From 7a1d3d031aa23fce723ac4f4c8e4bb5d64959447 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Thu, 4 Apr 2019 15:42:23 +0200 Subject: Direct error model fitting works - No IRLS required - Removed optimization algorithms other than Port - Removed the dependency on FME - Fitting the error model 'obs' is much faster for the FOCUS_2006_D dataset and the FOMC_SFO model (1 second versus 3.4 seconds) - Vignettes build slower. Compiled models needs 3 minutes instead of 1.5 - For other vignettes, the trend is less clear. Some fits are faster, even for error_model = "const". FOCUS_Z is faster (34.9 s versus 44.1 s) - Standard errors and confidence intervals are slightly smaller - Removed code for plotting during the fit, as I hardly ever used it - Merged the two cost functions (using transformed and untransformed parameters) into one log-likelihood function --- R/mkinfit.R | 499 ++++++++++++++++-------------------------------------------- 1 file changed, 133 insertions(+), 366 deletions(-) (limited to 'R') diff --git a/R/mkinfit.R b/R/mkinfit.R index 4ac54ce2..796b25c7 100644 --- a/R/mkinfit.R +++ b/R/mkinfit.R @@ -30,19 +30,12 @@ mkinfit <- function(mkinmod, observed, solution_type = c("auto", "analytical", "eigen", "deSolve"), method.ode = "lsoda", use_compiled = "auto", - method.modFit = c("Port", "Marq", "SANN", "Nelder-Mead", "BFGS", "CG", "L-BFGS-B"), - maxit.modFit = "auto", - control.modFit = list(), + control = list(eval.max = 300, iter.max = 200), transform_rates = TRUE, transform_fractions = TRUE, plot = FALSE, quiet = FALSE, - err = NULL, - weight = c("none", "manual", "std", "mean", "tc"), - tc = c(sigma_low = 0.5, rsd_high = 0.07), - scaleVar = FALSE, atol = 1e-8, rtol = 1e-10, n.outtimes = 100, - reweight.method = NULL, - reweight.tol = 1e-8, reweight.max.iter = 10, + error_model = c("const", "obs", "tc", "obs_tc"), trace_parms = FALSE, ...) { @@ -61,19 +54,6 @@ mkinfit <- function(mkinmod, observed, } } - # Check optimisation method and set maximum number of iterations if specified - method.modFit = match.arg(method.modFit) - if (maxit.modFit != "auto") { - if (method.modFit == "Marq") control.modFit$maxiter = maxit.modFit - if (method.modFit == "Port") { - control.modFit$iter.max = maxit.modFit - control.modFit$eval.max = maxit.modFit - } - if (method.modFit %in% c("SANN", "Nelder-Mead", "BFGS", "CG", "L-BFGS-B")) { - control.modFit$maxit = maxit.modFit - } - } - # Get the names of the state variables in the model mod_vars <- names(mkinmod$diffs) @@ -96,6 +76,9 @@ mkinfit <- function(mkinmod, observed, observed$time <- observed$time - t_of_max } + # Number observations used for fitting + n_observed <- nrow(observed) + # Define starting values for parameters where not specified by the user if (parms.ini[[1]] == "auto") parms.ini = vector() @@ -254,32 +237,42 @@ mkinfit <- function(mkinmod, observed, } } + # Get the error model and specify starting values as well as fixed components + err_mod <- match.arg(error_model) + if (err_mod == "const") { + errparms = c(sigma = 1) + } + if (err_mod == "obs") { + errparms <- rep(1, length(obs_vars)) + names(errparms) = paste0("sigma_", obs_vars) + } + if (err_mod == "tc") { + errparms <- c(sigma_low = 0.5, rsd_high = 0.07) + } + if (err_mod == "obs_tc") { + errparms <- rep(1, length(obs_vars)) + names(errparms) = paste0("sigma_", obs_vars) + errparms <- c(errparms, a = 0.1) + } + # Define outtimes for model solution. # Include time points at which observed data are available outtimes = sort(unique(c(observed$time, seq(min(observed$time), max(observed$time), length.out = n.outtimes)))) - weight.ini <- weight <- match.arg(weight) - if (weight.ini == "tc") { - observed$err = sigma_twocomp(observed$value, tc["sigma_low"], tc["rsd_high"]) - err <- "err" - } else { - if (!is.null(err)) weight.ini = "manual" - } - - cost.old <- 1e100 # The first model cost should be smaller than this value calls <- 0 # Counter for number of model solutions out_predicted <- NA - # Define the model cost function for optimisation, including (back)transformations - cost <- function(P) + # Define log-likelihood function for optimisation, including (back)transformations + nlogLik <- function(P, trans = TRUE) { assign("calls", calls+1, inherits=TRUE) # Increase the model solution counter # Trace parameter values if requested if(trace_parms) cat(P, "\n") + # Initial states for t0 if(length(state.ini.optim) > 0) { odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed) names(odeini) <- c(state.ini.optim.boxnames, state.ini.fixed.boxnames) @@ -288,13 +281,18 @@ mkinfit <- function(mkinmod, observed, names(odeini) <- state.ini.fixed.boxnames } - odeparms <- c(P[(length(state.ini.optim) + 1):length(P)], transparms.fixed) + odeparms.optim <- P[(length(state.ini.optim) + 1):(length(P) - length(errparms))] - parms <- backtransform_odeparms(odeparms, mkinmod, - transform_rates = transform_rates, - transform_fractions = transform_fractions) + if (trans == TRUE) { + odeparms <- c(odeparms.optim, transparms.fixed) + parms <- backtransform_odeparms(odeparms, mkinmod, + transform_rates = transform_rates, + transform_fractions = transform_fractions) + } else { + parms <- c(odeparms.optim, parms.fixed) + } - # Solve the system with current transformed parameter values + # Solve the system with current parameter values out <- mkinpredict(mkinmod, parms, odeini, outtimes, solution_type = solution_type, @@ -302,82 +300,55 @@ mkinfit <- function(mkinmod, observed, method.ode = method.ode, atol = atol, rtol = rtol, ...) - assign("out_predicted", out, inherits=TRUE) - - mC <- modCost(out, observed, y = "value", - err = err, weight = weight, scaleVar = scaleVar) - - # Report and/or plot if the model is improved - if (mC$model < cost.old) { - if(!quiet) cat("Model cost at call ", calls, ": ", mC$model, "\n") - - # Plot the data and current model output if requested - if(plot) { - outtimes_plot = seq(min(observed$time), max(observed$time), length.out=100) - - out_plot <- mkinpredict(mkinmod, parms, - odeini, outtimes_plot, - solution_type = solution_type, - use_compiled = use_compiled, - method.ode = method.ode, - atol = atol, rtol = rtol, ...) - - plot(0, type="n", - xlim = range(observed$time), ylim = c(0, max(observed$value, na.rm=TRUE)), - xlab = "Time", ylab = "Observed") - col_obs <- pch_obs <- 1:length(obs_vars) - lty_obs <- rep(1, length(obs_vars)) - names(col_obs) <- names(pch_obs) <- names(lty_obs) <- obs_vars - for (obs_var in obs_vars) { - points(subset(observed, name == obs_var, c(time, value)), - pch = pch_obs[obs_var], col = col_obs[obs_var]) - } - matlines(out_plot$time, out_plot[-1], col = col_obs, lty = lty_obs) - legend("topright", inset=c(0.05, 0.05), legend=obs_vars, - col=col_obs, pch=pch_obs, lty=1:length(pch_obs)) - } + out_long <- mkin_wide_to_long(out, time = "time") - assign("cost.old", mC$model, inherits=TRUE) - } - return(mC) - } + assign("out_predicted", out_long, inherits=TRUE) - # Define the model cost function for the t-test, without parameter transformation - cost_notrans <- function(P) - { - if(length(state.ini.optim) > 0) { - odeini <- c(P[1:length(state.ini.optim)], state.ini.fixed) - names(odeini) <- c(state.ini.optim.boxnames, state.ini.fixed.boxnames) - } else { - odeini <- state.ini.fixed - names(odeini) <- state.ini.fixed.boxnames + if (err_mod == "const") { + observed$std <- P["sigma"] + } + if (err_mod == "obs") { + std_names <- paste0("sigma_", observed$name) + observed$std <- P[std_names] + } + if (err_mod == "tc") { + tmp <- merge(observed, out_long, by = c("time", "name")) + tmp$name <- ordered(tmp$name, levels = obs_vars) + tmp <- tmp[order(tmp$name, tmp$time), ] + observed$std <- sqrt(P["sigma_low"]^2 + tmp$value.y^2 * P["rsd_high"]^2) + } + if (err_mod == "obs_tc") { + tmp <- merge(observed, out_long, by = c("time", "name")) + tmp$name <- ordered(tmp$name, levels = obs_vars) + tmp <- tmp[order(tmp$name, tmp$time), ] + std_names <- paste0("sigma_", observed$name) + observed$std <- sqrt(P[std_names] * (1 + P["a"] * tmp$value.y^2)) } - odeparms <- c(P[(length(state.ini.optim) + 1):length(P)], parms.fixed) - - # Solve the system with current parameter values - out <- mkinpredict(mkinmod, odeparms, - odeini, outtimes, - solution_type = solution_type, - use_compiled = use_compiled, - method.ode = method.ode, - atol = atol, rtol = rtol, ...) - - mC <- modCost(out, observed, y = "value", - err = err, weight = weight, scaleVar = scaleVar) + data_log_lik <- merge(observed[c("name", "time", "value", "std")], out_long, + by = c("name", "time")) - return(mC) + nlogLik <- - with(data_log_lik, + sum(dnorm(x = value.x, mean = value.y, sd = std, log = TRUE))) + return(nlogLik) } + n_optim <- length(c(state.ini.optim, transparms.optim, errparms)) + names_optim <- c(names(state.ini.optim), + names(transparms.optim), + names(errparms)) + # Define lower and upper bounds other than -Inf and Inf for parameters - # for which no internal transformation is requested in the call to mkinfit. - lower <- rep(-Inf, length(c(state.ini.optim, transparms.optim))) - upper <- rep(Inf, length(c(state.ini.optim, transparms.optim))) - names(lower) <- names(upper) <- c(names(state.ini.optim), names(transparms.optim)) + # for which no internal transformation is requested in the call to mkinfit + # and for error model parameters + lower <- rep(-Inf, n_optim) + upper <- rep(Inf, n_optim) + names(lower) <- names(upper) <- names_optim # IORE exponentes are not transformed, but need a lower bound of zero index_N <- grep("^N", names(lower)) lower[index_N] <- 0 + if (!transform_rates) { index_k <- grep("^k_", names(lower)) lower[index_k] <- 0 @@ -396,151 +367,44 @@ mkinfit <- function(mkinmod, observed, upper[other_fraction_parms] <- 1 } + if (err_mod == "const") { + lower["sigma"] <- 0 + } + if (err_mod == "obs") { + index_sigma <- grep("^sigma_", names(lower)) + lower[index_sigma] <- 0 + } + if (err_mod == "tc") { + lower["sigma_low"] <- 0 + lower["rsd_high"] <- 0 + } + if (err_mod == "obs_tc") { + index_sigma <- grep("^sigma_", names(lower)) + lower[index_sigma] <- 0 + lower["a"] <- 0 + } + # Show parameter names if tracing is requested - if(trace_parms) cat(names(c(state.ini.optim, transparms.optim)), "\n") + if(trace_parms) cat(names_optim, "\n") # Do the fit and take the time fit_time <- system.time({ - fit <- modFit(cost, c(state.ini.optim, transparms.optim), - method = method.modFit, control = control.modFit, - lower = lower, upper = upper, ...) - - # Reiterate the fit until convergence of the variance components (IRLS) - # if requested by the user - - if (!is.null(reweight.method)) { - if (! reweight.method %in% c("obs", "tc")) stop("Only reweighting methods 'obs' and 'tc' are implemented") - - if (reweight.method == "obs") { - tc_fit <- NA - if(!quiet) { - cat("IRLS based on variance estimates for each observed variable\n") - cat("Initial variance estimates are:\n") - print(signif(fit$var_ms_unweighted, 8)) - } - } - if (reweight.method == "tc") { - tc_fit <- .fit_error_model_mad_obs(cost(fit$par)$residuals, tc, 0) - - if (is.character(tc_fit)) { - if (!quiet) { - cat(tc_fit, ".