From af7c6de4db9981ac814362c441fbac22c8faa2d7 Mon Sep 17 00:00:00 2001
From: Johannes Ranke There is a graphical user interface that may be useful. Please refer to its documentation page for installation instructions and a manual. There is a graphical user interface that may be useful. Please refer to its documentation page for installation instructions and a manual. It only supports evaluations using (generalised) nonlinear regression, but not simultaneous fits using nonlinear mixed-effects models. The first In 2011, Bayer Crop Science started to distribute an R based successor to KinGUI named KinGUII whose R code is based on Somewhat in parallel, Syngenta has sponsored the development of an Finally, there is KineticEval, which contains a further development of the scripts used for KinGUII, so the different tools will hopefully be able to learn from each other in the future as well. Thanks to René Lehmann, formerly working at the Umweltbundesamt, for the nice cooperation cooperation on parameter transformations, especially the isometric log-ratio transformation that is now used for formation fractions in case there are more than two transformation targets. Finally, there is KineticEval, which contains some further development of the scripts used for KinGUII. Thanks to René Lehmann, formerly working at the Umweltbundesamt, for the nice cooperation on parameter transformations, especially the isometric log-ratio transformation that is now used for formation fractions in case there are more than two transformation targets. Many inspirations for improvements of mkin resulted from doing kinetic evaluations of degradation data for my clients while working at Harlan Laboratories and at Eurofins Regulatory AG, and now as an independent consultant. Funding was received from the Umweltbundesamt in the course of the projects Thanks are due also to Emmanuelle Comets, maintainer of the saemix package, for the nice collaboration on using the SAEM algorithm and its implementation in saemix for the evaluation of chemical degradation data. Thanks to everyone involved for collaboration and support! Thanks are due also to Emmanuelle Comets, maintainer of the saemix package, for her interest and support for using the SAEM algorithm and its implementation in saemix for the evaluation of chemical degradation data. ‘R/mhmkin.R’: Allow an ‘illparms.mhmkin’ object or a list with suitable dimensions as value of the argument ‘no_random_effects’, making it possible to exclude random effects that were ill-defined in simpler variants of the set of degradation models. Remove the possibility to exclude random effects based on separate fits, as it did not work well. ‘R/summary.saem.mmkin.R’: List all initial parameter values in the summary, including random effects and error model parameters. Avoid redundant warnings that occurred in the calculation of correlations of the fixed effects in the case that the Fisher information matrix could not be inverted. ‘R/summary.saem.mmkin.R’: List all initial parameter values in the summary, including random effects and error model parameters. Avoid redundant warnings that occurred in the calculation of correlations of the fixed effects in the case that the Fisher information matrix could not be inverted. List correlations of random effects if specified by the user in the covariance model. ‘R/parplot.R’: Possibility to select the top ‘llquant’ fraction of the fits for the parameter plots, and improved legend text. ‘R/illparms.R’: Also check if confidence intervals for slope parameters in covariate models include zero. Only implemented for fits obtained with the saemix backend. ‘R/parplot.R’: Make the function work also in the case that some of the multistart runs failed. ‘R/intervals.R’: Include correlations of random effects in the model in case there are any. All plotting functions setting graphical parameters: Use on.exit() for resetting graphical parameters ‘confint.mmkin’, ‘nlme.mmkin’, ‘transform_odeparms’: Fix example code in dontrun sections that failed with current defaults ‘nlme.mmkin’: An nlme method for mmkin row objects and an associated S3 class with print, plot, anova and endpoint methods Rename Add plots to The original and the transformed parameters now have different names (e.g. For hierarchical fits, should error model parameters be
tested? For hierarchical saem fits using saemix as backend,
+should slope parameters in the covariate model(starting with 'beta_') be
+tested? The minimum likelihood of objects to be shown Fractional value for selecting only the fits with higher
+likelihoods. Overrides 'llmin'. By default, scale parameters using the best available fit.
+ By default, scale parameters using the best
+available fit.
If 'median', parameters are scaled using the median parameters from all fits. The purpose of this document is to demonstrate how nonlinear
+hierarchical models (NLHM) based on the parent degradation models SFO,
+FOMC, DFOP and HS can be fitted with the mkin package. The mkin package is used in version 1.2.2. It contains the test data
+and the functions used in the evaluations. The This document is processed with the The test data are available in the mkin package as an object of class
+ The following commented R code performs this preprocessing. The following tables show the 6 datasets. In order to obtain suitable starting parameters for the NLHM fits,
+separate fits of the four models to the data for each soil are generated
+using the In the table above, OK indicates convergence, and C indicates failure
+to converge. All separate fits with constant variance converged, with
+the sole exception of the HS fit to the BBA 2.2 data. To prepare for
+fitting NLHM using the two-component error model, the separate fits are
+updated assuming two-component error. Using the two-component error model, the one fit that did not
+converge with constant variance did converge, but other non-SFO fits
+failed to converge. The following code fits eight versions of hierarchical models to the
+data, using SFO, FOMC, DFOP and HS for the parent compound, and using
+either constant variance or two-component error for the error model. The
+default parameter distribution model in mkin allows for variation of all
+degradation parameters across the assumed population of soils. In other
+words, each degradation parameter is associated with a random effect as
+a first step. The Convergence plots and summaries for these fits are shown in the
+appendix. The output of the The AIC and BIC values show that the biphasic models DFOP and HS give
+the best fits. The DFOP model is preferred here, as it has a better mechanistic
+basis for batch experiments with constant incubation conditions. Also,
+it shows the lowest AIC and BIC values in the first set of fits when
+combined with the two-component error model. Therefore, the DFOP model
+was selected for further refinements of the fits with the aim to make
+the model fully identifiable. Using the According to the The thus identified overparameterisation is addressed by removing the
+random effect for For the resulting fit, it is checked whether there are still
+ill-defined parameters, which is not the case. Below, the refined model is compared with the
+previous best model. The model without random effect for The AIC and BIC criteria are lower after removal of the ill-defined
+random effect for Therefore, AIC, BIC and likelihood ratio test suggest the use of the
+reduced model. The convergence of the fit is checked visually.
+Convergence plot for the NLHM DFOP fit with two-component error and
+without a random effect on ‘k2’
+ All parameters appear to have converged to a satisfactory degree. The
+final fit is plotted using the plot method from the mkin package.
+Plot of the final NLHM DFOP fit
+ Finally, a summary report of the fit is produced. The parameter check used in the The graph below shows boxplots of the parameters obtained in 50 runs
+of the saem algorithm with different parameter combinations, sampled
+from the range of the parameters obtained for the individual datasets
+fitted separately using nonlinear regression.
+Scaled parameters from the multistart runs, full model
+ The graph clearly confirms the lack of identifiability of the
+variance of The parameter boxplots of the multistart runs with the reduced model
+shown below indicate that all runs give similar results, regardless of
+the starting parameters.
+Scaled parameters from the multistart runs, reduced model
+ When only the parameters of the top 25% of the fits are shown (based
+on a feature introduced in mkin 1.2.2 currently under development), the
+scatter is even less as shown below.
+Scaled parameters from the multistart runs, reduced model, fits with the
+top 25% likelihood values
+ Fitting the four parent degradation models SFO, FOMC, DFOP and HS as
+part of hierarchical model fits with two different error models and
+normal distributions of the transformed degradation parameters works
+without technical problems. The biphasic models DFOP and HS gave the
+best fit to the data, but the default parameter distribution model was
+not fully identifiable. Removing the random effect for the second
+kinetic rate constant of the DFOP model resulted in a reduced model that
+was fully identifiable and showed the lowest values for the model
+selection criteria AIC and BIC. The reliability of the identification of
+all model parameters was confirmed using multiple starting values.
+Convergence plot for the NLHM SFO fit with constant variance
+
+Convergence plot for the NLHM SFO fit with two-component error
+
+Convergence plot for the NLHM FOMC fit with constant variance
+
+Convergence plot for the NLHM FOMC fit with two-component error
+
+Convergence plot for the NLHM DFOP fit with constant variance
+
+Convergence plot for the NLHM DFOP fit with two-component error
+
+Convergence plot for the NLHM HS fit with constant variance
+
+Convergence plot for the NLHM HS fit with two-component error
+ Ranke J (2022).
+ Ranke J (2023).
mkin: Kinetic Evaluation of Chemical Degradation Data.
R package version 1.2.2, https://pkgdown.jrwb.de/mkin/.
R markdown format for setting up hierarchical kinetics based on a template
+provided with the mkin package. Arguments to Keep the intermediate tex file used in the conversion to PDF R Markdown output format to pass to
+General
-
mkinmod
, including equilibrium reactions and using the single first-order reversible binding (SFORB) model, which will automatically create two latent state variables for the observed variable.mkinpredict
is performed either using the analytical solution for the case of parent only degradation, an eigenvalue based solution if only simple first-order (SFO) or SFORB kinetics are used in the model, or using a numeric solver from the deSolve
package (default is lsoda
).mkinmod
, including equilibrium reactions and using the single first-order reversible binding (SFORB) model, which will automatically create two state variables for the observed variable.mkinpredict
is performed either using the analytical solution for the case of parent only degradation or some simple models involving a single transformation product, , an eigenvalue based solution if only simple first-order (SFO) or SFORB kinetics are used in the model, or using a numeric solver from the deSolve
package (default is lsoda
).summary
of an mkinfit
object is in fact a full report that should give enough information to be able to approximately reproduce the fit with other tools.error_model = "obs"
.transform_odeparms
so their estimators can more reasonably be expected to follow a normal distribution.saemix
package as a backend. Analytical solutions suitable for use with this package have been implemented for parent only models and the most important models including one metabolite (SFO-SFO and DFOP-SFO). Fitting other models with saem.mmkin
, while it makes use of the compiled ODE models that mkin provides, has longer run times (at least six minutes on my system).saemix
package as a backend. Analytical solutions suitable for use with this package have been implemented for parent only models and the most important models including one metabolite (SFO-SFO and DFOP-SFO). Fitting other models with saem.mmkin
, while it makes use of the compiled ODE models that mkin provides, has longer run times (from a couple of minutes to more than an hour).GUI
-News
@@ -203,8 +203,8 @@
mkin
code was published on 11 May 2010 and the first CRAN version on 18 May 2010.mkin
, but which added, among other refinements, a closed source graphical user interface (GUI), iteratively reweighted least squares (IRLS) optimisation of the variance for each of the observed variables, and Markov Chain Monte Carlo (MCMC) simulation functionality, similar to what is available e.g. in the FME
package.mkin
and KinGUII based GUI application called CAKE, which also adds IRLS and MCMC, is more limited in the model formulation, but puts more weight on usability. CAKE is available for download from the CAKE website, where you can also find a zip archive of the R scripts derived from mkin
, published under the GPL license.
@@ -215,7 +215,8 @@
-References
--
cgit v1.2.3
From a54bd290bc3884d0000c52c1b29bc557825d9eae Mon Sep 17 00:00:00 2001
From: Johannes Ranke
References
-
-Ranke J, Wöltjen J, Schmidt J, and Comets E (2021) Taking kinetic evaluations of degradation data to the next level with nonlinear mixed-effects models. Environments 8 (8) 71 doi:10.3390/environments8080071
-
-Ranke J, Meinecke S (2019) Error Models for the Kinetic Evaluation of Chemical Degradation Data Environments 6 (12) 124 doi:10.3390/environments6120124
-
+Ranke J, Wöltjen J, Meinecke S (2018) Comparison of software tools for kinetic evaluation of chemical degradation data Environmental Sciences Europe 30 17 doi:10.1186/s12302-018-0145-1
-
+
+
+Ranke J, Wöltjen J, Schmidt J, and Comets E (2021) Taking kinetic evaluations of degradation data to the next level with nonlinear mixed-effects models. Environments 8 (8) 71 doi:10.3390/environments8080071
+
+
+
+
+Ranke J, Meinecke S (2019) Error Models for the Kinetic Evaluation of Chemical Degradation Data Environments 6 (12) 124 doi:10.3390/environments6120124
+
+
+
+Ranke J, Wöltjen J, Meinecke S (2018) Comparison of software tools for kinetic evaluation of chemical degradation data Environmental Sciences Europe 30 17 doi:10.1186/s12302-018-0145-1
+
+mkin 1.2.2
mkin 1.0.5 (2021-09-15)
-mkin 1.0.4 (2021-04-20)
mkin 1.0.3 (2021-02-15)
-mkin 1.0.2 (Unreleased)
-mkin 1.0.1 (2021-02-10)
mkin 0.9.49.10 (2020-04-18)
test_FOMC_ill-defined.R
as it is too platform dependentmkin 0.9.45.2 (2017-07-24)
twa
to max_twa_parent
to avoid conflict with twa
from my pfm
packagemkin 0.9.45.1 (2016-12-20)
New features
-twa
function, calculating maximum time weighted average concentrations for the parent (SFO, FOMC and DFOP).twa
function, calculating maximum time weighted average concentrations for the parent (SFO, FOMC and DFOP).mkin 0.9.45 (2016-12-08)
@@ -349,7 +359,8 @@
mkin 0.9.44 (2016-06-29)
Bug fixes
-test_FOMC_ill-defined
failed on several architectures, so the test is now skippedtest_FOMC_ill-defined
failed on several architectures, so the test is now skippedmkin 0.9.43 (2016-06-28)
@@ -383,7 +394,8 @@
mkin 0.9.42 (2016-03-25)
Major changes
-from_max_mean
to mkinfit
, for fitting only the decline from the maximum observed value for models with a single observed variablefrom_max_mean
to mkinfit
, for fitting only the decline from the maximum observed value for models with a single observed variableMinor changes
compiled_models
vignetteBug fixes
print.summary.mkinfit()
: Avoid an error that occurred when printing summaries generated with mkin versions before 0.9-36print.summary.mkinfit()
: Avoid an error that occurred when printing summaries generated with mkin versions before 0.9-36
+mkin 0.9-40 (2015-07-21)
Bug fixes
endpoints()
: For DFOP and SFORB models, where optimize()
is used, make use of the fact that the DT50 must be between DT50_k1 and DT50_k2 (DFOP) or DT50_b1 and DT50_b2 (SFORB), as optimize()
sometimes did not find the minimum. Likewise for finding DT90 values. Also fit on the log scale to make the function more efficient.endpoints()
: For DFOP and SFORB models, where optimize()
is used, make use of the fact that the DT50 must be between DT50_k1 and DT50_k2 (DFOP) or DT50_b1 and DT50_b2 (SFORB), as optimize()
sometimes did not find the minimum. Likewise for finding DT90 values. Also fit on the log scale to make the function more efficient.
+Internal changes
DESCRIPTION
, NAMESPACE
, R/*.R
: Import (from) stats, graphics and methods packages, and qualify some function calls for non-base packages installed with R to avoid NOTES made by R CMD check –as-cran with upcoming R versions.DESCRIPTION
, NAMESPACE
, R/*.R
: Import (from) stats, graphics and methods packages, and qualify some function calls for non-base packages installed with R to avoid NOTES made by R CMD check –as-cran with upcoming R versions.
+
mkin 0.9-39 (2015-06-26)
@@ -426,7 +441,8 @@
Bug fixes
mkinparplot()
: Fix the x axis scaling for rate constants and formation fractions that got confused by the introduction of the t-values of transformed parameters.mkinparplot()
: Fix the x axis scaling for rate constants and formation fractions that got confused by the introduction of the t-values of transformed parameters.
+mkin 0.9-38 (2015-06-24)
@@ -438,7 +454,8 @@
Bug fixes
mkinmod()
: When generating the C code for the derivatives, only declare the time variable when it is needed and remove the ‘-W-no-unused-variable’ compiler flag as the C compiler used in the CRAN checks on Solaris does not know it.mkinmod()
: When generating the C code for the derivatives, only declare the time variable when it is needed and remove the ‘-W-no-unused-variable’ compiler flag as the C compiler used in the CRAN checks on Solaris does not know it.
+Bug fixes
mkinparplot()
: Avoid warnings that occurred when not all confidence intervals were available in the summary of the fitmkin 0.9-31 (2014-07-14)
Bug fixes
-mkinerrmin()
used by the summary function.mkinerrmin()
used by the summary function.mkin 0.9-30 (2014-07-11)
New features
-mkinmod()
.mkinmod()
.Major changes
k_parent
and log_k_parent
. They also differ in how many they are when we have formation fractions but no pathway to sink.Value
diff --git a/docs/dev/reference/parplot.html b/docs/dev/reference/parplot.html
index 9852b694..720c0b2a 100644
--- a/docs/dev/reference/parplot.html
+++ b/docs/dev/reference/parplot.html
@@ -103,6 +103,7 @@ or by their medians as proposed in the paper by Duchesne et al. (2021).
parplot(
object,
llmin = -Inf,
+ llquant = NA,
scale = c("best", "median"),
lpos = "bottomleft",
main = "",
@@ -124,8 +125,14 @@ or by their medians as proposed in the paper by Duchesne et al. (2021).
# S3 method for saem.mmkin
-summary(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...)
+summary(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...)
# S3 method for summary.saem.mmkin
print(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
\n")
+}
+
diff --git a/R/tex_listing.R b/R/tex_listing.R
deleted file mode 100644
index 05f662e4..00000000
--- a/R/tex_listing.R
+++ /dev/null
@@ -1,32 +0,0 @@
-#' Wrap the output of a summary function in tex listing environment
-#'
-#' This function can be used in a R markdown code chunk with the chunk
-#' option `results = "asis"`.
-#'
-#' @param object The object for which the summary is to be listed
-#' @param caption An optional caption
-#' @param label An optional label
-#' @param clearpage Should a new page be started after the listing?
-#' @export
-tex_listing <- function(object, caption = NULL, label = NULL,
- clearpage = TRUE) {
- cat("\n")
- cat("\\begin{listing}", "\n")
- if (!is.null(caption)) {
- cat("\\caption{", caption, "}", "\n", sep = "")
- }
- if (!is.null(label)) {
- cat("\\caption{", label, "}", "\n", sep = "")
- }
- cat("\\begin{snugshade}", "\n")
- cat("\\scriptsize", "\n")
- cat("\\begin{verbatim}", "\n")
- cat(capture.output(suppressWarnings(summary(object))), sep = "\n")
- cat("\n")
- cat("\\end{verbatim}", "\n")
- cat("\\end{snugshade}", "\n")
- cat("\\end{listing}", "\n")
- if (clearpage) {
- cat("\\clearpage", "\n")
- }
-}
diff --git a/README.md b/README.md
index f3c36890..b6171767 100644
--- a/README.md
+++ b/README.md
@@ -214,6 +214,8 @@ to ModelMaker 4.0, 2014-2015)
of the visual fit in the kinetic evaluation of degradation data, 2019-2020)
- Project Number 146839 (Checking the feasibility of using mixed-effects models for
the derivation of kinetic modelling parameters from degradation studies, 2020-2021)
+- Project Number 173340 (Application of nonlinear hierarchical models to the
+ kinetic evaluation of chemical degradation data)
Thanks to everyone involved for collaboration and support!
diff --git a/_pkgdown.yml b/_pkgdown.yml
index ca5ea6e0..5d7fdbf4 100644
--- a/_pkgdown.yml
+++ b/_pkgdown.yml
@@ -47,6 +47,7 @@ reference:
- title: Mixed models
desc: Create and work with nonlinear hierarchical models
contents:
+ - hierarchical_kinetics
- read_spreadsheet
- nlme.mmkin
- saem.mmkin
@@ -92,7 +93,7 @@ reference:
- plot.nafta
- title: Utility functions
contents:
- - tex_listing
+ - summary_listing
- f_time_norm_focus
- set_nd_nq
- max_twa_parent
diff --git a/docs/dev/articles/2022_wp_1.1_dmta_parent.html b/docs/dev/articles/2022_wp_1.1_dmta_parent.html
new file mode 100644
index 00000000..61bb81d3
--- /dev/null
+++ b/docs/dev/articles/2022_wp_1.1_dmta_parent.html
@@ -0,0 +1,2177 @@
+
+
+
+
+
+
+
+\n")
+ cat(capture.output(suppressWarnings(summary(object))), sep = "\n")
+ cat("\n")
+ cat("
Work package 1.1: Testing hierarchical parent
+degradation kinetics with residue data on dimethenamid and
+dimethenamid-P
+ Johannes
+Ranke
+
+ Last change on 5 January
+2022, last compiled on 5 Januar 2023
+
+ Source: vignettes/2022_wp_1.1_dmta_parent.rmd
+ 2022_wp_1.1_dmta_parent.rmd
Introduction
+
+saemix
+package is used as a backend for fitting the NLHM, but is also loaded to
+make the convergence plot function available.knitr
package, which
+also provides the kable
function that is used to improve
+the display of tabular data in R markdown documents. For parallel
+processing, the parallel
package is used.
+
library(mkin)
+library(knitr)
+library(saemix)
+library(parallel)
+n_cores <- detectCores()
+if (Sys.info()["sysname"] == "Windows") {
+ cl <- makePSOCKcluster(n_cores)
+} else {
+ cl <- makeForkCluster(n_cores)
+}
Preprocessing of test data
+
+mkindsg
(mkin dataset group) under the identifier
+dimethenamid_2018
. The following preprocessing steps are
+still necessary:
+
+Elliot 1
+and Elliot 2
) are combined, resulting in dimethenamid
+(DMTA) data from six soils.
