From ff83d8b2ba623513d92ac90fac4a1b0ec98c2cb5 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Tue, 5 Oct 2021 17:33:52 +0200
Subject: Update docs
---
docs/dev/reference/dimethenamid_2018.html | 463 +++++++-----------------------
1 file changed, 108 insertions(+), 355 deletions(-)
(limited to 'docs/dev/reference/dimethenamid_2018.html')
diff --git a/docs/dev/reference/dimethenamid_2018.html b/docs/dev/reference/dimethenamid_2018.html
index 919e9363..60c15ade 100644
--- a/docs/dev/reference/dimethenamid_2018.html
+++ b/docs/dev/reference/dimethenamid_2018.html
@@ -222,7 +222,7 @@ specific pieces of information in the comments.
list("DFOP-SFO3+" = dfop_sfo3_plus),
dmta_ds, quiet = TRUE, error_model = "tc")
nlmixr_model(f_dmta_mkin_tc)
-#> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)
#> function ()
+
#> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)
#> Warning: number of items to replace is not a multiple of replacement length
#> function ()
#> {
#> ini({
#> DMTA_0 = 98.7132391714013
@@ -263,9 +263,9 @@ specific pieces of information in the comments.
#> k1 = exp(log_k1 + eta.log_k1)
#> k2 = exp(log_k2 + eta.log_k2)
#> g = expit(g_qlogis + eta.g_qlogis)
-#> f_DMTA_tffm0_1 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis)
-#> f_DMTA_tffm0_2 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis)
-#> f_DMTA_tffm0_3 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis)
+#> f_DMTA_to_M23 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis)
+#> f_DMTA_to_M23 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis)
+#> f_DMTA_to_M23 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis)
#> f_DMTA_to_M23 = f_DMTA_tffm0_1
#> f_DMTA_to_M27 = f_DMTA_tffm0_2 * (1 - f_DMTA_tffm0_1)
#> f_DMTA_to_M31 = f_DMTA_tffm0_3 * (1 - f_DMTA_tffm0_2) *
@@ -289,205 +289,122 @@ specific pieces of information in the comments.
#> M31 ~ add(sigma_low_M31) + prop(rsd_high_M31)
#> })
#> }
-#> <environment: 0x555559e97ac0>
# The focei fit takes about four minutes on my system
+#> <environment: 0x555559d89920>
#> ℹ parameter labels from comments are typically ignored in non-interactive mode
#> ℹ Need to run with the source intact to parse comments
#> → creating full model...
#> → pruning branches (`if`/`else`)...
#> ✔ done
#> → loading into symengine environment...
#> ✔ done
#> → creating full model...
#> → pruning branches (`if`/`else`)...
#> ✔ done
#> → loading into symengine environment...
#> ✔ done
#> → calculate jacobian
#> [====|====|====|====|====|====|====|====|====|====] 0:00:02
+
#> Warning: number of items to replace is not a multiple of replacement length
#> ℹ parameter labels from comments are typically ignored in non-interactive mode
#> ℹ Need to run with the source intact to parse comments
#> → creating full model...
#> → pruning branches (`if`/`else`)...
#> ✔ done
#> → loading into symengine environment...
#> ✔ done
#> → creating full model...
#> → pruning branches (`if`/`else`)...
#> ✔ done
#> → loading into symengine environment...
#> ✔ done
#> → calculate jacobian
#> [====|====|====|====|====|====|====|====|====|====] 0:00:02
#>
#> → calculate sensitivities
#> [====|====|====|====|====|====|====|====|====|====] 0:00:04
#>
#> → calculate ∂(f)/∂(η)
#> [====|====|====|====|====|====|====|====|====|====] 0:00:01
-#>
#> → calculate ∂(R²)/∂(η)
#> [====|====|====|====|====|====|====|====|====|====] 0:00:08
+#>
#> → calculate ∂(R²)/∂(η)
#> [====|====|====|====|====|====|====|====|====|====] 0:00:09
#>
#> → finding duplicate expressions in inner model...
#> [====|====|====|====|====|====|====|====|====|====] 0:00:07
-#>
#> → optimizing duplicate expressions in inner model...
#> [====|====|====|====|====|====|====|====|====|====] 0:00:07
+#>
#> → optimizing duplicate expressions in inner model...
#> [====|====|====|====|====|====|====|====|====|====] 0:00:06
#>
#> → finding duplicate expressions in EBE model...
