From 3ae975f6039da0edc3ae6298bcac388e7346e73f Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Wed, 14 May 2025 05:18:41 +0200 Subject: Fix link to mesotrione vignette in static docs --- docs/articles/index.html | 4 +- docs/articles/web_only/mesotrione_parent_2023.html | 3886 ++++++++++++++++++++ .../figure-html/unnamed-chunk-14-1.png | Bin 0 -> 78165 bytes .../figure-html/unnamed-chunk-19-1.png | Bin 0 -> 77391 bytes .../figure-html/unnamed-chunk-25-1.png | Bin 0 -> 77786 bytes .../figure-html/unnamed-chunk-30-1.png | Bin 0 -> 77683 bytes .../figure-html/unnamed-chunk-8-1.png | Bin 0 -> 76004 bytes 7 files changed, 3888 insertions(+), 2 deletions(-) create mode 100644 docs/articles/web_only/mesotrione_parent_2023.html create mode 100644 docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-14-1.png create mode 100644 docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-19-1.png create mode 100644 docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-25-1.png create mode 100644 docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-30-1.png create mode 100644 docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-8-1.png (limited to 'docs/articles') diff --git a/docs/articles/index.html b/docs/articles/index.html index 928fb613..b70a25c4 100644 --- a/docs/articles/index.html +++ b/docs/articles/index.html @@ -28,7 +28,7 @@
  • Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P
  • Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P
  • -
  • Testing covariate modelling in hierarchical parent degradation kinetics with residue data on mesotrione
  • +
  • Testing covariate modelling in hierarchical parent degradation kinetics with residue data on mesotrione
  • Testing hierarchical pathway kinetics with residue data on cyantraniliprole
  • Comparison of saemix and nlme evaluations of dimethenamid data from 2018
  • Short demo of the multistart method
  • @@ -80,7 +80,7 @@
    Example evaluation of FOCUS dataset Z
    -
    Testing covariate modelling in hierarchical parent degradation kinetics with residue data on mesotrione
    +
    Testing covariate modelling in hierarchical parent degradation kinetics with residue data on mesotrione
    Short introduction to mkin
    diff --git a/docs/articles/web_only/mesotrione_parent_2023.html b/docs/articles/web_only/mesotrione_parent_2023.html new file mode 100644 index 00000000..13b62fe3 --- /dev/null +++ b/docs/articles/web_only/mesotrione_parent_2023.html @@ -0,0 +1,3886 @@ + + + + + + + +Testing covariate modelling in hierarchical parent degradation kinetics with residue data on mesotrione • mkin + + + + + + + + Skip to contents + + +
    + + + + +
    +
    + + + +
    +

    Introduction +

    +

    The purpose of this document is to test demonstrate how nonlinear +hierarchical models (NLHM) based on the parent degradation models SFO, +FOMC, DFOP and HS can be fitted with the mkin package, also considering +the influence of covariates like soil pH on different degradation +parameters. Because in some other case studies, the SFORB +parameterisation of biexponential decline has shown some advantages over +the DFOP parameterisation, SFORB was included in the list of tested +models as well.

    +

    The mkin package is used in version 1.2.10, which is contains the +functions that were used for the evaluations. The saemix +package is used as a backend for fitting the NLHM, but is also loaded to +make the convergence plot function available.

    +

    This document is processed with the knitr package, which +also provides the kable function that is used to improve +the display of tabular data in R markdown documents. For parallel +processing, the parallel package is used.

    +
    +library(mkin)
    +library(knitr)
    +library(saemix)
    +library(parallel)
    +n_cores <- detectCores()
    +if (Sys.info()["sysname"] == "Windows") {
    +  cl <- makePSOCKcluster(n_cores)
    +} else {
    +  cl <- makeForkCluster(n_cores)
    +}
    +
    +

    Test data +

    +
    +data_file <- system.file(
    +  "testdata", "mesotrione_soil_efsa_2016.xlsx", package = "mkin")
    +meso_ds <- read_spreadsheet(data_file, parent_only = TRUE)
    +

    The following tables show the covariate data and the 18 datasets that +were read in from the spreadsheet file.

    +
    +pH <- attr(meso_ds, "covariates")
    +kable(pH, caption = "Covariate data")
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Covariate data
    pH
    Richmond6.2
    Richmond 26.2
    ERTC6.4
    Toulouse7.7
    Picket Piece7.1
    7215.6
    7225.7
    7235.4
    7244.8
    7255.8
    7275.1
    7285.9
    7295.6
    7305.3
    7316.1
    7325.0
    7415.7
    7427.2
    +
    +for (ds_name in names(meso_ds)) {
    +  print(
    +    kable(mkin_long_to_wide(meso_ds[[ds_name]]),
    +      caption = paste("Dataset", ds_name),
    +      booktabs = TRUE, row.names = FALSE))
    +}
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset Richmond
    timemeso
    0.00000091.00
    1.17905086.70
    3.53714973.60
    7.07429961.50
    10.61144855.70
    15.32764747.70
    17.68574739.50
    24.76004629.80
    35.37149419.60
    68.3848895.67
    0.00000097.90
    1.17905096.40
    3.53714989.10
    7.07429974.40
    10.61144857.40
    15.32764746.30
    18.86479735.50
    27.11814627.20
    35.37149419.10
    74.2801386.50
    108.4725823.40
    142.6650272.20
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset Richmond 2
    timemeso
    0.00000096.0
    2.42200482.4
    5.65134371.2
    8.07334853.1
    11.30268748.5
    16.95403033.4
    22.60537324.2
    45.21074611.9
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset ERTC
    timemeso
    0.00000099.9
    2.75519380.0
    6.42878242.1
    9.18397550.1
    12.85756528.4
    19.28634739.8
    25.71513029.9
    51.4302592.5
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset Toulouse
    timemeso
    0.00000096.8
    2.89798363.3
    6.76196022.3
    9.65994216.6
    13.52391916.1
    20.28587917.2
    27.0478381.8
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset Picket Piece
    timemeso
    0.000000102.0
    2.84119573.7
    6.62945435.5
    9.47064931.8
    13.25890918.0
    19.8883643.7
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset 721
    timemeso
    0.0000086.4
    11.2436661.4
    22.4873349.8
    33.7309941.0
    44.9746635.1
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset 722
    timemeso
    0.0000090.3
    11.2436652.1
    22.4873337.4
    33.7309921.2
    44.9746614.3
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset 723
    timemeso
    0.0000089.3
    11.2436670.8
    22.4873351.1
    33.7309942.7
    44.9746626.7
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset 724
    timemeso
    0.00000089.4
    9.00820865.2
    18.01641555.8
    27.02462346.0
    36.03283141.7
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset 725
    timemeso
    0.0000089.0
    10.9905835.4
    21.9811618.6
    32.9717411.6
    43.962327.6
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset 727
    timemeso
    0.0000091.3
    10.9610463.2
    21.9220951.1
    32.8831342.0
    43.8441740.8
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset 728
    timemeso
    0.0000091.8
    11.2436643.6
    22.4873322.0
    33.7309915.9
    44.974668.8
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset 729
    timemeso
    0.0000091.6
    11.2436660.5
    22.4873343.5
    33.7309928.4
    44.9746620.5
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset 730
    timemeso
    0.0000092.7
    11.0744658.9
    22.1489344.0
    33.2233946.0
    44.2978529.3
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset 731
    timemeso
    0.0000092.1
    11.2436664.4
    22.4873345.3
    33.7309933.6
    44.9746623.5
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset 732
    timemeso
    0.0000090.3
    11.2436658.2
    22.4873340.1
    33.7309933.1
    44.9746625.8
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset 741
    timemeso
    0.0000090.3
    10.8471268.7
    21.6942458.0
    32.5413652.2
    43.3884848.0
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Dataset 742
    timemeso
    0.0000092.0
    11.2436660.9
    22.4873336.2
    33.7309918.3
    44.974668.7
    +
    +
    +
    +

    Separate evaluations +

    +

    In order to obtain suitable starting parameters for the NLHM fits, +separate fits of the five models to the data for each soil are generated +using the mmkin function from the mkin package. In a first +step, constant variance is assumed. Convergence is checked with the +status function.

    +
    +deg_mods <- c("SFO", "FOMC", "DFOP", "SFORB", "HS")
    +f_sep_const <- mmkin(
    +  deg_mods,
    +  meso_ds,
    +  error_model = "const",
    +  cluster = cl,
    +  quiet = TRUE)
    +
    +status(f_sep_const[, 1:5]) |> kable()
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    RichmondRichmond 2ERTCToulousePicket Piece
    SFOOKOKOKOKOK
    FOMCOKOKOKOKC
    DFOPOKOKOKOKOK
    SFORBOKOKOKOKOK
    HSOKOKCOKOK
    +
    +status(f_sep_const[, 6:18]) |> kable()
    + ++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    721722723724725727728729730731732741742
    SFOOKOKOKOKOKOKOKOKOKOKOKOKOK
    FOMCOKOKCOKOKOKOKOKOKOKOKOKOK
    DFOPOKOKOKOKOKOKOKOKOKOKOKOKOK
    SFORBOKOKOKOKOKOKOKCOKOKOKOKOK
    HSOKOKOKOKOKOKOKOKOKOKOKOKOK
    +

    In the tables above, OK indicates convergence and C indicates failure +to converge. Most separate fits with constant variance converged, with +the exception of two FOMC fits, one SFORB fit and one HS fit.