+
# Apply a function to each of the seven datasets in the mkindsg object to create a list
+dmta_ds <- lapply(1:7, function(i) {
+ ds_i <- dimethenamid_2018$ds[[i]]$data # Get a dataset
+ ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA" # Rename DMTAP to DMTA
+ ds_i <- subset(ds_i, name == "DMTA", c("name", "time", "value")) # Select data
+ ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i] # Normalise time
+ ds_i # Return the dataset
+})
+
+# Use dataset titles as names for the list elements
+names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+
+# Combine data for Elliot soil to obtain a named list with six elements
+dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]]) #
+dmta_ds[["Elliot 1"]] <- NULL
+dmta_ds[["Elliot 2"]] <- NULL
+
for (ds_name in names(dmta_ds)) {
+ print(kable(mkin_long_to_wide(dmta_ds[[ds_name]]),
+ caption = paste("Dataset", ds_name),
+ label = paste0("tab:", ds_name), booktabs = TRUE))
+ cat("\n\\clearpage\n")
+}
+
+
+
+
+time
+DMTA
+
+
+0
+95.8
+
+
+0
+98.7
+
+
+14
+60.5
+
+
+30
+39.1
+
+
+59
+15.2
+
+
+120
+4.8
+
+
+
+120
+4.6
+
+
+
+
+
+time
+DMTA
+
+
+0.000000
+100.5
+
+
+0.000000
+99.6
+
+
+1.941295
+91.9
+
+
+1.941295
+91.3
+
+
+6.794534
+81.8
+
+
+6.794534
+82.1
+
+
+13.589067
+69.1
+
+
+13.589067
+68.0
+
+
+27.178135
+51.4
+
+
+27.178135
+51.4
+
+
+56.297565
+27.6
+
+
+56.297565
+26.8
+
+
+86.387643
+15.7
+
+
+86.387643
+15.3
+
+
+115.507073
+7.9
+
+
+
+115.507073
+8.1
+
+
+
+
+
+time
+DMTA
+
+
+0.0000000
+96.5
+
+
+0.0000000
+96.8
+
+
+0.0000000
+97.0
+
+
+0.6233856
+82.9
+
+
+0.6233856
+86.7
+
+
+0.6233856
+87.4
+
+
+1.8701567
+72.8
+
+
+1.8701567
+69.9
+
+
+1.8701567
+71.9
+
+
+4.3636989
+51.4
+
+
+4.3636989
+52.9
+
+
+4.3636989
+48.6
+
+
+8.7273979
+28.5
+
+
+8.7273979
+27.3
+
+
+8.7273979
+27.5
+
+
+13.0910968
+14.8
+
+
+13.0910968
+13.4
+
+
+13.0910968
+14.4
+
+
+17.4547957
+7.7
+
+
+17.4547957
+7.3
+
+
+17.4547957
+8.1
+
+
+26.1821936
+2.0
+
+
+26.1821936
+1.5
+
+
+26.1821936
+1.9
+
+
+34.9095915
+1.3
+
+
+34.9095915
+1.0
+
+
+34.9095915
+1.1
+
+
+43.6369893
+0.9
+
+
+43.6369893
+0.7
+
+
+43.6369893
+0.7
+
+
+52.3643872
+0.6
+
+
+52.3643872
+0.4
+
+
+52.3643872
+0.5
+
+
+74.8062674
+0.4
+
+
+74.8062674
+0.3
+
+
+
+74.8062674
+0.3
+
+
+
+
+
+time
+DMTA
+
+
+0.0000000
+98.09
+
+
+0.0000000
+98.77
+
+
+0.7678922
+93.52
+
+
+0.7678922
+92.03
+
+
+2.3036765
+88.39
+
+
+2.3036765
+87.18
+
+
+5.3752452
+69.38
+
+
+5.3752452
+71.06
+
+
+10.7504904
+45.21
+
+
+10.7504904
+46.81
+
+
+16.1257355
+30.54
+
+
+16.1257355
+30.07
+
+
+21.5009807
+21.60
+
+
+21.5009807
+20.41
+
+
+32.2514711
+9.10
+
+
+32.2514711
+9.70
+
+
+43.0019614
+6.58
+
+
+43.0019614
+6.31
+
+
+53.7524518
+3.47
+
+
+53.7524518
+3.52
+
+
+64.5029421
+3.40
+
+
+64.5029421
+3.67
+
+
+91.3791680
+1.62
+
+
+
+91.3791680
+1.62
+
+
+
+
+
+time
+DMTA
+
+
+0.0000000
+99.33
+
+
+0.0000000
+97.44
+
+
+0.6733938
+93.73
+
+
+0.6733938
+93.77
+
+
+2.0201814
+87.84
+
+
+2.0201814
+89.82
+
+
+4.7137565
+71.61
+
+
+4.7137565
+71.42
+
+
+9.4275131
+45.60
+
+
+9.4275131
+45.42
+
+
+14.1412696
+31.12
+
+
+14.1412696
+31.68
+
+
+18.8550262
+23.20
+
+
+18.8550262
+24.13
+
+
+28.2825393
+9.43
+
+
+28.2825393
+9.82
+
+
+37.7100523
+7.08
+
+
+37.7100523
+8.64
+
+
+47.1375654
+4.41
+
+
+47.1375654
+4.78
+
+
+56.5650785
+4.92
+
+
+56.5650785
+5.08
+
+
+80.1338612
+2.13
+
+
+
+80.1338612
+2.23
+
+
+
+
+
+time
+DMTA
+
+
+0.000000
+97.5
+
+
+0.000000
+100.7
+
+
+1.228478
+86.4
+
+
+1.228478
+88.5
+
+
+3.685435
+69.8
+
+
+3.685435
+77.1
+
+
+8.599349
+59.0
+
+
+8.599349
+54.2
+
+
+17.198697
+31.3
+
+
+17.198697
+33.5
+
+
+25.798046
+19.6
+
+
+25.798046
+20.9
+
+
+34.397395
+13.3
+
+
+34.397395
+15.8
+
+
+51.596092
+6.7
+
+
+51.596092
+8.7
+
+
+68.794789
+8.8
+
+
+68.794789
+8.7
+
+
+103.192184
+6.0
+
+
+103.192184
+4.4
+
+
+146.188928
+3.3
+
+
+146.188928
+2.8
+
+
+223.583066
+1.4
+
+
+223.583066
+1.8
+
+
+0.000000
+93.4
+
+
+0.000000
+103.2
+
+
+1.228478
+89.2
+
+
+1.228478
+86.6
+
+
+3.685435
+78.2
+
+
+3.685435
+78.1
+
+
+8.599349
+55.6
+
+
+8.599349
+53.0
+
+
+17.198697
+33.7
+
+
+17.198697
+33.2
+
+
+25.798046
+20.9
+
+
+25.798046
+19.9
+
+
+34.397395
+18.2
+
+
+34.397395
+12.7
+
+
+51.596092
+7.8
+
+
+51.596092
+9.0
+
+
+68.794789
+11.4
+
+
+68.794789
+9.0
+
+
+103.192184
+3.9
+
+
+103.192184
+4.4
+
+
+146.188928
+2.6
+
+
+146.188928
+3.4
+
+
+223.583066
+2.0
+
+
+
+223.583066
+1.7
+Separate evaluations
+
+mmkin
function from the mkin
+package. In a first step, constant variance is assumed. Convergence is
+checked with the status
function.
+
deg_mods <- c("SFO", "FOMC", "DFOP", "HS")
+f_sep_const <- mmkin(
+ deg_mods,
+ dmta_ds,
+ error_model = "const",
+ quiet = TRUE)
+
+status(f_sep_const) |> kable()
+
+
+
+
+
+ Calke
+Borstel
+Flaach
+BBA 2.2
+BBA 2.3
+Elliot
+
+
+SFO
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+FOMC
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+DFOP
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+
+HS
+OK
+OK
+OK
+C
+OK
+OK
+
+
+
+
+
+
+ Calke
+Borstel
+Flaach
+BBA 2.2
+BBA 2.3
+Elliot
+
+
+SFO
+OK
+OK
+OK
+OK
+OK
+OK
+
+
+FOMC
+OK
+OK
+OK
+OK
+C
+OK
+
+
+DFOP
+OK
+OK
+C
+OK
+C
+OK
+
+
+
+HS
+OK
+C
+OK
+OK
+OK
+OK
+Hierarchichal model fits
+
+mhmkin
function makes it possible to fit
+all eight versions in parallel (given a sufficient number of computing
+cores being available) to save execution time.status
function shows that all fits
+terminated successfully.
+
+
+
+
+
+ const
+tc
+
+
+SFO
+OK
+OK
+
+
+FOMC
+OK
+OK
+
+
+DFOP
+OK
+OK
+
+
+
+HS
+OK
+OK
+
+
+
+
+
+
+ npar
+AIC
+BIC
+Lik
+
+
+SFO const
+5
+796.3
+795.3
+-393.2
+
+
+SFO tc
+6
+798.3
+797.1
+-393.2
+
+
+FOMC const
+7
+734.2
+732.7
+-360.1
+
+
+FOMC tc
+8
+720.4
+718.8
+-352.2
+
+
+DFOP const
+9
+711.8
+710.0
+-346.9
+
+
+HS const
+9
+714.0
+712.1
+-348.0
+
+
+DFOP tc
+10
+665.5
+663.4
+-322.8
+
+
+
+HS tc
+10
+667.1
+665.0
+-323.6
+Parameter identifiability based on the Fisher Information
+Matrix
+
+illparms
function, ill-defined statistical
+model parameters such as standard deviations of the degradation
+parameters in the population and error model parameters can be
+found.
+
+
+
+
+
+ const
+tc
+
+
+SFO
+
+ b.1
+
+
+FOMC
+
+ sd(DMTA_0)
+
+
+DFOP
+sd(k2)
+sd(k2)
+
+
+
+HS
+
+ sd(tb)
+illparms
function, the fitted standard
+deviation of the second kinetic rate constant k2
is
+ill-defined in both DFOP fits. This suggests that different values would
+be obtained for this standard deviation when using different starting
+values.k2
from the parameter model.
+
f_saem_dfop_tc_no_ranef_k2 <- update(f_saem[["DFOP", "tc"]],
+ no_random_effect = "k2")
+
illparms(f_saem_dfop_tc_no_ranef_k2)
k2
+is a reduced version of the previous model. Therefore, the models are
+nested and can be compared using the likelihood ratio test. This is
+achieved with the argument test = TRUE
to the
+anova
function.
+
anova(f_saem[["DFOP", "tc"]], f_saem_dfop_tc_no_ranef_k2, test = TRUE) |>
+ kable(format.args = list(digits = 4))
+
+
+
+
+
+ npar
+AIC
+BIC
+Lik
+Chisq
+Df
+Pr(>Chisq)
+
+
+f_saem_dfop_tc_no_ranef_k2
+9
+663.8
+661.9
+-322.9
+NA
+NA
+NA
+
+
+
+f_saem[[“DFOP”, “tc”]]
+10
+665.5
+663.4
+-322.8
+0.2809
+1
+0.5961
+k2
. The p value of the likelihood ratio
+test is much greater than 0.05, indicating that the model with the
+higher likelihood (here the model with random effects for all
+degradation parameters f_saem[["DFOP", "tc"]]
) does not fit
+significantly better than the model with the lower likelihood (the
+reduced model f_saem_dfop_tc_no_ranef_k2
).
+
plot(f_saem_dfop_tc_no_ranef_k2)
+
summary(f_saem_dfop_tc_no_ranef_k2)
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:13 2023
+Date of summary: Thu Jan 5 08:19:13 2023
+
+Equations:
+d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 4.075 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 g
+98.759266 0.087034 0.009933 0.930827
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 g
+DMTA_0 98.76 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+g 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 663.8 661.9 -322.9
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.228939 96.285869 100.17201
+k1 0.064063 0.033477 0.09465
+k2 0.008297 0.005824 0.01077
+g 0.953821 0.914328 0.99331
+a.1 1.068479 0.869538 1.26742
+b.1 0.029424 0.022406 0.03644
+SD.DMTA_0 2.030437 0.404824 3.65605
+SD.k1 0.594692 0.256660 0.93272
+SD.g 1.006754 0.361327 1.65218
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0218
+k2 0.0556 0.0355
+g -0.0516 -0.0284 -0.2800
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 2.0304 0.4048 3.6560
+SD.k1 0.5947 0.2567 0.9327
+SD.g 1.0068 0.3613 1.6522
+
+Variance model:
+ est. lower upper
+a.1 1.06848 0.86954 1.26742
+b.1 0.02942 0.02241 0.03644
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 11.45 41.4 12.46 10.82 83.54
Alternative check of parameter identifiability
+
+illparms
function is
+based on a quadratic approximation of the likelihood surface near its
+optimum, which is calculated using the Fisher Information Matrix (FIM).
+An alternative way to check parameter identifiability based on a
+multistart approach has recently been implemented in mkin.
+
f_saem_dfop_tc_multi <- multistart(f_saem[["DFOP", "tc"]], n = 50, cores = 15)
+
par(mar = c(6.1, 4.1, 2.1, 2.1))
+parplot(f_saem_dfop_tc_multi, lpos = "bottomright", ylim = c(0.3, 10), las = 2)
k2
in the full model. The overparameterisation
+of the model also indicates a lack of identifiability of the variance of
+parameter g
.
+
f_saem_dfop_tc_no_ranef_k2_multi <- multistart(f_saem_dfop_tc_no_ranef_k2,
+ n = 50, cores = 15)
+
par(mar = c(6.1, 4.1, 2.1, 2.1))
+parplot(f_saem_dfop_tc_no_ranef_k2_multi, ylim = c(0.5, 2), las = 2,
+ lpos = "bottomright")
+
par(mar = c(6.1, 4.1, 2.1, 2.1))
+parplot(f_saem_dfop_tc_no_ranef_k2_multi, ylim = c(0.5, 2), las = 2, llquant = 0.25,
+ lpos = "bottomright")
Conclusions
+
+Appendix
+
+Hierarchical model fit listings
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:06 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - k_DMTA * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.09 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ DMTA_0 k_DMTA
+97.2953 0.0566
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k_DMTA
+DMTA_0 97.3 0
+k_DMTA 0.0 1
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 796.3 795.3 -393.2
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 97.28130 95.71113 98.8515
+k_DMTA 0.05665 0.02909 0.0842
+a.1 2.66442 2.35579 2.9731
+SD.DMTA_0 1.54776 0.15447 2.9411
+SD.k_DMTA 0.60690 0.26248 0.9513
+
+Correlation:
+ DMTA_0
+k_DMTA 0.0168
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.5478 0.1545 2.9411
+SD.k_DMTA 0.6069 0.2625 0.9513
+
+Variance model:
+ est. lower upper
+a.1 2.664 2.356 2.973
+
+Estimated disappearance times:
+ DT50 DT90
+DMTA 12.24 40.65
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:07 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - k_DMTA * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.441 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ DMTA_0 k_DMTA
+96.99175 0.05603
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k_DMTA
+DMTA_0 96.99 0
+k_DMTA 0.00 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 798.3 797.1 -393.2
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 97.271822 95.703157 98.84049
+k_DMTA 0.056638 0.029110 0.08417
+a.1 2.660081 2.230398 3.08976
+b.1 0.001665 -0.006911 0.01024
+SD.DMTA_0 1.545520 0.145035 2.94601
+SD.k_DMTA 0.606422 0.262274 0.95057
+
+Correlation:
+ DMTA_0
+k_DMTA 0.0169
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.5455 0.1450 2.9460
+SD.k_DMTA 0.6064 0.2623 0.9506
+
+Variance model:
+ est. lower upper
+a.1 2.660081 2.230398 3.08976
+b.1 0.001665 -0.006911 0.01024
+
+Estimated disappearance times:
+ DT50 DT90
+DMTA 12.24 40.65
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:06 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - (alpha/beta) * 1/((time/beta) + 1) * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 1.156 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ DMTA_0 alpha beta
+ 98.292 9.909 156.341
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 alpha beta
+DMTA_0 98.29 0 0
+alpha 0.00 1 0
+beta 0.00 0 1
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 734.2 732.7 -360.1
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.3435 96.9033 99.784
+alpha 7.2007 2.5889 11.812
+beta 112.8746 34.8816 190.868
+a.1 2.0459 1.8054 2.286
+SD.DMTA_0 1.4795 0.2717 2.687
+SD.alpha 0.6396 0.1509 1.128
+SD.beta 0.6874 0.1587 1.216
+
+Correlation:
+ DMTA_0 alpha
+alpha -0.1125
+beta -0.1227 0.3632
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.4795 0.2717 2.687
+SD.alpha 0.6396 0.1509 1.128
+SD.beta 0.6874 0.1587 1.216
+
+Variance model:
+ est. lower upper
+a.1 2.046 1.805 2.286
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+DMTA 11.41 42.53 12.8
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:07 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - (alpha/beta) * 1/((time/beta) + 1) * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.729 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+DMTA_0 alpha beta
+98.772 4.663 92.597
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 alpha beta
+DMTA_0 98.77 0 0
+alpha 0.00 1 0
+beta 0.00 0 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 720.4 718.8 -352.2
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.99136 97.26011 100.72261
+alpha 5.86312 2.57485 9.15138
+beta 88.55571 29.20889 147.90254
+a.1 1.51063 1.24384 1.77741
+b.1 0.02824 0.02040 0.03609
+SD.DMTA_0 1.57436 -0.04867 3.19739
+SD.alpha 0.59871 0.17132 1.02611
+SD.beta 0.72994 0.22849 1.23139
+
+Correlation:
+ DMTA_0 alpha
+alpha -0.1363
+beta -0.1414 0.2542
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.5744 -0.04867 3.197
+SD.alpha 0.5987 0.17132 1.026
+SD.beta 0.7299 0.22849 1.231
+
+Variance model:
+ est. lower upper
+a.1 1.51063 1.2438 1.77741
+b.1 0.02824 0.0204 0.03609
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+DMTA 11.11 42.6 12.82
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:07 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.007 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 g
+98.64383 0.09211 0.02999 0.76814
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 g
+DMTA_0 98.64 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+g 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 711.8 710 -346.9
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.092481 96.573898 99.61106
+k1 0.062499 0.030336 0.09466
+k2 0.009065 -0.005133 0.02326
+g 0.948967 0.862079 1.03586
+a.1 1.821671 1.604774 2.03857
+SD.DMTA_0 1.677785 0.472066 2.88350
+SD.k1 0.634962 0.270788 0.99914
+SD.k2 1.033498 -0.205994 2.27299
+SD.g 1.710046 0.428642 2.99145
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0246
+k2 0.0491 0.0953
+g -0.0552 -0.0889 -0.4795
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.678 0.4721 2.8835
+SD.k1 0.635 0.2708 0.9991
+SD.k2 1.033 -0.2060 2.2730
+SD.g 1.710 0.4286 2.9914
+
+Variance model:
+ est. lower upper
+a.1 1.822 1.605 2.039
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 11.79 42.8 12.88 11.09 76.46
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:08 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 3.033 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 g
+98.759266 0.087034 0.009933 0.930827
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 g
+DMTA_0 98.76 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+g 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 665.5 663.4 -322.8
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.377019 96.447952 100.30609
+k1 0.064843 0.034607 0.09508
+k2 0.008895 0.006368 0.01142
+g 0.949696 0.903815 0.99558
+a.1 1.065241 0.865754 1.26473
+b.1 0.029340 0.022336 0.03634
+SD.DMTA_0 2.007754 0.387982 3.62753
+SD.k1 0.580473 0.250286 0.91066
+SD.k2 0.006105 -4.920337 4.93255
+SD.g 1.097149 0.412779 1.78152
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0235
+k2 0.0595 0.0424
+g -0.0470 -0.0278 -0.2731
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 2.007754 0.3880 3.6275
+SD.k1 0.580473 0.2503 0.9107
+SD.k2 0.006105 -4.9203 4.9325
+SD.g 1.097149 0.4128 1.7815
+
+Variance model:
+ est. lower upper
+a.1 1.06524 0.86575 1.26473
+b.1 0.02934 0.02234 0.03634
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 11.36 41.32 12.44 10.69 77.92
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:07 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - ifelse(time <= tb, k1, k2) * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 2.004 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 tb
+97.82176 0.06931 0.02997 11.13945
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 tb
+DMTA_0 97.82 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+tb 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 714 712.1 -348
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 98.16102 96.47747 99.84456
+k1 0.07876 0.05261 0.10491
+k2 0.02227 0.01706 0.02747
+tb 13.99089 -7.40049 35.38228
+a.1 1.82305 1.60700 2.03910
+SD.DMTA_0 1.88413 0.56204 3.20622
+SD.k1 0.34292 0.10482 0.58102
+SD.k2 0.19851 0.01718 0.37985
+SD.tb 1.68168 0.58064 2.78272
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0142
+k2 0.0001 -0.0025
+tb 0.0165 -0.1256 -0.0301
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 1.8841 0.56204 3.2062
+SD.k1 0.3429 0.10482 0.5810
+SD.k2 0.1985 0.01718 0.3798
+SD.tb 1.6817 0.58064 2.7827
+
+Variance model:
+ est. lower upper
+a.1 1.823 1.607 2.039
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 8.801 67.91 20.44 8.801 31.13
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Thu Jan 5 08:19:08 2023
+Date of summary: Thu Jan 5 08:20:11 2023
+
+Equations:
+d_DMTA/dt = - ifelse(time <= tb, k1, k2) * DMTA
+
+Data:
+155 observations of 1 variable(s) grouped in 6 datasets
+
+Model predictions using solution type analytical
+
+Fitted in 3.287 s
+Using 300, 100 iterations and 9 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ DMTA_0 k1 k2 tb
+98.45190 0.07525 0.02576 19.19375
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ DMTA_0 k1 k2 tb
+DMTA_0 98.45 0 0 0
+k1 0.00 1 0 0
+k2 0.00 0 1 0
+tb 0.00 0 0 1
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 667.1 665 -323.6
+
+Optimised parameters:
+ est. lower upper
+DMTA_0 97.76570 95.81350 99.71791
+k1 0.05855 0.03080 0.08630
+k2 0.02337 0.01664 0.03010
+tb 31.09638 29.38289 32.80987
+a.1 1.08835 0.88590 1.29080
+b.1 0.02964 0.02257 0.03671
+SD.DMTA_0 2.04877 0.42607 3.67147
+SD.k1 0.59166 0.25621 0.92711
+SD.k2 0.30698 0.09561 0.51835
+SD.tb 0.01274 -0.10914 0.13462
+
+Correlation:
+ DMTA_0 k1 k2
+k1 0.0160
+k2 -0.0070 -0.0024
+tb -0.0668 -0.0103 -0.2013
+
+Random effects:
+ est. lower upper
+SD.DMTA_0 2.04877 0.42607 3.6715
+SD.k1 0.59166 0.25621 0.9271
+SD.k2 0.30698 0.09561 0.5183
+SD.tb 0.01274 -0.10914 0.1346
+
+Variance model:
+ est. lower upper
+a.1 1.08835 0.88590 1.29080
+b.1 0.02964 0.02257 0.03671
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+DMTA 11.84 51.71 15.57 11.84 29.66
+
+
Hierarchical model convergence plots
+
+Session info
+
+
+R version 4.2.2 Patched (2022-11-10 r83330)
+Platform: x86_64-pc-linux-gnu (64-bit)
+Running under: Debian GNU/Linux bookworm/sid
+
+Matrix products: default
+BLAS: /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3
+LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so
+
+locale:
+ [1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C
+ [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=de_DE.UTF-8
+ [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8
+ [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
+ [9] LC_ADDRESS=C LC_TELEPHONE=C
+[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
+
+attached base packages:
+[1] parallel stats graphics grDevices utils datasets methods
+[8] base
+
+other attached packages:
+[1] saemix_3.2 npde_3.3 knitr_1.41 mkin_1.2.2
+
+loaded via a namespace (and not attached):
+ [1] deSolve_1.34 zoo_1.8-11 tidyselect_1.2.0 xfun_0.35
+ [5] bslib_0.4.2 purrr_1.0.0 lattice_0.20-45 colorspace_2.0-3
+ [9] vctrs_0.5.1 generics_0.1.3 htmltools_0.5.4 yaml_2.3.6
+[13] utf8_1.2.2 rlang_1.0.6 pkgdown_2.0.7 jquerylib_0.1.4
+[17] pillar_1.8.1 glue_1.6.2 DBI_1.1.3 lifecycle_1.0.3
+[21] stringr_1.5.0 munsell_0.5.0 gtable_0.3.1 ragg_1.2.4
+[25] codetools_0.2-18 memoise_2.0.1 evaluate_0.19 fastmap_1.1.0
+[29] lmtest_0.9-40 fansi_1.0.3 highr_0.9 scales_1.2.1
+[33] cachem_1.0.6 desc_1.4.2 jsonlite_1.8.4 systemfonts_1.0.4
+[37] fs_1.5.2 textshaping_0.3.6 gridExtra_2.3 ggplot2_3.4.0
+[41] digest_0.6.31 stringi_1.7.8 dplyr_1.0.10 grid_4.2.2
+[45] rprojroot_2.0.3 cli_3.5.0 tools_4.2.2 magrittr_2.0.3
+[49] sass_0.4.4 tibble_3.1.8 pkgconfig_2.0.3 assertthat_0.2.1
+[53] rmarkdown_2.19 R6_2.5.1 mclust_6.0.0 nlme_3.1-161
+[57] compiler_4.2.2
All vignettes
- @Manual{,
title = {mkin: Kinetic Evaluation of Chemical Degradation Data},
author = {Johannes Ranke},
- year = {2022},
+ year = {2023},
note = {R package version 1.2.2},
url = {https://pkgdown.jrwb.de/mkin/},
}
@@ -136,7 +136,7 @@ R package version 1.2.2, https://pkgdown
diff --git a/docs/dev/index.html b/docs/dev/index.html
index 4723879e..993b8eea 100644
--- a/docs/dev/index.html
+++ b/docs/dev/index.html
@@ -19,11 +19,11 @@
equation models are solved using automatically generated C functions.
