Testing covariate modelling in hierarchical parent degradation kinetics with residue data on mesotrione
+Johannes +Ranke
+ +Last change 13 May 2025 +(rebuilt 2025-05-13)
+ + Source:vignettes/web_only/mesotrione_parent_2023_prebuilt.rmd
+ mesotrione_parent_2023_prebuilt.rmd
Introduction +
+The purpose of this document is to test demonstrate how nonlinear +hierarchical models (NLHM) based on the parent degradation models SFO, +FOMC, DFOP and HS can be fitted with the mkin package, also considering +the influence of covariates like soil pH on different degradation +parameters. Because in some other case studies, the SFORB +parameterisation of biexponential decline has shown some advantages over +the DFOP parameterisation, SFORB was included in the list of tested +models as well.
+The mkin package is used in version 1.2.10, which is contains the
+functions that were used for the evaluations. The saemix
+package is used as a backend for fitting the NLHM, but is also loaded to
+make the convergence plot function available.
This document is processed with the knitr
package, which
+also provides the kable
function that is used to improve
+the display of tabular data in R markdown documents. For parallel
+processing, the parallel
package is used.
+library(mkin)
+library(knitr)
+library(saemix)
+library(parallel)
+n_cores <- detectCores()
+if (Sys.info()["sysname"] == "Windows") {
+ cl <- makePSOCKcluster(n_cores)
+} else {
+ cl <- makeForkCluster(n_cores)
+}
Test data +
+
+data_file <- system.file(
+ "testdata", "mesotrione_soil_efsa_2016.xlsx", package = "mkin")
+meso_ds <- read_spreadsheet(data_file, parent_only = TRUE)
The following tables show the covariate data and the 18 datasets that +were read in from the spreadsheet file.
+ ++ | pH | +
---|---|
Richmond | +6.2 | +
Richmond 2 | +6.2 | +
ERTC | +6.4 | +
Toulouse | +7.7 | +
Picket Piece | +7.1 | +
721 | +5.6 | +
722 | +5.7 | +
723 | +5.4 | +
724 | +4.8 | +
725 | +5.8 | +
727 | +5.1 | +
728 | +5.9 | +
729 | +5.6 | +
730 | +5.3 | +
731 | +6.1 | +
732 | +5.0 | +
741 | +5.7 | +
742 | +7.2 | +
+for (ds_name in names(meso_ds)) {
+ print(
+ kable(mkin_long_to_wide(meso_ds[[ds_name]]),
+ caption = paste("Dataset", ds_name),
+ booktabs = TRUE, row.names = FALSE))
+}
time | +meso | +
---|---|
0.000000 | +91.00 | +
1.179050 | +86.70 | +
3.537149 | +73.60 | +
7.074299 | +61.50 | +
10.611448 | +55.70 | +
15.327647 | +47.70 | +
17.685747 | +39.50 | +
24.760046 | +29.80 | +
35.371494 | +19.60 | +
68.384889 | +5.67 | +
0.000000 | +97.90 | +
1.179050 | +96.40 | +
3.537149 | +89.10 | +
7.074299 | +74.40 | +
10.611448 | +57.40 | +
15.327647 | +46.30 | +
18.864797 | +35.50 | +
27.118146 | +27.20 | +
35.371494 | +19.10 | +
74.280138 | +6.50 | +
108.472582 | +3.40 | +
142.665027 | +2.20 | +
time | +meso | +
---|---|
0.000000 | +96.0 | +
2.422004 | +82.4 | +
5.651343 | +71.2 | +
8.073348 | +53.1 | +
11.302687 | +48.5 | +
16.954030 | +33.4 | +
22.605373 | +24.2 | +
45.210746 | +11.9 | +
time | +meso | +
---|---|
0.000000 | +99.9 | +
2.755193 | +80.0 | +
6.428782 | +42.1 | +
9.183975 | +50.1 | +
12.857565 | +28.4 | +
19.286347 | +39.8 | +
25.715130 | +29.9 | +
51.430259 | +2.5 | +
time | +meso | +
---|---|
0.000000 | +96.8 | +
2.897983 | +63.3 | +
6.761960 | +22.3 | +
9.659942 | +16.6 | +
13.523919 | +16.1 | +
20.285879 | +17.2 | +
27.047838 | +1.8 | +
time | +meso | +
---|---|
0.000000 | +102.0 | +
2.841195 | +73.7 | +
6.629454 | +35.5 | +
9.470649 | +31.8 | +
13.258909 | +18.0 | +
19.888364 | +3.7 | +
time | +meso | +
---|---|
0.00000 | +86.4 | +
11.24366 | +61.4 | +
22.48733 | +49.8 | +
33.73099 | +41.0 | +
44.97466 | +35.1 | +
time | +meso | +
---|---|
0.00000 | +90.3 | +
11.24366 | +52.1 | +
22.48733 | +37.4 | +
33.73099 | +21.2 | +
44.97466 | +14.3 | +
time | +meso | +
---|---|
0.00000 | +89.3 | +
11.24366 | +70.8 | +
22.48733 | +51.1 | +
33.73099 | +42.7 | +
44.97466 | +26.7 | +
time | +meso | +
---|---|
0.000000 | +89.4 | +
9.008208 | +65.2 | +
18.016415 | +55.8 | +
27.024623 | +46.0 | +
36.032831 | +41.7 | +
time | +meso | +
---|---|
0.00000 | +89.0 | +
10.99058 | +35.4 | +
21.98116 | +18.6 | +
32.97174 | +11.6 | +
43.96232 | +7.6 | +
time | +meso | +
---|---|
0.00000 | +91.3 | +
10.96104 | +63.2 | +
21.92209 | +51.1 | +
32.88313 | +42.0 | +
43.84417 | +40.8 | +
time | +meso | +
---|---|
0.00000 | +91.8 | +
11.24366 | +43.6 | +
22.48733 | +22.0 | +
33.73099 | +15.9 | +
44.97466 | +8.8 | +
time | +meso | +
---|---|
0.00000 | +91.6 | +
11.24366 | +60.5 | +
22.48733 | +43.5 | +
33.73099 | +28.4 | +
44.97466 | +20.5 | +
time | +meso | +
---|---|
0.00000 | +92.7 | +
11.07446 | +58.9 | +
22.14893 | +44.0 | +
33.22339 | +46.0 | +
44.29785 | +29.3 | +
time | +meso | +
---|---|
0.00000 | +92.1 | +
11.24366 | +64.4 | +
22.48733 | +45.3 | +
33.73099 | +33.6 | +
44.97466 | +23.5 | +
time | +meso | +
---|---|
0.00000 | +90.3 | +
11.24366 | +58.2 | +
22.48733 | +40.1 | +
33.73099 | +33.1 | +
44.97466 | +25.8 | +
time | +meso | +
---|---|
0.00000 | +90.3 | +
10.84712 | +68.7 | +
21.69424 | +58.0 | +
32.54136 | +52.2 | +
43.38848 | +48.0 | +
time | +meso | +
---|---|
0.00000 | +92.0 | +
11.24366 | +60.9 | +
22.48733 | +36.2 | +
33.73099 | +18.3 | +
44.97466 | +8.7 | +
Separate evaluations +
+In order to obtain suitable starting parameters for the NLHM fits,
+separate fits of the five models to the data for each soil are generated
+using the mmkin
function from the mkin package. In a first
+step, constant variance is assumed. Convergence is checked with the
+status
function.
+deg_mods <- c("SFO", "FOMC", "DFOP", "SFORB", "HS")
+f_sep_const <- mmkin(
+ deg_mods,
+ meso_ds,
+ error_model = "const",
+ cluster = cl,
+ quiet = TRUE)
+ | Richmond | +Richmond 2 | +ERTC | +Toulouse | +Picket Piece | +
---|---|---|---|---|---|
SFO | +OK | +OK | +OK | +OK | +OK | +
FOMC | +OK | +OK | +OK | +OK | +C | +
DFOP | +OK | +OK | +OK | +OK | +OK | +
SFORB | +OK | +OK | +OK | +OK | +OK | +
HS | +OK | +OK | +C | +OK | +OK | +
+ | 721 | +722 | +723 | +724 | +725 | +727 | +728 | +729 | +730 | +731 | +732 | +741 | +742 | +
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SFO | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +
FOMC | +OK | +OK | +C | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +
DFOP | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +
SFORB | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +C | +OK | +OK | +OK | +OK | +OK | +
HS | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +
In the tables above, OK indicates convergence and C indicates failure +to converge. Most separate fits with constant variance converged, with +the exception of two FOMC fits, one SFORB fit and one HS fit.