    +
    +f_sep_tc <- update(f_sep_const, error_model = "tc")
    +
    +status(f_sep_tc[, 1:5]) |> kable()
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    RichmondRichmond 2ERTCToulousePicket Piece
    SFOOKOKOKOKOK
    FOMCOKOKOKOKOK
    DFOPCOKOKOKOK
    SFORBOKOKOKOKOK
    HSOKOKCOKOK
    +
    +status(f_sep_tc[, 6:18]) |> kable()
    + ++++++++++++++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    721722723724725727728729730731732741742
    SFOOKOKOKOKOKOKOKOKOKOKOKOKOK
    FOMCOKOKCOKCCOKCOKCOKCOK
    DFOPCOKOKOKCOKOKOKOKCOKCOK
    SFORBCOKOKOKCOKOKCOKOKOKCOK
    HSOKOKOKOKOKOKOKOKOKCOKOKOK
    +

    With the two-component error model, the set of fits that did not +converge is larger, with convergence problems appearing for a number of +non-SFO fits.

    +
    +
    +

    Hierarchical models without covariate +

    +

    The following code fits hierarchical kinetic models for the ten +combinations of the five different degradation models with the two +different error models in parallel.

    +
    +f_saem_1 <- mhmkin(list(f_sep_const, f_sep_tc), cluster = cl)
    +status(f_saem_1) |> kable()
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    consttc
    SFOOKOK
    FOMCOKOK
    DFOPOKOK
    SFORBOKOK
    HSOKOK
    +

    All fits terminate without errors (status OK).

    +
    +anova(f_saem_1) |> kable(digits = 1)
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    nparAICBICLik
    SFO const5800.0804.5-395.0
    SFO tc6801.9807.2-394.9
    FOMC const7787.4793.6-386.7
    FOMC tc8788.9796.1-386.5
    DFOP const9787.6795.6-384.8
    SFORB const9787.4795.4-384.7
    HS const9781.9789.9-382.0
    DFOP tc10787.4796.3-383.7
    SFORB tc10795.8804.7-387.9
    HS tc10783.7792.7-381.9
    +

    The model comparisons show that the fits with constant variance are +consistently preferable to the corresponding fits with two-component +error for these data. This is confirmed by the fact that the parameter +b.1 (the relative standard deviation in the fits obtained +with the saemix package), is ill-defined in all fits.

    +
    +illparms(f_saem_1) |> kable()
    + +++++ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    consttc
    SFOsd(meso_0)sd(meso_0), b.1
    FOMCsd(meso_0), sd(log_beta)sd(meso_0), sd(log_beta), b.1
    DFOPsd(meso_0), sd(log_k1)sd(meso_0), sd(g_qlogis), b.1
    SFORBsd(meso_free_0), sd(log_k_meso_free_bound)sd(meso_free_0), sd(log_k_meso_free_bound), b.1
    HSsd(meso_0)sd(meso_0), b.1
    +

    For obtaining fits with only well-defined random effects, we update +the set of fits, excluding random effects that were ill-defined +according to the illparms function.

    +
    +f_saem_2 <- update(f_saem_1, no_random_effect = illparms(f_saem_1))
    +status(f_saem_2) |> kable()
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    consttc
    SFOOKOK
    FOMCOKOK
    DFOPOKOK
    SFORBOKOK
    HSOKOK
    +

    The updated fits terminate without errors.

    +
    +illparms(f_saem_2) |> kable()
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    consttc
    SFOb.1
    FOMCb.1
    DFOPb.1
    SFORBb.1
    HSb.1
    +

    No ill-defined errors remain in the fits with constant variance.

    +
    +
    +

    Hierarchical models with covariate +

    +

    In the following sections, hierarchical fits including a model for +the influence of pH on selected degradation parameters are shown for all +parent models. Constant variance is selected as the error model based on +the fits without covariate effects. Random effects that were ill-defined +in the fits without pH influence are excluded. A potential influence of +the soil pH is only included for parameters with a well-defined random +effect, because experience has shown that only for such parameters a +significant pH effect could be found.

    +
    +

    SFO +

    +
    +sfo_pH <- saem(f_sep_const["SFO", ], no_random_effect = "meso_0", covariates = pH,
    +  covariate_models = list(log_k_meso ~ pH))
    +
    +summary(sfo_pH)$confint_trans |> kable(digits = 2)
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    est.lowerupper
    meso_091.3589.2793.43
    log_k_meso-6.66-7.97-5.35
    beta_pH(log_k_meso)0.590.370.81
    a.15.484.716.24
    SD.log_k_meso0.350.230.47
    +

    The parameter showing the pH influence in the above table is +beta_pH(log_k_meso). Its confidence interval does not +include zero, indicating that the influence of soil pH on the log of the +degradation rate constant is significantly greater than zero.

    +
    +anova(f_saem_2[["SFO", "const"]], sfo_pH, test = TRUE)
    +
    Data: 116 observations of 1 variable(s) grouped in 18 datasets
    +
    +                           npar    AIC    BIC     Lik  Chisq Df Pr(>Chisq)    
    +f_saem_2[["SFO", "const"]]    4 797.56 801.12 -394.78                         
    +sfo_pH                        5 783.09 787.54 -386.54 16.473  1  4.934e-05 ***
    +---
    +Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    +

    The comparison with the SFO fit without covariate effect confirms +that considering the soil pH improves the model, both by comparison of +AIC and BIC and by the likelihood ratio test.

    +
    +plot(sfo_pH)
    +

    +

    Endpoints for a model with covariates are by default calculated for +the median of the covariate values. This quantile can be adapted, or a +specific covariate value can be given as shown below.

    +
    +endpoints(sfo_pH)
    +
    $covariates
    +      pH
    +50% 5.75
    +
    +$distimes
    +         DT50     DT90
    +meso 18.52069 61.52441
    +
    +endpoints(sfo_pH, covariate_quantile = 0.9)
    +
    $covariates
    +      pH
    +90% 7.13
    +
    +$distimes
    +         DT50     DT90
    +meso 8.237019 27.36278
    +
    +endpoints(sfo_pH, covariates = c(pH = 7.0))
    +
    $covariates
    +     pH
    +User  7
    +
    +$distimes
    +        DT50    DT90
    +meso 8.89035 29.5331
    +
    +
    +

    FOMC +

    +
    +fomc_pH <- saem(f_sep_const["FOMC", ], no_random_effect = "meso_0", covariates = pH,
    +  covariate_models = list(log_alpha ~ pH))
    +
    +summary(fomc_pH)$confint_trans |> kable(digits = 2)
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    est.lowerupper
    meso_092.8490.7594.93
    log_alpha-2.21-3.49-0.92
    beta_pH(log_alpha)0.580.370.79
    log_beta4.213.444.99
    a.15.034.325.73
    SD.log_alpha0.00-23.7723.78
    SD.log_beta0.370.010.74
    +

    As in the case of SFO, the confidence interval of the slope parameter +(here beta_pH(log_alpha)) quantifying the influence of soil +pH does not include zero, and the model comparison clearly indicates +that the model with covariate influence is preferable. However, the +random effect for alpha is not well-defined any more after +inclusion of the covariate effect (the confidence interval of +SD.log_alpha includes zero).

    +
    +illparms(fomc_pH)
    +
    [1] "sd(log_alpha)"
    +

    Therefore, the model is updated without this random effect, and no +ill-defined parameters remain.

    +
    +fomc_pH_2 <- update(fomc_pH, no_random_effect = c("meso_0", "log_alpha"))
    +illparms(fomc_pH_2)
    +
    +anova(f_saem_2[["FOMC", "const"]], fomc_pH, fomc_pH_2, test = TRUE)
    +
    Data: 116 observations of 1 variable(s) grouped in 18 datasets
    +
    +                            npar    AIC    BIC     Lik  Chisq Df Pr(>Chisq)    
    +f_saem_2[["FOMC", "const"]]    5 783.25 787.71 -386.63                         
    +fomc_pH_2                      6 767.49 772.83 -377.75 17.762  1  2.503e-05 ***
    +fomc_pH                        7 770.07 776.30 -378.04  0.000  1          1    
    +---
    +Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    +

    Model comparison indicates that including pH dependence significantly +improves the fit, and that the reduced model with covariate influence +results in the most preferable FOMC fit.

    +
    +summary(fomc_pH_2)$confint_trans |> kable(digits = 2)
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    est.lowerupper
    meso_093.0590.9895.13
    log_alpha-2.91-4.18-1.63
    beta_pH(log_alpha)0.660.440.87
    log_beta3.953.294.62
    a.14.984.285.68
    SD.log_beta0.400.260.54
    +
    +plot(fomc_pH_2)
    +

    +
    +endpoints(fomc_pH_2)
    +
    $covariates
    +      pH
    +50% 5.75
    +
    +$distimes
    +         DT50     DT90 DT50back
    +meso 17.30248 82.91343 24.95943
    +
    +endpoints(fomc_pH_2, covariates = c(pH = 7))
    +
    $covariates
    +     pH
    +User  7
    +
    +$distimes
    +         DT50     DT90 DT50back
    +meso 6.986239 27.02927 8.136621
    +
    +
    +

    DFOP +

    +

    In the DFOP fits without covariate effects, random effects for two +degradation parameters (k2 and g) were +identifiable.

