From af7c6de4db9981ac814362c441fbac22c8faa2d7 Mon Sep 17 00:00:00 2001
From: Johannes Ranke The purpose of this document is to demonstrate how nonlinear
+hierarchical models (NLHM) based on the parent degradation models SFO,
+FOMC, DFOP and HS can be fitted with the mkin package. The mkin package is used in version 1.2.2. It contains the test data
+and the functions used in the evaluations. The This document is processed with the The test data are available in the mkin package as an object of class
+ The following commented R code performs this preprocessing. The following tables show the 6 datasets. In order to obtain suitable starting parameters for the NLHM fits,
+separate fits of the four models to the data for each soil are generated
+using the In the table above, OK indicates convergence, and C indicates failure
+to converge. All separate fits with constant variance converged, with
+the sole exception of the HS fit to the BBA 2.2 data. To prepare for
+fitting NLHM using the two-component error model, the separate fits are
+updated assuming two-component error. Using the two-component error model, the one fit that did not
+converge with constant variance did converge, but other non-SFO fits
+failed to converge. The following code fits eight versions of hierarchical models to the
+data, using SFO, FOMC, DFOP and HS for the parent compound, and using
+either constant variance or two-component error for the error model. The
+default parameter distribution model in mkin allows for variation of all
+degradation parameters across the assumed population of soils. In other
+words, each degradation parameter is associated with a random effect as
+a first step. The Convergence plots and summaries for these fits are shown in the
+appendix. The output of the The AIC and BIC values show that the biphasic models DFOP and HS give
+the best fits. The DFOP model is preferred here, as it has a better mechanistic
+basis for batch experiments with constant incubation conditions. Also,
+it shows the lowest AIC and BIC values in the first set of fits when
+combined with the two-component error model. Therefore, the DFOP model
+was selected for further refinements of the fits with the aim to make
+the model fully identifiable. Using the According to the The thus identified overparameterisation is addressed by removing the
+random effect for For the resulting fit, it is checked whether there are still
+ill-defined parameters, which is not the case. Below, the refined model is compared with the
+previous best model. The model without random effect for The AIC and BIC criteria are lower after removal of the ill-defined
+random effect for Therefore, AIC, BIC and likelihood ratio test suggest the use of the
+reduced model. The convergence of the fit is checked visually.
+Convergence plot for the NLHM DFOP fit with two-component error and
+without a random effect on ‘k2’
+ All parameters appear to have converged to a satisfactory degree. The
+final fit is plotted using the plot method from the mkin package.
+Plot of the final NLHM DFOP fit
+ Finally, a summary report of the fit is produced. The parameter check used in the The graph below shows boxplots of the parameters obtained in 50 runs
+of the saem algorithm with different parameter combinations, sampled
+from the range of the parameters obtained for the individual datasets
+fitted separately using nonlinear regression.
+Scaled parameters from the multistart runs, full model
+ The graph clearly confirms the lack of identifiability of the
+variance of The parameter boxplots of the multistart runs with the reduced model
+shown below indicate that all runs give similar results, regardless of
+the starting parameters.
+Scaled parameters from the multistart runs, reduced model
+ When only the parameters of the top 25% of the fits are shown (based
+on a feature introduced in mkin 1.2.2 currently under development), the
+scatter is even less as shown below.
+Scaled parameters from the multistart runs, reduced model, fits with the
+top 25% likelihood values
+ Fitting the four parent degradation models SFO, FOMC, DFOP and HS as
+part of hierarchical model fits with two different error models and
+normal distributions of the transformed degradation parameters works
+without technical problems. The biphasic models DFOP and HS gave the
+best fit to the data, but the default parameter distribution model was
+not fully identifiable. Removing the random effect for the second
+kinetic rate constant of the DFOP model resulted in a reduced model that
+was fully identifiable and showed the lowest values for the model
+selection criteria AIC and BIC. The reliability of the identification of
+all model parameters was confirmed using multiple starting values.
+Convergence plot for the NLHM SFO fit with constant variance
+
+Convergence plot for the NLHM SFO fit with two-component error
+
+Convergence plot for the NLHM FOMC fit with constant variance
+
+Convergence plot for the NLHM FOMC fit with two-component error
+
+Convergence plot for the NLHM DFOP fit with constant variance
+
+Convergence plot for the NLHM DFOP fit with two-component error
+
+Convergence plot for the NLHM HS fit with constant variance
+
+Convergence plot for the NLHM HS fit with two-component error
+ Ranke J (2022).
+ Ranke J (2023).
mkin: Kinetic Evaluation of Chemical Degradation Data.
R package version 1.2.2, https://pkgdown.jrwb.de/mkin/.
R markdown format for setting up hierarchical kinetics based on a template
+provided with the mkin package. Arguments to Keep the intermediate tex file used in the conversion to PDF R Markdown output format to pass to
+
\n")
+}
+
diff --git a/R/tex_listing.R b/R/tex_listing.R
deleted file mode 100644
index 05f662e4..00000000
--- a/R/tex_listing.R
+++ /dev/null
@@ -1,32 +0,0 @@
-#' Wrap the output of a summary function in tex listing environment
-#'
-#' This function can be used in a R markdown code chunk with the chunk
-#' option `results = "asis"`.
-#'
-#' @param object The object for which the summary is to be listed
-#' @param caption An optional caption
-#' @param label An optional label
-#' @param clearpage Should a new page be started after the listing?
-#' @export
-tex_listing <- function(object, caption = NULL, label = NULL,
- clearpage = TRUE) {
- cat("\n")
- cat("\\begin{listing}", "\n")
- if (!is.null(caption)) {
- cat("\\caption{", caption, "}", "\n", sep = "")
- }
- if (!is.null(label)) {
- cat("\\caption{", label, "}", "\n", sep = "")
- }
- cat("\\begin{snugshade}", "\n")
- cat("\\scriptsize", "\n")
- cat("\\begin{verbatim}", "\n")
- cat(capture.output(suppressWarnings(summary(object))), sep = "\n")
- cat("\n")
- cat("\\end{verbatim}", "\n")
- cat("\\end{snugshade}", "\n")
- cat("\\end{listing}", "\n")
- if (clearpage) {
- cat("\\clearpage", "\n")
- }
-}
diff --git a/README.md b/README.md
index f3c36890..b6171767 100644
--- a/README.md
+++ b/README.md
@@ -214,6 +214,8 @@ to ModelMaker 4.0, 2014-2015)
of the visual fit in the kinetic evaluation of degradation data, 2019-2020)
- Project Number 146839 (Checking the feasibility of using mixed-effects models for
the derivation of kinetic modelling parameters from degradation studies, 2020-2021)
+- Project Number 173340 (Application of nonlinear hierarchical models to the
+ kinetic evaluation of chemical degradation data)
Thanks to everyone involved for collaboration and support!
diff --git a/_pkgdown.yml b/_pkgdown.yml
index ca5ea6e0..5d7fdbf4 100644
--- a/_pkgdown.yml
+++ b/_pkgdown.yml
@@ -47,6 +47,7 @@ reference:
- title: Mixed models
desc: Create and work with nonlinear hierarchical models
contents:
+ - hierarchical_kinetics
- read_spreadsheet
- nlme.mmkin
- saem.mmkin
@@ -92,7 +93,7 @@ reference:
- plot.nafta
- title: Utility functions
contents:
- - tex_listing
+ - summary_listing
- f_time_norm_focus
- set_nd_nq
- max_twa_parent
diff --git a/docs/dev/articles/2022_wp_1.1_dmta_parent.html b/docs/dev/articles/2022_wp_1.1_dmta_parent.html
new file mode 100644
index 00000000..61bb81d3
--- /dev/null
+++ b/docs/dev/articles/2022_wp_1.1_dmta_parent.html
@@ -0,0 +1,2177 @@
+
+
+
+
+
+
+
+\n")
+ cat(capture.output(suppressWarnings(summary(object))), sep = "\n")
+ cat("\n")
+ cat("
Work package 1.1: Testing hierarchical parent
+degradation kinetics with residue data on dimethenamid and
+dimethenamid-P
+ Johannes
+Ranke
+
+ Last change on 5 January
+2022, last compiled on 5 Januar 2023
+
+ Source: vignettes/2022_wp_1.1_dmta_parent.rmd
+ 2022_wp_1.1_dmta_parent.rmd
Introduction
+
+saemix
+package is used as a backend for fitting the NLHM, but is also loaded to
+make the convergence plot function available.knitr
package, which
+also provides the kable
function that is used to improve
+the display of tabular data in R markdown documents. For parallel
+processing, the parallel
package is used.
+
library(mkin)
+library(knitr)
+library(saemix)
+library(parallel)
+n_cores <- detectCores()
+if (Sys.info()["sysname"] == "Windows") {
+ cl <- makePSOCKcluster(n_cores)
+} else {
+ cl <- makeForkCluster(n_cores)
+}
Preprocessing of test data
+
+mkindsg
(mkin dataset group) under the identifier
+dimethenamid_2018
. The following preprocessing steps are
+still necessary:
+
+Elliot 1
+and Elliot 2
) are combined, resulting in dimethenamid
+(DMTA) data from six soils.
+
# Apply a function to each of the seven datasets in the mkindsg object to create a list
+dmta_ds <- lapply(1:7, function(i) {
+ ds_i <- dimethenamid_2018$ds[[i]]$data # Get a dataset
+ ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA" # Rename DMTAP to DMTA
+ ds_i <- subset(ds_i, name == "DMTA", c("name", "time", "value")) # Select data
+ ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i] # Normalise time
+ ds_i # Return the dataset
+})
+
+# Use dataset titles as names for the list elements
+names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+
+# Combine data for Elliot soil to obtain a named list with six elements
+dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]]) #
+dmta_ds[["Elliot 1"]] <- NULL
+dmta_ds[["Elliot 2"]] <- NULL
+
for (ds_name in names(dmta_ds)) {
+ print(kable(mkin_long_to_wide(dmta_ds[[ds_name]]),
+ caption = paste("Dataset", ds_name),
+ label = paste0("tab:", ds_name), booktabs = TRUE))
+ cat("\n\\clearpage\n")
+}
+
+
+
+
+time
+DMTA
+
+
+0
+95.8
+
+
+0
+98.7
+
+
+14
+60.5
+
+
+30
+39.1
+
+
+59
+15.2
+
+
+120
+4.8
+
+
+
+120
+4.6
+
+
+
+
+
+time
+DMTA
+
+
+0.000000
+100.5
+
+
+0.000000
+99.6
+
+
+1.941295
+91.9
+
+
+1.941295
+91.3
+
+
+6.794534
+81.8
+
+
+6.794534
+82.1
+
+
+13.589067
+69.1
+
+
+13.589067
+68.0
+
+
+27.178135
+51.4
+
+
+27.178135
+51.4
+
+
+56.297565
+27.6
+
+
+56.297565
+26.8
+
+
+86.387643
+15.7
+
+
+86.387643
+15.3
+
+
+115.507073
+7.9
+
+
+
+115.507073
+8.1
+
+
+
+
+
+time
+DMTA
+
+
+0.0000000
+96.5
+
+
+0.0000000
+96.8
+
+
+0.0000000
+97.0
+
+
+0.6233856
+82.9
+
+
+0.6233856
+86.7
+
+
+0.6233856
+87.4
+
+
+1.8701567
+72.8
+
+
+1.8701567
+69.9
+
+
+1.8701567
+71.9
+
+
+4.3636989
+51.4
+
+
+4.3636989
+52.9
+
+
+4.3636989
+48.6
+
+
+8.7273979
+28.5
+
+
+8.7273979
+27.3
+
+
+8.7273979
+27.5
+
+
+13.0910968
+14.8
+
+
+13.0910968
+13.4
+
+
+13.0910968
+14.4
+
+
+17.4547957
+7.7
+
+
+17.4547957
+7.3
+
+
+17.4547957
+8.1
+
+
+26.1821936
+2.0
+
+
+26.1821936
+1.5
+
+
+26.1821936
+1.9
+
+
+34.9095915
+1.3
+
+
+34.9095915
+1.0
+
+
+34.9095915
+1.1
+
+
+43.6369893
+0.9
+
+
+43.6369893
+0.7
+
+
+43.6369893
+0.7
+
+
+52.3643872
+0.6
+
+
+52.3643872
+0.4
+
+
+52.3643872
+0.5
+
+
+74.8062674
+0.4
+
+
+74.8062674
+0.3
+
+
+
+74.8062674
+0.3
+
+
+
+
+
+time
+DMTA
+
+
+0.0000000
+98.09
+
+
+0.0000000
+98.77
+
+
+0.7678922
+93.52
+
+
+0.7678922
+92.03
+
+
+2.3036765
+88.39
+
+
+2.3036765
+87.18
+
+
+5.3752452
+69.38
+
+
+5.3752452
+71.06
+
+
+10.7504904
+45.21
+
+
+10.7504904
+46.81
+
+
+16.1257355
+30.54
+
+
+16.1257355
+30.07
+
+
+21.5009807
+21.60
+
+
+21.5009807
+20.41
+
+
+32.2514711
+9.10
+
+
+32.2514711
+9.70
+
+
+43.0019614
+6.58
+
+
+43.0019614
+6.31
+
+
+53.7524518
+3.47
+
+
+53.7524518
+3.52
+
+
+64.5029421
+3.40
+
+
+64.5029421
+3.67
+
+
+91.3791680
+1.62
+
+
+
+91.3791680
+1.62
+
+
+
+
+
+time
+DMTA
+
+
+0.0000000
+99.33
+
+
+0.0000000
+97.44
+
+
+0.6733938
+93.73
+
+
+0.6733938
+93.77
+
+
+2.0201814
+87.84
+
+
+2.0201814
+89.82
+
+
+4.7137565
+71.61
+
+
+4.7137565
+71.42
+
+
+9.4275131
+45.60
+
+
+9.4275131
+45.42
+
+
+14.1412696
+31.12
+
+
+14.1412696
+31.68
+
+
+18.8550262
+23.20
+
+
+18.8550262
+24.13
+
+
+28.2825393
+9.43
+
+
+28.2825393
+9.82
+
+
+37.7100523
+7.08
+
+
+37.7100523
+8.64
+
+
+47.1375654
+4.41
+
+
+47.1375654
+4.78
+
+
+56.5650785
+4.92
+
+
+56.5650785
+5.08
+
+
+80.1338612
+2.13
+
+
+
+80.1338612
+2.23
+
+
+
+
+
+time
+DMTA
+
+
+0.000000
+97.5
+
+
+0.000000
+100.7
+
+
+1.228478
+86.4
+
+
+1.228478
+88.5
+
+
+3.685435
+69.8
+
+
+3.685435
+77.1
+
+
+8.599349
+59.0
+
+
+8.599349
+54.2
+
+
+17.198697
+31.3
+
+
+17.198697
+33.5
+
+
+25.798046
+19.6
+
+
+25.798046
+20.9
+
+
+34.397395
+13.3
+
+
+34.397395
+15.8
+
+
+51.596092
+6.7
+
+
+51.596092
+8.7
+
+
+68.794789
+8.8
+
+
+68.794789
+8.7
+
+
+103.192184
+6.0
+
+
+103.192184
+4.4
+
+
+146.188928
+3.3
+
+
+146.188928
+2.8
+
+
+223.583066
+1.4
+
+
+223.583066
+1.8
+
+
+0.000000
+93.4
+
+
+0.000000
+103.2
+
+
+1.228478
+89.2
+
+
+1.228478
+86.6
+
+
+3.685435
+78.2
+
+
+3.685435
+78.1
+
+
+8.599349
+55.6
+
+
+8.599349
+53.0
+
+
+17.198697
+33.7
+
+
+17.198697
+33.2
+
+
+25.798046
+20.9
+
+
+25.798046
+19.9
+
+
+34.397395
+18.2
+
+
+34.397395
+12.7
+
+
+51.596092
+7.8
+
+
+51.596092
+9.0
+
+
+68.794789
+11.4
+
+
+68.794789
+9.0
+
+
+103.192184
+3.9
+
+
+103.192184
+4.4
+
+
+146.188928
+2.6
+
+
+146.188928
+3.4
+
+
+223.583066
+2.0
+
+
+
+223.583066
+1.7
+Separate evaluations
+
+mmkin
function from the mkin
+package. In a first step, constant variance is assumed. Convergence is
+checked with the status
function.
+
deg_mods <- c("SFO", "FOMC", "DFOP", "HS")
+f_sep_const <- mmkin(
+ deg_mods,
+ dmta_ds,
+ error_model = "const",
+ quiet = TRUE)
+
+status(f_sep_const) |> kable()
+
+
+
+
+
+ Calke
+Borstel
+Flaach
+BBA 2.2
+BBA 2.3
+Elliot
+
+
+SFO
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+FOMC
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+DFOP
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+
+HS
+OK
+OK
+OK
+C
+OK
+OK
+
+
+
+
+
+
+ Calke
+Borstel
+Flaach
+BBA 2.2
+BBA 2.3
+Elliot
+
+
+SFO
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+FOMC
+OK
+OK
+OK
+OK
+C
+OK
+
+
+DFOP
+OK
+OK
+C
+OK
+C
+OK
+
+
+
+HS
+OK
+C
+OK
+OK
+OK
+OK
+Hierarchichal model fits
+
+mhmkin
function makes it possible to fit
+all eight versions in parallel (given a sufficient number of computing
+cores being available) to save execution time.status
function shows that all fits
+terminated successfully.
+
+
+
+
+
+ const
+tc
+
+
+SFO
+OK
+OK
+
+
+FOMC
+OK
+OK
+
+
+DFOP
+OK
+OK
+
+
+
+HS
+OK
+OK
+
+
+
+
+
+
+ npar
+AIC
+BIC
+Lik
+
+
+SFO const
+5
+796.3
+795.3
+-393.2
+
+
+SFO tc
+6
+798.3
+797.1
+-393.2
+
+
+FOMC const
+7
+734.2
+732.7
+-360.1
+
+
+FOMC tc
+8
+720.4
+718.8
+-352.2
+
+
+DFOP const
+9
+711.8
+710.0
+-346.9
+
+
+HS const
+9
+714.0
+712.1
+-348.0
+
+
+DFOP tc
+10
+665.5
+663.4
+-322.8
+
+
+
+HS tc
+10
+667.1
+665.0
+-323.6
+Parameter identifiability based on the Fisher Information
+Matrix
+
+illparms
function, ill-defined statistical
+model parameters such as standard deviations of the degradation
+parameters in the population and error model parameters can be
+found.
+
+
+
+
+
+ const
+tc
+
+
+SFO
+
+ b.1
+
+
+FOMC
+
+ sd(DMTA_0)
+
+
+DFOP
+sd(k2)
+sd(k2)
+
+
+
+HS
+
+ sd(tb)
+illparms
function, the fitted standard
+deviation of the second kinetic rate constant k2
is
+ill-defined in both DFOP fits. This suggests that different values would
+be obtained for this standard deviation when using different starting
+values.k2
from the parameter model.
+
f_saem_dfop_tc_no_ranef_k2 <- update(f_saem[["DFOP", "tc"]],
+ no_random_effect = "k2")
+
illparms(f_saem_dfop_tc_no_ranef_k2)
k2
+is a reduced version of the previous model. Therefore, the models are
+nested and can be compared using the likelihood ratio test. This is
+achieved with the argument test = TRUE
to the
+anova
function.
+
anova(f_saem[["DFOP", "tc"]], f_saem_dfop_tc_no_ranef_k2, test = TRUE) |>
+ kable(format.args = list(digits = 4))
+
+
+
+
+
+ npar
+AIC
+BIC
+Lik
+Chisq
+Df
+Pr(>Chisq)
+
+
+f_saem_dfop_tc_no_ranef_k2
+9
+663.8
+661.9
+-322.9
+NA
+NA
+NA
+
+
+
+f_saem[[“DFOP”, “tc”]]
+10
+665.5
+663.4
+-322.8
+0.2809
+1
+0.5961
+k2
. The p value of the likelihood ratio
+test is much greater than 0.05, indicating that the model with the
+higher likelihood (here the model with random effects for all
+degradation parameters f_saem[["DFOP", "tc"]]
) does not fit
+significantly better than the model with the lower likelihood (the
+reduced model f_saem_dfop_tc_no_ranef_k2
).
+
plot(f_saem_dfop_tc_no_ranef_k2)
+
summary(f_saem_dfop_tc_no_ranef_k2)
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:13 2023
+Date of summary: Thu Jan 5 08:19:13 2023
+
+Equations:
+d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 4.075 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 g
+98.759266 0.087034 0.009933 0.930827
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 g
+DMTA_0 98.76 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+g 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 663.8 661.9 -322.9
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.228939 96.285869 100.17201
+k1 0.064063 0.033477 0.09465
+k2 0.008297 0.005824 0.01077
+g 0.953821 0.914328 0.99331
+a.1 1.068479 0.869538 1.26742
+b.1 0.029424 0.022406 0.03644
+SD.DMTA_0 2.030437 0.404824 3.65605
+SD.k1 0.594692 0.256660 0.93272
+SD.g 1.006754 0.361327 1.65218
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0218
+k2 0.0556 0.0355
+g -0.0516 -0.0284 -0.2800
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 2.0304 0.4048 3.6560
+SD.k1 0.5947 0.2567 0.9327
+SD.g 1.0068 0.3613 1.6522
+
+Variance model:
+ est. lower upper
+a.1 1.06848 0.86954 1.26742
+b.1 0.02942 0.02241 0.03644
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 11.45 41.4 12.46 10.82 83.54
Alternative check of parameter identifiability
+
+illparms
function is
+based on a quadratic approximation of the likelihood surface near its
+optimum, which is calculated using the Fisher Information Matrix (FIM).