Heteroscedasticity can be taken into account using variance by variable or
two-component error models as described by Ranke and Meinecke (2018)
- <doi:10.3390/environments6120124>. Interfaces to several nonlinear
- mixed-effects model packages are available, some of which are described by
- Ranke et al. (2021) <doi:10.3390/environments8080071>. Please note that no
- warranty is implied for correctness of results or fitness for a particular
- purpose.">
+ <doi:10.3390/environments6120124>. Hierarchical degradation models can
+ be fitted using nonlinear mixed-effects model packages as a backend as
+ described by Ranke et al. (2021) <doi:10.3390/environments8080071>. Please
+ note that no warranty is implied for correctness of results or fitness for a
+ particular purpose.">
hierarchical_kinetics(..., keep_tex = FALSE)
Arguments
+ rmarkdown::pdf_document
Value
+
+
+render
Create and work with nonlinear hierarchical models
Hierarchical kinetics template
Read datasets and relevant meta information from a spreadsheet file
Wrap the output of a summary function in tex listing environment
Display the output of a summary function according to the output format
mkinsub()
has an argument to
, specifying names of
variables to which a transfer is to be assumed in the model.
If the argument use_of_ff
is set to "min"
-(default) and the model for the compartment is "SFO" or "SFORB", an
+and the model for the compartment is "SFO" or "SFORB", an
additional mkinsub()
argument can be sink = FALSE
, effectively
fixing the flux to sink to zero.
In print.mkinmod, this argument is currently not used.
@@ -247,7 +247,7 @@ in the FOCUS and NAFTA guidance documents are used.
For kinetic models with more than one observed variable, a symbolic solution of the system of differential equations is included in the resulting mkinmod object in some cases, speeding up the solution.
-If a C compiler is found by pkgbuild::has_compiler()
and there
+
If a C compiler is found by pkgbuild::has_compiler()
and there
is more than one observed variable in the specification, C code is generated
for evaluating the differential equations, compiled using
inline::cfunction()
and added to the resulting mkinmod object.
R/summary_listing.R
+ summary_listing.Rd
This function is intended for use in a R markdown code chunk with the chunk
+option results = "asis"
.
summary_listing(object, caption = NULL, label = NULL, clearpage = TRUE)
+
+tex_listing(object, caption = NULL, label = NULL, clearpage = TRUE)
+
+html_listing(object, caption = NULL)
The object for which the summary is to be listed
An optional caption
An optional label, ignored in html output
Should a new page be started after the listing? Ignored in html output
vignettes/prebuilt/2022_cyan_pathway.rmd
+ 2022_cyan_pathway.rmd
The purpose of this document is to test demonstrate how nonlinear +hierarchical models (NLHM) based on the parent degradation models SFO, +FOMC, DFOP and HS, with serial formation of two or more metabolites can +be fitted with the mkin package.
+It was assembled in the course of work package 1.2 of Project Number +173340 (Application of nonlinear hierarchical models to the kinetic +evaluation of chemical degradation data) of the German Environment +Agency carried out in 2022 and 2023.
+The mkin package is used in version 1.2.2 which is currently under
+development. The newly introduced functionality that is used here is a
+simplification of excluding random effects for a set of fits based on a
+related set of fits with a reduced model, and the documentation of the
+starting parameters of the fit, so that all starting parameters of
+saem
fits are now listed in the summary. The
+saemix
package is used as a backend for fitting the NLHM,
+but is also loaded to make the convergence plot function available.
This document is processed with the knitr
package, which
+also provides the kable
function that is used to improve
+the display of tabular data in R markdown documents. For parallel
+processing, the parallel
package is used.
+library(mkin)
+library(knitr)
+library(saemix)
+library(parallel)
+n_cores <- detectCores()
+if (Sys.info()["sysname"] == "Windows") {
+ cl <- makePSOCKcluster(n_cores)
+} else {
+ cl <- makeForkCluster(n_cores)
+}
The example data are taken from the final addendum to the DAR from
+2014 and are distributed with the mkin package. Residue data and time
+step normalisation factors are read in using the function
+read_spreadsheet
from the mkin package. This function also
+performs the time step normalisation.
+data_file <- system.file(
+ "testdata", "cyantraniliprole_soil_efsa_2014.xlsx",
+ package = "mkin")
+cyan_ds <- read_spreadsheet(data_file, parent_only = FALSE)
The following tables show the covariate data and the 5 datasets that +were read in from the spreadsheet file.
+ ++ | pH | +
---|---|
Nambsheim | +7.90 | +
Tama | +6.20 | +
Gross-Umstadt | +7.04 | +
Sassafras | +4.62 | +
Lleida | +8.05 | +
+for (ds_name in names(cyan_ds)) {
+ print(
+ kable(mkin_long_to_wide(cyan_ds[[ds_name]]),
+ caption = paste("Dataset", ds_name),
+ booktabs = TRUE, row.names = FALSE))
+ cat("\n\\clearpage\n")
+}
time | +cyan | +JCZ38 | +J9C38 | +JSE76 | +J9Z38 | +
---|---|---|---|---|---|
0.000000 | +105.79 | +NA | +NA | +NA | +NA | +
3.210424 | +77.26 | +7.92 | +11.94 | +5.58 | +9.12 | +
7.490988 | +57.13 | +15.46 | +16.58 | +12.59 | +11.74 | +
17.122259 | +37.74 | +15.98 | +13.36 | +26.05 | +10.77 | +
23.543105 | +31.47 | +6.05 | +14.49 | +34.71 | +4.96 | +
43.875788 | +16.74 | +6.07 | +7.57 | +40.38 | +6.52 | +
67.418893 | +8.85 | +10.34 | +6.39 | +30.71 | +8.90 | +
107.014116 | +5.19 | +9.61 | +1.95 | +20.41 | +12.93 | +
129.487080 | +3.45 | +6.18 | +1.36 | +21.78 | +6.99 | +
195.835832 | +2.15 | +9.13 | +0.95 | +16.29 | +7.69 | +
254.693596 | +1.92 | +6.92 | +0.20 | +13.57 | +7.16 | +
321.042348 | +2.26 | +7.02 | +NA | +11.12 | +8.66 | +
383.110535 | +NA | +5.05 | +NA | +10.64 | +5.56 | +
0.000000 | +105.57 | +NA | +NA | +NA | +NA | +
3.210424 | +78.88 | +12.77 | +11.94 | +5.47 | +9.12 | +
7.490988 | +59.94 | +15.27 | +16.58 | +13.60 | +11.74 | +
17.122259 | +39.67 | +14.26 | +13.36 | +29.44 | +10.77 | +
23.543105 | +30.21 | +16.07 | +14.49 | +35.90 | +4.96 | +
43.875788 | +18.06 | +9.44 | +7.57 | +42.30 | +6.52 | +
67.418893 | +8.54 | +5.78 | +6.39 | +34.70 | +8.90 | +
107.014116 | +7.26 | +4.54 | +1.95 | +23.33 | +12.93 | +
129.487080 | +3.60 | +4.22 | +1.36 | +23.56 | +6.99 | +
195.835832 | +2.84 | +3.05 | +0.95 | +16.21 | +7.69 | +
254.693596 | +2.00 | +2.90 | +0.20 | +15.53 | +7.16 | +
321.042348 | +1.79 | +0.94 | +NA | +9.80 | +8.66 | +
383.110535 | +NA | +1.82 | +NA | +9.49 | +5.56 | +
time | +cyan | +JCZ38 | +J9Z38 | +JSE76 | +
---|---|---|---|---|
0.000000 | +106.14 | +NA | +NA | +NA | +
2.400833 | +93.47 | +6.46 | +2.85 | +NA | +
5.601943 | +88.39 | +10.86 | +4.65 | +3.85 | +
12.804442 | +72.29 | +11.97 | +4.91 | +11.24 | +
17.606108 | +65.79 | +13.11 | +6.63 | +13.79 | +
32.811382 | +53.16 | +11.24 | +8.90 | +23.40 | +
50.417490 | +44.01 | +11.34 | +9.98 | +29.56 | +
80.027761 | +33.23 | +8.82 | +11.31 | +35.63 | +
96.833591 | +40.68 | +5.94 | +8.32 | +29.09 | +
146.450803 | +20.65 | +4.49 | +8.72 | +36.88 | +
190.466072 | +17.71 | +4.66 | +11.10 | +40.97 | +
240.083284 | +14.86 | +2.27 | +11.62 | +40.11 | +
286.499386 | +12.02 | +NA | +10.73 | +42.58 | +
0.000000 | +109.11 | +NA | +NA | +NA | +
2.400833 | +96.84 | +5.52 | +2.04 | +2.02 | +
5.601943 | +85.29 | +9.65 | +2.99 | +4.39 | +
12.804442 | +73.68 | +12.48 | +5.05 | +11.47 | +
17.606108 | +64.89 | +12.44 | +6.29 | +15.00 | +
32.811382 | +52.27 | +10.86 | +7.65 | +23.30 | +
50.417490 | +42.61 | +10.54 | +9.37 | +31.06 | +
80.027761 | +34.29 | +10.02 | +9.04 | +37.87 | +
96.833591 | +30.50 | +6.34 | +8.14 | +33.97 | +
146.450803 | +19.21 | +6.29 | +8.52 | +26.15 | +
190.466072 | +17.55 | +5.81 | +9.89 | +32.08 | +
240.083284 | +13.22 | +5.99 | +10.79 | +40.66 | +
286.499386 | +11.09 | +6.05 | +8.82 | +42.90 | +
time | +cyan | +JCZ38 | +J9Z38 | +JSE76 | +
---|---|---|---|---|
0.0000000 | +103.03 | +NA | +NA | +NA | +
2.1014681 | +87.85 | +4.79 | +3.26 | +0.62 | +
4.9034255 | +77.35 | +8.05 | +9.89 | +1.32 | +
10.5073404 | +69.33 | +9.74 | +12.32 | +4.74 | +
21.0146807 | +55.65 | +14.57 | +13.59 | +9.84 | +
31.5220211 | +49.03 | +14.66 | +16.71 | +12.32 | +
42.0293615 | +41.86 | +15.97 | +13.64 | +15.53 | +
63.0440422 | +34.88 | +18.20 | +14.12 | +22.02 | +
84.0587230 | +28.26 | +15.64 | +14.06 | +25.60 | +
0.0000000 | +104.05 | +NA | +NA | +NA | +
2.1014681 | +85.25 | +2.68 | +7.32 | +0.69 | +
4.9034255 | +77.22 | +7.28 | +8.37 | +1.45 | +
10.5073404 | +65.23 | +10.73 | +10.93 | +4.74 | +
21.0146807 | +57.78 | +12.29 | +14.80 | +9.05 | +
31.5220211 | +54.83 | +14.05 | +12.01 | +11.05 | +
42.0293615 | +45.17 | +12.12 | +17.89 | +15.71 | +
63.0440422 | +34.83 | +12.90 | +15.86 | +22.52 | +
84.0587230 | +26.59 | +14.28 | +14.91 | +28.48 | +
0.0000000 | +104.62 | +NA | +NA | +NA | +
0.8145225 | +97.21 | +NA | +4.00 | +NA | +
1.9005525 | +89.64 | +3.59 | +5.24 | +NA | +
4.0726125 | +87.90 | +4.10 | +9.58 | +NA | +
8.1452251 | +86.90 | +5.96 | +9.45 | +NA | +
12.2178376 | +74.74 | +7.83 | +15.03 | +5.33 | +
16.2904502 | +74.13 | +8.84 | +14.41 | +5.10 | +
24.4356753 | +65.26 | +11.84 | +18.33 | +6.71 | +
32.5809004 | +57.70 | +12.74 | +19.93 | +9.74 | +
0.0000000 | +101.94 | +NA | +NA | +NA | +
0.8145225 | +99.94 | +NA | +NA | +NA | +
1.9005525 | +94.87 | +NA | +4.56 | +NA | +
4.0726125 | +86.96 | +6.75 | +6.90 | +NA | +
8.1452251 | +80.51 | +10.68 | +7.43 | +2.58 | +
12.2178376 | +78.38 | +10.35 | +9.46 | +3.69 | +
16.2904502 | +70.05 | +13.73 | +9.27 | +7.18 | +
24.4356753 | +61.28 | +12.57 | +13.28 | +13.19 | +
32.5809004 | +52.85 | +12.67 | +12.95 | +13.69 | +
time | +cyan | +JCZ38 | +J9Z38 | +JSE76 | +
---|---|---|---|---|
0.000000 | +102.17 | +NA | +NA | +NA | +
2.216719 | +95.49 | +1.11 | +0.10 | +0.83 | +
5.172343 | +83.35 | +6.43 | +2.89 | +3.30 | +
11.083593 | +78.18 | +10.00 | +5.59 | +0.81 | +
22.167186 | +70.44 | +17.21 | +4.23 | +1.09 | +
33.250779 | +68.00 | +20.45 | +5.86 | +1.17 | +
44.334371 | +59.64 | +24.64 | +3.17 | +2.72 | +
66.501557 | +50.73 | +27.50 | +6.19 | +1.27 | +
88.668742 | +45.65 | +32.77 | +5.69 | +4.54 | +
0.000000 | +100.43 | +NA | +NA | +NA | +
2.216719 | +95.34 | +3.21 | +0.14 | +0.46 | +
5.172343 | +84.38 | +5.73 | +4.75 | +0.62 | +
11.083593 | +78.50 | +11.89 | +3.99 | +0.73 | +
22.167186 | +71.17 | +17.28 | +4.39 | +0.66 | +
33.250779 | +59.41 | +18.73 | +11.85 | +2.65 | +
44.334371 | +64.57 | +22.93 | +5.13 | +2.01 | +
66.501557 | +49.08 | +33.39 | +5.67 | +3.63 | +
88.668742 | +40.41 | +39.60 | +5.93 | +6.17 | +
time | +cyan | +JCZ38 | +J9Z38 | +JSE76 | +
---|---|---|---|---|
0.000000 | +102.71 | +NA | +NA | +NA | +
2.821051 | +79.11 | +5.70 | +8.07 | +0.97 | +
6.582451 | +70.03 | +7.17 | +11.31 | +4.72 | +
14.105253 | +50.93 | +10.25 | +14.84 | +9.95 | +
28.210505 | +33.43 | +10.40 | +14.82 | +24.06 | +
42.315758 | +24.69 | +9.75 | +16.38 | +29.38 | +
56.421010 | +22.99 | +10.06 | +15.51 | +29.25 | +
84.631516 | +14.63 | +5.63 | +14.74 | +31.04 | +
112.842021 | +12.43 | +4.17 | +13.53 | +33.28 | +
0.000000 | +99.31 | +NA | +NA | +NA | +
2.821051 | +82.07 | +6.55 | +5.60 | +1.12 | +
6.582451 | +70.65 | +7.61 | +8.01 | +3.21 | +
14.105253 | +53.52 | +11.48 | +10.82 | +12.24 | +
28.210505 | +35.60 | +11.19 | +15.43 | +23.53 | +
42.315758 | +34.26 | +11.09 | +13.26 | +27.42 | +
56.421010 | +21.79 | +4.80 | +18.30 | +30.20 | +
84.631516 | +14.06 | +6.30 | +16.35 | +32.32 | +
112.842021 | +11.51 | +5.57 | +12.64 | +32.51 | +
As the pathway fits have very long run times, evaluations of the +parent data are performed first, in order to determine for each +hierarchical parent degradation model which random effects on the +degradation model parameters are ill-defined.
+
+cyan_sep_const <- mmkin(c("SFO", "FOMC", "DFOP", "SFORB", "HS"),
+ cyan_ds, quiet = TRUE, cores = n_cores)
+cyan_sep_tc <- update(cyan_sep_const, error_model = "tc")
+cyan_saem_full <- mhmkin(list(cyan_sep_const, cyan_sep_tc))
+status(cyan_saem_full) |> kable()
+ | const | +tc | +
---|---|---|
SFO | +OK | +OK | +
FOMC | +OK | +OK | +
DFOP | +OK | +OK | +
SFORB | +OK | +OK | +
HS | +OK | +OK | +
All fits converged successfully.
+ ++ | const | +tc | +
---|---|---|
SFO | +sd(cyan_0) | +sd(cyan_0) | +
FOMC | +sd(log_beta) | +sd(cyan_0) | +
DFOP | +sd(cyan_0) | +sd(cyan_0), sd(log_k1) | +
SFORB | +sd(cyan_free_0) | +sd(cyan_free_0), sd(log_k_cyan_free_bound) | +
HS | +sd(cyan_0) | +sd(cyan_0) | +
In almost all models, the random effect for the initial concentration +of the parent compound is ill-defined. For the biexponential models DFOP +and SFORB, the random effect of one additional parameter is ill-defined +when the two-component error model is used.
+ ++ | npar | +AIC | +BIC | +Lik | +
---|---|---|---|---|
SFO const | +5 | +833.9 | +832.0 | +-412.0 | +
SFO tc | +6 | +831.6 | +829.3 | +-409.8 | +
FOMC const | +7 | +709.1 | +706.4 | +-347.6 | +
FOMC tc | +8 | +689.2 | +686.1 | +-336.6 | +
DFOP const | +9 | +703.0 | +699.5 | +-342.5 | +
SFORB const | +9 | +701.3 | +697.8 | +-341.7 | +
HS const | +9 | +718.6 | +715.1 | +-350.3 | +
DFOP tc | +10 | +703.1 | +699.2 | +-341.6 | +
SFORB tc | +10 | +700.1 | +696.2 | +-340.1 | +
HS tc | +10 | +716.7 | +712.8 | +-348.3 | +
Model comparison based on AIC and BIC indicates that the +two-component error model is preferable for all parent models with the +exception of DFOP. The lowest AIC and BIC values are are obtained with +the FOMC model, followed by SFORB and DFOP.
+To test the technical feasibility of coupling the relevant parent
+degradation models with different transformation pathway models, a list
+of mkinmod
models is set up below. As in the EU evaluation,
+parallel formation of metabolites JCZ38 and J9Z38 and secondary
+formation of metabolite JSE76 from JCZ38 is used.
+if (!dir.exists("cyan_dlls")) dir.create("cyan_dlls")
+cyan_path_1 <- list(
+ sfo_path_1 = mkinmod(
+ cyan = mkinsub("SFO", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO"), quiet = TRUE,
+ name = "sfo_path_1", dll_dir = "cyan_dlls", overwrite = TRUE),
+ fomc_path_1 = mkinmod(
+ cyan = mkinsub("FOMC", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO"), quiet = TRUE,
+ name = "fomc_path_1", dll_dir = "cyan_dlls", overwrite = TRUE),
+ dfop_path_1 = mkinmod(
+ cyan = mkinsub("DFOP", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO"), quiet = TRUE,
+ name = "dfop_path_1", dll_dir = "cyan_dlls", overwrite = TRUE),
+ sforb_path_1 = mkinmod(
+ cyan = mkinsub("SFORB", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO"), quiet = TRUE,
+ name = "sforb_path_1", dll_dir = "cyan_dlls", overwrite = TRUE),
+ hs_path_1 = mkinmod(
+ cyan = mkinsub("HS", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO"), quiet = TRUE,
+ name = "hs_path_1", dll_dir = "cyan_dlls", overwrite = TRUE)
+)
To obtain suitable starting values for the NLHM fits, separate +pathway fits are performed for all datasets.
+
+f_sep_1_const <- mmkin(
+ cyan_path_1,
+ cyan_ds,
+ error_model = "const",
+ cluster = cl,
+ quiet = TRUE)
+status(f_sep_1_const) |> kable()
+ | Nambsheim | +Tama | +Gross-Umstadt | +Sassafras | +Lleida | +
---|---|---|---|---|---|
sfo_path_1 | +OK | +OK | +OK | +OK | +OK | +
fomc_path_1 | +OK | +OK | +OK | +OK | +OK | +
dfop_path_1 | +OK | +OK | +OK | +OK | +OK | +
sforb_path_1 | +OK | +OK | +OK | +OK | +OK | +
hs_path_1 | +C | +C | +C | +C | +C | +
+ | Nambsheim | +Tama | +Gross-Umstadt | +Sassafras | +Lleida | +
---|---|---|---|---|---|
sfo_path_1 | +OK | +OK | +OK | +OK | +OK | +
fomc_path_1 | +OK | +OK | +OK | +OK | +C | +
dfop_path_1 | +OK | +OK | +OK | +OK | +OK | +
sforb_path_1 | +OK | +C | +OK | +OK | +OK | +
hs_path_1 | +C | +OK | +C | +OK | +OK | +
Most separate fits converged successfully. The biggest convergence +problems are seen when using the HS model with constant variance.
+For the hierarchical pathway fits, those random effects that could +not be quantified in the corresponding parent data analyses are +excluded.
+In the code below, the output of the illparms
function
+for the parent only fits is used as an argument
+no_random_effect
to the mhmkin
function. The
+possibility to do so was introduced in mkin version 1.2.2
+which is currently under development.
+f_saem_1 <- mhmkin(list(f_sep_1_const, f_sep_1_tc),
+ no_random_effect = illparms(cyan_saem_full),
+ cluster = cl)
+ | const | +tc | +
---|---|---|
sfo_path_1 | +Fth, FO | +Fth, FO | +
fomc_path_1 | +OK | +Fth, FO | +
dfop_path_1 | +Fth, FO | +Fth, FO | +
sforb_path_1 | +Fth, FO | +Fth, FO | +
hs_path_1 | +Fth, FO | +Fth, FO | +
The status information from the individual fits shows that all fits
+completed successfully. The matrix entries Fth and FO indicate that the
+Fisher Information Matrix could not be inverted for the fixed effects
+(theta) and the random effects (Omega), respectively. For the affected
+fits, ill-defined parameters cannot be determined using the
+illparms
function, because it relies on the Fisher
+Information Matrix.
+ | const | +tc | +
---|---|---|
sfo_path_1 | +NA | +NA | +
fomc_path_1 | +sd(log_k_J9Z38), sd(f_cyan_ilr_2), +sd(f_JCZ38_qlogis) | +NA | +
dfop_path_1 | +NA | +NA | +
sforb_path_1 | +NA | +NA | +
hs_path_1 | +NA | +NA | +
The model comparison below suggests that the pathway fits using DFOP +or SFORB for the parent compound provide the best fit.
+ ++ | npar | +AIC | +BIC | +Lik | +
---|---|---|---|---|
sfo_path_1 const | +16 | +2692.8 | +2686.6 | +-1330.4 | +
sfo_path_1 tc | +17 | +2657.7 | +2651.1 | +-1311.9 | +
fomc_path_1 const | +18 | +2427.8 | +2420.8 | +-1195.9 | +
fomc_path_1 tc | +19 | +2423.4 | +2416.0 | +-1192.7 | +
dfop_path_1 const | +20 | +2403.2 | +2395.4 | +-1181.6 | +
sforb_path_1 const | +20 | +2401.4 | +2393.6 | +-1180.7 | +
hs_path_1 const | +20 | +2427.3 | +2419.5 | +-1193.7 | +
dfop_path_1 tc | +20 | +2398.0 | +2390.2 | +-1179.0 | +
sforb_path_1 tc | +20 | +2399.8 | +2392.0 | +-1179.9 | +
hs_path_1 tc | +21 | +2422.3 | +2414.1 | +-1190.2 | +
For these two parent model, successful fits are shown below. Plots of +the fits with the other parent models are shown in the Appendix.
+
+plot(f_saem_1[["dfop_path_1", "tc"]])
+DFOP pathway fit with two-component error +
+
+plot(f_saem_1[["sforb_path_1", "tc"]])
+SFORB pathway fit with two-component error +
+A closer graphical analysis of these Figures shows that the residues +of transformation product JCZ38 in the soils Tama and Nambsheim observed +at later time points are strongly and systematically underestimated.
