol_anisole * phenol - k_anisole_sink * anisole -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 612 model solutions performed in 3.558 s -#> -#> Weighting: none -#> -#> Starting values for parameters to be optimised: -#> value type -#> T245_0 100.9000 state -#> k_T245_sink 0.1000 deparm -#> k_T245_phenol 0.1001 deparm -#> k_phenol_sink 0.1002 deparm -#> k_phenol_anisole 0.1003 deparm -#> k_anisole_sink 0.1004 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> T245_0 100.900000 -Inf Inf -#> log_k_T245_sink -2.302585 -Inf Inf -#> log_k_T245_phenol -2.301586 -Inf Inf -#> log_k_phenol_sink -2.300587 -Inf Inf -#> log_k_phenol_anisole -2.299590 -Inf Inf -#> log_k_anisole_sink -2.298593 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> phenol_0 0 state -#> anisole_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> T245_0 103.9000 NA NA NA -#> log_k_T245_sink -4.1130 NA NA NA -#> log_k_T245_phenol -3.6120 NA NA NA -#> log_k_phenol_sink -26.8400 NA NA NA -#> log_k_phenol_anisole -0.9037 NA NA NA -#> log_k_anisole_sink -5.0090 NA NA NA -#> -#> Parameter correlation:#> Warning: Could not estimate covariance matrix; singular system:#> Could not estimate covariance matrix; singular system: -#> -#> Residual standard error: 2.78 on 18 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> T245_0 1.039e+02 4.282e+01 7.236e-20 NA NA -#> k_T245_sink 1.636e-02 8.901e-01 1.926e-01 NA NA -#> k_T245_phenol 2.701e-02 1.504e+00 7.499e-02 NA NA -#> k_phenol_sink 2.212e-12 7.870e-12 5.000e-01 NA NA -#> k_phenol_anisole 4.051e-01 2.518e+00 1.075e-02 NA NA -#> k_anisole_sink 6.679e-03 8.146e+00 9.469e-08 NA NA -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 10.070 6 16 -#> T245 7.908 3 5 -#> phenol 106.445 2 5 -#> anisole 5.379 1 6 -#> -#> Resulting formation fractions: -#> ff -#> T245_sink 3.772e-01 -#> T245_phenol 6.228e-01 -#> phenol_sink 5.462e-12 -#> phenol_anisole 1.000e+00 -#> anisole_sink 1.000e+00 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> T245 15.982 53.091 -#> phenol 1.711 5.685 -#> anisole 103.784 344.763- # No convergence, no covariance matrix ... + summary(fit.1, data = FALSE) + +# }@@ -186,7 +190,7 @@ diff --git a/docs/reference/mkin_wide_to_long.html b/docs/reference/mkin_wide_to_long.html index ddf28dd9..6798efa6 100644 --- a/docs/reference/mkin_wide_to_long.html +++ b/docs/reference/mkin_wide_to_long.html @@ -18,12 +18,20 @@ + + + + + + + @@ -86,12 +94,7 @@# No convergence, no covariance matrix ... # k_phenol_sink is really small, therefore fix it to zero fit.2 <- mkinfit(SFO_SFO_SFO, subset(mccall81_245T, soil == "Commerce"), parms.ini = c(k_phenol_sink = 0), fixed_parms = "k_phenol_sink", quiet = TRUE) - summary(fit.2, data = FALSE)#> mkin version: 0.9.46 -#> R version: 3.4.1 -#> Date of fit: Sat Jul 29 15:14:15 2017 -#> Date of summary: Sat Jul 29 15:14:15 2017 + summary(fit.2, data = FALSE)#> mkin version used for fitting: 0.9.47.1 +#> R version used for fitting: 3.4.3 +#> Date of fit: Thu Mar 1 14:26:15 2018 +#> Date of summary: Thu Mar 1 14:26:15 2018 #> #> Equations: #> d_T245/dt = - k_T245_sink * T245 - k_T245_phenol * T245 @@ -238,7 +162,7 @@ #> #> Model predictions using solution type deSolve #> -#> Fitted with method Port using 246 model solutions performed in 1.431 s +#> Fitted with method Port using 246 model solutions performed in 1.359 s #> #> Weighting: none #> @@ -340,7 +264,7 @@diff --git a/docs/reference/mkin_long_to_wide.html b/docs/reference/mkin_long_to_wide.html index 042bdced..a5432dac 100644 --- a/docs/reference/mkin_long_to_wide.html +++ b/docs/reference/mkin_long_to_wide.html @@ -18,12 +18,21 @@ + + + + + + + @@ -86,12 +95,7 @@
+summary(f.w.man.irls) +# } diff --git a/docs/reference/mkinmod.html b/docs/reference/mkinmod.html index 5703b188..c1287905 100644 --- a/docs/reference/mkinmod.html +++ b/docs/reference/mkinmod.html @@ -18,12 +18,24 @@ + + + + + + + @@ -69,6 +81,9 @@# Use shorthand notation for parent only degradation fit <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE) -summary(fit)#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:05:48 2018 -#> Date of summary: Tue Jan 30 10:05:48 2018 +summary(fit)#> mkin version used for fitting: 0.9.47.1 +#> R version used for fitting: 3.4.3 +#> Date of fit: Thu Mar 1 14:26:18 2018 +#> Date of summary: Thu Mar 1 14:26:18 2018 #> #> Equations: #> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent #> #> Model predictions using solution type analytical #> -#> Fitted with method Port using 64 model solutions performed in 0.31 s +#> Fitted with method Port using 64 model solutions performed in 0.135 s #> #> Weighting: none #> @@ -474,7 +491,7 @@ m1 = mkinsub("SFO"))#># Fit the model to the FOCUS example dataset D using defaults print(system.time(fit <- mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "eigen", quiet = TRUE)))#> user system elapsed -#> 1.196 0.000 1.195coef(fit)#> parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink +#> 0.84 0.00 0.84coef(fit)#> parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink #> 99.59848 -3.03822 -2.98030 -5.24750endpoints(fit)#> $ff #> parent_sink parent_m1 m1_sink #> 0.485524 0.514476 1.000000 @@ -486,92 +503,19 @@ #> DT50 DT90 #> parent 7.022929 23.32967 #> m1 131.760712 437.69961 -#>+#># NOT RUN { # deSolve is slower when no C compiler (gcc) was available during model generation print(system.time(fit.deSolve <- mkinfit(SFO_SFO, FOCUS_2006_D, - solution_type = "deSolve")))#> Model cost at call 1 : 18915.53 -#> Model cost at call 2 : 18915.53 -#> Model cost at call 6 : 11424.02 -#> Model cost at call 10 : 11424 -#> Model cost at call 12 : 4094.396 -#> Model cost at call 16 : 4094.396 -#> Model cost at call 19 : 1340.595 -#> Model cost at call 20 : 1340.593 -#> Model cost at call 25 : 1072.239 -#> Model cost at call 28 : 1072.236 -#> Model cost at call 30 : 874.2614 -#> Model cost at call 33 : 874.2611 -#> Model cost at call 35 : 616.2379 -#> Model cost at call 37 : 616.2374 -#> Model cost at call 40 : 467.4387 -#> Model cost at call 42 : 467.4382 -#> Model cost at call 46 : 398.2913 -#> Model cost at call 48 : 398.2912 -#> Model cost at call 49 : 398.2911 -#> Model cost at call 51 : 395.0711 -#> Model cost at call 54 : 395.071 -#> Model cost at call 56 : 378.3298 -#> Model cost at call 59 : 378.3298 -#> Model cost at call 62 : 376.9812 -#> Model cost at call 64 : 376.9811 -#> Model cost at call 67 : 375.2085 -#> Model cost at call 69 : 375.2085 -#> Model cost at call 70 : 375.2085 -#> Model cost at call 71 : 375.2085 -#> Model cost at call 72 : 374.5723 -#> Model cost at call 74 : 374.5723 -#> Model cost at call 77 : 374.0075 -#> Model cost at call 79 : 374.0075 -#> Model cost at call 80 : 374.0075 -#> Model cost at call 82 : 373.1711 -#> Model cost at call 84 : 373.1711 -#> Model cost at call 87 : 372.6445 -#> Model cost at call 88 : 372.1614 -#> Model cost at call 90 : 372.1614 -#> Model cost at call 91 : 372.1614 -#> Model cost at call 94 : 371.6464 -#> Model cost at call 99 : 371.4299 -#> Model cost at call 101 : 371.4299 -#> Model cost at call 104 : 371.4071 -#> Model cost at call 106 : 371.4071 -#> Model cost at call 107 : 371.4071 -#> Model cost at call 109 : 371.2524 -#> Model cost at call 113 : 371.2524 -#> Model cost at call 114 : 371.2136 -#> Model cost at call 115 : 371.2136 -#> Model cost at call 116 : 371.2136 -#> Model cost at call 119 : 371.2134 -#> Model cost at call 120 : 371.2134 -#> Model cost at call 122 : 371.2134 -#> Model cost at call 123 : 371.2134 -#> Model cost at call 125 : 371.2134 -#> Model cost at call 126 : 371.2134 -#> Model cost at call 135 : 371.2134 -#> Model cost at call 147 : 371.2134 -#> Model cost at call 151 : 371.2134 -#> Model cost at call 152 : 371.2134 -#> Model cost at call 153 : 371.2134 -#> Optimisation by method Port successfully terminated. -#> user system elapsed -#> 1.008 0.000 1.006coef(fit.deSolve)#> parent_0 log_k_parent_sink log_k_parent_m1 log_k_m1_sink -#> 99.59848 -3.03822 -2.98030 -5.24750endpoints(fit.deSolve)#> $ff -#> parent_sink parent_m1 m1_sink -#> 0.485524 0.514476 1.000000 -#> -#> $SFORB -#> logical(0) -#> -#> $distimes -#> DT50 