+An alternative way to check parameter identifiability based on a
+multistart approach has recently been implemented in mkin.
+
f_saem_dfop_tc_multi <- multistart(f_saem[["DFOP", "tc"]], n = 50, cores = 15)
+
par(mar = c(6.1, 4.1, 2.1, 2.1))
+parplot(f_saem_dfop_tc_multi, lpos = "bottomright", ylim = c(0.3, 10), las = 2)
k2
in the full model. The overparameterisation
+of the model also indicates a lack of identifiability of the variance of
+parameter g
.
+
f_saem_dfop_tc_no_ranef_k2_multi <- multistart(f_saem_dfop_tc_no_ranef_k2,
+ n = 50, cores = 15)
+
par(mar = c(6.1, 4.1, 2.1, 2.1))
+parplot(f_saem_dfop_tc_no_ranef_k2_multi, ylim = c(0.5, 2), las = 2,
+ lpos = "bottomright")
+
par(mar = c(6.1, 4.1, 2.1, 2.1))
+parplot(f_saem_dfop_tc_no_ranef_k2_multi, ylim = c(0.5, 2), las = 2, llquant = 0.25,
+ lpos = "bottomright")
Conclusions
+
+Appendix
+
+Hierarchical model fit listings
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:06 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - k_DMTA * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.09 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ DMTA_0 k_DMTA
+97.2953 0.0566
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k_DMTA
+DMTA_0 97.3 0
+k_DMTA 0.0 1
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 796.3 795.3 -393.2
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 97.28130 95.71113 98.8515
+k_DMTA 0.05665 0.02909 0.0842
+a.1 2.66442 2.35579 2.9731
+SD.DMTA_0 1.54776 0.15447 2.9411
+SD.k_DMTA 0.60690 0.26248 0.9513
+
+Correlation:
+ DMTA_0
+k_DMTA 0.0168
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.5478 0.1545 2.9411
+SD.k_DMTA 0.6069 0.2625 0.9513
+
+Variance model:
+ est. lower upper
+a.1 2.664 2.356 2.973
+
+Estimated disappearance times:
+ DT50 DT90
+DMTA 12.24 40.65
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:07 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - k_DMTA * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.441 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ DMTA_0 k_DMTA
+96.99175 0.05603
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k_DMTA
+DMTA_0 96.99 0
+k_DMTA 0.00 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 798.3 797.1 -393.2
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 97.271822 95.703157 98.84049
+k_DMTA 0.056638 0.029110 0.08417
+a.1 2.660081 2.230398 3.08976
+b.1 0.001665 -0.006911 0.01024
+SD.DMTA_0 1.545520 0.145035 2.94601
+SD.k_DMTA 0.606422 0.262274 0.95057
+
+Correlation:
+ DMTA_0
+k_DMTA 0.0169
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.5455 0.1450 2.9460
+SD.k_DMTA 0.6064 0.2623 0.9506
+
+Variance model:
+ est. lower upper
+a.1 2.660081 2.230398 3.08976
+b.1 0.001665 -0.006911 0.01024
+
+Estimated disappearance times:
+ DT50 DT90
+DMTA 12.24 40.65
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:06 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - (alpha/beta) * 1/((time/beta) + 1) * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.156 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ DMTA_0 alpha beta
+ 98.292 9.909 156.341
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 alpha beta
+DMTA_0 98.29 0 0
+alpha 0.00 1 0
+beta 0.00 0 1
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 734.2 732.7 -360.1
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.3435 96.9033 99.784
+alpha 7.2007 2.5889 11.812
+beta 112.8746 34.8816 190.868
+a.1 2.0459 1.8054 2.286
+SD.DMTA_0 1.4795 0.2717 2.687
+SD.alpha 0.6396 0.1509 1.128
+SD.beta 0.6874 0.1587 1.216
+
+Correlation:
+ DMTA_0 alpha
+alpha -0.1125
+beta -0.1227 0.3632
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.4795 0.2717 2.687
+SD.alpha 0.6396 0.1509 1.128
+SD.beta 0.6874 0.1587 1.216
+
+Variance model:
+ est. lower upper
+a.1 2.046 1.805 2.286
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+DMTA 11.41 42.53 12.8
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:07 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - (alpha/beta) * 1/((time/beta) + 1) * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.729 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+DMTA_0 alpha beta
+98.772 4.663 92.597
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 alpha beta
+DMTA_0 98.77 0 0
+alpha 0.00 1 0
+beta 0.00 0 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 720.4 718.8 -352.2
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.99136 97.26011 100.72261
+alpha 5.86312 2.57485 9.15138
+beta 88.55571 29.20889 147.90254
+a.1 1.51063 1.24384 1.77741
+b.1 0.02824 0.02040 0.03609
+SD.DMTA_0 1.57436 -0.04867 3.19739
+SD.alpha 0.59871 0.17132 1.02611
+SD.beta 0.72994 0.22849 1.23139
+
+Correlation:
+ DMTA_0 alpha
+alpha -0.1363
+beta -0.1414 0.2542
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.5744 -0.04867 3.197
+SD.alpha 0.5987 0.17132 1.026
+SD.beta 0.7299 0.22849 1.231
+
+Variance model:
+ est. lower upper
+a.1 1.51063 1.2438 1.77741
+b.1 0.02824 0.0204 0.03609
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+DMTA 11.11 42.6 12.82
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:07 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.007 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 g
+98.64383 0.09211 0.02999 0.76814
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 g
+DMTA_0 98.64 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+g 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 711.8 710 -346.9
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.092481 96.573898 99.61106
+k1 0.062499 0.030336 0.09466
+k2 0.009065 -0.005133 0.02326
+g 0.948967 0.862079 1.03586
+a.1 1.821671 1.604774 2.03857
+SD.DMTA_0 1.677785 0.472066 2.88350
+SD.k1 0.634962 0.270788 0.99914
+SD.k2 1.033498 -0.205994 2.27299
+SD.g 1.710046 0.428642 2.99145
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0246
+k2 0.0491 0.0953
+g -0.0552 -0.0889 -0.4795
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.678 0.4721 2.8835
+SD.k1 0.635 0.2708 0.9991
+SD.k2 1.033 -0.2060 2.2730
+SD.g 1.710 0.4286 2.9914
+
+Variance model:
+ est. lower upper
+a.1 1.822 1.605 2.039
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 11.79 42.8 12.88 11.09 76.46
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:08 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 3.033 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 g
+98.759266 0.087034 0.009933 0.930827
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 g
+DMTA_0 98.76 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+g 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 665.5 663.4 -322.8
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.377019 96.447952 100.30609
+k1 0.064843 0.034607 0.09508
+k2 0.008895 0.006368 0.01142
+g 0.949696 0.903815 0.99558
+a.1 1.065241 0.865754 1.26473
+b.1 0.029340 0.022336 0.03634
+SD.DMTA_0 2.007754 0.387982 3.62753
+SD.k1 0.580473 0.250286 0.91066
+SD.k2 0.006105 -4.920337 4.93255
+SD.g 1.097149 0.412779 1.78152
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0235
+k2 0.0595 0.0424
+g -0.0470 -0.0278 -0.2731
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 2.007754 0.3880 3.6275
+SD.k1 0.580473 0.2503 0.9107
+SD.k2 0.006105 -4.9203 4.9325
+SD.g 1.097149 0.4128 1.7815
+
+Variance model:
+ est. lower upper
+a.1 1.06524 0.86575 1.26473
+b.1 0.02934 0.02234 0.03634
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 11.36 41.32 12.44 10.69 77.92
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:07 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - ifelse(time <= tb, k1, k2) * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.004 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 tb
+97.82176 0.06931 0.02997 11.13945
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 tb
+DMTA_0 97.82 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+tb 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 714 712.1 -348
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.16102 96.47747 99.84456
+k1 0.07876 0.05261 0.10491
+k2 0.02227 0.01706 0.02747
+tb 13.99089 -7.40049 35.38228
+a.1 1.82305 1.60700 2.03910
+SD.DMTA_0 1.88413 0.56204 3.20622
+SD.k1 0.34292 0.10482 0.58102
+SD.k2 0.19851 0.01718 0.37985
+SD.tb 1.68168 0.58064 2.78272
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0142
+k2 0.0001 -0.0025
+tb 0.0165 -0.1256 -0.0301
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.8841 0.56204 3.2062
+SD.k1 0.3429 0.10482 0.5810
+SD.k2 0.1985 0.01718 0.3798
+SD.tb 1.6817 0.58064 2.7827
+
+Variance model:
+ est. lower upper
+a.1 1.823 1.607 2.039
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 8.801 67.91 20.44 8.801 31.13
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:08 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - ifelse(time <= tb, k1, k2) * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 3.287 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 tb
+98.45190 0.07525 0.02576 19.19375
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 tb
+DMTA_0 98.45 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+tb 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 667.1 665 -323.6
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 97.76570 95.81350 99.71791
+k1 0.05855 0.03080 0.08630
+k2 0.02337 0.01664 0.03010
+tb 31.09638 29.38289 32.80987
+a.1 1.08835 0.88590 1.29080
+b.1 0.02964 0.02257 0.03671
+SD.DMTA_0 2.04877 0.42607 3.67147
+SD.k1 0.59166 0.25621 0.92711
+SD.k2 0.30698 0.09561 0.51835
+SD.tb 0.01274 -0.10914 0.13462
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0160
+k2 -0.0070 -0.0024
+tb -0.0668 -0.0103 -0.2013
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 2.04877 0.42607 3.6715
+SD.k1 0.59166 0.25621 0.9271
+SD.k2 0.30698 0.09561 0.5183
+SD.tb 0.01274 -0.10914 0.1346
+
+Variance model:
+ est. lower upper
+a.1 1.08835 0.88590 1.29080
+b.1 0.02964 0.02257 0.03671
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 11.84 51.71 15.57 11.84 29.66
+
+
Hierarchical model convergence plots
+
+Session info
+
+
+R version 4.2.2 Patched (2022-11-10 r83330)
+Platform: x86_64-pc-linux-gnu (64-bit)
+Running under: Debian GNU/Linux bookworm/sid
+
+Matrix products: default
+BLAS: /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3
+LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so
+
+locale:
+ [1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C
+ [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=de_DE.UTF-8
+ [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8
+ [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
+ [9] LC_ADDRESS=C LC_TELEPHONE=C
+[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
+
+attached base packages:
+[1] parallel stats graphics grDevices utils datasets methods
+[8] base
+
+other attached packages:
+[1] saemix_3.2 npde_3.3 knitr_1.41 mkin_1.2.2
+
+loaded via a namespace (and not attached):
+ [1] deSolve_1.34 zoo_1.8-11 tidyselect_1.2.0 xfun_0.35
+ [5] bslib_0.4.2 purrr_1.0.0 lattice_0.20-45 colorspace_2.0-3
+ [9] vctrs_0.5.1 generics_0.1.3 htmltools_0.5.4 yaml_2.3.6
+[13] utf8_1.2.2 rlang_1.0.6 pkgdown_2.0.7 jquerylib_0.1.4
+[17] pillar_1.8.1 glue_1.6.2 DBI_1.1.3 lifecycle_1.0.3
+[21] stringr_1.5.0 munsell_0.5.0 gtable_0.3.1 ragg_1.2.4
+[25] codetools_0.2-18 memoise_2.0.1 evaluate_0.19 fastmap_1.1.0
+[29] lmtest_0.9-40 fansi_1.0.3 highr_0.9 scales_1.2.1
+[33] cachem_1.0.6 desc_1.4.2 jsonlite_1.8.4 systemfonts_1.0.4
+[37] fs_1.5.2 textshaping_0.3.6 gridExtra_2.3 ggplot2_3.4.0
+[41] digest_0.6.31 stringi_1.7.8 dplyr_1.0.10 grid_4.2.2
+[45] rprojroot_2.0.3 cli_3.5.0 tools_4.2.2 magrittr_2.0.3
+[49] sass_0.4.4 tibble_3.1.8 pkgconfig_2.0.3 assertthat_0.2.1
+[53] rmarkdown_2.19 R6_2.5.1 mclust_6.0.0 nlme_3.1-161
+[57] compiler_4.2.2
All vignettes
- @Manual{,
title = {mkin: Kinetic Evaluation of Chemical Degradation Data},
author = {Johannes Ranke},
- year = {2022},
+ year = {2023},
note = {R package version 1.2.2},
url = {https://pkgdown.jrwb.de/mkin/},
}
@@ -136,7 +136,7 @@ R package version 1.2.2, https://pkgdown
diff --git a/docs/dev/index.html b/docs/dev/index.html
index 4723879e..993b8eea 100644
--- a/docs/dev/index.html
+++ b/docs/dev/index.html
@@ -19,11 +19,11 @@
equation models are solved using automatically generated C functions.
Heteroscedasticity can be taken into account using variance by variable or
two-component error models as described by Ranke and Meinecke (2018)
- <doi:10.3390/environments6120124>. Interfaces to several nonlinear
- mixed-effects model packages are available, some of which are described by
- Ranke et al. (2021) <doi:10.3390/environments8080071>. Please note that no
- warranty is implied for correctness of results or fitness for a particular
- purpose.">
+ <doi:10.3390/environments6120124>. Hierarchical degradation models can
+ be fitted using nonlinear mixed-effects model packages as a backend as
+ described by Ranke et al. (2021) <doi:10.3390/environments8080071>. Please
+ note that no warranty is implied for correctness of results or fitness for a
+ particular purpose.">
hierarchical_kinetics(..., keep_tex = FALSE)
Arguments
+ rmarkdown::pdf_document
Value
+
+
+render
Create and work with nonlinear hierarchical models
Hierarchical kinetics template
Read datasets and relevant meta information from a spreadsheet file
Wrap the output of a summary function in tex listing environment
Display the output of a summary function according to the output format
mkinsub()
has an argument to
, specifying names of
variables to which a transfer is to be assumed in the model.
If the argument use_of_ff
is set to "min"
-(default) and the model for the compartment is "SFO" or "SFORB", an
+and the model for the compartment is "SFO" or "SFORB", an
additional mkinsub()
argument can be sink = FALSE
, effectively
fixing the flux to sink to zero.
In print.mkinmod, this argument is currently not used.
@@ -247,7 +247,7 @@ in the FOCUS and NAFTA guidance documents are used.
For kinetic models with more than one observed variable, a symbolic solution of the system of differential equations is included in the resulting mkinmod object in some cases, speeding up the solution.
-If a C compiler is found by pkgbuild::has_compiler()
and there
+
If a C compiler is found by pkgbuild::has_compiler()
and there
is more than one observed variable in the specification, C code is generated
for evaluating the differential equations, compiled using
inline::cfunction()
and added to the resulting mkinmod object.
R/summary_listing.R
+ summary_listing.Rd
This function is intended for use in a R markdown code chunk with the chunk
+option results = "asis"
.
summary_listing(object, caption = NULL, label = NULL, clearpage = TRUE)
+
+tex_listing(object, caption = NULL, label = NULL, clearpage = TRUE)
+
+html_listing(object, caption = NULL)
The object for which the summary is to be listed
An optional caption
An optional label, ignored in html output
Should a new page be started after the listing? Ignored in html output
vignettes/prebuilt/2022_cyan_pathway.rmd
+ 2022_cyan_pathway.rmd
The purpose of this document is to test demonstrate how nonlinear +hierarchical models (NLHM) based on the parent degradation models SFO, +FOMC, DFOP and HS, with serial formation of two or more metabolites can +be fitted with the mkin package.
+It was assembled in the course of work package 1.2 of Project Number +173340 (Application of nonlinear hierarchical models to the kinetic +evaluation of chemical degradation data) of the German Environment +Agency carried out in 2022 and 2023.
+The mkin package is used in version 1.2.2 which is currently under
+development. The newly introduced functionality that is used here is a
+simplification of excluding random effects for a set of fits based on a
+related set of fits with a reduced model, and the documentation of the
+starting parameters of the fit, so that all starting parameters of
+saem
fits are now listed in the summary. The
+saemix
package is used as a backend for fitting the NLHM,
+but is also loaded to make the convergence plot function available.
This document is processed with the knitr
package, which
+also provides the kable
function that is used to improve
+the display of tabular data in R markdown documents. For parallel
+processing, the parallel
package is used.
+library(mkin)
+library(knitr)
+library(saemix)
+library(parallel)
+n_cores <- detectCores()
+if (Sys.info()["sysname"] == "Windows") {
+ cl <- makePSOCKcluster(n_cores)
+} else {
+ cl <- makeForkCluster(n_cores)
+}
The example data are taken from the final addendum to the DAR from
+2014 and are distributed with the mkin package. Residue data and time
+step normalisation factors are read in using the function
+read_spreadsheet
from the mkin package. This function also
+performs the time step normalisation.
+data_file <- system.file(
+ "testdata", "cyantraniliprole_soil_efsa_2014.xlsx",
+ package = "mkin")
+cyan_ds <- read_spreadsheet(data_file, parent_only = FALSE)
The following tables show the covariate data and the 5 datasets that +were read in from the spreadsheet file.