+To improve the fit for JCZ38, a back-reaction from JSE76 to JCZ38 was +introduced in an alternative version of the transformation pathway, in +analogy to the back-reaction from K5A78 to K5A77. Both pairs of +transformation products are pairs of an organic acid with its +corresponding amide (Addendum 2014, p. 109). As FOMC provided the best +fit for the parent, and the biexponential models DFOP and SFORB provided +the best initial pathway fits, these three parent models are used in the +alternative pathway fits.
+
+cyan_path_2 <- list(
+ fomc_path_2 = mkinmod(
+ cyan = mkinsub("FOMC", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO", "JCZ38"),
+ name = "fomc_path_2", quiet = TRUE,
+ dll_dir = "cyan_dlls",
+ overwrite = TRUE
+ ),
+ dfop_path_2 = mkinmod(
+ cyan = mkinsub("DFOP", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO", "JCZ38"),
+ name = "dfop_path_2", quiet = TRUE,
+ dll_dir = "cyan_dlls",
+ overwrite = TRUE
+ ),
+ sforb_path_2 = mkinmod(
+ cyan = mkinsub("SFORB", c("JCZ38", "J9Z38")),
+ JCZ38 = mkinsub("SFO", "JSE76"),
+ J9Z38 = mkinsub("SFO"),
+ JSE76 = mkinsub("SFO", "JCZ38"),
+ name = "sforb_path_2", quiet = TRUE,
+ dll_dir = "cyan_dlls",
+ overwrite = TRUE
+ )
+)
+f_sep_2_const <- mmkin(
+ cyan_path_2,
+ cyan_ds,
+ error_model = "const",
+ cluster = cl,
+ quiet = TRUE)
+
+status(f_sep_2_const) |> kable()
+ | Nambsheim | +Tama | +Gross-Umstadt | +Sassafras | +Lleida | +
---|---|---|---|---|---|
fomc_path_2 | +OK | +OK | +OK | +C | +OK | +
dfop_path_2 | +OK | +OK | +OK | +C | +OK | +
sforb_path_2 | +OK | +OK | +OK | +C | +OK | +
Using constant variance, separate fits converge with the exception of +the fits to the Sassafras soil data.
+ ++ | Nambsheim | +Tama | +Gross-Umstadt | +Sassafras | +Lleida | +
---|---|---|---|---|---|
fomc_path_2 | +OK | +C | +OK | +C | +OK | +
dfop_path_2 | +OK | +OK | +OK | +C | +OK | +
sforb_path_2 | +OK | +OK | +OK | +OK | +OK | +
Using the two-component error model, all separate fits converge with +the exception of the alternative pathway fit with DFOP used for the +parent and the Sassafras dataset.
+
+f_saem_2 <- mhmkin(list(f_sep_2_const, f_sep_2_tc),
+ no_random_effect = illparms(cyan_saem_full[2:4, ]),
+ cluster = cl)
+ | const | +tc | +
---|---|---|
fomc_path_2 | +OK | +FO | +
dfop_path_2 | +OK | +OK | +
sforb_path_2 | +OK | +OK | +
The hierarchical fits for the alternative pathway completed +successfully.
+ ++ | const | +tc | +
---|---|---|
fomc_path_2 | +sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis) | +NA | +
dfop_path_2 | +sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis) | +sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis) | +
sforb_path_2 | +sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis) | +sd(f_JCZ38_qlogis), sd(f_JSE76_qlogis) | +
In both fits, the random effects for the formation fractions for the +pathways from JCZ38 to JSE76, and for the reverse pathway from JSE76 to +JCZ38 are ill-defined.
+ ++ | npar | +AIC | +BIC | +Lik | +
---|---|---|---|---|
fomc_path_2 const | +20 | +2308.3 | +2300.5 | +-1134.2 | +
fomc_path_2 tc | +21 | +2248.3 | +2240.1 | +-1103.2 | +
dfop_path_2 const | +22 | +2289.6 | +2281.0 | +-1122.8 | +
sforb_path_2 const | +22 | +2284.1 | +2275.5 | +-1120.0 | +
dfop_path_2 tc | +22 | +2234.4 | +2225.8 | +-1095.2 | +
sforb_path_2 tc | +22 | +2240.4 | +2231.8 | +-1098.2 | +
The variants using the biexponential models DFOP and SFORB for the +parent compound and the two-component error model give the lowest AIC +and BIC values and are plotted below. Compared with the original +pathway, the AIC and BIC values indicate a large improvement. This is +confirmed by the plots, which show that the metabolite JCZ38 is fitted +much better with this model.
+
+plot(f_saem_2[["fomc_path_2", "tc"]])
+FOMC pathway fit with two-component error, alternative pathway +
+
+plot(f_saem_2[["dfop_path_2", "tc"]])
+DFOP pathway fit with two-component error, alternative pathway +
+
+plot(f_saem_2[["sforb_path_2", "tc"]])
+SFORB pathway fit with two-component error, alternative pathway +
+All ill-defined random effects that were identified in the parent
+only fits and in the above pathway fits, are excluded for the final
+evaluations below. For this purpose, a list of character vectors is
+created below that can be indexed by row and column indices, and which
+contains the degradation parameter names for which random effects should
+be excluded for each of the hierarchical fits contained in
+f_saem_2
.
+no_ranef <- matrix(list(), nrow = 3, ncol = 2, dimnames = dimnames(f_saem_2))
+no_ranef[["fomc_path_2", "const"]] <- c("log_beta", "f_JCZ38_qlogis", "f_JSE76_qlogis")
+no_ranef[["fomc_path_2", "tc"]] <- c("cyan_0", "f_JCZ38_qlogis", "f_JSE76_qlogis")
+no_ranef[["dfop_path_2", "const"]] <- c("cyan_0", "f_JCZ38_qlogis", "f_JSE76_qlogis")
+no_ranef[["dfop_path_2", "tc"]] <- c("cyan_0", "log_k1", "f_JCZ38_qlogis", "f_JSE76_qlogis")
+no_ranef[["sforb_path_2", "const"]] <- c("cyan_free_0",
+ "f_JCZ38_qlogis", "f_JSE76_qlogis")
+no_ranef[["sforb_path_2", "tc"]] <- c("cyan_free_0", "log_k_cyan_free_bound",
+ "f_JCZ38_qlogis", "f_JSE76_qlogis")
+clusterExport(cl, "no_ranef")
+
+f_saem_3 <- update(f_saem_2,
+ no_random_effect = no_ranef,
+ cluster = cl)
+ | const | +tc | +
---|---|---|
fomc_path_2 | +E | +Fth | +
dfop_path_2 | +Fth | +Fth | +
sforb_path_2 | +Fth | +Fth | +
With the exception of the FOMC pathway fit with constant variance, +all updated fits completed successfully. However, the Fisher Information +Matrix for the fixed effects (Fth) could not be inverted, so no +confidence intervals for the optimised parameters are available.
+ ++ | const | +tc | +
---|---|---|
fomc_path_2 | +E | ++ |
dfop_path_2 | ++ | + |
sforb_path_2 | ++ | + |
+ | npar | +AIC | +BIC | +Lik | +
---|---|---|---|---|
fomc_path_2 tc | +19 | +2250.9 | +2243.5 | +-1106.5 | +
dfop_path_2 const | +20 | +2281.7 | +2273.9 | +-1120.8 | +
sforb_path_2 const | +20 | +2279.5 | +2271.7 | +-1119.7 | +
dfop_path_2 tc | +20 | +2231.5 | +2223.7 | +-1095.8 | +
sforb_path_2 tc | +20 | +2235.7 | +2227.9 | +-1097.9 | +
While the AIC and BIC values of the best fit (DFOP pathway fit with +two-component error) are lower than in the previous fits with the +alternative pathway, the practical value of these refined evaluations is +limited as no confidence intervals are obtained.
+It was demonstrated that a relatively complex transformation pathway +with parallel formation of two primary metabolites and one secondary +metabolite can be fitted even if the data in the individual datasets are +quite different and partly only cover the formation phase.
+The run times of the pathway fits were several hours, limiting the +practical feasibility of iterative refinements based on ill-defined +parameters and of alternative checks of parameter identifiability based +on multistart runs.
+The helpful comments by Janina Wöltjen of the German Environment +Agency are gratefully acknowledged.
+
+plot(f_saem_1[["sfo_path_1", "tc"]])
+SFO pathway fit with two-component error +
+
+plot(f_saem_1[["fomc_path_1", "tc"]])
+FOMC pathway fit with two-component error +
+
+plot(f_saem_1[["sforb_path_1", "tc"]])
+HS pathway fit with two-component error +
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:07:38 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - k_cyan * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * k_cyan * cyan - k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * k_cyan * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1088.473 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+ 95.3304 -3.8459 -3.1305 -5.0678 -5.3196
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
+ 0.8158 22.5404 10.4289
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_0 4.797 0.0000 0.000 0.000 0.0000
+log_k_cyan 0.000 0.9619 0.000 0.000 0.0000
+log_k_JCZ38 0.000 0.0000 2.139 0.000 0.0000
+log_k_J9Z38 0.000 0.0000 0.000 1.639 0.0000
+log_k_JSE76 0.000 0.0000 0.000 0.000 0.7894
+f_cyan_ilr_1 0.000 0.0000 0.000 0.000 0.0000
+f_cyan_ilr_2 0.000 0.0000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.000 0.0000
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
+cyan_0 0.0000 0.000 0.00
+log_k_cyan 0.0000 0.000 0.00
+log_k_JCZ38 0.0000 0.000 0.00
+log_k_J9Z38 0.0000 0.000 0.00
+log_k_JSE76 0.0000 0.000 0.00
+f_cyan_ilr_1 0.7714 0.000 0.00
+f_cyan_ilr_2 0.0000 8.684 0.00
+f_JCZ38_qlogis 0.0000 0.000 13.48
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2693 2687 -1330
+
+Optimised parameters:
+ est. lower upper
+cyan_0 95.0946 NA NA
+log_k_cyan -3.8544 NA NA
+log_k_JCZ38 -3.0402 NA NA
+log_k_J9Z38 -5.0109 NA NA
+log_k_JSE76 -5.2857 NA NA
+f_cyan_ilr_1 0.8069 NA NA
+f_cyan_ilr_2 16.6623 NA NA
+f_JCZ38_qlogis 1.3602 NA NA
+a.1 4.8326 NA NA
+SD.log_k_cyan 0.5842 NA NA
+SD.log_k_JCZ38 1.2680 NA NA
+SD.log_k_J9Z38 0.3626 NA NA
+SD.log_k_JSE76 0.5244 NA NA
+SD.f_cyan_ilr_1 0.2752 NA NA
+SD.f_cyan_ilr_2 2.3556 NA NA
+SD.f_JCZ38_qlogis 0.2400 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan 0.5842 NA NA
+SD.log_k_JCZ38 1.2680 NA NA
+SD.log_k_J9Z38 0.3626 NA NA
+SD.log_k_JSE76 0.5244 NA NA
+SD.f_cyan_ilr_1 0.2752 NA NA
+SD.f_cyan_ilr_2 2.3556 NA NA
+SD.f_JCZ38_qlogis 0.2400 NA NA
+
+Variance model:
+ est. lower upper
+a.1 4.833 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 95.094581 NA NA
+k_cyan 0.021186 NA NA
+k_JCZ38 0.047825 NA NA
+k_J9Z38 0.006665 NA NA
+k_JSE76 0.005063 NA NA
+f_cyan_to_JCZ38 0.757885 NA NA
+f_cyan_to_J9Z38 0.242115 NA NA
+f_JCZ38_to_JSE76 0.795792 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 7.579e-01
+cyan_J9Z38 2.421e-01
+cyan_sink 5.877e-10
+JCZ38_JSE76 7.958e-01
+JCZ38_sink 2.042e-01
+
+Estimated disappearance times:
+ DT50 DT90
+cyan 32.72 108.68
+JCZ38 14.49 48.15
+J9Z38 103.99 345.46
+JSE76 136.90 454.76
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:08:17 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - k_cyan * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * k_cyan * cyan - k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * k_cyan * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1127.552 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+ 96.0039 -3.8907 -3.1276 -5.0069 -4.9367
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
+ 0.7937 20.0030 15.1336
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_cyan log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_0 4.859 0.000 0.00 0.00 0.0000
+log_k_cyan 0.000 0.962 0.00 0.00 0.0000
+log_k_JCZ38 0.000 0.000 2.04 0.00 0.0000
+log_k_J9Z38 0.000 0.000 0.00 1.72 0.0000
+log_k_JSE76 0.000 0.000 0.00 0.00 0.9076
+f_cyan_ilr_1 0.000 0.000 0.00 0.00 0.0000
+f_cyan_ilr_2 0.000 0.000 0.00 0.00 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.00 0.00 0.0000
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
+cyan_0 0.0000 0.000 0.00
+log_k_cyan 0.0000 0.000 0.00
+log_k_JCZ38 0.0000 0.000 0.00
+log_k_J9Z38 0.0000 0.000 0.00
+log_k_JSE76 0.0000 0.000 0.00
+f_cyan_ilr_1 0.7598 0.000 0.00
+f_cyan_ilr_2 0.0000 7.334 0.00
+f_JCZ38_qlogis 0.0000 0.000 11.78
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2658 2651 -1312
+
+Optimised parameters:
+ est. lower upper
+cyan_0 94.72923 NA NA
+log_k_cyan -3.91670 NA NA
+log_k_JCZ38 -3.12917 NA NA
+log_k_J9Z38 -5.06070 NA NA
+log_k_JSE76 -5.09254 NA NA
+f_cyan_ilr_1 0.81116 NA NA
+f_cyan_ilr_2 39.97850 NA NA
+f_JCZ38_qlogis 3.09728 NA NA
+a.1 3.95044 NA NA
+b.1 0.07998 NA NA
+SD.log_k_cyan 0.58855 NA NA
+SD.log_k_JCZ38 1.29753 NA NA
+SD.log_k_J9Z38 0.62851 NA NA
+SD.log_k_JSE76 0.37235 NA NA
+SD.f_cyan_ilr_1 0.37346 NA NA
+SD.f_cyan_ilr_2 1.41667 NA NA
+SD.f_JCZ38_qlogis 1.81467 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan 0.5886 NA NA
+SD.log_k_JCZ38 1.2975 NA NA
+SD.log_k_J9Z38 0.6285 NA NA
+SD.log_k_JSE76 0.3724 NA NA
+SD.f_cyan_ilr_1 0.3735 NA NA
+SD.f_cyan_ilr_2 1.4167 NA NA
+SD.f_JCZ38_qlogis 1.8147 NA NA
+
+Variance model:
+ est. lower upper
+a.1 3.95044 NA NA
+b.1 0.07998 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 94.729229 NA NA
+k_cyan 0.019907 NA NA
+k_JCZ38 0.043754 NA NA
+k_J9Z38 0.006341 NA NA
+k_JSE76 0.006142 NA NA
+f_cyan_to_JCZ38 0.758991 NA NA
+f_cyan_to_J9Z38 0.241009 NA NA
+f_JCZ38_to_JSE76 0.956781 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.75899
+cyan_J9Z38 0.24101
+cyan_sink 0.00000
+JCZ38_JSE76 0.95678
+JCZ38_sink 0.04322
+
+Estimated disappearance times:
+ DT50 DT90
+cyan 34.82 115.67
+JCZ38 15.84 52.63
+J9Z38 109.31 363.12
+JSE76 112.85 374.87
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:09:12 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1182.258 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.2314 -3.3680 -5.1108 -5.9416 0.7144
+ f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta
+ 7.3870 15.7604 -0.1791 2.9811
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.416 0.000 0.0 0.000 0.0000
+log_k_JCZ38 0.000 2.439 0.0 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.7 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.0 1.856 0.0000
+f_cyan_ilr_1 0.000 0.000 0.0 0.000 0.7164
+f_cyan_ilr_2 0.000 0.000 0.0 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.0 0.000 0.0000
+log_alpha 0.000 0.000 0.0 0.000 0.0000
+log_beta 0.000 0.000 0.0 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta
+cyan_0 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 12.33 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.00 20.42 0.0000 0.0000
+log_alpha 0.00 0.00 0.4144 0.0000
+log_beta 0.00 0.00 0.0000 0.5077
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2428 2421 -1196
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.0225 98.306270 103.7387
+log_k_JCZ38 -3.3786 -4.770657 -1.9866
+log_k_J9Z38 -5.2603 -5.902085 -4.6186
+log_k_JSE76 -6.1427 -7.318336 -4.9671
+f_cyan_ilr_1 0.7437 0.421215 1.0663
+f_cyan_ilr_2 0.9108 0.267977 1.5537
+f_JCZ38_qlogis 2.0487 0.524897 3.5724
+log_alpha -0.2268 -0.618049 0.1644
+log_beta 2.8986 2.700701 3.0964
+a.1 3.4058 3.169913 3.6416
+SD.cyan_0 2.5279 0.454190 4.6016
+SD.log_k_JCZ38 1.5636 0.572824 2.5543
+SD.log_k_J9Z38 0.5316 -0.004405 1.0677
+SD.log_k_JSE76 0.9903 0.106325 1.8742
+SD.f_cyan_ilr_1 0.3464 0.112066 0.5807
+SD.f_cyan_ilr_2 0.2804 -0.393900 0.9546
+SD.f_JCZ38_qlogis 0.9416 -0.152986 2.0362
+SD.log_alpha 0.4273 0.161044 0.6936
+
+Correlation:
+ cyan_0 l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 log_lph
+log_k_JCZ38 -0.0156
+log_k_J9Z38 -0.0493 0.0073
+log_k_JSE76 -0.0329 0.0018 0.0069
+f_cyan_ilr_1 -0.0086 0.0180 -0.1406 0.0012
+f_cyan_ilr_2 -0.2629 0.0779 0.2826 0.0274 0.0099
+f_JCZ38_qlogis 0.0713 -0.0747 -0.0505 0.1169 -0.1022 -0.4893
+log_alpha -0.0556 0.0120 0.0336 0.0193 0.0036 0.0840 -0.0489
+log_beta -0.2898 0.0460 0.1305 0.0768 0.0190 0.4071 -0.1981 0.2772
+
+Random effects:
+ est. lower upper
+SD.cyan_0 2.5279 0.454190 4.6016
+SD.log_k_JCZ38 1.5636 0.572824 2.5543
+SD.log_k_J9Z38 0.5316 -0.004405 1.0677
+SD.log_k_JSE76 0.9903 0.106325 1.8742
+SD.f_cyan_ilr_1 0.3464 0.112066 0.5807
+SD.f_cyan_ilr_2 0.2804 -0.393900 0.9546
+SD.f_JCZ38_qlogis 0.9416 -0.152986 2.0362
+SD.log_alpha 0.4273 0.161044 0.6936
+
+Variance model:
+ est. lower upper
+a.1 3.406 3.17 3.642
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.010e+02 9.831e+01 1.037e+02
+k_JCZ38 3.409e-02 8.475e-03 1.372e-01
+k_J9Z38 5.194e-03 2.734e-03 9.867e-03
+k_JSE76 2.149e-03 6.633e-04 6.963e-03
+f_cyan_to_JCZ38 6.481e-01 NA NA
+f_cyan_to_J9Z38 2.264e-01 NA NA
+f_JCZ38_to_JSE76 8.858e-01 6.283e-01 9.727e-01
+alpha 7.971e-01 5.390e-01 1.179e+00
+beta 1.815e+01 1.489e+01 2.212e+01
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.6481
+cyan_J9Z38 0.2264
+cyan_sink 0.1255
+JCZ38_JSE76 0.8858
+JCZ38_sink 0.1142
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+cyan 25.15 308.01 92.72
+JCZ38 20.33 67.54 NA
+J9Z38 133.46 443.35 NA
+JSE76 322.53 1071.42 NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:09:18 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1188.041 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.13827 -3.32493 -5.08921 -5.93478 0.71330
+ f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta
+ 10.05989 12.79248 -0.09621 3.10646
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.643 0.000 0.000 0.00 0.0000
+log_k_JCZ38 0.000 2.319 0.000 0.00 0.0000
+log_k_J9Z38 0.000 0.000 1.731 0.00 0.0000
+log_k_JSE76 0.000 0.000 0.000 1.86 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.00 0.7186
+f_cyan_ilr_2 0.000 0.000 0.000 0.00 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.00 0.0000
+log_alpha 0.000 0.000 0.000 0.00 0.0000
+log_beta 0.000 0.000 0.000 0.00 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis log_alpha log_beta
+cyan_0 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 12.49 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.00 20.19 0.0000 0.0000
+log_alpha 0.00 0.00 0.3142 0.0000
+log_beta 0.00 0.00 0.0000 0.7331
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2423 2416 -1193
+
+Optimised parameters:
+ est. lower upper
+cyan_0 100.57649 NA NA
+log_k_JCZ38 -3.46250 NA NA
+log_k_J9Z38 -5.24442 NA NA
+log_k_JSE76 -5.75229 NA NA
+f_cyan_ilr_1 0.68480 NA NA
+f_cyan_ilr_2 0.61670 NA NA
+f_JCZ38_qlogis 87.97407 NA NA
+log_alpha -0.15699 NA NA
+log_beta 3.01540 NA NA
+a.1 3.11518 NA NA
+b.1 0.04445 NA NA
+SD.log_k_JCZ38 1.40732 NA NA
+SD.log_k_J9Z38 0.56510 NA NA
+SD.log_k_JSE76 0.72067 NA NA
+SD.f_cyan_ilr_1 0.31199 NA NA
+SD.f_cyan_ilr_2 0.36894 NA NA
+SD.f_JCZ38_qlogis 6.92892 NA NA
+SD.log_alpha 0.25662 NA NA