\n", "No reweighting will be performed.") - } - tc_fitted <- c(sigma_low = NA, rsd_high = NA) - } else { - tc_fitted <- coef(tc_fit) - if(!quiet) { - cat("IRLS based on variance estimates according to the two component error model\n") - cat("Initial variance components are:\n") - print(signif(tc_fitted)) - } - } - } - reweight.diff = 1 - n.iter <- 0 - if (!is.null(err)) observed$err.ini <- observed[[err]] - err = "err.irls" - - while (reweight.diff > reweight.tol & - n.iter < reweight.max.iter & - !is.character(tc_fit)) { - n.iter <- n.iter + 1 - # Store squared residual predictors used for weighting in sr_old and define new weights - if (reweight.method == "obs") { - sr_old <- fit$var_ms_unweighted - observed[err] <- sqrt(fit$var_ms_unweighted[as.character(observed$name)]) - } - if (reweight.method == "tc") { - sr_old <- tc_fitted - - tmp_predicted <- mkin_wide_to_long(out_predicted, time = "time") - tmp_data <- suppressMessages(join(observed, tmp_predicted, by = c("time", "name"))) - - #observed[err] <- predict(tc_fit, newdata = data.frame(mod = tmp_data[[4]])) - observed[err] <- predict(tc_fit, newdata = data.frame(obs = observed$value)) - - } - fit <- modFit(cost, fit$par, method = method.modFit, - control = control.modFit, lower = lower, upper = upper, ...) + fit <- nlminb(c(state.ini.optim, transparms.optim, errparms), + nlogLik, control = control, + lower = lower, upper = upper, ...)}) - if (reweight.method == "obs") { - sr_new <- fit$var_ms_unweighted - } - if (reweight.method == "tc") { - tc_fit <- .fit_error_model_mad_obs(cost(fit$par)$residuals, tc_fitted, n.iter) - - if (is.character(tc_fit)) { - if (!quiet) { - cat(tc_fit, ".\n") - } - break - } else { - tc_fitted <- coef(tc_fit) - sr_new <- tc_fitted - } - } - - reweight.diff = sum((sr_new - sr_old)^2) - if (!quiet) { - cat("Iteration", n.iter, "yields variance estimates:\n") - print(signif(sr_new, 8)) - cat("Sum of squared differences to last variance (component) estimates:", - signif(reweight.diff, 2), "\n") - } - } - } - }) - - # Check for convergence - if (method.modFit == "Marq") { - if (!fit$info %in% c(1, 2, 3)) { - fit$warning = paste0("Optimisation by method ", method.modFit, - " did not converge.\n", - "The message returned by nls.lm is:\n", - fit$message) - warning(fit$warning) - } - else { - if(!quiet) cat("Optimisation by method", method.modFit, "successfully terminated.\n") - } - } - if (method.modFit == "Port") { - if (fit$convergence != 0) { - fit$warning = paste0("Optimisation by method ", method.modFit, - " did not converge:\n", - if(is.character(fit$counts)) fit$counts # FME bug - else fit$message) - warning(fit$warning) - } else { - if(!quiet) cat("Optimisation by method", method.modFit, "successfully terminated.\n") - } - } - if (method.modFit %in% c("SANN", "Nelder-Mead", "BFGS", "CG", "L-BFGS-B")) { - if (fit$convergence != 0) { - fit$warning = paste0("Optimisation by method ", method.modFit, - " did not converge.\n", - "Convergence code returned by optim() is", fit$convergence) - warning(fit$warning) - } else { - if(!quiet) cat("Optimisation by method", method.modFit, "successfully terminated.