From d0a358a8f4fd03c95536409523e492eb15726f44 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Mon, 4 Mar 2019 10:12:43 +0100 Subject: Review tests and examples based on winbuilder results Static documentation rebuilt by pkgdown --- docs/articles/web_only/FOCUS_Z.html | 174 +++++++++++++++++++----------------- 1 file changed, 90 insertions(+), 84 deletions(-) (limited to 'docs/articles/web_only/FOCUS_Z.html') diff --git a/docs/articles/web_only/FOCUS_Z.html b/docs/articles/web_only/FOCUS_Z.html index 1926662a..79e39e55 100644 --- a/docs/articles/web_only/FOCUS_Z.html +++ b/docs/articles/web_only/FOCUS_Z.html @@ -88,7 +88,7 @@

Example evaluation of FOCUS dataset Z

Johannes Ranke

-

2019-02-26

+

2019-03-04

@@ -102,33 +102,35 @@

The data

The following code defines the example dataset from Appendix 7 to the FOCUS kinetics report (FOCUS Work Group on Degradation Kinetics 2014, 354).

-
library(mkin, quietly = TRUE)
-LOD = 0.5
-FOCUS_2006_Z = data.frame(
-  t = c(0, 0.04, 0.125, 0.29, 0.54, 1, 2, 3, 4, 7, 10, 14, 21,
-        42, 61, 96, 124),
-  Z0 = c(100, 81.7, 70.4, 51.1, 41.2, 6.6, 4.6, 3.9, 4.6, 4.3, 6.8,
-         2.9, 3.5, 5.3, 4.4, 1.2, 0.7),
-  Z1 = c(0, 18.3, 29.6, 46.3, 55.1, 65.7, 39.1, 36, 15.3, 5.6, 1.1,
-         1.6, 0.6, 0.5 * LOD, NA, NA, NA),
-  Z2 = c(0, NA, 0.5 * LOD, 2.6, 3.8, 15.3, 37.2, 31.7, 35.6, 14.5,
-         0.8, 2.1, 1.9, 0.5 * LOD, NA, NA, NA),
-  Z3 = c(0, NA, NA, NA, NA, 0.5 * LOD, 9.2, 13.1, 22.3, 28.4, 32.5,
-         25.2, 17.2, 4.8, 4.5, 2.8, 4.4))
-
-FOCUS_2006_Z_mkin <- mkin_wide_to_long(FOCUS_2006_Z)
+
library(mkin, quietly = TRUE)
+LOD = 0.5
+FOCUS_2006_Z = data.frame(
+  t = c(0, 0.04, 0.125, 0.29, 0.54, 1, 2, 3, 4, 7, 10, 14, 21,
+        42, 61, 96, 124),
+  Z0 = c(100, 81.7, 70.4, 51.1, 41.2, 6.6, 4.6, 3.9, 4.6, 4.3, 6.8,
+         2.9, 3.5, 5.3, 4.4, 1.2, 0.7),
+  Z1 = c(0, 18.3, 29.6, 46.3, 55.1, 65.7, 39.1, 36, 15.3, 5.6, 1.1,
+         1.6, 0.6, 0.5 * LOD, NA, NA, NA),
+  Z2 = c(0, NA, 0.5 * LOD, 2.6, 3.8, 15.3, 37.2, 31.7, 35.6, 14.5,
+         0.8, 2.1, 1.9, 0.5 * LOD, NA, NA, NA),
+  Z3 = c(0, NA, NA, NA, NA, 0.5 * LOD, 9.2, 13.1, 22.3, 28.4, 32.5,
+         25.2, 17.2, 4.8, 4.5, 2.8, 4.4))
+
+FOCUS_2006_Z_mkin <- mkin_wide_to_long(FOCUS_2006_Z)

Parent and one metabolite

The next step is to set up the models used for the kinetic analysis. As the simultaneous fit of parent and the first metabolite is usually straightforward, Step 1 (SFO for parent only) is skipped here. We start with the model 2a, with formation and decline of metabolite Z1 and the pathway from parent directly to sink included (default in mkin).