+ ++ | pH | +
---|---|
Nambsheim | +7.90 | +
Tama | +6.20 | +
Gross-Umstadt | +7.04 | +
Sassafras | +4.62 | +
Lleida | +8.05 | +
+for (ds_name in names(cyan_ds)) {
+ print(
+ kable(mkin_long_to_wide(cyan_ds[[ds_name]]),
+ caption = paste("Dataset", ds_name),
+ booktabs = TRUE, row.names = FALSE))
+ cat("\n\\clearpage\n")
+}
time | +cyan | +JCZ38 | +J9C38 | +JSE76 | +J9Z38 | +
---|---|---|---|---|---|
0.000000 | +105.79 | +NA | +NA | +NA | +NA | +
3.210424 | +77.26 | +7.92 | +11.94 | +5.58 | +9.12 | +
7.490988 | +57.13 | +15.46 | +16.58 | +12.59 | +11.74 | +
17.122259 | +37.74 | +15.98 | +13.36 | +26.05 | +10.77 | +
23.543105 | +31.47 | +6.05 | +14.49 | +34.71 | +4.96 | +
43.875788 | +16.74 | +6.07 | +7.57 | +40.38 | +6.52 | +
67.418893 | +8.85 | +10.34 | +6.39 | +30.71 | +8.90 | +
107.014116 | +5.19 | +9.61 | +1.95 | +20.41 | +12.93 | +
129.487080 | +3.45 | +6.18 | +1.36 | +21.78 | +6.99 | +
195.835832 | +2.15 | +9.13 | +0.95 | +16.29 | +7.69 | +
254.693596 | +1.92 | +6.92 | +0.20 | +13.57 | +7.16 | +
321.042348 | +2.26 | +7.02 | +NA | +11.12 | +8.66 | +
383.110535 | +NA | +5.05 | +NA | +10.64 | +5.56 | +
0.000000 | +105.57 | +NA | +NA | +NA | +NA | +
3.210424 | +78.88 | +12.77 | +11.94 | +5.47 | +9.12 | +
7.490988 | +59.94 | +15.27 | +16.58 | +13.60 | +11.74 | +
17.122259 | +39.67 | +14.26 | +13.36 | +29.44 | +10.77 | +
23.543105 | +30.21 | +16.07 | +14.49 | +35.90 | +4.96 | +
43.875788 | +18.06 | +9.44 | +7.57 | +42.30 | +6.52 | +
67.418893 | +8.54 | +5.78 | +6.39 | +34.70 | +8.90 | +
107.014116 | +7.26 | +4.54 | +1.95 | +23.33 | +12.93 | +
129.487080 | +3.60 | +4.22 | +1.36 | +23.56 | +6.99 | +
195.835832 | +2.84 | +3.05 | +0.95 | +16.21 | +7.69 | +
254.693596 | +2.00 | +2.90 | +0.20 | +15.53 | +7.16 | +
321.042348 | +1.79 | +0.94 | +NA | +9.80 | +8.66 | +
383.110535 | +NA | +1.82 | +NA | +9.49 | +5.56 | +
time | +cyan | +JCZ38 | +J9Z38 | +JSE76 | +
---|---|---|---|---|
0.000000 | +106.14 | +NA | +NA | +NA | +
2.400833 | +93.47 | +6.46 | +2.85 | +NA | +
5.601943 | +88.39 | +10.86 | +4.65 | +3.85 | +
12.804442 | +72.29 | +11.97 | +4.91 | +11.24 | +
17.606108 | +65.79 | +13.11 | +6.63 | +13.79 | +
32.811382 | +53.16 | +11.24 | +8.90 | +23.40 | +
50.417490 | +44.01 | +11.34 | +9.98 | +29.56 | +
80.027761 | +33.23 | +8.82 | +11.31 | +35.63 | +
96.833591 | +40.68 | +5.94 | +8.32 | +29.09 | +
146.450803 | +20.65 | +4.49 | +8.72 | +36.88 | +
190.466072 | +17.71 | +4.66 | +11.10 | +40.97 | +
240.083284 | +14.86 | +2.27 | +11.62 | +40.11 | +
286.499386 | +12.02 | +NA | +10.73 | +42.58 | +
0.000000 | +109.11 | +NA | +NA | +NA | +
2.400833 | +96.84 | +5.52 | +2.04 | +2.02 | +
5.601943 | +85.29 | +9.65 | +2.99 | +4.39 | +
12.804442 | +73.68 | +12.48 | +5.05 | +11.47 | +
17.606108 | +64.89 | +12.44 | +6.29 | +15.00 | +
32.811382 | +52.27 | +10.86 | +7.65 | +23.30 | +
50.417490 | +42.61 | +10.54 | +9.37 | +31.06 | +
80.027761 | +34.29 | +10.02 | +9.04 | +37.87 | +
96.833591 | +30.50 | +6.34 | +8.14 | +33.97 | +
146.450803 | +19.21 | +6.29 | +8.52 | +26.15 | +
190.466072 | +17.55 | +5.81 | +9.89 | +32.08 | +
240.083284 | +13.22 | +5.99 | +10.79 | +40.66 | +
286.499386 | +11.09 | +6.05 | +8.82 | +42.90 | +
time | +cyan | +JCZ38 | +J9Z38 | +JSE76 | +
---|---|---|---|---|
0.0000000 | +103.03 | +NA | +NA | +NA | +
2.1014681 | +87.85 | +4.79 | +3.26 | +0.62 | +
4.9034255 | +77.35 | +8.05 | +9.89 | +1.32 | +
10.5073404 | +69.33 | +9.74 | +12.32 | +4.74 | +
21.0146807 | +55.65 | +14.57 | +13.59 | +9.84 | +
31.5220211 | +49.03 | +14.66 | +16.71 | +12.32 | +
42.0293615 | +41.86 | +15.97 | +13.64 | +15.53 | +
63.0440422 | +34.88 | +18.20 | +14.12 | +22.02 | +
84.0587230 | +28.26 | +15.64 | +14.06 | +25.60 | +
0.0000000 | +104.05 | +NA | +NA | +NA | +
2.1014681 | +85.25 | +2.68 | +7.32 | +0.69 | +
4.9034255 | +77.22 | +7.28 | +8.37 | +1.45 | +
10.5073404 | +65.23 | +10.73 | +10.93 | +4.74 | +
21.0146807 | +57.78 | +12.29 | +14.80 | +9.05 | +
31.5220211 | +54.83 | +14.05 | +12.01 | +11.05 | +
42.0293615 | +45.17 | +12.12 | +17.89 | +15.71 | +
63.0440422 | +34.83 | +12.90 | +15.86 | +22.52 | +
84.0587230 | +26.59 | +14.28 | +14.91 | +28.48 | +
0.0000000 | +104.62 | +NA | +NA | +NA | +
0.8145225 | +97.21 | +NA | +4.00 | +NA | +
1.9005525 | +89.64 | +3.59 | +5.24 | +NA | +
4.0726125 | +87.90 | +4.10 | +9.58 | +NA | +
8.1452251 | +86.90 | +5.96 | +9.45 | +NA | +
12.2178376 | +74.74 | +7.83 | +15.03 | +5.33 | +
16.2904502 | +74.13 | +8.84 | +14.41 | +5.10 | +
24.4356753 | +65.26 | +11.84 | +18.33 | +6.71 | +
32.5809004 | +57.70 | +12.74 | +19.93 | +9.74 | +
0.0000000 | +101.94 | +NA | +NA | +NA | +
0.8145225 | +99.94 | +NA | +NA | +NA | +
1.9005525 | +94.87 | +NA | +4.56 | +NA | +
4.0726125 | +86.96 | +6.75 | +6.90 | +NA | +
8.1452251 | +80.51 | +10.68 | +7.43 | +2.58 | +
12.2178376 | +78.38 | +10.35 | +9.46 | +3.69 | +
16.2904502 | +70.05 | +13.73 | +9.27 | +7.18 | +
24.4356753 | +61.28 | +12.57 | +13.28 | +13.19 | +
32.5809004 | +52.85 | +12.67 | +12.95 | +13.69 | +
time | +cyan | +JCZ38 | +J9Z38 | +JSE76 | +
---|---|---|---|---|
0.000000 | +102.17 | +NA | +NA | +NA | +
2.216719 | +95.49 | +1.11 | +0.10 | +0.83 | +
5.172343 | +83.35 | +6.43 | +2.89 | +3.30 | +
11.083593 | +78.18 | +10.00 | +5.59 | +0.81 | +
22.167186 | +70.44 | +17.21 | +4.23 | +1.09 | +
33.250779 | +68.00 | +20.45 | +5.86 | +1.17 | +
44.334371 | +59.64 | +24.64 | +3.17 | +2.72 | +
66.501557 | +50.73 | +27.50 | +6.19 | +1.27 | +
88.668742 | +45.65 | +32.77 | +5.69 | +4.54 | +
0.000000 | +100.43 | +NA | +NA | +NA | +
2.216719 | +95.34 | +3.21 | +0.14 | +0.46 | +
5.172343 | +84.38 | +5.73 | +4.75 | +0.62 | +
11.083593 | +78.50 | +11.89 | +3.99 | +0.73 | +
22.167186 | +71.17 | +17.28 | +4.39 | +0.66 | +
33.250779 | +59.41 | +18.73 | +11.85 | +2.65 | +
44.334371 | +64.57 | +22.93 | +5.13 | +2.01 | +
66.501557 | +49.08 | +33.39 | +5.67 | +3.63 | +
88.668742 | +40.41 | +39.60 | +5.93 | +6.17 | +
time | +cyan | +JCZ38 | +J9Z38 | +JSE76 | +
---|---|---|---|---|
0.000000 | +102.71 | +NA | +NA | +NA | +
2.821051 | +79.11 | +5.70 | +8.07 | +0.97 | +
6.582451 | +70.03 | +7.17 | +11.31 | +4.72 | +
14.105253 | +50.93 | +10.25 | +14.84 | +9.95 | +
28.210505 | +33.43 | +10.40 | +14.82 | +24.06 | +
42.315758 | +24.69 | +9.75 | +16.38 | +29.38 | +
56.421010 | +22.99 | +10.06 | +15.51 | +29.25 | +
84.631516 | +14.63 | +5.63 | +14.74 | +31.04 | +
112.842021 | +12.43 | +4.17 | +13.53 | +33.28 | +
0.000000 | +99.31 | +NA | +NA | +NA | +
2.821051 | +82.07 | +6.55 | +5.60 | +1.12 | +
6.582451 | +70.65 | +7.61 | +8.01 | +3.21 | +
14.105253 | +53.52 | +11.48 | +10.82 | +12.24 | +
28.210505 | +35.60 | +11.19 | +15.43 | +23.53 | +
42.315758 | +34.26 | +11.09 | +13.26 | +27.42 | +
56.421010 | +21.79 | +4.80 | +18.30 | +30.20 | +
84.631516 | +14.06 | +6.30 | +16.35 | +32.32 | +
112.842021 | +11.51 | +5.57 | +12.64 | +32.51 | +
As the pathway fits have very long run times, evaluations of the +parent data are performed first, in order to determine for each +hierarchical parent degradation model which random effects on the +degradation model parameters are ill-defined.
+
+cyan_sep_const <- mmkin(c("SFO", "FOMC", "DFOP", "SFORB", "HS"),
+ cyan_ds, quiet = TRUE, cores = n_cores)
+cyan_sep_tc <- update(cyan_sep_const, error_model = "tc")
+cyan_saem_full <- mhmkin(list(cyan_sep_const, cyan_sep_tc))
+status(cyan_saem_full) |> kable()
+ | const | +tc | +
---|---|---|
SFO | +OK | +OK | +
FOMC | +OK | +OK | +
DFOP | +OK | +OK | +
SFORB | +OK | +OK | +
HS | +OK | +OK | +
All fits converged successfully.
+ ++ | const | +tc | +
---|---|---|
SFO | +sd(cyan_0) | +sd(cyan_0) | +
FOMC | +sd(log_beta) | +sd(cyan_0) | +
DFOP | +sd(cyan_0) | +sd(cyan_0), sd(log_k1) | +
SFORB | +sd(cyan_free_0) | +sd(cyan_free_0), sd(log_k_cyan_free_bound) | +
HS | +sd(cyan_0) | +sd(cyan_0) | +
In almost all models, the random effect for the initial concentration +of the parent compound is ill-defined. For the biexponential models DFOP +and SFORB, the random effect of one additional parameter is ill-defined +when the two-component error model is used.
+ ++ | npar | +AIC | +BIC | +Lik | +
---|---|---|---|---|
SFO const | +5 | +833.9 | +832.0 | +-412.0 | +
SFO tc | +6 | +831.6 | +829.3 | +-409.8 | +
FOMC const | +7 | +709.1 | +706.4 | +-347.6 | +
FOMC tc | +8 | +689.2 | +686.1 | +-336.6 | +
DFOP const | +9 | +703.0 | +699.5 | +-342.5 | +
SFORB const | +9 | +701.3 | +697.8 | +-341.7 | +
HS const | +9 | +718.6 | +715.1 | +-350.3 | +
DFOP tc | +10 | +703.1 | +699.2 | +-341.6 | +
SFORB tc | +10 | +700.1 | +696.2 | +-340.1 | +
HS tc | +10 | +716.7 | +712.8 | +-348.3 | +
Model comparison based on AIC and BIC indicates that the +two-component error model is preferable for all parent models with the +exception of DFOP. The lowest AIC and BIC values are are obtained with +the FOMC model, followed by SFORB and DFOP.
+To test the technical feasibility of coupling the relevant parent
+degradation models with different transformation pathway models, a list
+of mkinmod
models is set up below. As in the EU evaluation,
+parallel formation of metabolites JCZ38 and J9Z38 and secondary
+formation of metabolite JSE76 from JCZ38 is used.
+if (!dir.exists("cyan_dlls")) dir.create("cyan_dlls")
+cyan_path_1 <- list(
+ sfo_path_1 = mkinmod(
+ cyan = mkinsub("SFO", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO"), quiet = TRUE,
+ name = "sfo_path_1", dll_dir = "cyan_dlls", overwrite = TRUE),
+ fomc_path_1 = mkinmod(
+ cyan = mkinsub("FOMC", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO"), quiet = TRUE,
+ name = "fomc_path_1", dll_dir = "cyan_dlls", overwrite = TRUE),
+ dfop_path_1 = mkinmod(
+ cyan = mkinsub("DFOP", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO"), quiet = TRUE,
+ name = "dfop_path_1", dll_dir = "cyan_dlls", overwrite = TRUE),
+ sforb_path_1 = mkinmod(
+ cyan = mkinsub("SFORB", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO"), quiet = TRUE,
+ name = "sforb_path_1", dll_dir = "cyan_dlls", overwrite = TRUE),
+ hs_path_1 = mkinmod(
+ cyan = mkinsub("HS", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO"), quiet = TRUE,
+ name = "hs_path_1", dll_dir = "cyan_dlls", overwrite = TRUE)
+)
To obtain suitable starting values for the NLHM fits, separate +pathway fits are performed for all datasets.
+
+f_sep_1_const <- mmkin(
+ cyan_path_1,
+ cyan_ds,
+ error_model = "const",
+ cluster = cl,
+ quiet = TRUE)
+status(f_sep_1_const) |> kable()
+ | Nambsheim | +Tama | +Gross-Umstadt | +Sassafras | +Lleida | +
---|---|---|---|---|---|
sfo_path_1 | +OK | +OK | +OK | +OK | +OK | +
fomc_path_1 | +OK | +OK | +OK | +OK | +OK | +
dfop_path_1 | +OK | +OK | +OK | +OK | +OK | +
sforb_path_1 | +OK | +OK | +OK | +OK | +OK | +
hs_path_1 | +C | +C | +C | +C | +C | +
+ | Nambsheim | +Tama | +Gross-Umstadt | +Sassafras | +Lleida | +
---|---|---|---|---|---|
sfo_path_1 | +OK | +OK | +OK | +OK | +OK | +
fomc_path_1 | +OK | +OK | +OK | +OK | +C | +
dfop_path_1 | +OK | +OK | +OK | +OK | +OK | +
sforb_path_1 | +OK | +C | +OK | +OK | +OK | +
hs_path_1 | +C | +OK | +C | +OK | +OK | +
Most separate fits converged successfully. The biggest convergence +problems are seen when using the HS model with constant variance.
+For the hierarchical pathway fits, those random effects that could +not be quantified in the corresponding parent data analyses are +excluded.
+In the code below, the output of the illparms
function
+for the parent only fits is used as an argument
+no_random_effect
to the mhmkin
function. The
+possibility to do so was introduced in mkin version 1.2.2
+which is currently under development.
+f_saem_1 <- mhmkin(list(f_sep_1_const, f_sep_1_tc),
+ no_random_effect = illparms(cyan_saem_full),
+ cluster = cl)
+ | const | +tc | +
---|---|---|
sfo_path_1 | +Fth, FO | +Fth, FO | +
fomc_path_1 | +OK | +Fth, FO | +
dfop_path_1 | +Fth, FO | +Fth, FO | +
sforb_path_1 | +Fth, FO | +Fth, FO | +
hs_path_1 | +Fth, FO | +Fth, FO | +
The status information from the individual fits shows that all fits
+completed successfully. The matrix entries Fth and FO indicate that the
+Fisher Information Matrix could not be inverted for the fixed effects
+(theta) and the random effects (Omega), respectively. For the affected
+fits, ill-defined parameters cannot be determined using the
+illparms
function, because it relies on the Fisher
+Information Matrix.
+ | const | +tc | +
---|---|---|
sfo_path_1 | +NA | +NA | +
fomc_path_1 | +sd(log_k_J9Z38), sd(f_cyan_ilr_2), +sd(f_JCZ38_qlogis) | +NA | +
dfop_path_1 | +NA | +NA | +
sforb_path_1 | +NA | +NA | +
hs_path_1 | +NA | +NA | +
The model comparison below suggests that the pathway fits using DFOP +or SFORB for the parent compound provide the best fit.
+ ++ | npar | +AIC | +BIC | +Lik | +
---|---|---|---|---|
sfo_path_1 const | +16 | +2692.8 | +2686.6 | +-1330.4 | +
sfo_path_1 tc | +17 | +2657.7 | +2651.1 | +-1311.9 | +
fomc_path_1 const | +18 | +2427.8 | +2420.8 | +-1195.9 | +
fomc_path_1 tc | +19 | +2423.4 | +2416.0 | +-1192.7 | +
dfop_path_1 const | +20 | +2403.2 | +2395.4 | +-1181.6 | +
sforb_path_1 const | +20 | +2401.4 | +2393.6 | +-1180.7 | +
hs_path_1 const | +20 | +2427.3 | +2419.5 | +-1193.7 | +
dfop_path_1 tc | +20 | +2398.0 | +2390.2 | +-1179.0 | +
sforb_path_1 tc | +20 | +2399.8 | +2392.0 | +-1179.9 | +
hs_path_1 tc | +21 | +2422.3 | +2414.1 | +-1190.2 | +
For these two parent model, successful fits are shown below. Plots of +the fits with the other parent models are shown in the Appendix.
+
+plot(f_saem_1[["dfop_path_1", "tc"]])
+DFOP pathway fit with two-component error +
+
+plot(f_saem_1[["sforb_path_1", "tc"]])
+SFORB pathway fit with two-component error +
+A closer graphical analysis of these Figures shows that the residues +of transformation product JCZ38 in the soils Tama and Nambsheim observed +at later time points are strongly and systematically underestimated.
+To improve the fit for JCZ38, a back-reaction from JSE76 to JCZ38 was +introduced in an alternative version of the transformation pathway, in +analogy to the back-reaction from K5A78 to K5A77. Both pairs of +transformation products are pairs of an organic acid with its +corresponding amide (Addendum 2014, p. 109). As FOMC provided the best +fit for the parent, and the biexponential models DFOP and SFORB provided +the best initial pathway fits, these three parent models are used in the +alternative pathway fits.
+
+cyan_path_2 <- list(
+ fomc_path_2 = mkinmod(
+ cyan = mkinsub("FOMC", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO", "JCZ38"),
+ name = "fomc_path_2", quiet = TRUE,
+ dll_dir = "cyan_dlls",
+ overwrite = TRUE
+ ),
+ dfop_path_2 = mkinmod(
+ cyan = mkinsub("DFOP", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO", "JCZ38"),
+ name = "dfop_path_2", quiet = TRUE,
+ dll_dir = "cyan_dlls",
+ overwrite = TRUE
+ ),
+ sforb_path_2 = mkinmod(
+ cyan = mkinsub("SFORB", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO", "JCZ38"),
+ name = "sforb_path_2", quiet = TRUE,
+ dll_dir = "cyan_dlls",
+ overwrite = TRUE
+ )
+)
+f_sep_2_const <- mmkin(
+ cyan_path_2,
+ cyan_ds,
+ error_model = "const",
+ cluster = cl,
+ quiet = TRUE)
+
+status(f_sep_2_const) |> kable()
+ | Nambsheim | +Tama | +Gross-Umstadt | +Sassafras | +Lleida | +
---|---|---|---|---|---|
fomc_path_2 | +OK | +OK | +OK | +C | +OK | +
dfop_path_2 | +OK | +OK | +OK | +C | +OK | +
sforb_path_2 | +OK | +OK | +OK | +C | +OK | +
Using constant variance, separate fits converge with the exception of +the fits to the Sassafras soil data.
+ ++ | Nambsheim | +Tama | +Gross-Umstadt | +Sassafras | +Lleida | +
---|---|---|---|---|---|
fomc_path_2 | +OK | +C | +OK | +C | +OK | +
dfop_path_2 | +OK | +OK | +OK | +C | +OK | +
sforb_path_2 | +OK | +OK | +OK | +OK | +OK | +
Using the two-component error model, all separate fits converge with +the exception of the alternative pathway fit with DFOP used for the +parent and the Sassafras dataset.
+
+f_saem_2 <- mhmkin(list(f_sep_2_const, f_sep_2_tc),
+ no_random_effect = illparms(cyan_saem_full[2:4, ]),
+ cluster = cl)
+ | const | +tc | +
---|---|---|
fomc_path_2 | +OK | +FO | +
dfop_path_2 | +OK | +OK | +
sforb_path_2 | +OK | +OK | +
The hierarchical fits for the alternative pathway completed +successfully.
+ ++ | const | +tc | +
---|---|---|
fomc_path_2 | +sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis) | +NA | +
dfop_path_2 | +sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis) | +sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis) | +
sforb_path_2 | +sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis) | +sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis) | +
In both fits, the random effects for the formation fractions for the +pathways from JCZ38 to JSE76, and for the reverse pathway from JSE76 to +JCZ38 are ill-defined.
+ ++ | npar | +AIC | +BIC | +Lik | +
---|---|---|---|---|
fomc_path_2 const | +20 | +2308.3 | +2300.5 | +-1134.2 | +
fomc_path_2 tc | +21 | +2248.3 | +2240.1 | +-1103.2 | +
dfop_path_2 const | +22 | +2289.6 | +2281.0 | +-1122.8 | +
sforb_path_2 const | +22 | +2284.1 | +2275.5 | +-1120.0 | +
dfop_path_2 tc | +22 | +2234.4 | +2225.8 | +-1095.2 | +
sforb_path_2 tc | +22 | +2240.4 | +2231.8 | +-1098.2 | +
The variants using the biexponential models DFOP and SFORB for the +parent compound and the two-component error model give the lowest AIC +and BIC values and are plotted below. Compared with the original +pathway, the AIC and BIC values indicate a large improvement. This is +confirmed by the plots, which show that the metabolite JCZ38 is fitted +much better with this model.
+
+plot(f_saem_2[["fomc_path_2", "tc"]])
+FOMC pathway fit with two-component error, alternative pathway +
+
+plot(f_saem_2[["dfop_path_2", "tc"]])
+DFOP pathway fit with two-component error, alternative pathway +
+
+plot(f_saem_2[["sforb_path_2", "tc"]])
+SFORB pathway fit with two-component error, alternative pathway +
+All ill-defined random effects that were identified in the parent
+only fits and in the above pathway fits, are excluded for the final
+evaluations below. For this purpose, a list of character vectors is
+created below that can be indexed by row and column indices, and which
+contains the degradation parameter names for which random effects should
+be excluded for each of the hierarchical fits contained in
+f_saem_2
.
+no_ranef <- matrix(list(), nrow = 3, ncol = 2, dimnames = dimnames(f_saem_2))
+no_ranef[["fomc_path_2", "const"]] <- c("log_beta", "f_JCZ38_qlogis", "f_JSE76_qlogis")
+no_ranef[["fomc_path_2", "tc"]] <- c("cyan_0", "f_JCZ38_qlogis", "f_JSE76_qlogis")
+no_ranef[["dfop_path_2", "const"]] <- c("cyan_0", "f_JCZ38_qlogis", "f_JSE76_qlogis")
+no_ranef[["dfop_path_2", "tc"]] <- c("cyan_0", "log_k1", "f_JCZ38_qlogis", "f_JSE76_qlogis")
+no_ranef[["sforb_path_2", "const"]] <- c("cyan_free_0",
+ "f_JCZ38_qlogis", "f_JSE76_qlogis")
+no_ranef[["sforb_path_2", "tc"]] <- c("cyan_free_0", "log_k_cyan_free_bound",
+ "f_JCZ38_qlogis", "f_JSE76_qlogis")
+clusterExport(cl, "no_ranef")
+
+f_saem_3 <- update(f_saem_2,
+ no_random_effect = no_ranef,
+ cluster = cl)
+ | const | +tc | +
---|---|---|
fomc_path_2 | +E | +Fth | +
dfop_path_2 | +Fth | +Fth | +
sforb_path_2 | +Fth | +Fth | +
With the exception of the FOMC pathway fit with constant variance, +all updated fits completed successfully. However, the Fisher Information +Matrix for the fixed effects (Fth) could not be inverted, so no +confidence intervals for the optimised parameters are available.
