From af7c6de4db9981ac814362c441fbac22c8faa2d7 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Thu, 24 Nov 2022 09:02:26 +0100 Subject: Start online docs of the development version --- docs/dev/reference/add_err.html | 349 +++++++++++++++++----------------------- 1 file changed, 150 insertions(+), 199 deletions(-) (limited to 'docs/dev/reference/add_err.html') diff --git a/docs/dev/reference/add_err.html b/docs/dev/reference/add_err.html index b94cef29..c70d43a0 100644 --- a/docs/dev/reference/add_err.html +++ b/docs/dev/reference/add_err.html @@ -1,69 +1,14 @@ - - - - - - - -Add normally distributed errors to simulated kinetic degradation data — add_err • mkin - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Add normally distributed errors to simulated kinetic degradation data — add_err • mkin - - - - - - - - - - + + - - - -
-
- -
- -
+

Normally distributed errors are added to data predicted for a specific -degradation model using mkinpredict. The variance of the error +degradation model using mkinpredict. The variance of the error may depend on the predicted value and is specified as a standard deviation.

-
add_err(
-  prediction,
-  sdfunc,
-  secondary = c("M1", "M2"),
-  n = 10,
-  LOD = 0.1,
-  reps = 2,
-  digits = 1,
-  seed = NA
-)
- -

Arguments

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
prediction

A prediction from a kinetic model as produced by -mkinpredict.

sdfunc

A function taking the predicted value as its only argument and +

+
add_err(
+  prediction,
+  sdfunc,
+  secondary = c("M1", "M2"),
+  n = 10,
+  LOD = 0.1,
+  reps = 2,
+  digits = 1,
+  seed = NA
+)
+
+ +
+

Arguments

+
prediction
+

A prediction from a kinetic model as produced by +mkinpredict.

+ + +
sdfunc
+

A function taking the predicted value as its only argument and returning a standard deviation that should be used for generating the -random error terms for this value.

secondary

The names of state variables that should have an initial -value of zero

n

The number of datasets to be generated.

LOD

The limit of detection (LOD). Values that are below the LOD after -adding the random error will be set to NA.

reps

The number of replicates to be generated within the datasets.

digits

The number of digits to which the values will be rounded.

seed

The seed used for the generation of random numbers. If NA, the -seed is not set.

- -

Value

- -

A list of datasets compatible with mmkin, i.e. the -components of the list are datasets compatible with mkinfit.

-

References

+random error terms for this value.

+ + +
secondary
+

The names of state variables that should have an initial +value of zero

+ + +
n
+

The number of datasets to be generated.

+ + +
LOD
+

The limit of detection (LOD). Values that are below the LOD after +adding the random error will be set to NA.

+ +
reps
+

The number of replicates to be generated within the datasets.

+ + +
digits
+

The number of digits to which the values will be rounded.

+ + +
seed
+

The seed used for the generation of random numbers. If NA, the +seed is not set.

+ +
+
+

Value

+ + +

A list of datasets compatible with mmkin, i.e. the +components of the list are datasets compatible with mkinfit.

+
+
+

References

Ranke J and Lehmann R (2015) To t-test or not to t-test, that is the question. XV Symposium on Pesticide Chemistry 2-4 September 2015, Piacenza, Italy https://jrwb.de/posters/piacenza_2015.pdf

-

Author

- +
+
+

Author

Johannes Ranke

+
-

Examples

-
-# The kinetic model -m_SFO_SFO <- mkinmod(parent = mkinsub("SFO", "M1"), - M1 = mkinsub("SFO"), use_of_ff = "max") -
#> Temporary DLL for differentials generated and loaded
-# Generate a prediction for a specific set of parameters -sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) - -# This is the prediction used for the "Type 2 datasets" on the Piacenza poster -# from 2015 -d_SFO_SFO <- mkinpredict(m_SFO_SFO, - c(k_parent = 0.1, f_parent_to_M1 = 0.5, - k_M1 = log(2)/1000), - c(parent = 100, M1 = 0), - sampling_times) - -# Add an error term with a constant (independent of the value) standard deviation -# of 10, and generate three datasets -d_SFO_SFO_err <- add_err(d_SFO_SFO, function(x) 10, n = 3, seed = 123456789 ) - -# Name the datasets for nicer plotting -names(d_SFO_SFO_err) <- paste("Dataset", 1:3) - -# Name the model in the list of models (with only one member in this case) for -# nicer plotting later on. Be quiet and use only one core not to offend CRAN -# checks -# \dontrun{ -f_SFO_SFO <- mmkin(list("SFO-SFO" = m_SFO_SFO), - d_SFO_SFO_err, cores = 1, - quiet = TRUE) - -plot(f_SFO_SFO) -
-# We would like to inspect the fit for dataset 3 more closely -# Using double brackets makes the returned object an mkinfit object -# instead of a list of mkinfit objects, so plot.mkinfit is used -plot(f_SFO_SFO[[3]], show_residuals = TRUE) -
-# If we use single brackets, we should give two indices (model and dataset), -# and plot.mmkin is used -plot(f_SFO_SFO[1, 3]) -
# } - -
+
+

Examples

+

+# The kinetic model
+m_SFO_SFO <- mkinmod(parent = mkinsub("SFO", "M1"),
+                     M1 = mkinsub("SFO"), use_of_ff = "max")
+#> Temporary DLL for differentials generated and loaded
+
+# Generate a prediction for a specific set of parameters
+sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+
+# This is the prediction used for the "Type 2 datasets" on the Piacenza poster
+# from 2015
+d_SFO_SFO <- mkinpredict(m_SFO_SFO,
+                         c(k_parent = 0.1, f_parent_to_M1 = 0.5,
+                           k_M1 = log(2)/1000),
+                         c(parent = 100, M1 = 0),
+                         sampling_times)
+
+# Add an error term with a constant (independent of the value) standard deviation
+# of 10, and generate three datasets
+d_SFO_SFO_err <- add_err(d_SFO_SFO, function(x) 10, n = 3, seed = 123456789 )
+
+# Name the datasets for nicer plotting
+names(d_SFO_SFO_err) <- paste("Dataset", 1:3)
+
+# Name the model in the list of models (with only one member in this case) for
+# nicer plotting later on.  Be quiet and use only one core not to offend CRAN
+# checks
+# \dontrun{
+f_SFO_SFO <- mmkin(list("SFO-SFO" = m_SFO_SFO),
+                   d_SFO_SFO_err, cores = 1,
+                   quiet = TRUE)
+
+plot(f_SFO_SFO)
+
+
+# We would like to inspect the fit for dataset 3 more closely
+# Using double brackets makes the returned object an mkinfit object
+# instead of a list of mkinfit objects, so plot.mkinfit is used
+plot(f_SFO_SFO[[3]], show_residuals = TRUE)
+
+
+# If we use single brackets, we should give two indices (model and dataset),
+# and plot.mmkin is used
+plot(f_SFO_SFO[1, 3])
+
+# }
+
+
+
+
- - - + + -- cgit v1.2.1