DT90 -#> parent 7.022929 23.32967 -#> m1 131.760712 437.69961 -#>- -# Use stepwise fitting, using optimised parameters from parent only fit, FOMC - + solution_type = "deSolve"))) +coef(fit.deSolve) +endpoints(fit.deSolve) +# }+# Use stepwise fitting, using optimised parameters from parent only fit, FOMC +# NOT RUN { FOMC_SFO <- mkinmod( parent = mkinsub("FOMC", "m1"), - m1 = mkinsub("SFO"))#># Fit the model to the FOCUS example dataset D using defaults + m1 = mkinsub("SFO")) +# Fit the model to the FOCUS example dataset D using defaults fit.FOMC_SFO <- mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE) # Use starting parameters from parent only FOMC fit fit.FOMC = mkinfit("FOMC", FOCUS_2006_D, quiet = TRUE) @@ -581,739 +525,40 @@ # Use stepwise fitting, using optimised parameters from parent only fit, SFORB SFORB_SFO <- mkinmod( parent = list(type = "SFORB", to = "m1", sink = TRUE), - m1 = list(type = "SFO"))#># Fit the model to the FOCUS example dataset D using defaults + m1 = list(type = "SFO")) +# Fit the model to the FOCUS example dataset D using defaults fit.SFORB_SFO <- mkinfit(SFORB_SFO, FOCUS_2006_D, quiet = TRUE) fit.SFORB_SFO.deSolve <- mkinfit(SFORB_SFO, FOCUS_2006_D, solution_type = "deSolve", quiet = TRUE) # Use starting parameters from parent only SFORB fit (not really needed in this case) fit.SFORB = mkinfit("SFORB", FOCUS_2006_D, quiet = TRUE) fit.SFORB_SFO <- mkinfit(SFORB_SFO, FOCUS_2006_D, parms.ini = fit.SFORB$bparms.ode, quiet = TRUE) - - - +# }+# NOT RUN { # Weighted fits, including IRLS SFO_SFO.ff <- mkinmod(parent = mkinsub("SFO", "m1"), - m1 = mkinsub("SFO"), use_of_ff = "max")#>f.noweight <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, quiet = TRUE) -summary(f.noweight)#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:06:00 2018 -#> Date of summary: Tue Jan 30 10:06:00 2018 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 185 model solutions performed in 0.739 s -#> -#> Weighting: none -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.60000 1.61400 96.3300 102.9000 -#> log_k_parent -2.31600 0.04187 -2.4010 -2.2310 -#> log_k_m1 -5.24800 0.13610 -5.5230 -4.9720 -#> f_parent_ilr_1 0.04096 0.06477 -0.0904 0.1723 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1 -#> parent_0 1.0000 0.5178 -0.1701 -0.5489 -#> log_k_parent 0.5178 1.0000 -0.3285 -0.5451 -#> log_k_m1 -0.1701 -0.3285 1.0000 0.7466 -#> f_parent_ilr_1 -0.5489 -0.5451 0.7466 1.0000 -#> -#> Residual standard error: 3.211 on 36 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.600000 61.720 2.024e-38 96.330000 1.029e+02 -#> k_parent 0.098700 23.880 5.701e-24 0.090660 1.074e-01 -#> k_m1 0.005261 7.349 5.758e-09 0.003992 6.933e-03 -#> f_parent_to_m1 0.514500 22.490 4.374e-23 0.468100 5.606e-01 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.398 4 15 -#> parent 6.459 2 7 -#> m1 4.690 2 8 -#> -#> Resulting formation fractions: -#> ff -#> parent_m1 0.5145 -#> parent_sink 0.4855 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 7.023 23.33 -#> m1 131.761 437.70 -#> -#> Data: -#> time variable observed predicted residual -#> 0 parent 99.46 99.59848 -1.385e-01 -#> 0 parent 102.04 99.59848 2.442e+00 -#> 1 parent 93.50 90.23787 3.262e+00 -#> 1 parent 92.50 90.23787 2.262e+00 -#> 3 parent 63.23 74.07319 -1.084e+01 -#> 3 parent 68.99 74.07319 -5.083e+00 -#> 7 parent 52.32 49.91206 2.408e+00 -#> 7 parent 55.13 49.91206 5.218e+00 -#> 14 parent 27.27 25.01257 2.257e+00 -#> 14 parent 26.64 25.01257 1.627e+00 -#> 21 parent 11.50 12.53462 -1.035e+00 -#> 21 parent 11.64 12.53462 -8.946e-01 -#> 35 parent 2.85 3.14787 -2.979e-01 -#> 35 parent 2.91 3.14787 -2.379e-01 -#> 50 parent 0.69 0.71624 -2.624e-02 -#> 50 parent 0.63 0.71624 -8.624e-02 -#> 75 parent 0.05 0.06074 -1.074e-02 -#> 75 parent 0.06 0.06074 -7.381e-04 -#> 0 m1 0.00 0.00000 0.000e+00 -#> 0 m1 0.00 0.00000 0.000e+00 -#> 1 m1 4.84 4.80296 3.704e-02 -#> 1 m1 5.64 4.80296 8.370e-01 -#> 3 m1 12.91 13.02400 -1.140e-01 -#> 3 m1 12.96 13.02400 -6.400e-02 -#> 7 m1 22.97 25.04476 -2.075e+00 -#> 7 m1 24.47 25.04476 -5.748e-01 -#> 14 m1 41.69 36.69002 5.000e+00 -#> 14 m1 33.21 36.69002 -3.480e+00 -#> 21 m1 44.37 41.65310 2.717e+00 -#> 21 m1 46.44 41.65310 4.787e+00 -#> 35 m1 41.22 43.31312 -2.093e+00 -#> 35 m1 37.95 43.31312 -5.363e+00 -#> 50 m1 41.19 41.21831 -2.831e-02 -#> 50 m1 40.01 41.21831 -1.208e+00 -#> 75 m1 40.09 36.44703 3.643e+00 -#> 75 m1 33.85 36.44703 -2.597e+00 -#> 100 m1 31.04 31.98163 -9.416e-01 -#> 100 m1 33.13 31.98163 1.148e+00 -#> 120 m1 25.15 28.78984 -3.640e+00 -#> 120 m1 33.31 28.78984 4.520e+00f.irls <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, reweight.method = "obs", quiet = TRUE) -summary(f.irls)#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:06:02 2018 -#> Date of summary: Tue Jan 30 10:06:02 2018 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 523 model solutions performed in 2.151 s -#> -#> Weighting: none -#> -#> Iterative reweighting with method obs -#> Final mean squared residuals of observed variables: -#> parent m1 -#> 11.573408 7.407845 -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.67000 1.79200 96.04000 103.300 -#> log_k_parent -2.31200 0.04560 -2.40400 -2.219 -#> log_k_m1 -5.25100 0.12510 -5.50500 -4.998 -#> f_parent_ilr_1 0.03785 0.06318 -0.09027 0.166 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1 -#> parent_0 1.0000 0.5083 -0.1979 -0.6148 -#> log_k_parent 0.5083 1.0000 -0.3894 -0.6062 -#> log_k_m1 -0.1979 -0.3894 1.0000 0.7417 -#> f_parent_ilr_1 -0.6148 -0.6062 0.7417 1.0000 -#> -#> Residual standard error: 1.054 on 36 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.67000 55.630 8.184e-37 96.040000 1.033e+02 -#> k_parent 0.09906 21.930 1.016e-22 0.090310 1.087e-01 -#> k_m1 0.00524 7.996 8.486e-10 0.004066 6.753e-03 -#> f_parent_to_m1 0.51340 23.000 2.038e-23 0.468100 5.584e-01 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.399 4 15 -#> parent 6.466 2 7 -#> m1 4.679 2 8 -#> -#> Resulting formation fractions: -#> ff -#> parent_m1 0.5134 -#> parent_sink 0.4866 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 6.997 23.24 -#> m1 132.282 439.43 -#> -#> Data: -#> time variable observed predicted residual err -#> 0 parent 99.46 99.67218 -2.122e-01 3.402 -#> 0 parent 102.04 99.67218 2.368e+00 3.402 -#> 1 parent 93.50 90.27153 3.228e+00 3.402 -#> 1 parent 92.50 90.27153 2.228e+00 3.402 -#> 3 parent 63.23 74.04648 -1.082e+01 3.402 -#> 3 parent 68.99 74.04648 -5.056e+00 3.402 -#> 7 parent 52.32 49.82092 2.499e+00 3.402 -#> 7 parent 55.13 49.82092 5.309e+00 3.402 -#> 14 parent 27.27 24.90287 2.367e+00 3.402 -#> 14 parent 26.64 24.90287 1.737e+00 3.402 -#> 21 parent 11.50 12.44764 -9.476e-01 3.402 -#> 21 parent 11.64 12.44764 -8.076e-01 3.402 -#> 35 parent 2.85 3.11002 -2.600e-01 3.402 -#> 35 parent 2.91 3.11002 -2.000e-01 3.402 -#> 50 parent 0.69 0.70374 -1.374e-02 3.402 -#> 50 parent 0.63 0.70374 -7.374e-02 3.402 -#> 75 parent 0.05 0.05913 -9.134e-03 3.402 -#> 75 parent 0.06 0.05913 8.662e-04 3.402 -#> 0 m1 0.00 0.00000 0.000e+00 2.722 -#> 0 m1 0.00 0.00000 0.000e+00 2.722 -#> 1 m1 4.84 4.81328 2.672e-02 2.722 -#> 1 m1 5.64 4.81328 8.267e-01 2.722 -#> 3 m1 12.91 13.04779 -1.378e-01 2.722 -#> 3 m1 12.96 13.04779 -8.779e-02 2.722 -#> 7 m1 22.97 25.07615 -2.106e+00 2.722 -#> 7 m1 24.47 25.07615 -6.062e-01 2.722 -#> 14 m1 41.69 36.70729 4.983e+00 2.722 -#> 14 m1 33.21 36.70729 -3.497e+00 2.722 -#> 21 m1 44.37 41.65050 2.720e+00 2.722 -#> 21 m1 46.44 41.65050 4.790e+00 2.722 -#> 35 m1 41.22 43.28866 -2.069e+00 2.722 -#> 35 m1 37.95 43.28866 -5.339e+00 2.722 -#> 50 m1 41.19 41.19338 -3.383e-03 2.722 -#> 50 m1 40.01 41.19338 -1.183e+00 2.722 -#> 75 m1 40.09 36.43820 3.652e+00 2.722 -#> 75 m1 33.85 36.43820 -2.588e+00 2.722 -#> 100 m1 31.04 31.98971 -9.497e-01 2.722 -#> 100 m1 33.13 31.98971 1.140e+00 2.722 -#> 120 m1 25.15 28.80897 -3.659e+00 2.722 -#> 120 m1 33.31 28.80897 4.501e+00 2.722f.w.mean <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, weight = "mean", quiet = TRUE) -summary(f.w.mean)#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:06:03 2018 -#> Date of summary: Tue Jan 30 10:06:03 2018 