+ ++ | const | +tc | +
---|---|---|
fomc_path_2 | +E | ++ |
dfop_path_2 | ++ | + |
sforb_path_2 | ++ | + |
+ | npar | +AIC | +BIC | +Lik | +
---|---|---|---|---|
fomc_path_2 tc | +19 | +2250.9 | +2243.5 | +-1106.5 | +
dfop_path_2 const | +20 | +2281.7 | +2273.9 | +-1120.8 | +
sforb_path_2 const | +20 | +2279.5 | +2271.7 | +-1119.7 | +
dfop_path_2 tc | +20 | +2231.5 | +2223.7 | +-1095.8 | +
sforb_path_2 tc | +20 | +2235.7 | +2227.9 | +-1097.9 | +
While the AIC and BIC values of the best fit (DFOP pathway fit with +two-component error) are lower than in the previous fits with the +alternative pathway, the practical value of these refined evaluations is +limited as no confidence intervals are obtained.
+It was demonstrated that a relatively complex transformation pathway +with parallel formation of two primary metabolites and one secondary +metabolite can be fitted even if the data in the individual datasets are +quite different and partly only cover the formation phase.
+The run times of the pathway fits were several hours, limiting the +practical feasibility of iterative refinements based on ill-defined +parameters and of alternative checks of parameter identifiability based +on multistart runs.
+The helpful comments by Janina Wöltjen of the German Environment +Agency are gratefully acknowledged.
+
+plot(f_saem_1[["sfo_path_1", "tc"]])
+SFO pathway fit with two-component error +
+
+plot(f_saem_1[["fomc_path_1", "tc"]])
+FOMC pathway fit with two-component error +
+
+plot(f_saem_1[["sforb_path_1", "tc"]])
+HS pathway fit with two-component error +
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:07:38 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - k_cyan * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * k_cyan * cyan - k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * k_cyan * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1088.473 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+ 95.3304 -3.8459 -3.1305 -5.0678 -5.3196
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
+ 0.8158 22.5404 10.4289
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_0 4.797 0.0000 0.000 0.000 0.0000
+log_k_cyan 0.000 0.9619 0.000 0.000 0.0000
+log_k_JCZ38 0.000 0.0000 2.139 0.000 0.0000
+log_k_J9Z38 0.000 0.0000 0.000 1.639 0.0000
+log_k_JSE76 0.000 0.0000 0.000 0.000 0.7894
+f_cyan_ilr_1 0.000 0.0000 0.000 0.000 0.0000
+f_cyan_ilr_2 0.000 0.0000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.000 0.0000
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
+cyan_0 0.0000 0.000 0.00
+log_k_cyan 0.0000 0.000 0.00
+log_k_JCZ38 0.0000 0.000 0.00
+log_k_J9Z38 0.0000 0.000 0.00
+log_k_JSE76 0.0000 0.000 0.00
+f_cyan_ilr_1 0.7714 0.000 0.00
+f_cyan_ilr_2 0.0000 8.684 0.00
+f_JCZ38_qlogis 0.0000 0.000 13.48
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2693 2687 -1330
+
+Optimised parameters:
+ est. lower upper
+cyan_0 95.0946 NA NA
+log_k_cyan -3.8544 NA NA
+log_k_JCZ38 -3.0402 NA NA
+log_k_J9Z38 -5.0109 NA NA
+log_k_JSE76 -5.2857 NA NA
+f_cyan_ilr_1 0.8069 NA NA
+f_cyan_ilr_2 16.6623 NA NA
+f_JCZ38_qlogis 1.3602 NA NA
+a.1 4.8326 NA NA
+SD.log_k_cyan 0.5842 NA NA
+SD.log_k_JCZ38 1.2680 NA NA
+SD.log_k_J9Z38 0.3626 NA NA
+SD.log_k_JSE76 0.5244 NA NA
+SD.f_cyan_ilr_1 0.2752 NA NA
+SD.f_cyan_ilr_2 2.3556 NA NA
+SD.f_JCZ38_qlogis 0.2400 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan 0.5842 NA NA
+SD.log_k_JCZ38 1.2680 NA NA
+SD.log_k_J9Z38 0.3626 NA NA
+SD.log_k_JSE76 0.5244 NA NA
+SD.f_cyan_ilr_1 0.2752 NA NA
+SD.f_cyan_ilr_2 2.3556 NA NA
+SD.f_JCZ38_qlogis 0.2400 NA NA
+
+Variance model:
+ est. lower upper
+a.1 4.833 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 95.094581 NA NA
+k_cyan 0.021186 NA NA
+k_JCZ38 0.047825 NA NA
+k_J9Z38 0.006665 NA NA
+k_JSE76 0.005063 NA NA
+f_cyan_to_JCZ38 0.757885 NA NA
+f_cyan_to_J9Z38 0.242115 NA NA
+f_JCZ38_to_JSE76 0.795792 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 7.579e-01
+cyan_J9Z38 2.421e-01
+cyan_sink 5.877e-10
+JCZ38_JSE76 7.958e-01
+JCZ38_sink 2.042e-01
+
+Estimated disappearance times:
+ DT50 DT90
+cyan 32.72 108.68
+JCZ38 14.49 48.15
+J9Z38 103.99 345.46
+JSE76 136.90 454.76
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:08:17 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - k_cyan * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * k_cyan * cyan - k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * k_cyan * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1127.552 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+ 96.0039 -3.8907 -3.1276 -5.0069 -4.9367
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
+ 0.7937 20.0030 15.1336
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_0 4.859 0.000 0.00 0.00 0.0000
+log_k_cyan 0.000 0.962 0.00 0.00 0.0000
+log_k_JCZ38 0.000 0.000 2.04 0.00 0.0000
+log_k_J9Z38 0.000 0.000 0.00 1.72 0.0000
+log_k_JSE76 0.000 0.000 0.00 0.00 0.9076
+f_cyan_ilr_1 0.000 0.000 0.00 0.00 0.0000
+f_cyan_ilr_2 0.000 0.000 0.00 0.00 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.00 0.00 0.0000
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
+cyan_0 0.0000 0.000 0.00
+log_k_cyan 0.0000 0.000 0.00
+log_k_JCZ38 0.0000 0.000 0.00
+log_k_J9Z38 0.0000 0.000 0.00
+log_k_JSE76 0.0000 0.000 0.00
+f_cyan_ilr_1 0.7598 0.000 0.00
+f_cyan_ilr_2 0.0000 7.334 0.00
+f_JCZ38_qlogis 0.0000 0.000 11.78
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2658 2651 -1312
+
+Optimised parameters:
+ est. lower upper
+cyan_0 94.72923 NA NA
+log_k_cyan -3.91670 NA NA
+log_k_JCZ38 -3.12917 NA NA
+log_k_J9Z38 -5.06070 NA NA
+log_k_JSE76 -5.09254 NA NA
+f_cyan_ilr_1 0.81116 NA NA
+f_cyan_ilr_2 39.97850 NA NA
+f_JCZ38_qlogis 3.09728 NA NA
+a.1 3.95044 NA NA
+b.1 0.07998 NA NA
+SD.log_k_cyan 0.58855 NA NA
+SD.log_k_JCZ38 1.29753 NA NA
+SD.log_k_J9Z38 0.62851 NA NA
+SD.log_k_JSE76 0.37235 NA NA
+SD.f_cyan_ilr_1 0.37346 NA NA
+SD.f_cyan_ilr_2 1.41667 NA NA
+SD.f_JCZ38_qlogis 1.81467 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan 0.5886 NA NA
+SD.log_k_JCZ38 1.2975 NA NA
+SD.log_k_J9Z38 0.6285 NA NA
+SD.log_k_JSE76 0.3724 NA NA
+SD.f_cyan_ilr_1 0.3735 NA NA
+SD.f_cyan_ilr_2 1.4167 NA NA
+SD.f_JCZ38_qlogis 1.8147 NA NA
+
+Variance model:
+ est. lower upper
+a.1 3.95044 NA NA
+b.1 0.07998 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 94.729229 NA NA
+k_cyan 0.019907 NA NA
+k_JCZ38 0.043754 NA NA
+k_J9Z38 0.006341 NA NA
+k_JSE76 0.006142 NA NA
+f_cyan_to_JCZ38 0.758991 NA NA
+f_cyan_to_J9Z38 0.241009 NA NA
+f_JCZ38_to_JSE76 0.956781 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.75899
+cyan_J9Z38 0.24101
+cyan_sink 0.00000
+JCZ38_JSE76 0.95678
+JCZ38_sink 0.04322
+
+Estimated disappearance times:
+ DT50 DT90
+cyan 34.82 115.67
+JCZ38 15.84 52.63
+J9Z38 109.31 363.12
+JSE76 112.85 374.87
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:09:12 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1182.258 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.2314 -3.3680 -5.1108 -5.9416 0.7144
+ f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta
+ 7.3870 15.7604 -0.1791 2.9811
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.416 0.000 0.0 0.000 0.0000
+log_k_JCZ38 0.000 2.439 0.0 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.7 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.0 1.856 0.0000
+f_cyan_ilr_1 0.000 0.000 0.0 0.000 0.7164
+f_cyan_ilr_2 0.000 0.000 0.0 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.0 0.000 0.0000
+log_alpha 0.000 0.000 0.0 0.000 0.0000
+log_beta 0.000 0.000 0.0 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta
+cyan_0 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 12.33 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.00 20.42 0.0000 0.0000
+log_alpha 0.00 0.00 0.4144 0.0000
+log_beta 0.00 0.00 0.0000 0.5077
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2428 2421 -1196
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.0225 98.306270 103.7387
+log_k_JCZ38 -3.3786 -4.770657 -1.9866
+log_k_J9Z38 -5.2603 -5.902085 -4.6186
+log_k_JSE76 -6.1427 -7.318336 -4.9671
+f_cyan_ilr_1 0.7437 0.421215 1.0663
+f_cyan_ilr_2 0.9108 0.267977 1.5537
+f_JCZ38_qlogis 2.0487 0.524897 3.5724
+log_alpha -0.2268 -0.618049 0.1644
+log_beta 2.8986 2.700701 3.0964
+a.1 3.4058 3.169913 3.6416
+SD.cyan_0 2.5279 0.454190 4.6016
+SD.log_k_JCZ38 1.5636 0.572824 2.5543
+SD.log_k_J9Z38 0.5316 -0.004405 1.0677
+SD.log_k_JSE76 0.9903 0.106325 1.8742
+SD.f_cyan_ilr_1 0.3464 0.112066 0.5807
+SD.f_cyan_ilr_2 0.2804 -0.393900 0.9546
+SD.f_JCZ38_qlogis 0.9416 -0.152986 2.0362
+SD.log_alpha 0.4273 0.161044 0.6936
+
+Correlation:
+ cyan_0 l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 log_lph
+log_k_JCZ38 -0.0156
+log_k_J9Z38 -0.0493 0.0073
+log_k_JSE76 -0.0329 0.0018 0.0069
+f_cyan_ilr_1 -0.0086 0.0180 -0.1406 0.0012
+f_cyan_ilr_2 -0.2629 0.0779 0.2826 0.0274 0.0099
+f_JCZ38_qlogis 0.0713 -0.0747 -0.0505 0.1169 -0.1022 -0.4893
+log_alpha -0.0556 0.0120 0.0336 0.0193 0.0036 0.0840 -0.0489
+log_beta -0.2898 0.0460 0.1305 0.0768 0.0190 0.4071 -0.1981 0.2772
+
+Random effects:
+ est. lower upper
+SD.cyan_0 2.5279 0.454190 4.6016
+SD.log_k_JCZ38 1.5636 0.572824 2.5543
+SD.log_k_J9Z38 0.5316 -0.004405 1.0677
+SD.log_k_JSE76 0.9903 0.106325 1.8742
+SD.f_cyan_ilr_1 0.3464 0.112066 0.5807
+SD.f_cyan_ilr_2 0.2804 -0.393900 0.9546
+SD.f_JCZ38_qlogis 0.9416 -0.152986 2.0362
+SD.log_alpha 0.4273 0.161044 0.6936
+
+Variance model:
+ est. lower upper
+a.1 3.406 3.17 3.642
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.010e+02 9.831e+01 1.037e+02
+k_JCZ38 3.409e-02 8.475e-03 1.372e-01
+k_J9Z38 5.194e-03 2.734e-03 9.867e-03
+k_JSE76 2.149e-03 6.633e-04 6.963e-03
+f_cyan_to_JCZ38 6.481e-01 NA NA
+f_cyan_to_J9Z38 2.264e-01 NA NA
+f_JCZ38_to_JSE76 8.858e-01 6.283e-01 9.727e-01
+alpha 7.971e-01 5.390e-01 1.179e+00
+beta 1.815e+01 1.489e+01 2.212e+01
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.6481
+cyan_J9Z38 0.2264
+cyan_sink 0.1255
+JCZ38_JSE76 0.8858
+JCZ38_sink 0.1142
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+cyan 25.15 308.01 92.72
+JCZ38 20.33 67.54 NA
+J9Z38 133.46 443.35 NA
+JSE76 322.53 1071.42 NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:09:18 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1188.041 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.13827 -3.32493 -5.08921 -5.93478 0.71330
+ f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta
+ 10.05989 12.79248 -0.09621 3.10646
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.643 0.000 0.000 0.00 0.0000
+log_k_JCZ38 0.000 2.319 0.000 0.00 0.0000
+log_k_J9Z38 0.000 0.000 1.731 0.00 0.0000
+log_k_JSE76 0.000 0.000 0.000 1.86 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.00 0.7186
+f_cyan_ilr_2 0.000 0.000 0.000 0.00 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.00 0.0000
+log_alpha 0.000 0.000 0.000 0.00 0.0000
+log_beta 0.000 0.000 0.000 0.00 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta
+cyan_0 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 12.49 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.00 20.19 0.0000 0.0000
+log_alpha 0.00 0.00 0.3142 0.0000
+log_beta 0.00 0.00 0.0000 0.7331
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2423 2416 -1193
+
+Optimised parameters:
+ est. lower upper
+cyan_0 100.57649 NA NA
+log_k_JCZ38 -3.46250 NA NA
+log_k_J9Z38 -5.24442 NA NA
+log_k_JSE76 -5.75229 NA NA
+f_cyan_ilr_1 0.68480 NA NA
+f_cyan_ilr_2 0.61670 NA NA
+f_JCZ38_qlogis 87.97407 NA NA
+log_alpha -0.15699 NA NA
+log_beta 3.01540 NA NA
+a.1 3.11518 NA NA
+b.1 0.04445 NA NA
+SD.log_k_JCZ38 1.40732 NA NA
+SD.log_k_J9Z38 0.56510 NA NA
+SD.log_k_JSE76 0.72067 NA NA
+SD.f_cyan_ilr_1 0.31199 NA NA
+SD.f_cyan_ilr_2 0.36894 NA NA
+SD.f_JCZ38_qlogis 6.92892 NA NA
+SD.log_alpha 0.25662 NA NA
+SD.log_beta 0.35845 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.4073 NA NA
+SD.log_k_J9Z38 0.5651 NA NA
+SD.log_k_JSE76 0.7207 NA NA
+SD.f_cyan_ilr_1 0.3120 NA NA
+SD.f_cyan_ilr_2 0.3689 NA NA
+SD.f_JCZ38_qlogis 6.9289 NA NA
+SD.log_alpha 0.2566 NA NA
+SD.log_beta 0.3585 NA NA
+
+Variance model:
+ est. lower upper
+a.1 3.11518 NA NA
+b.1 0.04445 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.006e+02 NA NA
+k_JCZ38 3.135e-02 NA NA
+k_J9Z38 5.277e-03 NA NA
+k_JSE76 3.175e-03 NA NA
+f_cyan_to_JCZ38 5.991e-01 NA NA
+f_cyan_to_J9Z38 2.275e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+alpha 8.547e-01 NA NA
+beta 2.040e+01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.5991
+cyan_J9Z38 0.2275
+cyan_sink 0.1734
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+cyan 25.50 281.29 84.68
+JCZ38 22.11 73.44 NA
+J9Z38 131.36 436.35 NA
+JSE76 218.28 725.11 NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:10:30 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1260.905 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 102.0644 -3.4008 -5.0024 -5.8613 0.6855
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis
+ 1.2365 13.7245 -1.8641 -4.5063 -0.6468
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 4.466 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.000 2.382 0.000 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.595 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.000 1.245 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6852
+f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000
+log_k1 0.000 0.000 0.000 0.000 0.0000
+log_k2 0.000 0.000 0.000 0.000 0.0000
+g_qlogis 0.000 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis
+cyan_0 0.00 0.00 0.0000 0.0000 0.000
+log_k_JCZ38 0.00 0.00 0.0000 0.0000 0.000
+log_k_J9Z38 0.00 0.00 0.0000 0.0000 0.000
+log_k_JSE76 0.00 0.00 0.0000 0.0000 0.000
+f_cyan_ilr_1 0.00 0.00 0.0000 0.0000 0.000
+f_cyan_ilr_2 1.28 0.00 0.0000 0.0000 0.000
+f_JCZ38_qlogis 0.00 16.11 0.0000 0.0000 0.000
+log_k1 0.00 0.00 0.9866 0.0000 0.000
+log_k2 0.00 0.00 0.0000 0.5953 0.000
+g_qlogis 0.00 0.00 0.0000 0.0000 1.583
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2403 2395 -1182
+
+Optimised parameters:
+ est. lower upper
+cyan_0 102.6079 NA NA
+log_k_JCZ38 -3.4855 NA NA
+log_k_J9Z38 -5.1686 NA NA
+log_k_JSE76 -5.6697 NA NA
+f_cyan_ilr_1 0.6714 NA NA
+f_cyan_ilr_2 0.4986 NA NA
+f_JCZ38_qlogis 55.4760 NA NA
+log_k1 -1.8409 NA NA
+log_k2 -4.4915 NA NA
+g_qlogis -0.6403 NA NA
+a.1 3.2387 NA NA
+SD.log_k_JCZ38 1.4524 NA NA
+SD.log_k_J9Z38 0.5151 NA NA
+SD.log_k_JSE76 0.6514 NA NA
+SD.f_cyan_ilr_1 0.3023 NA NA
+SD.f_cyan_ilr_2 0.2959 NA NA
+SD.f_JCZ38_qlogis 1.9984 NA NA
+SD.log_k1 0.5188 NA NA
+SD.log_k2 0.3894 NA NA
+SD.g_qlogis 0.8579 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.4524 NA NA
+SD.log_k_J9Z38 0.5151 NA NA
+SD.log_k_JSE76 0.6514 NA NA
+SD.f_cyan_ilr_1 0.3023 NA NA
+SD.f_cyan_ilr_2 0.2959 NA NA
+SD.f_JCZ38_qlogis 1.9984 NA NA
+SD.log_k1 0.5188 NA NA
+SD.log_k2 0.3894 NA NA
+SD.g_qlogis 0.8579 NA NA
+
+Variance model:
+ est. lower upper
+a.1 3.239 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.026e+02 NA NA
+k_JCZ38 3.064e-02 NA NA
+k_J9Z38 5.692e-03 NA NA
+k_JSE76 3.449e-03 NA NA
+f_cyan_to_JCZ38 5.798e-01 NA NA
+f_cyan_to_J9Z38 2.243e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+k1 1.587e-01 NA NA
+k2 1.120e-02 NA NA
+g 3.452e-01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.5798
+cyan_J9Z38 0.2243
+cyan_sink 0.1958
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 25.21 167.73 50.49 4.368 61.87
+JCZ38 22.62 75.15 NA NA NA
+J9Z38 121.77 404.50 NA NA NA
+JSE76 200.98 667.64 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:16:28 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1617.774 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.3964 -3.3626 -4.9792 -5.8727 0.6814
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis
+ 6.7799 13.7245 -1.9222 -4.5035 -0.7172
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.317 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.000 2.272 0.000 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.633 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.000 1.271 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6838
