From 4596667b19f032232ceb8f3f762aaad5d69c15be Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Fri, 5 Jul 2019 15:57:24 +0200 Subject: Static documentation rebuilt by pkgdown --- docs/articles/FOCUS_L.html | 444 ++++++++++++++++++++------------------------- 1 file changed, 201 insertions(+), 243 deletions(-) (limited to 'docs/articles/FOCUS_L.html') diff --git a/docs/articles/FOCUS_L.html b/docs/articles/FOCUS_L.html index 0060bd69..73ea645a 100644 --- a/docs/articles/FOCUS_L.html +++ b/docs/articles/FOCUS_L.html @@ -30,7 +30,7 @@ mkin - 0.9.49.5 + 0.9.49.6 @@ -88,7 +88,7 @@

Example evaluation of FOCUS Laboratory Data L1 to L3

Johannes Ranke

-

2019-07-04

+

2019-07-05

@@ -112,59 +112,54 @@

Since mkin version 0.9-32 (July 2014), we can use shorthand notation like "SFO" for parent only degradation models. The following two lines fit the model and produce the summary report of the model fit. This covers the numerical analysis given in the FOCUS report.

m.L1.SFO <- mkinfit("SFO", FOCUS_2006_L1_mkin, quiet = TRUE)
 summary(m.L1.SFO)
-
## mkin version used for fitting:    0.9.49.5 
+
## mkin version used for fitting:    0.9.48.1 
 ## R version used for fitting:       3.6.0 
-## Date of fit:     Thu Jul  4 08:04:26 2019 
-## Date of summary: Thu Jul  4 08:04:26 2019 
+## Date of fit:     Fri Jul  5 15:52:52 2019 
+## Date of summary: Fri Jul  5 15:52:52 2019 
 ## 
 ## Equations:
 ## d_parent/dt = - k_parent_sink * parent
 ## 
 ## Model predictions using solution type analytical 
 ## 
-## Fitted using 133 model solutions performed in 0.278 s
+## Fitted with method Port using 37 model solutions performed in 0.084 s
 ## 
-## Error model: Constant variance 
-## 
-## Error model algorithm: d_3 
+## Weighting: none
 ## 
 ## Starting values for parameters to be optimised:
-##                   value   type
-## parent_0      89.850000  state
-## k_parent_sink  0.100000 deparm
-## sigma          2.779827  error
+##               value   type
+## parent_0      89.85  state
+## k_parent_sink  0.10 deparm
 ## 
 ## Starting values for the transformed parameters actually optimised:
 ##                       value lower upper
 ## parent_0          89.850000  -Inf   Inf
 ## log_k_parent_sink -2.302585  -Inf   Inf
-## sigma              2.779827     0   Inf
 ## 
 ## Fixed parameter values:
 ## None
 ## 
 ## Optimised, transformed parameters with symmetric confidence intervals:
 ##                   Estimate Std. Error  Lower  Upper
-## parent_0            92.470    1.28200 89.740 95.200
-## log_k_parent_sink   -2.347    0.03763 -2.428 -2.267
-## sigma                2.780    0.46330  1.792  3.767
+## parent_0            92.470    1.36800 89.570 95.370
+## log_k_parent_sink   -2.347    0.04057 -2.433 -2.261
 ## 
 ## Parameter correlation:
-##                     parent_0 log_k_parent_sink      sigma
-## parent_0           1.000e+00         6.186e-01 -1.712e-09
-## log_k_parent_sink  6.186e-01         1.000e+00 -3.237e-09
-## sigma             -1.712e-09        -3.237e-09  1.000e+00
+##                   parent_0 log_k_parent_sink
+## parent_0            1.0000            0.6248
+## log_k_parent_sink   0.6248            1.0000
+## 
+## Residual standard error: 2.948 on 16 degrees of freedom
 ## 
 ## Backtransformed parameters:
 ## Confidence intervals for internally transformed parameters are asymmetric.
 ## t-test (unrealistically) based on the assumption of normal distribution
 ## for estimators of untransformed parameters.
 ##               Estimate t value    Pr(>t)    Lower   Upper
-## parent_0      92.47000   72.13 8.824e-21 89.74000 95.2000
-## k_parent_sink  0.09561   26.57 2.487e-14  0.08824  0.1036
-## sigma          2.78000    6.00 1.216e-05  1.79200  3.7670
+## parent_0      92.47000   67.58 2.170e-21 89.57000 95.3700
+## k_parent_sink  0.09561   24.65 1.867e-14  0.08773  0.1042
 ## 
-## FOCUS Chi2 error levels in percent:
+## Chi2 error levels in percent:
 ##          err.min n.optim df
 ## All data   3.424       2  7
 ## parent     3.424       2  7
@@ -205,22 +200,18 @@
 