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 155 model solutions performed in 0.675 s -#> -#> Weighting: mean -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.7300 1.93200 95.81000 103.6000 -#> log_k_parent -2.3090 0.04837 -2.40700 -2.2110 -#> log_k_m1 -5.2550 0.12070 -5.49900 -5.0100 -#> f_parent_ilr_1 0.0354 0.06344 -0.09327 0.1641 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1 -#> parent_0 1.0000 0.5004 -0.2143 -0.6514 -#> log_k_parent 0.5004 1.0000 -0.4282 -0.6383 -#> log_k_m1 -0.2143 -0.4282 1.0000 0.7390 -#> f_parent_ilr_1 -0.6514 -0.6383 0.7390 1.0000 -#> -#> Residual standard error: 0.09829 on 36 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.730000 51.630 1.166e-35 95.81000 1.036e+02 -#> k_parent 0.099360 20.670 7.303e-22 0.09007 1.096e-01 -#> k_m1 0.005224 8.287 3.649e-10 0.00409 6.672e-03 -#> f_parent_to_m1 0.512500 22.860 2.497e-23 0.46710 5.578e-01 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.401 4 15 -#> parent 6.473 2 7 -#> m1 4.671 2 8 -#> -#> Resulting formation fractions: -#> ff -#> parent_m1 0.5125 -#> parent_sink 0.4875 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 6.976 23.18 -#> m1 132.696 440.81 -#> -#> Data: -#> time variable observed predicted residual -#> 0 parent 99.46 99.73057 -0.270570 -#> 0 parent 102.04 99.73057 2.309430 -#> 1 parent 93.50 90.29805 3.201945 -#> 1 parent 92.50 90.29805 2.201945 -#> 3 parent 63.23 74.02503 -10.795028 -#> 3 parent 68.99 74.02503 -5.035028 -#> 7 parent 52.32 49.74838 2.571618 -#> 7 parent 55.13 49.74838 5.381618 -#> 14 parent 27.27 24.81588 2.454124 -#> 14 parent 26.64 24.81588 1.824124 -#> 21 parent 11.50 12.37885 -0.878849 -#> 21 parent 11.64 12.37885 -0.738849 -#> 35 parent 2.85 3.08022 -0.230219 -#> 35 parent 2.91 3.08022 -0.170219 -#> 50 parent 0.69 0.69396 -0.003958 -#> 50 parent 0.63 0.69396 -0.063958 -#> 75 parent 0.05 0.05789 -0.007888 -#> 75 parent 0.06 0.05789 0.002112 -#> 0 m1 0.00 0.00000 0.000000 -#> 0 m1 0.00 0.00000 0.000000 -#> 1 m1 4.84 4.82149 0.018512 -#> 1 m1 5.64 4.82149 0.818512 -#> 3 m1 12.91 13.06669 -0.156692 -#> 3 m1 12.96 13.06669 -0.106692 -#> 7 m1 22.97 25.10106 -2.131058 -#> 7 m1 24.47 25.10106 -0.631058 -#> 14 m1 41.69 36.72092 4.969077 -#> 14 m1 33.21 36.72092 -3.510923 -#> 21 m1 44.37 41.64835 2.721647 -#> 21 m1 46.44 41.64835 4.791647 -#> 35 m1 41.22 43.26923 -2.049225 -#> 35 m1 37.95 43.26923 -5.319225 -#> 50 m1 41.19 41.17364 0.016361 -#> 50 m1 40.01 41.17364 -1.163639 -#> 75 m1 40.09 36.43122 3.658776 -#> 75 m1 33.85 36.43122 -2.581224 -#> 100 m1 31.04 31.99612 -0.956124 -#> 100 m1 33.13 31.99612 1.133876 -#> 120 m1 25.15 28.82413 -3.674128 -#> 120 m1 33.31 28.82413 4.485872f.w.value <- mkinfit(SFO_SFO.ff, subset(FOCUS_2006_D, value != 0), err = "value", + m1 = mkinsub("SFO"), use_of_ff = "max") +f.noweight <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, quiet = TRUE) +summary(f.noweight) +f.irls <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, reweight.method = "obs", quiet = TRUE) +summary(f.irls) +f.w.mean <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, weight = "mean", quiet = TRUE) +summary(f.w.mean) +f.w.value <- mkinfit(SFO_SFO.ff, subset(FOCUS_2006_D, value != 0), err = "value", quiet = TRUE) -summary(f.w.value)#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:06:04 2018 -#> Date of summary: Tue Jan 30 10:06:04 2018 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 174 model solutions performed in 0.68 s -#> -#> Weighting: manual -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.6600 2.712000 94.14000 105.2000 -#> log_k_parent -2.2980 0.008118 -2.31500 -2.2820 -#> log_k_m1 -5.2410 0.096690 -5.43800 -5.0450 -#> f_parent_ilr_1 0.0231 0.057990 -0.09474 0.1409 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1 -#> parent_0 1.00000 0.6844 -0.08687 -0.7564 -#> log_k_parent 0.68435 1.0000 -0.12694 -0.5812 -#> log_k_m1 -0.08687 -0.1269 1.00000 0.5195 -#> f_parent_ilr_1 -0.75644 -0.5812 0.51951 1.0000 -#> -#> Residual standard error: 0.08396 on 34 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.660000 36.75 2.957e-29 94.14000 1.052e+02 -#> k_parent 0.100400 123.20 5.927e-47 0.09878 1.021e-01 -#> k_m1 0.005295 10.34 2.447e-12 0.00435 6.444e-03 -#> f_parent_to_m1 0.508200 24.79 1.184e-23 0.46660 5.497e-01 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.461 4 15 -#> parent 6.520 2 7 -#> m1 4.744 2 8 -#> -#> Resulting formation fractions: -#> ff -#> parent_m1 0.5082 -#> parent_sink 0.4918 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 6.902 22.93 -#> m1 130.916 434.89 -#> -#> Data: -#> time variable observed predicted residual err -#> 0 parent 99.46 99.65571 -0.195714 99.46 -#> 0 parent 102.04 99.65571 2.384286 102.04 -#> 1 parent 93.50 90.13383 3.366170 93.50 -#> 1 parent 92.50 90.13383 2.366170 92.50 -#> 3 parent 63.23 73.73252 -10.502518 63.23 -#> 3 parent 68.99 73.73252 -4.742518 68.99 -#> 7 parent 52.32 49.34027 2.979728 52.32 -#> 7 parent 55.13 49.34027 5.789728 55.13 -#> 14 parent 27.27 24.42873 2.841271 27.27 -#> 14 parent 26.64 24.42873 2.211271 26.64 -#> 21 parent 11.50 12.09484 -0.594842 11.50 -#> 21 parent 11.64 12.09484 -0.454842 11.64 -#> 35 parent 2.85 2.96482 -0.114824 2.85 -#> 35 parent 2.91 2.96482 -0.054824 2.91 -#> 50 parent 0.69 0.65733 0.032670 0.69 -#> 50 parent 0.63 0.65733 -0.027330 0.63 -#> 75 parent 0.05 0.05339 -0.003386 0.05 -#> 75 parent 0.06 0.05339 0.006614 0.06 -#> 1 m1 4.84 4.82570 0.014301 4.84 -#> 1 m1 5.64 4.82570 0.814301 5.64 -#> 3 m1 12.91 13.06402 -0.154020 12.91 -#> 3 m1 12.96 13.06402 -0.104020 12.96 -#> 7 m1 22.97 25.04656 -2.076564 22.97 -#> 7 m1 24.47 25.04656 -0.576564 24.47 -#> 14 m1 41.69 36.53601 5.153988 41.69 -#> 14 m1 33.21 36.53601 -3.326012 33.21 -#> 21 m1 44.37 41.34639 3.023609 44.37 -#> 21 m1 46.44 41.34639 5.093609 46.44 -#> 35 m1 41.22 42.82669 -1.606690 41.22 -#> 35 m1 37.95 42.82669 -4.876690 37.95 -#> 50 m1 41.19 40.67342 0.516578 41.19 -#> 50 m1 40.01 40.67342 -0.663422 40.01 -#> 75 m1 40.09 35.91105 4.178947 40.09 -#> 75 m1 33.85 35.91105 -2.061053 33.85 -#> 100 m1 31.04 31.48161 -0.441612 31.04 -#> 100 m1 33.13 31.48161 1.648388 33.13 -#> 120 m1 25.15 28.32018 -3.170181 25.15 -#> 120 m1 33.31 28.32018 4.989819 33.31- - +summary(f.w.value) +# }+# NOT RUN { # Manual weighting dw <- FOCUS_2006_D errors <- c(parent = 2, m1 = 1) dw$err.man <- errors[FOCUS_2006_D$name] f.w.man <- mkinfit(SFO_SFO.ff, dw, err = "err.man", quiet = TRUE) -summary(f.w.man)#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:06:05 2018 -#> Date of summary: Tue Jan 30 10:06:05 2018 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 297 model solutions performed in 1.178 s -#> -#> Weighting: manual -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.49000 1.33200 96.7800 102.2000 -#> log_k_parent -2.32100 0.03550 -2.3930 -2.2490 -#> log_k_m1 -5.24100 0.21280 -5.6730 -4.8100 -#> f_parent_ilr_1 0.04571 0.08966 -0.1361 0.2275 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1 -#> parent_0 1.00000 0.5312 -0.09456 -0.3351 -#> log_k_parent 0.53123 1.0000 -0.17800 -0.3360 -#> log_k_m1 -0.09456 -0.1780 1.00000 0.7616 -#> f_parent_ilr_1 -0.33514 -0.3360 0.76156 1.0000 -#> -#> Residual standard error: 2.628 on 36 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.490000 74.69 2.221e-41 96.780000 1.022e+02 -#> k_parent 0.098140 28.17 2.012e-26 0.091320 1.055e-01 -#> k_m1 0.005292 4.70 1.873e-05 0.003437 8.148e-03 -#> f_parent_to_m1 0.516200 16.30 1.686e-18 0.452000 5.798e-01 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.400 4 15 -#> parent 6.454 2 7 -#> m1 4.708 2 8 -#> -#> Resulting formation fractions: -#> ff -#> parent_m1 0.5162 -#> parent_sink 0.4838 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 7.063 23.46 -#> m1 130.971 435.08 -#> -#> Data: -#> time variable observed predicted residual err -#> 0 parent 99.46 99.48598 -0.025976 1 -#> 0 parent 102.04 99.48598 2.554024 1 -#> 1 parent 93.50 90.18612 3.313883 1 -#> 1 parent 92.50 90.18612 2.313883 1 -#> 3 parent 63.23 74.11316 -10.883162 1 -#> 3 parent 68.99 74.11316 -5.123162 1 -#> 7 parent 52.32 50.05029 2.269705 1 -#> 7 parent 55.13 50.05029 5.079705 1 -#> 14 parent 