From 6178249bbb5e9de7cb7f34287ee7de28a68fed6c Mon Sep 17 00:00:00 2001
From: Johannes Ranke
dimethenamid_2018
dimethenamid_2018
print(dimethenamid_2018)
+ print(dimethenamid_2018)
#> <mkindsg> holding 7 mkinds objects
#> Title $title: Aerobic soil degradation data on dimethenamid-P from the EU assessment in 2018
#> Occurrence of observed compounds $observed_n:
@@ -142,296 +145,168 @@ specific pieces of information in the comments.
#> Flaach NA 20
#> BBA 2.2 NA 20
#> BBA 2.3 NA 20
-dmta_ds <- lapply(1:7, function(i) {
- ds_i <- dimethenamid_2018$ds[[i]]$data
- ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
- ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
- ds_i
-})
-names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
-dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
-dmta_ds[["Elliot 1"]] <- NULL
-dmta_ds[["Elliot 2"]] <- NULL
-# \dontrun{
-dfop_sfo3_plus <- mkinmod(
- DMTA = mkinsub("DFOP", c("M23", "M27", "M31")),
- M23 = mkinsub("SFO"),
- M27 = mkinsub("SFO"),
- M31 = mkinsub("SFO", "M27", sink = FALSE),
- quiet = TRUE
-)
-f_dmta_mkin_tc <- mmkin(
- list("DFOP-SFO3+" = dfop_sfo3_plus),
- dmta_ds, quiet = TRUE, error_model = "tc")
-nlmixr_model(f_dmta_mkin_tc)
-#> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)
-#> Warning: number of items to replace is not a multiple of replacement length
-#> function ()
-#> {
-#> ini({
-#> DMTA_0 = 99
-#> eta.DMTA_0 ~ 2.3
-#> log_k_M23 = -3.9
-#> eta.log_k_M23 ~ 0.55
-#> log_k_M27 = -4.3
-#> eta.log_k_M27 ~ 0.86
-#> log_k_M31 = -4.2
-#> eta.log_k_M31 ~ 0.75
-#> log_k1 = -2.2
-#> eta.log_k1 ~ 0.9
-#> log_k2 = -3.8
-#> eta.log_k2 ~ 1.6
-#> g_qlogis = 0.44
-#> eta.g_qlogis ~ 3.1
-#> f_DMTA_tffm0_1_qlogis = -2.1
-#> eta.f_DMTA_tffm0_1_qlogis ~ 0.3
-#> f_DMTA_tffm0_2_qlogis = -2.2
-#> eta.f_DMTA_tffm0_2_qlogis ~ 0.3
-#> f_DMTA_tffm0_3_qlogis = -2.1
-#> eta.f_DMTA_tffm0_3_qlogis ~ 0.3
-#> sigma_low_DMTA = 0.7
-#> rsd_high_DMTA = 0.026
-#> sigma_low_M23 = 0.7
-#> rsd_high_M23 = 0.026
-#> sigma_low_M27 = 0.7
-#> rsd_high_M27 = 0.026
-#> sigma_low_M31 = 0.7
-#> rsd_high_M31 = 0.026
-#> })
-#> model({
-#> DMTA_0_model = DMTA_0 + eta.DMTA_0
-#> DMTA(0) = DMTA_0_model
-#> k_M23 = exp(log_k_M23 + eta.log_k_M23)
-#> k_M27 = exp(log_k_M27 + eta.log_k_M27)
-#> k_M31 = exp(log_k_M31 + eta.log_k_M31)
-#> k1 = exp(log_k1 + eta.log_k1)
-#> k2 = exp(log_k2 + eta.log_k2)
-#> g = expit(g_qlogis + eta.g_qlogis)
-#> f_DMTA_to_M23 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis)
-#> f_DMTA_to_M23 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis)
-#> f_DMTA_to_M23 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis)
-#> f_DMTA_to_M23 = f_DMTA_tffm0_1
-#> f_DMTA_to_M27 = f_DMTA_tffm0_2 * (1 - f_DMTA_tffm0_1)
-#> f_DMTA_to_M31 = f_DMTA_tffm0_3 * (1 - f_DMTA_tffm0_2) *
-#> (1 - f_DMTA_tffm0_1)
-#> d/dt(DMTA) = -((k1 * g * exp(-k1 * time) + k2 * (1 -
-#> g) * exp(-k2 * time))/(g * exp(-k1 * time) + (1 -
-#> g) * exp(-k2 * time))) * DMTA