For comparison, the FOMC model is fitted as well, and the \(\chi^2\) error level is checked.

m.L1.FOMC <- mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet=TRUE)
-
## Warning in mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation did not converge:
+
## Warning in mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation by method Port did not converge:
 ## false convergence (8)
plot(m.L1.FOMC, show_errmin = TRUE, main = "FOCUS L1 - FOMC")

summary(m.L1.FOMC, data = FALSE)
-
## Warning in sqrt(diag(covar)): NaNs wurden erzeugt
-
## Warning in sqrt(1/diag(V)): NaNs wurden erzeugt
-
## Warning in cov2cor(ans$cov.unscaled): diag(.) had 0 or NA entries; non-
-## finite result is doubtful
-
## mkin version used for fitting:    0.9.49.5 
+
## mkin version used for fitting:    0.9.48.1 
 ## R version used for fitting:       3.6.0 
-## Date of fit:     Thu Jul  4 08:04:28 2019 
-## Date of summary: Thu Jul  4 08:04:28 2019 
+## Date of fit:     Fri Jul  5 15:52:54 2019 
+## Date of summary: Fri Jul  5 15:52:54 2019 
 ## 
 ## 
-## Warning: Optimisation did not converge:
+## Warning: Optimisation by method Port did not converge:
 ## false convergence (8) 
 ## 
 ## 
@@ -229,54 +220,49 @@
 ## 
 ## Model predictions using solution type analytical 
 ## 
-## Fitted using 899 model solutions performed in 1.876 s
+## Fitted with method Port using 741 model solutions performed in 1.637 s
 ## 
-## Error model: Constant variance 
-## 
-## Error model algorithm: d_3 
+## Weighting: none
 ## 
 ## Starting values for parameters to be optimised:
-##              value   type
-## parent_0 89.850000  state
-## alpha     1.000000 deparm
-## beta     10.000000 deparm
-## sigma     2.779871  error
+##          value   type
+## parent_0 89.85  state
+## alpha     1.00 deparm
+## beta     10.00 deparm
 ## 
 ## Starting values for the transformed parameters actually optimised:
 ##               value lower upper
 ## parent_0  89.850000  -Inf   Inf
 ## log_alpha  0.000000  -Inf   Inf
 ## log_beta   2.302585  -Inf   Inf
-## sigma      2.779871     0   Inf
 ## 
 ## Fixed parameter values:
 ## None
 ## 
 ## Optimised, transformed parameters with symmetric confidence intervals:
-##           Estimate Std. Error  Lower  Upper
-## parent_0     92.47     1.2800 89.730 95.220
-## log_alpha    10.58        NaN    NaN    NaN
-## log_beta     12.93        NaN    NaN    NaN
-## sigma         2.78     0.4507  1.813  3.747
+##           Estimate Std. Error    Lower   Upper
+## parent_0     92.47      1.454    89.37   95.57
+## log_alpha    10.58   1164.000 -2471.00 2492.00
+## log_beta     12.93   1164.000 -2469.00 2495.00
 ## 
 ## Parameter correlation:
-##           parent_0 log_alpha log_beta   sigma
-## parent_0   1.00000       NaN      NaN 0.01452
-## log_alpha      NaN         1      NaN     NaN
-## log_beta       NaN       NaN        1     NaN
-## sigma      0.01452       NaN      NaN 1.00000
+##           parent_0 log_alpha log_beta
+## parent_0    1.0000    0.2361   0.2361
+## log_alpha   0.2361    1.0000   1.0000
+## log_beta    0.2361    1.0000   1.0000
+## 
+## Residual standard error: 3.045 on 15 degrees of freedom
 ## 
 ## Backtransformed parameters:
 ## Confidence intervals for internally transformed parameters are asymmetric.
 ## t-test (unrealistically) based on the assumption of normal distribution
 ## for estimators of untransformed parameters.
-##           Estimate  t value    Pr(>t)  Lower  Upper
-## parent_0     92.47 72.13000 1.052e-19 89.730 95.220
-## alpha     39440.00  0.02397 4.906e-01     NA     NA
-## beta     412500.00  0.02397 4.906e-01     NA     NA
-## sigma         2.78  6.00000 1.628e-05  1.813  3.747
+##           Estimate  t value    Pr(>t) Lower Upper
+## parent_0     92.47 65.32000 3.886e-20 89.37 95.57
+## alpha     39440.00  0.01639 4.936e-01  0.00   Inf
+## beta     412500.00  0.01639 4.936e-01  0.00   Inf
 ## 
-## FOCUS Chi2 error levels in percent:
+## Chi2 error levels in percent:
 ##          err.min n.optim df
 ## All data   3.619       3  6
 ## parent     3.619       3  6
@@ -292,19 +278,19 @@
 

Laboratory Data L2

The following code defines example dataset L2 from the FOCUS kinetics report, p. 287:

- +

SFO fit for L2

Again, the SFO model is fitted and the result is plotted. The residual plot can be obtained simply by adding the argument show_residuals to the plot command.