+
+f_sep_tc <- update(f_sep_const, error_model = "tc")
+ | Richmond | +Richmond 2 | +ERTC | +Toulouse | +Picket Piece | +
---|---|---|---|---|---|
SFO | +OK | +OK | +OK | +OK | +OK | +
FOMC | +OK | +OK | +OK | +OK | +OK | +
DFOP | +C | +OK | +OK | +OK | +OK | +
SFORB | +OK | +OK | +OK | +OK | +OK | +
HS | +OK | +OK | +C | +OK | +OK | +
+ | 721 | +722 | +723 | +724 | +725 | +727 | +728 | +729 | +730 | +731 | +732 | +741 | +742 | +
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SFO | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +
FOMC | +OK | +OK | +C | +OK | +C | +C | +OK | +C | +OK | +C | +OK | +C | +OK | +
DFOP | +C | +OK | +OK | +OK | +C | +OK | +OK | +OK | +OK | +C | +OK | +C | +OK | +
SFORB | +C | +OK | +OK | +OK | +C | +OK | +OK | +C | +OK | +OK | +OK | +C | +OK | +
HS | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +OK | +C | +OK | +OK | +OK | +
With the two-component error model, the set of fits that did not +converge is larger, with convergence problems appearing for a number of +non-SFO fits.
+Hierarchical models without covariate +
+The following code fits hierarchical kinetic models for the ten +combinations of the five different degradation models with the two +different error models in parallel.
+ ++ | const | +tc | +
---|---|---|
SFO | +OK | +OK | +
FOMC | +OK | +OK | +
DFOP | +OK | +OK | +
SFORB | +OK | +OK | +
HS | +OK | +OK | +
All fits terminate without errors (status OK).
+ ++ | npar | +AIC | +BIC | +Lik | +
---|---|---|---|---|
SFO const | +5 | +800.0 | +804.5 | +-395.0 | +
SFO tc | +6 | +801.9 | +807.2 | +-394.9 | +
FOMC const | +7 | +787.4 | +793.6 | +-386.7 | +
FOMC tc | +8 | +788.9 | +796.1 | +-386.5 | +
DFOP const | +9 | +787.6 | +795.6 | +-384.8 | +
SFORB const | +9 | +787.4 | +795.4 | +-384.7 | +
HS const | +9 | +781.9 | +789.9 | +-382.0 | +
DFOP tc | +10 | +787.4 | +796.3 | +-383.7 | +
SFORB tc | +10 | +795.8 | +804.7 | +-387.9 | +
HS tc | +10 | +783.7 | +792.7 | +-381.9 | +
The model comparisons show that the fits with constant variance are
+consistently preferable to the corresponding fits with two-component
+error for these data. This is confirmed by the fact that the parameter
+b.1
(the relative standard deviation in the fits obtained
+with the saemix package), is ill-defined in all fits.
+ | const | +tc | +
---|---|---|
SFO | +sd(meso_0) | +sd(meso_0), b.1 | +
FOMC | +sd(meso_0), sd(log_beta) | +sd(meso_0), sd(log_beta), b.1 | +
DFOP | +sd(meso_0), sd(log_k1) | +sd(meso_0), sd(g_qlogis), b.1 | +
SFORB | +sd(meso_free_0), sd(log_k_meso_free_bound) | +sd(meso_free_0), sd(log_k_meso_free_bound), b.1 | +
HS | +sd(meso_0) | +sd(meso_0), b.1 | +
For obtaining fits with only well-defined random effects, we update
+the set of fits, excluding random effects that were ill-defined
+according to the illparms
function.
+ | const | +tc | +
---|---|---|
SFO | +OK | +OK | +
FOMC | +OK | +OK | +
DFOP | +OK | +OK | +
SFORB | +OK | +OK | +
HS | +OK | +OK | +
The updated fits terminate without errors.
+ ++ | const | +tc | +
---|---|---|
SFO | ++ | b.1 | +
FOMC | ++ | b.1 | +
DFOP | ++ | b.1 | +
SFORB | ++ | b.1 | +
HS | ++ | b.1 | +
No ill-defined errors remain in the fits with constant variance.
+Hierarchical models with covariate +
+In the following sections, hierarchical fits including a model for +the influence of pH on selected degradation parameters are shown for all +parent models. Constant variance is selected as the error model based on +the fits without covariate effects. Random effects that were ill-defined +in the fits without pH influence are excluded. A potential influence of +the soil pH is only included for parameters with a well-defined random +effect, because experience has shown that only for such parameters a +significant pH effect could be found.
+SFO +
+
+sfo_pH <- saem(f_sep_const["SFO", ], no_random_effect = "meso_0", covariates = pH,
+ covariate_models = list(log_k_meso ~ pH))
+ | est. | +lower | +upper | +
---|---|---|---|
meso_0 | +91.35 | +89.27 | +93.43 | +
log_k_meso | +-6.66 | +-7.97 | +-5.35 | +
beta_pH(log_k_meso) | +0.59 | +0.37 | +0.81 | +
a.1 | +5.48 | +4.71 | +6.24 | +
SD.log_k_meso | +0.35 | +0.23 | +0.47 | +
The parameter showing the pH influence in the above table is
+beta_pH(log_k_meso)
. Its confidence interval does not
+include zero, indicating that the influence of soil pH on the log of the
+degradation rate constant is significantly greater than zero.
+anova(f_saem_2[["SFO", "const"]], sfo_pH, test = TRUE)
Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik Chisq Df Pr(>Chisq)
+f_saem_2[["SFO", "const"]] 4 797.56 801.12 -394.78
+sfo_pH 5 783.09 787.54 -386.54 16.473 1 4.934e-05 ***
+---
+Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+The comparison with the SFO fit without covariate effect confirms +that considering the soil pH improves the model, both by comparison of +AIC and BIC and by the likelihood ratio test.
+
+plot(sfo_pH)
Endpoints for a model with covariates are by default calculated for +the median of the covariate values. This quantile can be adapted, or a +specific covariate value can be given as shown below.
+
+endpoints(sfo_pH)
$covariates
+ pH
+50% 5.75
+
+$distimes
+ DT50 DT90
+meso 18.52069 61.52441
+
+endpoints(sfo_pH, covariate_quantile = 0.9)
$covariates
+ pH
+90% 7.13
+
+$distimes
+ DT50 DT90
+meso 8.237019 27.36278
+
+$covariates
+ pH
+User 7
+
+$distimes
+ DT50 DT90
+meso 8.89035 29.5331
+FOMC +
+
+fomc_pH <- saem(f_sep_const["FOMC", ], no_random_effect = "meso_0", covariates = pH,
+ covariate_models = list(log_alpha ~ pH))
+ | est. | +lower | +upper | +
---|---|---|---|
meso_0 | +92.84 | +90.75 | +94.93 | +
log_alpha | +-2.21 | +-3.49 | +-0.92 | +
beta_pH(log_alpha) | +0.58 | +0.37 | +0.79 | +
log_beta | +4.21 | +3.44 | +4.99 | +
a.1 | +5.03 | +4.32 | +5.73 | +
SD.log_alpha | +0.00 | +-23.77 | +23.78 | +
SD.log_beta | +0.37 | +0.01 | +0.74 | +
As in the case of SFO, the confidence interval of the slope parameter
+(here beta_pH(log_alpha)
) quantifying the influence of soil
+pH does not include zero, and the model comparison clearly indicates
+that the model with covariate influence is preferable. However, the
+random effect for alpha
is not well-defined any more after
+inclusion of the covariate effect (the confidence interval of
+SD.log_alpha
includes zero).
+illparms(fomc_pH)
[1] "sd(log_alpha)"
+Therefore, the model is updated without this random effect, and no +ill-defined parameters remain.
