From af7c6de4db9981ac814362c441fbac22c8faa2d7 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Thu, 24 Nov 2022 09:02:26 +0100
Subject: Start online docs of the development version
---
docs/dev/reference/dimethenamid_2018.html | 126 +++++++++++++++++-------------
1 file changed, 70 insertions(+), 56 deletions(-)
(limited to 'docs/dev/reference/dimethenamid_2018.html')
diff --git a/docs/dev/reference/dimethenamid_2018.html b/docs/dev/reference/dimethenamid_2018.html
index 2454a609..96ec73c6 100644
--- a/docs/dev/reference/dimethenamid_2018.html
+++ b/docs/dev/reference/dimethenamid_2018.html
@@ -22,7 +22,7 @@ constrained by data protection regulations.">
mkin
- 1.1.2
+ 1.2.2
@@ -49,11 +49,14 @@ constrained by data protection regulations.">Example evaluations of dimethenamid data from 2018 with nonlinear mixed-effects models
- Example evaluation of FOCUS Example Dataset Z
+ Short demo of the multistart method
Performance benefit by using compiled model definitions in mkin
+
+ Example evaluation of FOCUS Example Dataset Z
+
Calculation of time weighted average concentrations with mkin
@@ -61,7 +64,10 @@ constrained by data protection regulations.">Example evaluation of NAFTA SOP Attachment examples
- Some benchmark timings
+ Benchmark timings for mkin
+
+
+ Benchmark timings for saem.mmkin
@@ -180,17 +186,15 @@ specific pieces of information in the comments.
# influence of ill-defined rate constants that have
# extremely small values:
plot(mixed(dmta_sfo_sfo3p_tc), test_log_parms = FALSE)
-
# If we disregards ill-defined rate constants, the results
# look more plausible, but the truth is likely to be in
# between these variants
plot(mixed(dmta_sfo_sfo3p_tc), test_log_parms = TRUE)
-
+
# We can also specify a default value for the failing
# log parameters, to mimic FOCUS guidance
plot(mixed(dmta_sfo_sfo3p_tc), test_log_parms = TRUE,
default_log_parms = log(2)/1000)
-
# As these attempts are not satisfying, we use nonlinear mixed-effects models
# f_dmta_nlme_tc <- nlme(dmta_sfo_sfo3p_tc)
# nlme reaches maxIter = 50 without convergence
@@ -200,11 +204,11 @@ specific pieces of information in the comments.
# graphics device used)
#saemix::plot(f_dmta_saem_tc$so, plot.type = "convergence")
summary(f_dmta_saem_tc)
-#> saemix version used for fitting: 3.1
-#> mkin version used for pre-fitting: 1.1.2
-#> R version used for fitting: 4.2.1
-#> Date of fit: Fri Sep 16 10:29:07 2022
-#> Date of summary: Fri Sep 16 10:29:07 2022
+#> saemix version used for fitting: 3.2
+#> mkin version used for pre-fitting: 1.2.2
+#> R version used for fitting: 4.2.2
+#> Date of fit: Thu Nov 24 08:05:16 2022
+#> Date of summary: Thu Nov 24 08:05:16 2022
#>
#> Equations:
#> d_DMTA/dt = - k_DMTA * DMTA
@@ -217,7 +221,7 @@ specific pieces of information in the comments.
#>
#> Model predictions using solution type deSolve
#>
-#> Fitted in 797.539 s
+#> Fitted in 819.725 s
#> Using 300, 100 iterations and 9 chains
#>
#> Variance model: Two-component variance function
@@ -235,69 +239,79 @@ specific pieces of information in the comments.
#>
#> Likelihood computed by importance sampling
#> AIC BIC logLik
-#> 2276 2272 -1120
+#> 2276 2273 -1120
#>
#> Optimised parameters:
-#> est. lower upper
-#> DMTA_0 88.5943 84.3961 92.7925
-#> log_k_DMTA -3.0466 -3.5609 -2.5322
-#> log_k_M23 -4.0684 -4.9340 -3.2029
-#> log_k_M27 -3.8628 -4.2627 -3.4628
-#> log_k_M31 -3.9803 -4.4804 -3.4801
-#> f_DMTA_ilr_1 0.1304 -0.2186 0.4795
-#> f_DMTA_ilr_2 0.1490 -0.2559 0.5540