-
m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE)
-plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
-     main = "FOCUS L2 - SFO")
+
m.L2.SFO <- mkinfit("SFO", FOCUS_2006_L2_mkin, quiet=TRUE)
+plot(m.L2.SFO, show_residuals = TRUE, show_errmin = TRUE,
+     main = "FOCUS L2 - SFO")

The \(\chi^2\) error level of 14% suggests that the model does not fit very well. This is also obvious from the plots of the fit, in which we have included the residual plot.

In the FOCUS kinetics report, it is stated that there is no apparent systematic error observed from the residual plot up to the measured DT90 (approximately at day 5), and there is an underestimation beyond that point.

@@ -314,69 +300,64 @@

FOMC fit for L2

For comparison, the FOMC model is fitted as well, and the \(\chi^2\) error level is checked.

-
m.L2.FOMC <- mkinfit("FOMC", FOCUS_2006_L2_mkin, quiet = TRUE)
-plot(m.L2.FOMC, show_residuals = TRUE,
-     main = "FOCUS L2 - FOMC")
+
m.L2.FOMC <- mkinfit("FOMC", FOCUS_2006_L2_mkin, quiet = TRUE)
+plot(m.L2.FOMC, show_residuals = TRUE,
+     main = "FOCUS L2 - FOMC")

-
summary(m.L2.FOMC, data = FALSE)
-
## mkin version used for fitting:    0.9.49.5 
+
summary(m.L2.FOMC, data = FALSE)
+
## mkin version used for fitting:    0.9.48.1 
 ## R version used for fitting:       3.6.0 
-## Date of fit:     Thu Jul  4 08:04:29 2019 
-## Date of summary: Thu Jul  4 08:04:29 2019 
+## Date of fit:     Fri Jul  5 15:52:55 2019 
+## Date of summary: Fri Jul  5 15:52:55 2019 
 ## 
 ## Equations:
 ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
 ## 
 ## Model predictions using solution type analytical 
 ## 
-## Fitted using 239 model solutions performed in 0.486 s
-## 
-## Error model: Constant variance 
+## Fitted with method Port using 81 model solutions performed in 0.178 s
 ## 
-## Error model algorithm: d_3 
+## Weighting: none
 ## 
 ## Starting values for parameters to be optimised:
-##              value   type
-## parent_0 93.950000  state
-## alpha     1.000000 deparm
-## beta     10.000000 deparm
-## sigma     2.275722  error
+##          value   type
+## parent_0 93.95  state
+## alpha     1.00 deparm
+## beta     10.00 deparm
 ## 
 ## Starting values for the transformed parameters actually optimised:
 ##               value lower upper
 ## parent_0  93.950000  -Inf   Inf
 ## log_alpha  0.000000  -Inf   Inf
 ## log_beta   2.302585  -Inf   Inf
-## sigma      2.275722     0   Inf
 ## 
 ## Fixed parameter values:
 ## None
 ## 
 ## Optimised, transformed parameters with symmetric confidence intervals:
-##           Estimate Std. Error    Lower   Upper
-## parent_0   93.7700     1.6130 90.05000 97.4900
-## log_alpha   0.3180     0.1559 -0.04149  0.6776
-## log_beta    0.2102     0.2493 -0.36460  0.7850
-## sigma       2.2760     0.4645  1.20500  3.3470
+##           Estimate Std. Error   Lower   Upper
+## parent_0   93.7700     1.8560 89.5700 97.9700
+## log_alpha   0.3180     0.1867 -0.1044  0.7405
+## log_beta    0.2102     0.2943 -0.4555  0.8759
 ## 
 ## Parameter correlation:
-##             parent_0  log_alpha   log_beta      sigma
-## parent_0   1.000e+00 -1.151e-01 -2.085e-01 -7.637e-09
-## log_alpha -1.151e-01  1.000e+00  9.741e-01 -1.617e-07
-## log_beta  -2.085e-01  9.741e-01  1.000e+00 -1.387e-07
-## sigma     -7.637e-09 -1.617e-07 -1.387e-07  1.000e+00
+##           parent_0 log_alpha log_beta
+## parent_0   1.00000  -0.09553  -0.1863
+## log_alpha -0.09553   1.00000   0.9757
+## log_beta  -0.18628   0.97567   1.0000
+## 
+## Residual standard error: 2.628 on 9 degrees of freedom
 ## 
 ## Backtransformed parameters:
 ## Confidence intervals for internally transformed parameters are asymmetric.
 ## t-test (unrealistically) based on the assumption of normal distribution
 ## for estimators of untransformed parameters.
 ##          Estimate t value    Pr(>t)   Lower  Upper
-## parent_0   93.770  58.120 4.267e-12 90.0500 97.490
-## alpha       1.374   6.414 1.030e-04  0.9594  1.969
-## beta        1.234   4.012 1.942e-03  0.6945  2.192
-## sigma       2.276   4.899 5.977e-04  1.2050  3.347
+## parent_0   93.770  50.510 1.173e-12 89.5700 97.970
+## alpha       1.374   5.355 2.296e-04  0.9009  2.097
+## beta        1.234   3.398 3.949e-03  0.6341  2.401
 ## 
-## FOCUS Chi2 error levels in percent:
+## Chi2 error levels in percent:
 ##          err.min n.optim df
 ## All data   6.205       3  3
 ## parent     6.205       3  3
@@ -390,15 +371,17 @@
 