27.27 25.17975 2.090250 1 -#> 14 parent 26.64 25.17975 1.460250 1 -#> 21 parent 11.50 12.66765 -1.167654 1 -#> 21 parent 11.64 12.66765 -1.027654 1 -#> 35 parent 2.85 3.20616 -0.356164 1 -#> 35 parent 2.91 3.20616 -0.296164 1 -#> 50 parent 0.69 0.73562 -0.045619 1 -#> 50 parent 0.63 0.73562 -0.105619 1 -#> 75 parent 0.05 0.06326 -0.013256 1 -#> 75 parent 0.06 0.06326 -0.003256 1 -#> 0 m1 0.00 0.00000 0.000000 2 -#> 0 m1 0.00 0.00000 0.000000 2 -#> 1 m1 4.84 4.78729 0.052713 2 -#> 1 m1 5.64 4.78729 0.852713 2 -#> 3 m1 12.91 12.98785 -0.077848 2 -#> 3 m1 12.96 12.98785 -0.027848 2 -#> 7 m1 22.97 24.99695 -2.026945 2 -#> 7 m1 24.47 24.99695 -0.526945 2 -#> 14 m1 41.69 36.66353 5.026473 2 -#> 14 m1 33.21 36.66353 -3.453527 2 -#> 21 m1 44.37 41.65681 2.713187 2 -#> 21 m1 46.44 41.65681 4.783187 2 -#> 35 m1 41.22 43.35031 -2.130312 2 -#> 35 m1 37.95 43.35031 -5.400312 2 -#> 50 m1 41.19 41.25637 -0.066365 2 -#> 50 m1 40.01 41.25637 -1.246365 2 -#> 75 m1 40.09 36.46057 3.629433 2 -#> 75 m1 33.85 36.46057 -2.610567 2 -#> 100 m1 31.04 31.96929 -0.929288 2 -#> 100 m1 33.13 31.96929 1.160712 2 -#> 120 m1 25.15 28.76062 -3.610616 2 -#> 120 m1 33.31 28.76062 4.549384 2f.w.man.irls <- mkinfit(SFO_SFO.ff, dw, err = "err.man", quiet = TRUE, +summary(f.w.man) +f.w.man.irls <- mkinfit(SFO_SFO.ff, dw, err = "err.man", quiet = TRUE, reweight.method = "obs") -summary(f.w.man.irls)#> mkin version: 0.9.47.1 -#> R version: 3.4.3 -#> Date of fit: Tue Jan 30 10:06:08 2018 -#> Date of summary: Tue Jan 30 10:06:08 2018 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> d_m1/dt = + f_parent_to_m1 * k_parent * parent - k_m1 * m1 -#> -#> Model predictions using solution type deSolve -#> -#> Fitted with method Port using 692 model solutions performed in 2.733 s -#> -#> Weighting: manual -#> -#> Iterative reweighting with method obs -#> Final mean squared residuals of observed variables: -#> parent m1 -#> 11.573407 7.407845 -#> -#> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> -#> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> -#> Fixed parameter values: -#> value type -#> m1_0 0 state -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> Estimate Std. Error Lower Upper -#> parent_0 99.67000 1.79200 96.04000 103.300 -#> log_k_parent -2.31200 0.04560 -2.40400 -2.220 -#> log_k_m1 -5.25100 0.12510 -5.50500 -4.998 -#> f_parent_ilr_1 0.03785 0.06318 -0.09027 0.166 -#> -#> Parameter correlation: -#> parent_0 log_k_parent log_k_m1 f_parent_ilr_1 -#> parent_0 1.0000 0.5083 -0.1979 -0.6148 -#> log_k_parent 0.5083 1.0000 -0.3894 -0.6062 -#> log_k_m1 -0.1979 -0.3894 1.0000 0.7417 -#> f_parent_ilr_1 -0.6148 -0.6062 0.7417 1.0000 -#> -#> Residual standard error: 1.054 on 36 degrees of freedom -#> -#> Backtransformed parameters: -#> Confidence intervals for internally transformed parameters are asymmetric. -#> t-test (unrealistically) based on the assumption of normal distribution -#> for estimators of untransformed parameters. -#> Estimate t value Pr(>t) Lower Upper -#> parent_0 99.67000 55.630 8.184e-37 96.040000 1.033e+02 -#> k_parent 0.09906 21.930 1.016e-22 0.090310 1.087e-01 -#> k_m1 0.00524 7.996 8.486e-10 0.004066 6.753e-03 -#> f_parent_to_m1 0.51340 23.000 2.038e-23 0.468100 5.584e-01 -#> -#> Chi2 error levels in percent: -#> err.min n.optim df -#> All data 6.399 4 15 -#> parent 6.466 2 7 -#> m1 4.679 2 8 -#> -#> Resulting formation fractions: -#> ff -#> parent_m1 0.5134 -#> parent_sink 0.4866 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 6.997 23.24 -#> m1 132.282 439.43 -#> -#> Data: -#> time variable observed predicted residual err.ini err -#> 0 parent 99.46 99.67218 -2.122e-01 1 3.402 -#> 0 parent 102.04 99.67218 2.368e+00 1 3.402 -#> 1 parent 93.50 90.27153 3.228e+00 1 3.402 -#> 1 parent 92.50 90.27153 2.228e+00 1 3.402 -#> 3 parent 63.23 74.04648 -1.082e+01 1 3.402 -#> 3 parent 68.99 74.04648 -5.056e+00 1 3.402 -#> 7 parent 52.32 49.82092 2.499e+00 1 3.402 -#> 7 parent 55.13 49.82092 5.309e+00 1 3.402 -#> 14 parent 27.27 24.90288 2.367e+00 1 3.402 -#> 14 parent 26.64 24.90288 1.737e+00 1 3.402 -#> 21 parent 11.50 12.44765 -9.476e-01 1 3.402 -#> 21 parent 11.64 12.44765 -8.076e-01 1 3.402 -#> 35 parent 2.85 3.11002 -2.600e-01 1 3.402 -#> 35 parent 2.91 3.11002 -2.000e-01 1 3.402 -#> 50 parent 0.69 0.70375 -1.375e-02 1 3.402 -#> 50 parent 0.63 0.70375 -7.375e-02 1 3.402 -#> 75 parent 0.05 0.05913 -9.134e-03 1 3.402 -#> 75 parent 0.06 0.05913 8.662e-04 1 3.402 -#> 0 m1 0.00 0.00000 0.000e+00 2 2.722 -#> 0 m1 0.00 0.00000 0.000e+00 2 2.722 -#> 1 m1 4.84 4.81328 2.672e-02 2 2.722 -#> 1 m1 5.64 4.81328 8.267e-01 2 2.722 -#> 3 m1 12.91 13.04779 -1.378e-01 2 2.722 -#> 3 m1 12.96 13.04779 -8.779e-02 2 2.722 -#> 7 m1 22.97 25.07615 -2.106e+00 2 2.722 -#> 7 m1 24.47 25.07615 -6.062e-01 2 2.722 -#> 14 m1 41.69 36.70729 4.983e+00 2 2.722 -#> 14 m1 33.21 36.70729 -3.497e+00 2 2.722 -#> 21 m1 44.37 41.65050 2.720e+00 2 2.722 -#> 21 m1 46.44 41.65050 4.790e+00 2 2.722 -#> 35 m1 41.22 43.28866 -2.069e+00 2 2.722 -#> 35 m1 37.95 43.28866 -5.339e+00 2 2.722 -#> 50 m1 41.19 41.19339 -3.386e-03 2 2.722 -#> 50 m1 40.01 41.19339 -1.183e+00 2 2.722 -#> 75 m1 40.09 36.43820 3.652e+00 2 2.722 -#> 75 m1 33.85 36.43820 -2.588e+00 2 2.722 -#> 100 m1 31.04 31.98971 -9.497e-01 2 2.722 -#> 100 m1 33.13 31.98971 1.140e+00 2 2.722 -#> 120 m1 25.15 28.80897 -3.659e+00 2 2.722 -#> 120 m1 33.31 28.80897 4.501e+00 2 2.722-
NAFTA Technical Working Group on Pesticides (not dated) Guidance for Evaluating and Calculating Degradation Kinetics in Environmental Media
@@ -196,36 +206,17 @@ SFO_SFO <- mkinmod( parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"))
+mkinparplot(fit)
+mkinresplot(fit, "m1")#>

+plot(fits.0[1, 1]) +# } diff --git a/docs/reference/plot.mkinfit-1.png b/docs/reference/plot.mkinfit-1.png new file mode 100644 index 00000000..2bb8f5dd Binary files /dev/null and b/docs/reference/plot.mkinfit-1.png differ diff --git a/docs/reference/plot.mkinfit-10.png b/docs/reference/plot.mkinfit-10.png deleted file mode 100644 index 48ab5271..00000000 Binary files a/docs/reference/plot.mkinfit-10.png and /dev/null differ diff --git a/docs/reference/plot.mkinfit-2.png b/docs/reference/plot.mkinfit-2.png new file mode 100644 index 00000000..22a3f8b0 Binary files /dev/null and b/docs/reference/plot.mkinfit-2.png differ diff --git a/docs/reference/plot.mkinfit-3.png b/docs/reference/plot.mkinfit-3.png new file mode 100644 index 00000000..93e859c7 Binary files /dev/null and b/docs/reference/plot.mkinfit-3.png differ diff --git a/docs/reference/plot.mkinfit-4.png b/docs/reference/plot.mkinfit-4.png index cb52d4ac..27edd6f3 100644 Binary files a/docs/reference/plot.mkinfit-4.png and b/docs/reference/plot.mkinfit-4.png differ diff --git a/docs/reference/plot.mkinfit-6.png b/docs/reference/plot.mkinfit-6.png deleted file mode 100644 index 8e0faa21..00000000 Binary files a/docs/reference/plot.mkinfit-6.png and /dev/null differ diff --git a/docs/reference/plot.mkinfit-8.png b/docs/reference/plot.mkinfit-8.png deleted file mode 100644 index 129f1445..00000000 Binary files a/docs/reference/plot.mkinfit-8.png and /dev/null differ diff --git a/docs/reference/plot.mkinfit.html b/docs/reference/plot.mkinfit.html index 0af2bbf6..4bdad93f 100644 --- a/docs/reference/plot.mkinfit.html +++ b/docs/reference/plot.mkinfit.html @@ -18,12 +18,24 @@ + + + + + + + @@ -86,12 +98,7 @@ @@ -237,12 +244,12 @@ plot_sep(fit, sep_obs = TRUE, show_residuals = TRUE, show_errmin = TRUE, … # parent to sink included, use Levenberg-Marquardt for speed SFO_SFO <- mkinmod(parent = mkinsub("SFO", "m1", full = "Parent"), m1 = mkinsub("SFO", full = "Metabolite M1" ))+# NOT RUN { m_synth_SFO_lin <- mkinmod(parent = mkinsub("SFO", "M1"), M1 = mkinsub("SFO", "M2"), - M2 = mkinsub("SFO"), use_of_ff = "max")#>+ M2 = mkinsub("SFO"), use_of_ff = "max") + m_synth_FOMC_lin <- mkinmod(parent = mkinsub("FOMC", "M1"), M1 = mkinsub("SFO", "M2"), - M2 = mkinsub("SFO"), use_of_ff = "max")#>+ M2 = mkinsub("SFO"), use_of_ff = "max") + models <- list(SFO_lin = m_synth_SFO_lin, FOMC_lin = m_synth_FOMC_lin) datasets <- lapply(synthetic_data_for_UBA_2014[1:3], function(x) x$data) names(datasets) <- paste("Dataset", 