-
Z.2a <- mkinmod(Z0 = mkinsub("SFO", "Z1"),
-                Z1 = mkinsub("SFO"))
+
Z.2a <- mkinmod(Z0 = mkinsub("SFO", "Z1"),
+                Z1 = mkinsub("SFO"))
## Successfully compiled differential equation model from auto-generated C code.
-
m.Z.2a <- mkinfit(Z.2a, FOCUS_2006_Z_mkin, quiet = TRUE)
-plot_sep(m.Z.2a)
+
m.Z.2a <- mkinfit(Z.2a, FOCUS_2006_Z_mkin, quiet = TRUE)
+plot_sep(m.Z.2a)

-
summary(m.Z.2a, data = FALSE)$bpar
+
summary(m.Z.2a, data = FALSE)$bpar
+
## Warning in summary.mkinfit(m.Z.2a, data = FALSE): Could not estimate
+## covariance matrix; singular system.
##             Estimate se_notrans    t value     Pr(>t) Lower Upper
 ## Z0_0      9.7015e+01   3.553140 2.7304e+01 1.6793e-21    NA    NA
 ## k_Z0_sink 1.2790e-11   0.226895 5.6368e-11 5.0000e-01    NA    NA
@@ -136,14 +138,16 @@
 ## k_Z1_sink 4.8212e-01   0.065854 7.3212e+00 3.5520e-08    NA    NA

As obvious from the parameter summary (the component of the summary), the kinetic rate constant from parent compound Z to sink is very small and the t-test for this parameter suggests that it is not significantly different from zero. This suggests, in agreement with the analysis in the FOCUS kinetics report, to simplify the model by removing the pathway to sink.

A similar result can be obtained when formation fractions are used in the model formulation:

- +
## Successfully compiled differential equation model from auto-generated C code.
-
m.Z.2a.ff <- mkinfit(Z.2a.ff, FOCUS_2006_Z_mkin, quiet = TRUE)
-plot_sep(m.Z.2a.ff)
+
m.Z.2a.ff <- mkinfit(Z.2a.ff, FOCUS_2006_Z_mkin, quiet = TRUE)
+plot_sep(m.Z.2a.ff)

-
summary(m.Z.2a.ff, data = FALSE)$bpar
+
summary(m.Z.2a.ff, data = FALSE)$bpar
+
## Warning in summary.mkinfit(m.Z.2a.ff, data = FALSE): Could not estimate
+## covariance matrix; singular system.
##            Estimate se_notrans t value     Pr(>t) Lower Upper
 ## Z0_0       97.01488   3.553145 27.3039 1.6793e-21    NA    NA
 ## k_Z0        2.23601   0.216849 10.3114 3.6623e-11    NA    NA
@@ -152,13 +156,13 @@
 

Here, the ilr transformed formation fraction fitted in the model takes a very large value, and the backtransformed formation fraction from parent Z to Z1 is practically unity. Here, the covariance matrix used for the calculation of confidence intervals is not returned as the model is overparameterised.

A simplified model is obtained by removing the pathway to the sink.

In the following, we use the parameterisation with formation fractions in order to be able to compare with the results in the FOCUS guidance, and as it makes it easier to use parameters obtained in a previous fit when adding a further metabolite.

-
Z.3 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE),
-               Z1 = mkinsub("SFO"), use_of_ff = "max")
+
Z.3 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE),
+               Z1 = mkinsub("SFO"), use_of_ff = "max")
## Successfully compiled differential equation model from auto-generated C code.
-
m.Z.3 <- mkinfit(Z.3, FOCUS_2006_Z_mkin, quiet = TRUE)
-plot_sep(m.Z.3)
+
m.Z.3 <- mkinfit(Z.3, FOCUS_2006_Z_mkin, quiet = TRUE)
+plot_sep(m.Z.3)

-
summary(m.Z.3, data = FALSE)$bpar
+
summary(m.Z.3, data = FALSE)$bpar
##      Estimate se_notrans t value     Pr(>t)    Lower   Upper
 ## Z0_0 97.01488   2.681772  36.176 2.3636e-25 91.52152 102.508
 ## k_Z0  2.23601   0.146861  15.225 2.2464e-15  1.95453   2.558
@@ -169,28 +173,28 @@
 

Metabolites Z2 and Z3

As suggested in the FOCUS report, the pathway to sink was removed for metabolite Z1 as well in the next step. While this step appears questionable on the basis of the above results, it is followed here for the purpose of comparison. Also, in the FOCUS report, it is assumed that there is additional empirical evidence that Z1 quickly and exclusively hydrolyses to Z2.