#> [====|====|====|====|====|====|====|====|====|====] 0:00:00
#>
#> → optimizing duplicate expressions in EBE model...
#> [====|====|====|====|====|====|====|====|====|====] 0:00:00
-#>
#> → compiling inner model...
#>
#> ✔ done
#> → finding duplicate expressions in FD model...
#>
#> → optimizing duplicate expressions in FD model...
#>
#> → compiling EBE model...
#>
#> ✔ done
#> → compiling events FD model...
#>
#> ✔ done
#> Needed Covariates:
#> [1] "CMT"
#> RxODE 1.1.1 using 8 threads (see ?getRxThreads)
-#> no cache: create with `rxCreateCache()`
#> Key: U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#> F: Forward difference gradient approximation
-#> C: Central difference gradient approximation
-#> M: Mixed forward and central difference gradient approximation
-#> Unscaled parameters for Omegas=chol(solve(omega));
-#> Diagonals are transformed, as specified by foceiControl(diagXform=)
-#> |-----+---------------+-----------+-----------+-----------+-----------|
-#> | #| Objective Fun | DMTA_0 | log_k_M23 | log_k_M27 | log_k_M31 |
-#> |.....................| log_k1 | log_k2 | g_qlogis |f_DMTA_tffm0_1_qlogis |
-#> |.....................|f_DMTA_tffm0_2_qlogis |f_DMTA_tffm0_3_qlogis | sigma_low | rsd_high |
-#> |.....................| o1 | o2 | o3 | o4 |
-#> |.....................| o5 | o6 | o7 | o8 |
-#> |.....................| o9 | o10 |...........|...........|
-#> calculating covariance matrix
-#> done
#> Calculating residuals/tables
#> done
#> Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))
#> Warning: last objective function was not at minimum, possible problems in optimization
#> Warning: S matrix non-positive definite
#> Warning: using R matrix to calculate covariance
#> Warning: gradient problems with initial estimate and covariance; see $scaleInfo
#> user system elapsed
-#> 230.015 8.962 238.957
#> nlmixr version used for fitting: 2.0.5
-#> mkin version used for pre-fitting: 1.1.0
-#> R version used for fitting: 4.1.1
-#> Date of fit: Thu Sep 16 14:06:55 2021
-#> Date of summary: Thu Sep 16 14:06:55 2021
-#>
-#> Equations:
-#> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
-#> time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
-#> * DMTA
-#> d_M23/dt = + f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
-#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
-#> exp(-k2 * time))) * DMTA - k_M23 * M23
-#> d_M27/dt = + f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
-#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
-#> exp(-k2 * time))) * DMTA - k_M27 * M27 + k_M31 * M31
-#> d_M31/dt = + f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
-#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
-#> exp(-k2 * time))) * DMTA - k_M31 * M31
-#>
-#> Data:
-#> 563 observations of 4 variable(s) grouped in 6 datasets
-#>
-#> Degradation model predictions using RxODE
-#>
-#> Fitted in 238.792 s
-#>
-#> Variance model: Two-component variance function
-#>
-#> Mean of starting values for individual parameters:
-#> DMTA_0 log_k_M23 log_k_M27 log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2
-#> 98.7132 -3.9216 -4.3306 -4.2442 0.1376 0.1388
-#> f_DMTA_ilr_3 log_k1 log_k2 g_qlogis
-#> -1.7554 -2.2352 -3.7758 0.4363
-#>
-#> Mean of starting values for error model parameters:
-#> sigma_low rsd_high
-#> 0.70012 0.02577
-#>
-#> Fixed degradation parameter values:
-#> None
-#>
-#> Results:
-#>
-#> Likelihood calculated by focei
-#> AIC BIC logLik