1:3) time_default <- system.time(fits.0 <- mmkin(models, datasets, quiet = TRUE)) -time_1 <- system.time(fits.4 <- mmkin(models, datasets, cores = 1, quiet = TRUE))#> Warning: Optimisation by method Port did not converge. -#> Convergence code is 1#> Warning: Optimisation by method Port did not converge. -#> Convergence code is 1-time_default#> user system elapsed -#> 15.992 0.188 11.440time_1#> user system elapsed -#> 24.576 0.000 24.578#> $ff -#> parent_M1 parent_sink M1_M2 M1_sink -#> 0.7340479 0.2659521 0.7505687 0.2494313 -#> -#> $SFORB -#> logical(0) -#> -#> $distimes -#> DT50 DT90 -#> parent 0.8777689 2.915885 -#> M1 2.3257456 7.725960 -#> M2 33.7200862 112.015702 -#>+time_1 <- system.time(fits.4 <- mmkin(models, datasets, cores = 1, quiet = TRUE)) + +time_default +time_1 + +endpoints(fits.0[["SFO_lin", 2]]) + # plot.mkinfit handles rows or columns of mmkin result objects -plot(fits.0[1, ])plot(fits.0[1, ], obs_var = c("M1", "M2"))plot(fits.0[, 1])# Use double brackets to extract a single mkinfit object, which will be plotted +plot(fits.0[1, ]) +plot(fits.0[1, ], obs_var = c("M1", "M2")) +plot(fits.0[, 1]) +# Use double brackets to extract a single mkinfit object, which will be plotted # by plot.mkinfit and can be plotted using plot_sep -plot(fits.0[[1, 1]], sep_obs = TRUE, show_residuals = TRUE, show_errmin = TRUE)plot_sep(fits.0[[1, 1]]) +plot(fits.0[[1, 1]], sep_obs = TRUE, show_residuals = TRUE, show_errmin = TRUE) +plot_sep(fits.0[[1, 1]]) # Plotting with mmkin (single brackets, extracting an mmkin object) does not # allow to plot the observed variables separately -plot(fits.0[1, 1])-












+ plot(fits["FOMC", "FOCUS C"]) # same as plot(fits[1, 2])

diff --git a/docs/reference/transform_odeparms.html b/docs/reference/transform_odeparms.html index bbf15a41..630a5103 100644 --- a/docs/reference/transform_odeparms.html +++ b/docs/reference/transform_odeparms.html @@ -18,12 +18,27 @@ + + + + + + + @@ -69,6 +84,9 @@#> mkin version: 0.9.46 -#> R version: 3.4.1 -#> Date of fit: Sat Jul 29 15:15:30 2017 -#> Date of summary: Sat Jul 29 15:15:30 2017 +diff --git a/docs/reference/synthetic_data_for_UBA_2014-10.png b/docs/reference/synthetic_data_for_UBA_2014-10.png deleted file mode 100644 index 7e15e1b3..00000000 Binary files a/docs/reference/synthetic_data_for_UBA_2014-10.png and /dev/null differ diff --git a/docs/reference/test_data_from_UBA_2014-12.png b/docs/reference/test_data_from_UBA_2014-12.png deleted file mode 100644 index 6738f3a0..00000000 Binary files a/docs/reference/test_data_from_UBA_2014-12.png and /dev/null differ diff --git a/docs/reference/test_data_from_UBA_2014-16.png b/docs/reference/test_data_from_UBA_2014-16.png deleted file mode 100644 index 6738f3a0..00000000 Binary files a/docs/reference/test_data_from_UBA_2014-16.png and /dev/null differ diff --git a/docs/reference/test_data_from_UBA_2014-4.png b/docs/reference/test_data_from_UBA_2014-4.png deleted file mode 100644 index 8c65e604..00000000 Binary files a/docs/reference/test_data_from_UBA_2014-4.png and /dev/null differ diff --git a/docs/reference/test_data_from_UBA_2014-6.png b/docs/reference/test_data_from_UBA_2014-6.png deleted file mode 100644 index 8c65e604..00000000 Binary files a/docs/reference/test_data_from_UBA_2014-6.png and /dev/null differ diff --git a/docs/reference/test_data_from_UBA_2014.html b/docs/reference/test_data_from_UBA_2014.html index ed2ccd9c..c4292d9c 100644 --- a/docs/reference/test_data_from_UBA_2014.html +++ b/docs/reference/test_data_from_UBA_2014.html @@ -18,12 +18,20 @@ + + + + + + + @@ -123,7 +131,7 @@#> mkin version used for fitting: 0.9.47.1 +#> R version used for fitting: 3.4.3 +#> Date of fit: Thu Mar 1 14:26:27 2018 +#> Date of summary: Thu Mar 1 14:26:27 2018 #> #> Equations: #> d_parent/dt = - k_parent_sink * parent #> #> Model predictions using solution type analytical #> -#> Fitted with method Port using 35 model solutions performed in 0.084 s +#> Fitted with method Port using 35 model solutions performed in 0.076 s #> #> Weighting: none #> @@ -277,7 +285,7 @@diff --git a/docs/reference/synthetic_data_for_UBA.html b/docs/reference/synthetic_data_for_UBA.html index f9603f34..192e8dc2 100644 --- a/docs/reference/synthetic_data_for_UBA.html +++ b/docs/reference/synthetic_data_for_UBA.html @@ -18,12 +18,31 @@ + + + + + + + @@ -136,7 +155,7 @@Examples
-+# } ++# NOT RUN { # The data have been generated using the following kinetic models m_synth_SFO_lin <- mkinmod(parent = list(type = "SFO", to = "M1"), M1 = list(type = "SFO", to = "M2"), @@ -235,11 +254,8 @@ fit <- mkinfit(m_synth_SFO_lin, synthetic_data_for_UBA_2014[[1]]$data, quiet = TRUE) plot_sep(fit) summary(fit) - -#> Error: <text>:68:43: Unerwartete(s) SPECIAL -#> 67: -#> 68: d_rep[d_rep$time == 0 & d_rep$name <!-- %in% -#> ^Examples
-+ plot_sep(f_soil, lpos = c("topright", "topright", "topright", "bottomright")) + summary(f_soil)$bpar + mkinerrmin(f_soil) + +# }+# NOT RUN { # This is a level P-II evaluation of the dataset according to the FOCUS kinetics # guidance. Due to the strong correlation of the parameter estimates, the # covariance matrix is not returned. Note that level P-II evaluations are @@ -131,57 +139,27 @@ # large parameter correlations, among other reasons (e.g. the adequacy of the # model). m_ws <- mkinmod(parent_w = mkinsub("SFO", "parent_s"), - parent_s = mkinsub("SFO", "parent_w"))#>- summary(f_river)$bpar#> Estimate se_notrans t value Pr(>t) Lower -#> parent_w_0 9.598567e+01 2.33959810 4.102657e+01 9.568973e-19 NA -#> k_parent_w_sink 3.603743e-01 0.03497716 1.030313e+01 4.988281e-09 NA -#> k_parent_w_parent_s 6.031370e-02 0.01746026 3.454342e+00 1.514738e-03 NA -#> k_parent_s_sink 5.099834e-11 0.10381939 4.912217e-10 5.000000e-01 NA -#> k_parent_s_parent_w 7.419672e-02 0.11338174 6.543974e-01 2.608057e-01 NA -#> Upper -#> parent_w_0 NA -#> k_parent_w_sink NA -#> k_parent_w_parent_s NA -#> k_parent_s_sink NA -#> k_parent_s_parent_w NAmkinerrmin(f_river)#> err.min n.optim df -#> All data 0.09246946 5 6 -#> parent_w 0.06377096 3 3 -#> parent_s 0.20882324 2 3+ parent_s = mkinsub("SFO", "parent_w")) + f_river <- mkinfit(m_ws, test_data_from_UBA_2014[[1]]$data, quiet = TRUE) + plot_sep(f_river) + + summary(f_river)$bpar + mkinerrmin(f_river) + # This is the evaluation used for the validation of software packages # in the expertise from 2014 m_soil <- mkinmod(parent = mkinsub("SFO", c("M1", "M2")), M1 = mkinsub("SFO", "M3"), M2 = mkinsub("SFO", "M3"), M3 = mkinsub("SFO"), - use_of_ff = "max")#>+ use_of_ff = "max") + f_soil <- mkinfit(m_soil, test_data_from_UBA_2014[[3]]$data, quiet = TRUE) - plot_sep(f_soil, lpos = c("topright", "topright", "topright", "bottomright"))summary(f_soil)$bpar#> Estimate se_notrans t value Pr(>t) Lower -#> parent_0 76.55425583 0.943443834 81.1434164 4.422340e-30 74.602593306 -#> k_parent 0.12081956 0.004815515 25.0896457 1.639665e-18 0.111257526 -#> k_M1 0.84258650 0.930121206 0.9058889 1.871937e-01 0.085876305 -#> k_M2 0.04210878 0.013729902 3.0669396 2.729137e-03 0.021450631 -#> k_M3 0.01122919 0.008044866 1.3958205 8.804914e-02 0.002550985 -#> f_parent_to_M1 0.32240199 0.278620411 1.1571370 1.295466e-01 NA -#> f_parent_to_M2 0.16099854 0.030548889 5.2701930 1.196191e-05 NA -#> f_M1_to_M3 0.27921500 0.314732717 0.8871496 1.920907e-01 0.015016888 -#> f_M2_to_M3 0.55641332 0.650247079 0.8556952 2.004966e-01 0.005360551 -#> Upper -#> parent_0 78.50591836 -#> k_parent 0.13120340 -#> k_M1 8.26714671 -#> k_M2 0.08266187 -#> k_M3 0.04942980 -#> f_parent_to_M1 NA -#> f_parent_to_M2 NA -#> f_M1_to_M3 0.90777217 -#> f_M2_to_M3 0.99658634mkinerrmin(f_soil)#> err.min n.optim df -#> All data 0.09649963 9 20 -#> parent 0.04721283 2 6 -#> M1 0.26551209 2 5 -#> M2 0.20327575 2 5 -#> M3 0.05196549 3 4-
This function calculates maximum moving window time weighted average concentrations
-(TWAs) for kinetic models fitted with mkinfit. Currently, only
-calculations for the parent are implemented for the SFO, FOMC and DFOP models,
-using the analytical formulas given in the PEC soil section of the FOCUS
-guidance.