-#> d/dt(M23) = +f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) +
-#> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
-#> (1 - g) * exp(-k2 * time))) * DMTA - k_M23 * M23
-#> d/dt(M27) = +f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) +
-#> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
-#> (1 - g) * exp(-k2 * time))) * DMTA - k_M27 * M27 +
-#> k_M31 * M31
-#> d/dt(M31) = +f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) +
-#> k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) +
-#> (1 - g) * exp(-k2 * time))) * DMTA - k_M31 * M31
-#> DMTA ~ add(sigma_low_DMTA) + prop(rsd_high_DMTA)
-#> M23 ~ add(sigma_low_M23) + prop(rsd_high_M23)
-#> M27 ~ add(sigma_low_M27) + prop(rsd_high_M27)
-#> M31 ~ add(sigma_low_M31) + prop(rsd_high_M31)
-#> })
-#> }
-#> <environment: 0x55555fca3790>
-# The focei fit takes about four minutes on my system
-system.time(
- f_dmta_nlmixr_focei <- nlmixr(f_dmta_mkin_tc, est = "focei",
- control = nlmixr::foceiControl(print = 500))
-)
-#> Warning: number of items to replace is not a multiple of replacement length
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode
-#> ℹ Need to run with the source intact to parse comments
-#> → creating full model...
-#> → pruning branches (`if`/`else`)...
-#> ✔ done
-#> → loading into symengine environment...
-#> ✔ done
-#> → creating full model...
-#> → pruning branches (`if`/`else`)...
-#> ✔ done
-#> → loading into symengine environment...
-#> ✔ done
-#> → calculate jacobian
-#> [====|====|====|====|====|====|====|====|====|====] 0:00:01
+dmta_ds <- lapply(1:7, function(i) {
+ ds_i <- dimethenamid_2018$ds[[i]]$data
+ ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
+ ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
+ ds_i
+})
+names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
+dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
+dmta_ds[["Elliot 1"]] <- NULL
+dmta_ds[["Elliot 2"]] <- NULL
+# \dontrun{
+# We don't use DFOP for the parent compound, as this gives numerical
+# instabilities in the fits
+sfo_sfo3p <- mkinmod(
+ DMTA = mkinsub("SFO", c("M23", "M27", "M31")),
+ M23 = mkinsub("SFO"),
+ M27 = mkinsub("SFO"),
+ M31 = mkinsub("SFO", "M27", sink = FALSE),
+ quiet = TRUE
+)
+dmta_sfo_sfo3p_tc <- mmkin(list("SFO-SFO3+" = sfo_sfo3p),
+ dmta_ds, error_model = "tc", quiet = TRUE)
+print(dmta_sfo_sfo3p_tc)
+#> <mmkin> object
+#> Status of individual fits:
+#>
+#> dataset
+#> model Calke Borstel Flaach BBA 2.2 BBA 2.3 Elliot
+#> SFO-SFO3+ OK OK OK OK OK OK
+#>
+#> OK: No warnings
+# The default (test_log_parms = FALSE) gives an undue
+# influence of ill-defined rate constants that have
+# extremely small values:
+plot(mixed(dmta_sfo_sfo3p_tc), test_log_parms = FALSE)
+
+# If we disregards ill-defined rate constants, the results
+# look more plausible, but the truth is likely to be in
+# between these variants
+plot(mixed(dmta_sfo_sfo3p_tc), test_log_parms = TRUE)
+
+# We can also specify a default value for the failing
+# log parameters, to mimic FOCUS guidance