DFOP fit for L2

Fitting the four parameter DFOP model further reduces the \(\chi^2\) error level.

-
m.L2.DFOP <- mkinfit("DFOP", FOCUS_2006_L2_mkin, quiet = TRUE)
-plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
-     main = "FOCUS L2 - DFOP")
+
m.L2.DFOP <- mkinfit("DFOP", FOCUS_2006_L2_mkin, quiet = TRUE)
+plot(m.L2.DFOP, show_residuals = TRUE, show_errmin = TRUE,
+     main = "FOCUS L2 - DFOP")

-
summary(m.L2.DFOP, data = FALSE)
-
## mkin version used for fitting:    0.9.49.5 
+
summary(m.L2.DFOP, data = FALSE)
+
## Warning in summary.mkinfit(m.L2.DFOP, data = FALSE): Could not estimate
+## covariance matrix; singular system.
+
## mkin version used for fitting:    0.9.48.1 
 ## R version used for fitting:       3.6.0 
-## Date of fit:     Thu Jul  4 08:04:30 2019 
-## Date of summary: Thu Jul  4 08:04:30 2019 
+## Date of fit:     Fri Jul  5 15:52:56 2019 
+## Date of summary: Fri Jul  5 15:52:56 2019 
 ## 
 ## Equations:
 ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
@@ -407,19 +390,16 @@
 ## 
 ## Model predictions using solution type analytical 
 ## 
-## Fitted using 572 model solutions performed in 1.19 s
+## Fitted with method Port using 336 model solutions performed in 0.752 s
 ## 
-## Error model: Constant variance 
-## 
-## Error model algorithm: d_3 
+## Weighting: none
 ## 
 ## Starting values for parameters to be optimised:
-##              value   type
-## parent_0 93.950000  state
-## k1        0.100000 deparm
-## k2        0.010000 deparm
-## g         0.500000 deparm
-## sigma     1.413899  error
+##          value   type
+## parent_0 93.95  state
+## k1        0.10 deparm
+## k2        0.01 deparm
+## g         0.50 deparm
 ## 
 ## Starting values for the transformed parameters actually optimised:
 ##              value lower upper
@@ -427,39 +407,32 @@
 ## log_k1   -2.302585  -Inf   Inf
 ## log_k2   -4.605170  -Inf   Inf
 ## g_ilr     0.000000  -Inf   Inf
-## sigma     1.413899     0   Inf
 ## 
 ## Fixed parameter values:
 ## None
 ## 
 ## Optimised, transformed parameters with symmetric confidence intervals:
-##          Estimate Std. Error      Lower     Upper
-## parent_0  93.9500  9.998e-01    91.5900   96.3100
-## log_k1     3.1370  2.376e+03 -5616.0000 5622.0000
-## log_k2    -1.0880  6.285e-02    -1.2370   -0.9394
-## g_ilr     -0.2821  7.033e-02    -0.4484   -0.1158
-## sigma      1.4140  2.886e-01     0.7314    2.0960
+##          Estimate Std. Error Lower Upper
+## parent_0  93.9500         NA    NA    NA
+## log_k1     3.1370         NA    NA    NA
+## log_k2    -1.0880         NA    NA    NA
+## g_ilr     -0.2821         NA    NA    NA
 ## 
 ## Parameter correlation:
-##            parent_0     log_k1     log_k2      g_ilr      sigma
-## parent_0  1.000e+00  5.155e-07  2.371e-09  2.665e-01 -6.849e-09
-## log_k1    5.155e-07  1.000e+00  8.434e-05 -1.659e-04 -7.791e-06
-## log_k2    2.371e-09  8.434e-05  1.000e+00 -7.903e-01 -1.262e-08
-## g_ilr     2.665e-01 -1.659e-04 -7.903e-01  1.000e+00  3.241e-08
-## sigma    -6.849e-09 -7.791e-06 -1.262e-08  3.241e-08  1.000e+00
+## Could not estimate covariance matrix; singular system.
+## Residual standard error: 1.732 on 8 degrees of freedom
 ## 
 ## Backtransformed parameters:
 ## Confidence intervals for internally transformed parameters are asymmetric.
 ## t-test (unrealistically) based on the assumption of normal distribution
 ## for estimators of untransformed parameters.
-##          Estimate   t value    Pr(>t)   Lower   Upper
-## parent_0  93.9500 9.397e+01 2.036e-12 91.5900 96.3100
-## k1        23.0400 4.303e-04 4.998e-01  0.0000     Inf
-## k2         0.3369 1.591e+01 4.697e-07  0.2904  0.3909
-## g          0.4016 1.680e+01 3.238e-07  0.3466  0.4591
-## sigma      1.4140 4.899e+00 8.776e-04  0.7314  2.0960
-## 
-## FOCUS Chi2 error levels in percent:
+##          Estimate t value Pr(>t) Lower Upper
+## parent_0  93.9500      NA     NA    NA    NA
+## k1        23.0400      NA     NA    NA    NA
+## k2         0.3369      NA     NA    NA    NA
+## g          0.4016      NA     NA    NA    NA
+## 
+## Chi2 error levels in percent:
 ##          err.min n.optim df
 ## All data    2.53       4  2
 ## parent      2.53       4  2
@@ -474,18 +447,18 @@
 