twa(fit, windows)- -
| fit | -An object of class |
-
|---|---|
| windows | -The width of the time windows for which the TWAs should be calculated. |
-
A numeric vector, named using the windows argument.
FOCUS (2006) “Guidance Document on Estimating Persistence and - Degradation Kinetics from Environmental Fate Studies on Pesticides in EU - Registration” Report of the FOCUS Work Group on Degradation Kinetics, - EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, - http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
- - --#> 7 21 -#> 34.71343 18.22124
The following code defines example dataset L1 from the FOCUS kinetics +report, p. 284:
-The following code defines example dataset L1 from the FOCUS kinetics report, p. 284:
-library("mkin", quietly = TRUE)
+library("mkin", quietly = TRUE)
FOCUS_2006_L1 = data.frame(
t = rep(c(0, 1, 2, 3, 5, 7, 14, 21, 30), each = 2),
parent = c(88.3, 91.4, 85.6, 84.5, 78.9, 77.6,
72.0, 71.9, 50.3, 59.4, 47.0, 45.1,
27.7, 27.3, 10.0, 10.4, 2.9, 4.0))
-FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)
-Here we use the assumptions of simple first order (SFO), the case of declining rate constant over time (FOMC) and the case of two different phases of the kinetics (DFOP). For a more detailed discussion of the models, please see the FOCUS kinetics report.
-Since mkin version 0.9-32 (July 2014), we can use shorthand notation like "SFO" for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.
-m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet = TRUE)
-summary(m.L1.SFO)
-## mkin version: 0.9.47.1
+FOCUS_2006_L1_mkin <- mkin_wide_to_long(FOCUS_2006_L1)
+
+
+Here we use the assumptions of simple first order (SFO), the case of declining
+rate constant over time (FOMC) and the case of two different phases of the
+kinetics (DFOP). For a more detailed discussion of the models, please see the
+FOCUS kinetics report.
+
+Since mkin version 0.9-32 (July 2014), we can use shorthand notation like "SFO"
+for parent only degradation models. The following two lines fit the model and
+produce the summary report of the model fit. This covers the numerical analysis
+given in the FOCUS report.
+
+m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet = TRUE)
+summary(m.L1.SFO)
+
+
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Sun Jan 14 17:50:05 2018
-## Date of summary: Sun Jan 14 17:50:05 2018
+## Date of fit: Thu Mar 1 14:24:54 2018
+## Date of summary: Thu Mar 1 14:24:54 2018
##
## Equations:
## d_parent/dt = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 37 model solutions performed in 0.242 s
+## Fitted with method Port using 37 model solutions performed in 0.24 s
##
## Weighting: none
##
@@ -321,36 +311,46 @@ summary(m.L1.SFO)
## 21 parent 10.0 12.416 -2.4163
## 21 parent 10.4 12.416 -2.0163
## 30 parent 2.9 5.251 -2.3513
-## 30 parent 4.0 5.251 -1.2513
+## 30 parent 4.0 5.251 -1.2513
+
+
A plot of the fit is obtained with the plot function for mkinfit objects.
-plot(m.L1.SFO, show_errmin = TRUE, main = "FOCUS L1 - SFO")
-plot(m.L1.SFO, show_errmin = TRUE, main = "FOCUS L1 - SFO")
+
+
+The residual plot can be easily obtained by
-mkinresplot(m.L1.SFO, ylab = "Observed", xlab = "Time")
-For comparison, the FOMC model is fitted as well, and the χ2 error level is checked.
-m.L1.FOMC <- mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet=TRUE)
-## Warning in mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation by method Port did not converge.
-## Convergence code is 1
-plot(m.L1.FOMC, show_errmin = TRUE, main = "FOCUS L1 - FOMC")
-summary(m.L1.FOMC, data = FALSE)
-## mkin version: 0.9.47.1
+
+mkinresplot(m.L1.SFO, ylab = "Observed", xlab = "Time")
+
+
+
+
+For comparison, the FOMC model is fitted as well, and the \(\chi^2\) error level
+is checked.
+
+m.L1.FOMC <- mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet=TRUE)
+plot(m.L1.FOMC, show_errmin = TRUE, main = "FOCUS L1 - FOMC")
+
+
+
+
+summary(m.L1.FOMC, data = FALSE)
+
+
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Sun Jan 14 17:50:06 2018
-## Date of summary: Sun Jan 14 17:50:06 2018
-##
-##
-## Warning: Optimisation by method Port did not converge.
-## Convergence code is 1
-##
+## Date of fit: Thu Mar 1 14:24:56 2018
+## Date of summary: Thu Mar 1 14:24:57 2018
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 155 model solutions performed in 0.432 s
+## Fitted with method Port using 611 model solutions performed in 1.376 s
##
## Weighting: none
##
@@ -370,16 +370,16 @@ summary(m.L1.SFO)
## None
##
## Optimised, transformed parameters with symmetric confidence intervals:
-## Estimate Std. Error Lower Upper
-## parent_0 92.47 1.449 89.38 95.56
-## log_alpha 11.35 435.800 -917.60 940.30
-## log_beta 13.70 435.800 -915.20 942.60
+## Estimate Std. Error Lower Upper
+## parent_0 92.47 1.482 89.31 95.63
+## log_alpha 11.25 598.200 -1264.00 1286.00
+## log_beta 13.60 598.200 -1261.00 1289.00
##
## Parameter correlation:
## parent_0 log_alpha log_beta
-## parent_0 1.0000 0.2209 0.2208
-## log_alpha 0.2209 1.0000 1.0000
-## log_beta 0.2208 1.0000 1.0000
+## parent_0 1.0000 -0.3016 -0.3016
+## log_alpha -0.3016 1.0000 1.0000
+## log_beta -0.3016 1.0000 1.0000
##
## Residual standard error: 3.045 on 15 degrees of freedom
##
@@ -388,9 +388,9 @@ summary(m.L1.SFO)
## t-test (unrealistically) based on the assumption of normal distribution
## for estimators of untransformed parameters.
## Estimate t value Pr(>t) Lower Upper
-## parent_0 92.47 63.33000 6.183e-20 89.38 95.56
-## alpha 85190.00 0.03367 4.868e-01 0.00 Inf
-## beta 891000.00 0.03367 4.868e-01 0.00 Inf
+## parent_0 92.47 64.45000 4.757e-20 89.31 95.63
+## alpha 76830.00 0.02852 4.888e-01 0.00 Inf
+## beta 803500.00 0.02852 4.888e-01 0.00 Inf
##
## Chi2 error levels in percent:
## err.min n.optim df
@@ -399,50 +399,100 @@ summary(m.L1.SFO)
##
## Estimated disappearance times:
## DT50 DT90 DT50back
-## parent 7.249 24.08 7.249
-We get a warning that the default optimisation algorithm Port did not converge, which is an indication that the model is overparameterised, i.e. contains too many parameters that are ill-defined as a consequence.
And in fact, due to the higher number of parameters, and the lower number of degrees of freedom of the fit, the χ2 error level is actually higher for the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the parameters log_alpha and log_beta internally fitted in the model have excessive confidence intervals, that span more than 25 orders of magnitude (!) when backtransformed to the scale of alpha and beta. Also, the t-test for significant difference from zero does not indicate such a significant difference, with p-values greater than 0.1, and finally, the parameter correlation of log_alpha and log_beta is 1.000, clearly indicating that the model is overparameterised.
The χ2 error levels reported in Appendix 3 and Appendix 7 to the FOCUS kinetics report are rounded to integer percentages and partly deviate by one percentage point from the results calculated by mkin. The reason for this is not known. However, mkin gives the same χ2 error levels as the kinfit package and the calculation routines of the kinfit package have been extensively compared to the results obtained by the KinGUI software, as documented in the kinfit package vignette. KinGUI was the first widely used standard package in this field. Also, the calculation of χ2 error levels was compared with KinGUII, CAKE and DegKin manager in a project sponsored by the German Umweltbundesamt (Ranke 2014).
-We get a warning that the default optimisation algorithm Port did not converge, which
+is an indication that the model is overparameterised, i.e. contains too many
+parameters that are ill-defined as a consequence.