+plot(mixed(dmta_sfo_sfo3p_tc), test_log_parms = TRUE,
+ default_log_parms = log(2)/1000)
+
+# As these attempts are not satisfying, we use nonlinear mixed-effects models
+# f_dmta_nlme_tc <- nlme(dmta_sfo_sfo3p_tc)
+# nlme reaches maxIter = 50 without convergence
+f_dmta_saem_tc <- saem(dmta_sfo_sfo3p_tc)
+# I am commenting out the convergence plot as rendering them
+# with pkgdown fails (at least without further tweaks to the
+# graphics device used)
+#saemix::plot(f_dmta_saem_tc$so, plot.type = "convergence")
+summary(f_dmta_saem_tc)
+#> saemix version used for fitting: 3.1
+#> mkin version used for pre-fitting: 1.1.2
+#> R version used for fitting: 4.2.1
+#> Date of fit: Wed Aug 10 15:24:12 2022
+#> Date of summary: Wed Aug 10 15:24:12 2022
+#>
+#> Equations:
+#> d_DMTA/dt = - k_DMTA * DMTA
+#> d_M23/dt = + f_DMTA_to_M23 * k_DMTA * DMTA - k_M23 * M23
+#> d_M27/dt = + f_DMTA_to_M27 * k_DMTA * DMTA - k_M27 * M27 + k_M31 * M31
+#> d_M31/dt = + f_DMTA_to_M31 * k_DMTA * DMTA - k_M31 * M31
+#>
+#> Data:
+#> 563 observations of 4 variable(s) grouped in 6 datasets
+#>
+#> Model predictions using solution type deSolve
+#>
+#> Fitted in 791.863 s
+#> Using 300, 100 iterations and 9 chains
+#>
+#> Variance model: Two-component variance function
+#>
+#> Mean of starting values for individual parameters:
+#> DMTA_0 log_k_DMTA log_k_M23 log_k_M27 log_k_M31 f_DMTA_ilr_1
+#> 95.5662 -2.9048 -3.8130 -4.1600 -4.1486 0.1341
+#> f_DMTA_ilr_2 f_DMTA_ilr_3
+#> 0.1385 -1.6700
#>
-#> → calculate sensitivities
-#> [====|====|====|====|====|====|====|====|====|====] 0:00:03
+#> Fixed degradation parameter values:
+#> None
#>
-#> → calculate ∂(f)/∂(η)
-#> [====|====|====|====|====|====|====|====|====|====] 0:00:01
+#> Results:
#>
-#> → calculate ∂(R²)/∂(η)
-#> [====|====|====|====|====|====|====|====|====|====] 0:00:08
+#> Likelihood computed by importance sampling
+#> AIC BIC logLik
+#> 2276 2272 -1120
#>
-#> → finding duplicate expressions in inner model...
-#> [====|====|====|====|====|====|====|====|====|====] 0:00:07
+#> Optimised parameters:
+#> est. lower upper
+#> DMTA_0 88.5943 84.3961 92.7925
+#> log_k_DMTA -3.0466 -3.5609 -2.5322
+#> log_k_M23 -4.0684 -4.9340 -3.2029
+#> log_k_M27 -3.8628 -4.2627 -3.4628
+#> log_k_M31 -3.9803 -4.4804 -3.4801
+#> f_DMTA_ilr_1 0.1304 -0.2186 0.4795
+#> f_DMTA_ilr_2 0.1490 -0.2559 0.5540
+#> f_DMTA_ilr_3 -1.3970 -1.6976 -1.0964
#>
-#> → optimizing duplicate expressions in inner model...
-#> [====|====|====|====|====|====|====|====|====|====] 0:00:06
+#> Correlation:
+#> DMTA_0 l__DMTA lg__M23 lg__M27 lg__M31 f_DMTA__1 f_DMTA__2
+#> log_k_DMTA 0.0309
+#> log_k_M23 -0.0231 -0.0031
+#> log_k_M27 -0.0381 -0.0048 0.0039
+#> log_k_M31 -0.0251 -0.0031 0.0021 0.0830
+#> f_DMTA_ilr_1 -0.0046 -0.0006 0.0417 -0.0437 0.0328
+#> f_DMTA_ilr_2 -0.0008 -0.0002 0.0214 -0.0270 -0.0909 -0.0361
+#> f_DMTA_ilr_3 -0.1832 -0.0135 0.0434 0.0804 0.0395 -0.0070 0.0059
#>
-#> → finding duplicate expressions in EBE model...