-#> 1918 2014 -937.2
-#>
-#> Optimised parameters:
-#> est. lower upper
-#> DMTA_0 98.7132 98.6801 98.7464
-#> log_k_M23 -3.9216 -3.9235 -3.9198
-#> log_k_M27 -4.3306 -4.3326 -4.3286
-#> log_k_M31 -4.2442 -4.2461 -4.2422
-#> log_k1 -2.2352 -2.2364 -2.2340
-#> log_k2 -3.7758 -3.7776 -3.7740
-#> g_qlogis 0.4363 0.4358 0.4368
-#> f_DMTA_tffm0_1_qlogis -2.0915 -2.0926 -2.0903
-#> f_DMTA_tffm0_2_qlogis -2.1788 -2.1800 -2.1776
-#> f_DMTA_tffm0_3_qlogis -2.1404 -2.1415 -2.1392
-#>
-#> Correlation:
-#> DMTA_0 l__M23 l__M27 l__M31 log_k1 log_k2 g_qlgs
-#> log_k_M23 0
-#> log_k_M27 0 0
-#> log_k_M31 0 0 0
-#> log_k1 0 0 0 0
-#> log_k2 0 0 0 0 0
-#> g_qlogis 0 0 0 0 0 0
-#> f_DMTA_tffm0_1_qlogis 0 0 0 0 0 0 0
-#> f_DMTA_tffm0_2_qlogis 0 0 0 0 0 0 0
-#> f_DMTA_tffm0_3_qlogis 0 0 0 0 0 0 0
-#> f_DMTA_0_1 f_DMTA_0_2
-#> log_k_M23
-#> log_k_M27
-#> log_k_M31
-#> log_k1
-#> log_k2
-#> g_qlogis
-#> f_DMTA_tffm0_1_qlogis
-#> f_DMTA_tffm0_2_qlogis 0
-#> f_DMTA_tffm0_3_qlogis 0 0
-#>
-#> Random effects (omega):
-#> eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31
-#> eta.DMTA_0 2.327 0.0000 0.0000 0.0000
-#> eta.log_k_M23 0.000 0.5493 0.0000 0.0000
-#> eta.log_k_M27 0.000 0.0000 0.8552 0.0000
-#> eta.log_k_M31 0.000 0.0000 0.0000 0.7457
-#> eta.log_k1 0.000 0.0000 0.0000 0.0000
-#> eta.log_k2 0.000 0.0000 0.0000 0.0000
-#> eta.g_qlogis 0.000 0.0000 0.0000 0.0000
-#> eta.f_DMTA_tffm0_1_qlogis 0.000 0.0000 0.0000 0.0000
-#> eta.f_DMTA_tffm0_2_qlogis 0.000 0.0000 0.0000 0.0000
-#> eta.f_DMTA_tffm0_3_qlogis 0.000 0.0000 0.0000 0.0000
-#> eta.log_k1 eta.log_k2 eta.g_qlogis
-#> eta.DMTA_0 0.000 0.000 0.000
-#> eta.log_k_M23 0.000 0.000 0.000
-#> eta.log_k_M27 0.000 0.000 0.000
-#> eta.log_k_M31 0.000 0.000 0.000
-#> eta.log_k1 0.901 0.000 0.000
-#> eta.log_k2 0.000 1.577 0.000
-#> eta.g_qlogis 0.000 0.000 3.102
-#> eta.f_DMTA_tffm0_1_qlogis 0.000 0.000 0.000
-#> eta.f_DMTA_tffm0_2_qlogis 0.000 0.000 0.000
-#> eta.f_DMTA_tffm0_3_qlogis 0.000 0.000 0.000
-#> eta.f_DMTA_tffm0_1_qlogis eta.f_DMTA_tffm0_2_qlogis
-#> eta.DMTA_0 0.0 0.0
-#> eta.log_k_M23 0.0 0.0
-#> eta.log_k_M27 0.0 0.0
-#> eta.log_k_M31 0.0 0.0
-#> eta.log_k1 0.0 0.0
-#> eta.log_k2 0.0 0.0
-#> eta.g_qlogis 0.0 0.0
-#> eta.f_DMTA_tffm0_1_qlogis 0.3 0.0
-#> eta.f_DMTA_tffm0_2_qlogis 0.0 0.3
-#> eta.f_DMTA_tffm0_3_qlogis 0.0 0.0
-#> eta.f_DMTA_tffm0_3_qlogis
-#> eta.DMTA_0 0.0
-#> eta.log_k_M23 0.0
-#> eta.log_k_M27 0.0
-#> eta.log_k_M31 0.0
-#> eta.log_k1 0.0
-#> eta.log_k2 0.0
-#> eta.g_qlogis 0.0
-#> eta.f_DMTA_tffm0_1_qlogis 0.0
-#> eta.f_DMTA_tffm0_2_qlogis 0.0
-#> eta.f_DMTA_tffm0_3_qlogis 0.3
-#>
-#> Variance model:
-#> sigma_low rsd_high
-#> 0.70012 0.02577
-#>
-#> Backtransformed parameters:
-#> est. lower upper
-#> DMTA_0 98.71324 98.68012 98.74636
-#> k_M23 0.01981 0.01977 0.01985
-#> k_M27 0.01316 0.01313 0.01319
-#> k_M31 0.01435 0.01432 0.01438
-#> f_DMTA_to_M23 0.10993 NA NA
-#> f_DMTA_to_M27 0.09049 NA NA
-#> f_DMTA_to_M31 0.08414 NA NA
-#> k1 0.10698 0.10685 0.10710
-#> k2 0.02292 0.02288 0.02296
-#> g 0.60738 0.60725 0.60751
-#>
-#> Resulting formation fractions:
-#> ff
-#> DMTA_M23 0.10993
-#> DMTA_M27 0.09049
-#> DMTA_M31 0.08414
-#> DMTA_sink 0.71543
-#>
-#> Estimated disappearance times:
-#> DT50 DT90 DT50back DT50_k1 DT50_k2
-#> DMTA 10.72 60.1 18.09 6.48 30.24
-#> M23 34.99 116.2 NA NA NA
-#> M27 52.67 175.0 NA NA NA
-#> M31 48.31 160.5 NA NA NA
# Using saemix takes about 18 minutes
+#>
#> → compiling inner model...