    +
    +summary(f_saem_2[["DFOP", "const"]])$confint_trans |> kable(digits = 2)
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    est.lowerupper
    meso_093.6191.5895.63
    log_k1-1.53-2.27-0.79
    log_k2-3.42-3.73-3.11
    g_qlogis-1.67-2.57-0.77
    a.14.744.025.45
    SD.log_k20.600.380.81
    SD.g_qlogis0.940.331.54
    +

    A fit with pH dependent degradation parameters was obtained by +excluding the same random effects as in the refined DFOP fit without +covariate influence, and including covariate models for the two +identifiable parameters k2 and g.

    +
    +dfop_pH <- saem(f_sep_const["DFOP", ], no_random_effect = c("meso_0", "log_k1"),
    +  covariates = pH,
    +  covariate_models = list(log_k2 ~ pH, g_qlogis ~ pH))
    +

    The corresponding parameters for the influence of soil pH are +beta_pH(log_k2) for the influence of soil pH on +k2, and beta_pH(g_qlogis) for its influence on +g.

    +
    +summary(dfop_pH)$confint_trans |> kable(digits = 2)
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    est.lowerupper
    meso_092.8490.8594.84
    log_k1-2.82-3.09-2.54
    log_k2-11.48-15.32-7.64
    beta_pH(log_k2)1.310.691.92
    g_qlogis3.130.475.80
    beta_pH(g_qlogis)-0.57-1.04-0.09
    a.14.964.265.65
    SD.log_k20.760.471.05
    SD.g_qlogis0.01-9.969.97
    +
    +illparms(dfop_pH)
    +
    [1] "sd(g_qlogis)"
    +

    Confidence intervals for neither of them include zero, indicating a +significant difference from zero. However, the random effect for +g is now ill-defined. The fit is updated without this +ill-defined random effect.

    +
    +dfop_pH_2 <- update(dfop_pH,
    +  no_random_effect = c("meso_0", "log_k1", "g_qlogis"))
    +illparms(dfop_pH_2)
    +
    [1] "beta_pH(g_qlogis)"
    +

    Now, the slope parameter for the pH effect on g is +ill-defined. Therefore, another attempt is made without the +corresponding covariate model.

    +
    +dfop_pH_3 <- saem(f_sep_const["DFOP", ], no_random_effect = c("meso_0", "log_k1"),
    +  covariates = pH,
    +  covariate_models = list(log_k2 ~ pH))
    +illparms(dfop_pH_3)
    +
    [1] "sd(g_qlogis)"
    +

    As the random effect for g is again ill-defined, the fit +is repeated without it.

    +
    +dfop_pH_4 <- update(dfop_pH_3, no_random_effect = c("meso_0", "log_k1", "g_qlogis"))
    +illparms(dfop_pH_4)
    +

    While no ill-defined parameters remain, model comparison suggests +that the previous model dfop_pH_2 with two pH dependent +parameters is preferable, based on information criteria as well as based +on the likelihood ratio test.

    +
    +anova(f_saem_2[["DFOP", "const"]], dfop_pH, dfop_pH_2, dfop_pH_3, dfop_pH_4)
    +
    Data: 116 observations of 1 variable(s) grouped in 18 datasets
    +
    +                            npar    AIC    BIC     Lik
    +f_saem_2[["DFOP", "const"]]    7 782.94 789.18 -384.47
    +dfop_pH_4                      7 767.35 773.58 -376.68
    +dfop_pH_2                      8 765.14 772.26 -374.57
    +dfop_pH_3                      8 769.00 776.12 -376.50
    +dfop_pH                        9 769.10 777.11 -375.55
    +
    +anova(dfop_pH_2, dfop_pH_4, test = TRUE)
    +
    Data: 116 observations of 1 variable(s) grouped in 18 datasets
    +
    +          npar    AIC    BIC     Lik  Chisq Df Pr(>Chisq)  
    +dfop_pH_4    7 767.35 773.58 -376.68                       
    +dfop_pH_2    8 765.14 772.26 -374.57 4.2153  1    0.04006 *
    +---
    +Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    +

    When focussing on parameter identifiability using the test if the +confidence interval includes zero, dfop_pH_4 would still be +the preferred model. However, it should be kept in mind that parameter +confidence intervals are constructed using a simple linearisation of the +likelihood. As the confidence interval of the random effect for +g only marginally includes zero, it is suggested that this +is acceptable, and that dfop_pH_2 can be considered the +most preferable model.

    +
    +plot(dfop_pH_2)
    +

    +
    +endpoints(dfop_pH_2)
    +
    $covariates
    +      pH
    +50% 5.75
    +
    +$distimes
    +         DT50     DT90 DT50back  DT50_k1  DT50_k2
    +meso 18.36876 73.51841 22.13125 4.191901 23.98672
    +
    +endpoints(dfop_pH_2, covariates = c(pH = 7))
    +
    $covariates
    +     pH
    +User  7
    +
    +$distimes
    +         DT50     DT90 DT50back  DT50_k1  DT50_k2
    +meso 8.346428 28.34437 8.532507 4.191901 8.753618
    +
    +
    +

    SFORB +

    +
    +sforb_pH <- saem(f_sep_const["SFORB", ], no_random_effect = c("meso_free_0", "log_k_meso_free_bound"),
    +  covariates = pH,
    +  covariate_models = list(log_k_meso_free ~ pH, log_k_meso_bound_free ~ pH))
    +
    +summary(sforb_pH)$confint_trans |> kable(digits = 2)
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    est.lowerupper
    meso_free_093.4291.3295.52
    log_k_meso_free-5.37-6.94-3.81
    beta_pH(log_k_meso_free)0.420.180.67
    log_k_meso_free_bound-3.49-4.92-2.05
    log_k_meso_bound_free-9.98-19.22-0.74
    beta_pH(log_k_meso_bound_free)1.23-0.212.67
    a.14.904.185.63
    SD.log_k_meso_free0.350.230.47
    SD.log_k_meso_bound_free0.13-1.952.20
    +

    The confidence interval of +beta_pH(log_k_meso_bound_free) includes zero, indicating +that the influence of soil pH on k_meso_bound_free cannot +reliably be quantified. Also, the confidence interval for the random +effect on this parameter (SD.log_k_meso_bound_free) +includes zero.

    +

    Using the illparms function, these ill-defined +parameters can be found more conveniently.

    +
    +illparms(sforb_pH)
    +
    [1] "sd(log_k_meso_bound_free)"      "beta_pH(log_k_meso_bound_free)"
    +

    To remove the ill-defined parameters, a second variant of the SFORB +model with pH influence is fitted. No ill-defined parameters remain.

    +
    +sforb_pH_2 <- update(sforb_pH,
    +  no_random_effect = c("meso_free_0", "log_k_meso_free_bound", "log_k_meso_bound_free"),
    +  covariate_models = list(log_k_meso_free ~ pH))
    +illparms(sforb_pH_2)
    +

    The model comparison of the SFORB fits includes the refined model +without covariate effect, and both versions of the SFORB fit with +covariate effect.

    +
    +anova(f_saem_2[["SFORB", "const"]], sforb_pH, sforb_pH_2, test = TRUE)
    +
    Data: 116 observations of 1 variable(s) grouped in 18 datasets
    +
    +                             npar    AIC    BIC     Lik   Chisq Df Pr(>Chisq)  
    +f_saem_2[["SFORB", "const"]]    7 783.40 789.63 -384.70                        
    +sforb_pH_2                      7 770.94 777.17 -378.47 12.4616  0             
    +sforb_pH                        9 768.81 776.83 -375.41  6.1258  2    0.04675 *
    +---
    +Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    +

    The first model including pH influence is preferable based on +information criteria and the likelihood ratio test. However, as it is +not fully identifiable, the second model is selected.