+SD.log_beta 0.35845 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.4073 NA NA
+SD.log_k_J9Z38 0.5651 NA NA
+SD.log_k_JSE76 0.7207 NA NA
+SD.f_cyan_ilr_1 0.3120 NA NA
+SD.f_cyan_ilr_2 0.3689 NA NA
+SD.f_JCZ38_qlogis 6.9289 NA NA
+SD.log_alpha 0.2566 NA NA
+SD.log_beta 0.3585 NA NA
+
+Variance model:
+ est. lower upper
+a.1 3.11518 NA NA
+b.1 0.04445 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.006e+02 NA NA
+k_JCZ38 3.135e-02 NA NA
+k_J9Z38 5.277e-03 NA NA
+k_JSE76 3.175e-03 NA NA
+f_cyan_to_JCZ38 5.991e-01 NA NA
+f_cyan_to_J9Z38 2.275e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+alpha 8.547e-01 NA NA
+beta 2.040e+01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.5991
+cyan_J9Z38 0.2275
+cyan_sink 0.1734
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+cyan 25.50 281.29 84.68
+JCZ38 22.11 73.44 NA
+J9Z38 131.36 436.35 NA
+JSE76 218.28 725.11 NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:10:30 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1260.905 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 102.0644 -3.4008 -5.0024 -5.8613 0.6855
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis
+ 1.2365 13.7245 -1.8641 -4.5063 -0.6468
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 4.466 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.000 2.382 0.000 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.595 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.000 1.245 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6852
+f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000
+log_k1 0.000 0.000 0.000 0.000 0.0000
+log_k2 0.000 0.000 0.000 0.000 0.0000
+g_qlogis 0.000 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis
+cyan_0 0.00 0.00 0.0000 0.0000 0.000
+log_k_JCZ38 0.00 0.00 0.0000 0.0000 0.000
+log_k_J9Z38 0.00 0.00 0.0000 0.0000 0.000
+log_k_JSE76 0.00 0.00 0.0000 0.0000 0.000
+f_cyan_ilr_1 0.00 0.00 0.0000 0.0000 0.000
+f_cyan_ilr_2 1.28 0.00 0.0000 0.0000 0.000
+f_JCZ38_qlogis 0.00 16.11 0.0000 0.0000 0.000
+log_k1 0.00 0.00 0.9866 0.0000 0.000
+log_k2 0.00 0.00 0.0000 0.5953 0.000
+g_qlogis 0.00 0.00 0.0000 0.0000 1.583
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2403 2395 -1182
+
+Optimised parameters:
+ est. lower upper
+cyan_0 102.6079 NA NA
+log_k_JCZ38 -3.4855 NA NA
+log_k_J9Z38 -5.1686 NA NA
+log_k_JSE76 -5.6697 NA NA
+f_cyan_ilr_1 0.6714 NA NA
+f_cyan_ilr_2 0.4986 NA NA
+f_JCZ38_qlogis 55.4760 NA NA
+log_k1 -1.8409 NA NA
+log_k2 -4.4915 NA NA
+g_qlogis -0.6403 NA NA
+a.1 3.2387 NA NA
+SD.log_k_JCZ38 1.4524 NA NA
+SD.log_k_J9Z38 0.5151 NA NA
+SD.log_k_JSE76 0.6514 NA NA
+SD.f_cyan_ilr_1 0.3023 NA NA
+SD.f_cyan_ilr_2 0.2959 NA NA
+SD.f_JCZ38_qlogis 1.9984 NA NA
+SD.log_k1 0.5188 NA NA
+SD.log_k2 0.3894 NA NA
+SD.g_qlogis 0.8579 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.4524 NA NA
+SD.log_k_J9Z38 0.5151 NA NA
+SD.log_k_JSE76 0.6514 NA NA
+SD.f_cyan_ilr_1 0.3023 NA NA
+SD.f_cyan_ilr_2 0.2959 NA NA
+SD.f_JCZ38_qlogis 1.9984 NA NA
+SD.log_k1 0.5188 NA NA
+SD.log_k2 0.3894 NA NA
+SD.g_qlogis 0.8579 NA NA
+
+Variance model:
+ est. lower upper
+a.1 3.239 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.026e+02 NA NA
+k_JCZ38 3.064e-02 NA NA
+k_J9Z38 5.692e-03 NA NA
+k_JSE76 3.449e-03 NA NA
+f_cyan_to_JCZ38 5.798e-01 NA NA
+f_cyan_to_J9Z38 2.243e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+k1 1.587e-01 NA NA
+k2 1.120e-02 NA NA
+g 3.452e-01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.5798
+cyan_J9Z38 0.2243
+cyan_sink 0.1958
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 25.21 167.73 50.49 4.368 61.87
+JCZ38 22.62 75.15 NA NA NA
+J9Z38 121.77 404.50 NA NA NA
+JSE76 200.98 667.64 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:16:28 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1617.774 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.3964 -3.3626 -4.9792 -5.8727 0.6814
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis
+ 6.7799 13.7245 -1.9222 -4.5035 -0.7172
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.317 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.000 2.272 0.000 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.633 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.000 1.271 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6838
+f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000
+log_k1 0.000 0.000 0.000 0.000 0.0000
+log_k2 0.000 0.000 0.000 0.000 0.0000
+g_qlogis 0.000 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 g_qlogis
+cyan_0 0.00 0.00 0.0000 0.0000 0.000
+log_k_JCZ38 0.00 0.00 0.0000 0.0000 0.000
+log_k_J9Z38 0.00 0.00 0.0000 0.0000 0.000
+log_k_JSE76 0.00 0.00 0.0000 0.0000 0.000
+f_cyan_ilr_1 0.00 0.00 0.0000 0.0000 0.000
+f_cyan_ilr_2 11.77 0.00 0.0000 0.0000 0.000
+f_JCZ38_qlogis 0.00 16.11 0.0000 0.0000 0.000
+log_k1 0.00 0.00 0.9496 0.0000 0.000
+log_k2 0.00 0.00 0.0000 0.5846 0.000
+g_qlogis 0.00 0.00 0.0000 0.0000 1.719
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2398 2390 -1179
+
+Optimised parameters:
+ est. lower upper
+cyan_0 100.8076 NA NA
+log_k_JCZ38 -3.4684 NA NA
+log_k_J9Z38 -5.0844 NA NA
+log_k_JSE76 -5.5743 NA NA
+f_cyan_ilr_1 0.6669 NA NA
+f_cyan_ilr_2 0.7912 NA NA
+f_JCZ38_qlogis 84.1825 NA NA
+log_k1 -2.1671 NA NA
+log_k2 -4.5447 NA NA
+g_qlogis -0.5631 NA NA
+a.1 2.9627 NA NA
+b.1 0.0444 NA NA
+SD.log_k_JCZ38 1.4044 NA NA
+SD.log_k_J9Z38 0.6410 NA NA
+SD.log_k_JSE76 0.5391 NA NA
+SD.f_cyan_ilr_1 0.3203 NA NA
+SD.f_cyan_ilr_2 0.5038 NA NA
+SD.f_JCZ38_qlogis 3.5865 NA NA
+SD.log_k2 0.3119 NA NA
+SD.g_qlogis 0.8276 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.4044 NA NA
+SD.log_k_J9Z38 0.6410 NA NA
+SD.log_k_JSE76 0.5391 NA NA
+SD.f_cyan_ilr_1 0.3203 NA NA
+SD.f_cyan_ilr_2 0.5038 NA NA
+SD.f_JCZ38_qlogis 3.5865 NA NA
+SD.log_k2 0.3119 NA NA
+SD.g_qlogis 0.8276 NA NA
+
+Variance model:
+ est. lower upper
+a.1 2.9627 NA NA
+b.1 0.0444 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.008e+02 NA NA
+k_JCZ38 3.117e-02 NA NA
+k_J9Z38 6.193e-03 NA NA
+k_JSE76 3.794e-03 NA NA
+f_cyan_to_JCZ38 6.149e-01 NA NA
+f_cyan_to_J9Z38 2.395e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+k1 1.145e-01 NA NA
+k2 1.062e-02 NA NA
+g 3.628e-01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.6149
+cyan_J9Z38 0.2395
+cyan_sink 0.1456
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 26.26 174.32 52.47 6.053 65.25
+JCZ38 22.24 73.88 NA NA NA
+J9Z38 111.93 371.82 NA NA NA
+JSE76 182.69 606.88 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:10:49 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
+ cyan_free + k_cyan_bound_free * cyan_bound
+d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
+ cyan_bound
+d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
+ * JCZ38
+d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
+ * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1279.472 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+ 102.0643 -2.8987 -2.7077
+log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38
+ -3.4717 -3.4008 -5.0024
+ log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2
+ -5.8613 0.6855 1.2366
+ f_JCZ38_qlogis
+ 13.7418
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+cyan_free_0 4.466 0.0000 0.000
+log_k_cyan_free 0.000 0.6158 0.000
+log_k_cyan_free_bound 0.000 0.0000 1.463
+log_k_cyan_bound_free 0.000 0.0000 0.000
+log_k_JCZ38 0.000 0.0000 0.000
+log_k_J9Z38 0.000 0.0000 0.000
+log_k_JSE76 0.000 0.0000 0.000
+f_cyan_ilr_1 0.000 0.0000 0.000
+f_cyan_ilr_2 0.000 0.0000 0.000
+f_JCZ38_qlogis 0.000 0.0000 0.000
+ log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_free_0 0.000 0.000 0.000 0.000
+log_k_cyan_free 0.000 0.000 0.000 0.000
+log_k_cyan_free_bound 0.000 0.000 0.000 0.000
+log_k_cyan_bound_free 1.058 0.000 0.000 0.000
+log_k_JCZ38 0.000 2.382 0.000 0.000
+log_k_J9Z38 0.000 0.000 1.595 0.000
+log_k_JSE76 0.000 0.000 0.000 1.245
+f_cyan_ilr_1 0.000 0.000 0.000 0.000
+f_cyan_ilr_2 0.000 0.000 0.000 0.000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
+cyan_free_0 0.0000 0.00 0.00
+log_k_cyan_free 0.0000 0.00 0.00
+log_k_cyan_free_bound 0.0000 0.00 0.00
+log_k_cyan_bound_free 0.0000 0.00 0.00
+log_k_JCZ38 0.0000 0.00 0.00
+log_k_J9Z38 0.0000 0.00 0.00
+log_k_JSE76 0.0000 0.00 0.00
+f_cyan_ilr_1 0.6852 0.00 0.00
+f_cyan_ilr_2 0.0000 1.28 0.00
+f_JCZ38_qlogis 0.0000 0.00 16.14
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2401 2394 -1181
+
+Optimised parameters:
+ est. lower upper
+cyan_free_0 102.7803 NA NA
+log_k_cyan_free -2.8068 NA NA
+log_k_cyan_free_bound -2.5714 NA NA
+log_k_cyan_bound_free -3.4426 NA NA
+log_k_JCZ38 -3.4994 NA NA
+log_k_J9Z38 -5.1148 NA NA
+log_k_JSE76 -5.6335 NA NA
+f_cyan_ilr_1 0.6597 NA NA
+f_cyan_ilr_2 0.5132 NA NA
+f_JCZ38_qlogis 37.2090 NA NA
+a.1 3.2367 NA NA
+SD.log_k_cyan_free 0.3161 NA NA
+SD.log_k_cyan_free_bound 0.8103 NA NA
+SD.log_k_cyan_bound_free 0.5554 NA NA
+SD.log_k_JCZ38 1.4858 NA NA
+SD.log_k_J9Z38 0.5859 NA NA
+SD.log_k_JSE76 0.6195 NA NA
+SD.f_cyan_ilr_1 0.3118 NA NA
+SD.f_cyan_ilr_2 0.3344 NA NA
+SD.f_JCZ38_qlogis 0.5518 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan_free 0.3161 NA NA
+SD.log_k_cyan_free_bound 0.8103 NA NA
+SD.log_k_cyan_bound_free 0.5554 NA NA
+SD.log_k_JCZ38 1.4858 NA NA
+SD.log_k_J9Z38 0.5859 NA NA
+SD.log_k_JSE76 0.6195 NA NA
+SD.f_cyan_ilr_1 0.3118 NA NA
+SD.f_cyan_ilr_2 0.3344 NA NA
+SD.f_JCZ38_qlogis 0.5518 NA NA
+
+Variance model:
+ est. lower upper
+a.1 3.237 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_free_0 1.028e+02 NA NA
+k_cyan_free 6.040e-02 NA NA
+k_cyan_free_bound 7.643e-02 NA NA
+k_cyan_bound_free 3.198e-02 NA NA
+k_JCZ38 3.022e-02 NA NA
+k_J9Z38 6.007e-03 NA NA
+k_JSE76 3.576e-03 NA NA
+f_cyan_free_to_JCZ38 5.787e-01 NA NA
+f_cyan_free_to_J9Z38 2.277e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+
+Estimated Eigenvalues of SFORB model(s):
+cyan_b1 cyan_b2 cyan_g
+0.15646 0.01235 0.33341
+
+Resulting formation fractions:
+ ff
+cyan_free_JCZ38 0.5787
+cyan_free_J9Z38 0.2277
+cyan_free_sink 0.1936
+cyan_free 1.0000
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
+cyan 24.48 153.7 46.26 4.43 56.15
+JCZ38 22.94 76.2 NA NA NA
+J9Z38 115.39 383.3 NA NA NA
+JSE76 193.84 643.9 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:17:00 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
+ cyan_free + k_cyan_bound_free * cyan_bound
+d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
+ cyan_bound
+d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
+ * JCZ38
+d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
+ * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1649.941 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+ 101.3964 -2.9881 -2.7949
+log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38
+ -3.4376 -3.3626 -4.9792
+ log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2
+ -5.8727 0.6814 6.8139
+ f_JCZ38_qlogis
+ 13.7419
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+cyan_free_0 5.317 0.0000 0.000
+log_k_cyan_free 0.000 0.7301 0.000
+log_k_cyan_free_bound 0.000 0.0000 1.384
+log_k_cyan_bound_free 0.000 0.0000 0.000
+log_k_JCZ38 0.000 0.0000 0.000
+log_k_J9Z38 0.000 0.0000 0.000
+log_k_JSE76 0.000 0.0000 0.000
+f_cyan_ilr_1 0.000 0.0000 0.000
+f_cyan_ilr_2 0.000 0.0000 0.000
+f_JCZ38_qlogis 0.000 0.0000 0.000
+ log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_free_0 0.000 0.000 0.000 0.000
+log_k_cyan_free 0.000 0.000 0.000 0.000
+log_k_cyan_free_bound 0.000 0.000 0.000 0.000
+log_k_cyan_bound_free 1.109 0.000 0.000 0.000
+log_k_JCZ38 0.000 2.272 0.000 0.000
+log_k_J9Z38 0.000 0.000 1.633 0.000
+log_k_JSE76 0.000 0.000 0.000 1.271
+f_cyan_ilr_1 0.000 0.000 0.000 0.000
+f_cyan_ilr_2 0.000 0.000 0.000 0.000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis
+cyan_free_0 0.0000 0.00 0.00
+log_k_cyan_free 0.0000 0.00 0.00
+log_k_cyan_free_bound 0.0000 0.00 0.00
+log_k_cyan_bound_free 0.0000 0.00 0.00
+log_k_JCZ38 0.0000 0.00 0.00
+log_k_J9Z38 0.0000 0.00 0.00
+log_k_JSE76 0.0000 0.00 0.00
+f_cyan_ilr_1 0.6838 0.00 0.00
+f_cyan_ilr_2 0.0000 11.84 0.00
+f_JCZ38_qlogis 0.0000 0.00 16.14
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2400 2392 -1180
+
+Optimised parameters:
+ est. lower upper
+cyan_free_0 100.69983 NA NA
+log_k_cyan_free -3.11584 NA NA
+log_k_cyan_free_bound -3.15216 NA NA
+log_k_cyan_bound_free -3.65986 NA NA
+log_k_JCZ38 -3.47811 NA NA
+log_k_J9Z38 -5.08835 NA NA
+log_k_JSE76 -5.55514 NA NA
+f_cyan_ilr_1 0.66764 NA NA
+f_cyan_ilr_2 0.78329 NA NA
+f_JCZ38_qlogis 25.35245 NA NA
+a.1 2.99088 NA NA
+b.1 0.04346 NA NA
+SD.log_k_cyan_free 0.48797 NA NA
+SD.log_k_cyan_bound_free 0.27243 NA NA
+SD.log_k_JCZ38 1.42450 NA NA
+SD.log_k_J9Z38 0.63496 NA NA
+SD.log_k_JSE76 0.55951 NA NA
+SD.f_cyan_ilr_1 0.32687 NA NA
+SD.f_cyan_ilr_2 0.48056 NA NA
+SD.f_JCZ38_qlogis 0.43818 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan_free 0.4880 NA NA
+SD.log_k_cyan_bound_free 0.2724 NA NA
+SD.log_k_JCZ38 1.4245 NA NA
+SD.log_k_J9Z38 0.6350 NA NA
+SD.log_k_JSE76 0.5595 NA NA
+SD.f_cyan_ilr_1 0.3269 NA NA
+SD.f_cyan_ilr_2 0.4806 NA NA
+SD.f_JCZ38_qlogis 0.4382 NA NA
+
+Variance model:
+ est. lower upper
+a.1 2.99088 NA NA
+b.1 0.04346 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_free_0 1.007e+02 NA NA
+k_cyan_free 4.434e-02 NA NA
+k_cyan_free_bound 4.276e-02 NA NA
+k_cyan_bound_free 2.574e-02 NA NA
+k_JCZ38 3.087e-02 NA NA
+k_J9Z38 6.168e-03 NA NA
+k_JSE76 3.868e-03 NA NA
+f_cyan_free_to_JCZ38 6.143e-01 NA NA
+f_cyan_free_to_J9Z38 2.389e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+
+Estimated Eigenvalues of SFORB model(s):
+cyan_b1 cyan_b2 cyan_g
+0.10161 0.01123 0.36636
+
+Resulting formation fractions:
+ ff
+cyan_free_JCZ38 6.143e-01
+cyan_free_J9Z38 2.389e-01
+cyan_free_sink 1.468e-01
+cyan_free 1.000e+00
+JCZ38_JSE76 1.000e+00
+JCZ38_sink 9.763e-12
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
+cyan 25.91 164.4 49.49 6.822 61.72
+JCZ38 22.46 74.6 NA NA NA
+J9Z38 112.37 373.3 NA NA NA
+JSE76 179.22 595.4 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:11:04 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ifelse(time <= tb, k1, k2) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ifelse(time <= tb, k1, k2) * cyan -
+ k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ifelse(time <= tb, k1, k2) * cyan -
+ k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1294.259 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 102.8738 -3.4490 -4.9348 -5.5989 0.6469
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb
+ 1.2854 9.7193 -2.9084 -4.1810 1.7813
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.409 0.00 0.00 0.000 0.0000
+log_k_JCZ38 0.000 2.33 0.00 0.000 0.0000
+log_k_J9Z38 0.000 0.00 1.59 0.000 0.0000
+log_k_JSE76 0.000 0.00 0.00 1.006 0.0000
+f_cyan_ilr_1 0.000 0.00 0.00 0.000 0.6371
+f_cyan_ilr_2 0.000 0.00 0.00 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.00 0.00 0.000 0.0000
+log_k1 0.000 0.00 0.00 0.000 0.0000
+log_k2 0.000 0.00 0.00 0.000 0.0000
+log_tb 0.000 0.00 0.00 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb
+cyan_0 0.000 0.00 0.0000 0.0000 0.0000
+log_k_JCZ38 0.000 0.00 0.0000 0.0000 0.0000
+log_k_J9Z38 0.000 0.00 0.0000 0.0000 0.0000
+log_k_JSE76 0.000 0.00 0.0000 0.0000 0.0000
+f_cyan_ilr_1 0.000 0.00 0.0000 0.0000 0.0000
+f_cyan_ilr_2 2.167 0.00 0.0000 0.0000 0.0000
+f_JCZ38_qlogis 0.000 10.22 0.0000 0.0000 0.0000
+log_k1 0.000 0.00 0.7003 0.0000 0.0000
+log_k2 0.000 0.00 0.0000 0.8928 0.0000
+log_tb 0.000 0.00 0.0000 0.0000 0.6774
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2427 2420 -1194
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.84849 NA NA
+log_k_JCZ38 -3.47365 NA NA
+log_k_J9Z38 -5.10562 NA NA
+log_k_JSE76 -5.60318 NA NA
+f_cyan_ilr_1 0.66127 NA NA
+f_cyan_ilr_2 0.60283 NA NA
+f_JCZ38_qlogis 45.06408 NA NA
+log_k1 -3.10124 NA NA
+log_k2 -4.39028 NA NA
+log_tb 2.32256 NA NA
+a.1 3.32683 NA NA
+SD.log_k_JCZ38 1.41427 NA NA
+SD.log_k_J9Z38 0.54767 NA NA
+SD.log_k_JSE76 0.62147 NA NA
+SD.f_cyan_ilr_1 0.30189 NA NA
+SD.f_cyan_ilr_2 0.34960 NA NA
+SD.f_JCZ38_qlogis 0.04644 NA NA
+SD.log_k1 0.39534 NA NA
+SD.log_k2 0.43468 NA NA
+SD.log_tb 0.60781 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.41427 NA NA
+SD.log_k_J9Z38 0.54767 NA NA
+SD.log_k_JSE76 0.62147 NA NA
+SD.f_cyan_ilr_1 0.30189 NA NA
+SD.f_cyan_ilr_2 0.34960 NA NA
+SD.f_JCZ38_qlogis 0.04644 NA NA
+SD.log_k1 0.39534 NA NA
+SD.log_k2 0.43468 NA NA
+SD.log_tb 0.60781 NA NA
+
+Variance model:
+ est. lower upper
+a.1 3.327 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.018e+02 NA NA
+k_JCZ38 3.100e-02 NA NA
+k_J9Z38 6.063e-03 NA NA
+k_JSE76 3.686e-03 NA NA
+f_cyan_to_JCZ38 5.910e-01 NA NA
+f_cyan_to_J9Z38 2.320e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+k1 4.499e-02 NA NA
+k2 1.240e-02 NA NA
+tb 1.020e+01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.591
+cyan_J9Z38 0.232
+cyan_sink 0.177
+JCZ38_JSE76 1.000
+JCZ38_sink 0.000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 29.09 158.91 47.84 15.41 55.91
+JCZ38 22.36 74.27 NA NA NA
+J9Z38 114.33 379.80 NA NA NA
+JSE76 188.04 624.66 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:11:24 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ifelse(time <= tb, k1, k2) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ifelse(time <= tb, k1, k2) * cyan -
+ k_JCZ38 * JCZ38
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ifelse(time <= tb, k1, k2) * cyan -
+ k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1313.805 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.168 -3.358 -4.941 -5.794 0.676