#>
#> ✔ done
#> → finding duplicate expressions in FD model...
#>
#> → optimizing duplicate expressions in FD model...
#>
#> → compiling EBE model...
#>
#> ✔ done
#> → compiling events FD model...
#>
#> ✔ done
#> Model:
#> cmt(DMTA);
+#> cmt(M23);
+#> cmt(M27);
+#> cmt(M31);
+#> rx_expr_14~ETA[1]+THETA[1];
+#> DMTA(0)=rx_expr_14;
+#> rx_expr_15~ETA[5]+THETA[5];
+#> rx_expr_16~ETA[7]+THETA[7];
+#> rx_expr_17~ETA[6]+THETA[6];
+#> rx_expr_24~exp(rx_expr_15);
+#> rx_expr_25~exp(rx_expr_17);
+#> rx_expr_29~t*rx_expr_24;
+#> rx_expr_30~t*rx_expr_25;
+#> rx_expr_31~exp(-(rx_expr_16));
+#> rx_expr_35~1+rx_expr_31;
+#> rx_expr_40~1/(rx_expr_35);
+#> rx_expr_42~(rx_expr_40);
+#> rx_expr_43~1-rx_expr_42;
+#> d/dt(DMTA)=-DMTA*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));
+#> rx_expr_18~ETA[2]+THETA[2];
+#> rx_expr_26~exp(rx_expr_18);
+#> d/dt(M23)=-rx_expr_26*M23+DMTA*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_1/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));
+#> rx_expr_19~ETA[3]+THETA[3];
+#> rx_expr_20~ETA[4]+THETA[4];
+#> rx_expr_21~1-f_DMTA_tffm0_1;
+#> rx_expr_27~exp(rx_expr_19);
+#> rx_expr_28~exp(rx_expr_20);
+#> d/dt(M27)=-rx_expr_27*M27+rx_expr_28*M31+DMTA*(rx_expr_21)*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_2/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));
+#> rx_expr_22~1-f_DMTA_tffm0_2;
+#> d/dt(M31)=-rx_expr_28*M31+DMTA*(rx_expr_22)*(rx_expr_21)*(exp(rx_expr_15-rx_expr_29)/(rx_expr_35)+exp(rx_expr_17-rx_expr_30)*(rx_expr_43))*f_DMTA_tffm0_3/(exp(-t*rx_expr_24)/(rx_expr_35)+exp(-t*rx_expr_25)*(rx_expr_43));
+#> rx_expr_0~CMT==4;
+#> rx_expr_1~CMT==2;
+#> rx_expr_2~CMT==1;
+#> rx_expr_3~CMT==3;
+#> rx_expr_4~1-(rx_expr_0);
+#> rx_expr_5~1-(rx_expr_1);
+#> rx_expr_6~1-(rx_expr_3);
+#> rx_yj_~(rx_expr_4)*((2*(rx_expr_5)*(rx_expr_2)+2*(rx_expr_1))*(rx_expr_6)+2*(rx_expr_3))+2*(rx_expr_0);
+#> rx_expr_7~(rx_expr_1);
+#> rx_expr_8~(rx_expr_3);
+#> rx_expr_9~(rx_expr_0);
+#> rx_expr_13~(rx_expr_5);
+#> rx_expr_32~rx_expr_13*(rx_expr_2);
+#> rx_lambda_~(rx_expr_4)*((rx_expr_32+rx_expr_7)*(rx_expr_6)+rx_expr_8)+rx_expr_9;
+#> rx_hi_~(rx_expr_4)*((rx_expr_32+rx_expr_7)*(rx_expr_6)+rx_expr_8)+rx_expr_9;
+#> rx_low_~0;
+#> rx_expr_10~M31*(rx_expr_0);
+#> rx_expr_11~M27*(rx_expr_3);
+#> rx_expr_12~M23*(rx_expr_1);
+#> rx_expr_23~DMTA*(rx_expr_5);
+#> rx_expr_36~rx_expr_23*(rx_expr_2);
+#> rx_pred_=(rx_expr_4)*((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)));
+#> rx_expr_33~Rx_pow_di(THETA[12],2);
+#> rx_expr_34~Rx_pow_di(THETA[11],2);
+#> rx_r_=(rx_expr_4)*((rx_expr_33*Rx_pow_di(((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6)),2)+rx_expr_34)*(rx_expr_3)+((rx_expr_1)*(rx_expr_33*Rx_pow_di(((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2)),2)+rx_expr_34)+(rx_expr_33*Rx_pow_di(((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2)),2)+rx_expr_34)*(rx_expr_5)*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_33*Rx_pow_di(((rx_expr_4)*((rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_3)+((rx_expr_1)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))+(rx_expr_5)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))*(rx_expr_2))*(rx_expr_6))+(rx_expr_0)*(rx_expr_10+(rx_expr_4)*(rx_expr_11+(rx_expr_12+rx_expr_36)*(rx_expr_6)))),2)+rx_expr_34);
+#> DMTA_0=THETA[1];
+#> log_k_M23=THETA[2];