-#> [====|====|====|====|====|====|====|====|====|====] 0:00:00
+#> Random effects:
+#> est. lower upper
+#> SD.DMTA_0 3.3651 -0.9649 7.6951
+#> SD.log_k_DMTA 0.6415 0.2774 1.0055
+#> SD.log_k_M23 1.0176 0.3809 1.6543
+#> SD.log_k_M27 0.4538 0.1522 0.7554
+#> SD.log_k_M31 0.5684 0.1905 0.9464
+#> SD.f_DMTA_ilr_1 0.4111 0.1524 0.6699
+#> SD.f_DMTA_ilr_2 0.4788 0.1808 0.7768
+#> SD.f_DMTA_ilr_3 0.3501 0.1316 0.5685
#>
-#> → optimizing duplicate expressions in EBE model...
-#> [====|====|====|====|====|====|====|====|====|====] 0:00:00
+#> Variance model:
+#> est. lower upper
+#> a.1 0.9349 0.8409 1.029
+#> b.1 0.1344 0.1178 0.151
#>
-#> → compiling inner model...
-#>
-#> ✔ done
-#> → finding duplicate expressions in FD model...
+#> Backtransformed parameters:
+#> est. lower upper
+#> DMTA_0 88.59431 84.396147 92.79246
+#> k_DMTA 0.04752 0.028413 0.07948
+#> k_M23 0.01710 0.007198 0.04064
+#> k_M27 0.02101 0.014084 0.03134
+#> k_M31 0.01868 0.011329 0.03080
+#> f_DMTA_to_M23 0.14498 NA NA
+#> f_DMTA_to_M27 0.12056 NA NA
+#> f_DMTA_to_M31 0.11015 NA NA
#>
-#> → optimizing duplicate expressions in FD model...
+#> Resulting formation fractions:
+#> ff
+#> DMTA_M23 0.1450
+#> DMTA_M27 0.1206
+#> DMTA_M31 0.1101
+#> DMTA_sink 0.6243
#>
-#> → compiling EBE model...
-#>
-#> ✔ done
-#> → compiling events FD model...
-#>
-#> ✔ done
-#> Model:
-#> cmt(DMTA);
-#> cmt(M23);
-#> cmt(M27);
-#> cmt(M31);
-#> rx_expr_14~ETA[1]+THETA[1];
-#> DMTA(0)=rx_expr_14;
-#> rx_expr_15~ETA[5]+THETA[5];
-#> rx_expr_16~ETA[7]+THETA[7];
-#> rx_expr_17~ETA[6]+THETA[6];
-#> rx_expr_24~exp(rx_expr_15);
-#> rx_expr_25~exp(rx_expr_17);
-#> rx_expr_29~t*rx_expr_24;
-#> rx_expr_30~t*rx_expr_25;
-#> rx_expr_31~exp(-(rx_expr_16));
-#> rx_expr_35~1+rx_expr_31;
-#> rx_expr_40~1/(rx_expr_35);
-#> rx_expr_42~(rx_expr_40);
-#> rx_expr_43~1-rx_expr_42;
-#> d/dt(DMTA)=-DMTA*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));
-#> rx_expr_18~ETA[2]+THETA[2];
-#> rx_expr_26~exp(rx_expr_18);
-#> d/dt(M23)=-rx_expr_26*M23+DMTA*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_1/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));
-#> rx_expr_19~ETA[3]+THETA[3];
-#> rx_expr_20~ETA[4]+THETA[4];
-#> rx_expr_21~1-f_DMTA_tffm0_1;
-#> rx_expr_27~exp(rx_expr_19);
-#> rx_expr_28~exp(rx_expr_20);
-#> d/dt(M27)=-rx_expr_27*M27+rx_expr_28*M31+DMTA*(rx_expr_21)*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_2/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));
-#> rx_expr_22~1-f_DMTA_tffm0_2;
-#> d/dt(M31)=-rx_expr_28*M31+DMTA*(rx_expr_22)*(rx_expr_21)*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_3/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));