+f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000
+log_k1 0.000 0.000 0.000 0.000 0.0000
+log_k2 0.000 0.000 0.000 0.000 0.0000
+g_qlogis 0.000 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis
+cyan_0 0.00 0.00 0.0000 0.0000 0.000
+log_k_JCZ38 0.00 0.00 0.0000 0.0000 0.000
+log_k_J9Z38 0.00 0.00 0.0000 0.0000 0.000
+log_k_JSE76 0.00 0.00 0.0000 0.0000 0.000
+f_cyan_ilr_1 0.00 0.00 0.0000 0.0000 0.000
+f_cyan_ilr_2 11.77 0.00 0.0000 0.0000 0.000
+f_JCZ38_qlogis 0.00 16.11 0.0000 0.0000 0.000
+log_k1 0.00 0.00 0.9496 0.0000 0.000
+log_k2 0.00 0.00 0.0000 0.5846 0.000
+g_qlogis 0.00 0.00 0.0000 0.0000 1.719
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2398 2390 -1179
+
+Optimised parameters:
+ est. lower upper
+cyan_0 100.8076 NA NA
+log_k_JCZ38 -3.4684 NA NA
+log_k_J9Z38 -5.0844 NA NA
+log_k_JSE76 -5.5743 NA NA
+f_cyan_ilr_1 0.6669 NA NA
+f_cyan_ilr_2 0.7912 NA NA
+f_JCZ38_qlogis 84.1825 NA NA
+log_k1 -2.1671 NA NA
+log_k2 -4.5447 NA NA
+g_qlogis -0.5631 NA NA
+a.1 2.9627 NA NA
+b.1 0.0444 NA NA
+SD.log_k_JCZ38 1.4044 NA NA
+SD.log_k_J9Z38 0.6410 NA NA
+SD.log_k_JSE76 0.5391 NA NA
+SD.f_cyan_ilr_1 0.3203 NA NA
+SD.f_cyan_ilr_2 0.5038 NA NA
+SD.f_JCZ38_qlogis 3.5865 NA NA
+SD.log_k2 0.3119 NA NA
+SD.g_qlogis 0.8276 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.4044 NA NA
+SD.log_k_J9Z38 0.6410 NA NA
+SD.log_k_JSE76 0.5391 NA NA
+SD.f_cyan_ilr_1 0.3203 NA NA
+SD.f_cyan_ilr_2 0.5038 NA NA
+SD.f_JCZ38_qlogis 3.5865 NA NA
+SD.log_k2 0.3119 NA NA
+SD.g_qlogis 0.8276 NA NA
+
+Variance model:
+ est. lower upper
+a.1 2.9627 NA NA
+b.1 0.0444 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.008e+02 NA NA
+k_JCZ38 3.117e-02 NA NA
+k_J9Z38 6.193e-03 NA NA
+k_JSE76 3.794e-03 NA NA
+f_cyan_to_JCZ38 6.149e-01 NA NA
+f_cyan_to_J9Z38 2.395e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+k1 1.145e-01 NA NA
+k2 1.062e-02 NA NA
+g 3.628e-01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.6149
+cyan_J9Z38 0.2395
+cyan_sink 0.1456
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 26.26 174.32 52.47 6.053 65.25
+JCZ38 22.24 73.88 NA NA NA
+J9Z38 111.93 371.82 NA NA NA
+JSE76 182.69 606.88 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:10:49 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
+ cyan_free + k_cyan_bound_free * cyan_bound
+d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
+ cyan_bound
+d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
+ * JCZ38
+d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
+ * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1279.472 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+ 102.0643 -2.8987 -2.7077
+log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38
+ -3.4717 -3.4008 -5.0024
+ log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2
+ -5.8613 0.6855 1.2366
+ f_JCZ38_qlogis
+ 13.7418
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+cyan_free_0 4.466 0.0000 0.000
+log_k_cyan_free 0.000 0.6158 0.000
+log_k_cyan_free_bound 0.000 0.0000 1.463
+log_k_cyan_bound_free 0.000 0.0000 0.000
+log_k_JCZ38 0.000 0.0000 0.000
+log_k_J9Z38 0.000 0.0000 0.000
+log_k_JSE76 0.000 0.0000 0.000
+f_cyan_ilr_1 0.000 0.0000 0.000
+f_cyan_ilr_2 0.000 0.0000 0.000
+f_JCZ38_qlogis 0.000 0.0000 0.000
+ log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_free_0 0.000 0.000 0.000 0.000
+log_k_cyan_free 0.000 0.000 0.000 0.000
+log_k_cyan_free_bound 0.000 0.000 0.000 0.000
+log_k_cyan_bound_free 1.058 0.000 0.000 0.000
+log_k_JCZ38 0.000 2.382 0.000 0.000
+log_k_J9Z38 0.000 0.000 1.595 0.000
+log_k_JSE76 0.000 0.000 0.000 1.245
+f_cyan_ilr_1 0.000 0.000 0.000 0.000
+f_cyan_ilr_2 0.000 0.000 0.000 0.000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
+cyan_free_0 0.0000 0.00 0.00
+log_k_cyan_free 0.0000 0.00 0.00
+log_k_cyan_free_bound 0.0000 0.00 0.00
+log_k_cyan_bound_free 0.0000 0.00 0.00
+log_k_JCZ38 0.0000 0.00 0.00
+log_k_J9Z38 0.0000 0.00 0.00
+log_k_JSE76 0.0000 0.00 0.00
+f_cyan_ilr_1 0.6852 0.00 0.00
+f_cyan_ilr_2 0.0000 1.28 0.00
+f_JCZ38_qlogis 0.0000 0.00 16.14
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2401 2394 -1181
+
+Optimised parameters:
+ est. lower upper
+cyan_free_0 102.7803 NA NA
+log_k_cyan_free -2.8068 NA NA
+log_k_cyan_free_bound -2.5714 NA NA
+log_k_cyan_bound_free -3.4426 NA NA
+log_k_JCZ38 -3.4994 NA NA
+log_k_J9Z38 -5.1148 NA NA
+log_k_JSE76 -5.6335 NA NA
+f_cyan_ilr_1 0.6597 NA NA
+f_cyan_ilr_2 0.5132 NA NA
+f_JCZ38_qlogis 37.2090 NA NA
+a.1 3.2367 NA NA
+SD.log_k_cyan_free 0.3161 NA NA
+SD.log_k_cyan_free_bound 0.8103 NA NA
+SD.log_k_cyan_bound_free 0.5554 NA NA
+SD.log_k_JCZ38 1.4858 NA NA
+SD.log_k_J9Z38 0.5859 NA NA
+SD.log_k_JSE76 0.6195 NA NA
+SD.f_cyan_ilr_1 0.3118 NA NA
+SD.f_cyan_ilr_2 0.3344 NA NA
+SD.f_JCZ38_qlogis 0.5518 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan_free 0.3161 NA NA
+SD.log_k_cyan_free_bound 0.8103 NA NA
+SD.log_k_cyan_bound_free 0.5554 NA NA
+SD.log_k_JCZ38 1.4858 NA NA
+SD.log_k_J9Z38 0.5859 NA NA
+SD.log_k_JSE76 0.6195 NA NA
+SD.f_cyan_ilr_1 0.3118 NA NA
+SD.f_cyan_ilr_2 0.3344 NA NA
+SD.f_JCZ38_qlogis 0.5518 NA NA
+
+Variance model:
+ est. lower upper
+a.1 3.237 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_free_0 1.028e+02 NA NA
+k_cyan_free 6.040e-02 NA NA
+k_cyan_free_bound 7.643e-02 NA NA
+k_cyan_bound_free 3.198e-02 NA NA
+k_JCZ38 3.022e-02 NA NA
+k_J9Z38 6.007e-03 NA NA
+k_JSE76 3.576e-03 NA NA
+f_cyan_free_to_JCZ38 5.787e-01 NA NA
+f_cyan_free_to_J9Z38 2.277e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+
+Estimated Eigenvalues of SFORB model(s):
+cyan_b1 cyan_b2 cyan_g
+0.15646 0.01235 0.33341
+
+Resulting formation fractions:
+ ff
+cyan_free_JCZ38 0.5787
+cyan_free_J9Z38 0.2277
+cyan_free_sink 0.1936
+cyan_free 1.0000
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
+cyan 24.48 153.7 46.26 4.43 56.15
+JCZ38 22.94 76.2 NA NA NA
+J9Z38 115.39 383.3 NA NA NA
+JSE76 193.84 643.9 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:17:00 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
+ cyan_free + k_cyan_bound_free * cyan_bound
+d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
+ cyan_bound
+d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
+ * JCZ38
+d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
+ * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1649.941 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+ 101.3964 -2.9881 -2.7949
+log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38
+ -3.4376 -3.3626 -4.9792
+ log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2
+ -5.8727 0.6814 6.8139
+ f_JCZ38_qlogis
+ 13.7419
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+cyan_free_0 5.317 0.0000 0.000
+log_k_cyan_free 0.000 0.7301 0.000
+log_k_cyan_free_bound 0.000 0.0000 1.384
+log_k_cyan_bound_free 0.000 0.0000 0.000
+log_k_JCZ38 0.000 0.0000 0.000
+log_k_J9Z38 0.000 0.0000 0.000
+log_k_JSE76 0.000 0.0000 0.000
+f_cyan_ilr_1 0.000 0.0000 0.000
+f_cyan_ilr_2 0.000 0.0000 0.000
+f_JCZ38_qlogis 0.000 0.0000 0.000
+ log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_free_0 0.000 0.000 0.000 0.000
+log_k_cyan_free 0.000 0.000 0.000 0.000
+log_k_cyan_free_bound 0.000 0.000 0.000 0.000
+log_k_cyan_bound_free 1.109 0.000 0.000 0.000
+log_k_JCZ38 0.000 2.272 0.000 0.000
+log_k_J9Z38 0.000 0.000 1.633 0.000
+log_k_JSE76 0.000 0.000 0.000 1.271
+f_cyan_ilr_1 0.000 0.000 0.000 0.000
+f_cyan_ilr_2 0.000 0.000 0.000 0.000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
+cyan_free_0 0.0000 0.00 0.00
+log_k_cyan_free 0.0000 0.00 0.00
+log_k_cyan_free_bound 0.0000 0.00 0.00
+log_k_cyan_bound_free 0.0000 0.00 0.00
+log_k_JCZ38 0.0000 0.00 0.00
+log_k_J9Z38 0.0000 0.00 0.00
+log_k_JSE76 0.0000 0.00 0.00
+f_cyan_ilr_1 0.6838 0.00 0.00
+f_cyan_ilr_2 0.0000 11.84 0.00
+f_JCZ38_qlogis 0.0000 0.00 16.14
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2400 2392 -1180
+
+Optimised parameters:
+ est. lower upper
+cyan_free_0 100.69983 NA NA
+log_k_cyan_free -3.11584 NA NA
+log_k_cyan_free_bound -3.15216 NA NA
+log_k_cyan_bound_free -3.65986 NA NA
+log_k_JCZ38 -3.47811 NA NA
+log_k_J9Z38 -5.08835 NA NA
+log_k_JSE76 -5.55514 NA NA
+f_cyan_ilr_1 0.66764 NA NA
+f_cyan_ilr_2 0.78329 NA NA
+f_JCZ38_qlogis 25.35245 NA NA
+a.1 2.99088 NA NA
+b.1 0.04346 NA NA
+SD.log_k_cyan_free 0.48797 NA NA
+SD.log_k_cyan_bound_free 0.27243 NA NA
+SD.log_k_JCZ38 1.42450 NA NA
+SD.log_k_J9Z38 0.63496 NA NA
+SD.log_k_JSE76 0.55951 NA NA
+SD.f_cyan_ilr_1 0.32687 NA NA
+SD.f_cyan_ilr_2 0.48056 NA NA
+SD.f_JCZ38_qlogis 0.43818 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan_free 0.4880 NA NA
+SD.log_k_cyan_bound_free 0.2724 NA NA
+SD.log_k_JCZ38 1.4245 NA NA
+SD.log_k_J9Z38 0.6350 NA NA
+SD.log_k_JSE76 0.5595 NA NA
+SD.f_cyan_ilr_1 0.3269 NA NA
+SD.f_cyan_ilr_2 0.4806 NA NA
+SD.f_JCZ38_qlogis 0.4382 NA NA
+
+Variance model:
+ est. lower upper
+a.1 2.99088 NA NA
+b.1 0.04346 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_free_0 1.007e+02 NA NA
+k_cyan_free 4.434e-02 NA NA
+k_cyan_free_bound 4.276e-02 NA NA
+k_cyan_bound_free 2.574e-02 NA NA
+k_JCZ38 3.087e-02 NA NA
+k_J9Z38 6.168e-03 NA NA
+k_JSE76 3.868e-03 NA NA
+f_cyan_free_to_JCZ38 6.143e-01 NA NA
+f_cyan_free_to_J9Z38 2.389e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+
+Estimated Eigenvalues of SFORB model(s):
+cyan_b1 cyan_b2 cyan_g
+0.10161 0.01123 0.36636
+
+Resulting formation fractions:
+ ff
+cyan_free_JCZ38 6.143e-01
+cyan_free_J9Z38 2.389e-01
+cyan_free_sink 1.468e-01
+cyan_free 1.000e+00
+JCZ38_JSE76 1.000e+00
+JCZ38_sink 9.763e-12
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
+cyan 25.91 164.4 49.49 6.822 61.72
+JCZ38 22.46 74.6 NA NA NA
+J9Z38 112.37 373.3 NA NA NA
+JSE76 179.22 595.4 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:11:04 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ifelse(time <= tb, k1, k2) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ifelse(time <= tb, k1, k2) * cyan -
+ k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ifelse(time <= tb, k1, k2) * cyan -
+ k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1294.259 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 102.8738 -3.4490 -4.9348 -5.5989 0.6469
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb
+ 1.2854 9.7193 -2.9084 -4.1810 1.7813
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.409 0.00 0.00 0.000 0.0000
+log_k_JCZ38 0.000 2.33 0.00 0.000 0.0000
+log_k_J9Z38 0.000 0.00 1.59 0.000 0.0000
+log_k_JSE76 0.000 0.00 0.00 1.006 0.0000
+f_cyan_ilr_1 0.000 0.00 0.00 0.000 0.6371
+f_cyan_ilr_2 0.000 0.00 0.00 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.00 0.00 0.000 0.0000
+log_k1 0.000 0.00 0.00 0.000 0.0000
+log_k2 0.000 0.00 0.00 0.000 0.0000
+log_tb 0.000 0.00 0.00 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb
+cyan_0 0.000 0.00 0.0000 0.0000 0.0000
+log_k_JCZ38 0.000 0.00 0.0000 0.0000 0.0000
+log_k_J9Z38 0.000 0.00 0.0000 0.0000 0.0000
+log_k_JSE76 0.000 0.00 0.0000 0.0000 0.0000
+f_cyan_ilr_1 0.000 0.00 0.0000 0.0000 0.0000
+f_cyan_ilr_2 2.167 0.00 0.0000 0.0000 0.0000
+f_JCZ38_qlogis 0.000 10.22 0.0000 0.0000 0.0000
+log_k1 0.000 0.00 0.7003 0.0000 0.0000
+log_k2 0.000 0.00 0.0000 0.8928 0.0000
+log_tb 0.000 0.00 0.0000 0.0000 0.6774
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2427 2420 -1194
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.84849 NA NA
+log_k_JCZ38 -3.47365 NA NA
+log_k_J9Z38 -5.10562 NA NA
+log_k_JSE76 -5.60318 NA NA
+f_cyan_ilr_1 0.66127 NA NA
+f_cyan_ilr_2 0.60283 NA NA
+f_JCZ38_qlogis 45.06408 NA NA
+log_k1 -3.10124 NA NA
+log_k2 -4.39028 NA NA
+log_tb 2.32256 NA NA
+a.1 3.32683 NA NA
+SD.log_k_JCZ38 1.41427 NA NA
+SD.log_k_J9Z38 0.54767 NA NA
+SD.log_k_JSE76 0.62147 NA NA
+SD.f_cyan_ilr_1 0.30189 NA NA
+SD.f_cyan_ilr_2 0.34960 NA NA
+SD.f_JCZ38_qlogis 0.04644 NA NA
+SD.log_k1 0.39534 NA NA
+SD.log_k2 0.43468 NA NA
+SD.log_tb 0.60781 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.41427 NA NA
+SD.log_k_J9Z38 0.54767 NA NA
+SD.log_k_JSE76 0.62147 NA NA
+SD.f_cyan_ilr_1 0.30189 NA NA
+SD.f_cyan_ilr_2 0.34960 NA NA
+SD.f_JCZ38_qlogis 0.04644 NA NA
+SD.log_k1 0.39534 NA NA
+SD.log_k2 0.43468 NA NA
+SD.log_tb 0.60781 NA NA
+
+Variance model:
+ est. lower upper
+a.1 3.327 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.018e+02 NA NA
+k_JCZ38 3.100e-02 NA NA
+k_J9Z38 6.063e-03 NA NA
+k_JSE76 3.686e-03 NA NA
+f_cyan_to_JCZ38 5.910e-01 NA NA
+f_cyan_to_J9Z38 2.320e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+k1 4.499e-02 NA NA
+k2 1.240e-02 NA NA
+tb 1.020e+01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.591
+cyan_J9Z38 0.232
+cyan_sink 0.177
+JCZ38_JSE76 1.000
+JCZ38_sink 0.000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 29.09 158.91 47.84 15.41 55.91
+JCZ38 22.36 74.27 NA NA NA
+J9Z38 114.33 379.80 NA NA NA
+JSE76 188.04 624.66 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:11:24 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ifelse(time <= tb, k1, k2) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ifelse(time <= tb, k1, k2) * cyan -
+ k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ifelse(time <= tb, k1, k2) * cyan -
+ k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1313.805 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.168 -3.358 -4.941 -5.794 0.676
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb
+ 5.740 13.863 -3.147 -4.262 2.173
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.79 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.00 2.271 0.000 0.000 0.0000
+log_k_J9Z38 0.00 0.000 1.614 0.000 0.0000
+log_k_JSE76 0.00 0.000 0.000 1.264 0.0000
+f_cyan_ilr_1 0.00 0.000 0.000 0.000 0.6761
+f_cyan_ilr_2 0.00 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.00 0.000 0.000 0.000 0.0000
+log_k1 0.00 0.000 0.000 0.000 0.0000
+log_k2 0.00 0.000 0.000 0.000 0.0000
+log_tb 0.00 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb
+cyan_0 0.000 0.00 0.0000 0.0000 0.000
+log_k_JCZ38 0.000 0.00 0.0000 0.0000 0.000
+log_k_J9Z38 0.000 0.00 0.0000 0.0000 0.000
+log_k_JSE76 0.000 0.00 0.0000 0.0000 0.000
+f_cyan_ilr_1 0.000 0.00 0.0000 0.0000 0.000
+f_cyan_ilr_2 9.572 0.00 0.0000 0.0000 0.000
+f_JCZ38_qlogis 0.000 19.19 0.0000 0.0000 0.000
+log_k1 0.000 0.00 0.8705 0.0000 0.000
+log_k2 0.000 0.00 0.0000 0.9288 0.000
+log_tb 0.000 0.00 0.0000 0.0000 1.065
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2422 2414 -1190
+
+Optimised parameters:
+ est. lower upper
+cyan_0 100.9521 NA NA
+log_k_JCZ38 -3.4629 NA NA
+log_k_J9Z38 -5.0346 NA NA
+log_k_JSE76 -5.5722 NA NA
+f_cyan_ilr_1 0.6560 NA NA
+f_cyan_ilr_2 0.7983 NA NA
+f_JCZ38_qlogis 42.7949 NA NA
+log_k1 -3.1721 NA NA
+log_k2 -4.4039 NA NA
+log_tb 2.3994 NA NA
+a.1 3.0586 NA NA
+b.1 0.0380 NA NA
+SD.log_k_JCZ38 1.3754 NA NA
+SD.log_k_J9Z38 0.6703 NA NA
+SD.log_k_JSE76 0.5876 NA NA
+SD.f_cyan_ilr_1 0.3272 NA NA
+SD.f_cyan_ilr_2 0.5300 NA NA
+SD.f_JCZ38_qlogis 6.4465 NA NA
+SD.log_k1 0.4135 NA NA
+SD.log_k2 0.4182 NA NA
+SD.log_tb 0.6035 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.3754 NA NA
+SD.log_k_J9Z38 0.6703 NA NA
+SD.log_k_JSE76 0.5876 NA NA
+SD.f_cyan_ilr_1 0.3272 NA NA
+SD.f_cyan_ilr_2 0.5300 NA NA
+SD.f_JCZ38_qlogis 6.4465 NA NA
+SD.log_k1 0.4135 NA NA
+SD.log_k2 0.4182 NA NA
+SD.log_tb 0.6035 NA NA
+
+Variance model:
+ est. lower upper
+a.1 3.059 NA NA
+b.1 0.038 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.010e+02 NA NA
+k_JCZ38 3.134e-02 NA NA
+k_J9Z38 6.509e-03 NA NA
+k_JSE76 3.802e-03 NA NA
+f_cyan_to_JCZ38 6.127e-01 NA NA
+f_cyan_to_J9Z38 2.423e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+k1 4.191e-02 NA NA
+k2 1.223e-02 NA NA
+tb 1.102e+01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.6127
+cyan_J9Z38 0.2423
+cyan_sink 0.1449
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 29.94 161.54 48.63 16.54 56.68
+JCZ38 22.12 73.47 NA NA NA
+J9Z38 106.50 353.77 NA NA NA
+JSE76 182.30 605.60 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:34:28 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1030.246 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.8173 -1.8998 -5.1449 -2.5415 0.6705