+ +
+anova(f_saem_2[["FOMC", "const"]], fomc_pH, fomc_pH_2, test = TRUE)
Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik Chisq Df Pr(>Chisq)
+f_saem_2[["FOMC", "const"]] 5 783.25 787.71 -386.63
+fomc_pH_2 6 767.49 772.83 -377.75 17.762 1 2.503e-05 ***
+fomc_pH 7 770.07 776.30 -378.04 0.000 1 1
+---
+Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+Model comparison indicates that including pH dependence significantly +improves the fit, and that the reduced model with covariate influence +results in the most preferable FOMC fit.
+ ++ | est. | +lower | +upper | +
---|---|---|---|
meso_0 | +93.05 | +90.98 | +95.13 | +
log_alpha | +-2.91 | +-4.18 | +-1.63 | +
beta_pH(log_alpha) | +0.66 | +0.44 | +0.87 | +
log_beta | +3.95 | +3.29 | +4.62 | +
a.1 | +4.98 | +4.28 | +5.68 | +
SD.log_beta | +0.40 | +0.26 | +0.54 | +
+plot(fomc_pH_2)
+endpoints(fomc_pH_2)
$covariates
+ pH
+50% 5.75
+
+$distimes
+ DT50 DT90 DT50back
+meso 17.30248 82.91343 24.95943
+
+$covariates
+ pH
+User 7
+
+$distimes
+ DT50 DT90 DT50back
+meso 6.986239 27.02927 8.136621
+DFOP +
+In the DFOP fits without covariate effects, random effects for two
+degradation parameters (k2
and g
) were
+identifiable.
+ | est. | +lower | +upper | +
---|---|---|---|
meso_0 | +93.61 | +91.58 | +95.63 | +
log_k1 | +-1.53 | +-2.27 | +-0.79 | +
log_k2 | +-3.42 | +-3.73 | +-3.11 | +
g_qlogis | +-1.67 | +-2.57 | +-0.77 | +
a.1 | +4.74 | +4.02 | +5.45 | +
SD.log_k2 | +0.60 | +0.38 | +0.81 | +
SD.g_qlogis | +0.94 | +0.33 | +1.54 | +
A fit with pH dependent degradation parameters was obtained by
+excluding the same random effects as in the refined DFOP fit without
+covariate influence, and including covariate models for the two
+identifiable parameters k2
and g
.
+dfop_pH <- saem(f_sep_const["DFOP", ], no_random_effect = c("meso_0", "log_k1"),
+ covariates = pH,
+ covariate_models = list(log_k2 ~ pH, g_qlogis ~ pH))
The corresponding parameters for the influence of soil pH are
+beta_pH(log_k2)
for the influence of soil pH on
+k2
, and beta_pH(g_qlogis)
for its influence on
+g
.
+ | est. | +lower | +upper | +
---|---|---|---|
meso_0 | +92.84 | +90.85 | +94.84 | +
log_k1 | +-2.82 | +-3.09 | +-2.54 | +
log_k2 | +-11.48 | +-15.32 | +-7.64 | +
beta_pH(log_k2) | +1.31 | +0.69 | +1.92 | +
g_qlogis | +3.13 | +0.47 | +5.80 | +
beta_pH(g_qlogis) | +-0.57 | +-1.04 | +-0.09 | +
a.1 | +4.96 | +4.26 | +5.65 | +
SD.log_k2 | +0.76 | +0.47 | +1.05 | +
SD.g_qlogis | +0.01 | +-9.96 | +9.97 | +
+illparms(dfop_pH)
[1] "sd(g_qlogis)"
+Confidence intervals for neither of them include zero, indicating a
+significant difference from zero. However, the random effect for
+g
is now ill-defined. The fit is updated without this
+ill-defined random effect.
+dfop_pH_2 <- update(dfop_pH,
+ no_random_effect = c("meso_0", "log_k1", "g_qlogis"))
+illparms(dfop_pH_2)
[1] "beta_pH(g_qlogis)"
+Now, the slope parameter for the pH effect on g
is
+ill-defined. Therefore, another attempt is made without the
+corresponding covariate model.
+dfop_pH_3 <- saem(f_sep_const["DFOP", ], no_random_effect = c("meso_0", "log_k1"),
+ covariates = pH,
+ covariate_models = list(log_k2 ~ pH))
+illparms(dfop_pH_3)
[1] "sd(g_qlogis)"
+As the random effect for g
is again ill-defined, the fit
+is repeated without it.
+dfop_pH_4 <- update(dfop_pH_3, no_random_effect = c("meso_0", "log_k1", "g_qlogis"))
+illparms(dfop_pH_4)
While no ill-defined parameters remain, model comparison suggests
+that the previous model dfop_pH_2
with two pH dependent
+parameters is preferable, based on information criteria as well as based
+on the likelihood ratio test.
+anova(f_saem_2[["DFOP", "const"]], dfop_pH, dfop_pH_2, dfop_pH_3, dfop_pH_4)
Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik
+f_saem_2[["DFOP", "const"]] 7 782.94 789.18 -384.47
+dfop_pH_4 7 767.35 773.58 -376.68
+dfop_pH_2 8 765.14 772.26 -374.57
+dfop_pH_3 8 769.00 776.12 -376.50
+dfop_pH 9 769.10 777.11 -375.55
+
+anova(dfop_pH_2, dfop_pH_4, test = TRUE)
Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik Chisq Df Pr(>Chisq)
+dfop_pH_4 7 767.35 773.58 -376.68
+dfop_pH_2 8 765.14 772.26 -374.57 4.2153 1 0.04006 *
+---
+Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+When focussing on parameter identifiability using the test if the
+confidence interval includes zero, dfop_pH_4
would still be
+the preferred model. However, it should be kept in mind that parameter
+confidence intervals are constructed using a simple linearisation of the
+likelihood. As the confidence interval of the random effect for
+g
only marginally includes zero, it is suggested that this
+is acceptable, and that dfop_pH_2
can be considered the
+most preferable model.
+plot(dfop_pH_2)
+endpoints(dfop_pH_2)
$covariates
+ pH
+50% 5.75
+
+$distimes
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 18.36876 73.51841 22.13125 4.191901 23.98672
+
+$covariates
+ pH
+User 7
+
+$distimes
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 8.346428 28.34437 8.532507 4.191901 8.753618
+SFORB +
+
+sforb_pH <- saem(f_sep_const["SFORB", ], no_random_effect = c("meso_free_0", "log_k_meso_free_bound"),
+ covariates = pH,
+ covariate_models = list(log_k_meso_free ~ pH, log_k_meso_bound_free ~ pH))
+ | est. | +lower | +upper | +
---|---|---|---|
meso_free_0 | +93.42 | +91.32 | +95.52 | +
log_k_meso_free | +-5.37 | +-6.94 | +-3.81 | +
beta_pH(log_k_meso_free) | +0.42 | +0.18 | +0.67 | +
log_k_meso_free_bound | +-3.49 | +-4.92 | +-2.05 | +
log_k_meso_bound_free | +-9.98 | +-19.22 | +-0.74 | +
beta_pH(log_k_meso_bound_free) | +1.23 | +-0.21 | +2.67 | +
a.1 | +4.90 | +4.18 | +5.63 | +
SD.log_k_meso_free | +0.35 | +0.23 | +0.47 | +
SD.log_k_meso_bound_free | +0.13 | +-1.95 | +2.20 | +
The confidence interval of
+beta_pH(log_k_meso_bound_free)
includes zero, indicating
+that the influence of soil pH on k_meso_bound_free
cannot
+reliably be quantified. Also, the confidence interval for the random
+effect on this parameter (SD.log_k_meso_bound_free
)
+includes zero.
Using the illparms
function, these ill-defined
+parameters can be found more conveniently.
+illparms(sforb_pH)
[1] "sd(log_k_meso_bound_free)" "beta_pH(log_k_meso_bound_free)"
+To remove the ill-defined parameters, a second variant of the SFORB +model with pH influence is fitted. No ill-defined parameters remain.