+#> log_k_M27=THETA[3];
+#> log_k_M31=THETA[4];
+#> log_k1=THETA[5];
+#> log_k2=THETA[6];
+#> g_qlogis=THETA[7];
+#> f_DMTA_tffm0_1_qlogis=THETA[8];
+#> f_DMTA_tffm0_2_qlogis=THETA[9];
+#> f_DMTA_tffm0_3_qlogis=THETA[10];
+#> sigma_low=THETA[11];
+#> rsd_high=THETA[12];
+#> eta.DMTA_0=ETA[1];
+#> eta.log_k_M23=ETA[2];
+#> eta.log_k_M27=ETA[3];
+#> eta.log_k_M31=ETA[4];
+#> eta.log_k1=ETA[5];
+#> eta.log_k2=ETA[6];
+#> eta.g_qlogis=ETA[7];
+#> eta.f_DMTA_tffm0_1_qlogis=ETA[8];
+#> eta.f_DMTA_tffm0_2_qlogis=ETA[9];
+#> eta.f_DMTA_tffm0_3_qlogis=ETA[10];
+#> DMTA_0_model=rx_expr_14;
+#> k_M23=rx_expr_26;
+#> k_M27=rx_expr_27;
+#> k_M31=rx_expr_28;
+#> k1=rx_expr_24;
+#> k2=rx_expr_25;
+#> g=1/(rx_expr_35);
+#> f_DMTA_to_M23=1/(1+exp(-(ETA[8]+THETA[8])));
+#> f_DMTA_to_M23=1/(1+exp(-(ETA[9]+THETA[9])));
+#> f_DMTA_to_M23=1/(1+exp(-(ETA[10]+THETA[10])));
+#> f_DMTA_to_M23=f_DMTA_tffm0_1;
+#> f_DMTA_to_M27=(rx_expr_21)*f_DMTA_tffm0_2;
+#> f_DMTA_to_M31=(rx_expr_22)*(rx_expr_21)*f_DMTA_tffm0_3;
+#> tad=tad();
+#> dosenum=dosenum();
#> Needed Covariates:
#> [1] "f_DMTA_tffm0_1" "f_DMTA_tffm0_2" "f_DMTA_tffm0_3" "CMT"
#> Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL, lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL, control = foceiControl(), thetaNames = NULL, etaNames = NULL, etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) { set.seed(control$seed) .pt <- proc.time() RxODE::.setWarnIdSort(FALSE) on.exit(RxODE::.setWarnIdSort(TRUE)) loadNamespace("n1qn1") if (!RxODE::rxIs(control, "foceiControl")) { control <- do.call(foceiControl, control) } if (is.null(env)) { .ret <- new.env(parent = emptyenv()) } else { .ret <- env } .ret$origData <- data .ret$etaNames <- etaNames .ret$thetaFixed <- fixed .ret$control <- control .ret$control$focei.mu.ref <- integer(0) if (is(model, "RxODE") || is(model, "character")) { .ret$ODEmodel <- TRUE if (class(pred) != "function") { stop("pred must be a function specifying the prediction variables in this model.") } } else { .ret$ODEmodel <- TRUE model <- RxODE::rxGetLin(PKpars) pred <- eval(parse(text = "function(){return(Central);}")) } .square <- function(x) x * x .ret$diagXformInv <- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform] if (is.null(err)) { err <- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]], collapse = ""), "}"))) } .covNames <- .parNames <- c() .ret$adjLik <- control$adjLik .mixed <- !is.null(inits$OMGA) && length(inits$OMGA) > 0 if (!exists("noLik", envir = .ret)) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ssAtol <- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state)) .ssRtol <- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, interaction = (control$interaction == 1L), only.numeric = !.mixed, run.internal = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol .ssAtol <- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssAtol))) .ssRtol <- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.ssRtol))) .ret$control$rxControl$ssAtol <- .ssAtol .ret$control$rxControl$ssRtol <- .ssRtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { if (.ret$noLik) { .atol <- rep(control$atol, length(RxODE::rxModelVars(model)$state)) .rtol <- rep(control$rtol, length(RxODE::rxModelVars(model)$state)) .ret$model <- RxODE::rxSymPySetupPred(model, pred, PKpars, err, grad = FALSE, pred.minus.dv = TRUE, sum.prod = control$sumProd, theta.derivs = FALSE, optExpression = control$optExpression, run.internal = TRUE, only.numeric = TRUE, addProp = control$addProp) if (!is.null(.ret$model$inner)) { .atol <- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.atol))) .rtol <- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) - length(.rtol))) .ret$control$rxControl$atol <- .atol .ret$control$rxControl$rtol <- .rtol } .covNames <- .parNames <- RxODE::rxParams(.ret$model$pred.only) .covNames <- .covNames[regexpr(rex::rex(start, or("THETA", "ETA"), "[", numbers, "]", end), .covNames) == -1] colnames(data) <- sapply(names(data), function(x) { if (any(x == .covNames)) { return(x) } else { return(toupper(x)) } }) .lhs <- c(names(RxODE::rxInits(.ret$model$pred.only)), RxODE::rxLhs(.ret$model$pred.only)) if (length(.lhs) > 0) { .covNames <- .covNames[regexpr(rex::rex(start, or(.lhs), end), .covNames) == -1] } if (length(.covNames) > 0) { if (!all(.covNames %in% names(data))) { message("Model:") RxODE::rxCat(.ret$model$pred.only) message("Needed Covariates:") nlmixrPrint(.covNames) stop("Not all the covariates are in the dataset.") } message("Needed Covariates:") print(.covNames) } .extraPars <- .ret$model$extra.pars } else { .extraPars <- NULL } } .ret$skipCov <- skipCov if (is.null(skipCov)) { if (is.null(fixed)) { .tmp <- rep(FALSE, length(inits$THTA)) } else { if (length(fixed) < length(inits$THTA)) { .tmp <- c(fixed, rep(FALSE, length(inits$THTA) - length(fixed))) } else { .tmp <- fixed[1:length(inits$THTA)] } } if (exists("uif", envir = .ret)) { .uifErr <- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)] .uifErr <- sapply(.uifErr, function(x) { if (is.na(x)) { return(FALSE) } return(!any(x == c("pow2", "tbs", "tbsYj"))) }) .tmp <- (.tmp | .uifErr) } .ret$skipCov <- c(.tmp, rep(TRUE, length(.extraPars))) .ret$control$focei.mu.ref <- .ret$uif$focei.mu.ref } if (is.null(.extraPars)) { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA))) } else { .nms <- c(sprintf("THETA[%s]", seq_along(inits$THTA)), sprintf("ERR[%s]", seq_along(.extraPars))) } if (!is.null(thetaNames) && (length(inits$THTA) + length(.extraPars)) == length(thetaNames)) { .nms <- thetaNames } .ret$thetaNames <- .nms .thetaReset$thetaNames <- .nms if (length(lower) == 1) { lower <- rep(lower, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { print(inits$THTA) print(lower) stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (length(upper) == 1) { upper <- rep(upper, length(inits$THTA)) } else if (length(lower) != length(inits$THTA)) { stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.") } if (!is.null(.extraPars)) { .ret$model$extra.pars <- eval(call(control$diagXform, .ret$model$extra.pars)) if (length(.ret$model$extra.pars) > 0) { inits$THTA <- c(inits$THTA, .ret$model$extra.pars) .lowerErr <- rep(control$atol[1] * 10, length(.ret$model$extra.pars)) .upperErr <- rep(Inf, length(.ret$model$extra.pars)) lower <- c(lower, .lowerErr) upper <- c(upper, .upperErr) } } if (is.null(data$ID)) stop("\"ID\" not found in data") if (is.null(data$DV)) stop("\"DV\" not found in data") if (is.null(data$EVID)) data$EVID <- 0 if (is.null(data$AMT)) data$AMT <- 0 for (.v in c("TIME", "AMT", "DV", .covNames)) { data[[.v]] <- as.double(data[[.v]]) } .ret$dataSav <- data .ds <- data[data$EVID != 0 & data$EVID != 2, c("ID", "TIME", "AMT", "EVID", .covNames)] .w <- which(tolower(names(data)) == "limit") .limitName <- NULL if (length(.w) == 1L) { .limitName <- names(data)[.w] } .censName <- NULL .w <- which(tolower(names(data)) == "cens") if (length(.w) == 1L) { .censName <- names(data[.w]) } data <- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME", "DV", "EVID", .covNames, .limitName, .censName)] .w <- which(!