Laboratory Data L3

The following code defines example dataset L3 from the FOCUS kinetics report, p. 290.

-
FOCUS_2006_L3 = data.frame(
-  t = c(0, 3, 7, 14, 30, 60, 91, 120),
-  parent = c(97.8, 60, 51, 43, 35, 22, 15, 12))
-FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3)
+
FOCUS_2006_L3 = data.frame(
+  t = c(0, 3, 7, 14, 30, 60, 91, 120),
+  parent = c(97.8, 60, 51, 43, 35, 22, 15, 12))
+FOCUS_2006_L3_mkin <- mkin_wide_to_long(FOCUS_2006_L3)

Fit multiple models

As of mkin version 0.9-39 (June 2015), we can fit several models to one or more datasets in one call to the function mmkin. The datasets have to be passed in a list, in this case a named list holding only the L3 dataset prepared above.

-
# Only use one core here, not to offend the CRAN checks
-mm.L3 <- mmkin(c("SFO", "FOMC", "DFOP"), cores = 1,
-               list("FOCUS L3" = FOCUS_2006_L3_mkin), quiet = TRUE)
-plot(mm.L3)
+
# Only use one core here, not to offend the CRAN checks
+mm.L3 <- mmkin(c("SFO", "FOMC", "DFOP"), cores = 1,
+               list("FOCUS L3" = FOCUS_2006_L3_mkin), quiet = TRUE)
+plot(mm.L3)

The \(\chi^2\) error level of 21% as well as the plot suggest that the SFO model does not fit very well. The FOMC model performs better, with an error level at which the \(\chi^2\) test passes of 7%. Fitting the four parameter DFOP model further reduces the \(\chi^2\) error level considerably.

@@ -494,11 +467,11 @@ Accessing mmkin objects

The objects returned by mmkin are arranged like a matrix, with models as a row index and datasets as a column index.

We can extract the summary and plot for e.g. the DFOP fit, using square brackets for indexing which will result in the use of the summary and plot functions working on mkinfit objects.