+
+sforb_pH_2 <- update(sforb_pH,
+ no_random_effect = c("meso_free_0", "log_k_meso_free_bound", "log_k_meso_bound_free"),
+ covariate_models = list(log_k_meso_free ~ pH))
+illparms(sforb_pH_2)
The model comparison of the SFORB fits includes the refined model +without covariate effect, and both versions of the SFORB fit with +covariate effect.
+
+anova(f_saem_2[["SFORB", "const"]], sforb_pH, sforb_pH_2, test = TRUE)
Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik Chisq Df Pr(>Chisq)
+f_saem_2[["SFORB", "const"]] 7 783.40 789.63 -384.70
+sforb_pH_2 7 770.94 777.17 -378.47 12.4616 0
+sforb_pH 9 768.81 776.83 -375.41 6.1258 2 0.04675 *
+---
+Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+The first model including pH influence is preferable based on +information criteria and the likelihood ratio test. However, as it is +not fully identifiable, the second model is selected.
+ ++ | est. | +lower | +upper | +
---|---|---|---|
meso_free_0 | +93.32 | +91.16 | +95.48 | +
log_k_meso_free | +-6.15 | +-7.43 | +-4.86 | +
beta_pH(log_k_meso_free) | +0.54 | +0.33 | +0.75 | +
log_k_meso_free_bound | +-3.80 | +-5.20 | +-2.40 | +
log_k_meso_bound_free | +-2.95 | +-4.26 | +-1.64 | +
a.1 | +5.08 | +4.38 | +5.79 | +
SD.log_k_meso_free | +0.33 | +0.22 | +0.45 | +
+plot(sforb_pH_2)
+endpoints(sforb_pH_2)
$covariates
+ pH
+50% 5.75
+
+$ff
+meso_free
+ 1
+
+$SFORB
+ meso_b1 meso_b2 meso_g
+0.09735824 0.02631699 0.31602120
+
+$distimes
+ DT50 DT90 DT50back DT50_meso_b1 DT50_meso_b2
+meso 16.86549 73.15824 22.02282 7.119554 26.33839
+
+$covariates
+ pH
+User 7
+
+$ff
+meso_free
+ 1
+
+$SFORB
+ meso_b1 meso_b2 meso_g
+0.13315233 0.03795988 0.61186191
+
+$distimes
+ DT50 DT90 DT50back DT50_meso_b1 DT50_meso_b2
+meso 7.932495 36.93311 11.11797 5.205671 18.26
+HS +
+
+hs_pH <- saem(f_sep_const["HS", ], no_random_effect = c("meso_0"),
+ covariates = pH,
+ covariate_models = list(log_k1 ~ pH, log_k2 ~ pH, log_tb ~ pH))
+ | est. | +lower | +upper | +
---|---|---|---|
meso_0 | +93.33 | +91.47 | +95.19 | +
log_k1 | +-5.81 | +-7.27 | +-4.36 | +
beta_pH(log_k1) | +0.47 | +0.23 | +0.72 | +
log_k2 | +-6.80 | +-8.76 | +-4.83 | +
beta_pH(log_k2) | +0.54 | +0.21 | +0.87 | +
log_tb | +3.25 | +1.25 | +5.25 | +
beta_pH(log_tb) | +-0.10 | +-0.43 | +0.23 | +
a.1 | +4.49 | +3.78 | +5.21 | +
SD.log_k1 | +0.37 | +0.24 | +0.51 | +
SD.log_k2 | +0.29 | +0.10 | +0.48 | +
SD.log_tb | +0.25 | +-0.07 | +0.57 | +
+illparms(hs_pH)
[1] "sd(log_tb)" "beta_pH(log_tb)"
+According to the output of the illparms
function, the
+random effect on the break time tb
cannot reliably be
+quantified, neither can the influence of soil pH on tb
. The
+fit is repeated without the corresponding covariate model, and no
+ill-defined parameters remain.
Model comparison confirms that this model is preferable to the fit +without covariate influence, and also to the first version with +covariate influence.
+
+anova(f_saem_2[["HS", "const"]], hs_pH, hs_pH_2, test = TRUE)
Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik Chisq Df Pr(>Chisq)
+f_saem_2[["HS", "const"]] 8 780.08 787.20 -382.04
+hs_pH_2 10 766.47 775.37 -373.23 17.606 2 0.0001503 ***
+hs_pH 11 769.80 779.59 -373.90 0.000 1 1.0000000
+---
+Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
+
++ | est. | +lower | +upper | +
---|---|---|---|
meso_0 | +93.33 | +91.50 | +95.15 | +
log_k1 | +-5.68 | +-7.09 | +-4.27 | +
beta_pH(log_k1) | +0.46 | +0.22 | +0.69 | +
log_k2 | +-6.61 | +-8.34 | +-4.88 | +
beta_pH(log_k2) | +0.50 | +0.21 | +0.79 | +
log_tb | +2.70 | +2.33 | +3.08 | +
a.1 | +4.45 | +3.74 | +5.16 | +
SD.log_k1 | +0.36 | +0.22 | +0.49 | +
SD.log_k2 | +0.23 | +0.02 | +0.43 | +
SD.log_tb | +0.55 | +0.25 | +0.85 | +
+plot(hs_pH_2)
+endpoints(hs_pH_2)
$covariates
+ pH
+50% 5.75
+
+$distimes
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 14.68725 82.45287 24.82079 14.68725 29.29299
+
+$covariates
+ pH
+User 7
+
+$distimes
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 8.298536 38.85371 11.69613 8.298536 15.71561
+Comparison across parent models +
+After model reduction for all models with pH influence, they are +compared with each other.
+
+anova(sfo_pH, fomc_pH_2, dfop_pH_2, dfop_pH_4, sforb_pH_2, hs_pH_2)
Data: 116 observations of 1 variable(s) grouped in 18 datasets
+
+ npar AIC BIC Lik
+sfo_pH 5 783.09 787.54 -386.54
+fomc_pH_2 6 767.49 772.83 -377.75
+dfop_pH_4 7 767.35 773.58 -376.68
+sforb_pH_2 7 770.94 777.17 -378.47
+dfop_pH_2 8 765.14 772.26 -374.57
+hs_pH_2 10 766.47 775.37 -373.23
+The DFOP model with pH influence on k2
and
+g
and a random effect only on k2
is finally
+selected as the best fit.
The endpoints resulting from this model are listed below. Please +refer to the Appendix for a detailed listing.
+
+endpoints(dfop_pH_2)
$covariates
+ pH
+50% 5.75
+
+$distimes
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 18.36876 73.51841 22.13125 4.191901 23.98672
+
+$covariates
+ pH
+User 7
+
+$distimes
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 8.346428 28.34437 8.532507 4.191901 8.753618
+Conclusions +
+These evaluations demonstrate that covariate effects can be included +for all types of parent degradation models. These models can then be +further refined to make them fully identifiable.
