From 6476f5f49b373cd4cf05f2e73389df83e437d597 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Thu, 13 Feb 2025 16:30:31 +0100 Subject: Axis legend formatting, update vignettes --- docs/dev/reference/add_err.html | 262 ---------------------------------------- 1 file changed, 262 deletions(-) delete mode 100644 docs/dev/reference/add_err.html (limited to 'docs/dev/reference/add_err.html') diff --git a/docs/dev/reference/add_err.html b/docs/dev/reference/add_err.html deleted file mode 100644 index 57db40d1..00000000 --- a/docs/dev/reference/add_err.html +++ /dev/null @@ -1,262 +0,0 @@ - -Add normally distributed errors to simulated kinetic degradation data — add_err • mkin - - -
-
- - - -
-
- - -
-

Normally distributed errors are added to data predicted for a specific -degradation model using mkinpredict. The variance of the error -may depend on the predicted value and is specified as a standard deviation.

-
- -
-
add_err(
-  prediction,
-  sdfunc,
-  secondary = c("M1", "M2"),
-  n = 10,
-  LOD = 0.1,
-  reps = 2,
-  digits = 1,
-  seed = NA
-)
-
- -
-

Arguments

-
prediction
-

A prediction from a kinetic model as produced by -mkinpredict.

- - -
sdfunc
-

A function taking the predicted value as its only argument and -returning a standard deviation that should be used for generating the -random error terms for this value.

- - -
secondary
-

The names of state variables that should have an initial -value of zero

- - -
n
-

The number of datasets to be generated.

- - -
LOD
-

The limit of detection (LOD). Values that are below the LOD after -adding the random error will be set to NA.

- - -
reps
-

The number of replicates to be generated within the datasets.

- - -
digits
-

The number of digits to which the values will be rounded.

- - -
seed
-

The seed used for the generation of random numbers. If NA, the -seed is not set.

- -
-
-

Value

- - -

A list of datasets compatible with mmkin, i.e. the -components of the list are datasets compatible with mkinfit.

-
-
-

References

-

Ranke J and Lehmann R (2015) To t-test or not to t-test, that is -the question. XV Symposium on Pesticide Chemistry 2-4 September 2015, -Piacenza, Italy -https://jrwb.de/posters/piacenza_2015.pdf

-
-
-

Author

-

Johannes Ranke

-
- -
-

Examples

-

-# The kinetic model
-m_SFO_SFO <- mkinmod(parent = mkinsub("SFO", "M1"),
-                     M1 = mkinsub("SFO"), use_of_ff = "max")
-#> Temporary DLL for differentials generated and loaded
-
-# Generate a prediction for a specific set of parameters
-sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
-
-# This is the prediction used for the "Type 2 datasets" on the Piacenza poster
-# from 2015
-d_SFO_SFO <- mkinpredict(m_SFO_SFO,
-                         c(k_parent = 0.1, f_parent_to_M1 = 0.5,
-                           k_M1 = log(2)/1000),
-                         c(parent = 100, M1 = 0),
-                         sampling_times)
-
-# Add an error term with a constant (independent of the value) standard deviation
-# of 10, and generate three datasets
-d_SFO_SFO_err <- add_err(d_SFO_SFO, function(x) 10, n = 3, seed = 123456789 )
-
-# Name the datasets for nicer plotting
-names(d_SFO_SFO_err) <- paste("Dataset", 1:3)
-
-# Name the model in the list of models (with only one member in this case) for
-# nicer plotting later on.  Be quiet and use only one core not to offend CRAN
-# checks
-# \dontrun{
-f_SFO_SFO <- mmkin(list("SFO-SFO" = m_SFO_SFO),
-                   d_SFO_SFO_err, cores = 1,
-                   quiet = TRUE)
-
-plot(f_SFO_SFO)
-
-
-# We would like to inspect the fit for dataset 3 more closely
-# Using double brackets makes the returned object an mkinfit object
-# instead of a list of mkinfit objects, so plot.mkinfit is used
-plot(f_SFO_SFO[[3]], show_residuals = TRUE)
-
-
-# If we use single brackets, we should give two indices (model and dataset),
-# and plot.mmkin is used
-plot(f_SFO_SFO[1, 3])
-
-# }
-
-
-
-
- -
- - -
- - - - - - - - -- cgit v1.2.1