-
Z.5 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE),
-               Z1 = mkinsub("SFO", "Z2", sink = FALSE),
-               Z2 = mkinsub("SFO"), use_of_ff = "max")
+
Z.5 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE),
+               Z1 = mkinsub("SFO", "Z2", sink = FALSE),
+               Z2 = mkinsub("SFO"), use_of_ff = "max")
## Successfully compiled differential equation model from auto-generated C code.
-
m.Z.5 <- mkinfit(Z.5, FOCUS_2006_Z_mkin, quiet = TRUE)
-plot_sep(m.Z.5)
+
m.Z.5 <- mkinfit(Z.5, FOCUS_2006_Z_mkin, quiet = TRUE)
+plot_sep(m.Z.5)

Finally, metabolite Z3 is added to the model. We use the optimised differential equation parameter values from the previous fit in order to accelerate the optimization.

-
Z.FOCUS <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE),
-                   Z1 = mkinsub("SFO", "Z2", sink = FALSE),
-                   Z2 = mkinsub("SFO", "Z3"),
-                   Z3 = mkinsub("SFO"),
-                   use_of_ff = "max")
+
Z.FOCUS <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE),
+                   Z1 = mkinsub("SFO", "Z2", sink = FALSE),
+                   Z2 = mkinsub("SFO", "Z3"),
+                   Z3 = mkinsub("SFO"),
+                   use_of_ff = "max")
## Successfully compiled differential equation model from auto-generated C code.
- +
## Warning in mkinfit(Z.FOCUS, FOCUS_2006_Z_mkin, parms.ini = m.Z.5$bparms.ode, : Optimisation by method Port did not converge:
 ## false convergence (8)
-
plot_sep(m.Z.FOCUS)
+
plot_sep(m.Z.FOCUS)

-
summary(m.Z.FOCUS, data = FALSE)$bpar
+
summary(m.Z.FOCUS, data = FALSE)$bpar
##             Estimate se_notrans t value     Pr(>t)     Lower      Upper
 ## Z0_0       96.837112   2.058861 47.0343 5.5877e-44 92.703779 100.970445
 ## k_Z0        2.215368   0.118098 18.7587 7.6563e-25  1.990525   2.465609
@@ -198,7 +202,7 @@
 ## k_Z2        0.451617   0.044214 10.2144 3.1133e-14  0.371034   0.549702
 ## k_Z3        0.058693   0.014296  4.1056 7.2924e-05  0.035994   0.095705
 ## f_Z2_to_Z3  0.471516   0.057057  8.2639 2.8156e-11  0.360381   0.585548
-
endpoints(m.Z.FOCUS)
+
endpoints(m.Z.FOCUS)
## $ff
 ##   Z2_Z3 Z2_sink 
 ## 0.47152 0.52848 
@@ -219,61 +223,63 @@
 Using the SFORB model
 

As the FOCUS report states, there is a certain tailing of the time course of metabolite Z3. Also, the time course of the parent compound is not fitted very well using the SFO model, as residues at a certain low level remain.

Therefore, an additional model is offered here, using the single first-order reversible binding (SFORB) model for metabolite Z3. As expected, the \(\chi^2\) error level is lower for metabolite Z3 using this model and the graphical fit for Z3 is improved. However, the covariance matrix is not returned.

-
Z.mkin.1 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE),
-                    Z1 = mkinsub("SFO", "Z2", sink = FALSE),
-                    Z2 = mkinsub("SFO", "Z3"),
-                    Z3 = mkinsub("SFORB"))
+
Z.mkin.1 <- mkinmod(Z0 = mkinsub("SFO", "Z1", sink = FALSE),
+                    Z1 = mkinsub("SFO", "Z2", sink = FALSE),
+                    Z2 = mkinsub("SFO", "Z3"),
+                    Z3 = mkinsub("SFORB"))
## Successfully compiled differential equation model from auto-generated C code.
-
m.Z.mkin.1 <- mkinfit(Z.mkin.1, FOCUS_2006_Z_mkin, quiet = TRUE)
-plot_sep(m.Z.mkin.1)
+
m.Z.mkin.1 <- mkinfit(Z.mkin.1, FOCUS_2006_Z_mkin, quiet = TRUE)
+plot_sep(m.Z.mkin.1)

-
summary(m.Z.mkin.1, data = FALSE)$cov.unscaled
+
summary(m.Z.mkin.1, data = FALSE)$cov.unscaled
+
## Warning in summary.mkinfit(m.Z.mkin.1, data = FALSE): Could not estimate
+## covariance matrix; singular system.
## NULL

Therefore, a further stepwise model building is performed starting from the stage of parent and two metabolites, starting from the assumption that the model fit for the parent compound can be improved by using the SFORB model.