+Appendix +
+Hierarchical fit listings +
+Fits without covariate effects +
+
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 19:59:35 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso/dt = - k_meso * meso
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 0.682 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ meso_0 log_k_meso
+ 90.832 -3.192
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_0 log_k_meso
+meso_0 6.752 0.0000
+log_k_meso 0.000 0.9155
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 800 804.5 -395
+
+Optimised parameters:
+ est. lower upper
+meso_0 92.0705 89.9917 94.1493
+log_k_meso -3.1641 -3.4286 -2.8996
+a.1 5.4628 4.6421 6.2835
+SD.meso_0 0.0611 -98.3545 98.4767
+SD.log_k_meso 0.5616 0.3734 0.7499
+
+Correlation:
+ meso_0
+log_k_meso 0.1132
+
+Random effects:
+ est. lower upper
+SD.meso_0 0.0611 -98.3545 98.4767
+SD.log_k_meso 0.5616 0.3734 0.7499
+
+Variance model:
+ est. lower upper
+a.1 5.463 4.642 6.284
+
+Backtransformed parameters:
+ est. lower upper
+meso_0 92.07053 89.99172 94.14933
+k_meso 0.04225 0.03243 0.05505
+
+Estimated disappearance times:
+ DT50 DT90
+meso 16.41 54.5
+
+
+
+
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 19:59:35 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso/dt = - (alpha/beta) * 1/((time/beta) + 1) * meso
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 0.817 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ meso_0 log_alpha log_beta
+ 93.0520 0.6008 3.4176
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_0 log_alpha log_beta
+meso_0 6.287 0.00 0.000
+log_alpha 0.000 1.53 0.000
+log_beta 0.000 0.00 1.724
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 787.4 793.6 -386.7
+
+Optimised parameters:
+ est. lower upper
+meso_0 93.5648 91.42864 95.7009
+log_alpha 0.7645 0.28068 1.2484
+log_beta 3.6597 3.05999 4.2594
+a.1 5.0708 4.29823 5.8435
+SD.meso_0 0.1691 -34.01517 34.3535
+SD.log_alpha 0.3764 0.05834 0.6945
+SD.log_beta 0.3903 -0.06074 0.8414
+
+Correlation:
+ meso_0 log_lph
+log_alpha -0.2839
+log_beta -0.3443 0.8855
+
+Random effects:
+ est. lower upper
+SD.meso_0 0.1691 -34.01517 34.3535
+SD.log_alpha 0.3764 0.05834 0.6945
+SD.log_beta 0.3903 -0.06074 0.8414
+
+Variance model:
+ est. lower upper
+a.1 5.071 4.298 5.843
+
+Backtransformed parameters:
+ est. lower upper
+meso_0 93.565 91.429 95.701
+alpha 2.148 1.324 3.485
+beta 38.850 21.327 70.770
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+meso 14.8 74.64 22.47
+
+
+
+
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 19:59:35 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * meso
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.188 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ meso_0 log_k1 log_k2 g_qlogis
+93.14689 -2.05241 -3.53079 -0.09522
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_0 log_k1 log_k2 g_qlogis
+meso_0 6.418 0.000 0.000 0.00
+log_k1 0.000 1.018 0.000 0.00
+log_k2 0.000 0.000 1.694 0.00
+g_qlogis 0.000 0.000 0.000 2.37
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 787.6 795.6 -384.8
+
+Optimised parameters:
+ est. lower upper
+meso_0 93.6684 91.63599 95.7008
+log_k1 -1.7354 -2.61433 -0.8565
+log_k2 -3.4015 -3.73323 -3.0697
+g_qlogis -1.6341 -2.66133 -0.6069
+a.1 4.7803 4.01269 5.5479
+SD.meso_0 0.1661 -30.97086 31.3031
+SD.log_k1 0.1127 -2.59680 2.8223
+SD.log_k2 0.6394 0.41499 0.8638
+SD.g_qlogis 0.8166 0.09785 1.5353
+
+Correlation:
+ meso_0 log_k1 log_k2
+log_k1 0.1757
+log_k2 0.0199 0.2990
+g_qlogis 0.0813 -0.7431 -0.3826
+
+Random effects:
+ est. lower upper
+SD.meso_0 0.1661 -30.97086 31.3031
+SD.log_k1 0.1127 -2.59680 2.8223
+SD.log_k2 0.6394 0.41499 0.8638
+SD.g_qlogis 0.8166 0.09785 1.5353
+
+Variance model:
+ est. lower upper
+a.1 4.78 4.013 5.548
+
+Backtransformed parameters:
+ est. lower upper
+meso_0 93.66841 91.63599 95.70082
+k1 0.17633 0.07322 0.42466
+k2 0.03332 0.02392 0.04643
+g 0.16327 0.06529 0.35277
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 16.04 63.75 19.19 3.931 20.8
+
+
+
+
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 19:59:35 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso_free/dt = - k_meso_free * meso_free - k_meso_free_bound *
+ meso_free + k_meso_bound_free * meso_bound
+d_meso_bound/dt = + k_meso_free_bound * meso_free - k_meso_bound_free *
+ meso_bound
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.223 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ meso_free_0 log_k_meso_free log_k_meso_free_bound
+ 93.147 -2.305 -4.230
+log_k_meso_bound_free
+ -3.761
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_free_0 log_k_meso_free log_k_meso_free_bound
+meso_free_0 6.418 0.0000 0.000
+log_k_meso_free 0.000 0.9276 0.000
+log_k_meso_free_bound 0.000 0.0000 2.272
+log_k_meso_bound_free 0.000 0.0000 0.000
+ log_k_meso_bound_free
+meso_free_0 0.000
+log_k_meso_free 0.000
+log_k_meso_free_bound 0.000
+log_k_meso_bound_free 1.447
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 787.4 795.4 -384.7
+
+Optimised parameters:
+ est. lower upper
+meso_free_0 93.6285 91.6262 95.631
+log_k_meso_free -2.8314 -3.1375 -2.525
+log_k_meso_free_bound -3.2213 -4.4695 -1.973
+log_k_meso_bound_free -2.4246 -3.5668 -1.282
+a.1 4.7372 3.9542 5.520
+SD.meso_free_0 0.1634 -32.7769 33.104
+SD.log_k_meso_free 0.4885 0.3080 0.669
+SD.log_k_meso_free_bound 0.2876 -1.7955 2.371
+SD.log_k_meso_bound_free 0.9942 0.2181 1.770
+
+Correlation:
+ ms_fr_0 lg_k_m_ lg_k_ms_f_
+log_k_meso_free 0.2332
+log_k_meso_free_bound 0.1100 0.5964
+log_k_meso_bound_free -0.0413 0.3697 0.8025
+
+Random effects:
+ est. lower upper
+SD.meso_free_0 0.1634 -32.7769 33.104
+SD.log_k_meso_free 0.4885 0.3080 0.669
+SD.log_k_meso_free_bound 0.2876 -1.7955 2.371
+SD.log_k_meso_bound_free 0.9942 0.2181 1.770
+
+Variance model:
+ est. lower upper
+a.1 4.737 3.954 5.52
+
+Backtransformed parameters:
+ est. lower upper
+meso_free_0 93.62849 91.62622 95.63075
+k_meso_free 0.05893 0.04339 0.08004
+k_meso_free_bound 0.03990 0.01145 0.13903
+k_meso_bound_free 0.08851 0.02825 0.27736
+
+Estimated Eigenvalues of SFORB model(s):
+meso_b1 meso_b2 meso_g
+0.15333 0.03402 0.20881
+
+Resulting formation fractions:
+ ff
+meso_free 1
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_meso_b1 DT50_meso_b2
+meso 14.79 60.81 18.3 4.521 20.37
+
+
+
+
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 19:59:36 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso/dt = - ifelse(time <= tb, k1, k2) * meso
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.307 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+meso_0 log_k1 log_k2 log_tb
+92.920 -2.409 -3.295 2.471
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_0 log_k1 log_k2 log_tb