(names(.ret$dataSav) %in% c(.covNames, keep))) names(.ret$dataSav)[.w] <- tolower(names(.ret$dataSav[.w])) if (.mixed) { .lh <- .parseOM(inits$OMGA) .nlh <- sapply(.lh, length) .osplt <- rep(1:length(.lh), .nlh) .lini <- list(inits$THTA, unlist(.lh)) .nlini <- sapply(.lini, length) .nsplt <- rep(1:length(.lini), .nlini) .om0 <- .genOM(.lh) if (length(etaNames) == dim(.om0)[1]) { .ret$etaNames <- .ret$etaNames } else { .ret$etaNames <- sprintf("ETA[%d]", seq(1, dim(.om0)[1])) } .ret$rxInv <- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform) .ret$xType <- .ret$rxInv$xType .om0a <- .om0 .om0a <- .om0a/control$diagOmegaBoundLower .om0b <- .om0 .om0b <- .om0b * control$diagOmegaBoundUpper .om0a <- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform) .om0b <- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform) .omdf <- data.frame(a = .om0a$theta, m = .ret$rxInv$theta, b = .om0b$theta, diag = .om0a$theta.diag) .omdf$lower <- with(.omdf, ifelse(a > b, b, a)) .omdf$lower <- with(.omdf, ifelse(lower == m, -Inf, lower)) .omdf$lower <- with(.omdf, ifelse(!diag, -Inf, lower)) .omdf$upper <- with(.omdf, ifelse(a < b, b, a)) .omdf$upper <- with(.omdf, ifelse(upper == m, Inf, upper)) .omdf$upper <- with(.omdf, ifelse(!diag, Inf, upper)) .ret$control$nomega <- length(.omdf$lower) .ret$control$neta <- sum(.omdf$diag) .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) lower <- c(lower, .omdf$lower) upper <- c(upper, .omdf$upper) } else { .ret$control$nomega <- 0 .ret$control$neta <- 0 .ret$xType <- -1 .ret$control$ntheta <- length(lower) .ret$control$nfixed <- sum(fixed) } .ret$lower <- lower .ret$upper <- upper .ret$thetaIni <- inits$THTA .scaleC <- double(length(lower)) if (is.null(control$scaleC)) { .scaleC <- rep(NA_real_, length(lower)) } else { .scaleC <- as.double(control$scaleC) if (length(lower) > length(.scaleC)) { .scaleC <- c(.scaleC, rep(NA_real_, length(lower) - length(.scaleC))) } else if (length(lower) < length(.scaleC)) { .scaleC <- .scaleC[seq(1, length(lower))] warning("scaleC control option has more options than estimated population parameters, please check.") } } .ret$scaleC <- .scaleC if (exists("uif", envir = .ret)) { .ini <- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err), c("est", "err", "ntheta")] for (.i in seq_along(.ini$err)) { if (is.na(.ret$scaleC[.ini$ntheta[.i]])) { if (any(.ini$err[.i] == c("boxCox", "yeoJohnson", "pow2", "tbs", "tbsYj"))) { .ret$scaleC[.ini$ntheta[.i]] <- 1 } else if (any(.ini$err[.i] == c("prop", "add", "norm", "dnorm", "logn", "dlogn", "lnorm", "dlnorm"))) { .ret$scaleC[.ini$ntheta[.i]] <- 0.5 * abs(.ini$est[.i]) } } } for (.i in .ini$model$extraProps$powTheta) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- 1 } .ini <- as.data.frame(.ret$uif$ini) for (.i in .ini$model$extraProps$factorial) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i] + 