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
+ 4.4669 16.1281 13.3327 -0.2314 2.8738
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.742 0.000 0.000 0.00 0.0000
+log_k_JCZ38 0.000 1.402 0.000 0.00 0.0000
+log_k_J9Z38 0.000 0.000 1.718 0.00 0.0000
+log_k_JSE76 0.000 0.000 0.000 3.57 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.00 0.5926
+f_cyan_ilr_2 0.000 0.000 0.000 0.00 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.00 0.0000
+f_JSE76_qlogis 0.000 0.000 0.000 0.00 0.0000
+log_alpha 0.000 0.000 0.000 0.00 0.0000
+log_beta 0.000 0.000 0.000 0.00 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
+cyan_0 0.00 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.00 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.00 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.00 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.00 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 10.56 0.00 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.00 12.04 0.00 0.0000 0.0000
+f_JSE76_qlogis 0.00 0.00 15.26 0.0000 0.0000
+log_alpha 0.00 0.00 0.00 0.4708 0.0000
+log_beta 0.00 0.00 0.00 0.0000 0.4432
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2308 2301 -1134
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.9586 99.22024 104.69700
+log_k_JCZ38 -2.4861 -3.17661 -1.79560
+log_k_J9Z38 -5.3926 -6.08842 -4.69684
+log_k_JSE76 -3.1193 -4.12904 -2.10962
+f_cyan_ilr_1 0.7368 0.42085 1.05276
+f_cyan_ilr_2 0.6196 0.06052 1.17861
+f_JCZ38_qlogis 4.8970 -4.68003 14.47398
+f_JSE76_qlogis 4.4066 -1.02087 9.83398
+log_alpha -0.3021 -0.68264 0.07838
+log_beta 2.7438 2.57970 2.90786
+a.1 2.9008 2.69920 3.10245
+SD.cyan_0 2.7081 0.64216 4.77401
+SD.log_k_JCZ38 0.7043 0.19951 1.20907
+SD.log_k_J9Z38 0.6248 0.05790 1.19180
+SD.log_k_JSE76 1.0750 0.33157 1.81839
+SD.f_cyan_ilr_1 0.3429 0.11688 0.56892
+SD.f_cyan_ilr_2 0.4774 0.09381 0.86097
+SD.f_JCZ38_qlogis 1.5565 -7.83970 10.95279
+SD.f_JSE76_qlogis 1.6871 -1.25577 4.63000
+SD.log_alpha 0.4216 0.15913 0.68405
+
+Correlation:
+ cyan_0 l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76
+log_k_JCZ38 -0.0167
+log_k_J9Z38 -0.0307 0.0057
+log_k_JSE76 -0.0032 0.1358 0.0009
+f_cyan_ilr_1 -0.0087 0.0206 -0.1158 -0.0009
+f_cyan_ilr_2 -0.1598 0.0690 0.1770 0.0002 -0.0007
+f_JCZ38_qlogis 0.0966 -0.1132 -0.0440 0.0182 -0.1385 -0.4583
+f_JSE76_qlogis -0.0647 0.1157 0.0333 -0.0026 0.1110 0.3620 -0.8586
+log_alpha -0.0389 0.0113 0.0209 0.0021 0.0041 0.0451 -0.0605 0.0412
+log_beta -0.2508 0.0533 0.0977 0.0098 0.0220 0.2741 -0.2934 0.1999
+ log_lph
+log_k_JCZ38
+log_k_J9Z38
+log_k_JSE76
+f_cyan_ilr_1
+f_cyan_ilr_2
+f_JCZ38_qlogis
+f_JSE76_qlogis
+log_alpha
+log_beta 0.2281
+
+Random effects:
+ est. lower upper
+SD.cyan_0 2.7081 0.64216 4.7740
+SD.log_k_JCZ38 0.7043 0.19951 1.2091
+SD.log_k_J9Z38 0.6248 0.05790 1.1918
+SD.log_k_JSE76 1.0750 0.33157 1.8184
+SD.f_cyan_ilr_1 0.3429 0.11688 0.5689
+SD.f_cyan_ilr_2 0.4774 0.09381 0.8610
+SD.f_JCZ38_qlogis 1.5565 -7.83970 10.9528
+SD.f_JSE76_qlogis 1.6871 -1.25577 4.6300
+SD.log_alpha 0.4216 0.15913 0.6840
+
+Variance model:
+ est. lower upper
+a.1 2.901 2.699 3.102
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 101.95862 99.220240 1.047e+02
+k_JCZ38 0.08323 0.041727 1.660e-01
+k_J9Z38 0.00455 0.002269 9.124e-03
+k_JSE76 0.04419 0.016098 1.213e-01
+f_cyan_to_JCZ38 0.61318 NA NA
+f_cyan_to_J9Z38 0.21630 NA NA
+f_JCZ38_to_JSE76 0.99259 0.009193 1.000e+00
+f_JSE76_to_JCZ38 0.98795 0.264857 9.999e-01
+alpha 0.73924 0.505281 1.082e+00
+beta 15.54568 13.193194 1.832e+01
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.613182
+cyan_J9Z38 0.216298
+cyan_sink 0.170519
+JCZ38_JSE76 0.992586
+JCZ38_sink 0.007414
+JSE76_JCZ38 0.987950
+JSE76_sink 0.012050
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+cyan 24.157 334.68 100.7
+JCZ38 8.328 27.66 NA
+J9Z38 152.341 506.06 NA
+JSE76 15.687 52.11 NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:37:36 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1217.619 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.9028 -1.9055 -5.0249 -2.5646 0.6807
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
+ 4.8883 16.0676 9.3923 -0.1346 3.0364
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 6.321 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.000 1.392 0.000 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.561 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.000 3.614 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6339
+f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000
+f_JSE76_qlogis 0.000 0.000 0.000 0.000 0.0000
+log_alpha 0.000 0.000 0.000 0.000 0.0000
+log_beta 0.000 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
+cyan_0 0.00 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.00 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.00 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.00 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.00 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 10.41 0.00 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.00 12.24 0.00 0.0000 0.0000
+f_JSE76_qlogis 0.00 0.00 15.13 0.0000 0.0000
+log_alpha 0.00 0.00 0.00 0.3701 0.0000
+log_beta 0.00 0.00 0.00 0.0000 0.5662
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2248 2240 -1103
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.55545 9.920e+01 1.039e+02
+log_k_JCZ38 -2.37354 -2.928e+00 -1.819e+00
+log_k_J9Z38 -5.14736 -5.960e+00 -4.335e+00
+log_k_JSE76 -3.07802 -4.243e+00 -1.913e+00
+f_cyan_ilr_1 0.71263 3.655e-01 1.060e+00
+f_cyan_ilr_2 0.95202 2.701e-01 1.634e+00
+f_JCZ38_qlogis 3.58473 1.251e+00 5.919e+00
+f_JSE76_qlogis 19.03623 -1.037e+07 1.037e+07
+log_alpha -0.15297 -4.490e-01 1.431e-01
+log_beta 2.99230 2.706e+00 3.278e+00
+a.1 2.04816 NA NA
+b.1 0.06886 NA NA
+SD.log_k_JCZ38 0.56174 NA NA
+SD.log_k_J9Z38 0.86509 NA NA
+SD.log_k_JSE76 1.28450 NA NA
+SD.f_cyan_ilr_1 0.38705 NA NA
+SD.f_cyan_ilr_2 0.54153 NA NA
+SD.f_JCZ38_qlogis 1.65311 NA NA
+SD.f_JSE76_qlogis 7.51468 NA NA
+SD.log_alpha 0.31586 NA NA
+SD.log_beta 0.24696 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 0.5617 NA NA
+SD.log_k_J9Z38 0.8651 NA NA
+SD.log_k_JSE76 1.2845 NA NA
+SD.f_cyan_ilr_1 0.3870 NA NA
+SD.f_cyan_ilr_2 0.5415 NA NA
+SD.f_JCZ38_qlogis 1.6531 NA NA
+SD.f_JSE76_qlogis 7.5147 NA NA
+SD.log_alpha 0.3159 NA NA
+SD.log_beta 0.2470 NA NA
+
+Variance model:
+ est. lower upper
+a.1 2.04816 NA NA
+b.1 0.06886 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.016e+02 99.20301 103.9079
+k_JCZ38 9.315e-02 0.05349 0.1622
+k_J9Z38 5.815e-03 0.00258 0.0131
+k_JSE76 4.605e-02 0.01436 0.1477
+f_cyan_to_JCZ38 6.438e-01 NA NA
+f_cyan_to_J9Z38 2.350e-01 NA NA
+f_JCZ38_to_JSE76 9.730e-01 0.77745 0.9973
+f_JSE76_to_JCZ38 1.000e+00 0.00000 1.0000
+alpha 8.582e-01 0.63824 1.1538
+beta 1.993e+01 14.97621 26.5262
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 6.438e-01
+cyan_J9Z38 2.350e-01
+cyan_sink 1.212e-01
+JCZ38_JSE76 9.730e-01
+JCZ38_sink 2.700e-02
+JSE76_JCZ38 1.000e+00
+JSE76_sink 5.403e-09
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+cyan 24.771 271.70 81.79
+JCZ38 7.441 24.72 NA
+J9Z38 119.205 395.99 NA
+JSE76 15.052 50.00 NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:38:34 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +
+ f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1276.128 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 102.4358 -2.3107 -5.3123 -3.7120 0.6753
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+ 1.1462 12.4095 12.3630 -1.9317 -4.4557
+ g_qlogis
+ -0.5648
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 4.594 0.0000 0.000 0.0 0.0000
+log_k_JCZ38 0.000 0.7966 0.000 0.0 0.0000
+log_k_J9Z38 0.000 0.0000 1.561 0.0 0.0000
+log_k_JSE76 0.000 0.0000 0.000 0.8 0.0000
+f_cyan_ilr_1 0.000 0.0000 0.000 0.0 0.6349
+f_cyan_ilr_2 0.000 0.0000 0.000 0.0 0.0000
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.0 0.0000
+f_JSE76_qlogis 0.000 0.0000 0.000 0.0 0.0000
+log_k1 0.000 0.0000 0.000 0.0 0.0000
+log_k2 0.000 0.0000 0.000 0.0 0.0000
+g_qlogis 0.000 0.0000 0.000 0.0 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+cyan_0 0.000 0.00 0.0 0.000 0.0000
+log_k_JCZ38 0.000 0.00 0.0 0.000 0.0000
+log_k_J9Z38 0.000 0.00 0.0 0.000 0.0000
+log_k_JSE76 0.000 0.00 0.0 0.000 0.0000
+f_cyan_ilr_1 0.000 0.00 0.0 0.000 0.0000
+f_cyan_ilr_2 1.797 0.00 0.0 0.000 0.0000
+f_JCZ38_qlogis 0.000 13.85 0.0 0.000 0.0000
+f_JSE76_qlogis 0.000 0.00 14.1 0.000 0.0000
+log_k1 0.000 0.00 0.0 1.106 0.0000
+log_k2 0.000 0.00 0.0 0.000 0.6141
+g_qlogis 0.000 0.00 0.0 0.000 0.0000
+ g_qlogis
+cyan_0 0.000
+log_k_JCZ38 0.000
+log_k_J9Z38 0.000
+log_k_JSE76 0.000
+f_cyan_ilr_1 0.000
+f_cyan_ilr_2 0.000
+f_JCZ38_qlogis 0.000
+f_JSE76_qlogis 0.000
+log_k1 0.000
+log_k2 0.000
+g_qlogis 1.595
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2290 2281 -1123
+
+Optimised parameters:
+ est. lower upper
+cyan_0 102.6903 101.44420 103.9365
+log_k_JCZ38 -2.4018 -2.98058 -1.8230
+log_k_J9Z38 -5.1865 -5.92931 -4.4437
+log_k_JSE76 -3.0784 -4.25226 -1.9045
+f_cyan_ilr_1 0.7157 0.37625 1.0551
+f_cyan_ilr_2 0.7073 0.20136 1.2132
+f_JCZ38_qlogis 4.6797 0.43240 8.9269
+f_JSE76_qlogis 5.0080 -1.01380 11.0299
+log_k1 -1.9620 -2.62909 -1.2949
+log_k2 -4.4894 -4.94958 -4.0292
+g_qlogis -0.4658 -1.34443 0.4129
+a.1 2.7158 2.52576 2.9059
+SD.log_k_JCZ38 0.5818 0.15679 1.0067
+SD.log_k_J9Z38 0.7421 0.16751 1.3167
+SD.log_k_JSE76 1.2841 0.43247 2.1356
+SD.f_cyan_ilr_1 0.3748 0.13040 0.6192
+SD.f_cyan_ilr_2 0.4550 0.08396 0.8261
+SD.f_JCZ38_qlogis 2.0862 -0.73390 4.9062
+SD.f_JSE76_qlogis 1.9585 -3.14773 7.0647
+SD.log_k1 0.7389 0.25761 1.2201
+SD.log_k2 0.5132 0.18143 0.8450
+SD.g_qlogis 0.9870 0.35773 1.6164
+
+Correlation:
+ cyan_0 l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76
+log_k_JCZ38 -0.0170
+log_k_J9Z38 -0.0457 0.0016
+log_k_JSE76 -0.0046 0.1183 0.0005
+f_cyan_ilr_1 0.0079 0.0072 -0.0909 0.0003
+f_cyan_ilr_2 -0.3114 0.0343 0.1542 0.0023 -0.0519
+f_JCZ38_qlogis 0.0777 -0.0601 -0.0152 0.0080 -0.0520 -0.2524
+f_JSE76_qlogis -0.0356 0.0817 0.0073 0.0051 0.0388 0.1959 -0.6236
+log_k1 0.0848 -0.0028 0.0010 -0.0010 -0.0014 -0.0245 0.0121 -0.0177
+log_k2 0.0274 -0.0001 0.0075 0.0000 -0.0023 -0.0060 0.0000 -0.0130
+g_qlogis 0.0159 0.0002 -0.0095 0.0002 0.0029 -0.0140 -0.0001 0.0149
+ log_k1 log_k2
+log_k_JCZ38
+log_k_J9Z38
+log_k_JSE76
+f_cyan_ilr_1
+f_cyan_ilr_2
+f_JCZ38_qlogis
+f_JSE76_qlogis
+log_k1
+log_k2 0.0280
+g_qlogis -0.0278 -0.0310
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 0.5818 0.15679 1.0067
+SD.log_k_J9Z38 0.7421 0.16751 1.3167
+SD.log_k_JSE76 1.2841 0.43247 2.1356
+SD.f_cyan_ilr_1 0.3748 0.13040 0.6192
+SD.f_cyan_ilr_2 0.4550 0.08396 0.8261
+SD.f_JCZ38_qlogis 2.0862 -0.73390 4.9062
+SD.f_JSE76_qlogis 1.9585 -3.14773 7.0647
+SD.log_k1 0.7389 0.25761 1.2201
+SD.log_k2 0.5132 0.18143 0.8450
+SD.g_qlogis 0.9870 0.35773 1.6164
+
+Variance model:
+ est. lower upper
+a.1 2.716 2.526 2.906
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.027e+02 1.014e+02 103.93649
+k_JCZ38 9.056e-02 5.076e-02 0.16154
+k_J9Z38 5.591e-03 2.660e-03 0.01175
+k_JSE76 4.603e-02 1.423e-02 0.14890
+f_cyan_to_JCZ38 6.184e-01 NA NA
+f_cyan_to_J9Z38 2.248e-01 NA NA
+f_JCZ38_to_JSE76 9.908e-01 6.064e-01 0.99987
+f_JSE76_to_JCZ38 9.934e-01 2.662e-01 0.99998
+k1 1.406e-01 7.214e-02 0.27393
+k2 1.123e-02 7.086e-03 0.01779
+g 3.856e-01 2.068e-01 0.60177
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.618443
+cyan_J9Z38 0.224770
+cyan_sink 0.156787
+JCZ38_JSE76 0.990803
+JCZ38_sink 0.009197
+JSE76_JCZ38 0.993360
+JSE76_sink 0.006640
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 21.674 161.70 48.68 4.931 61.74
+JCZ38 7.654 25.43 NA NA NA
+J9Z38 123.966 411.81 NA NA NA
+JSE76 15.057 50.02 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:45:32 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +
+ f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1693.767 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.7523 -1.5948 -5.0119 -2.2723 0.6719
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+ 5.1681 12.8238 12.4130 -2.0057 -4.5526
+ g_qlogis
+ -0.5805
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.627 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.000 2.327 0.000 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.664 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.000 4.566 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6519
+f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000
+f_JSE76_qlogis 0.000 0.000 0.000 0.000 0.0000
+log_k1 0.000 0.000 0.000 0.000 0.0000
+log_k2 0.000 0.000 0.000 0.000 0.0000
+g_qlogis 0.000 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+cyan_0 0.0 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.0 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.0 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.0 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.0 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 10.1 0.00 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.0 13.99 0.00 0.0000 0.0000
+f_JSE76_qlogis 0.0 0.00 14.15 0.0000 0.0000
+log_k1 0.0 0.00 0.00 0.8452 0.0000
+log_k2 0.0 0.00 0.00 0.0000 0.5968
+g_qlogis 0.0 0.00 0.00 0.0000 0.0000
+ g_qlogis
+cyan_0 0.000
+log_k_JCZ38 0.000
+log_k_J9Z38 0.000
+log_k_JSE76 0.000
+f_cyan_ilr_1 0.000
+f_cyan_ilr_2 0.000
+f_JCZ38_qlogis 0.000
+f_JSE76_qlogis 0.000
+log_k1 0.000
+log_k2 0.000
+g_qlogis 1.691
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2234 2226 -1095
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.10667 9.903e+01 103.18265
+log_k_JCZ38 -2.49437 -3.297e+00 -1.69221
+log_k_J9Z38 -5.08171 -5.875e+00 -4.28846
+log_k_JSE76 -3.20072 -4.180e+00 -2.22163
+f_cyan_ilr_1 0.71059 3.639e-01 1.05727
+f_cyan_ilr_2 1.15398 2.981e-01 2.00984
+f_JCZ38_qlogis 3.18027 1.056e+00 5.30452
+f_JSE76_qlogis 5.61578 -2.505e+01 36.28077
+log_k1 -2.38875 -2.517e+00 -2.26045
+log_k2 -4.67246 -4.928e+00 -4.41715
+g_qlogis -0.28231 -1.135e+00 0.57058
+a.1 2.08190 1.856e+00 2.30785
+b.1 0.06114 5.015e-02 0.07214
+SD.log_k_JCZ38 0.84622 2.637e-01 1.42873
+SD.log_k_J9Z38 0.84564 2.566e-01 1.43464
+SD.log_k_JSE76 1.04385 3.242e-01 1.76351
+SD.f_cyan_ilr_1 0.38568 1.362e-01 0.63514
+SD.f_cyan_ilr_2 0.68046 7.166e-02 1.28925
+SD.f_JCZ38_qlogis 1.25244 -4.213e-02 2.54700
+SD.f_JSE76_qlogis 0.28202 -1.515e+03 1515.87968
+SD.log_k2 0.25749 7.655e-02 0.43843
+SD.g_qlogis 0.94535 3.490e-01 1.54174
+
+Correlation:
+ cyan_0 l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76
+log_k_JCZ38 -0.0086
+log_k_J9Z38 -0.0363 -0.0007
+log_k_JSE76 0.0015 0.1210 -0.0017
+f_cyan_ilr_1 -0.0048 0.0095 -0.0572 0.0030
+f_cyan_ilr_2 -0.4788 0.0328 0.1143 0.0027 -0.0316
+f_JCZ38_qlogis 0.0736 -0.0664 -0.0137 0.0145 -0.0444 -0.2175
+f_JSE76_qlogis -0.0137 0.0971 0.0035 0.0009 0.0293 0.1333 -0.6767
+log_k1 0.2345 -0.0350 -0.0099 -0.0113 -0.0126 -0.1652 0.1756 -0.2161
+log_k2 0.0440 -0.0133 0.0199 -0.0040 -0.0097 -0.0119 0.0604 -0.1306
+g_qlogis 0.0438 0.0078 -0.0123 0.0029 0.0046 -0.0363 -0.0318 0.0736
+ log_k1 log_k2
+log_k_JCZ38
+log_k_J9Z38
+log_k_JSE76
+f_cyan_ilr_1
+f_cyan_ilr_2
+f_JCZ38_qlogis
+f_JSE76_qlogis
+log_k1
+log_k2 0.3198
+g_qlogis -0.1666 -0.0954
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 0.8462 2.637e-01 1.4287
+SD.log_k_J9Z38 0.8456 2.566e-01 1.4346
+SD.log_k_JSE76 1.0439 3.242e-01 1.7635
+SD.f_cyan_ilr_1 0.3857 1.362e-01 0.6351
+SD.f_cyan_ilr_2 0.6805 7.166e-02 1.2893
+SD.f_JCZ38_qlogis 1.2524 -4.213e-02 2.5470
+SD.f_JSE76_qlogis 0.2820 -1.515e+03 1515.8797
+SD.log_k2 0.2575 7.655e-02 0.4384
+SD.g_qlogis 0.9453 3.490e-01 1.5417
+
+Variance model:
+ est. lower upper
+a.1 2.08190 1.85595 2.30785
+b.1 0.06114 0.05015 0.07214
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.011e+02 9.903e+01 103.18265
+k_JCZ38 8.255e-02 3.701e-02 0.18411
+k_J9Z38 6.209e-03 2.809e-03 0.01373
+k_JSE76 4.073e-02 1.530e-02 0.10843
+f_cyan_to_JCZ38 6.608e-01 NA NA