+meso_0 6.477 0.0000 0.0000 0.00
+log_k1 0.000 0.8675 0.0000 0.00
+log_k2 0.000 0.0000 0.4035 0.00
+log_tb 0.000 0.0000 0.0000 1.16
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 781.9 789.9 -382
+
+Optimised parameters:
+ est. lower upper
+meso_0 93.34242 91.4730 95.2118
+log_k1 -2.77312 -3.0826 -2.4637
+log_k2 -3.61854 -3.8430 -3.3941
+log_tb 2.00266 1.3357 2.6696
+a.1 4.47693 3.7059 5.2479
+SD.meso_0 0.07963 -63.1661 63.3253
+SD.log_k1 0.47817 0.2467 0.7097
+SD.log_k2 0.39216 0.2137 0.5706
+SD.log_tb 0.94683 0.4208 1.4728
+
+Correlation:
+ meso_0 log_k1 log_k2
+log_k1 0.1627
+log_k2 0.0063 -0.0301
+log_tb 0.0083 -0.3931 -0.1225
+
+Random effects:
+ est. lower upper
+SD.meso_0 0.07963 -63.1661 63.3253
+SD.log_k1 0.47817 0.2467 0.7097
+SD.log_k2 0.39216 0.2137 0.5706
+SD.log_tb 0.94683 0.4208 1.4728
+
+Variance model:
+ est. lower upper
+a.1 4.477 3.706 5.248
+
+Backtransformed parameters:
+ est. lower upper
+meso_0 93.34242 91.47303 95.21181
+k1 0.06247 0.04584 0.08512
+k2 0.02682 0.02143 0.03357
+tb 7.40872 3.80282 14.43376
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 16 76 22.88 11.1 25.84
+
+
+
+Fits with covariate effects +
+
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 19:59:49 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso/dt = - k_meso * meso
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.739 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ meso_0 log_k_meso
+ 90.832 -3.192
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_0 log_k_meso
+meso_0 6.752 0.0000
+log_k_meso 0.000 0.9155
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 783.1 787.5 -386.5
+
+Optimised parameters:
+ est. lower upper
+meso_0 91.3481 89.2688 93.4275
+log_k_meso -6.6614 -7.9715 -5.3514
+beta_pH(log_k_meso) 0.5871 0.3684 0.8059
+a.1 5.4750 4.7085 6.2415
+SD.log_k_meso 0.3471 0.2258 0.4684
+
+Correlation:
+ meso_0 lg_k_ms
+log_k_meso 0.0414
+beta_pH(log_k_meso) -0.0183 -0.9917
+
+Random effects:
+ est. lower upper
+SD.log_k_meso 0.3471 0.2258 0.4684
+
+Variance model:
+ est. lower upper
+a.1 5.475 4.709 6.242
+
+Backtransformed parameters:
+ est. lower upper
+meso_0 91.348139 8.927e+01 93.427476
+k_meso 0.001279 3.452e-04 0.004741
+
+Covariates used for endpoints below:
+ pH
+50% 5.75
+
+Estimated disappearance times:
+ DT50 DT90
+meso 18.52 61.52
+
+
+
+
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 19:59:51 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso/dt = - (alpha/beta) * 1/((time/beta) + 1) * meso
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.076 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ meso_0 log_alpha log_beta
+ 93.0520 0.6008 3.4176
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_0 log_alpha log_beta
+meso_0 6.287 0.00 0.000
+log_alpha 0.000 1.53 0.000
+log_beta 0.000 0.00 1.724
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 770.1 776.3 -378
+
+Optimised parameters:
+ est. lower upper
+meso_0 92.840646 90.750461 94.9308
+log_alpha -2.206602 -3.494546 -0.9187
+beta_pH(log_alpha) 0.577505 0.369805 0.7852
+log_beta 4.214099 3.438851 4.9893
+a.1 5.027768 4.322028 5.7335
+SD.log_alpha 0.004034 -23.766993 23.7751
+SD.log_beta 0.374640 0.009252 0.7400
+
+Correlation:
+ meso_0 log_lph bt_H(_)
+log_alpha -0.0865
+beta_pH(log_alpha) -0.0789 -0.8704
+log_beta -0.3544 0.3302 0.1628
+
+Random effects:
+ est. lower upper
+SD.log_alpha 0.004034 -23.766993 23.78
+SD.log_beta 0.374640 0.009252 0.74
+
+Variance model:
+ est. lower upper
+a.1 5.028 4.322 5.734
+
+Backtransformed parameters:
+ est. lower upper
+meso_0 92.8406 90.75046 94.9308
+alpha 0.1101 0.03036 0.3991
+beta 67.6332 31.15113 146.8404
+
+Covariates used for endpoints below:
+ pH
+50% 5.75
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+meso 17.28 76.37 22.99
+
+
+
+
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 19:59:55 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso/dt = - (alpha/beta) * 1/((time/beta) + 1) * meso
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 3.361 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ meso_0 log_alpha log_beta
+ 93.0520 0.6008 3.4176
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_0 log_alpha log_beta
+meso_0 6.287 0.00 0.000
+log_alpha 0.000 1.53 0.000
+log_beta 0.000 0.00 1.724
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 767.5 772.8 -377.7
+
+Optimised parameters:
+ est. lower upper
+meso_0 93.0536 90.9771 95.1300
+log_alpha -2.9054 -4.1803 -1.6304
+beta_pH(log_alpha) 0.6590 0.4437 0.8744
+log_beta 3.9549 3.2860 4.6239
+a.1 4.9784 4.2815 5.6754
+SD.log_beta 0.4019 0.2632 0.5406
+
+Correlation:
+ meso_0 log_lph bt_H(_)
+log_alpha -0.0397
+beta_pH(log_alpha) -0.0899 -0.9146
+log_beta -0.3473 0.2038 0.1919
+
+Random effects:
+ est. lower upper
+SD.log_beta 0.4019 0.2632 0.5406
+
+Variance model:
+ est. lower upper
+a.1 4.978 4.281 5.675
+
+Backtransformed parameters:
+ est. lower upper
+meso_0 93.05359 90.97713 95.1300
+alpha 0.05473 0.01529 0.1958
+beta 52.19251 26.73597 101.8874
+
+Covariates used for endpoints below:
+ pH
+50% 5.75
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+meso 17.3 82.91 24.96
+
+
+
+
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 19:59:58 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * meso
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.758 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ meso_0 log_k1 log_k2 g_qlogis
+93.14689 -2.05241 -3.53079 -0.09522
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_0 log_k1 log_k2 g_qlogis
+meso_0 6.418 0.000 0.000 0.00
+log_k1 0.000 1.018 0.000 0.00
+log_k2 0.000 0.000 1.694 0.00
+g_qlogis 0.000 0.000 0.000 2.37
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 769.1 777.1 -375.5
+
+Optimised parameters:
+ est. lower upper
+meso_0 92.843344 90.8464 94.84028
+log_k1 -2.815685 -3.0888 -2.54261
+log_k2 -11.479779 -15.3203 -7.63923
+beta_pH(log_k2) 1.308417 0.6948 1.92203
+g_qlogis 3.133036 0.4657 5.80035
+beta_pH(g_qlogis) -0.565988 -1.0394 -0.09262
+a.1 4.955518 4.2597 5.65135
+SD.log_k2 0.758963 0.4685 1.04943
+SD.g_qlogis 0.005215 -9.9561 9.96656
+
+Correlation:
+ meso_0 log_k1 log_k2 b_H(_2) g_qlogs
+log_k1 0.2706
+log_k2 -0.0571 0.1096
+beta_pH(log_k2) 0.0554 -0.1291 -0.9937
+g_qlogis -0.1125 -0.5062 -0.1305 0.1294
+beta_pH(g_qlogis) 0.1267 0.4226 0.0419 -0.0438 -0.9864
+
+Random effects:
+ est. lower upper
+SD.log_k2 0.758963 0.4685 1.049
+SD.g_qlogis 0.005215 -9.9561 9.967
+
+Variance model:
+ est. lower upper
+a.1 4.956 4.26 5.651
+
+Backtransformed parameters:
+ est. lower upper
+meso_0 9.284e+01 9.085e+01 9.484e+01
+k1 5.986e-02 4.556e-02 7.866e-02
+k2 1.034e-05 2.221e-07 4.812e-04
+g 9.582e-01 6.144e-01 9.970e-01