-
summary(mm.L3[["DFOP", 1]])
-
## mkin version used for fitting:    0.9.49.5 
+
summary(mm.L3[["DFOP", 1]])
+
## mkin version used for fitting:    0.9.48.1 
 ## R version used for fitting:       3.6.0 
-## Date of fit:     Thu Jul  4 08:04:32 2019 
-## Date of summary: Thu Jul  4 08:04:32 2019 
+## Date of fit:     Fri Jul  5 15:52:56 2019 
+## Date of summary: Fri Jul  5 15:52:57 2019 
 ## 
 ## Equations:
 ## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
@@ -507,19 +480,16 @@
 ## 
 ## Model predictions using solution type analytical 
 ## 
-## Fitted using 373 model solutions performed in 0.773 s
+## Fitted with method Port using 137 model solutions performed in 0.305 s
 ## 
-## Error model: Constant variance 
-## 
-## Error model algorithm: d_3 
+## Weighting: none
 ## 
 ## Starting values for parameters to be optimised:
-##              value   type
-## parent_0 97.800000  state
-## k1        0.100000 deparm
-## k2        0.010000 deparm
-## g         0.500000 deparm
-## sigma     1.017292  error
+##          value   type
+## parent_0 97.80  state
+## k1        0.10 deparm
+## k2        0.01 deparm
+## g         0.50 deparm
 ## 
 ## Starting values for the transformed parameters actually optimised:
 ##              value lower upper
@@ -527,39 +497,37 @@
 ## log_k1   -2.302585  -Inf   Inf
 ## log_k2   -4.605170  -Inf   Inf
 ## g_ilr     0.000000  -Inf   Inf
-## sigma     1.017292     0   Inf
 ## 
 ## Fixed parameter values:
 ## None
 ## 
 ## Optimised, transformed parameters with symmetric confidence intervals:
-##          Estimate Std. Error   Lower      Upper
-## parent_0  97.7500    1.01900 94.5000 101.000000
-## log_k1    -0.6612    0.10050 -0.9812  -0.341300
-## log_k2    -4.2860    0.04322 -4.4230  -4.148000
-## g_ilr     -0.1229    0.03727 -0.2415  -0.004343
-## sigma      1.0170    0.25430  0.2079   1.827000
+##          Estimate Std. Error   Lower     Upper
+## parent_0  97.7500    1.43800 93.7500 101.70000
+## log_k1    -0.6612    0.13340 -1.0310  -0.29100
+## log_k2    -4.2860    0.05902 -4.4500  -4.12200
+## g_ilr     -0.1229    0.05121 -0.2651   0.01925
 ## 
 ## Parameter correlation:
-##            parent_0     log_k1     log_k2      g_ilr      sigma
-## parent_0  1.000e+00  1.732e-01  2.282e-02  4.009e-01 -6.872e-07
-## log_k1    1.732e-01  1.000e+00  4.945e-01 -5.809e-01  3.200e-07
-## log_k2    2.282e-02  4.945e-01  1.000e+00 -6.812e-01  7.673e-07
-## g_ilr     4.009e-01 -5.809e-01 -6.812e-01  1.000e+00 -8.731e-07
-## sigma    -6.872e-07  3.200e-07  7.673e-07 -8.731e-07  1.000e+00
+##          parent_0  log_k1   log_k2   g_ilr
+## parent_0  1.00000  0.1640  0.01315  0.4253
+## log_k1    0.16400  1.0000  0.46478 -0.5526
+## log_k2    0.01315  0.4648  1.00000 -0.6631
+## g_ilr     0.42526 -0.5526 -0.66310  1.0000
+## 
+## Residual standard error: 1.439 on 4 degrees of freedom
 ## 
 ## Backtransformed parameters:
 ## Confidence intervals for internally transformed parameters are asymmetric.
 ## t-test (unrealistically) based on the assumption of normal distribution
 ## for estimators of untransformed parameters.
 ##          Estimate t value    Pr(>t)    Lower     Upper
-## parent_0 97.75000  95.960 1.248e-06 94.50000 101.00000
-## k1        0.51620   9.947 1.081e-03  0.37490   0.71090
-## k2        0.01376  23.140 8.840e-05  0.01199   0.01579
-## g         0.45660  34.920 2.581e-05  0.41540   0.49850
-## sigma     1.01700   4.000 1.400e-02  0.20790   1.82700
+## parent_0 97.75000  67.970 1.404e-07 93.75000 101.70000
+## k1        0.51620   7.499 8.460e-04  0.35650   0.74750
+## k2        0.01376  16.940 3.557e-05  0.01168   0.01621
+## g         0.45660  25.410 7.121e-06  0.40730   0.50680
 ## 
-## FOCUS Chi2 error levels in percent:
+## Chi2 error levels in percent:
 ##          err.min n.optim df
 ## All data   2.225       4  4
 ## parent     2.225       4  4
@@ -578,7 +546,7 @@
 ##    60   parent     22.0     23.26 -1.25919
 ##    91   parent     15.0     15.18 -0.18181
 ##   120   parent     12.0     10.19  1.81395
-
plot(mm.L3[["DFOP", 1]], show_errmin = TRUE)
+
plot(mm.L3[["DFOP", 1]], show_errmin = TRUE)

Here, a look to the model plot, the confidence intervals of the parameters and the correlation matrix suggest that the parameter estimates are reliable, and the DFOP model can be used as the best-fit model based on the \(\chi^2\) error level criterion for laboratory data L3.

This is also an example where the standard t-test for the parameter g_ilr is misleading, as it tests for a significant difference from zero. In this case, zero appears to be the correct value for this parameter, and the confidence interval for the backtransformed parameter g is quite narrow.