+f_cyan_to_J9Z38 2.419e-01 NA NA
+f_JCZ38_to_JSE76 9.601e-01 7.419e-01 0.99506
+f_JSE76_to_JCZ38 9.964e-01 1.322e-11 1.00000
+k1 9.174e-02 8.070e-02 0.10430
+k2 9.349e-03 7.243e-03 0.01207
+g 4.299e-01 2.432e-01 0.63890
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.660808
+cyan_J9Z38 0.241904
+cyan_sink 0.097288
+JCZ38_JSE76 0.960085
+JCZ38_sink 0.039915
+JSE76_JCZ38 0.996373
+JSE76_sink 0.003627
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 24.359 186.18 56.05 7.555 74.14
+JCZ38 8.397 27.89 NA NA NA
+J9Z38 111.631 370.83 NA NA NA
+JSE76 17.017 56.53 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:38:37 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
+ cyan_free + k_cyan_bound_free * cyan_bound
+d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
+ cyan_bound
+d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
+ * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
+ * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1279.102 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+ 102.4394 -2.7673 -2.8942
+log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38
+ -3.6201 -2.3107 -5.3123
+ log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2
+ -3.7120 0.6754 1.1448
+ f_JCZ38_qlogis f_JSE76_qlogis
+ 13.2672 13.3538
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+cyan_free_0 4.589 0.0000 0.00
+log_k_cyan_free 0.000 0.4849 0.00
+log_k_cyan_free_bound 0.000 0.0000 1.62
+log_k_cyan_bound_free 0.000 0.0000 0.00
+log_k_JCZ38 0.000 0.0000 0.00
+log_k_J9Z38 0.000 0.0000 0.00
+log_k_JSE76 0.000 0.0000 0.00
+f_cyan_ilr_1 0.000 0.0000 0.00
+f_cyan_ilr_2 0.000 0.0000 0.00
+f_JCZ38_qlogis 0.000 0.0000 0.00
+f_JSE76_qlogis 0.000 0.0000 0.00
+ log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_free_0 0.000 0.0000 0.000 0.0
+log_k_cyan_free 0.000 0.0000 0.000 0.0
+log_k_cyan_free_bound 0.000 0.0000 0.000 0.0
+log_k_cyan_bound_free 1.197 0.0000 0.000 0.0
+log_k_JCZ38 0.000 0.7966 0.000 0.0
+log_k_J9Z38 0.000 0.0000 1.561 0.0
+log_k_JSE76 0.000 0.0000 0.000 0.8
+f_cyan_ilr_1 0.000 0.0000 0.000 0.0
+f_cyan_ilr_2 0.000 0.0000 0.000 0.0
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.0
+f_JSE76_qlogis 0.000 0.0000 0.000 0.0
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis
+cyan_free_0 0.0000 0.000 0.00 0.00
+log_k_cyan_free 0.0000 0.000 0.00 0.00
+log_k_cyan_free_bound 0.0000 0.000 0.00 0.00
+log_k_cyan_bound_free 0.0000 0.000 0.00 0.00
+log_k_JCZ38 0.0000 0.000 0.00 0.00
+log_k_J9Z38 0.0000 0.000 0.00 0.00
+log_k_JSE76 0.0000 0.000 0.00 0.00
+f_cyan_ilr_1 0.6349 0.000 0.00 0.00
+f_cyan_ilr_2 0.0000 1.797 0.00 0.00
+f_JCZ38_qlogis 0.0000 0.000 13.84 0.00
+f_JSE76_qlogis 0.0000 0.000 0.00 14.66
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2284 2275 -1120
+
+Optimised parameters:
+ est. lower upper
+cyan_free_0 102.7730 1.015e+02 1.041e+02
+log_k_cyan_free -2.8530 -3.167e+00 -2.539e+00
+log_k_cyan_free_bound -2.7326 -3.543e+00 -1.922e+00
+log_k_cyan_bound_free -3.5582 -4.126e+00 -2.990e+00
+log_k_JCZ38 -2.3810 -2.921e+00 -1.841e+00
+log_k_J9Z38 -5.2301 -5.963e+00 -4.497e+00
+log_k_JSE76 -3.0286 -4.286e+00 -1.771e+00
+f_cyan_ilr_1 0.7081 3.733e-01 1.043e+00
+f_cyan_ilr_2 0.5847 7.846e-03 1.162e+00
+f_JCZ38_qlogis 9.5676 -1.323e+03 1.342e+03
+f_JSE76_qlogis 3.7042 7.254e-02 7.336e+00
+a.1 2.7222 2.532e+00 2.913e+00
+SD.log_k_cyan_free 0.3338 1.086e-01 5.589e-01
+SD.log_k_cyan_free_bound 0.8888 3.023e-01 1.475e+00
+SD.log_k_cyan_bound_free 0.6220 2.063e-01 1.038e+00
+SD.log_k_JCZ38 0.5221 1.334e-01 9.108e-01
+SD.log_k_J9Z38 0.7104 1.371e-01 1.284e+00
+SD.log_k_JSE76 1.3837 4.753e-01 2.292e+00
+SD.f_cyan_ilr_1 0.3620 1.248e-01 5.992e-01
+SD.f_cyan_ilr_2 0.4259 8.145e-02 7.704e-01
+SD.f_JCZ38_qlogis 3.5332 -1.037e+05 1.037e+05
+SD.f_JSE76_qlogis 1.6990 -2.771e-01 3.675e+00
+
+Correlation:
+ cyn_f_0 lg_k_c_ lg_k_cyn_f_ lg_k_cyn_b_ l__JCZ3 l__J9Z3
+log_k_cyan_free 0.2126
+log_k_cyan_free_bound 0.0894 0.0871
+log_k_cyan_bound_free 0.0033 0.0410 0.0583
+log_k_JCZ38 -0.0708 -0.0280 -0.0147 0.0019
+log_k_J9Z38 -0.0535 -0.0138 0.0012 0.0148 0.0085
+log_k_JSE76 -0.0066 -0.0030 -0.0021 -0.0005 0.1090 0.0010
+f_cyan_ilr_1 -0.0364 -0.0157 -0.0095 -0.0015 0.0458 -0.0960
+f_cyan_ilr_2 -0.3814 -0.1104 -0.0423 0.0146 0.1540 0.1526
+f_JCZ38_qlogis 0.2507 0.0969 0.0482 -0.0097 -0.2282 -0.0363
+f_JSE76_qlogis -0.1648 -0.0710 -0.0443 -0.0087 0.2002 0.0226
+ l__JSE7 f_cy__1 f_cy__2 f_JCZ38
+log_k_cyan_free
+log_k_cyan_free_bound
+log_k_cyan_bound_free
+log_k_JCZ38
+log_k_J9Z38
+log_k_JSE76
+f_cyan_ilr_1 0.0001
+f_cyan_ilr_2 0.0031 0.0586
+f_JCZ38_qlogis 0.0023 -0.1867 -0.6255
+f_JSE76_qlogis 0.0082 0.1356 0.4519 -0.7951
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan_free 0.3338 1.086e-01 5.589e-01
+SD.log_k_cyan_free_bound 0.8888 3.023e-01 1.475e+00
+SD.log_k_cyan_bound_free 0.6220 2.063e-01 1.038e+00
+SD.log_k_JCZ38 0.5221 1.334e-01 9.108e-01
+SD.log_k_J9Z38 0.7104 1.371e-01 1.284e+00
+SD.log_k_JSE76 1.3837 4.753e-01 2.292e+00
+SD.f_cyan_ilr_1 0.3620 1.248e-01 5.992e-01
+SD.f_cyan_ilr_2 0.4259 8.145e-02 7.704e-01
+SD.f_JCZ38_qlogis 3.5332 -1.037e+05 1.037e+05
+SD.f_JSE76_qlogis 1.6990 -2.771e-01 3.675e+00
+
+Variance model:
+ est. lower upper
+a.1 2.722 2.532 2.913
+
+Backtransformed parameters:
+ est. lower upper
+cyan_free_0 1.028e+02 1.015e+02 104.06475
+k_cyan_free 5.767e-02 4.213e-02 0.07894
+k_cyan_free_bound 6.505e-02 2.892e-02 0.14633
+k_cyan_bound_free 2.849e-02 1.614e-02 0.05028
+k_JCZ38 9.246e-02 5.390e-02 0.15859
+k_J9Z38 5.353e-03 2.572e-03 0.01114
+k_JSE76 4.838e-02 1.376e-02 0.17009
+f_cyan_free_to_JCZ38 6.011e-01 5.028e-01 0.83792
+f_cyan_free_to_J9Z38 2.208e-01 5.028e-01 0.83792
+f_JCZ38_to_JSE76 9.999e-01 0.000e+00 1.00000
+f_JSE76_to_JCZ38 9.760e-01 5.181e-01 0.99935
+
+Estimated Eigenvalues of SFORB model(s):
+cyan_b1 cyan_b2 cyan_g
+0.13942 0.01178 0.35948
+
+Resulting formation fractions:
+ ff
+cyan_free_JCZ38 6.011e-01
+cyan_free_J9Z38 2.208e-01
+cyan_free_sink 1.780e-01
+cyan_free 1.000e+00
+JCZ38_JSE76 9.999e-01
+JCZ38_sink 6.996e-05
+JSE76_JCZ38 9.760e-01
+JSE76_sink 2.403e-02
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
+cyan 23.390 157.60 47.44 4.971 58.82
+JCZ38 7.497 24.90 NA NA NA
+J9Z38 129.482 430.13 NA NA NA
+JSE76 14.326 47.59 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:46:02 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
+ cyan_free + k_cyan_bound_free * cyan_bound
+d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
+ cyan_bound
+d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
+ * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
+ * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1723.343 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+ 101.751 -2.837 -3.016
+log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38
+ -3.660 -2.299 -5.313
+ log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2
+ -3.699 0.672 5.873
+ f_JCZ38_qlogis f_JSE76_qlogis
+ 13.216 13.338
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+cyan_free_0 5.629 0.000 0.000
+log_k_cyan_free 0.000 0.446 0.000
+log_k_cyan_free_bound 0.000 0.000 1.449
+log_k_cyan_bound_free 0.000 0.000 0.000
+log_k_JCZ38 0.000 0.000 0.000
+log_k_J9Z38 0.000 0.000 0.000
+log_k_JSE76 0.000 0.000 0.000
+f_cyan_ilr_1 0.000 0.000 0.000
+f_cyan_ilr_2 0.000 0.000 0.000
+f_JCZ38_qlogis 0.000 0.000 0.000
+f_JSE76_qlogis 0.000 0.000 0.000
+ log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_free_0 0.000 0.0000 0.000 0.0000
+log_k_cyan_free 0.000 0.0000 0.000 0.0000
+log_k_cyan_free_bound 0.000 0.0000 0.000 0.0000
+log_k_cyan_bound_free 1.213 0.0000 0.000 0.0000
+log_k_JCZ38 0.000 0.7801 0.000 0.0000
+log_k_J9Z38 0.000 0.0000 1.575 0.0000
+log_k_JSE76 0.000 0.0000 0.000 0.8078
+f_cyan_ilr_1 0.000 0.0000 0.000 0.0000
+f_cyan_ilr_2 0.000 0.0000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.0000
+f_JSE76_qlogis 0.000 0.0000 0.000 0.0000
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis
+cyan_free_0 0.0000 0.00 0.00 0.00
+log_k_cyan_free 0.0000 0.00 0.00 0.00
+log_k_cyan_free_bound 0.0000 0.00 0.00 0.00
+log_k_cyan_bound_free 0.0000 0.00 0.00 0.00
+log_k_JCZ38 0.0000 0.00 0.00 0.00
+log_k_J9Z38 0.0000 0.00 0.00 0.00
+log_k_JSE76 0.0000 0.00 0.00 0.00
+f_cyan_ilr_1 0.6519 0.00 0.00 0.00
+f_cyan_ilr_2 0.0000 10.78 0.00 0.00
+f_JCZ38_qlogis 0.0000 0.00 13.96 0.00
+f_JSE76_qlogis 0.0000 0.00 0.00 14.69
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2240 2232 -1098
+
+Optimised parameters:
+ est. lower upper
+cyan_free_0 101.10205 98.99221 103.2119
+log_k_cyan_free -3.16929 -3.61395 -2.7246
+log_k_cyan_free_bound -3.38259 -3.63022 -3.1350
+log_k_cyan_bound_free -3.81075 -4.13888 -3.4826
+log_k_JCZ38 -2.42057 -3.00756 -1.8336
+log_k_J9Z38 -5.07501 -5.85138 -4.2986
+log_k_JSE76 -3.12442 -4.21277 -2.0361
+f_cyan_ilr_1 0.70577 0.35788 1.0537
+f_cyan_ilr_2 1.14824 0.15810 2.1384
+f_JCZ38_qlogis 3.52245 0.43257 6.6123
+f_JSE76_qlogis 5.65140 -21.22295 32.5257
+a.1 2.07062 1.84329 2.2980
+b.1 0.06227 0.05124 0.0733
+SD.log_k_cyan_free 0.49468 0.18566 0.8037
+SD.log_k_cyan_bound_free 0.28972 0.07188 0.5076
+SD.log_k_JCZ38 0.58852 0.16800 1.0090
+SD.log_k_J9Z38 0.82500 0.24730 1.4027
+SD.log_k_JSE76 1.19201 0.40313 1.9809
+SD.f_cyan_ilr_1 0.38534 0.13640 0.6343
+SD.f_cyan_ilr_2 0.72463 0.10076 1.3485
+SD.f_JCZ38_qlogis 1.38223 -0.20997 2.9744
+SD.f_JSE76_qlogis 2.07989 -72.53027 76.6901
+
+Correlation:
+ cyn_f_0 lg_k_c_ lg_k_cyn_f_ lg_k_cyn_b_ l__JCZ3 l__J9Z3
+log_k_cyan_free 0.1117
+log_k_cyan_free_bound 0.1763 0.1828
+log_k_cyan_bound_free 0.0120 0.0593 0.5030
+log_k_JCZ38 -0.0459 -0.0230 -0.0931 -0.0337
+log_k_J9Z38 -0.0381 -0.0123 -0.0139 0.0237 0.0063
+log_k_JSE76 -0.0044 -0.0038 -0.0175 -0.0072 0.1120 0.0003
+f_cyan_ilr_1 -0.0199 -0.0087 -0.0407 -0.0233 0.0268 -0.0552
+f_cyan_ilr_2 -0.4806 -0.1015 -0.2291 -0.0269 0.1156 0.1113
+f_JCZ38_qlogis 0.1805 0.0825 0.3085 0.0963 -0.1674 -0.0314
+f_JSE76_qlogis -0.1586 -0.0810 -0.3560 -0.1563 0.2025 0.0278
+ l__JSE7 f_cy__1 f_cy__2 f_JCZ38
+log_k_cyan_free
+log_k_cyan_free_bound
+log_k_cyan_bound_free
+log_k_JCZ38
+log_k_J9Z38
+log_k_JSE76
+f_cyan_ilr_1 0.0024
+f_cyan_ilr_2 0.0087 0.0172
+f_JCZ38_qlogis -0.0016 -0.1047 -0.4656
+f_JSE76_qlogis 0.0119 0.1034 0.4584 -0.8137
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan_free 0.4947 0.18566 0.8037
+SD.log_k_cyan_bound_free 0.2897 0.07188 0.5076
+SD.log_k_JCZ38 0.5885 0.16800 1.0090
+SD.log_k_J9Z38 0.8250 0.24730 1.4027
+SD.log_k_JSE76 1.1920 0.40313 1.9809
+SD.f_cyan_ilr_1 0.3853 0.13640 0.6343
+SD.f_cyan_ilr_2 0.7246 0.10076 1.3485
+SD.f_JCZ38_qlogis 1.3822 -0.20997 2.9744
+SD.f_JSE76_qlogis 2.0799 -72.53027 76.6901
+
+Variance model:
+ est. lower upper
+a.1 2.07062 1.84329 2.2980
+b.1 0.06227 0.05124 0.0733
+
+Backtransformed parameters:
+ est. lower upper
+cyan_free_0 1.011e+02 9.899e+01 103.21190
+k_cyan_free 4.203e-02 2.695e-02 0.06557
+k_cyan_free_bound 3.396e-02 2.651e-02 0.04350
+k_cyan_bound_free 2.213e-02 1.594e-02 0.03073
+k_JCZ38 8.887e-02 4.941e-02 0.15984
+k_J9Z38 6.251e-03 2.876e-03 0.01359
+k_JSE76 4.396e-02 1.481e-02 0.13054
+f_cyan_free_to_JCZ38 6.590e-01 5.557e-01 0.95365
+f_cyan_free_to_J9Z38 2.429e-01 5.557e-01 0.95365
+f_JCZ38_to_JSE76 9.713e-01 6.065e-01 0.99866
+f_JSE76_to_JCZ38 9.965e-01 6.067e-10 1.00000
+
+Estimated Eigenvalues of SFORB model(s):
+cyan_b1 cyan_b2 cyan_g
+0.08749 0.01063 0.40855
+
+Resulting formation fractions:
+ ff
+cyan_free_JCZ38 0.65905
+cyan_free_J9Z38 0.24291
+cyan_free_sink 0.09805
+cyan_free 1.00000
+JCZ38_JSE76 0.97132
+JCZ38_sink 0.02868
+JSE76_JCZ38 0.99650
+JSE76_sink 0.00350
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
+cyan 24.91 167.16 50.32 7.922 65.19
+JCZ38 7.80 25.91 NA NA NA
+J9Z38 110.89 368.36 NA NA NA
+JSE76 15.77 52.38 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 11:18:41 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1957.271 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.9028 -1.9055 -5.0249 -2.5646 0.6807
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
+ 4.8883 16.0676 9.3923 -0.1346 3.0364
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 6.321 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.000 1.392 0.000 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.561 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.000 3.614 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6339
+f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000
+f_JSE76_qlogis 0.000 0.000 0.000 0.000 0.0000
+log_alpha 0.000 0.000 0.000 0.000 0.0000
+log_beta 0.000 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
+cyan_0 0.00 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.00 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.00 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.00 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.00 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 10.41 0.00 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.00 12.24 0.00 0.0000 0.0000
+f_JSE76_qlogis 0.00 0.00 15.13 0.0000 0.0000
+log_alpha 0.00 0.00 0.00 0.3701 0.0000
+log_beta 0.00 0.00 0.00 0.0000 0.5662
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2251 2244 -1106
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.05768 NA NA
+log_k_JCZ38 -2.73252 NA NA
+log_k_J9Z38 -5.07399 NA NA
+log_k_JSE76 -3.52863 NA NA
+f_cyan_ilr_1 0.72176 NA NA
+f_cyan_ilr_2 1.34610 NA NA
+f_JCZ38_qlogis 2.08337 NA NA
+f_JSE76_qlogis 1590.31880 NA NA
+log_alpha -0.09336 NA NA
+log_beta 3.10191 NA NA
+a.1 2.08557 1.85439 2.31675
+b.1 0.06998 0.05800 0.08197
+SD.log_k_JCZ38 1.20053 0.43329 1.96777
+SD.log_k_J9Z38 0.85854 0.26708 1.45000
+SD.log_k_JSE76 0.62528 0.16061 1.08995
+SD.f_cyan_ilr_1 0.35190 0.12340 0.58039
+SD.f_cyan_ilr_2 0.85385 0.15391 1.55378
+SD.log_alpha 0.28971 0.08718 0.49225
+SD.log_beta 0.31614 0.05938 0.57290
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.2005 0.43329 1.9678
+SD.log_k_J9Z38 0.8585 0.26708 1.4500
+SD.log_k_JSE76 0.6253 0.16061 1.0900
+SD.f_cyan_ilr_1 0.3519 0.12340 0.5804
+SD.f_cyan_ilr_2 0.8538 0.15391 1.5538
+SD.log_alpha 0.2897 0.08718 0.4923
+SD.log_beta 0.3161 0.05938 0.5729
+
+Variance model:
+ est. lower upper
+a.1 2.08557 1.854 2.31675
+b.1 0.06998 0.058 0.08197
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.011e+02 NA NA
+k_JCZ38 6.506e-02 NA NA
+k_J9Z38 6.257e-03 NA NA
+k_JSE76 2.935e-02 NA NA
+f_cyan_to_JCZ38 6.776e-01 NA NA
+f_cyan_to_J9Z38 2.442e-01 NA NA
+f_JCZ38_to_JSE76 8.893e-01 NA NA
+f_JSE76_to_JCZ38 1.000e+00 NA NA
+alpha 9.109e-01 NA NA
+beta 2.224e+01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.67761
+cyan_J9Z38 0.24417
+cyan_sink 0.07822
+JCZ38_JSE76 0.88928
+JCZ38_sink 0.11072
+JSE76_JCZ38 1.00000
+JSE76_sink 0.00000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+cyan 25.36 256.37 77.18
+JCZ38 10.65 35.39 NA
+J9Z38 110.77 367.98 NA
+JSE76 23.62 78.47 NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 11:16:32 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +
+ f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1828.403 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 102.4358 -2.3107 -5.3123 -3.7120 0.6753
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+ 1.1462 12.4095 12.3630 -1.9317 -4.4557
+ g_qlogis
+ -0.5648
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 4.594 0.0000 0.000 0.0 0.0000
+log_k_JCZ38 0.000 0.7966 0.000 0.0 0.0000
+log_k_J9Z38 0.000 0.0000 1.561 0.0 0.0000
+log_k_JSE76 0.000 0.0000 0.000 0.8 0.0000
+f_cyan_ilr_1 0.000 0.0000 0.000 0.0 0.6349
+f_cyan_ilr_2 0.000 0.0000 0.000 0.0 0.0000
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.0 0.0000
+f_JSE76_qlogis 0.000 0.0000 0.000 0.0 0.0000
+log_k1 0.000 0.0000 0.000 0.0 0.0000
+log_k2 0.000 0.0000 0.000 0.0 0.0000
+g_qlogis 0.000 0.0000 0.000 0.0 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+cyan_0 0.000 0.00 0.0 0.000 0.0000
+log_k_JCZ38 0.000 0.00 0.0 0.000 0.0000
+log_k_J9Z38 0.000 0.00 0.0 0.000 0.0000
+log_k_JSE76 0.000 0.00 0.0 0.000 0.0000
+f_cyan_ilr_1 0.000 0.00 0.0 0.000 0.0000
+f_cyan_ilr_2 1.797 0.00 0.0 0.000 0.0000
