From 7c62da1269e8910a210ba1917d4dc62d186d5606 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Thu, 6 Oct 2016 09:40:35 +0200 Subject: Static documentation rebuilt by pkgdown::build_site() --- docs/add_err.html | 201 ------------------------------------------------------ 1 file changed, 201 deletions(-) delete mode 100644 docs/add_err.html (limited to 'docs/add_err.html') diff --git a/docs/add_err.html b/docs/add_err.html deleted file mode 100644 index 78c69d3e..00000000 --- a/docs/add_err.html +++ /dev/null @@ -1,201 +0,0 @@ - - - - -add_err. mkin 0.9.44.9000 - - - - - - - - - - - - - - - - - - -
-
- -
- -

- Add normally distributed errors to simulated kinetic degradation data -

- -
-
-

Usage

-
add_err(prediction, sdfunc,
-          n = 1000, LOD = 0.1, reps = 2,
-          digits = 1, seed = NA)
- -

Arguments

-
-
prediction
-
- A prediction from a kinetic model as produced by mkinpredict. -
-
sdfunc
-
- A function taking the predicted value as its only argument and returning - a standard deviation that should be used for generating the random error - terms for this value. -
-
n
-
- The number of datasets to be generated. -
-
LOD
-
- The limit of detection (LOD). Values that are below the LOD after adding - the random error will be set to NA. -
-
reps
-
- The number of replicates to be generated within the datasets. -
-
digits
-
- The number of digits to which the values will be rounded. -
-
seed
-
- The seed used for the generation of random numbers. If NA, the seed - is not set. -
-
- -
-

Description

- -

Normally distributed errors are added to data predicted for a specific - degradation model using mkinpredict. The variance of the error - may depend on the predicted value and is specified as a standard deviation.

- -
- -
-

Value

- -

- A list of datasets compatible with mmkin, i.e. - the components of the list are datasets compatible with - mkinfit. -

- -
- -
-

References

- -

Ranke J and Lehmann R (2015) To t-test or not to t-test, that is the question. XV Symposium on Pesticide Chemistry 2-4 September 2015, Piacenza, Italy - http://chem.uft.uni-bremen.de/ranke/posters/piacenza_2015.pdf

- -
- -

Examples

-
# The kinetic model -m_SFO_SFO <- mkinmod(parent = mkinsub("SFO", "M1"), - M1 = mkinsub("SFO"), use_of_ff = "max")
-Successfully compiled differential equation model from auto-generated C code. -
-# Generate a prediction for a specific set of parameters -sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) - -# This is the prediction used for the "Type 2 datasets" on the Piacenza poster -# from 2015 -d_SFO_SFO <- mkinpredict(m_SFO_SFO, - c(k_parent = 0.1, f_parent_to_M1 = 0.5, - k_M1 = log(2)/1000), - c(parent = 100, M1 = 0), - sampling_times) - -# Add an error term with a constant (independent of the value) standard deviation -# of 10, and generate three datasets -d_SFO_SFO_err <- add_err(d_SFO_SFO, function(x) 10, n = 3, seed = 123456789 ) - -# Name the datasets for nicer plotting -names(d_SFO_SFO_err) <- paste("Dataset", 1:3) - -# Name the model in the list of models (with only one member in this case) -# for nicer plotting later on. -# Be quiet and use the faster Levenberg-Marquardt algorithm, as the datasets -# are easy and examples are run often. Use only one core not to offend CRAN -# checks -f_SFO_SFO <- mmkin(list("SFO-SFO" = m_SFO_SFO), - d_SFO_SFO_err, cores = 1, - quiet = TRUE, method.modFit = "Marq") - -plot(f_SFO_SFO)
-

-
-# We would like to inspect the fit for dataset 3 more closely -# Using double brackets makes the returned object an mkinfit object -# instead of a list of mkinfit objects, so plot.mkinfit is used -plot(f_SFO_SFO[[3]], show_residuals = TRUE)
-

-
-# If we use single brackets, we should give two indices (model and dataset), -# and plot.mmkin is used -plot(f_SFO_SFO[1, 3])
-

-
-
- -
- - -
- - \ No newline at end of file -- cgit v1.2.1