+
+Covariates used for endpoints below:
+ pH
+50% 5.75
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 20.23 88.45 26.62 11.58 36.23
+
+
+
+
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 20:00:03 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * meso
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 4.465 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ meso_0 log_k1 log_k2 g_qlogis
+93.14689 -2.05241 -3.53079 -0.09522
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_0 log_k1 log_k2 g_qlogis
+meso_0 6.418 0.000 0.000 0.00
+log_k1 0.000 1.018 0.000 0.00
+log_k2 0.000 0.000 1.694 0.00
+g_qlogis 0.000 0.000 0.000 2.37
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 765.1 772.3 -374.6
+
+Optimised parameters:
+ est. lower upper
+meso_0 93.3333 91.2427 95.42394
+log_k1 -1.7997 -2.9124 -0.68698
+log_k2 -8.1810 -10.1819 -6.18008
+beta_pH(log_k2) 0.8064 0.4903 1.12257
+g_qlogis 3.3513 -1.1792 7.88182
+beta_pH(g_qlogis) -0.8672 -1.7661 0.03177
+a.1 4.9158 4.2277 5.60390
+SD.log_k2 0.3946 0.2565 0.53281
+
+Correlation:
+ meso_0 log_k1 log_k2 b_H(_2) g_qlogs
+log_k1 0.1730
+log_k2 0.0442 0.5370
+beta_pH(log_k2) -0.0392 -0.4880 -0.9923
+g_qlogis -0.1536 0.1431 -0.1129 0.1432
+beta_pH(g_qlogis) 0.1504 -0.3151 -0.0196 -0.0212 -0.9798
+
+Random effects:
+ est. lower upper
+SD.log_k2 0.3946 0.2565 0.5328
+
+Variance model:
+ est. lower upper
+a.1 4.916 4.228 5.604
+
+Backtransformed parameters:
+ est. lower upper
+meso_0 9.333e+01 9.124e+01 95.42394
+k1 1.654e-01 5.435e-02 0.50309
+k2 2.799e-04 3.785e-05 0.00207
+g 9.661e-01 2.352e-01 0.99962
+
+Covariates used for endpoints below:
+ pH
+50% 5.75
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 18.37 73.52 22.13 4.192 23.99
+
+
+
+
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 20:00:10 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * meso
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.781 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ meso_0 log_k1 log_k2 g_qlogis
+93.14689 -2.05241 -3.53079 -0.09522
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_0 log_k1 log_k2 g_qlogis
+meso_0 6.418 0.000 0.000 0.00
+log_k1 0.000 1.018 0.000 0.00
+log_k2 0.000 0.000 1.694 0.00
+g_qlogis 0.000 0.000 0.000 2.37
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 767.4 773.6 -376.7
+
+Optimised parameters:
+ est. lower upper
+meso_0 93.3011 91.1905 95.4118
+log_k1 -2.1487 -2.7607 -1.5367
+log_k2 -8.1039 -10.4225 -5.7853
+beta_pH(log_k2) 0.7821 0.4126 1.1517
+g_qlogis -1.0373 -1.9337 -0.1409
+a.1 5.0095 4.3082 5.7108
+SD.log_k2 0.4622 0.3009 0.6235
+
+Correlation:
+ meso_0 log_k1 log_k2 b_H(_2)
+log_k1 0.2179
+log_k2 0.0337 0.5791
+beta_pH(log_k2) -0.0326 -0.5546 -0.9932
+g_qlogis 0.0237 -0.8479 -0.6571 0.6123
+
+Random effects:
+ est. lower upper
+SD.log_k2 0.4622 0.3009 0.6235
+
+Variance model:
+ est. lower upper
+a.1 5.009 4.308 5.711
+
+Backtransformed parameters:
+ est. lower upper
+meso_0 9.330e+01 9.119e+01 95.411751
+k1 1.166e-01 6.325e-02 0.215084
+k2 3.024e-04 2.975e-05 0.003072
+g 2.617e-01 1.263e-01 0.464832
+
+Covariates used for endpoints below:
+ pH
+50% 5.75
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 17.09 73.67 22.18 5.943 25.54
+
+
+
+
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 20:00:14 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso_free/dt = - k_meso_free * meso_free - k_meso_free_bound *
+ meso_free + k_meso_bound_free * meso_bound
+d_meso_bound/dt = + k_meso_free_bound * meso_free - k_meso_bound_free *
+ meso_bound
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 3.54 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ meso_free_0 log_k_meso_free log_k_meso_free_bound
+ 93.147 -2.305 -4.230
+log_k_meso_bound_free
+ -3.761
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_free_0 log_k_meso_free log_k_meso_free_bound
+meso_free_0 6.418 0.0000 0.000
+log_k_meso_free 0.000 0.9276 0.000
+log_k_meso_free_bound 0.000 0.0000 2.272
+log_k_meso_bound_free 0.000 0.0000 0.000
+ log_k_meso_bound_free
+meso_free_0 0.000
+log_k_meso_free 0.000
+log_k_meso_free_bound 0.000
+log_k_meso_bound_free 1.447
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 768.8 776.8 -375.4
+
+Optimised parameters:
+ est. lower upper
+meso_free_0 93.4204 91.3213 95.5195
+log_k_meso_free -5.3742 -6.9366 -3.8117
+beta_pH(log_k_meso_free) 0.4232 0.1769 0.6695
+log_k_meso_free_bound -3.4889 -4.9243 -2.0535
+log_k_meso_bound_free -9.9797 -19.2232 -0.7362
+beta_pH(log_k_meso_bound_free) 1.2290 -0.2107 2.6687
+a.1 4.9031 4.1795 5.6268
+SD.log_k_meso_free 0.3454 0.2252 0.4656
+SD.log_k_meso_bound_free 0.1277 -1.9459 2.2012
+
+Correlation:
+ ms_fr_0 lg_k_m_ b_H(___) lg_k_ms_f_ lg_k_ms_b_
+log_k_meso_free 0.1493
+beta_pH(log_k_meso_free) -0.0930 -0.9854
+log_k_meso_free_bound 0.2439 0.4621 -0.3492
+log_k_meso_bound_free 0.2188 0.1292 -0.0339 0.7287
+beta_pH(log_k_meso_bound_free) -0.2216 -0.0797 -0.0111 -0.6566 -0.9934
+
+Random effects:
+ est. lower upper
+SD.log_k_meso_free 0.3454 0.2252 0.4656
+SD.log_k_meso_bound_free 0.1277 -1.9459 2.2012
+
+Variance model:
+ est. lower upper
+a.1 4.903 4.18 5.627
+
+Backtransformed parameters:
+ est. lower upper
+meso_free_0 9.342e+01 9.132e+01 95.51946
+k_meso_free 4.635e-03 9.716e-04 0.02211
+k_meso_free_bound 3.054e-02 7.268e-03 0.12829
+k_meso_bound_free 4.633e-05 4.482e-09 0.47894
+
+Covariates used for endpoints below:
+ pH
+50% 5.75
+
+Estimated Eigenvalues of SFORB model(s):
+meso_b1 meso_b2 meso_g
+ 0.1121 0.0256 0.3148
+
+Resulting formation fractions:
+ ff
+meso_free 1
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_meso_b1 DT50_meso_b2
+meso 16.42 75.2 22.64 6.185 27.08
+
+
++
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 20:00:18 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso_free/dt = - k_meso_free * meso_free - k_meso_free_bound *
+ meso_free + k_meso_bound_free * meso_bound
+d_meso_bound/dt = + k_meso_free_bound * meso_free - k_meso_bound_free *
+ meso_bound
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.815 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ meso_free_0 log_k_meso_free log_k_meso_free_bound
+ 93.147 -2.305 -4.230
+log_k_meso_bound_free
+ -3.761
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_free_0 log_k_meso_free log_k_meso_free_bound
+meso_free_0 6.418 0.0000 0.000
+log_k_meso_free 0.000 0.9276 0.000
+log_k_meso_free_bound 0.000 0.0000 2.272
+log_k_meso_bound_free 0.000 0.0000 0.000
+ log_k_meso_bound_free
+meso_free_0 0.000
+log_k_meso_free 0.000
+log_k_meso_free_bound 0.000
+log_k_meso_bound_free 1.447
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 770.9 777.2 -378.5
+
+Optimised parameters:
+ est. lower upper