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb
+ 5.740 13.863 -3.147 -4.262 2.173
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.79 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.00 2.271 0.000 0.000 0.0000
+log_k_J9Z38 0.00 0.000 1.614 0.000 0.0000
+log_k_JSE76 0.00 0.000 0.000 1.264 0.0000
+f_cyan_ilr_1 0.00 0.000 0.000 0.000 0.6761
+f_cyan_ilr_2 0.00 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.00 0.000 0.000 0.000 0.0000
+log_k1 0.00 0.000 0.000 0.000 0.0000
+log_k2 0.00 0.000 0.000 0.000 0.0000
+log_tb 0.00 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis log_k1 log_k2 log_tb
+cyan_0 0.000 0.00 0.0000 0.0000 0.000
+log_k_JCZ38 0.000 0.00 0.0000 0.0000 0.000
+log_k_J9Z38 0.000 0.00 0.0000 0.0000 0.000
+log_k_JSE76 0.000 0.00 0.0000 0.0000 0.000
+f_cyan_ilr_1 0.000 0.00 0.0000 0.0000 0.000
+f_cyan_ilr_2 9.572 0.00 0.0000 0.0000 0.000
+f_JCZ38_qlogis 0.000 19.19 0.0000 0.0000 0.000
+log_k1 0.000 0.00 0.8705 0.0000 0.000
+log_k2 0.000 0.00 0.0000 0.9288 0.000
+log_tb 0.000 0.00 0.0000 0.0000 1.065
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2422 2414 -1190
+
+Optimised parameters:
+ est. lower upper
+cyan_0 100.9521 NA NA
+log_k_JCZ38 -3.4629 NA NA
+log_k_J9Z38 -5.0346 NA NA
+log_k_JSE76 -5.5722 NA NA
+f_cyan_ilr_1 0.6560 NA NA
+f_cyan_ilr_2 0.7983 NA NA
+f_JCZ38_qlogis 42.7949 NA NA
+log_k1 -3.1721 NA NA
+log_k2 -4.4039 NA NA
+log_tb 2.3994 NA NA
+a.1 3.0586 NA NA
+b.1 0.0380 NA NA
+SD.log_k_JCZ38 1.3754 NA NA
+SD.log_k_J9Z38 0.6703 NA NA
+SD.log_k_JSE76 0.5876 NA NA
+SD.f_cyan_ilr_1 0.3272 NA NA
+SD.f_cyan_ilr_2 0.5300 NA NA
+SD.f_JCZ38_qlogis 6.4465 NA NA
+SD.log_k1 0.4135 NA NA
+SD.log_k2 0.4182 NA NA
+SD.log_tb 0.6035 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.3754 NA NA
+SD.log_k_J9Z38 0.6703 NA NA
+SD.log_k_JSE76 0.5876 NA NA
+SD.f_cyan_ilr_1 0.3272 NA NA
+SD.f_cyan_ilr_2 0.5300 NA NA
+SD.f_JCZ38_qlogis 6.4465 NA NA
+SD.log_k1 0.4135 NA NA
+SD.log_k2 0.4182 NA NA
+SD.log_tb 0.6035 NA NA
+
+Variance model:
+ est. lower upper
+a.1 3.059 NA NA
+b.1 0.038 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.010e+02 NA NA
+k_JCZ38 3.134e-02 NA NA
+k_J9Z38 6.509e-03 NA NA
+k_JSE76 3.802e-03 NA NA
+f_cyan_to_JCZ38 6.127e-01 NA NA
+f_cyan_to_J9Z38 2.423e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+k1 4.191e-02 NA NA
+k2 1.223e-02 NA NA
+tb 1.102e+01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.6127
+cyan_J9Z38 0.2423
+cyan_sink 0.1449
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 29.94 161.54 48.63 16.54 56.68
+JCZ38 22.12 73.47 NA NA NA
+J9Z38 106.50 353.77 NA NA NA
+JSE76 182.30 605.60 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:34:28 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1030.246 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.8173 -1.8998 -5.1449 -2.5415 0.6705
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
+ 4.4669 16.1281 13.3327 -0.2314 2.8738
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.742 0.000 0.000 0.00 0.0000
+log_k_JCZ38 0.000 1.402 0.000 0.00 0.0000
+log_k_J9Z38 0.000 0.000 1.718 0.00 0.0000
+log_k_JSE76 0.000 0.000 0.000 3.57 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.00 0.5926
+f_cyan_ilr_2 0.000 0.000 0.000 0.00 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.00 0.0000
+f_JSE76_qlogis 0.000 0.000 0.000 0.00 0.0000
+log_alpha 0.000 0.000 0.000 0.00 0.0000
+log_beta 0.000 0.000 0.000 0.00 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
+cyan_0 0.00 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.00 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.00 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.00 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.00 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 10.56 0.00 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.00 12.04 0.00 0.0000 0.0000
+f_JSE76_qlogis 0.00 0.00 15.26 0.0000 0.0000
+log_alpha 0.00 0.00 0.00 0.4708 0.0000
+log_beta 0.00 0.00 0.00 0.0000 0.4432
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2308 2301 -1134
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.9586 99.22024 104.69700
+log_k_JCZ38 -2.4861 -3.17661 -1.79560
+log_k_J9Z38 -5.3926 -6.08842 -4.69684
+log_k_JSE76 -3.1193 -4.12904 -2.10962
+f_cyan_ilr_1 0.7368 0.42085 1.05276
+f_cyan_ilr_2 0.6196 0.06052 1.17861
+f_JCZ38_qlogis 4.8970 -4.68003 14.47398
+f_JSE76_qlogis 4.4066 -1.02087 9.83398
+log_alpha -0.3021 -0.68264 0.07838
+log_beta 2.7438 2.57970 2.90786
+a.1 2.9008 2.69920 3.10245
+SD.cyan_0 2.7081 0.64216 4.77401
+SD.log_k_JCZ38 0.7043 0.19951 1.20907
+SD.log_k_J9Z38 0.6248 0.05790 1.19180
+SD.log_k_JSE76 1.0750 0.33157 1.81839
+SD.f_cyan_ilr_1 0.3429 0.11688 0.56892
+SD.f_cyan_ilr_2 0.4774 0.09381 0.86097
+SD.f_JCZ38_qlogis 1.5565 -7.83970 10.95279
+SD.f_JSE76_qlogis 1.6871 -1.25577 4.63000
+SD.log_alpha 0.4216 0.15913 0.68405
+
+Correlation:
+ cyan_0 l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76
+log_k_JCZ38 -0.0167
+log_k_J9Z38 -0.0307 0.0057
+log_k_JSE76 -0.0032 0.1358 0.0009
+f_cyan_ilr_1 -0.0087 0.0206 -0.1158 -0.0009
+f_cyan_ilr_2 -0.1598 0.0690 0.1770 0.0002 -0.0007
+f_JCZ38_qlogis 0.0966 -0.1132 -0.0440 0.0182 -0.1385 -0.4583
+f_JSE76_qlogis -0.0647 0.1157 0.0333 -0.0026 0.1110 0.3620 -0.8586
+log_alpha -0.0389 0.0113 0.0209 0.0021 0.0041 0.0451 -0.0605 0.0412
+log_beta -0.2508 0.0533 0.0977 0.0098 0.0220 0.2741 -0.2934 0.1999
+ log_lph
+log_k_JCZ38
+log_k_J9Z38
+log_k_JSE76
+f_cyan_ilr_1
+f_cyan_ilr_2
+f_JCZ38_qlogis
+f_JSE76_qlogis
+log_alpha
+log_beta 0.2281
+
+Random effects:
+ est. lower upper
+SD.cyan_0 2.7081 0.64216 4.7740
+SD.log_k_JCZ38 0.7043 0.19951 1.2091
+SD.log_k_J9Z38 0.6248 0.05790 1.1918
+SD.log_k_JSE76 1.0750 0.33157 1.8184
+SD.f_cyan_ilr_1 0.3429 0.11688 0.5689
+SD.f_cyan_ilr_2 0.4774 0.09381 0.8610
+SD.f_JCZ38_qlogis 1.5565 -7.83970 10.9528
+SD.f_JSE76_qlogis 1.6871 -1.25577 4.6300
+SD.log_alpha 0.4216 0.15913 0.6840
+
+Variance model:
+ est. lower upper
+a.1 2.901 2.699 3.102
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 101.95862 99.220240 1.047e+02
+k_JCZ38 0.08323 0.041727 1.660e-01
+k_J9Z38 0.00455 0.002269 9.124e-03
+k_JSE76 0.04419 0.016098 1.213e-01
+f_cyan_to_JCZ38 0.61318 NA NA
+f_cyan_to_J9Z38 0.21630 NA NA
+f_JCZ38_to_JSE76 0.99259 0.009193 1.000e+00
+f_JSE76_to_JCZ38 0.98795 0.264857 9.999e-01
+alpha 0.73924 0.505281 1.082e+00
+beta 15.54568 13.193194 1.832e+01
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.613182
+cyan_J9Z38 0.216298
+cyan_sink 0.170519
+JCZ38_JSE76 0.992586
+JCZ38_sink 0.007414
+JSE76_JCZ38 0.987950
+JSE76_sink 0.012050
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+cyan 24.157 334.68 100.7
+JCZ38 8.328 27.66 NA
+J9Z38 152.341 506.06 NA
+JSE76 15.687 52.11 NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:37:36 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1217.619 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.9028 -1.9055 -5.0249 -2.5646 0.6807
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
+ 4.8883 16.0676 9.3923 -0.1346 3.0364
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 6.321 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.000 1.392 0.000 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.561 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.000 3.614 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6339
+f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000
+f_JSE76_qlogis 0.000 0.000 0.000 0.000 0.0000
+log_alpha 0.000 0.000 0.000 0.000 0.0000
+log_beta 0.000 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
+cyan_0 0.00 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.00 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.00 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.00 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.00 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 10.41 0.00 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.00 12.24 0.00 0.0000 0.0000
+f_JSE76_qlogis 0.00 0.00 15.13 0.0000 0.0000
+log_alpha 0.00 0.00 0.00 0.3701 0.0000
+log_beta 0.00 0.00 0.00 0.0000 0.5662
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2248 2240 -1103
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.55545 9.920e+01 1.039e+02
+log_k_JCZ38 -2.37354 -2.928e+00 -1.819e+00
+log_k_J9Z38 -5.14736 -5.960e+00 -4.335e+00
+log_k_JSE76 -3.07802 -4.243e+00 -1.913e+00
+f_cyan_ilr_1 0.71263 3.655e-01 1.060e+00
+f_cyan_ilr_2 0.95202 2.701e-01 1.634e+00
+f_JCZ38_qlogis 3.58473 1.251e+00 5.919e+00
+f_JSE76_qlogis 19.03623 -1.037e+07 1.037e+07
+log_alpha -0.15297 -4.490e-01 1.431e-01
+log_beta 2.99230 2.706e+00 3.278e+00
+a.1 2.04816 NA NA
+b.1 0.06886 NA NA
+SD.log_k_JCZ38 0.56174 NA NA
+SD.log_k_J9Z38 0.86509 NA NA
+SD.log_k_JSE76 1.28450 NA NA
+SD.f_cyan_ilr_1 0.38705 NA NA
+SD.f_cyan_ilr_2 0.54153 NA NA
+SD.f_JCZ38_qlogis 1.65311 NA NA
+SD.f_JSE76_qlogis 7.51468 NA NA
+SD.log_alpha 0.31586 NA NA
+SD.log_beta 0.24696 NA NA
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 0.5617 NA NA
+SD.log_k_J9Z38 0.8651 NA NA
+SD.log_k_JSE76 1.2845 NA NA
+SD.f_cyan_ilr_1 0.3870 NA NA
+SD.f_cyan_ilr_2 0.5415 NA NA
+SD.f_JCZ38_qlogis 1.6531 NA NA
+SD.f_JSE76_qlogis 7.5147 NA NA
+SD.log_alpha 0.3159 NA NA
+SD.log_beta 0.2470 NA NA
+
+Variance model:
+ est. lower upper
+a.1 2.04816 NA NA
+b.1 0.06886 NA NA
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.016e+02 99.20301 103.9079
+k_JCZ38 9.315e-02 0.05349 0.1622
+k_J9Z38 5.815e-03 0.00258 0.0131
+k_JSE76 4.605e-02 0.01436 0.1477
+f_cyan_to_JCZ38 6.438e-01 NA NA
+f_cyan_to_J9Z38 2.350e-01 NA NA
+f_JCZ38_to_JSE76 9.730e-01 0.77745 0.9973
+f_JSE76_to_JCZ38 1.000e+00 0.00000 1.0000
+alpha 8.582e-01 0.63824 1.1538
+beta 1.993e+01 14.97621 26.5262
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 6.438e-01
+cyan_J9Z38 2.350e-01
+cyan_sink 1.212e-01
+JCZ38_JSE76 9.730e-01
+JCZ38_sink 2.700e-02
+JSE76_JCZ38 1.000e+00
+JSE76_sink 5.403e-09
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+cyan 24.771 271.70 81.79
+JCZ38 7.441 24.72 NA
+J9Z38 119.205 395.99 NA
+JSE76 15.052 50.00 NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:38:34 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +
+ f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1276.128 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 102.4358 -2.3107 -5.3123 -3.7120 0.6753
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+ 1.1462 12.4095 12.3630 -1.9317 -4.4557
+ g_qlogis
+ -0.5648
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 4.594 0.0000 0.000 0.0 0.0000
+log_k_JCZ38 0.000 0.7966 0.000 0.0 0.0000
+log_k_J9Z38 0.000 0.0000 1.561 0.0 0.0000
+log_k_JSE76 0.000 0.0000 0.000 0.8 0.0000
+f_cyan_ilr_1 0.000 0.0000 0.000 0.0 0.6349
+f_cyan_ilr_2 0.000 0.0000 0.000 0.0 0.0000
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.0 0.0000
+f_JSE76_qlogis 0.000 0.0000 0.000 0.0 0.0000
+log_k1 0.000 0.0000 0.000 0.0 0.0000
+log_k2 0.000 0.0000 0.000 0.0 0.0000
+g_qlogis 0.000 0.0000 0.000 0.0 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+cyan_0 0.000 0.00 0.0 0.000 0.0000
+log_k_JCZ38 0.000 0.00 0.0 0.000 0.0000
+log_k_J9Z38 0.000 0.00 0.0 0.000 0.0000
+log_k_JSE76 0.000 0.00 0.0 0.000 0.0000
+f_cyan_ilr_1 0.000 0.00 0.0 0.000 0.0000
+f_cyan_ilr_2 1.797 0.00 0.0 0.000 0.0000
+f_JCZ38_qlogis 0.000 13.85 0.0 0.000 0.0000
+f_JSE76_qlogis 0.000 0.00 14.1 0.000 0.0000
+log_k1 0.000 0.00 0.0 1.106 0.0000
+log_k2 0.000 0.00 0.0 0.000 0.6141
+g_qlogis 0.000 0.00 0.0 0.000 0.0000
+ g_qlogis
+cyan_0 0.000
+log_k_JCZ38 0.000
+log_k_J9Z38 0.000
+log_k_JSE76 0.000
+f_cyan_ilr_1 0.000
+f_cyan_ilr_2 0.000
+f_JCZ38_qlogis 0.000
+f_JSE76_qlogis 0.000
+log_k1 0.000
+log_k2 0.000
+g_qlogis 1.595
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2290 2281 -1123
+
+Optimised parameters:
+ est. lower upper
+cyan_0 102.6903 101.44420 103.9365
+log_k_JCZ38 -2.4018 -2.98058 -1.8230
+log_k_J9Z38 -5.1865 -5.92931 -4.4437
+log_k_JSE76 -3.0784 -4.25226 -1.9045
+f_cyan_ilr_1 0.7157 0.37625 1.0551
+f_cyan_ilr_2 0.7073 0.20136 1.2132
+f_JCZ38_qlogis 4.6797 0.43240 8.9269
+f_JSE76_qlogis 5.0080 -1.01380 11.0299
+log_k1 -1.9620 -2.62909 -1.2949
+log_k2 -4.4894 -4.94958 -4.0292
+g_qlogis -0.4658 -1.34443 0.4129
+a.1 2.7158 2.52576 2.9059
+SD.log_k_JCZ38 0.5818 0.15679 1.0067
+SD.log_k_J9Z38 0.7421 0.16751 1.3167
+SD.log_k_JSE76 1.2841 0.43247 2.1356
+SD.f_cyan_ilr_1 0.3748 0.13040 0.6192
+SD.f_cyan_ilr_2 0.4550 0.08396 0.8261
+SD.f_JCZ38_qlogis 2.0862 -0.73390 4.9062
+SD.f_JSE76_qlogis 1.9585 -3.14773 7.0647
+SD.log_k1 0.7389 0.25761 1.2201
+SD.log_k2 0.5132 0.18143 0.8450
+SD.g_qlogis 0.9870 0.35773 1.6164
+
+Correlation:
+ cyan_0 l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76
+log_k_JCZ38 -0.0170
+log_k_J9Z38 -0.0457 0.0016
+log_k_JSE76 -0.0046 0.1183 0.0005
+f_cyan_ilr_1 0.0079 0.0072 -0.0909 0.0003
+f_cyan_ilr_2 -0.3114 0.0343 0.1542 0.0023 -0.0519
+f_JCZ38_qlogis 0.0777 -0.0601 -0.0152 0.0080 -0.0520 -0.2524
+f_JSE76_qlogis -0.0356 0.0817 0.0073 0.0051 0.0388 0.1959 -0.6236
+log_k1 0.0848 -0.0028 0.0010 -0.0010 -0.0014 -0.0245 0.0121 -0.0177
+log_k2 0.0274 -0.0001 0.0075 0.0000 -0.0023 -0.0060 0.0000 -0.0130
+g_qlogis 0.0159 0.0002 -0.0095 0.0002 0.0029 -0.0140 -0.0001 0.0149
+ log_k1 log_k2
+log_k_JCZ38
+log_k_J9Z38
+log_k_JSE76
+f_cyan_ilr_1
+f_cyan_ilr_2
+f_JCZ38_qlogis
+f_JSE76_qlogis
+log_k1
+log_k2 0.0280
+g_qlogis -0.0278 -0.0310
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 0.5818 0.15679 1.0067
+SD.log_k_J9Z38 0.7421 0.16751 1.3167
+SD.log_k_JSE76 1.2841 0.43247 2.1356
+SD.f_cyan_ilr_1 0.3748 0.13040 0.6192
+SD.f_cyan_ilr_2 0.4550 0.08396 0.8261
+SD.f_JCZ38_qlogis 2.0862 -0.73390 4.9062
+SD.f_JSE76_qlogis 1.9585 -3.14773 7.0647
+SD.log_k1 0.7389 0.25761 1.2201
+SD.log_k2 0.5132 0.18143 0.8450
+SD.g_qlogis 0.9870 0.35773 1.6164
+
+Variance model:
+ est. lower upper
+a.1 2.716 2.526 2.906
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.027e+02 1.014e+02 103.93649
+k_JCZ38 9.056e-02 5.076e-02 0.16154
+k_J9Z38 5.591e-03 2.660e-03 0.01175
+k_JSE76 4.603e-02 1.423e-02 0.14890
+f_cyan_to_JCZ38 6.184e-01 NA NA
+f_cyan_to_J9Z38 2.248e-01 NA NA
+f_JCZ38_to_JSE76 9.908e-01 6.064e-01 0.99987
+f_JSE76_to_JCZ38 9.934e-01 2.662e-01 0.99998
+k1 1.406e-01 7.214e-02 0.27393
+k2 1.123e-02 7.086e-03 0.01779
+g 3.856e-01 2.068e-01 0.60177
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.618443
+cyan_J9Z38 0.224770
+cyan_sink 0.156787
+JCZ38_JSE76 0.990803
+JCZ38_sink 0.009197
+JSE76_JCZ38 0.993360
+JSE76_sink 0.006640
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 21.674 161.70 48.68 4.931 61.74
+JCZ38 7.654 25.43 NA NA NA
+J9Z38 123.966 411.81 NA NA NA
+JSE76 15.057 50.02 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:45:32 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +
+ f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1693.767 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.7523 -1.5948 -5.0119 -2.2723 0.6719
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+ 5.1681 12.8238 12.4130 -2.0057 -4.5526
+ g_qlogis
+ -0.5805
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.627 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.000 2.327 0.000 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.664 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.000 4.566 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6519
+f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000
+f_JSE76_qlogis 0.000 0.000 0.000 0.000 0.0000
+log_k1 0.000 0.000 0.000 0.000 0.0000
+log_k2 0.000 0.000 0.000 0.000 0.0000
+g_qlogis 0.000 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+cyan_0 0.0 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.0 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.0 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.0 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.0 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 10.1 0.00 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.0 13.99 0.00 0.0000 0.0000
+f_JSE76_qlogis 0.0 0.00 14.15 0.0000 0.0000
+log_k1 0.0 0.00 0.00 0.8452 0.0000
+log_k2 0.0 0.00 0.00 0.0000 0.5968
+g_qlogis 0.0 0.00 0.00 0.0000 0.0000
+ g_qlogis
+cyan_0 0.000
+log_k_JCZ38 0.000
+log_k_J9Z38 0.000
+log_k_JSE76 0.000
+f_cyan_ilr_1 0.000
+f_cyan_ilr_2 0.000
+f_JCZ38_qlogis 0.000
+f_JSE76_qlogis 0.000
+log_k1 0.000
+log_k2 0.000
+g_qlogis 1.691
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2234 2226 -1095
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.10667 9.903e+01 103.18265
+log_k_JCZ38 -2.49437 -3.297e+00 -1.69221
+log_k_J9Z38 -5.08171 -5.875e+00 -4.28846
+log_k_JSE76 -3.20072 -4.180e+00 -2.22163
+f_cyan_ilr_1 0.71059 3.639e-01 1.05727
+f_cyan_ilr_2 1.15398 2.981e-01 2.00984
+f_JCZ38_qlogis 3.18027 1.056e+00 5.30452
+f_JSE76_qlogis 5.61578 -2.505e+01 36.28077
+log_k1 -2.38875 -2.517e+00 -2.26045
+log_k2 -4.67246 -4.928e+00 -4.41715
+g_qlogis -0.28231 -1.135e+00 0.57058
+a.1 2.08190 1.856e+00 2.30785
+b.1 0.06114 5.015e-02 0.07214
+SD.log_k_JCZ38 0.84622 2.637e-01 1.42873
+SD.log_k_J9Z38 0.84564 2.566e-01 1.43464
+SD.log_k_JSE76 1.04385 3.242e-01 1.76351
+SD.f_cyan_ilr_1 0.38568 1.362e-01 0.63514
+SD.f_cyan_ilr_2 0.68046 7.166e-02 1.28925
+SD.f_JCZ38_qlogis 1.25244 -4.213e-02 2.54700
+SD.f_JSE76_qlogis 0.28202 -1.515e+03 1515.87968
+SD.log_k2 0.25749 7.655e-02 0.43843
+SD.g_qlogis 0.94535 3.490e-01 1.54174
+
+Correlation:
+ cyan_0 l__JCZ3 l__J9Z3 l__JSE7 f_cy__1 f_cy__2 f_JCZ38 f_JSE76
+log_k_JCZ38 -0.0086
+log_k_J9Z38 -0.0363 -0.0007
+log_k_JSE76 0.0015 0.1210 -0.0017