    +
    +summary(sforb_pH_2)$confint_trans |> kable(digits = 2)
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    est.lowerupper
    meso_free_093.3291.1695.48
    log_k_meso_free-6.15-7.43-4.86
    beta_pH(log_k_meso_free)0.540.330.75
    log_k_meso_free_bound-3.80-5.20-2.40
    log_k_meso_bound_free-2.95-4.26-1.64
    a.15.084.385.79
    SD.log_k_meso_free0.330.220.45
    +
    +plot(sforb_pH_2)
    +

    +
    +endpoints(sforb_pH_2)
    +
    $covariates
    +      pH
    +50% 5.75
    +
    +$ff
    +meso_free 
    +        1 
    +
    +$SFORB
    +   meso_b1    meso_b2     meso_g 
    +0.09735824 0.02631699 0.31602120 
    +
    +$distimes
    +         DT50     DT90 DT50back DT50_meso_b1 DT50_meso_b2
    +meso 16.86549 73.15824 22.02282     7.119554     26.33839
    +
    +endpoints(sforb_pH_2, covariates = c(pH = 7))
    +
    $covariates
    +     pH
    +User  7
    +
    +$ff
    +meso_free 
    +        1 
    +
    +$SFORB
    +   meso_b1    meso_b2     meso_g 
    +0.13315233 0.03795988 0.61186191 
    +
    +$distimes
    +         DT50     DT90 DT50back DT50_meso_b1 DT50_meso_b2
    +meso 7.932495 36.93311 11.11797     5.205671        18.26
    +
    +
    +

    HS +

    +
    +hs_pH <- saem(f_sep_const["HS", ], no_random_effect = c("meso_0"),
    +  covariates = pH,
    +  covariate_models = list(log_k1 ~ pH, log_k2 ~ pH, log_tb ~ pH))
    +
    +summary(hs_pH)$confint_trans |> kable(digits = 2)
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    est.lowerupper
    meso_093.3391.4795.19
    log_k1-5.81-7.27-4.36
    beta_pH(log_k1)0.470.230.72
    log_k2-6.80-8.76-4.83
    beta_pH(log_k2)0.540.210.87
    log_tb3.251.255.25
    beta_pH(log_tb)-0.10-0.430.23
    a.14.493.785.21
    SD.log_k10.370.240.51
    SD.log_k20.290.100.48
    SD.log_tb0.25-0.070.57
    +
    +illparms(hs_pH)
    +
    [1] "sd(log_tb)"      "beta_pH(log_tb)"
    +

    According to the output of the illparms function, the +random effect on the break time tb cannot reliably be +quantified, neither can the influence of soil pH on tb. The +fit is repeated without the corresponding covariate model, and no +ill-defined parameters remain.

    +
    +hs_pH_2 <- update(hs_pH, covariate_models = list(log_k1 ~ pH, log_k2 ~ pH))
    +illparms(hs_pH_2)
    +

    Model comparison confirms that this model is preferable to the fit +without covariate influence, and also to the first version with +covariate influence.

    +
    +anova(f_saem_2[["HS", "const"]], hs_pH, hs_pH_2, test = TRUE)
    +
    Data: 116 observations of 1 variable(s) grouped in 18 datasets
    +
    +                          npar    AIC    BIC     Lik  Chisq Df Pr(>Chisq)    
    +f_saem_2[["HS", "const"]]    8 780.08 787.20 -382.04                         
    +hs_pH_2                     10 766.47 775.37 -373.23 17.606  2  0.0001503 ***
    +hs_pH                       11 769.80 779.59 -373.90  0.000  1  1.0000000    
    +---
    +Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    +
    +summary(hs_pH_2)$confint_trans |> kable(digits = 2)
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    est.lowerupper
    meso_093.3391.5095.15
    log_k1-5.68-7.09-4.27
    beta_pH(log_k1)0.460.220.69
    log_k2-6.61-8.34-4.88
    beta_pH(log_k2)0.500.210.79
    log_tb2.702.333.08
    a.14.453.745.16
    SD.log_k10.360.220.49
    SD.log_k20.230.020.43
    SD.log_tb0.550.250.85
    +
    +plot(hs_pH_2)
    +

    +
    +endpoints(hs_pH_2)
    +
    $covariates
    +      pH
    +50% 5.75
    +
    +$distimes
    +         DT50     DT90 DT50back  DT50_k1  DT50_k2
    +meso 14.68725 82.45287 24.82079 14.68725 29.29299
    +
    +endpoints(hs_pH_2, covariates = c(pH = 7))
    +
    $covariates
    +     pH
    +User  7
    +
    +$distimes
    +         DT50     DT90 DT50back  DT50_k1  DT50_k2
    +meso 8.298536 38.85371 11.69613 8.298536 15.71561
    +
    +
    +

    Comparison across parent models +

    +

    After model reduction for all models with pH influence, they are +compared with each other.

    +
    +anova(sfo_pH, fomc_pH_2, dfop_pH_2, dfop_pH_4, sforb_pH_2, hs_pH_2)
    +
    Data: 116 observations of 1 variable(s) grouped in 18 datasets
    +
    +           npar    AIC    BIC     Lik
    +sfo_pH        5 783.09 787.54 -386.54
    +fomc_pH_2     6 767.49 772.83 -377.75
    +dfop_pH_4     7 767.35 773.58 -376.68
    +sforb_pH_2    7 770.94 777.17 -378.47
    +dfop_pH_2     8 765.14 772.26 -374.57
    +hs_pH_2      10 766.47 775.37 -373.23
    +

    The DFOP model with pH influence on k2 and +g and a random effect only on k2 is finally +selected as the best fit.

    +

    The endpoints resulting from this model are listed below. Please +refer to the Appendix for a detailed listing.

    +
    +endpoints(dfop_pH_2)
    +
    $covariates
    +      pH
    +50% 5.75
    +
    +$distimes
    +         DT50     DT90 DT50back  DT50_k1  DT50_k2
    +meso 18.36876 73.51841 22.13125 4.191901 23.98672
    +
    +endpoints(dfop_pH_2, covariates = c(pH = 7))
    +
    $covariates
    +     pH
    +User  7
    +
    +$distimes
    +         DT50     DT90 DT50back  DT50_k1  DT50_k2
    +meso 8.346428 28.34437 8.532507 4.191901 8.753618
    +
    +
    +
    +

    Conclusions +

    +

    These evaluations demonstrate that covariate effects can be included +for all types of parent degradation models. These models can then be +further refined to make them fully identifiable.

    +
    +
    +

    Appendix +

    +
    +

    Hierarchical fit listings +

    +
    +

    Fits without covariate effects +

    + +Hierarchical SFO fit with constant variance + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:12:46 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso/dt = - k_meso * meso
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 0.71 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +    meso_0 log_k_meso 
    +    90.832     -3.192 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +           meso_0 log_k_meso
    +meso_0      6.752     0.0000
    +log_k_meso  0.000     0.9155
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +  AIC   BIC logLik
    +  800 804.5   -395
    +
    +Optimised parameters:
    +                 est.    lower   upper
    +meso_0        92.0705  89.9917 94.1493
    +log_k_meso    -3.1641  -3.4286 -2.8996
    +a.1            5.4628   4.6421  6.2835
    +SD.meso_0      0.0611 -98.3545 98.4767
    +SD.log_k_meso  0.5616   0.3734  0.7499
    +
    +Correlation: 
    +           meso_0
    +log_k_meso 0.1132
    +
    +Random effects:
    +                est.    lower   upper
    +SD.meso_0     0.0611 -98.3545 98.4767
    +SD.log_k_meso 0.5616   0.3734  0.7499
    +
    +Variance model:
    +     est. lower upper
    +a.1 5.463 4.642 6.284
    +
    +Backtransformed parameters:
    +           est.    lower    upper
    +meso_0 92.07053 89.99172 94.14933
    +k_meso  0.04225  0.03243  0.05505
    +
    +Estimated disappearance times:
    +      DT50 DT90
    +meso 16.41 54.5
    +
    +
    +

    + +Hierarchical FOMC fit with constant variance + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:12:46 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso/dt = - (alpha/beta) * 1/((time/beta) + 1) * meso
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 0.842 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +   meso_0 log_alpha  log_beta 
    +  93.0520    0.6008    3.4176 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +          meso_0 log_alpha log_beta
    +meso_0     6.287      0.00    0.000
    +log_alpha  0.000      1.53    0.000
    +log_beta   0.000      0.00    1.724
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  787.4 793.6 -386.7
    +
    +Optimised parameters:
    +                est.     lower   upper
    +meso_0       93.5648  91.42864 95.7009
    +log_alpha     0.7645   0.28068  1.2484
    +log_beta      3.6597   3.05999  4.2594
    +a.1           5.0708   4.29823  5.8435
    +SD.meso_0     0.1691 -34.01517 34.3535
    +SD.log_alpha  0.3764   0.05834  0.6945
    +SD.log_beta   0.3903  -0.06074  0.8414
    +
    +Correlation: 
    +          meso_0  log_lph
    +log_alpha -0.2839        
    +log_beta  -0.3443  0.8855
    +
    +Random effects:
    +               est.     lower   upper
    +SD.meso_0    0.1691 -34.01517 34.3535
    +SD.log_alpha 0.3764   0.05834  0.6945
    +SD.log_beta  0.3903  -0.06074  0.8414
    +
    +Variance model:
    +     est. lower upper
    +a.1 5.071 4.298 5.843
    +
    +Backtransformed parameters:
    +         est.  lower  upper
    +meso_0 93.565 91.429 95.701
    +alpha   2.148  1.324  3.485
    +beta   38.850 21.327 70.770
    +
    +Estimated disappearance times:
    +     DT50  DT90 DT50back
    +meso 14.8 74.64    22.47
    +
    +
    +