-#> rx_expr_0~CMT==4;
-#> rx_expr_1~CMT==2;
-#> rx_expr_2~CMT==1;
-#> rx_expr_3~CMT==3;
-#> rx_expr_4~1-(rx_expr_0);
-#> rx_expr_5~1-(rx_expr_1);
-#> rx_expr_6~1-(rx_expr_3);
-#> rx_yj_~(rx_expr_4)*((2*(rx_expr_5)*(rx_expr_2)+2*(rx_expr_1))*(rx_expr_6)+2*(rx_expr_3))+2*(rx_expr_0);
-#> rx_expr_7~(rx_expr_1);
-#> rx_expr_8~(rx_expr_3);
-#> rx_expr_9~(rx_expr_0);
-#> rx_expr_13~(rx_expr_5);
-#> rx_expr_32~rx_expr_13*(rx_expr_2);
-#> rx_lambda_~(rx_expr_4)*((rx_expr_32+rx_expr_7)*(rx_expr_6)+rx_expr_8)+rx_expr_9;
-#> rx_hi_~(rx_expr_4)*((rx_expr_32+rx_expr_7)*(rx_expr_6)+rx_expr_8)+rx_expr_9;
-#> rx_low_~0;
-#> rx_expr_10~M31*(rx_expr_0);
-#> rx_expr_11~M27*(rx_expr_3);
-#> rx_expr_12~M23*(rx_expr_1);
-#> rx_expr_23~DMTA*(rx_expr_5);
-#> rx_expr_36~rx_expr_23*(rx_expr_2);
-#> rx_pred_=(rx_expr_4)*((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)));
-#> rx_expr_33~Rx_pow_di(THETA[12],2);
-#> rx_expr_34~Rx_pow_di(THETA[11],2);
-#> rx_r_=(rx_expr_4)*((rx_expr_33*Rx_pow_di(((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6)),2)+rx_expr_34)*(rx_expr_3)+((rx_expr_1)*(rx_expr_33*Rx_pow_di(((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2)),2)+rx_expr_34)+(rx_expr_33*Rx_pow_di(((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2)),2)+rx_expr_34)*(rx_expr_5)*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_33*Rx_pow_di(((rx_expr_4)*((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))),2)+rx_expr_34);
-#> DMTA_0=THETA[1];
-#> log_k_M23=THETA[2];
-#> log_k_M27=THETA[3];
-#> log_k_M31=THETA[4];
-#> log_k1=THETA[5];
-#> log_k2=THETA[6];
-#> g_qlogis=THETA[7];
-#> f_DMTA_tffm0_1_qlogis=THETA[8];
-#> f_DMTA_tffm0_2_qlogis=THETA[9];
-#> f_DMTA_tffm0_3_qlogis=THETA[10];
-#> sigma_low=THETA[11];
-#> rsd_high=THETA[12];
-#> eta.DMTA_0=ETA[1];
-#> eta.log_k_M23=ETA[2];
-#> eta.log_k_M27=ETA[3];
-#> eta.log_k_M31=ETA[4];
-#> eta.log_k1=ETA[5];
-#> eta.log_k2=ETA[6];
-#> eta.g_qlogis=ETA[7];
-#> eta.f_DMTA_tffm0_1_qlogis=ETA[8];
-#> eta.f_DMTA_tffm0_2_qlogis=ETA[9];
-#> eta.f_DMTA_tffm0_3_qlogis=ETA[10];
-#> DMTA_0_model=rx_expr_14;
-#> k_M23=rx_expr_26;
-#> k_M27=rx_expr_27;
-#> k_M31=rx_expr_28;
-#> k1=rx_expr_24;
-#> k2=rx_expr_25;
-#> g=1/(rx_expr_35);
-#> f_DMTA_to_M23=1/(1+exp(-(ETA[8]+THETA[8])));
-#> f_DMTA_to_M23=1/(1+exp(-(ETA[9]+THETA[9])));
-#> f_DMTA_to_M23=1/(1+exp(-(ETA[10]+THETA[10])));
-#> f_DMTA_to_M23=f_DMTA_tffm0_1;
-#> f_DMTA_to_M27=(rx_expr_21)*f_DMTA_tffm0_2;
-#> f_DMTA_to_M31=(rx_expr_22)*(rx_expr_21)*f_DMTA_tffm0_3;
-#> tad=tad();
-#> dosenum=dosenum();
-#> Needed Covariates:
-#> [1] "f_DMTA_tffm0_1" "f_DMTA_tffm0_2" "f_DMTA_tffm0_3" "CMT"
-#> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.