+f_cyan_ilr_1 -0.0048 0.0095 -0.0572 0.0030
+f_cyan_ilr_2 -0.4788 0.0328 0.1143 0.0027 -0.0316
+f_JCZ38_qlogis 0.0736 -0.0664 -0.0137 0.0145 -0.0444 -0.2175
+f_JSE76_qlogis -0.0137 0.0971 0.0035 0.0009 0.0293 0.1333 -0.6767
+log_k1 0.2345 -0.0350 -0.0099 -0.0113 -0.0126 -0.1652 0.1756 -0.2161
+log_k2 0.0440 -0.0133 0.0199 -0.0040 -0.0097 -0.0119 0.0604 -0.1306
+g_qlogis 0.0438 0.0078 -0.0123 0.0029 0.0046 -0.0363 -0.0318 0.0736
+ log_k1 log_k2
+log_k_JCZ38
+log_k_J9Z38
+log_k_JSE76
+f_cyan_ilr_1
+f_cyan_ilr_2
+f_JCZ38_qlogis
+f_JSE76_qlogis
+log_k1
+log_k2 0.3198
+g_qlogis -0.1666 -0.0954
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 0.8462 2.637e-01 1.4287
+SD.log_k_J9Z38 0.8456 2.566e-01 1.4346
+SD.log_k_JSE76 1.0439 3.242e-01 1.7635
+SD.f_cyan_ilr_1 0.3857 1.362e-01 0.6351
+SD.f_cyan_ilr_2 0.6805 7.166e-02 1.2893
+SD.f_JCZ38_qlogis 1.2524 -4.213e-02 2.5470
+SD.f_JSE76_qlogis 0.2820 -1.515e+03 1515.8797
+SD.log_k2 0.2575 7.655e-02 0.4384
+SD.g_qlogis 0.9453 3.490e-01 1.5417
+
+Variance model:
+ est. lower upper
+a.1 2.08190 1.85595 2.30785
+b.1 0.06114 0.05015 0.07214
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.011e+02 9.903e+01 103.18265
+k_JCZ38 8.255e-02 3.701e-02 0.18411
+k_J9Z38 6.209e-03 2.809e-03 0.01373
+k_JSE76 4.073e-02 1.530e-02 0.10843
+f_cyan_to_JCZ38 6.608e-01 NA NA
+f_cyan_to_J9Z38 2.419e-01 NA NA
+f_JCZ38_to_JSE76 9.601e-01 7.419e-01 0.99506
+f_JSE76_to_JCZ38 9.964e-01 1.322e-11 1.00000
+k1 9.174e-02 8.070e-02 0.10430
+k2 9.349e-03 7.243e-03 0.01207
+g 4.299e-01 2.432e-01 0.63890
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.660808
+cyan_J9Z38 0.241904
+cyan_sink 0.097288
+JCZ38_JSE76 0.960085
+JCZ38_sink 0.039915
+JSE76_JCZ38 0.996373
+JSE76_sink 0.003627
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 24.359 186.18 56.05 7.555 74.14
+JCZ38 8.397 27.89 NA NA NA
+J9Z38 111.631 370.83 NA NA NA
+JSE76 17.017 56.53 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:38:37 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
+ cyan_free + k_cyan_bound_free * cyan_bound
+d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
+ cyan_bound
+d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
+ * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
+ * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1279.102 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+ 102.4394 -2.7673 -2.8942
+log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38
+ -3.6201 -2.3107 -5.3123
+ log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2
+ -3.7120 0.6754 1.1448
+ f_JCZ38_qlogis f_JSE76_qlogis
+ 13.2672 13.3538
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+cyan_free_0 4.589 0.0000 0.00
+log_k_cyan_free 0.000 0.4849 0.00
+log_k_cyan_free_bound 0.000 0.0000 1.62
+log_k_cyan_bound_free 0.000 0.0000 0.00
+log_k_JCZ38 0.000 0.0000 0.00
+log_k_J9Z38 0.000 0.0000 0.00
+log_k_JSE76 0.000 0.0000 0.00
+f_cyan_ilr_1 0.000 0.0000 0.00
+f_cyan_ilr_2 0.000 0.0000 0.00
+f_JCZ38_qlogis 0.000 0.0000 0.00
+f_JSE76_qlogis 0.000 0.0000 0.00
+ log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_free_0 0.000 0.0000 0.000 0.0
+log_k_cyan_free 0.000 0.0000 0.000 0.0
+log_k_cyan_free_bound 0.000 0.0000 0.000 0.0
+log_k_cyan_bound_free 1.197 0.0000 0.000 0.0
+log_k_JCZ38 0.000 0.7966 0.000 0.0
+log_k_J9Z38 0.000 0.0000 1.561 0.0
+log_k_JSE76 0.000 0.0000 0.000 0.8
+f_cyan_ilr_1 0.000 0.0000 0.000 0.0
+f_cyan_ilr_2 0.000 0.0000 0.000 0.0
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.0
+f_JSE76_qlogis 0.000 0.0000 0.000 0.0
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis
+cyan_free_0 0.0000 0.000 0.00 0.00
+log_k_cyan_free 0.0000 0.000 0.00 0.00
+log_k_cyan_free_bound 0.0000 0.000 0.00 0.00
+log_k_cyan_bound_free 0.0000 0.000 0.00 0.00
+log_k_JCZ38 0.0000 0.000 0.00 0.00
+log_k_J9Z38 0.0000 0.000 0.00 0.00
+log_k_JSE76 0.0000 0.000 0.00 0.00
+f_cyan_ilr_1 0.6349 0.000 0.00 0.00
+f_cyan_ilr_2 0.0000 1.797 0.00 0.00
+f_JCZ38_qlogis 0.0000 0.000 13.84 0.00
+f_JSE76_qlogis 0.0000 0.000 0.00 14.66
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2284 2275 -1120
+
+Optimised parameters:
+ est. lower upper
+cyan_free_0 102.7730 1.015e+02 1.041e+02
+log_k_cyan_free -2.8530 -3.167e+00 -2.539e+00
+log_k_cyan_free_bound -2.7326 -3.543e+00 -1.922e+00
+log_k_cyan_bound_free -3.5582 -4.126e+00 -2.990e+00
+log_k_JCZ38 -2.3810 -2.921e+00 -1.841e+00
+log_k_J9Z38 -5.2301 -5.963e+00 -4.497e+00
+log_k_JSE76 -3.0286 -4.286e+00 -1.771e+00
+f_cyan_ilr_1 0.7081 3.733e-01 1.043e+00
+f_cyan_ilr_2 0.5847 7.846e-03 1.162e+00
+f_JCZ38_qlogis 9.5676 -1.323e+03 1.342e+03
+f_JSE76_qlogis 3.7042 7.254e-02 7.336e+00
+a.1 2.7222 2.532e+00 2.913e+00
+SD.log_k_cyan_free 0.3338 1.086e-01 5.589e-01
+SD.log_k_cyan_free_bound 0.8888 3.023e-01 1.475e+00
+SD.log_k_cyan_bound_free 0.6220 2.063e-01 1.038e+00
+SD.log_k_JCZ38 0.5221 1.334e-01 9.108e-01
+SD.log_k_J9Z38 0.7104 1.371e-01 1.284e+00
+SD.log_k_JSE76 1.3837 4.753e-01 2.292e+00
+SD.f_cyan_ilr_1 0.3620 1.248e-01 5.992e-01
+SD.f_cyan_ilr_2 0.4259 8.145e-02 7.704e-01
+SD.f_JCZ38_qlogis 3.5332 -1.037e+05 1.037e+05
+SD.f_JSE76_qlogis 1.6990 -2.771e-01 3.675e+00
+
+Correlation:
+ cyn_f_0 lg_k_c_ lg_k_cyn_f_ lg_k_cyn_b_ l__JCZ3 l__J9Z3
+log_k_cyan_free 0.2126
+log_k_cyan_free_bound 0.0894 0.0871
+log_k_cyan_bound_free 0.0033 0.0410 0.0583
+log_k_JCZ38 -0.0708 -0.0280 -0.0147 0.0019
+log_k_J9Z38 -0.0535 -0.0138 0.0012 0.0148 0.0085
+log_k_JSE76 -0.0066 -0.0030 -0.0021 -0.0005 0.1090 0.0010
+f_cyan_ilr_1 -0.0364 -0.0157 -0.0095 -0.0015 0.0458 -0.0960
+f_cyan_ilr_2 -0.3814 -0.1104 -0.0423 0.0146 0.1540 0.1526
+f_JCZ38_qlogis 0.2507 0.0969 0.0482 -0.0097 -0.2282 -0.0363
+f_JSE76_qlogis -0.1648 -0.0710 -0.0443 -0.0087 0.2002 0.0226
+ l__JSE7 f_cy__1 f_cy__2 f_JCZ38
+log_k_cyan_free
+log_k_cyan_free_bound
+log_k_cyan_bound_free
+log_k_JCZ38
+log_k_J9Z38
+log_k_JSE76
+f_cyan_ilr_1 0.0001
+f_cyan_ilr_2 0.0031 0.0586
+f_JCZ38_qlogis 0.0023 -0.1867 -0.6255
+f_JSE76_qlogis 0.0082 0.1356 0.4519 -0.7951
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan_free 0.3338 1.086e-01 5.589e-01
+SD.log_k_cyan_free_bound 0.8888 3.023e-01 1.475e+00
+SD.log_k_cyan_bound_free 0.6220 2.063e-01 1.038e+00
+SD.log_k_JCZ38 0.5221 1.334e-01 9.108e-01
+SD.log_k_J9Z38 0.7104 1.371e-01 1.284e+00
+SD.log_k_JSE76 1.3837 4.753e-01 2.292e+00
+SD.f_cyan_ilr_1 0.3620 1.248e-01 5.992e-01
+SD.f_cyan_ilr_2 0.4259 8.145e-02 7.704e-01
+SD.f_JCZ38_qlogis 3.5332 -1.037e+05 1.037e+05
+SD.f_JSE76_qlogis 1.6990 -2.771e-01 3.675e+00
+
+Variance model:
+ est. lower upper
+a.1 2.722 2.532 2.913
+
+Backtransformed parameters:
+ est. lower upper
+cyan_free_0 1.028e+02 1.015e+02 104.06475
+k_cyan_free 5.767e-02 4.213e-02 0.07894
+k_cyan_free_bound 6.505e-02 2.892e-02 0.14633
+k_cyan_bound_free 2.849e-02 1.614e-02 0.05028
+k_JCZ38 9.246e-02 5.390e-02 0.15859
+k_J9Z38 5.353e-03 2.572e-03 0.01114
+k_JSE76 4.838e-02 1.376e-02 0.17009
+f_cyan_free_to_JCZ38 6.011e-01 5.028e-01 0.83792
+f_cyan_free_to_J9Z38 2.208e-01 5.028e-01 0.83792
+f_JCZ38_to_JSE76 9.999e-01 0.000e+00 1.00000
+f_JSE76_to_JCZ38 9.760e-01 5.181e-01 0.99935
+
+Estimated Eigenvalues of SFORB model(s):
+cyan_b1 cyan_b2 cyan_g
+0.13942 0.01178 0.35948
+
+Resulting formation fractions:
+ ff
+cyan_free_JCZ38 6.011e-01
+cyan_free_J9Z38 2.208e-01
+cyan_free_sink 1.780e-01
+cyan_free 1.000e+00
+JCZ38_JSE76 9.999e-01
+JCZ38_sink 6.996e-05
+JSE76_JCZ38 9.760e-01
+JSE76_sink 2.403e-02
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
+cyan 23.390 157.60 47.44 4.971 58.82
+JCZ38 7.497 24.90 NA NA NA
+J9Z38 129.482 430.13 NA NA NA
+JSE76 14.326 47.59 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 10:46:02 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
+ cyan_free + k_cyan_bound_free * cyan_bound
+d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
+ cyan_bound
+d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
+ * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
+ * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1723.343 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+ 101.751 -2.837 -3.016
+log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38
+ -3.660 -2.299 -5.313
+ log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2
+ -3.699 0.672 5.873
+ f_JCZ38_qlogis f_JSE76_qlogis
+ 13.216 13.338
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+cyan_free_0 5.629 0.000 0.000
+log_k_cyan_free 0.000 0.446 0.000
+log_k_cyan_free_bound 0.000 0.000 1.449
+log_k_cyan_bound_free 0.000 0.000 0.000
+log_k_JCZ38 0.000 0.000 0.000
+log_k_J9Z38 0.000 0.000 0.000
+log_k_JSE76 0.000 0.000 0.000
+f_cyan_ilr_1 0.000 0.000 0.000
+f_cyan_ilr_2 0.000 0.000 0.000
+f_JCZ38_qlogis 0.000 0.000 0.000
+f_JSE76_qlogis 0.000 0.000 0.000
+ log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_free_0 0.000 0.0000 0.000 0.0000
+log_k_cyan_free 0.000 0.0000 0.000 0.0000
+log_k_cyan_free_bound 0.000 0.0000 0.000 0.0000
+log_k_cyan_bound_free 1.213 0.0000 0.000 0.0000
+log_k_JCZ38 0.000 0.7801 0.000 0.0000
+log_k_J9Z38 0.000 0.0000 1.575 0.0000
+log_k_JSE76 0.000 0.0000 0.000 0.8078
+f_cyan_ilr_1 0.000 0.0000 0.000 0.0000
+f_cyan_ilr_2 0.000 0.0000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.0000
+f_JSE76_qlogis 0.000 0.0000 0.000 0.0000
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis
+cyan_free_0 0.0000 0.00 0.00 0.00
+log_k_cyan_free 0.0000 0.00 0.00 0.00
+log_k_cyan_free_bound 0.0000 0.00 0.00 0.00
+log_k_cyan_bound_free 0.0000 0.00 0.00 0.00
+log_k_JCZ38 0.0000 0.00 0.00 0.00
+log_k_J9Z38 0.0000 0.00 0.00 0.00
+log_k_JSE76 0.0000 0.00 0.00 0.00
+f_cyan_ilr_1 0.6519 0.00 0.00 0.00
+f_cyan_ilr_2 0.0000 10.78 0.00 0.00
+f_JCZ38_qlogis 0.0000 0.00 13.96 0.00
+f_JSE76_qlogis 0.0000 0.00 0.00 14.69
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2240 2232 -1098
+
+Optimised parameters:
+ est. lower upper
+cyan_free_0 101.10205 98.99221 103.2119
+log_k_cyan_free -3.16929 -3.61395 -2.7246
+log_k_cyan_free_bound -3.38259 -3.63022 -3.1350
+log_k_cyan_bound_free -3.81075 -4.13888 -3.4826
+log_k_JCZ38 -2.42057 -3.00756 -1.8336
+log_k_J9Z38 -5.07501 -5.85138 -4.2986
+log_k_JSE76 -3.12442 -4.21277 -2.0361
+f_cyan_ilr_1 0.70577 0.35788 1.0537
+f_cyan_ilr_2 1.14824 0.15810 2.1384
+f_JCZ38_qlogis 3.52245 0.43257 6.6123
+f_JSE76_qlogis 5.65140 -21.22295 32.5257
+a.1 2.07062 1.84329 2.2980
+b.1 0.06227 0.05124 0.0733
+SD.log_k_cyan_free 0.49468 0.18566 0.8037
+SD.log_k_cyan_bound_free 0.28972 0.07188 0.5076
+SD.log_k_JCZ38 0.58852 0.16800 1.0090
+SD.log_k_J9Z38 0.82500 0.24730 1.4027
+SD.log_k_JSE76 1.19201 0.40313 1.9809
+SD.f_cyan_ilr_1 0.38534 0.13640 0.6343
+SD.f_cyan_ilr_2 0.72463 0.10076 1.3485
+SD.f_JCZ38_qlogis 1.38223 -0.20997 2.9744
+SD.f_JSE76_qlogis 2.07989 -72.53027 76.6901
+
+Correlation:
+ cyn_f_0 lg_k_c_ lg_k_cyn_f_ lg_k_cyn_b_ l__JCZ3 l__J9Z3
+log_k_cyan_free 0.1117
+log_k_cyan_free_bound 0.1763 0.1828
+log_k_cyan_bound_free 0.0120 0.0593 0.5030
+log_k_JCZ38 -0.0459 -0.0230 -0.0931 -0.0337
+log_k_J9Z38 -0.0381 -0.0123 -0.0139 0.0237 0.0063
+log_k_JSE76 -0.0044 -0.0038 -0.0175 -0.0072 0.1120 0.0003
+f_cyan_ilr_1 -0.0199 -0.0087 -0.0407 -0.0233 0.0268 -0.0552
+f_cyan_ilr_2 -0.4806 -0.1015 -0.2291 -0.0269 0.1156 0.1113
+f_JCZ38_qlogis 0.1805 0.0825 0.3085 0.0963 -0.1674 -0.0314
+f_JSE76_qlogis -0.1586 -0.0810 -0.3560 -0.1563 0.2025 0.0278
+ l__JSE7 f_cy__1 f_cy__2 f_JCZ38
+log_k_cyan_free
+log_k_cyan_free_bound
+log_k_cyan_bound_free
+log_k_JCZ38
+log_k_J9Z38
+log_k_JSE76
+f_cyan_ilr_1 0.0024
+f_cyan_ilr_2 0.0087 0.0172
+f_JCZ38_qlogis -0.0016 -0.1047 -0.4656
+f_JSE76_qlogis 0.0119 0.1034 0.4584 -0.8137
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan_free 0.4947 0.18566 0.8037
+SD.log_k_cyan_bound_free 0.2897 0.07188 0.5076
+SD.log_k_JCZ38 0.5885 0.16800 1.0090
+SD.log_k_J9Z38 0.8250 0.24730 1.4027
+SD.log_k_JSE76 1.1920 0.40313 1.9809
+SD.f_cyan_ilr_1 0.3853 0.13640 0.6343
+SD.f_cyan_ilr_2 0.7246 0.10076 1.3485
+SD.f_JCZ38_qlogis 1.3822 -0.20997 2.9744
+SD.f_JSE76_qlogis 2.0799 -72.53027 76.6901
+
+Variance model:
+ est. lower upper
+a.1 2.07062 1.84329 2.2980
+b.1 0.06227 0.05124 0.0733
+
+Backtransformed parameters:
+ est. lower upper
+cyan_free_0 1.011e+02 9.899e+01 103.21190
+k_cyan_free 4.203e-02 2.695e-02 0.06557
+k_cyan_free_bound 3.396e-02 2.651e-02 0.04350
+k_cyan_bound_free 2.213e-02 1.594e-02 0.03073
+k_JCZ38 8.887e-02 4.941e-02 0.15984
+k_J9Z38 6.251e-03 2.876e-03 0.01359
+k_JSE76 4.396e-02 1.481e-02 0.13054
+f_cyan_free_to_JCZ38 6.590e-01 5.557e-01 0.95365
+f_cyan_free_to_J9Z38 2.429e-01 5.557e-01 0.95365
+f_JCZ38_to_JSE76 9.713e-01 6.065e-01 0.99866
+f_JSE76_to_JCZ38 9.965e-01 6.067e-10 1.00000
+
+Estimated Eigenvalues of SFORB model(s):
+cyan_b1 cyan_b2 cyan_g
+0.08749 0.01063 0.40855
+
+Resulting formation fractions:
+ ff
+cyan_free_JCZ38 0.65905
+cyan_free_J9Z38 0.24291
+cyan_free_sink 0.09805
+cyan_free 1.00000
+JCZ38_JSE76 0.97132
+JCZ38_sink 0.02868
+JSE76_JCZ38 0.99650
+JSE76_sink 0.00350
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
+cyan 24.91 167.16 50.32 7.922 65.19
+JCZ38 7.80 25.91 NA NA NA
+J9Z38 110.89 368.36 NA NA NA
+JSE76 15.77 52.38 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 11:18:41 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - (alpha/beta) * 1/((time/beta) + 1) * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_JCZ38 * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * (alpha/beta) * 1/((time/beta) + 1) *
+ cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1957.271 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.9028 -1.9055 -5.0249 -2.5646 0.6807
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
+ 4.8883 16.0676 9.3923 -0.1346 3.0364
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 6.321 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.000 1.392 0.000 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.561 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.000 3.614 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6339
+f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000
+f_JSE76_qlogis 0.000 0.000 0.000 0.000 0.0000
+log_alpha 0.000 0.000 0.000 0.000 0.0000
+log_beta 0.000 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_alpha log_beta
+cyan_0 0.00 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.00 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.00 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.00 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.00 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 10.41 0.00 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.00 12.24 0.00 0.0000 0.0000
+f_JSE76_qlogis 0.00 0.00 15.13 0.0000 0.0000
+log_alpha 0.00 0.00 0.00 0.3701 0.0000
+log_beta 0.00 0.00 0.00 0.0000 0.5662
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2251 2244 -1106
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.05768 NA NA
+log_k_JCZ38 -2.73252 NA NA
+log_k_J9Z38 -5.07399 NA NA
+log_k_JSE76 -3.52863 NA NA
+f_cyan_ilr_1 0.72176 NA NA
+f_cyan_ilr_2 1.34610 NA NA
+f_JCZ38_qlogis 2.08337 NA NA
+f_JSE76_qlogis 1590.31880 NA NA
+log_alpha -0.09336 NA NA
+log_beta 3.10191 NA NA
+a.1 2.08557 1.85439 2.31675
+b.1 0.06998 0.05800 0.08197
+SD.log_k_JCZ38 1.20053 0.43329 1.96777
+SD.log_k_J9Z38 0.85854 0.26708 1.45000
+SD.log_k_JSE76 0.62528 0.16061 1.08995
+SD.f_cyan_ilr_1 0.35190 0.12340 0.58039
+SD.f_cyan_ilr_2 0.85385 0.15391 1.55378
+SD.log_alpha 0.28971 0.08718 0.49225
+SD.log_beta 0.31614 0.05938 0.57290
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.2005 0.43329 1.9678
+SD.log_k_J9Z38 0.8585 0.26708 1.4500
+SD.log_k_JSE76 0.6253 0.16061 1.0900
+SD.f_cyan_ilr_1 0.3519 0.12340 0.5804
+SD.f_cyan_ilr_2 0.8538 0.15391 1.5538
+SD.log_alpha 0.2897 0.08718 0.4923
+SD.log_beta 0.3161 0.05938 0.5729
+
+Variance model:
+ est. lower upper
+a.1 2.08557 1.854 2.31675
+b.1 0.06998 0.058 0.08197
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.011e+02 NA NA
+k_JCZ38 6.506e-02 NA NA
+k_J9Z38 6.257e-03 NA NA
+k_JSE76 2.935e-02 NA NA
+f_cyan_to_JCZ38 6.776e-01 NA NA
+f_cyan_to_J9Z38 2.442e-01 NA NA
+f_JCZ38_to_JSE76 8.893e-01 NA NA
+f_JSE76_to_JCZ38 1.000e+00 NA NA
+alpha 9.109e-01 NA NA
+beta 2.224e+01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.67761
+cyan_J9Z38 0.24417
+cyan_sink 0.07822
+JCZ38_JSE76 0.88928
+JCZ38_sink 0.11072
+JSE76_JCZ38 1.00000
+JSE76_sink 0.00000
+
+Estimated disappearance times:
+ DT50 DT90 DT50back
+cyan 25.36 256.37 77.18
+JCZ38 10.65 35.39 NA
+J9Z38 110.77 367.98 NA
+JSE76 23.62 78.47 NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 11:16:32 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +
+ f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1828.403 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 102.4358 -2.3107 -5.3123 -3.7120 0.6753
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+ 1.1462 12.4095 12.3630 -1.9317 -4.4557
+ g_qlogis
+ -0.5648
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 4.594 0.0000 0.000 0.0 0.0000
+log_k_JCZ38 0.000 0.7966 0.000 0.0 0.0000
+log_k_J9Z38 0.000 0.0000 1.561 0.0 0.0000
+log_k_JSE76 0.000 0.0000 0.000 0.8 0.0000
+f_cyan_ilr_1 0.000 0.0000 0.000 0.0 0.6349
+f_cyan_ilr_2 0.000 0.0000 0.000 0.0 0.0000
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.0 0.0000
+f_JSE76_qlogis 0.000 0.0000 0.000 0.0 0.0000
+log_k1 0.000 0.0000 0.000 0.0 0.0000
+log_k2 0.000 0.0000 0.000 0.0 0.0000
+g_qlogis 0.000 0.0000 0.000 0.0 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+cyan_0 0.000 0.00 0.0 0.000 0.0000
+log_k_JCZ38 0.000 0.00 0.0 0.000 0.0000
+log_k_J9Z38 0.000 0.00 0.0 0.000 0.0000