    + +Hierarchical DFOP fit with constant variance + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:12:47 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
    +           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
    +           * meso
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 1.168 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +  meso_0   log_k1   log_k2 g_qlogis 
    +93.14689 -2.05241 -3.53079 -0.09522 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +         meso_0 log_k1 log_k2 g_qlogis
    +meso_0    6.418  0.000  0.000     0.00
    +log_k1    0.000  1.018  0.000     0.00
    +log_k2    0.000  0.000  1.694     0.00
    +g_qlogis  0.000  0.000  0.000     2.37
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  787.6 795.6 -384.8
    +
    +Optimised parameters:
    +               est.     lower   upper
    +meso_0      93.6684  91.63599 95.7008
    +log_k1      -1.7354  -2.61433 -0.8565
    +log_k2      -3.4015  -3.73323 -3.0697
    +g_qlogis    -1.6341  -2.66133 -0.6069
    +a.1          4.7803   4.01269  5.5479
    +SD.meso_0    0.1661 -30.97086 31.3031
    +SD.log_k1    0.1127  -2.59680  2.8223
    +SD.log_k2    0.6394   0.41499  0.8638
    +SD.g_qlogis  0.8166   0.09785  1.5353
    +
    +Correlation: 
    +         meso_0  log_k1  log_k2 
    +log_k1    0.1757                
    +log_k2    0.0199  0.2990        
    +g_qlogis  0.0813 -0.7431 -0.3826
    +
    +Random effects:
    +              est.     lower   upper
    +SD.meso_0   0.1661 -30.97086 31.3031
    +SD.log_k1   0.1127  -2.59680  2.8223
    +SD.log_k2   0.6394   0.41499  0.8638
    +SD.g_qlogis 0.8166   0.09785  1.5353
    +
    +Variance model:
    +    est. lower upper
    +a.1 4.78 4.013 5.548
    +
    +Backtransformed parameters:
    +           est.    lower    upper
    +meso_0 93.66841 91.63599 95.70082
    +k1      0.17633  0.07322  0.42466
    +k2      0.03332  0.02392  0.04643
    +g       0.16327  0.06529  0.35277
    +
    +Estimated disappearance times:
    +      DT50  DT90 DT50back DT50_k1 DT50_k2
    +meso 16.04 63.75    19.19   3.931    20.8
    +
    +
    +

    + +Hierarchical SFORB fit with constant variance + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:12:47 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso_free/dt = - k_meso_free * meso_free - k_meso_free_bound *
    +           meso_free + k_meso_bound_free * meso_bound
    +d_meso_bound/dt = + k_meso_free_bound * meso_free - k_meso_bound_free *
    +           meso_bound
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 1.256 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +          meso_free_0       log_k_meso_free log_k_meso_free_bound 
    +               93.147                -2.305                -4.230 
    +log_k_meso_bound_free 
    +               -3.761 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +                      meso_free_0 log_k_meso_free log_k_meso_free_bound
    +meso_free_0                 6.418          0.0000                 0.000
    +log_k_meso_free             0.000          0.9276                 0.000
    +log_k_meso_free_bound       0.000          0.0000                 2.272
    +log_k_meso_bound_free       0.000          0.0000                 0.000
    +                      log_k_meso_bound_free
    +meso_free_0                           0.000
    +log_k_meso_free                       0.000
    +log_k_meso_free_bound                 0.000
    +log_k_meso_bound_free                 1.447
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  787.4 795.4 -384.7
    +
    +Optimised parameters:
    +                            est.    lower  upper
    +meso_free_0              93.6285  91.6262 95.631
    +log_k_meso_free          -2.8314  -3.1375 -2.525
    +log_k_meso_free_bound    -3.2213  -4.4695 -1.973
    +log_k_meso_bound_free    -2.4246  -3.5668 -1.282
    +a.1                       4.7372   3.9542  5.520
    +SD.meso_free_0            0.1634 -32.7769 33.104
    +SD.log_k_meso_free        0.4885   0.3080  0.669
    +SD.log_k_meso_free_bound  0.2876  -1.7955  2.371
    +SD.log_k_meso_bound_free  0.9942   0.2181  1.770
    +
    +Correlation: 
    +                      ms_fr_0 lg_k_m_ lg_k_ms_f_
    +log_k_meso_free        0.2332                   
    +log_k_meso_free_bound  0.1100  0.5964           
    +log_k_meso_bound_free -0.0413  0.3697  0.8025   
    +
    +Random effects:
    +                           est.    lower  upper
    +SD.meso_free_0           0.1634 -32.7769 33.104
    +SD.log_k_meso_free       0.4885   0.3080  0.669
    +SD.log_k_meso_free_bound 0.2876  -1.7955  2.371
    +SD.log_k_meso_bound_free 0.9942   0.2181  1.770
    +
    +Variance model:
    +     est. lower upper
    +a.1 4.737 3.954  5.52
    +
    +Backtransformed parameters:
    +                      est.    lower    upper
    +meso_free_0       93.62849 91.62622 95.63075
    +k_meso_free        0.05893  0.04339  0.08004
    +k_meso_free_bound  0.03990  0.01145  0.13903
    +k_meso_bound_free  0.08851  0.02825  0.27736
    +
    +Estimated Eigenvalues of SFORB model(s):
    +meso_b1 meso_b2  meso_g 
    +0.15333 0.03402 0.20881 
    +
    +Resulting formation fractions:
    +          ff
    +meso_free  1
    +
    +Estimated disappearance times:
    +      DT50  DT90 DT50back DT50_meso_b1 DT50_meso_b2
    +meso 14.79 60.81     18.3        4.521        20.37
    +
    +
    +

    + +Hierarchical HS fit with constant variance + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:12:48 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso/dt = - ifelse(time <= tb, k1, k2) * meso
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 1.653 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +meso_0 log_k1 log_k2 log_tb 
    +92.920 -2.409 -3.295  2.471 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +       meso_0 log_k1 log_k2 log_tb
    +meso_0  6.477 0.0000 0.0000   0.00
    +log_k1  0.000 0.8675 0.0000   0.00
    +log_k2  0.000 0.0000 0.4035   0.00
    +log_tb  0.000 0.0000 0.0000   1.16
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  781.9 789.9   -382
    +
    +Optimised parameters:
    +              est.    lower   upper
    +meso_0    93.34242  91.4730 95.2118
    +log_k1    -2.77312  -3.0826 -2.4637
    +log_k2    -3.61854  -3.8430 -3.3941
    +log_tb     2.00266   1.3357  2.6696
    +a.1        4.47693   3.7059  5.2479
    +SD.meso_0  0.07963 -63.1661 63.3253
    +SD.log_k1  0.47817   0.2467  0.7097
    +SD.log_k2  0.39216   0.2137  0.5706
    +SD.log_tb  0.94683   0.4208  1.4728
    +
    +Correlation: 
    +       meso_0  log_k1  log_k2 
    +log_k1  0.1627                
    +log_k2  0.0063 -0.0301        
    +log_tb  0.0083 -0.3931 -0.1225
    +
    +Random effects:
    +             est.    lower   upper
    +SD.meso_0 0.07963 -63.1661 63.3253
    +SD.log_k1 0.47817   0.2467  0.7097
    +SD.log_k2 0.39216   0.2137  0.5706
    +SD.log_tb 0.94683   0.4208  1.4728
    +
    +Variance model:
    +     est. lower upper
    +a.1 4.477 3.706 5.248
    +
    +Backtransformed parameters:
    +           est.    lower    upper
    +meso_0 93.34242 91.47303 95.21181
    +k1      0.06247  0.04584  0.08512
    +k2      0.02682  0.02143  0.03357
    +tb      7.40872  3.80282 14.43376
    +
    +Estimated disappearance times:
    +     DT50 DT90 DT50back DT50_k1 DT50_k2
    +meso   16   76    22.88    11.1   25.84
    +
    +
    +

    +
    +
    +

    Fits with covariate effects +

    + +Hierarchichal SFO fit with pH influence + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:13:00 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso/dt = - k_meso * meso
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 1.343 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +    meso_0 log_k_meso 
    +    90.832     -3.192 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +           meso_0 log_k_meso
    +meso_0      6.752     0.0000
    +log_k_meso  0.000     0.9155
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  783.1 787.5 -386.5
    +
    +Optimised parameters:
    +                       est.   lower   upper
    +meso_0              91.3481 89.2688 93.4275
    +log_k_meso          -6.6614 -7.9715 -5.3514
    +beta_pH(log_k_meso)  0.5871  0.3684  0.8059
    +a.1                  5.4750  4.7085  6.2415
    +SD.log_k_meso        0.3471  0.2258  0.4684
    +
    +Correlation: 
    +                    meso_0  lg_k_ms
    +log_k_meso           0.0414        
    +beta_pH(log_k_meso) -0.0183 -0.9917
    +
    +Random effects:
    +                est.  lower  upper
    +SD.log_k_meso 0.3471 0.2258 0.4684
    +
    +Variance model:
    +     est. lower upper
    +a.1 5.475 4.709 6.242
    +
    +Backtransformed parameters:
    +            est.     lower     upper
    +meso_0 91.348139 8.927e+01 93.427476
    +k_meso  0.001279 3.452e-04  0.004741
    +
    +Covariates used for endpoints below:
    +      pH
    +50% 5.75
    +
    +Estimated disappearance times:
    +      DT50  DT90
    +meso 18.52 61.52
    +
    +
    +