-
Z.mkin.3 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE),
-                    Z1 = mkinsub("SFO", "Z2", sink = FALSE),
-                    Z2 = mkinsub("SFO"))
+
Z.mkin.3 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE),
+                    Z1 = mkinsub("SFO", "Z2", sink = FALSE),
+                    Z2 = mkinsub("SFO"))
## Successfully compiled differential equation model from auto-generated C code.
-
m.Z.mkin.3 <- mkinfit(Z.mkin.3, FOCUS_2006_Z_mkin, quiet = TRUE)
-plot_sep(m.Z.mkin.3)
+
m.Z.mkin.3 <- mkinfit(Z.mkin.3, FOCUS_2006_Z_mkin, quiet = TRUE)
+plot_sep(m.Z.mkin.3)

This results in a much better representation of the behaviour of the parent compound Z0.

Finally, Z3 is added as well. These models appear overparameterised (no covariance matrix returned) if the sink for Z1 is left in the models.

-
Z.mkin.4 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE),
-                    Z1 = mkinsub("SFO", "Z2", sink = FALSE),
-                    Z2 = mkinsub("SFO", "Z3"),
-                    Z3 = mkinsub("SFO"))
+
Z.mkin.4 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE),
+                    Z1 = mkinsub("SFO", "Z2", sink = FALSE),
+                    Z2 = mkinsub("SFO", "Z3"),
+                    Z3 = mkinsub("SFO"))
## Successfully compiled differential equation model from auto-generated C code.
- +

The error level of the fit, but especially of metabolite Z3, can be improved if the SFORB model is chosen for this metabolite, as this model is capable of representing the tailing of the metabolite decline phase.

-
Z.mkin.5 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE),
-                    Z1 = mkinsub("SFO", "Z2", sink = FALSE),
-                    Z2 = mkinsub("SFO", "Z3"),
-                    Z3 = mkinsub("SFORB"))
+
Z.mkin.5 <- mkinmod(Z0 = mkinsub("SFORB", "Z1", sink = FALSE),
+                    Z1 = mkinsub("SFO", "Z2", sink = FALSE),
+                    Z2 = mkinsub("SFO", "Z3"),
+                    Z3 = mkinsub("SFORB"))
## Successfully compiled differential equation model from auto-generated C code.
- +

The summary view of the backtransformed parameters shows that we get no confidence intervals due to overparameterisation. As the optimized is excessively small, it seems reasonable to fix it to zero.

-
m.Z.mkin.5a <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin,
-                       parms.ini = c(m.Z.mkin.5$bparms.ode[1:7],
-                                     k_Z3_bound_free = 0),
-                       fixed_parms = "k_Z3_bound_free",
-                       quiet = TRUE)
-plot_sep(m.Z.mkin.5a)
+
m.Z.mkin.5a <- mkinfit(Z.mkin.5, FOCUS_2006_Z_mkin,
+                       parms.ini = c(m.Z.mkin.5$bparms.ode[1:7],
+                                     k_Z3_bound_free = 0),
+                       fixed_parms = "k_Z3_bound_free",
+                       quiet = TRUE)
+plot_sep(m.Z.mkin.5a)

As expected, the residual plots for Z0 and Z3 are more random than in the case of the all SFO model for which they were shown above. In conclusion, the model is proposed as the best-fit model for the dataset from Appendix 7 of the FOCUS report.

A graphical representation of the confidence intervals can finally be obtained.

-
mkinparplot(m.Z.mkin.5a)
+
mkinparplot(m.Z.mkin.5a)

The endpoints obtained with this model are

-
endpoints(m.Z.mkin.5a)
+
endpoints(m.Z.mkin.5a)
## $ff
 ##   Z0_free_Z1        Z1_Z2      Z2_sink   Z2_Z3_free Z3_free_sink 
 ##      1.00000      1.00000      0.46344      0.53656      1.00000 
-- 
cgit v1.2.1