+log_k_JSE76 0.000 0.00 0.0 0.000 0.0000
+f_cyan_ilr_1 0.000 0.00 0.0 0.000 0.0000
+f_cyan_ilr_2 1.797 0.00 0.0 0.000 0.0000
+f_JCZ38_qlogis 0.000 13.85 0.0 0.000 0.0000
+f_JSE76_qlogis 0.000 0.00 14.1 0.000 0.0000
+log_k1 0.000 0.00 0.0 1.106 0.0000
+log_k2 0.000 0.00 0.0 0.000 0.6141
+g_qlogis 0.000 0.00 0.0 0.000 0.0000
+ g_qlogis
+cyan_0 0.000
+log_k_JCZ38 0.000
+log_k_J9Z38 0.000
+log_k_JSE76 0.000
+f_cyan_ilr_1 0.000
+f_cyan_ilr_2 0.000
+f_JCZ38_qlogis 0.000
+f_JSE76_qlogis 0.000
+log_k1 0.000
+log_k2 0.000
+g_qlogis 1.595
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2282 2274 -1121
+
+Optimised parameters:
+ est. lower upper
+cyan_0 102.5254 NA NA
+log_k_JCZ38 -2.9358 NA NA
+log_k_J9Z38 -5.1424 NA NA
+log_k_JSE76 -3.6458 NA NA
+f_cyan_ilr_1 0.6957 NA NA
+f_cyan_ilr_2 0.6635 NA NA
+f_JCZ38_qlogis 4984.8163 NA NA
+f_JSE76_qlogis 1.9415 NA NA
+log_k1 -1.9456 NA NA
+log_k2 -4.4705 NA NA
+g_qlogis -0.5117 NA NA
+a.1 2.7455 2.55392 2.9370
+SD.log_k_JCZ38 1.3163 0.47635 2.1563
+SD.log_k_J9Z38 0.7162 0.16133 1.2711
+SD.log_k_JSE76 0.6457 0.15249 1.1390
+SD.f_cyan_ilr_1 0.3424 0.11714 0.5677
+SD.f_cyan_ilr_2 0.4524 0.09709 0.8077
+SD.log_k1 0.7353 0.25445 1.2161
+SD.log_k2 0.5137 0.18206 0.8453
+SD.g_qlogis 0.9857 0.35651 1.6148
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.3163 0.47635 2.1563
+SD.log_k_J9Z38 0.7162 0.16133 1.2711
+SD.log_k_JSE76 0.6457 0.15249 1.1390
+SD.f_cyan_ilr_1 0.3424 0.11714 0.5677
+SD.f_cyan_ilr_2 0.4524 0.09709 0.8077
+SD.log_k1 0.7353 0.25445 1.2161
+SD.log_k2 0.5137 0.18206 0.8453
+SD.g_qlogis 0.9857 0.35651 1.6148
+
+Variance model:
+ est. lower upper
+a.1 2.745 2.554 2.937
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.025e+02 NA NA
+k_JCZ38 5.309e-02 NA NA
+k_J9Z38 5.844e-03 NA NA
+k_JSE76 2.610e-02 NA NA
+f_cyan_to_JCZ38 6.079e-01 NA NA
+f_cyan_to_J9Z38 2.272e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+f_JSE76_to_JCZ38 8.745e-01 NA NA
+k1 1.429e-01 NA NA
+k2 1.144e-02 NA NA
+g 3.748e-01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.6079
+cyan_J9Z38 0.2272
+cyan_sink 0.1649
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+JSE76_JCZ38 0.8745
+JSE76_sink 0.1255
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 22.29 160.20 48.22 4.85 60.58
+JCZ38 13.06 43.37 NA NA NA
+J9Z38 118.61 394.02 NA NA NA
+JSE76 26.56 88.22 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 11:22:28 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+ time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+ * cyan
+d_JCZ38/dt = + f_cyan_to_JCZ38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_JCZ38 * JCZ38 +
+ f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_to_J9Z38 * ((k1 * g * exp(-k1 * time) + k2 * (1 -
+ g) * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+ exp(-k2 * time))) * cyan - k_J9Z38 * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 2183.989 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+ 101.7523 -1.5948 -5.0119 -2.2723 0.6719
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+ 5.1681 12.8238 12.4130 -2.0057 -4.5526
+ g_qlogis
+ -0.5805
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_0 log_k_JCZ38 log_k_J9Z38 log_k_JSE76 f_cyan_ilr_1
+cyan_0 5.627 0.000 0.000 0.000 0.0000
+log_k_JCZ38 0.000 2.327 0.000 0.000 0.0000
+log_k_J9Z38 0.000 0.000 1.664 0.000 0.0000
+log_k_JSE76 0.000 0.000 0.000 4.566 0.0000
+f_cyan_ilr_1 0.000 0.000 0.000 0.000 0.6519
+f_cyan_ilr_2 0.000 0.000 0.000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.000 0.000 0.000 0.0000
+f_JSE76_qlogis 0.000 0.000 0.000 0.000 0.0000
+log_k1 0.000 0.000 0.000 0.000 0.0000
+log_k2 0.000 0.000 0.000 0.000 0.0000
+g_qlogis 0.000 0.000 0.000 0.000 0.0000
+ f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis log_k1 log_k2
+cyan_0 0.0 0.00 0.00 0.0000 0.0000
+log_k_JCZ38 0.0 0.00 0.00 0.0000 0.0000
+log_k_J9Z38 0.0 0.00 0.00 0.0000 0.0000
+log_k_JSE76 0.0 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_1 0.0 0.00 0.00 0.0000 0.0000
+f_cyan_ilr_2 10.1 0.00 0.00 0.0000 0.0000
+f_JCZ38_qlogis 0.0 13.99 0.00 0.0000 0.0000
+f_JSE76_qlogis 0.0 0.00 14.15 0.0000 0.0000
+log_k1 0.0 0.00 0.00 0.8452 0.0000
+log_k2 0.0 0.00 0.00 0.0000 0.5968
+g_qlogis 0.0 0.00 0.00 0.0000 0.0000
+ g_qlogis
+cyan_0 0.000
+log_k_JCZ38 0.000
+log_k_J9Z38 0.000
+log_k_JSE76 0.000
+f_cyan_ilr_1 0.000
+f_cyan_ilr_2 0.000
+f_JCZ38_qlogis 0.000
+f_JSE76_qlogis 0.000
+log_k1 0.000
+log_k2 0.000
+g_qlogis 1.691
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2232 2224 -1096
+
+Optimised parameters:
+ est. lower upper
+cyan_0 101.20051 NA NA
+log_k_JCZ38 -2.93542 NA NA
+log_k_J9Z38 -5.03151 NA NA
+log_k_JSE76 -3.67679 NA NA
+f_cyan_ilr_1 0.67290 NA NA
+f_cyan_ilr_2 0.99787 NA NA
+f_JCZ38_qlogis 348.32484 NA NA
+f_JSE76_qlogis 1.87846 NA NA
+log_k1 -2.32738 NA NA
+log_k2 -4.61295 NA NA
+g_qlogis -0.38342 NA NA
+a.1 2.06184 1.83746 2.28622
+b.1 0.06329 0.05211 0.07447
+SD.log_k_JCZ38 1.29042 0.47468 2.10617
+SD.log_k_J9Z38 0.84235 0.25903 1.42566
+SD.log_k_JSE76 0.56930 0.13934 0.99926
+SD.f_cyan_ilr_1 0.35183 0.12298 0.58068
+SD.f_cyan_ilr_2 0.77269 0.17908 1.36631
+SD.log_k2 0.28549 0.09210 0.47888
+SD.g_qlogis 0.93830 0.34568 1.53093
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_JCZ38 1.2904 0.4747 2.1062
+SD.log_k_J9Z38 0.8423 0.2590 1.4257
+SD.log_k_JSE76 0.5693 0.1393 0.9993
+SD.f_cyan_ilr_1 0.3518 0.1230 0.5807
+SD.f_cyan_ilr_2 0.7727 0.1791 1.3663
+SD.log_k2 0.2855 0.0921 0.4789
+SD.g_qlogis 0.9383 0.3457 1.5309
+
+Variance model:
+ est. lower upper
+a.1 2.06184 1.83746 2.28622
+b.1 0.06329 0.05211 0.07447
+
+Backtransformed parameters:
+ est. lower upper
+cyan_0 1.012e+02 NA NA
+k_JCZ38 5.311e-02 NA NA
+k_J9Z38 6.529e-03 NA NA
+k_JSE76 2.530e-02 NA NA
+f_cyan_to_JCZ38 6.373e-01 NA NA
+f_cyan_to_J9Z38 2.461e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+f_JSE76_to_JCZ38 8.674e-01 NA NA
+k1 9.755e-02 NA NA
+k2 9.922e-03 NA NA
+g 4.053e-01 NA NA
+
+Resulting formation fractions:
+ ff
+cyan_JCZ38 0.6373
+cyan_J9Z38 0.2461
+cyan_sink 0.1167
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+JSE76_JCZ38 0.8674
+JSE76_sink 0.1326
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_k1 DT50_k2
+cyan 24.93 179.68 54.09 7.105 69.86
+JCZ38 13.05 43.36 NA NA NA
+J9Z38 106.16 352.67 NA NA NA
+JSE76 27.39 91.00 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 11:17:37 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
+ cyan_free + k_cyan_bound_free * cyan_bound
+d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
+ cyan_bound
+d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
+ * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
+ * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 1893.29 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Constant variance
+
+Starting values for degradation parameters:
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+ 102.4394 -2.7673 -2.8942
+log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38
+ -3.6201 -2.3107 -5.3123
+ log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2
+ -3.7120 0.6754 1.1448
+ f_JCZ38_qlogis f_JSE76_qlogis
+ 13.2672 13.3538
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+cyan_free_0 4.589 0.0000 0.00
+log_k_cyan_free 0.000 0.4849 0.00
+log_k_cyan_free_bound 0.000 0.0000 1.62
+log_k_cyan_bound_free 0.000 0.0000 0.00
+log_k_JCZ38 0.000 0.0000 0.00
+log_k_J9Z38 0.000 0.0000 0.00
+log_k_JSE76 0.000 0.0000 0.00
+f_cyan_ilr_1 0.000 0.0000 0.00
+f_cyan_ilr_2 0.000 0.0000 0.00
+f_JCZ38_qlogis 0.000 0.0000 0.00
+f_JSE76_qlogis 0.000 0.0000 0.00
+ log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_free_0 0.000 0.0000 0.000 0.0
+log_k_cyan_free 0.000 0.0000 0.000 0.0
+log_k_cyan_free_bound 0.000 0.0000 0.000 0.0
+log_k_cyan_bound_free 1.197 0.0000 0.000 0.0
+log_k_JCZ38 0.000 0.7966 0.000 0.0
+log_k_J9Z38 0.000 0.0000 1.561 0.0
+log_k_JSE76 0.000 0.0000 0.000 0.8
+f_cyan_ilr_1 0.000 0.0000 0.000 0.0
+f_cyan_ilr_2 0.000 0.0000 0.000 0.0
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.0
+f_JSE76_qlogis 0.000 0.0000 0.000 0.0
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis
+cyan_free_0 0.0000 0.000 0.00 0.00
+log_k_cyan_free 0.0000 0.000 0.00 0.00
+log_k_cyan_free_bound 0.0000 0.000 0.00 0.00
+log_k_cyan_bound_free 0.0000 0.000 0.00 0.00
+log_k_JCZ38 0.0000 0.000 0.00 0.00
+log_k_J9Z38 0.0000 0.000 0.00 0.00
+log_k_JSE76 0.0000 0.000 0.00 0.00
+f_cyan_ilr_1 0.6349 0.000 0.00 0.00
+f_cyan_ilr_2 0.0000 1.797 0.00 0.00
+f_JCZ38_qlogis 0.0000 0.000 13.84 0.00
+f_JSE76_qlogis 0.0000 0.000 0.00 14.66
+
+Starting values for error model parameters:
+a.1
+ 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2279 2272 -1120
+
+Optimised parameters:
+ est. lower upper
+cyan_free_0 102.5621 NA NA
+log_k_cyan_free -2.8531 NA NA
+log_k_cyan_free_bound -2.6916 NA NA
+log_k_cyan_bound_free -3.5032 NA NA
+log_k_JCZ38 -2.9436 NA NA
+log_k_J9Z38 -5.1140 NA NA
+log_k_JSE76 -3.6472 NA NA
+f_cyan_ilr_1 0.6887 NA NA
+f_cyan_ilr_2 0.6874 NA NA
+f_JCZ38_qlogis 4063.6389 NA NA
+f_JSE76_qlogis 1.9556 NA NA
+a.1 2.7460 2.55451 2.9376
+SD.log_k_cyan_free 0.3131 0.09841 0.5277
+SD.log_k_cyan_free_bound 0.8850 0.29909 1.4710
+SD.log_k_cyan_bound_free 0.6167 0.20391 1.0295
+SD.log_k_JCZ38 1.3555 0.49101 2.2200
+SD.log_k_J9Z38 0.7200 0.16166 1.2783
+SD.log_k_JSE76 0.6252 0.14619 1.1042
+SD.f_cyan_ilr_1 0.3386 0.11447 0.5627
+SD.f_cyan_ilr_2 0.4699 0.09810 0.8417
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan_free 0.3131 0.09841 0.5277
+SD.log_k_cyan_free_bound 0.8850 0.29909 1.4710
+SD.log_k_cyan_bound_free 0.6167 0.20391 1.0295
+SD.log_k_JCZ38 1.3555 0.49101 2.2200
+SD.log_k_J9Z38 0.7200 0.16166 1.2783
+SD.log_k_JSE76 0.6252 0.14619 1.1042
+SD.f_cyan_ilr_1 0.3386 0.11447 0.5627
+SD.f_cyan_ilr_2 0.4699 0.09810 0.8417
+
+Variance model:
+ est. lower upper
+a.1 2.746 2.555 2.938
+
+Backtransformed parameters:
+ est. lower upper
+cyan_free_0 1.026e+02 NA NA
+k_cyan_free 5.767e-02 NA NA
+k_cyan_free_bound 6.777e-02 NA NA
+k_cyan_bound_free 3.010e-02 NA NA
+k_JCZ38 5.267e-02 NA NA
+k_J9Z38 6.012e-03 NA NA
+k_JSE76 2.606e-02 NA NA
+f_cyan_free_to_JCZ38 6.089e-01 NA NA
+f_cyan_free_to_J9Z38 2.299e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+f_JSE76_to_JCZ38 8.761e-01 NA NA
+
+Estimated Eigenvalues of SFORB model(s):
+cyan_b1 cyan_b2 cyan_g
+ 0.1434 0.0121 0.3469
+
+Resulting formation fractions:
+ ff
+cyan_free_JCZ38 0.6089
+cyan_free_J9Z38 0.2299
+cyan_free_sink 0.1612
+cyan_free 1.0000
+JCZ38_JSE76 1.0000
+JCZ38_sink 0.0000
+JSE76_JCZ38 0.8761
+JSE76_sink 0.1239
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
+cyan 23.94 155.06 46.68 4.832 57.28
+JCZ38 13.16 43.71 NA NA NA
+J9Z38 115.30 383.02 NA NA NA
+JSE76 26.59 88.35 NA NA NA
+
+
+
+
+saemix version used for fitting: 3.2
+mkin version used for pre-fitting: 1.2.2
+R version used for fitting: 4.2.2
+Date of fit: Sat Jan 28 11:21:01 2023
+Date of summary: Sat Jan 28 11:22:29 2023
+
+Equations:
+d_cyan_free/dt = - k_cyan_free * cyan_free - k_cyan_free_bound *
+ cyan_free + k_cyan_bound_free * cyan_bound
+d_cyan_bound/dt = + k_cyan_free_bound * cyan_free - k_cyan_bound_free *
+ cyan_bound
+d_JCZ38/dt = + f_cyan_free_to_JCZ38 * k_cyan_free * cyan_free - k_JCZ38
+ * JCZ38 + f_JSE76_to_JCZ38 * k_JSE76 * JSE76
+d_J9Z38/dt = + f_cyan_free_to_J9Z38 * k_cyan_free * cyan_free - k_J9Z38
+ * J9Z38
+d_JSE76/dt = + f_JCZ38_to_JSE76 * k_JCZ38 * JCZ38 - k_JSE76 * JSE76
+
+Data:
+433 observations of 4 variable(s) grouped in 5 datasets
+
+Model predictions using solution type deSolve
+
+Fitted in 2097.842 s
+Using 300, 100 iterations and 10 chains
+
+Variance model: Two-component variance function
+
+Starting values for degradation parameters:
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+ 101.751 -2.837 -3.016
+log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38
+ -3.660 -2.299 -5.313
+ log_k_JSE76 f_cyan_ilr_1 f_cyan_ilr_2
+ -3.699 0.672 5.873
+ f_JCZ38_qlogis f_JSE76_qlogis
+ 13.216 13.338
+
+Fixed degradation parameter values:
+None
+
+Starting values for random effects (square root of initial entries in omega):
+ cyan_free_0 log_k_cyan_free log_k_cyan_free_bound
+cyan_free_0 5.629 0.000 0.000
+log_k_cyan_free 0.000 0.446 0.000
+log_k_cyan_free_bound 0.000 0.000 1.449
+log_k_cyan_bound_free 0.000 0.000 0.000
+log_k_JCZ38 0.000 0.000 0.000
+log_k_J9Z38 0.000 0.000 0.000
+log_k_JSE76 0.000 0.000 0.000
+f_cyan_ilr_1 0.000 0.000 0.000
+f_cyan_ilr_2 0.000 0.000 0.000
+f_JCZ38_qlogis 0.000 0.000 0.000
+f_JSE76_qlogis 0.000 0.000 0.000
+ log_k_cyan_bound_free log_k_JCZ38 log_k_J9Z38 log_k_JSE76
+cyan_free_0 0.000 0.0000 0.000 0.0000
+log_k_cyan_free 0.000 0.0000 0.000 0.0000
+log_k_cyan_free_bound 0.000 0.0000 0.000 0.0000
+log_k_cyan_bound_free 1.213 0.0000 0.000 0.0000
+log_k_JCZ38 0.000 0.7801 0.000 0.0000
+log_k_J9Z38 0.000 0.0000 1.575 0.0000
+log_k_JSE76 0.000 0.0000 0.000 0.8078
+f_cyan_ilr_1 0.000 0.0000 0.000 0.0000
+f_cyan_ilr_2 0.000 0.0000 0.000 0.0000
+f_JCZ38_qlogis 0.000 0.0000 0.000 0.0000
+f_JSE76_qlogis 0.000 0.0000 0.000 0.0000
+ f_cyan_ilr_1 f_cyan_ilr_2 f_JCZ38_qlogis f_JSE76_qlogis
+cyan_free_0 0.0000 0.00 0.00 0.00
+log_k_cyan_free 0.0000 0.00 0.00 0.00
+log_k_cyan_free_bound 0.0000 0.00 0.00 0.00
+log_k_cyan_bound_free 0.0000 0.00 0.00 0.00
+log_k_JCZ38 0.0000 0.00 0.00 0.00
+log_k_J9Z38 0.0000 0.00 0.00 0.00
+log_k_JSE76 0.0000 0.00 0.00 0.00
+f_cyan_ilr_1 0.6519 0.00 0.00 0.00
+f_cyan_ilr_2 0.0000 10.78 0.00 0.00
+f_JCZ38_qlogis 0.0000 0.00 13.96 0.00
+f_JSE76_qlogis 0.0000 0.00 0.00 14.69
+
+Starting values for error model parameters:
+a.1 b.1
+ 1 1
+
+Results:
+
+Likelihood computed by importance sampling
+ AIC BIC logLik
+ 2236 2228 -1098
+
+Optimised parameters:
+ est. lower upper
+cyan_free_0 100.72760 NA NA
+log_k_cyan_free -3.18281 NA NA
+log_k_cyan_free_bound -3.37924 NA NA
+log_k_cyan_bound_free -3.77107 NA NA
+log_k_JCZ38 -2.92811 NA NA
+log_k_J9Z38 -5.02759 NA NA
+log_k_JSE76 -3.65835 NA NA
+f_cyan_ilr_1 0.67390 NA NA
+f_cyan_ilr_2 1.15106 NA NA
+f_JCZ38_qlogis 827.82299 NA NA
+f_JSE76_qlogis 1.83064 NA NA
+a.1 2.06921 1.84443 2.29399
+b.1 0.06391 0.05267 0.07515
+SD.log_k_cyan_free 0.50518 0.18962 0.82075
+SD.log_k_cyan_bound_free 0.30991 0.08170 0.53813
+SD.log_k_JCZ38 1.26661 0.46578 2.06744
+SD.log_k_J9Z38 0.88272 0.27813 1.48730
+SD.log_k_JSE76 0.53050 0.12561 0.93538
+SD.f_cyan_ilr_1 0.35547 0.12461 0.58633
+SD.f_cyan_ilr_2 0.91446 0.20131 1.62761
+
+Correlation is not available
+
+Random effects:
+ est. lower upper
+SD.log_k_cyan_free 0.5052 0.1896 0.8207
+SD.log_k_cyan_bound_free 0.3099 0.0817 0.5381
+SD.log_k_JCZ38 1.2666 0.4658 2.0674
+SD.log_k_J9Z38 0.8827 0.2781 1.4873
+SD.log_k_JSE76 0.5305 0.1256 0.9354
+SD.f_cyan_ilr_1 0.3555 0.1246 0.5863
+SD.f_cyan_ilr_2 0.9145 0.2013 1.6276
+
+Variance model:
+ est. lower upper
+a.1 2.06921 1.84443 2.29399
+b.1 0.06391 0.05267 0.07515
+
+Backtransformed parameters:
+ est. lower upper
+cyan_free_0 1.007e+02 NA NA
+k_cyan_free 4.147e-02 NA NA
+k_cyan_free_bound 3.407e-02 NA NA
+k_cyan_bound_free 2.303e-02 NA NA
+k_JCZ38 5.350e-02 NA NA
+k_J9Z38 6.555e-03 NA NA
+k_JSE76 2.578e-02 NA NA
+f_cyan_free_to_JCZ38 6.505e-01 NA NA
+f_cyan_free_to_J9Z38 2.508e-01 NA NA
+f_JCZ38_to_JSE76 1.000e+00 NA NA
+f_JSE76_to_JCZ38 8.618e-01 NA NA
+
+Estimated Eigenvalues of SFORB model(s):
+cyan_b1 cyan_b2 cyan_g
+0.08768 0.01089 0.39821
+
+Resulting formation fractions:
+ ff
+cyan_free_JCZ38 0.65053
+cyan_free_J9Z38 0.25082
+cyan_free_sink 0.09864
+cyan_free 1.00000
+JCZ38_JSE76 1.00000
+JCZ38_sink 0.00000
+JSE76_JCZ38 0.86184
+JSE76_sink 0.13816
+
+Estimated disappearance times:
+ DT50 DT90 DT50back DT50_cyan_b1 DT50_cyan_b2
+cyan 25.32 164.79 49.61 7.906 63.64
+JCZ38 12.96 43.04 NA NA NA
+J9Z38 105.75 351.29 NA NA NA
+JSE76 26.89 89.33 NA NA NA
+
+
+
+R version 4.2.2 Patched (2022-11-10 r83330)
+Platform: x86_64-pc-linux-gnu (64-bit)
+Running under: Debian GNU/Linux bookworm/sid
+
+Matrix products: default
+BLAS: /usr/lib/x86_64-linux-gnu/openblas-serial/libblas.so.3
+LAPACK: /usr/lib/x86_64-linux-gnu/openblas-serial/libopenblas-r0.3.21.so
+
+locale:
+ [1] LC_CTYPE=de_DE.UTF-8 LC_NUMERIC=C
+ [3] LC_TIME=de_DE.UTF-8 LC_COLLATE=de_DE.UTF-8
+ [5] LC_MONETARY=de_DE.UTF-8 LC_MESSAGES=de_DE.UTF-8
+ [7] LC_PAPER=de_DE.UTF-8 LC_NAME=C
+ [9] LC_ADDRESS=C LC_TELEPHONE=C
+[11] LC_MEASUREMENT=de_DE.UTF-8 LC_IDENTIFICATION=C
+
+attached base packages:
+[1] parallel stats graphics grDevices utils datasets methods
+[8] base
+
+other attached packages:
+[1] saemix_3.2 npde_3.3 knitr_1.41 mkin_1.2.2
+
+loaded via a namespace (and not attached):
+ [1] mclust_6.0.0 lattice_0.20-45 prettyunits_1.1.1 ps_1.7.2
+ [5] zoo_1.8-11 assertthat_0.2.1 rprojroot_2.0.3 digest_0.6.31
+ [9] lmtest_0.9-40 utf8_1.2.2 R6_2.5.1 cellranger_1.1.0
+[13] evaluate_0.19 ggplot2_3.4.0 highr_0.9 pillar_1.8.1
+[17] rlang_1.0.6 readxl_1.4.1 callr_3.7.3 jquerylib_0.1.4
+[21] rmarkdown_2.19 pkgdown_2.0.7 textshaping_0.3.6 desc_1.4.2
+[25] stringr_1.5.0 munsell_0.5.0 compiler_4.2.2 xfun_0.35
+[29] pkgconfig_2.0.3 systemfonts_1.0.4 pkgbuild_1.4.0 htmltools_0.5.4
+[33] tidyselect_1.2.0 tibble_3.1.8 gridExtra_2.3 codetools_0.2-18
+[37] fansi_1.0.3 crayon_1.5.2 dplyr_1.0.10 grid_4.2.2
+[41] nlme_3.1-161 jsonlite_1.8.4 gtable_0.3.1 lifecycle_1.0.3
+[45] DBI_1.1.3 magrittr_2.0.3 scales_1.2.1 cli_3.5.0
+[49] stringi_1.7.8 cachem_1.0.6 fs_1.5.2 bslib_0.4.2
+[53] ragg_1.2.4 generics_0.1.3 vctrs_0.5.1 deSolve_1.34
+[57] tools_4.2.2 glue_1.6.2 purrr_1.0.0 processx_3.8.0
+[61] fastmap_1.1.0 yaml_2.3.6 inline_0.3.19 colorspace_2.0-3
+[65] memoise_2.0.1 sass_0.4.4
+