From a77a10ea6c607346778ba0700b3b66ac393101a2 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Wed, 27 May 2020 06:06:08 +0200 Subject: Create up to date pkgdown docs in development mode --- docs/dev/reference/confint.mkinfit.html | 419 ++++++++++++++++++++++++++++++++ 1 file changed, 419 insertions(+) create mode 100644 docs/dev/reference/confint.mkinfit.html (limited to 'docs/dev/reference/confint.mkinfit.html') diff --git a/docs/dev/reference/confint.mkinfit.html b/docs/dev/reference/confint.mkinfit.html new file mode 100644 index 00000000..a03ecea8 --- /dev/null +++ b/docs/dev/reference/confint.mkinfit.html @@ -0,0 +1,419 @@ + + + + + + + + +Confidence intervals for parameters of mkinfit objects — confint.mkinfit • mkin + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + +
+ +
+
+ + +
+

The default method 'quadratic' is based on the quadratic approximation of +the curvature of the likelihood function at the maximum likelihood parameter +estimates. +The alternative method 'profile' is based on the profile likelihood for each +parameter. The 'profile' method uses two nested optimisations and can take a +very long time, even if parallelized by specifying 'cores' on unixoid +platforms. The speed of the method could likely be improved by using the +method of Venzon and Moolgavkar (1988).

+
+ +
# S3 method for mkinfit
+confint(
+  object,
+  parm,
+  level = 0.95,
+  alpha = 1 - level,
+  cutoff,
+  method = c("quadratic", "profile"),
+  transformed = TRUE,
+  backtransform = TRUE,
+  cores = parallel::detectCores(),
+  rel_tol = 0.01,
+  quiet = FALSE,
+  ...
+)
+ +

Arguments

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
object

An mkinfit object

parm

A vector of names of the parameters which are to be given +confidence intervals. If missing, all parameters are considered.

level

The confidence level required

alpha

The allowed error probability, overrides 'level' if specified.

cutoff

Possibility to specify an alternative cutoff for the difference +in the log-likelihoods at the confidence boundary. Specifying an explicit +cutoff value overrides arguments 'level' and 'alpha'

method

The 'quadratic' method approximates the likelihood function at +the optimised parameters using the second term of the Taylor expansion, +using a second derivative (hessian) contained in the object. +The 'profile' method searches the parameter space for the +cutoff of the confidence intervals by means of a likelihood ratio test.

transformed

If the quadratic approximation is used, should it be +applied to the likelihood based on the transformed parameters?

backtransform

If we approximate the likelihood in terms of the +transformed parameters, should we backtransform the parameters with +their confidence intervals?

cores

The number of cores to be used for multicore processing. +On Windows machines, cores > 1 is currently not supported.

rel_tol

If the method is 'profile', what should be the accuracy +of the lower and upper bounds, relative to the estimate obtained from +the quadratic method?

quiet

Should we suppress the message "Profiling the likelihood"

...

Not used

+ +

Value

+ +

A matrix with columns giving lower and upper confidence limits for +each parameter.

+

References

+ +

Bates DM and Watts GW (1988) Nonlinear regression analysis & its applications

+

Pawitan Y (2013) In all likelihood - Statistical modelling and +inference using likelihood. Clarendon Press, Oxford.

+

Venzon DJ and Moolgavkar SH (1988) A Method for Computing +Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37, +87–94.