-#> f_DMTA_ilr_3 -1.3970 -1.6976 -1.0964
+#> est. lower upper
+#> DMTA_0 88.3192 83.8656 92.7729
+#> log_k_DMTA -3.0530 -3.5686 -2.5373
+#> log_k_M23 -4.0620 -4.9202 -3.2038
+#> log_k_M27 -3.8633 -4.2668 -3.4598
+#> log_k_M31 -3.9731 -4.4763 -3.4699
+#> f_DMTA_ilr_1 0.1346 -0.2150 0.4841
+#> f_DMTA_ilr_2 0.1449 -0.2593 0.5491
+#> f_DMTA_ilr_3 -1.3882 -1.7011 -1.0753
+#> a.1 0.9156 0.8229 1.0084
+#> b.1 0.1383 0.1215 0.1551
+#> SD.DMTA_0 3.7280 -0.6951 8.1511
+#> SD.log_k_DMTA 0.6431 0.2781 1.0080
+#> SD.log_k_M23 1.0096 0.3782 1.6409
+#> SD.log_k_M27 0.4583 0.1541 0.7625
+#> SD.log_k_M31 0.5738 0.1942 0.9533
+#> SD.f_DMTA_ilr_1 0.4119 0.1528 0.6709
+#> SD.f_DMTA_ilr_2 0.4780 0.1806 0.7754
+#> SD.f_DMTA_ilr_3 0.3657 0.1383 0.5931
#>
#> Correlation:
#> DMTA_0 l__DMTA lg__M23 lg__M27 lg__M31 f_DMTA__1 f_DMTA__2
-#> log_k_DMTA 0.0309
-#> log_k_M23 -0.0231 -0.0031
-#> log_k_M27 -0.0381 -0.0048 0.0039
-#> log_k_M31 -0.0251 -0.0031 0.0021 0.0830
-#> f_DMTA_ilr_1 -0.0046 -0.0006 0.0417 -0.0437 0.0328
-#> f_DMTA_ilr_2 -0.0008 -0.0002 0.0214 -0.0270 -0.0909 -0.0361
-#> f_DMTA_ilr_3 -0.1832 -0.0135 0.0434 0.0804 0.0395 -0.0070 0.0059
+#> log_k_DMTA 0.0303
+#> log_k_M23 -0.0229 -0.0032
+#> log_k_M27 -0.0372 -0.0049 0.0041
+#> log_k_M31 -0.0245 -0.0032 0.0022 0.0815
+#> f_DMTA_ilr_1 -0.0046 -0.0006 0.0415 -0.0433 0.0324
+#> f_DMTA_ilr_2 -0.0008 -0.0002 0.0214 -0.0267 -0.0893 -0.0361
+#> f_DMTA_ilr_3 -0.1755 -0.0135 0.0423 0.0775 0.0377 -0.0066 0.0060
#>
#> Random effects:
#> est. lower upper
-#> SD.DMTA_0 3.3651 -0.9649 7.6951
-#> SD.log_k_DMTA 0.6415 0.2774 1.0055
-#> SD.log_k_M23 1.0176 0.3809 1.6543
-#> SD.log_k_M27 0.4538 0.1522 0.7554
-#> SD.log_k_M31 0.5684 0.1905 0.9464
-#> SD.f_DMTA_ilr_1 0.4111 0.1524 0.6699
-#> SD.f_DMTA_ilr_2 0.4788 0.1808 0.7768
-#> SD.f_DMTA_ilr_3 0.3501 0.1316 0.5685
+#> SD.DMTA_0 3.7280 -0.6951 8.1511
+#> SD.log_k_DMTA 0.6431 0.2781 1.0080
+#> SD.log_k_M23 1.0096 0.3782 1.6409
+#> SD.log_k_M27 0.4583 0.1541 0.7625
+#> SD.log_k_M31 0.5738 0.1942 0.9533
+#> SD.f_DMTA_ilr_1 0.4119 0.1528 0.6709
+#> SD.f_DMTA_ilr_2 0.4780 0.1806 0.7754
+#> SD.f_DMTA_ilr_3 0.3657 0.1383 0.5931
#>
#> Variance model:
-#> est. lower upper
-#> a.1 0.9349 0.8409 1.029
-#> b.1 0.1344 0.1178 0.151
+#> est. lower upper
+#> a.1 0.9156 0.8229 1.0084
+#> b.1 0.1383 0.1215 0.1551
#>
#> Backtransformed parameters:
#> est. lower upper
-#> DMTA_0 88.59431 84.396147 92.79246
-#> k_DMTA 0.04752 0.028413 0.07948
-#> k_M23 0.01710 0.007198 0.04064
-#> k_M27 0.02101 0.014084 0.03134
-#> k_M31 0.01868 0.011329 0.03080
-#> f_DMTA_to_M23 0.14498 NA NA
-#> f_DMTA_to_M27 0.12056 NA NA
-#> f_DMTA_to_M31 0.11015 NA NA
+#> DMTA_0 88.31924 83.865625 92.77286
+#> k_DMTA 0.04722 0.028196 0.07908
+#> k_M23 0.01721 0.007298 0.04061
+#> k_M27 0.02100 0.014027 0.03144
+#> k_M31 0.01882 0.011375 0.03112
+#> f_DMTA_to_M23 0.14608 NA NA
+#> f_DMTA_to_M27 0.12077 NA NA
+#> f_DMTA_to_M31 0.11123 NA NA
#>
#> Resulting formation fractions:
#> ff
-#> DMTA_M23 0.1450
-#> DMTA_M27 0.1206
-#> DMTA_M31 0.1101
-#> DMTA_sink 0.6243
+#> DMTA_M23 0.1461
+#> DMTA_M27 0.1208
+#> DMTA_M31 0.1112
+#> DMTA_sink 0.6219
#>
#> Estimated disappearance times:
#> DT50 DT90
-#> DMTA 14.59 48.45
-#> M23 40.52 134.62
-#> M27 32.99 109.60
-#> M31 37.11 123.26
+#> DMTA 14.68 48.76
+#> M23 40.27 133.76
+#> M27 33.01 109.65
+#> M31 36.84 122.38
# As the confidence interval for the random effects of DMTA_0
# includes zero, we could try an alternative model without
# such random effects
--
cgit v1.2.1