\n") - } - } - - # Return number of iterations for SANN method and alert user to check if - # the approximation to the optimum is sufficient - if (method.modFit == "SANN") { - fit$iter = maxit.modFit - fit$warning <- paste0("Termination of the SANN algorithm does not imply convergence.\n", - "Make sure the approximation of the optimum is adequate.") + if (fit$convergence != 0) { + fit$warning = paste0("Optimisation did not converge:\n", fit$message) warning(fit$warning) + } else { + if(!quiet) cat("Optimisation successfully terminated.\n") } # We need to return some more data for summary and plotting fit$solution_type <- solution_type fit$transform_rates <- transform_rates fit$transform_fractions <- transform_fractions - fit$method.modFit <- method.modFit - fit$maxit.modFit <- maxit.modFit + fit$control <- control fit$calls <- calls fit$time <- fit_time @@ -550,40 +414,30 @@ mkinfit <- function(mkinmod, observed, # We need data and predictions for summary and plotting fit$observed <- observed fit$obs_vars <- obs_vars - fit$predicted <- mkin_wide_to_long(out_predicted, time = "time") + fit$predicted <- out_predicted # Backtransform parameters bparms.optim = backtransform_odeparms(fit$par, fit$mkinmod, - transform_rates = transform_rates, - transform_fractions = transform_fractions) + transform_rates = transform_rates, + transform_fractions = transform_fractions) bparms.fixed = c(state.ini.fixed, parms.fixed) bparms.all = c(bparms.optim, parms.fixed) - # Attach the cost functions to the fit for post-hoc parameter uncertainty analysis - fit$cost <- cost - fit$cost_notrans <- cost_notrans - - # Estimate the Hessian for the model cost without parameter transformations - # to make it possible to obtain the usual t-test - # Code ported from FME::modFit - Jac_notrans <- try(gradient(function(p, ...) cost_notrans(p)$residuals$res, - bparms.optim, centered = TRUE), silent = TRUE) - if (inherits(Jac_notrans, "try-error")) { - warning("Calculation of the Jacobian failed for the cost function of the untransformed model.\n", - "No t-test results will be available") - fit$hessian_notrans <- NA - } else { - fit$hessian_notrans <- 2 * t(Jac_notrans) %*% Jac_notrans - } + # Attach the negative log-likelihood function for post-hoc parameter uncertainty analysis + fit$nlogLik <- nlogLik + + fit$hessian <- hessian(nlogLik, fit$par) + fit$hessian_notrans <- hessian(nlogLik, c(bparms.optim, fit$par[names(errparms)]), trans = FALSE) # Collect initial parameter values in three dataframes fit$start <- data.frame(value = c(state.ini.optim, - parms.optim)) + parms.optim, errparms)) fit$start$type = c(rep("state", length(state.ini.optim)), - rep("deparm", length(parms.optim))) + rep("deparm", length(parms.optim)), + rep("error", length(errparms))) fit$start_transformed = data.frame( - value = c(state.ini.optim, transparms.optim), + value = c(state.ini.optim, transparms.optim, errparms), lower = lower, upper = upper) @@ -596,28 +450,16 @@ mkinfit <- function(mkinmod, observed, data$name <- ordered(data$name, levels = obs_vars) data <- data[order(data$name, data$time), ] - # Add a column named "value" holding the observed values for the case - # that this column was selected for manual weighting, so it can be - # shown in the summary as "err" - data$value <- data$value.x - fit$data <- data.frame(time = data$time, variable = data$name, observed = data$value.x, predicted = data$value.y) fit$data$residual <- fit$data$observed - fit$data$predicted - if (!is.null(data$err.ini)) fit$data$err.ini <- data$err.ini - if (!is.null(err)) fit$data[["err"]] <- data[[err]] fit$atol <- atol fit$rtol <- rtol - fit$weight.ini <- weight.ini - fit$tc.ini <- tc - fit$reweight.method <- reweight.method - fit$reweight.tol <- reweight.tol - fit$reweight.max.iter <- reweight.max.iter - if (exists("tc_fitted")) fit$tc_fitted <- tc_fitted + fit$err_mod <- err_mod # Return different sets of backtransformed parameters for summary and plotting fit$bparms.optim <- bparms.optim @@ -629,6 +471,9 @@ mkinfit <- function(mkinmod, observed, state.ini.fixed) names(fit$bparms.state) <- gsub("_0$", "", names(fit$bparms.state)) + fit$errparms.optim <- fit$par[names(errparms)] + fit$df.residual <- n_observed - n_optim + fit$date <- date() fit$version <- as.character(utils::packageVersion("mkin")) fit$Rversion <- paste(R.version$major, R.version$minor, sep=".") @@ -641,39 +486,41 @@ summary.mkinfit <- function(object, data = TRUE, distimes = TRUE, alpha = 0.05, param <- object$par pnames <- names(param) bpnames <- names(object$bparms.optim) + epnames <- names(object$errparms.optim) p <- length(param) mod_vars <- names(object$mkinmod$diffs) - covar <- try(solve(0.5*object$hessian), silent = TRUE) # unscaled covariance - covar_notrans <- try(solve(0.5*object$hessian_notrans), silent = TRUE) # unscaled covariance - rdf <- object$df.residual - resvar <- object$ssr / rdf + covar <- try(solve(object$hessian), silent = TRUE) + covar_notrans <- try(solve(object$hessian_notrans), silent = TRUE) + rdf <- object$df.residual + if (!is.numeric(covar) | is.na(covar[1])) { covar <- NULL se <- lci <- uci <- rep(NA, p) } else { rownames(covar) <- colnames(covar) <- pnames - se <- sqrt(diag(covar) * resvar) + se <- sqrt(diag(covar)) lci <- param + qt(alpha/2, rdf) * se uci <- param + qt(1-alpha/2, rdf) * se } - + + beparms.optim <- c(object$bparms.optim, object$par[epnames]) if (!is.numeric(covar_notrans) | is.na(covar_notrans[1])) { covar_notrans <- NULL se_notrans <- tval <- pval <- rep(NA, p) } else { - rownames(covar_notrans) <- colnames(covar_notrans) <- bpnames - se_notrans <- sqrt(diag(covar_notrans) * resvar) - tval <- object$bparms.optim/se_notrans - pval <- pt(abs(tval), rdf, lower.tail = FALSE) + rownames(covar_notrans) <- colnames(covar_notrans) <- c(bpnames, epnames) + se_notrans <- sqrt(diag(covar_notrans)) + tval <- beparms.optim / se_notrans + pval <- pt(abs(tval), rdf, lower.tail = FALSE) } names(se) <- pnames - modVariance <- object$ssr / length(object$residuals) param <- cbind(param, se, lci, uci) dimnames(param) <- list(pnames, c("Estimate", "Std. Error", "Lower", "Upper")) - bparam <- cbind(Estimate = object$bparms.optim, se_notrans, "t value" = tval, "Pr(>t)" = pval, Lower = NA, Upper = NA) + bparam <- cbind(Estimate = beparms.optim, se_notrans, + "t value" = tval, "Pr(>t)" = pval, Lower = NA, Upper = NA) # Transform boundaries of CI for one parameter at a time, # with the exception of sets of formation fractions (single fractions are OK). @@ -699,6 +546,7 @@ summary.mkinfit <- function(object, data = TRUE, distimes = TRUE, alpha = 0.05, bparam[names(bpu), "Upper"] <- bpu } } + bparam[epnames, c("Lower", "Upper")] <- param[epnames, c("Lower", "Upper")] ans <- list( version = as.character(utils::packageVersion("mkin")), @@ -706,26 +554,14 @@ summary.mkinfit <- function(object, data = TRUE, distimes = TRUE, alpha = 0.05, date.fit = object$date, date.summary = date(), solution_type = object$solution_type, - method.modFit = object$method.modFit, warning = object$warning, use_of_ff = object$mkinmod$use_of_ff, - weight.ini = object$weight.ini, - reweight.method = object$reweight.method, - tc.ini = object$tc.ini, - var_ms_unweighted = object$var_ms_unweighted, - tc_fitted = object$tc_fitted, - residuals = object$residuals, - residualVariance = resvar, - sigma = sqrt(resvar), - modVariance = modVariance, df = c(p, rdf), cov.unscaled = covar, - cov.scaled = covar * resvar, - info = object$info, + #cov.scaled = covar * resvar, niter = object$iterations, calls = object$calls, time = object$time, - stopmess = message, par = param, bpar = bparam) @@ -789,24 +625,8 @@ print.summary.mkinfit <- function(x, digits = max(3, getOption("digits") - 3), . cat("\nFitted with method", x$method.modFit, "using", x$calls, "model solutions performed in", x$time[["elapsed"]], "s\n") - cat("\nWeighting:", x$weight.ini) - if (x$weight.ini == "tc") { - cat(" with variance components\n") - print(x$tc.ini) - } else { - cat ("\n") - } - if(!is.null(x$reweight.method)) { - cat("\nIterative reweighting with method", x$reweight.method, "\n") - if (x$reweight.method == "obs") { - cat("Final mean squared residuals of observed variables:\n") - print(x$var_ms_unweighted) - } - if (x$reweight.method == "tc") { - cat("Final components of fitted standard deviation:\n") - print(x$tc_fitted) - } - } + cat("\nError model:\n") + print(x$err_mod) cat("\nStarting values for parameters to be optimised:\n") print(x$start) @@ -830,9 +650,6 @@ print.summary.mkinfit <- function(x, digits = max(3, getOption("digits") - 3), . } } - cat("\nResidual standard error:", - format(signif(x$sigma, digits)), "on", rdf, "degrees of freedom\n") - cat("\nBacktransformed parameters:\n") cat("Confidence intervals for internally transformed parameters are asymmetric.\n") if ((x$version) < "0.9-36") { @@ -874,54 +691,4 @@ print.summary.mkinfit <- function(x, digits = max(3, getOption("digits") - 3), . invisible(x) } - -# Fit the median absolute deviation against the observed values, -# using the current error model for weighting -.fit_error_model_mad_obs <- function(tmp_res, tc, iteration) { - mad_agg <- aggregate(tmp_res$res.unweighted, - by = list(name = tmp_res$name, time = tmp_res$x), - FUN = function(x) mad(x, center = 0)) - names(mad_agg) <- c("name", "time", "mad") - error_data <- suppressMessages( - join(data.frame(name = tmp_res$name, - time = tmp_res$x, - obs = tmp_res$obs), - mad_agg)) - error_data_complete <- na.omit(error_data) - - tc_fit <- tryCatch( - nls(mad ~ sigma_twocomp(obs, sigma_low, rsd_high), - start = list(sigma_low = tc["sigma_low"], rsd_high = tc["rsd_high"]), - weights = 1/sigma_twocomp(error_data_complete$obs, - tc["sigma_low"], - tc["rsd_high"])^2, - data = error_data_complete, - lower = 0, - algorithm = "port"), - error = function(e) paste("Fitting the error model failed in iteration", iteration)) - return(tc_fit) -} -# Alternative way to fit the error model, fitting to modelled instead of -# observed values -# .fit_error_model_mad_mod <- function(tmp_res, tc) { -# mad_agg <- aggregate(tmp_res$res.unweighted, -# by = list(name = tmp_res$name, time = tmp_res$x), -# FUN = function(x) mad(x, center = 0)) -# names(mad_agg) <- c("name", "time", "mad") -# mod_agg <- aggregate(tmp_res$mod, -# by = list(name = tmp_res$name, time = tmp_res$x), -# FUN = mean) -# names(mod_agg) <- c("name", "time", "mod") -# mod_mad <- merge(mod_agg, mad_agg) -# -# tc_fit <- tryCatch( -# nls(mad ~ sigma_twocomp(mod, sigma_low, rsd_high), -# start = list(sigma_low = tc["sigma_low"], rsd_high = tc["rsd_high"]), -# data = mod_mad, -# weights = 1/mod_mad$mad, -# lower = 0, -# algorithm = "port"), -# error = "Fitting the error model failed in iteration") -# return(tc_fit) -# } # vim: set ts=2 sw=2 expandtab: -- cgit v1.2.1