+ +

Examples

+
f <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE) +confint(f, method = "quadratic")
#> 2.5% 97.5% +#> parent_0 71.8242430 93.1600766 +#> k_parent_sink 0.2109541 0.4440528 +#> sigma 1.9778868 7.3681380
+# \dontrun{ +confint(f, method = "profile")
#> Profiling the likelihood
#> 2.5% 97.5% +#> parent_0 73.0641834 92.1392181 +#> k_parent_sink 0.2170293 0.4235348 +#> sigma 3.1307772 8.0628314
+# Set the number of cores for the profiling method for further examples +if (identical(Sys.getenv("NOT_CRAN"), "true")) { + n_cores <- parallel::detectCores() - 1 +} else { + n_cores <- 1 +} +if (Sys.getenv("TRAVIS") != "") n_cores = 1 +if (Sys.info()["sysname"] == "Windows") n_cores = 1 + +SFO_SFO <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"), quiet = TRUE) +SFO_SFO.ff <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"), + use_of_ff = "max", quiet = TRUE) +f_d_1 <- mkinfit(SFO_SFO, subset(FOCUS_2006_D, value != 0), quiet = TRUE) +system.time(ci_profile <- confint(f_d_1, method = "profile", cores = 1, quiet = TRUE))
#> user system elapsed +#> 3.707 1.077 3.444
# Using more cores does not save much time here, as parent_0 takes up most of the time +# If we additionally exclude parent_0 (the confidence of which is often of +# minor interest), we get a nice performance improvement from about 50 +# seconds to about 12 seconds if we use at least four cores +system.time(ci_profile_no_parent_0 <- confint(f_d_1, method = "profile", + c("k_parent_sink", "k_parent_m1", "k_m1_sink", "sigma"), cores = n_cores))
#> Profiling the likelihood
#> Warning: scheduled cores 2, 1, 3 encountered errors in user code, all values of the jobs will be affected
#> Error in dimnames(x) <- dn: length of 'dimnames' [2] not equal to array extent
#> Timing stopped at: 0.011 0.026 0.207
ci_profile
#> 2.5% 97.5% +#> parent_0 96.456003640 1.027703e+02 +#> k_parent 0.090911032 1.071578e-01 +#> k_m1 0.003892605 6.702778e-03 +#> f_parent_to_m1 0.471328495 5.611550e-01 +#> sigma 2.535612399 3.985263e+00
ci_quadratic_transformed <- confint(f_d_1, method = "quadratic") +ci_quadratic_transformed
#> 2.5% 97.5% +#> parent_0 96.403839476 1.027931e+02 +#> k_parent 0.090823790 1.072543e-01 +#> k_m1 0.004012216 6.897547e-03 +#> f_parent_to_m1 0.469118713 5.595960e-01 +#> sigma 2.396089689 3.854918e+00
ci_quadratic_untransformed <- confint(f_d_1, method = "quadratic", transformed = FALSE) +ci_quadratic_untransformed
#> 2.5% 97.5% +#> parent_0 96.403839429 1.027931e+02 +#> k_parent 0.090491931 1.069035e-01 +#> k_m1 0.003835483 6.685819e-03 +#> f_parent_to_m1 0.469113364 5.598386e-01 +#> sigma 2.396089689 3.854918e+00
# Against the expectation based on Bates and Watts (1988), the confidence +# intervals based on the internal parameter transformation are less +# congruent with the likelihood based intervals. Note the superiority of the +# interval based on the untransformed fit for k_m1_sink +rel_diffs_transformed <- abs((ci_quadratic_transformed - ci_profile)/ci_profile) +rel_diffs_untransformed <- abs((ci_quadratic_untransformed - ci_profile)/ci_profile) +rel_diffs_transformed < rel_diffs_untransformed
#> 2.5% 97.5% +#> parent_0 TRUE TRUE +#> k_parent TRUE TRUE +#> k_m1 FALSE FALSE +#> f_parent_to_m1 TRUE FALSE +#> sigma FALSE TRUE
signif(rel_diffs_transformed, 3)
#> 2.5% 97.5% +#> parent_0 0.000541 0.000222 +#> k_parent 0.000960 0.000900 +#> k_m1 0.030700 0.029100 +#> f_parent_to_m1 0.004690 0.002780 +#> sigma 0.055000 0.032700