    + +Hierarchichal FOMC fit with pH influence + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:13:03 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso/dt = - (alpha/beta) * 1/((time/beta) + 1) * meso
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 1.897 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +   meso_0 log_alpha  log_beta 
    +  93.0520    0.6008    3.4176 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +          meso_0 log_alpha log_beta
    +meso_0     6.287      0.00    0.000
    +log_alpha  0.000      1.53    0.000
    +log_beta   0.000      0.00    1.724
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  770.1 776.3   -378
    +
    +Optimised parameters:
    +                        est.      lower   upper
    +meso_0             92.840646  90.750461 94.9308
    +log_alpha          -2.206602  -3.494546 -0.9187
    +beta_pH(log_alpha)  0.577505   0.369805  0.7852
    +log_beta            4.214099   3.438851  4.9893
    +a.1                 5.027768   4.322028  5.7335
    +SD.log_alpha        0.004034 -23.766993 23.7751
    +SD.log_beta         0.374640   0.009252  0.7400
    +
    +Correlation: 
    +                   meso_0  log_lph bt_H(_)
    +log_alpha          -0.0865                
    +beta_pH(log_alpha) -0.0789 -0.8704        
    +log_beta           -0.3544  0.3302  0.1628
    +
    +Random effects:
    +                 est.      lower upper
    +SD.log_alpha 0.004034 -23.766993 23.78
    +SD.log_beta  0.374640   0.009252  0.74
    +
    +Variance model:
    +     est. lower upper
    +a.1 5.028 4.322 5.734
    +
    +Backtransformed parameters:
    +          est.    lower    upper
    +meso_0 92.8406 90.75046  94.9308
    +alpha   0.1101  0.03036   0.3991
    +beta   67.6332 31.15113 146.8404
    +
    +Covariates used for endpoints below:
    +      pH
    +50% 5.75
    +
    +Estimated disappearance times:
    +      DT50  DT90 DT50back
    +meso 17.28 76.37    22.99
    +
    +
    +

    + +Refined hierarchichal FOMC fit with pH influence + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:13:08 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso/dt = - (alpha/beta) * 1/((time/beta) + 1) * meso
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 4.184 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +   meso_0 log_alpha  log_beta 
    +  93.0520    0.6008    3.4176 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +          meso_0 log_alpha log_beta
    +meso_0     6.287      0.00    0.000
    +log_alpha  0.000      1.53    0.000
    +log_beta   0.000      0.00    1.724
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  767.5 772.8 -377.7
    +
    +Optimised parameters:
    +                      est.   lower   upper
    +meso_0             93.0536 90.9771 95.1300
    +log_alpha          -2.9054 -4.1803 -1.6304
    +beta_pH(log_alpha)  0.6590  0.4437  0.8744
    +log_beta            3.9549  3.2860  4.6239
    +a.1                 4.9784  4.2815  5.6754
    +SD.log_beta         0.4019  0.2632  0.5406
    +
    +Correlation: 
    +                   meso_0  log_lph bt_H(_)
    +log_alpha          -0.0397                
    +beta_pH(log_alpha) -0.0899 -0.9146        
    +log_beta           -0.3473  0.2038  0.1919
    +
    +Random effects:
    +              est.  lower  upper
    +SD.log_beta 0.4019 0.2632 0.5406
    +
    +Variance model:
    +     est. lower upper
    +a.1 4.978 4.281 5.675
    +
    +Backtransformed parameters:
    +           est.    lower    upper
    +meso_0 93.05359 90.97713  95.1300
    +alpha   0.05473  0.01529   0.1958
    +beta   52.19251 26.73597 101.8874
    +
    +Covariates used for endpoints below:
    +      pH
    +50% 5.75
    +
    +Estimated disappearance times:
    +     DT50  DT90 DT50back
    +meso 17.3 82.91    24.96
    +
    +
    +

    + +Hierarchichal DFOP fit with pH influence + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:13:11 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
    +           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
    +           * meso
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 2.18 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +  meso_0   log_k1   log_k2 g_qlogis 
    +93.14689 -2.05241 -3.53079 -0.09522 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +         meso_0 log_k1 log_k2 g_qlogis
    +meso_0    6.418  0.000  0.000     0.00
    +log_k1    0.000  1.018  0.000     0.00
    +log_k2    0.000  0.000  1.694     0.00
    +g_qlogis  0.000  0.000  0.000     2.37
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  769.1 777.1 -375.5
    +
    +Optimised parameters:
    +                        est.    lower    upper
    +meso_0             92.843344  90.8464 94.84028
    +log_k1             -2.815685  -3.0888 -2.54261
    +log_k2            -11.479779 -15.3203 -7.63923
    +beta_pH(log_k2)     1.308417   0.6948  1.92203
    +g_qlogis            3.133036   0.4657  5.80035
    +beta_pH(g_qlogis)  -0.565988  -1.0394 -0.09262
    +a.1                 4.955518   4.2597  5.65135
    +SD.log_k2           0.758963   0.4685  1.04943
    +SD.g_qlogis         0.005215  -9.9561  9.96656
    +
    +Correlation: 
    +                  meso_0  log_k1  log_k2  b_H(_2) g_qlogs
    +log_k1             0.2706                                
    +log_k2            -0.0571  0.1096                        
    +beta_pH(log_k2)    0.0554 -0.1291 -0.9937                
    +g_qlogis          -0.1125 -0.5062 -0.1305  0.1294        
    +beta_pH(g_qlogis)  0.1267  0.4226  0.0419 -0.0438 -0.9864
    +
    +Random effects:
    +                est.   lower upper
    +SD.log_k2   0.758963  0.4685 1.049
    +SD.g_qlogis 0.005215 -9.9561 9.967
    +
    +Variance model:
    +     est. lower upper
    +a.1 4.956  4.26 5.651
    +
    +Backtransformed parameters:
    +            est.     lower     upper
    +meso_0 9.284e+01 9.085e+01 9.484e+01
    +k1     5.986e-02 4.556e-02 7.866e-02
    +k2     1.034e-05 2.221e-07 4.812e-04
    +g      9.582e-01 6.144e-01 9.970e-01
    +
    +Covariates used for endpoints below:
    +      pH
    +50% 5.75
    +
    +Estimated disappearance times:
    +      DT50  DT90 DT50back DT50_k1 DT50_k2
    +meso 20.23 88.45    26.62   11.58   36.23
    +
    +
    +

    + +Refined hierarchical DFOP fit with pH influence + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:13:14 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
    +           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
    +           * meso
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 2.424 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +  meso_0   log_k1   log_k2 g_qlogis 
    +93.14689 -2.05241 -3.53079 -0.09522 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +         meso_0 log_k1 log_k2 g_qlogis
    +meso_0    6.418  0.000  0.000     0.00
    +log_k1    0.000  1.018  0.000     0.00
    +log_k2    0.000  0.000  1.694     0.00
    +g_qlogis  0.000  0.000  0.000     2.37
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  765.1 772.3 -374.6
    +
    +Optimised parameters:
    +                     est.    lower    upper
    +meso_0            93.3333  91.2427 95.42394
    +log_k1            -1.7997  -2.9124 -0.68698
    +log_k2            -8.1810 -10.1819 -6.18008
    +beta_pH(log_k2)    0.8064   0.4903  1.12257
    +g_qlogis           3.3513  -1.1792  7.88182
    +beta_pH(g_qlogis) -0.8672  -1.7661  0.03177
    +a.1                4.9158   4.2277  5.60390
    +SD.log_k2          0.3946   0.2565  0.53281
    +
    +Correlation: 
    +                  meso_0  log_k1  log_k2  b_H(_2) g_qlogs
    +log_k1             0.1730                                
    +log_k2             0.0442  0.5370                        
    +beta_pH(log_k2)   -0.0392 -0.4880 -0.9923                
    +g_qlogis          -0.1536  0.1431 -0.1129  0.1432        
    +beta_pH(g_qlogis)  0.1504 -0.3151 -0.0196 -0.0212 -0.9798
    +
    +Random effects:
    +            est.  lower  upper
    +SD.log_k2 0.3946 0.2565 0.5328
    +
    +Variance model:
    +     est. lower upper
    +a.1 4.916 4.228 5.604
    +
    +Backtransformed parameters:
    +            est.     lower    upper
    +meso_0 9.333e+01 9.124e+01 95.42394
    +k1     1.654e-01 5.435e-02  0.50309
    +k2     2.799e-04 3.785e-05  0.00207
    +g      9.661e-01 2.352e-01  0.99962
    +
    +Covariates used for endpoints below:
    +      pH
    +50% 5.75
    +
    +Estimated disappearance times:
    +      DT50  DT90 DT50back DT50_k1 DT50_k2
    +meso 18.37 73.52    22.13   4.192   23.99
    +
    +
    +