And in fact, due to the higher number of parameters, and the lower number of
+degrees of freedom of the fit, the \(\chi^2\) error level is actually higher for
+the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the
+parameters log_alpha and log_beta internally fitted in the model have
+excessive confidence intervals, that span more than 25 orders of magnitude (!)
+when backtransformed to the scale of alpha and beta. Also, the t-test
+for significant difference from zero does not indicate such a significant difference,
+with p-values greater than 0.1, and finally, the parameter correlation of log_alpha
+and log_beta is 1.000, clearly indicating that the model is overparameterised.
The \(\chi^2\) error levels reported in Appendix 3 and Appendix 7 to the FOCUS +kinetics report are rounded to integer percentages and partly deviate by one +percentage point from the results calculated by mkin. The reason for +this is not known. However, mkin gives the same \(\chi^2\) error levels +as the kinfit package and the calculation routines of the kinfit package have +been extensively compared to the results obtained by the KinGUI +software, as documented in the kinfit package vignette. KinGUI was the first +widely used standard package in this field. Also, the calculation of +\(\chi^2\) error levels was compared with KinGUII, CAKE and DegKin manager in +a project sponsored by the German Umweltbundesamt [@ranke2014].
+The following code defines example dataset L2 from the FOCUS kinetics report, p. 287:
-FOCUS_2006_L2 = data.frame(
+
+The following code defines example dataset L2 from the FOCUS kinetics
+report, p. 287:
+
+FOCUS_2006_L2 = data.frame(
t = rep(c(0, 1, 3, 7, 14, 28), each = 2),
parent = c(96.1, 91.8, 41.4, 38.7,
19.3, 22.3, 4.6, 4.6,
2.6, 1.2, 0.3, 0.6))
-FOCUS_2006_L2_mkin <- mkin_wide_to_long(FOCUS_2006_L2)
-
+FOCUS_2006_L2_mkin <- mkin_wide_to_long(FOCUS_2006_L2)
+
+
SFO fit for L2
-Again, the SFO model is fitted and the result is plotted. The residual plot can be obtained simply by adding the argument show_residuals to the plot command.
-m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE)
+
+Again, the SFO model is fitted and the result is plotted. The residual plot
+can be obtained simply by adding the argument show_residuals to the plot
+command.
+
+m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE)
plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
- main = "FOCUS L2 - SFO")
-
-The χ2 error level of 14% suggests that the model does not fit very well. This is also obvious from the plots of the fit, in which we have included the residual plot.
-In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at day 5), and there is an underestimation beyond that point.
-We may add that it is difficult to judge the random nature of the residuals just from the three samplings at days 0, 1 and 3. Also, it is not clear a priori why a consistent underestimation after the approximate DT90 should be irrelevant. However, this can be rationalised by the fact that the FOCUS fate models generally only implement SFO kinetics.
-
-
+ main = "FOCUS L2 - SFO")
+
+
+
+
+The \(\chi^2\) error level of 14% suggests that the model does not fit very well.
+This is also obvious from the plots of the fit, in which we have included
+the residual plot.
+
+In the FOCUS kinetics report, it is stated that there is no apparent systematic
+error observed from the residual plot up to the measured DT90 (approximately at
+day 5), and there is an underestimation beyond that point.
+
+We may add that it is difficult to judge the random nature of the residuals just
+from the three samplings at days 0, 1 and 3. Also, it is not clear a
+priori why a consistent underestimation after the approximate DT90 should be
+irrelevant. However, this can be rationalised by the fact that the FOCUS fate
+models generally only implement SFO kinetics.
+
FOMC fit for L2
-For comparison, the FOMC model is fitted as well, and the χ2 error level is checked.
-m.L2.FOMC <- mkinfit("FOMC", FOCUS_2006_L2_mkin, quiet = TRUE)
+
+For comparison, the FOMC model is fitted as well, and the \(\chi^2\) error level
+is checked.
+
+m.L2.FOMC <- mkinfit("FOMC", FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.FOMC, show_residuals = TRUE,
- main = "FOCUS L2 - FOMC")
-
-summary(m.L2.FOMC, data = FALSE)
-## mkin version: 0.9.47.1
+ main = "FOCUS L2 - FOMC")
+
+
+
+
+summary(m.L2.FOMC, data = FALSE)
+
+
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Sun Jan 14 17:50:07 2018
-## Date of summary: Sun Jan 14 17:50:07 2018
+## Date of fit: Thu Mar 1 14:24:57 2018
+## Date of summary: Thu Mar 1 14:24:57 2018
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 81 model solutions performed in 0.166 s
+## Fitted with method Port using 81 model solutions performed in 0.169 s
##
## Weighting: none
##
@@ -491,21 +541,31 @@ plot(m.L2.FOMC, show_residuals = TRUE,
##
## Estimated disappearance times:
## DT50 DT90 DT50back
-## parent 0.8092 5.356 1.612
-The error level at which the χ2 test passes is much lower in this case. Therefore, the FOMC model provides a better description of the data, as less experimental error has to be assumed in order to explain the data.
-
-
+## parent 0.8092 5.356 1.612
+
+
+The error level at which the \(\chi^2\) test passes is much lower in this case.
+Therefore, the FOMC model provides a better description of the data, as less
+experimental error has to be assumed in order to explain the data.
+
DFOP fit for L2
-Fitting the four parameter DFOP model further reduces the χ2 error level.
-m.L2.DFOP <- mkinfit("DFOP", FOCUS_2006_L2_mkin, quiet = TRUE)
+
+Fitting the four parameter DFOP model further reduces the \(\chi^2\) error level.
+
+m.L2.DFOP <- mkinfit("DFOP", FOCUS_2006_L2_mkin, quiet = TRUE)
plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
- main = "FOCUS L2 - DFOP")
-
-summary(m.L2.DFOP, data = FALSE)
-## mkin version: 0.9.47.1
+ main = "FOCUS L2 - DFOP")
+
+
+
+
+summary(m.L2.DFOP, data = FALSE)
+
+
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Sun Jan 14 17:50:08 2018
-## Date of summary: Sun Jan 14 17:50:08 2018
+## Date of fit: Thu Mar 1 14:24:58 2018
+## Date of summary: Thu Mar 1 14:24:58 2018
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
@@ -514,7 +574,7 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 336 model solutions performed in 0.712 s
+## Fitted with method Port using 336 model solutions performed in 0.721 s
##
## Weighting: none
##
@@ -542,8 +602,12 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
## log_k2 -1.0880 NA NA NA
## g_ilr -0.2821 NA NA NA
##
-## Parameter correlation:
-## Warning in print.summary.mkinfit(x): Could not estimate covariance matrix; singular system:
+## Parameter correlation:
+
+
+## Warning in print.summary.mkinfit(x): Could not estimate covariance matrix; singular system:
+
+
## Could not estimate covariance matrix; singular system:
##
## Residual standard error: 1.732 on 8 degrees of freedom
@@ -565,36 +629,62 @@ plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
##
## Estimated disappearance times:
## DT50 DT90 DT50_k1 DT50_k2
-## parent 0.5335 5.311 0.03009 2.058
-Here, the DFOP model is clearly the best-fit model for dataset L2 based on the chi^2 error level criterion. However, the failure to calculate the covariance matrix indicates that the parameter estimates correlate excessively. Therefore, the FOMC model may be preferred for this dataset.
-
-Here, the DFOP model is clearly the best-fit model for dataset L2 based on the +chi2 error level criterion. However, the failure to calculate the covariance +matrix indicates that the parameter estimates correlate excessively. Therefore, +the FOMC model may be preferred for this dataset.
+The following code defines example dataset L3 from the FOCUS kinetics report, p. 290.
-FOCUS_2006_L3 = data.frame(
+
+The following code defines example dataset L3 from the FOCUS kinetics report,
+p. 290.
+
+FOCUS_2006_L3 = data.frame(
t = c(0, 3, 7, 14, 30, 60, 91, 120),
parent = c(97.8, 60, 51, 43, 35, 22, 15, 12))
-FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3)
-
+FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3)
+
+
Fit multiple models
-As of mkin version 0.9-39 (June 2015), we can fit several models to one or more datasets in one call to the function mmkin. The datasets have to be passed in a list, in this case a named list holding only the L3 dataset prepared above.
-# Only use one core here, not to offend the CRAN checks
+
+As of mkin version 0.9-39 (June 2015), we can fit several models to
+one or more datasets in one call to the function mmkin. The datasets
+have to be passed in a list, in this case a named list holding only
+the L3 dataset prepared above.
+
+# Only use one core here, not to offend the CRAN checks
mm.L3 <- mmkin(c("SFO", "FOMC", "DFOP"), cores = 1,
list("FOCUS L3" = FOCUS_2006_L3_mkin), quiet = TRUE)
-plot(mm.L3)
-
-The χ2 error level of 21% as well as the plot suggest that the SFO model does not fit very well. The FOMC model performs better, with an error level at which the χ2 test passes of 7%. Fitting the four parameter DFOP model further reduces the χ2 error level considerably.
-
-
+plot(mm.L3)
+
+
+
+
+The \(\chi^2\) error level of 21% as well as the plot suggest that the SFO model
+does not fit very well. The FOMC model performs better, with an
+error level at which the \(\chi^2\) test passes of 7%. Fitting the four
+parameter DFOP model further reduces the \(\chi^2\) error level
+considerably.
+
Accessing mmkin objects
-The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.
-We can extract the summary and plot for e.g. the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.
-summary(mm.L3[["DFOP", 1]])
-## mkin version: 0.9.47.1
+
+The objects returned by mmkin are arranged like a matrix, with
+models as a row index and datasets as a column index.
+
+We can extract the summary and plot for e.g. the DFOP fit,
+using square brackets for indexing which will result in the use of
+the summary and plot functions working on mkinfit objects.