@@ -588,72 +556,67 @@

Laboratory Data L4

The following code defines example dataset L4 from the FOCUS kinetics report, p. 293:

-
FOCUS_2006_L4 = data.frame(
-  t = c(0, 3, 7, 14, 30, 60, 91, 120),
-  parent = c(96.6, 96.3, 94.3, 88.8, 74.9, 59.9, 53.5, 49.0))
-FOCUS_2006_L4_mkin <- mkin_wide_to_long(FOCUS_2006_L4)
+
FOCUS_2006_L4 = data.frame(
+  t = c(0, 3, 7, 14, 30, 60, 91, 120),
+  parent = c(96.6, 96.3, 94.3, 88.8, 74.9, 59.9, 53.5, 49.0))
+FOCUS_2006_L4_mkin <- mkin_wide_to_long(FOCUS_2006_L4)

Fits of the SFO and FOMC models, plots and summaries are produced below:

-
# Only use one core here, not to offend the CRAN checks
-mm.L4 <- mmkin(c("SFO", "FOMC"), cores = 1,
-               list("FOCUS L4" = FOCUS_2006_L4_mkin),
-               quiet = TRUE)
-plot(mm.L4)
+
# Only use one core here, not to offend the CRAN checks
+mm.L4 <- mmkin(c("SFO", "FOMC"), cores = 1,
+               list("FOCUS L4" = FOCUS_2006_L4_mkin),
+               quiet = TRUE)
+plot(mm.L4)

The \(\chi^2\) error level of 3.3% as well as the plot suggest that the SFO model fits very well. The error level at which the \(\chi^2\) test passes is slightly lower for the FOMC model. However, the difference appears negligible.