    + +Further refined hierarchical DFOP fit with pH influence + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:13:23 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
    +           time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
    +           * meso
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 3.211 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +  meso_0   log_k1   log_k2 g_qlogis 
    +93.14689 -2.05241 -3.53079 -0.09522 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +         meso_0 log_k1 log_k2 g_qlogis
    +meso_0    6.418  0.000  0.000     0.00
    +log_k1    0.000  1.018  0.000     0.00
    +log_k2    0.000  0.000  1.694     0.00
    +g_qlogis  0.000  0.000  0.000     2.37
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  767.4 773.6 -376.7
    +
    +Optimised parameters:
    +                   est.    lower   upper
    +meso_0          93.3011  91.1905 95.4118
    +log_k1          -2.1487  -2.7607 -1.5367
    +log_k2          -8.1039 -10.4225 -5.7853
    +beta_pH(log_k2)  0.7821   0.4126  1.1517
    +g_qlogis        -1.0373  -1.9337 -0.1409
    +a.1              5.0095   4.3082  5.7108
    +SD.log_k2        0.4622   0.3009  0.6235
    +
    +Correlation: 
    +                meso_0  log_k1  log_k2  b_H(_2)
    +log_k1           0.2179                        
    +log_k2           0.0337  0.5791                
    +beta_pH(log_k2) -0.0326 -0.5546 -0.9932        
    +g_qlogis         0.0237 -0.8479 -0.6571  0.6123
    +
    +Random effects:
    +            est.  lower  upper
    +SD.log_k2 0.4622 0.3009 0.6235
    +
    +Variance model:
    +     est. lower upper
    +a.1 5.009 4.308 5.711
    +
    +Backtransformed parameters:
    +            est.     lower     upper
    +meso_0 9.330e+01 9.119e+01 95.411751
    +k1     1.166e-01 6.325e-02  0.215084
    +k2     3.024e-04 2.975e-05  0.003072
    +g      2.617e-01 1.263e-01  0.464832
    +
    +Covariates used for endpoints below:
    +      pH
    +50% 5.75
    +
    +Estimated disappearance times:
    +      DT50  DT90 DT50back DT50_k1 DT50_k2
    +meso 17.09 73.67    22.18   5.943   25.54
    +
    +
    +

    + +Hierarchichal SFORB fit with pH influence + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:13:26 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso_free/dt = - k_meso_free * meso_free - k_meso_free_bound *
    +           meso_free + k_meso_bound_free * meso_bound
    +d_meso_bound/dt = + k_meso_free_bound * meso_free - k_meso_bound_free *
    +           meso_bound
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 2.649 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +          meso_free_0       log_k_meso_free log_k_meso_free_bound 
    +               93.147                -2.305                -4.230 
    +log_k_meso_bound_free 
    +               -3.761 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +                      meso_free_0 log_k_meso_free log_k_meso_free_bound
    +meso_free_0                 6.418          0.0000                 0.000
    +log_k_meso_free             0.000          0.9276                 0.000
    +log_k_meso_free_bound       0.000          0.0000                 2.272
    +log_k_meso_bound_free       0.000          0.0000                 0.000
    +                      log_k_meso_bound_free
    +meso_free_0                           0.000
    +log_k_meso_free                       0.000
    +log_k_meso_free_bound                 0.000
    +log_k_meso_bound_free                 1.447
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  768.8 776.8 -375.4
    +
    +Optimised parameters:
    +                                  est.    lower   upper
    +meso_free_0                    93.4204  91.3213 95.5195
    +log_k_meso_free                -5.3742  -6.9366 -3.8117
    +beta_pH(log_k_meso_free)        0.4232   0.1769  0.6695
    +log_k_meso_free_bound          -3.4889  -4.9243 -2.0535
    +log_k_meso_bound_free          -9.9797 -19.2232 -0.7362
    +beta_pH(log_k_meso_bound_free)  1.2290  -0.2107  2.6687
    +a.1                             4.9031   4.1795  5.6268
    +SD.log_k_meso_free              0.3454   0.2252  0.4656
    +SD.log_k_meso_bound_free        0.1277  -1.9459  2.2012
    +
    +Correlation: 
    +                               ms_fr_0 lg_k_m_ b_H(___) lg_k_ms_f_ lg_k_ms_b_
    +log_k_meso_free                 0.1493                                       
    +beta_pH(log_k_meso_free)       -0.0930 -0.9854                               
    +log_k_meso_free_bound           0.2439  0.4621 -0.3492                       
    +log_k_meso_bound_free           0.2188  0.1292 -0.0339   0.7287              
    +beta_pH(log_k_meso_bound_free) -0.2216 -0.0797 -0.0111  -0.6566    -0.9934   
    +
    +Random effects:
    +                           est.   lower  upper
    +SD.log_k_meso_free       0.3454  0.2252 0.4656
    +SD.log_k_meso_bound_free 0.1277 -1.9459 2.2012
    +
    +Variance model:
    +     est. lower upper
    +a.1 4.903  4.18 5.627
    +
    +Backtransformed parameters:
    +                       est.     lower    upper
    +meso_free_0       9.342e+01 9.132e+01 95.51946
    +k_meso_free       4.635e-03 9.716e-04  0.02211
    +k_meso_free_bound 3.054e-02 7.268e-03  0.12829
    +k_meso_bound_free 4.633e-05 4.482e-09  0.47894
    +
    +Covariates used for endpoints below:
    +      pH
    +50% 5.75
    +
    +Estimated Eigenvalues of SFORB model(s):
    +meso_b1 meso_b2  meso_g 
    + 0.1121  0.0256  0.3148 
    +
    +Resulting formation fractions:
    +          ff
    +meso_free  1
    +
    +Estimated disappearance times:
    +      DT50 DT90 DT50back DT50_meso_b1 DT50_meso_b2
    +meso 16.42 75.2    22.64        6.185        27.08
    +
    +
    +

    + +Refined hierarchichal SFORB fit with pH influence + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:13:30 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso_free/dt = - k_meso_free * meso_free - k_meso_free_bound *
    +           meso_free + k_meso_bound_free * meso_bound
    +d_meso_bound/dt = + k_meso_free_bound * meso_free - k_meso_bound_free *
    +           meso_bound
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 3.186 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +          meso_free_0       log_k_meso_free log_k_meso_free_bound 
    +               93.147                -2.305                -4.230 
    +log_k_meso_bound_free 
    +               -3.761 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +                      meso_free_0 log_k_meso_free log_k_meso_free_bound
    +meso_free_0                 6.418          0.0000                 0.000
    +log_k_meso_free             0.000          0.9276                 0.000
    +log_k_meso_free_bound       0.000          0.0000                 2.272
    +log_k_meso_bound_free       0.000          0.0000                 0.000
    +                      log_k_meso_bound_free
    +meso_free_0                           0.000
    +log_k_meso_free                       0.000
    +log_k_meso_free_bound                 0.000
    +log_k_meso_bound_free                 1.447
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  770.9 777.2 -378.5
    +
    +Optimised parameters:
    +                            est.   lower   upper
    +meso_free_0              93.3196 91.1633 95.4760
    +log_k_meso_free          -6.1460 -7.4306 -4.8614
    +beta_pH(log_k_meso_free)  0.5435  0.3329  0.7542
    +log_k_meso_free_bound    -3.8001 -5.2027 -2.3975
    +log_k_meso_bound_free    -2.9462 -4.2565 -1.6359
    +a.1                       5.0825  4.3793  5.7856
    +SD.log_k_meso_free        0.3338  0.2175  0.4502
    +
    +Correlation: 
    +                         ms_fr_0 lg_k_m_ b_H(___ lg_k_ms_f_
    +log_k_meso_free           0.1086                           
    +beta_pH(log_k_meso_free) -0.0426 -0.9821                   
    +log_k_meso_free_bound     0.2513  0.1717 -0.0409           
    +log_k_meso_bound_free     0.1297  0.1171 -0.0139  0.9224   
    +
    +Random effects:
    +                     est.  lower  upper
    +SD.log_k_meso_free 0.3338 0.2175 0.4502
    +
    +Variance model:
    +     est. lower upper
    +a.1 5.082 4.379 5.786
    +
    +Backtransformed parameters:
    +                       est.     lower    upper
    +meso_free_0       93.319649 9.116e+01 95.47601
    +k_meso_free        0.002142 5.928e-04  0.00774
    +k_meso_free_bound  0.022369 5.502e-03  0.09095
    +k_meso_bound_free  0.052539 1.417e-02  0.19478
    +
    +Covariates used for endpoints below:
    +      pH
    +50% 5.75
    +
    +Estimated Eigenvalues of SFORB model(s):
    +meso_b1 meso_b2  meso_g 
    +0.09736 0.02632 0.31602 
    +
    +Resulting formation fractions:
    +          ff
    +meso_free  1
    +
    +Estimated disappearance times:
    +      DT50  DT90 DT50back DT50_meso_b1 DT50_meso_b2
    +meso 16.87 73.16    22.02         7.12        26.34
    +
    +
    +