-#> Timing stopped at: 119.8 9.331 129.2
-#> Timing stopped at: 120 9.331 129.3
-summary(f_dmta_nlmixr_focei)
-#> Error in summary(f_dmta_nlmixr_focei): object 'f_dmta_nlmixr_focei' not found
-plot(f_dmta_nlmixr_focei)
-#> Error in plot(f_dmta_nlmixr_focei): object 'f_dmta_nlmixr_focei' not found
-# Using saemix takes about 18 minutes
-system.time(
- f_dmta_saemix <- saem(f_dmta_mkin_tc, test_log_parms = TRUE)
-)
-#> DINTDY- T (=R1) illegal
-#> In above message, R1 = 115.507
-#>
-#> T not in interval TCUR - HU (= R1) to TCUR (=R2)
-#> In above message, R1 = 112.133, R2 = 113.577
-#>
-#> DLSODA- At T (=R1), too much accuracy requested
-#> for precision of machine.. See TOLSF (=R2)
-#> In above message, R1 = 55.3899, R2 = nan
-#>
-#> Error in out[available, var]: (subscript) logical subscript too long
-#> Timing stopped at: 11.84 0.008 11.85
-#> Timing stopped at: 12.16 0.008 12.17
-
-# nlmixr with est = "saem" is pretty fast with default iteration numbers, most
-# of the time (about 2.5 minutes) is spent for calculating the log likelihood at the end
-# The likelihood calculated for the nlmixr fit is much lower than that found by saemix
-# Also, the trace plot and the plot of the individual predictions is not
-# convincing for the parent. It seems we are fitting an overparameterised
-# model, so the result we get strongly depends on starting parameters and control settings.
-system.time(
- f_dmta_nlmixr_saem <- nlmixr(f_dmta_mkin_tc, est = "saem",
- control = nlmixr::saemControl(print = 500, logLik = TRUE, nmc = 9))
-)
-#> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)
-#> ℹ parameter labels from comments are typically ignored in non-interactive mode
-#> ℹ Need to run with the source intact to parse comments
-#> Error in eval(substitute(expr), data, enclos = parent.frame()): Cannot run SAEM since some of the parameters are not mu-referenced (eta.f_DMTA_tffm0_1_qlogis, eta.f_DMTA_tffm0_2_qlogis, eta.f_DMTA_tffm0_3_qlogis)
-#> Timing stopped at: 0.892 0.004 0.896
-#> Timing stopped at: 1.096 0.005 1.1
-traceplot(f_dmta_nlmixr_saem$nm)
-#> Error in traceplot(f_dmta_nlmixr_saem$nm): could not find function "traceplot"
-summary(f_dmta_nlmixr_saem)
-#> Error in summary(f_dmta_nlmixr_saem): object 'f_dmta_nlmixr_saem' not found
-plot(f_dmta_nlmixr_saem)
-#> Error in plot(f_dmta_nlmixr_saem): object 'f_dmta_nlmixr_saem' not found
-# }
+#> Estimated disappearance times:
+#> DT50 DT90
+#> DMTA 14.59 48.45
+#> M23 40.52 134.62
+#> M27 32.99 109.60
+#> M31 37.11 123.26
+# As the confidence interval for the random effects of DMTA_0
+# includes zero, we could try an alternative model without
+# such random effects
+# f_dmta_saem_tc_2 <- saem(dmta_sfo_sfo3p_tc,
+# covariance.model = diag(c(0, rep(1, 7))))
+# saemix::plot(f_dmta_saem_tc_2$so, plot.type = "convergence")
+# This does not perform better judged by AIC and BIC
+# saemix::compare.saemix(f_dmta_saem_tc$so, f_dmta_saem_tc_2$so)
+# }