+f_JCZ38_qlogis 0.000 13.85 0.0 0.000 0.0000
+f_JSE76_qlogis 0.000 0.00 14.1 0.000 0.0000
+log_k1 0.000 0.00 0.0 1.106 0.0000
+log_k2 0.000 0.00 0.0 0.000 0.6141
+g_qlogis 0.000 0.00 0.0 0.000 0.0000
+ g_qlogis
+cyan_0 0.000
+log_k_JCZ38 0.000
+log_k_J9Z38 0.000
+log_k_JSE76 0.000
+f_cyan_ilr_1 0.000
+f_cyan_ilr_2 0.000
+f_JCZ38_qlogis 0.000
+f_JSE76_qlogis 0.000
+log_k1 0.000
+log_k2 0.000
+g_qlogis 1.595
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2282 2274 -1121
+
+Optimised parameters:
+ est. lower upper
+cyan_0 102.5254 NA NA
+log_k_JCZ38 -2.9358 NA NA
+log_k_J9Z38 -5.1424 NA NA
+log_k_JSE76 -3.6458 NA NA
+f_cyan_ilr_1 0.6957 NA NA
+f_cyan_ilr_2 0.6635 NA NA
+f_JCZ38_qlogis 4984.8163 NA NA
+f_JSE76_qlogis 1.9415 NA NA
+log_k1 -1.9456 NA NA
+log_k2 -4.4705 NA NA
+g_qlogis -0.5117 NA NA
+a.1 2.7455 2.55392 2.9370
+SD.log_k_JCZ38 1.3163 0.47635 2.1563
+SD.log_k_J9Z38 0.7162 0.16133 1.2711
+SD.log_k_JSE76 0.6457 0.15249 1.1390
+SD.f_cyan_ilr_1 0.3424 0.11714 0.5677
+SD.f_cyan_ilr_2 0.4524 0.09709 0.8077
+SD.log_k1 0.7353 0.25445 1.2161
+SD.log_k2 0.5137 0.18206 0.8453
+SD.g_qlogis 0.9857 0.35651 1.6148
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.3163 0.47635 2.1563
+SD.log_k_J9Z38 0.7162 0.16133 1.2711
+SD.log_k_JSE76 0.6457 0.15249 1.1390
+SD.f_cyan_ilr_1 0.3424 0.11714 0.5677
+SD.f_cyan_ilr_2 0.4524 0.09709 0.8077
+SD.log_k1 0.7353 0.25445 1.2161
+SD.log_k2 0.5137 0.18206 0.8453
+SD.g_qlogis 0.9857 0.35651 1.6148
+
+Variance model:
+ est. lower upper
+a.1 2.745 2.554 2.937
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.025e+02 NA NA
+k_JCZ38 5.309e-02 NA NA
+k_J9Z38 5.844e-03 NA NA
+k_JSE76 2.610e-02 NA NA
+f_cyan_to_JCZ38 6.079e-01 NA NA
+f_cyan_to_J9Z38 2.272e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+f_JSE76_to_JCZ38 8.745e-01 NA NA
+k1 1.429e-01 NA NA
+k2 1.144e-02 NA NA
+g 3.748e-01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.6079
+cyan_J9Z38 0.2272
+cyan_sink 0.1649
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+JSE76_JCZ38 0.8745
+JSE76_sink 0.1255
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 22.29 160.20 48.22 4.85 60.58
+JCZ38 13.06 43.37 NA NA NA
+J9Z38 118.61 394.02 NA NA NA
+JSE76 26.56 88.22 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 11:22:28 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +
+ f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 2183.989 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.7523 -1.5948 -5.0119 -2.2723 0.6719
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+ 5.1681 12.8238 12.4130 -2.0057 -4.5526
+ g_qlogis
+ -0.5805
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.627 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.000 2.327 0.000 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.664 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.000 4.566 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6519
+f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000
+f_JSE76_qlogis 0.000 0.000 0.000 0.000 0.0000
+log_k1 0.000 0.000 0.000 0.000 0.0000
+log_k2 0.000 0.000 0.000 0.000 0.0000
+g_qlogis 0.000 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+cyan_0 0.0 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.0 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.0 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.0 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.0 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 10.1 0.00 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.0 13.99 0.00 0.0000 0.0000
+f_JSE76_qlogis 0.0 0.00 14.15 0.0000 0.0000
+log_k1 0.0 0.00 0.00 0.8452 0.0000
+log_k2 0.0 0.00 0.00 0.0000 0.5968
+g_qlogis 0.0 0.00 0.00 0.0000 0.0000
+ g_qlogis
+cyan_0 0.000
+log_k_JCZ38 0.000
+log_k_J9Z38 0.000
+log_k_JSE76 0.000
+f_cyan_ilr_1 0.000
+f_cyan_ilr_2 0.000
+f_JCZ38_qlogis 0.000
+f_JSE76_qlogis 0.000
+log_k1 0.000
+log_k2 0.000
+g_qlogis 1.691
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2232 2224 -1096
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.20051 NA NA
+log_k_JCZ38 -2.93542 NA NA
+log_k_J9Z38 -5.03151 NA NA
+log_k_JSE76 -3.67679 NA NA
+f_cyan_ilr_1 0.67290 NA NA
+f_cyan_ilr_2 0.99787 NA NA
+f_JCZ38_qlogis 348.32484 NA NA
+f_JSE76_qlogis 1.87846 NA NA
+log_k1 -2.32738 NA NA
+log_k2 -4.61295 NA NA
+g_qlogis -0.38342 NA NA
+a.1 2.06184 1.83746 2.28622
+b.1 0.06329 0.05211 0.07447
+SD.log_k_JCZ38 1.29042 0.47468 2.10617
+SD.log_k_J9Z38 0.84235 0.25903 1.42566
+SD.log_k_JSE76 0.56930 0.13934 0.99926
+SD.f_cyan_ilr_1 0.35183 0.12298 0.58068
+SD.f_cyan_ilr_2 0.77269 0.17908 1.36631
+SD.log_k2 0.28549 0.09210 0.47888
+SD.g_qlogis 0.93830 0.34568 1.53093
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.2904 0.4747 2.1062
+SD.log_k_J9Z38 0.8423 0.2590 1.4257
+SD.log_k_JSE76 0.5693 0.1393 0.9993
+SD.f_cyan_ilr_1 0.3518 0.1230 0.5807
+SD.f_cyan_ilr_2 0.7727 0.1791 1.3663
+SD.log_k2 0.2855 0.0921 0.4789
+SD.g_qlogis 0.9383 0.3457 1.5309
+
+Variance model:
+ est. lower upper
+a.1 2.06184 1.83746 2.28622
+b.1 0.06329 0.05211 0.07447
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.012e+02 NA NA
+k_JCZ38 5.311e-02 NA NA
+k_J9Z38 6.529e-03 NA NA
+k_JSE76 2.530e-02 NA NA
+f_cyan_to_JCZ38 6.373e-01 NA NA
+f_cyan_to_J9Z38 2.461e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+f_JSE76_to_JCZ38 8.674e-01 NA NA
+k1 9.755e-02 NA NA
+k2 9.922e-03 NA NA
+g 4.053e-01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.6373
+cyan_J9Z38 0.2461
+cyan_sink 0.1167
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+JSE76_JCZ38 0.8674
+JSE76_sink 0.1326
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 24.93 179.68 54.09 7.105 69.86
+JCZ38 13.05 43.36 NA NA NA
+J9Z38 106.16 352.67 NA NA NA
+JSE76 27.39 91.00 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 11:17:37 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
+ cyan_free + k_cyan_bound_free * cyan_bound
+d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
+ cyan_bound
+d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
+ * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
+ * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1893.29 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+ 102.4394 -2.7673 -2.8942
+log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38
+ -3.6201 -2.3107 -5.3123
+ log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2
+ -3.7120 0.6754 1.1448
+ f_JCZ38_qlogis f_JSE76_qlogis
+ 13.2672 13.3538
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+cyan_free_0 4.589 0.0000 0.00
+log_k_cyan_free 0.000 0.4849 0.00
+log_k_cyan_free_bound 0.000 0.0000 1.62
+log_k_cyan_bound_free 0.000 0.0000 0.00
+log_k_JCZ38 0.000 0.0000 0.00
+log_k_J9Z38 0.000 0.0000 0.00
+log_k_JSE76 0.000 0.0000 0.00
+f_cyan_ilr_1 0.000 0.0000 0.00
+f_cyan_ilr_2 0.000 0.0000 0.00
+f_JCZ38_qlogis 0.000 0.0000 0.00
+f_JSE76_qlogis 0.000 0.0000 0.00
+ log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_free_0 0.000 0.0000 0.000 0.0
+log_k_cyan_free 0.000 0.0000 0.000 0.0
+log_k_cyan_free_bound 0.000 0.0000 0.000 0.0
+log_k_cyan_bound_free 1.197 0.0000 0.000 0.0
+log_k_JCZ38 0.000 0.7966 0.000 0.0
+log_k_J9Z38 0.000 0.0000 1.561 0.0
+log_k_JSE76 0.000 0.0000 0.000 0.8
+f_cyan_ilr_1 0.000 0.0000 0.000 0.0
+f_cyan_ilr_2 0.000 0.0000 0.000 0.0
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.0
+f_JSE76_qlogis 0.000 0.0000 0.000 0.0
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis
+cyan_free_0 0.0000 0.000 0.00 0.00
+log_k_cyan_free 0.0000 0.000 0.00 0.00
+log_k_cyan_free_bound 0.0000 0.000 0.00 0.00
+log_k_cyan_bound_free 0.0000 0.000 0.00 0.00
+log_k_JCZ38 0.0000 0.000 0.00 0.00
+log_k_J9Z38 0.0000 0.000 0.00 0.00
+log_k_JSE76 0.0000 0.000 0.00 0.00
+f_cyan_ilr_1 0.6349 0.000 0.00 0.00
+f_cyan_ilr_2 0.0000 1.797 0.00 0.00
+f_JCZ38_qlogis 0.0000 0.000 13.84 0.00
+f_JSE76_qlogis 0.0000 0.000 0.00 14.66
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2279 2272 -1120
+
+Optimised parameters:
+ est. lower upper
+cyan_free_0 102.5621 NA NA
+log_k_cyan_free -2.8531 NA NA
+log_k_cyan_free_bound -2.6916 NA NA
+log_k_cyan_bound_free -3.5032 NA NA
+log_k_JCZ38 -2.9436 NA NA
+log_k_J9Z38 -5.1140 NA NA
+log_k_JSE76 -3.6472 NA NA
+f_cyan_ilr_1 0.6887 NA NA
+f_cyan_ilr_2 0.6874 NA NA
+f_JCZ38_qlogis 4063.6389 NA NA
+f_JSE76_qlogis 1.9556 NA NA
+a.1 2.7460 2.55451 2.9376
+SD.log_k_cyan_free 0.3131 0.09841 0.5277
+SD.log_k_cyan_free_bound 0.8850 0.29909 1.4710
+SD.log_k_cyan_bound_free 0.6167 0.20391 1.0295
+SD.log_k_JCZ38 1.3555 0.49101 2.2200
+SD.log_k_J9Z38 0.7200 0.16166 1.2783
+SD.log_k_JSE76 0.6252 0.14619 1.1042
+SD.f_cyan_ilr_1 0.3386 0.11447 0.5627
+SD.f_cyan_ilr_2 0.4699 0.09810 0.8417
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan_free 0.3131 0.09841 0.5277
+SD.log_k_cyan_free_bound 0.8850 0.29909 1.4710
+SD.log_k_cyan_bound_free 0.6167 0.20391 1.0295
+SD.log_k_JCZ38 1.3555 0.49101 2.2200
+SD.log_k_J9Z38 0.7200 0.16166 1.2783
+SD.log_k_JSE76 0.6252 0.14619 1.1042
+SD.f_cyan_ilr_1 0.3386 0.11447 0.5627
+SD.f_cyan_ilr_2 0.4699 0.09810 0.8417
+
+Variance model:
+ est. lower upper
+a.1 2.746 2.555 2.938
+
+Backtransformed parameters:
+ est. lower upper
+cyan_free_0 1.026e+02 NA NA
+k_cyan_free 5.767e-02 NA NA
+k_cyan_free_bound 6.777e-02 NA NA
+k_cyan_bound_free 3.010e-02 NA NA
+k_JCZ38 5.267e-02 NA NA
+k_J9Z38 6.012e-03 NA NA
+k_JSE76 2.606e-02 NA NA
+f_cyan_free_to_JCZ38 6.089e-01 NA NA
+f_cyan_free_to_J9Z38 2.299e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+f_JSE76_to_JCZ38 8.761e-01 NA NA
+
+Estimated Eigenvalues of SFORB model(s):
+cyan_b1 cyan_b2 cyan_g
+ 0.1434 0.0121 0.3469
+
+Resulting formation fractions:
+ ff
+cyan_free_JCZ38 0.6089
+cyan_free_J9Z38 0.2299
+cyan_free_sink 0.1612
+cyan_free 1.0000
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+JSE76_JCZ38 0.8761
+JSE76_sink 0.1239
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
+cyan 23.94 155.06 46.68 4.832 57.28
+JCZ38 13.16 43.71 NA NA NA
+J9Z38 115.30 383.02 NA NA NA
+JSE76 26.59 88.35 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 11:21:01 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
+ cyan_free + k_cyan_bound_free * cyan_bound
+d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
+ cyan_bound
+d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
+ * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
+ * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 2097.842 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+ 101.751 -2.837 -3.016
+log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38
+ -3.660 -2.299 -5.313
+ log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2
+ -3.699 0.672 5.873
+ f_JCZ38_qlogis f_JSE76_qlogis
+ 13.216 13.338
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+cyan_free_0 5.629 0.000 0.000
+log_k_cyan_free 0.000 0.446 0.000
+log_k_cyan_free_bound 0.000 0.000 1.449
+log_k_cyan_bound_free 0.000 0.000 0.000
+log_k_JCZ38 0.000 0.000 0.000
+log_k_J9Z38 0.000 0.000 0.000
+log_k_JSE76 0.000 0.000 0.000
+f_cyan_ilr_1 0.000 0.000 0.000
+f_cyan_ilr_2 0.000 0.000 0.000
+f_JCZ38_qlogis 0.000 0.000 0.000
+f_JSE76_qlogis 0.000 0.000 0.000
+ log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_free_0 0.000 0.0000 0.000 0.0000
+log_k_cyan_free 0.000 0.0000 0.000 0.0000
+log_k_cyan_free_bound 0.000 0.0000 0.000 0.0000
+log_k_cyan_bound_free 1.213 0.0000 0.000 0.0000
+log_k_JCZ38 0.000 0.7801 0.000 0.0000
+log_k_J9Z38 0.000 0.0000 1.575 0.0000
+log_k_JSE76 0.000 0.0000 0.000 0.8078
+f_cyan_ilr_1 0.000 0.0000 0.000 0.0000
+f_cyan_ilr_2 0.000 0.0000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.0000
+f_JSE76_qlogis 0.000 0.0000 0.000 0.0000
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis
+cyan_free_0 0.0000 0.00 0.00 0.00
+log_k_cyan_free 0.0000 0.00 0.00 0.00
+log_k_cyan_free_bound 0.0000 0.00 0.00 0.00
+log_k_cyan_bound_free 0.0000 0.00 0.00 0.00
+log_k_JCZ38 0.0000 0.00 0.00 0.00
+log_k_J9Z38 0.0000 0.00 0.00 0.00
+log_k_JSE76 0.0000 0.00 0.00 0.00
+f_cyan_ilr_1 0.6519 0.00 0.00 0.00
+f_cyan_ilr_2 0.0000 10.78 0.00 0.00
+f_JCZ38_qlogis 0.0000 0.00 13.96 0.00
+f_JSE76_qlogis 0.0000 0.00 0.00 14.69
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2236 2228 -1098
+
+Optimised parameters:
+ est. lower upper
+cyan_free_0 100.72760 NA NA
+log_k_cyan_free -3.18281 NA NA
+log_k_cyan_free_bound -3.37924 NA NA
+log_k_cyan_bound_free -3.77107 NA NA
+log_k_JCZ38 -2.92811 NA NA
+log_k_J9Z38 -5.02759 NA NA
+log_k_JSE76 -3.65835 NA NA
+f_cyan_ilr_1 0.67390 NA NA
+f_cyan_ilr_2 1.15106 NA NA
+f_JCZ38_qlogis 827.82299 NA NA
+f_JSE76_qlogis 1.83064 NA NA
+a.1 2.06921 1.84443 2.29399
+b.1 0.06391 0.05267 0.07515
+SD.log_k_cyan_free 0.50518 0.18962 0.82075
+SD.log_k_cyan_bound_free 0.30991 0.08170 0.53813
+SD.log_k_JCZ38 1.26661 0.46578 2.06744
+SD.log_k_J9Z38 0.88272 0.27813 1.48730
+SD.log_k_JSE76 0.53050 0.12561 0.93538
+SD.f_cyan_ilr_1 0.35547 0.12461 0.58633
+SD.f_cyan_ilr_2 0.91446 0.20131 1.62761
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan_free 0.5052 0.1896 0.8207
+SD.log_k_cyan_bound_free 0.3099 0.0817 0.5381
+SD.log_k_JCZ38 1.2666 0.4658 2.0674
+SD.log_k_J9Z38 0.8827 0.2781 1.4873
+SD.log_k_JSE76 0.5305 0.1256 0.9354
+SD.f_cyan_ilr_1 0.3555 0.1246 0.5863
+SD.f_cyan_ilr_2 0.9145 0.2013 1.6276
+
+Variance model:
+ est. lower upper
+a.1 2.06921 1.84443 2.29399
+b.1 0.06391 0.05267 0.07515
+
+Backtransformed parameters:
+ est. lower upper
+cyan_free_0 1.007e+02 NA NA
+k_cyan_free 4.147e-02 NA NA
+k_cyan_free_bound 3.407e-02 NA NA
+k_cyan_bound_free 2.303e-02 NA NA
+k_JCZ38 5.350e-02 NA NA
+k_J9Z38 6.555e-03 NA NA
+k_JSE76 2.578e-02 NA NA
+f_cyan_free_to_JCZ38 6.505e-01 NA NA
+f_cyan_free_to_J9Z38 2.508e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+f_JSE76_to_JCZ38 8.618e-01 NA NA
+
+Estimated Eigenvalues of SFORB model(s):
+cyan_b1 cyan_b2 cyan_g
+0.08768 0.01089 0.39821
+
+Resulting formation fractions:
+ ff
+cyan_free_JCZ38 0.65053
+cyan_free_J9Z38 0.25082
+cyan_free_sink 0.09864
+cyan_free 1.00000
+JCZ38_JSE76 1.00000
+JCZ38_sink 0.00000
+JSE76_JCZ38 0.86184
+JSE76_sink 0.13816
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
+cyan 25.32 164.79 49.61 7.906 63.64
+JCZ38 12.96 43.04 NA NA NA
+J9Z38 105.75 351.29 NA NA NA
+JSE76 26.89 89.33 NA NA NA
+
+
+
+R version 4.2.2 Patched (2022-11-10 r83330)
+Platform: x86_64-pc-linux-gnu (64-bit)
+Running under: Debian GNU/Linux bookworm/sid
+
+Matrix products: default
+BLAS: /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3
+LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so
+
+locale:
+ [1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C
+ [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=de_DE.UTF-8
+ [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8
+ [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
+ [9] LC_ADDRESS=C LC_TELEPHONE=C
+[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
+
+attached base packages:
+[1] parallel stats graphics grDevices utils datasets methods
+[8] base
+
+other attached packages:
+[1] saemix_3.2 npde_3.3 knitr_1.41 mkin_1.2.2
+
+loaded via a namespace (and not attached):
+ [1] mclust_6.0.0 lattice_0.20-45 prettyunits_1.1.1 ps_1.7.2
+ [5] zoo_1.8-11 assertthat_0.2.1 rprojroot_2.0.3 digest_0.6.31
+ [9] lmtest_0.9-40 utf8_1.2.2 R6_2.5.1 cellranger_1.1.0
+[13] evaluate_0.19 ggplot2_3.4.0 highr_0.9 pillar_1.8.1
+[17] rlang_1.0.6 readxl_1.4.1 callr_3.7.3 jquerylib_0.1.4
+[21] rmarkdown_2.19 pkgdown_2.0.7 textshaping_0.3.6 desc_1.4.2
+[25] stringr_1.5.0 munsell_0.5.0 compiler_4.2.2 xfun_0.35
+[29] pkgconfig_2.0.3 systemfonts_1.0.4 pkgbuild_1.4.0 htmltools_0.5.4
+[33] tidyselect_1.2.0 tibble_3.1.8 gridExtra_2.3 codetools_0.2-18
+[37] fansi_1.0.3 crayon_1.5.2 dplyr_1.0.10 grid_4.2.2
+[41] nlme_3.1-161 jsonlite_1.8.4 gtable_0.3.1 lifecycle_1.0.3
+[45] DBI_1.1.3 magrittr_2.0.3 scales_1.2.1 cli_3.5.0
+[49] stringi_1.7.8 cachem_1.0.6 fs_1.5.2 bslib_0.4.2
+[53] ragg_1.2.4 generics_0.1.3 vctrs_0.5.1 deSolve_1.34
+[57] tools_4.2.2 glue_1.6.2 purrr_1.0.0 processx_3.8.0
+[61] fastmap_1.1.0 yaml_2.3.6 inline_0.3.19 colorspace_2.0-3
+[65] memoise_2.0.1 sass_0.4.4
+