    + +Hierarchichal HS fit with pH influence + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:13:32 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso/dt = - ifelse(time <= tb, k1, k2) * meso
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 1.833 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +meso_0 log_k1 log_k2 log_tb 
    +92.920 -2.409 -3.295  2.471 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +       meso_0 log_k1 log_k2 log_tb
    +meso_0  6.477 0.0000 0.0000   0.00
    +log_k1  0.000 0.8675 0.0000   0.00
    +log_k2  0.000 0.0000 0.4035   0.00
    +log_tb  0.000 0.0000 0.0000   1.16
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  769.8 779.6 -373.9
    +
    +Optimised parameters:
    +                    est.   lower   upper
    +meso_0          93.32599 91.4658 95.1862
    +log_k1          -5.81463 -7.2710 -4.3583
    +beta_pH(log_k1)  0.47472  0.2334  0.7160
    +log_k2          -6.79633 -8.7605 -4.8322
    +beta_pH(log_k2)  0.54151  0.2124  0.8706
    +log_tb           3.24674  1.2470  5.2465
    +beta_pH(log_tb) -0.09889 -0.4258  0.2280
    +a.1              4.49487  3.7766  5.2132
    +SD.log_k1        0.37191  0.2370  0.5068
    +SD.log_k2        0.29210  0.0994  0.4848
    +SD.log_tb        0.25353 -0.0664  0.5735
    +
    +Correlation: 
    +                meso_0  log_k1  b_H(_1) log_k2  b_H(_2) log_tb 
    +log_k1           0.0744                                        
    +beta_pH(log_k1) -0.0452 -0.9915                                
    +log_k2           0.0066 -0.0363  0.0376                        
    +beta_pH(log_k2) -0.0071  0.0372 -0.0391 -0.9939                
    +log_tb          -0.0238 -0.1483  0.1362 -0.3836  0.3696        
    +beta_pH(log_tb)  0.0097  0.1359 -0.1265  0.3736 -0.3653 -0.9905
    +
    +Random effects:
    +            est.   lower  upper
    +SD.log_k1 0.3719  0.2370 0.5068
    +SD.log_k2 0.2921  0.0994 0.4848
    +SD.log_tb 0.2535 -0.0664 0.5735
    +
    +Variance model:
    +     est. lower upper
    +a.1 4.495 3.777 5.213
    +
    +Backtransformed parameters:
    +            est.     lower     upper
    +meso_0 93.325994 9.147e+01 9.519e+01
    +k1      0.002984 6.954e-04 1.280e-02
    +k2      0.001118 1.568e-04 7.969e-03
    +tb     25.706437 3.480e+00 1.899e+02
    +
    +Covariates used for endpoints below:
    +      pH
    +50% 5.75
    +
    +Estimated disappearance times:
    +      DT50  DT90 DT50back DT50_k1 DT50_k2
    +meso 15.65 79.63    23.97   15.16   27.55
    +
    +
    +

    + +Refined hierarchichal HS fit with pH influence + +
    
    +saemix version used for fitting:      3.3 
    +mkin version used for pre-fitting:  1.2.10 
    +R version used for fitting:         4.5.0 
    +Date of fit:     Wed May 14 05:13:35 2025 
    +Date of summary: Wed May 14 05:13:35 2025 
    +
    +Equations:
    +d_meso/dt = - ifelse(time <= tb, k1, k2) * meso
    +
    +Data:
    +116 observations of 1 variable(s) grouped in 18 datasets
    +
    +Model predictions using solution type analytical 
    +
    +Fitted in 1.852 s
    +Using 300, 100 iterations and 3 chains
    +
    +Variance model: Constant variance 
    +
    +Starting values for degradation parameters:
    +meso_0 log_k1 log_k2 log_tb 
    +92.920 -2.409 -3.295  2.471 
    +
    +Fixed degradation parameter values:
    +None
    +
    +Starting values for random effects (square root of initial entries in omega):
    +       meso_0 log_k1 log_k2 log_tb
    +meso_0  6.477 0.0000 0.0000   0.00
    +log_k1  0.000 0.8675 0.0000   0.00
    +log_k2  0.000 0.0000 0.4035   0.00
    +log_tb  0.000 0.0000 0.0000   1.16
    +
    +Starting values for error model parameters:
    +a.1 
    +  1 
    +
    +Results:
    +
    +Likelihood computed by importance sampling
    +    AIC   BIC logLik
    +  766.5 775.4 -373.2
    +
    +Optimised parameters:
    +                   est.    lower   upper
    +meso_0          93.3251 91.49823 95.1520
    +log_k1          -5.6796 -7.08789 -4.2714
    +beta_pH(log_k1)  0.4567  0.22400  0.6894
    +log_k2          -6.6083 -8.33839 -4.8781
    +beta_pH(log_k2)  0.4982  0.20644  0.7899
    +log_tb           2.7040  2.33033  3.0777
    +a.1              4.4452  3.73537  5.1551
    +SD.log_k1        0.3570  0.22104  0.4930
    +SD.log_k2        0.2252  0.01864  0.4318
    +SD.log_tb        0.5488  0.24560  0.8521
    +
    +Correlation: 
    +                meso_0  log_k1  b_H(_1) log_k2  b_H(_2)
    +log_k1           0.0740                                
    +beta_pH(log_k1) -0.0453 -0.9912                        
    +log_k2           0.0115 -0.0650  0.0661                
    +beta_pH(log_k2) -0.0116  0.0649 -0.0667 -0.9936        
    +log_tb          -0.0658 -0.1135  0.0913 -0.1500  0.1210
    +
    +Random effects:
    +            est.   lower  upper
    +SD.log_k1 0.3570 0.22104 0.4930
    +SD.log_k2 0.2252 0.01864 0.4318
    +SD.log_tb 0.5488 0.24560 0.8521
    +
    +Variance model:
    +     est. lower upper
    +a.1 4.445 3.735 5.155
    +
    +Backtransformed parameters:
    +            est.     lower     upper
    +meso_0 93.325134 9.150e+01 95.152036
    +k1      0.003415 8.352e-04  0.013962
    +k2      0.001349 2.392e-04  0.007611
    +tb     14.939247 1.028e+01 21.707445
    +
    +Covariates used for endpoints below:
    +      pH
    +50% 5.75
    +
    +Estimated disappearance times:
    +      DT50  DT90 DT50back DT50_k1 DT50_k2
    +meso 14.69 82.45    24.82   14.69   29.29
    +
    +
    +

    +
    +
    +
    +

    Session info +

    +
    R version 4.5.0 (2025-04-11)
    +Platform: x86_64-pc-linux-gnu
    +Running under: Debian GNU/Linux 12 (bookworm)
    +
    +Matrix products: default
    +BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.11.0 
    +LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.11.0  LAPACK version 3.11.0
    +
    +locale:
    + [1] LC_CTYPE=de_DE.UTF-8       LC_NUMERIC=C              
    + [3] LC_TIME=de_DE.UTF-8        LC_COLLATE=de_DE.UTF-8    
    + [5] LC_MONETARY=de_DE.UTF-8    LC_MESSAGES=de_DE.UTF-8   
    + [7] LC_PAPER=de_DE.UTF-8       LC_NAME=C                 
    + [9] LC_ADDRESS=C               LC_TELEPHONE=C            
    +[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C       
    +
    +time zone: Europe/Berlin
    +tzcode source: system (glibc)
    +
    +attached base packages:
    +[1] parallel  stats     graphics  grDevices utils     datasets  methods  
    +[8] base     
    +
    +other attached packages:
    +[1] rmarkdown_2.29  nvimcom_0.9-167 saemix_3.3      npde_3.5       
    +[5] knitr_1.49      mkin_1.2.10    
    +
    +loaded via a namespace (and not attached):
    + [1] gtable_0.3.6      jsonlite_1.9.0    dplyr_1.1.4       compiler_4.5.0   
    + [5] tidyselect_1.2.1  gridExtra_2.3     jquerylib_0.1.4   systemfonts_1.2.1
    + [9] scales_1.3.0      textshaping_1.0.0 readxl_1.4.4      yaml_2.3.10      
    +[13] fastmap_1.2.0     lattice_0.22-6    ggplot2_3.5.1     R6_2.6.1         
    +[17] generics_0.1.3    lmtest_0.9-40     MASS_7.3-65       htmlwidgets_1.6.4
    +[21] tibble_3.2.1      desc_1.4.3        munsell_0.5.1     bslib_0.9.0      
    +[25] pillar_1.10.1     rlang_1.1.5       cachem_1.1.0      xfun_0.51        
    +[29] fs_1.6.5          sass_0.4.9        cli_3.6.4         pkgdown_2.1.1    
    +[33] magrittr_2.0.3    digest_0.6.37     grid_4.5.0        mclust_6.1.1     
    +[37] lifecycle_1.0.4   nlme_3.1-168      vctrs_0.6.5       evaluate_1.0.3   
    +[41] glue_1.8.0        cellranger_1.1.0  codetools_0.2-20  ragg_1.3.3       
    +[45] zoo_1.8-13        colorspace_2.1-1  tools_4.5.0       pkgconfig_2.0.3  
    +[49] htmltools_0.5.8.1
    +
    +
    +

    Hardware info +

    +
    CPU model: AMD Ryzen 9 7950X 16-Core Processor
    +
    MemTotal:       64927780 kB
    +
    +
    +
    +
    + + + + +
    + + + + + + + diff --git a/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-14-1.png b/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-14-1.png new file mode 100644 index 00000000..67fa91dc Binary files /dev/null and b/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-14-1.png differ diff --git a/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-19-1.png b/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-19-1.png new file mode 100644 index 00000000..41e087b6 Binary files /dev/null and b/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-19-1.png differ diff --git a/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-25-1.png b/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-25-1.png new file mode 100644 index 00000000..afae6556 Binary files /dev/null and b/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-25-1.png differ diff --git a/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-30-1.png b/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-30-1.png new file mode 100644 index 00000000..02e31e43 Binary files /dev/null and b/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-30-1.png differ diff --git a/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-8-1.png b/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-8-1.png new file mode 100644 index 00000000..2379b895 Binary files /dev/null and b/docs/articles/web_only/mesotrione_parent_2023_files/figure-html/unnamed-chunk-8-1.png differ -- cgit v1.2.1