-
summary(mm.L4[["SFO", 1]], data = FALSE)
-
## mkin version used for fitting:    0.9.49.5 
+
summary(mm.L4[["SFO", 1]], data = FALSE)
+
## mkin version used for fitting:    0.9.48.1 
 ## R version used for fitting:       3.6.0 
-## Date of fit:     Thu Jul  4 08:04:33 2019 
-## Date of summary: Thu Jul  4 08:04:33 2019 
+## Date of fit:     Fri Jul  5 15:52:57 2019 
+## Date of summary: Fri Jul  5 15:52:57 2019 
 ## 
 ## Equations:
 ## d_parent/dt = - k_parent_sink * parent
 ## 
 ## Model predictions using solution type analytical 
 ## 
-## Fitted using 142 model solutions performed in 0.29 s
+## Fitted with method Port using 46 model solutions performed in 0.1 s
 ## 
-## Error model: Constant variance 
-## 
-## Error model algorithm: d_3 
+## Weighting: none
 ## 
 ## Starting values for parameters to be optimised:
-##                  value   type
-## parent_0      96.60000  state
-## k_parent_sink  0.10000 deparm
-## sigma          3.16181  error
+##               value   type
+## parent_0       96.6  state
+## k_parent_sink   0.1 deparm
 ## 
 ## Starting values for the transformed parameters actually optimised:
 ##                       value lower upper
 ## parent_0          96.600000  -Inf   Inf
 ## log_k_parent_sink -2.302585  -Inf   Inf
-## sigma              3.161810     0   Inf
 ## 
 ## Fixed parameter values:
 ## None
 ## 
 ## Optimised, transformed parameters with symmetric confidence intervals:
 ##                   Estimate Std. Error  Lower   Upper
-## parent_0            96.440    1.69900 92.070 100.800
-## log_k_parent_sink   -5.030    0.07059 -5.211  -4.848
-## sigma                3.162    0.79050  1.130   5.194
+## parent_0             96.44    1.94900 91.670 101.200
+## log_k_parent_sink    -5.03    0.07999 -5.225  -4.834
 ## 
 ## Parameter correlation:
-##                    parent_0 log_k_parent_sink     sigma
-## parent_0          1.000e+00         5.938e-01 3.440e-07
-## log_k_parent_sink 5.938e-01         1.000e+00 5.885e-07
-## sigma             3.440e-07         5.885e-07 1.000e+00
+##                   parent_0 log_k_parent_sink
+## parent_0            1.0000            0.5865
+## log_k_parent_sink   0.5865            1.0000
+## 
+## Residual standard error: 3.651 on 6 degrees of freedom
 ## 
 ## Backtransformed parameters:
 ## Confidence intervals for internally transformed parameters are asymmetric.
 ## t-test (unrealistically) based on the assumption of normal distribution
 ## for estimators of untransformed parameters.
 ##                Estimate t value    Pr(>t)     Lower     Upper
-## parent_0      96.440000   56.77 1.604e-08 92.070000 1.008e+02
-## k_parent_sink  0.006541   14.17 1.578e-05  0.005455 7.842e-03
-## sigma          3.162000    4.00 5.162e-03  1.130000 5.194e+00
+## parent_0      96.440000   49.49 2.283e-09 91.670000 1.012e+02
+## k_parent_sink  0.006541   12.50 8.008e-06  0.005378 7.955e-03
 ## 
-## FOCUS Chi2 error levels in percent:
+## Chi2 error levels in percent:
 ##          err.min n.optim df
 ## All data   3.287       2  6
 ## parent     3.287       2  6
@@ -665,65 +628,60 @@
 ## Estimated disappearance times:
 ##        DT50 DT90
 ## parent  106  352
-
summary(mm.L4[["FOMC", 1]], data = FALSE)
-
## mkin version used for fitting:    0.9.49.5 
+
summary(mm.L4[["FOMC", 1]], data = FALSE)
+
## mkin version used for fitting:    0.9.48.1 
 ## R version used for fitting:       3.6.0 
-## Date of fit:     Thu Jul  4 08:04:33 2019 
-## Date of summary: Thu Jul  4 08:04:33 2019 
+## Date of fit:     Fri Jul  5 15:52:57 2019 
+## Date of summary: Fri Jul  5 15:52:57 2019 
 ## 
 ## Equations:
 ## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
 ## 
 ## Model predictions using solution type analytical 
 ## 
-## Fitted using 224 model solutions performed in 0.453 s
+## Fitted with method Port using 66 model solutions performed in 0.145 s
 ## 
-## Error model: Constant variance 
-## 
-## Error model algorithm: d_3 
+## Weighting: none
 ## 
 ## Starting values for parameters to be optimised:
-##              value   type
-## parent_0 96.600000  state
-## alpha     1.000000 deparm
-## beta     10.000000 deparm
-## sigma     1.830055  error
+##          value   type
+## parent_0  96.6  state
+## alpha      1.0 deparm
+## beta      10.0 deparm
 ## 
 ## Starting values for the transformed parameters actually optimised:
 ##               value lower upper
 ## parent_0  96.600000  -Inf   Inf
 ## log_alpha  0.000000  -Inf   Inf
 ## log_beta   2.302585  -Inf   Inf
-## sigma      1.830055     0   Inf
 ## 
 ## Fixed parameter values:
 ## None
 ## 
 ## Optimised, transformed parameters with symmetric confidence intervals:
-##           Estimate Std. Error   Lower    Upper
-## parent_0   99.1400     1.2670 95.6300 102.7000
-## log_alpha  -0.3506     0.2616 -1.0770   0.3756
-## log_beta    4.1740     0.3938  3.0810   5.2670
-## sigma       1.8300     0.4575  0.5598   3.1000
+##           Estimate Std. Error  Lower    Upper
+## parent_0   99.1400     1.6800 94.820 103.5000
+## log_alpha  -0.3506     0.3725 -1.308   0.6068
+## log_beta    4.1740     0.5635  2.726   5.6230
 ## 
 ## Parameter correlation:
-##             parent_0  log_alpha   log_beta      sigma
-## parent_0   1.000e+00 -4.696e-01 -5.543e-01 -2.563e-07
-## log_alpha -4.696e-01  1.000e+00  9.889e-01  4.066e-08
-## log_beta  -5.543e-01  9.889e-01  1.000e+00  6.818e-08
-## sigma     -2.563e-07  4.066e-08  6.818e-08  1.000e+00
+##           parent_0 log_alpha log_beta
+## parent_0    1.0000   -0.5365  -0.6083
+## log_alpha  -0.5365    1.0000   0.9913
+## log_beta   -0.6083    0.9913   1.0000
+## 
+## Residual standard error: 2.315 on 5 degrees of freedom
 ## 
 ## Backtransformed parameters:
 ## Confidence intervals for internally transformed parameters are asymmetric.
 ## t-test (unrealistically) based on the assumption of normal distribution
 ## for estimators of untransformed parameters.
 ##          Estimate t value    Pr(>t)   Lower   Upper
-## parent_0  99.1400  78.250 7.993e-08 95.6300 102.700
-## alpha      0.7042   3.823 9.365e-03  0.3407   1.456
-## beta      64.9800   2.540 3.201e-02 21.7800 193.900
-## sigma      1.8300   4.000 8.065e-03  0.5598   3.100
+## parent_0  99.1400  59.020 1.322e-08 94.8200 103.500
+## alpha      0.7042   2.685 2.178e-02  0.2703   1.835
+## beta      64.9800   1.775 6.807e-02 15.2600 276.600
 ## 
-## FOCUS Chi2 error levels in percent:
+## Chi2 error levels in percent:
 ##          err.min n.optim df
 ## All data   2.029       3  5
 ## parent     2.029       3  5
-- 
cgit v1.2.1