signif(rel_diffs_untransformed, 3)
#> 2.5% 97.5% +#> parent_0 0.000541 0.000222 +#> k_parent 0.004610 0.002370 +#> k_m1 0.014700 0.002530 +#> f_parent_to_m1 0.004700 0.002350 +#> sigma 0.055000 0.032700
+ +# Investigate a case with formation fractions +f_d_2 <- mkinfit(SFO_SFO.ff, subset(FOCUS_2006_D, value != 0), quiet = TRUE) +ci_profile_ff <- confint(f_d_2, method = "profile", cores = n_cores)
#> Profiling the likelihood
ci_profile_ff
#> 2.5% 97.5% +#> parent_0 96.456003640 1.027703e+02 +#> k_parent 0.090911032 1.071578e-01 +#> k_m1 0.003892605 6.702778e-03 +#> f_parent_to_m1 0.471328495 5.611550e-01 +#> sigma 2.535612399 3.985263e+00
ci_quadratic_transformed_ff <- confint(f_d_2, method = "quadratic") +ci_quadratic_transformed_ff
#> 2.5% 97.5% +#> parent_0 96.403839476 1.027931e+02 +#> k_parent 0.090823790 1.072543e-01 +#> k_m1 0.004012216 6.897547e-03 +#> f_parent_to_m1 0.469118713 5.595960e-01 +#> sigma 2.396089689 3.854918e+00
ci_quadratic_untransformed_ff <- confint(f_d_2, method = "quadratic", transformed = FALSE) +ci_quadratic_untransformed_ff
#> 2.5% 97.5% +#> parent_0 96.403839429 1.027931e+02 +#> k_parent 0.090491931 1.069035e-01 +#> k_m1 0.003835483 6.685819e-03 +#> f_parent_to_m1 0.469113364 5.598386e-01 +#> sigma 2.396089689 3.854918e+00
rel_diffs_transformed_ff <- abs((ci_quadratic_transformed_ff - ci_profile_ff)/ci_profile_ff) +rel_diffs_untransformed_ff <- abs((ci_quadratic_untransformed_ff - ci_profile_ff)/ci_profile_ff) +# While the confidence interval for the parent rate constant is closer to +# the profile based interval when using the internal parameter +# transformation, the interval for the metabolite rate constant is 'better +# without internal parameter transformation. +rel_diffs_transformed_ff < rel_diffs_untransformed_ff
#> 2.5% 97.5% +#> parent_0 TRUE TRUE +#> k_parent TRUE TRUE +#> k_m1 FALSE FALSE +#> f_parent_to_m1 TRUE FALSE +#> sigma FALSE TRUE
rel_diffs_transformed_ff
#> 2.5% 97.5% +#> parent_0 0.0005408078 0.0002217796 +#> k_parent 0.0009596417 0.0009003876 +#> k_m1 0.0307277372 0.0290579184 +#> f_parent_to_m1 0.0046884131 0.0027782558 +#> sigma 0.0550252516 0.0327066836
rel_diffs_untransformed_ff
#> 2.5% 97.5% +#> parent_0 0.0005408083 0.000221780 +#> k_parent 0.0046100096 0.002373023 +#> k_m1 0.0146746467 0.002530101 +#> f_parent_to_m1 0.0046997600 0.002346022 +#> sigma 0.0550252516 0.032706684
+# The profiling for the following fit does not finish in a reasonable time, +# therefore we use the quadratic approximation +m_synth_DFOP_par <- mkinmod(parent = mkinsub("DFOP", c("M1", "M2")), + M1 = mkinsub("SFO"), + M2 = mkinsub("SFO"), + use_of_ff = "max", quiet = TRUE) +DFOP_par_c <- synthetic_data_for_UBA_2014[[12]]$data +f_tc_2 <- mkinfit(m_synth_DFOP_par, DFOP_par_c, error_model = "tc", + error_model_algorithm = "direct", quiet = TRUE)
#> Warning: Optimisation did not converge: +#> iteration limit reached without convergence (10)
confint(f_tc_2, method = "quadratic")
#> 2.5% 97.5% +#> parent_0 95.654015524 105.79279749 +#> k_M1 0.037723773 0.04447598 +#> k_M2 0.008586438 0.01078076 +#> f_parent_to_M1 0.230403596 0.61953014 +#> f_parent_to_M2 0.162909765 0.38019017 +#> k1 0.275434628 0.33331386 +#> k2 0.018602188 0.02249211 +#> g 0.675149759 0.73520889 +#> sigma_low 0.251416929 0.84272023 +#> rsd_high 0.040371818 0.07666540
confint(f_tc_2, "parent_0", method = "quadratic")
#> 2.5% 97.5% +#> parent_0 95.65402 105.7928
# } +
+
+ +
+ + + +
+ + + + + + + + -- cgit v1.2.1