+meso_free_0 93.3196 91.1633 95.4760
+log_k_meso_free -6.1460 -7.4306 -4.8614
+beta_pH(log_k_meso_free) 0.5435 0.3329 0.7542
+log_k_meso_free_bound -3.8001 -5.2027 -2.3975
+log_k_meso_bound_free -2.9462 -4.2565 -1.6359
+a.1 5.0825 4.3793 5.7856
+SD.log_k_meso_free 0.3338 0.2175 0.4502
+
+Correlation:
+ ms_fr_0 lg_k_m_ b_H(___ lg_k_ms_f_
+log_k_meso_free 0.1086
+beta_pH(log_k_meso_free) -0.0426 -0.9821
+log_k_meso_free_bound 0.2513 0.1717 -0.0409
+log_k_meso_bound_free 0.1297 0.1171 -0.0139 0.9224
+
+Random effects:
+ est. lower upper
+SD.log_k_meso_free 0.3338 0.2175 0.4502
+
+Variance model:
+ est. lower upper
+a.1 5.082 4.379 5.786
+
+Backtransformed parameters:
+ est. lower upper
+meso_free_0 93.319649 9.116e+01 95.47601
+k_meso_free 0.002142 5.928e-04 0.00774
+k_meso_free_bound 0.022369 5.502e-03 0.09095
+k_meso_bound_free 0.052539 1.417e-02 0.19478
+
+Covariates used for endpoints below:
+ pH
+50% 5.75
+
+Estimated Eigenvalues of SFORB model(s):
+meso_b1 meso_b2 meso_g
+0.09736 0.02632 0.31602
+
+Resulting formation fractions:
+ ff
+meso_free 1
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_meso_b1 DT50_meso_b2
+meso 16.87 73.16 22.02 7.12 26.34
+
+
++
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 20:00:20 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso/dt = - ifelse(time <= tb, k1, k2) * meso
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.849 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+meso_0 log_k1 log_k2 log_tb
+92.920 -2.409 -3.295 2.471
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_0 log_k1 log_k2 log_tb
+meso_0 6.477 0.0000 0.0000 0.00
+log_k1 0.000 0.8675 0.0000 0.00
+log_k2 0.000 0.0000 0.4035 0.00
+log_tb 0.000 0.0000 0.0000 1.16
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 769.8 779.6 -373.9
+
+Optimised parameters:
+ est. lower upper
+meso_0 93.32599 91.4658 95.1862
+log_k1 -5.81463 -7.2710 -4.3583
+beta_pH(log_k1) 0.47472 0.2334 0.7160
+log_k2 -6.79633 -8.7605 -4.8322
+beta_pH(log_k2) 0.54151 0.2124 0.8706
+log_tb 3.24674 1.2470 5.2465
+beta_pH(log_tb) -0.09889 -0.4258 0.2280
+a.1 4.49487 3.7766 5.2132
+SD.log_k1 0.37191 0.2370 0.5068
+SD.log_k2 0.29210 0.0994 0.4848
+SD.log_tb 0.25353 -0.0664 0.5735
+
+Correlation:
+ meso_0 log_k1 b_H(_1) log_k2 b_H(_2) log_tb
+log_k1 0.0744
+beta_pH(log_k1) -0.0452 -0.9915
+log_k2 0.0066 -0.0363 0.0376
+beta_pH(log_k2) -0.0071 0.0372 -0.0391 -0.9939
+log_tb -0.0238 -0.1483 0.1362 -0.3836 0.3696
+beta_pH(log_tb) 0.0097 0.1359 -0.1265 0.3736 -0.3653 -0.9905
+
+Random effects:
+ est. lower upper
+SD.log_k1 0.3719 0.2370 0.5068
+SD.log_k2 0.2921 0.0994 0.4848
+SD.log_tb 0.2535 -0.0664 0.5735
+
+Variance model:
+ est. lower upper
+a.1 4.495 3.777 5.213
+
+Backtransformed parameters:
+ est. lower upper
+meso_0 93.325994 9.147e+01 9.519e+01
+k1 0.002984 6.954e-04 1.280e-02
+k2 0.001118 1.568e-04 7.969e-03
+tb 25.706437 3.480e+00 1.899e+02
+
+Covariates used for endpoints below:
+ pH
+50% 5.75
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 15.65 79.63 23.97 15.16 27.55
+
+
++
+saemix version used for fitting: 3.3
+mkin version used for pre-fitting: 1.2.10
+R version used for fitting: 4.5.0
+Date of fit: Tue May 13 20:00:22 2025
+Date of summary: Tue May 13 20:00:23 2025
+
+Equations:
+d_meso/dt = - ifelse(time <= tb, k1, k2) * meso
+
+Data:
+116 observations of 1 variable(s) grouped in 18 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.439 s
+Using 300, 100 iterations and 3 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+meso_0 log_k1 log_k2 log_tb
+92.920 -2.409 -3.295 2.471
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ meso_0 log_k1 log_k2 log_tb
+meso_0 6.477 0.0000 0.0000 0.00
+log_k1 0.000 0.8675 0.0000 0.00
+log_k2 0.000 0.0000 0.4035 0.00
+log_tb 0.000 0.0000 0.0000 1.16
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 766.5 775.4 -373.2
+
+Optimised parameters:
+ est. lower upper
+meso_0 93.3251 91.49823 95.1520
+log_k1 -5.6796 -7.08789 -4.2714
+beta_pH(log_k1) 0.4567 0.22400 0.6894
+log_k2 -6.6083 -8.33839 -4.8781
+beta_pH(log_k2) 0.4982 0.20644 0.7899
+log_tb 2.7040 2.33033 3.0777
+a.1 4.4452 3.73537 5.1551
+SD.log_k1 0.3570 0.22104 0.4930
+SD.log_k2 0.2252 0.01864 0.4318
+SD.log_tb 0.5488 0.24560 0.8521
+
+Correlation:
+ meso_0 log_k1 b_H(_1) log_k2 b_H(_2)
+log_k1 0.0740
+beta_pH(log_k1) -0.0453 -0.9912
+log_k2 0.0115 -0.0650 0.0661
+beta_pH(log_k2) -0.0116 0.0649 -0.0667 -0.9936
+log_tb -0.0658 -0.1135 0.0913 -0.1500 0.1210
+
+Random effects:
+ est. lower upper
+SD.log_k1 0.3570 0.22104 0.4930
+SD.log_k2 0.2252 0.01864 0.4318
+SD.log_tb 0.5488 0.24560 0.8521
+
+Variance model:
+ est. lower upper
+a.1 4.445 3.735 5.155
+
+Backtransformed parameters:
+ est. lower upper
+meso_0 93.325134 9.150e+01 95.152036
+k1 0.003415 8.352e-04 0.013962
+k2 0.001349 2.392e-04 0.007611
+tb 14.939247 1.028e+01 21.707445
+
+Covariates used for endpoints below:
+ pH
+50% 5.75
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+meso 14.69 82.45 24.82 14.69 29.29
+
+
+
+Session info +
+R version 4.5.0 (2025-04-11)
+Platform: x86_64-pc-linux-gnu
+Running under: Debian GNU/Linux 12 (bookworm)
+
+Matrix products: default
+BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.11.0
+LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.11.0 LAPACK version 3.11.0
+
+locale:
+ [1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C
+ [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=de_DE.UTF-8
+ [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8
+ [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
+ [9] LC_ADDRESS=C LC_TELEPHONE=C
+[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
+
+time zone: Europe/Berlin
+tzcode source: system (glibc)
+
+attached base packages:
+[1] parallel stats graphics grDevices utils datasets methods
+[8] base
+
+other attached packages:
+[1] rmarkdown_2.29 nvimcom_0.9-167 saemix_3.3 npde_3.5
+[5] knitr_1.49 mkin_1.2.10
+
+loaded via a namespace (and not attached):
+ [1] gtable_0.3.6 jsonlite_1.9.0 dplyr_1.1.4 compiler_4.5.0
+ [5] tidyselect_1.2.1 gridExtra_2.3 jquerylib_0.1.4 systemfonts_1.2.1
+ [9] scales_1.3.0 textshaping_1.0.0 readxl_1.4.4 yaml_2.3.10
+[13] fastmap_1.2.0 lattice_0.22-6 ggplot2_3.5.1 R6_2.6.1
+[17] generics_0.1.3 lmtest_0.9-40 MASS_7.3-65 htmlwidgets_1.6.4
+[21] tibble_3.2.1 desc_1.4.3 munsell_0.5.1 bslib_0.9.0
+[25] pillar_1.10.1 rlang_1.1.5 cachem_1.1.0 xfun_0.51
+[29] fs_1.6.5 sass_0.4.9 cli_3.6.4 pkgdown_2.1.1
+[33] magrittr_2.0.3 digest_0.6.37 grid_4.5.0 mclust_6.1.1
+[37] lifecycle_1.0.4 nlme_3.1-168 vctrs_0.6.5 evaluate_1.0.3
+[41] glue_1.8.0 cellranger_1.1.0 codetools_0.2-20 ragg_1.3.3
+[45] zoo_1.8-13 colorspace_2.1-1 tools_4.5.0 pkgconfig_2.0.3
+[49] htmltools_0.5.8.1
+