+
+summary(mm.L3[["DFOP", 1]])
+
+
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Sun Jan 14 17:50:08 2018
-## Date of summary: Sun Jan 14 17:50:08 2018
+## Date of fit: Thu Mar 1 14:24:59 2018
+## Date of summary: Thu Mar 1 14:24:59 2018
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
@@ -603,7 +693,7 @@ plot(mm.L3)
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 137 model solutions performed in 0.291 s
+## Fitted with method Port using 137 model solutions performed in 0.283 s
##
## Weighting: none
##
@@ -668,40 +758,64 @@ plot(mm.L3)
## 30 parent 35.0 35.15 -0.14707
## 60 parent 22.0 23.26 -1.25919
## 91 parent 15.0 15.18 -0.18181
-## 120 parent 12.0 10.19 1.81395
-plot(mm.L3[["DFOP", 1]], show_errmin = TRUE)
-
-Here, a look to the model plot, the confidence intervals of the parameters and the correlation matrix suggest that the parameter estimates are reliable, and the DFOP model can be used as the best-fit model based on the χ2 error level criterion for laboratory data L3.
-This is also an example where the standard t-test for the parameter g_ilr is misleading, as it tests for a significant difference from zero. In this case, zero appears to be the correct value for this parameter, and the confidence interval for the backtransformed parameter g is quite narrow.
-
-plot(mm.L3[["DFOP", 1]], show_errmin = TRUE)
+
+
+Here, a look to the model plot, the confidence intervals of the parameters +and the correlation matrix suggest that the parameter estimates are reliable, and +the DFOP model can be used as the best-fit model based on the \(\chi^2\) error +level criterion for laboratory data L3.
+ +This is also an example where the standard t-test for the parameter g_ilr is
+misleading, as it tests for a significant difference from zero. In this case,
+zero appears to be the correct value for this parameter, and the confidence
+interval for the backtransformed parameter g is quite narrow.
The following code defines example dataset L4 from the FOCUS kinetics report, p. 293:
-FOCUS_2006_L4 = data.frame(
+
+The following code defines example dataset L4 from the FOCUS kinetics
+report, p. 293:
+
+FOCUS_2006_L4 = data.frame(
t = c(0, 3, 7, 14, 30, 60, 91, 120),
parent = c(96.6, 96.3, 94.3, 88.8, 74.9, 59.9, 53.5, 49.0))
-FOCUS_2006_L4_mkin <- mkin_wide_to_long(FOCUS_2006_L4)
+FOCUS_2006_L4_mkin <- mkin_wide_to_long(FOCUS_2006_L4)
+
+
Fits of the SFO and FOMC models, plots and summaries are produced below:
-# Only use one core here, not to offend the CRAN checks
+
+# Only use one core here, not to offend the CRAN checks
mm.L4 <- mmkin(c("SFO", "FOMC"), cores = 1,
list("FOCUS L4" = FOCUS_2006_L4_mkin),
quiet = TRUE)
-plot(mm.L4)
-
-The χ2 error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the χ2 test passes is slightly lower for the FOMC model. However, the difference appears negligible.
-summary(mm.L4[["SFO", 1]], data = FALSE)
-## mkin version: 0.9.47.1
+plot(mm.L4)
+
+
+
+
+The \(\chi^2\) error level of 3.3% as well as the plot suggest that the SFO model
+fits very well. The error level at which the \(\chi^2\) test passes is slightly
+lower for the FOMC model. However, the difference appears negligible.
+
+summary(mm.L4[["SFO", 1]], data = FALSE)
+
+
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Sun Jan 14 17:50:09 2018
-## Date of summary: Sun Jan 14 17:50:09 2018
+## Date of fit: Thu Mar 1 14:24:59 2018
+## Date of summary: Thu Mar 1 14:24:59 2018
##
## Equations:
## d_parent/dt = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 46 model solutions performed in 0.094 s
+## Fitted with method Port using 46 model solutions performed in 0.098 s
##
## Weighting: none
##
@@ -749,19 +863,23 @@ plot(mm.L4)
##
## Estimated disappearance times:
## DT50 DT90
-## parent 106 352
-summary(mm.L4[["FOMC", 1]], data = FALSE)
-## mkin version: 0.9.47.1
+## parent 106 352
+
+
+summary(mm.L4[["FOMC", 1]], data = FALSE)
+
+
+## mkin version: 0.9.46.3
## R version: 3.4.3
-## Date of fit: Sun Jan 14 17:50:09 2018
-## Date of summary: Sun Jan 14 17:50:09 2018
+## Date of fit: Thu Mar 1 14:24:59 2018
+## Date of summary: Thu Mar 1 14:24:59 2018
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted with method Port using 66 model solutions performed in 0.139 s
+## Fitted with method Port using 66 model solutions performed in 0.134 s
##
## Weighting: none
##
@@ -810,37 +928,11 @@ plot(mm.L4)
##
## Estimated disappearance times:
## DT50 DT90 DT50back
-## parent 108.9 1644 494.9
-Ranke, Johannes. 2014. “Prüfung und Validierung von Modellierungssoftware als Alternative zu ModelMaker 4.0.” Umweltbundesamt Projektnummer 27452.
-The R package mkin provides calculation routines for the analysis of chemical degradation data, including multicompartment kinetics as needed for modelling the formation and decline of transformation products, or if several compartments are involved.
+You can install the latest released version from CRAN from within R:
+install.packages("mkin")
+In the regulatory evaluation of chemical substances like plant protection products (pesticides), biocides and other chemicals, degradation data play an important role. For the evaluation of pesticide degradation experiments, detailed guidance and helpful tools have been developed as detailed in ‘Credits and historical remarks’ below.
+For a start, have a look a the code examples provided for plot.mkinfit and plot.mmkin, and at the package vignettes FOCUS L and FOCUS D.
mkinmod, including equilibrium reactions and using the single first-order reversible binding (SFORB) model, which will automatically create two latent state variables for the observed variable.plot.mmkin.mkinpredict is performed either using the analytical solution for the case of parent only degradation, an eigenvalue based solution if only simple first-order (SFO) or SFORB kinetics are used in the model, or using a numeric solver from the deSolve package (default is lsoda).compiled_models. The autogeneration of C code was inspired by the ccSolve package. Thanks to Karline Soetaert for her work on that.transform_odeparms so their estimators can more reasonably be expected to follow a normal distribution. This has the side effect that no constraints are needed in the optimisation. Thanks to René Lehmann for the nice cooperation on this, especially the isometric logration transformation that is now used for the formation fractions.summary of an mkinfit object is in fact a full report that should give enough information to be able to approximately reproduce the fit with other tools.reweight.method = "obs" to your call to mkinfit and a separate variance componenent for each of the observed variables will be optimised in a second stage after the primary optimisation algorithm has converged.reweight.method = "tc".There is a graphical user interface that I consider useful for real work. Please refer to its documentation page for installation instructions and a manual.
+There is a ChangeLog, for the latest CRAN release and one for the github master branch.
+mkin would not be possible without the underlying software stack consisting of R and the packages deSolve and FME, to say the least.
It could not have been written without me being introduced to regulatory fate modelling of pesticides by Adrian Gurney during my time at Harlan Laboratories Ltd (formerly RCC Ltd). mkin greatly profits from and largely follows the work done by the FOCUS Degradation Kinetics Workgroup, as detailed in their guidance document from 2006, slightly updated in 2011 and in 2014.
Also, it was inspired by the first version of KinGUI developed by BayerCropScience, which is based on the MatLab runtime environment.
+The companion package kinfit (now deprecated) was started in 2008 and first published on CRAN on 01 May 2010.
+The first mkin code was published on 11 May 2010 and the first CRAN version on 18 May 2010.
In 2011, Bayer Crop Science started to distribute an R based successor to KinGUI named KinGUII whose R code is based on mkin, but which added, amongst other refinements, a closed source graphical user interface (GUI), iteratively reweighted least squares (IRLS) optimisation of the variance for each of the observed variables, and Markov Chain Monte Carlo (MCMC) simulation functionality, similar to what is available e.g. in the FME package.
Somewhat in parallel, Syngenta has sponsored the development of an mkin and KinGUII based GUI application called CAKE, which also adds IRLS and MCMC, is more limited in the model formulation, but puts more weight on usability. CAKE is available for download from the CAKE website, where you can also find a zip archive of the R scripts derived from mkin, published under the GPL license.
Finally, there is KineticEval, which contains a further development of the scripts used for KinGUII, so the different tools will hopefully be able to learn from each other in the future as well.
+Contributions are welcome! Your mkin fork is just a mouse click away… The master branch on github should always be in good shape, I implement new features in separate branches now. If you prefer subversion, project members for the r-forge project are welcome as well. Generally, the source code of the latest CRAN version should be available there. You can also browse the source code at cgit.jrwb.de/mkin.
+For a start, have a look a the code examples provided for plot.mkinfit and plot.mmkin, and at the package vignettes FOCUS L and FOCUS D.
For a start, have a look a the code examples provided for plot.mkinfit and plot.mmkin, and at the package vignettes FOCUS L and FOCUS D.
mkinmod, including equilibrium reactions and using the single first-order reversible binding (SFORB) model, which will automatically create two latent state variables for the observed variable.plot.mmkin.mkinpredict is performed either using the analytical solution for the case of parent only degradation, an eigenvalue based solution if only simple first-order (SFO) or SFORB kinetics are used in the model, or using a numeric solver from the deSolve package (default is lsoda).compiled_models. The autogeneration of C code was inspired by the ccSolve package. Thanks to Karline Soetaert for her work on that.transform_odeparms so their estimators can more reasonably be expected to follow a normal distribution. This has the side effect that no constraints are needed in the optimisation. Thanks to René Lehmann for the nice cooperation on this, especially the isometric logration transformation that is now used for the formation fractions.mkinmod, including equilibrium reactions and using the single first-order reversible binding (SFORB) model, which will automatically create two latent state variables for the observed variable.plot.mmkin.mkinpredict is performed either using the analytical solution for the case of parent only degradation, an eigenvalue based solution if only simple first-order (SFO) or SFORB kinetics are used in the model, or using a numeric solver from the deSolve package (default is lsoda).compiled_models. The autogeneration of C code was inspired by the ccSolve package. Thanks to Karline Soetaert for her work on that.transform_odeparms so their estimators can more reasonably be expected to follow a normal distribution. This has the side effect that no constraints are needed in the optimisation. Thanks to René Lehmann for the nice cooperation on this, especially the isometric logration transformation that is now used for the formation fractions.summary of an mkinfit object is in fact a full report that should give enough information to be able to approximately reproduce the fit with other tools.reweight.method = "obs" to your call to mkinfit and a separate variance componenent for each of the observed variables will be optimised in a second stage after the primary optimisation algorithm has converged.reweight.method = "tc".reweight.method = "tc".