1)) } for (.i in .ini$model$extraProps$gamma) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- abs(1/digamma(.ini$est[.i])) } for (.i in .ini$model$extraProps$log) { if (is.na(.ret$scaleC[.i])) .ret$scaleC[.i] <- log(abs(.ini$est[.i])) * abs(.ini$est[.i]) } for (.i in .ret$logitThetas) { .b <- .ret$logitThetasLow[.i] .c <- .ret$logitThetasHi[.i] .a <- .ini$est[.i] if (is.na(.ret$scaleC[.i])) { .ret$scaleC[.i] <- 1 * (-.b + .c) * exp(-.a)/((1 + exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a)))) } } } names(.ret$thetaIni) <- sprintf("THETA[%d]", seq_along(.ret$thetaIni)) if (is.null(etaMat) & !is.null(control$etaMat)) { .ret$etaMat <- control$etaMat } else { .ret$etaMat <- etaMat } .ret$setupTime <- (proc.time() - .pt)["elapsed"] if (exists("uif", envir = .ret)) { .tmp <- .ret$uif$logThetasList .ret$logThetas <- .tmp[[1]] .ret$logThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasList .ret$logitThetas <- .tmp[[1]] .ret$logitThetasF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListLow .ret$logitThetasLow <- .tmp[[1]] .ret$logitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$logitThetasListHi .ret$logitThetasHi <- .tmp[[1]] .ret$logitThetasHiF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasList .ret$probitThetas <- .tmp[[1]] .ret$probitThetasF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListLow .ret$probitThetasLow <- .tmp[[1]] .ret$probitThetasLowF <- .tmp[[2]] .tmp <- .ret$uif$probitThetasListHi .ret$probitThetasHi <- .tmp[[1]] .ret$probitThetasHiF <- .tmp[[2]] } else { .ret$logThetasF <- integer(0) .ret$logitThetasF <- integer(0) .ret$logitThetasHiF <- numeric(0) .ret$logitThetasLowF <- numeric(0) .ret$logitThetas <- integer(0) .ret$logitThetasHi <- numeric(0) .ret$logitThetasLow <- numeric(0) .ret$probitThetasF <- integer(0) .ret$probitThetasHiF <- numeric(0) .ret$probitThetasLowF <- numeric(0) .ret$probitThetas <- integer(0) .ret$probitThetasHi <- numeric(0) .ret$probitThetasLow <- numeric(0) } if (exists("noLik", envir = .ret)) { if (!.ret$noLik) { .ret$.params <- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)), sprintf("ETA[%d]", seq(1, dim(.om0)[1]))) .ret$.thetan <- length(.ret$thetaIni) .ret$nobs <- sum(data$EVID == 0) } } .ret$control$printTop <- TRUE .ret$control$nF <- 0 .est0 <- .ret$thetaIni if (!is.null(.ret$model$pred.nolhs)) { .ret$control$predNeq <- length(.ret$model$pred.nolhs$state) } else { .ret$control$predNeq <- 0L } .fitFun <- function(.ret) { this.env <- environment() assign("err", "theta reset", this.env) while (this.env$err == "theta reset") { assign("err", "", this.env) .ret0 <- tryCatch({ foceiFitCpp_(.ret) }, error = function(e) { if (regexpr("theta reset", e$message) != -1) { assign("zeroOuter", FALSE, this.env) assign("zeroGrad", FALSE, this.env) if (regexpr("theta reset0", e$message) != -1) { assign("zeroGrad", TRUE, this.env) } else if (regexpr("theta resetZ", e$message) != -1) { assign("zeroOuter", TRUE, this.env) } assign("err", "theta reset", this.env) } else { assign("err", e$message, this.env) } }) if (this.env$err == "theta reset") { .nm <- names(.ret$thetaIni) .ret$thetaIni <- setNames(.thetaReset$thetaIni + 0, .nm) .ret$rxInv$theta <- .thetaReset$omegaTheta .ret$control$printTop <- FALSE .ret$etaMat <- .thetaReset$etaMat .ret$control$etaMat <- .thetaReset$etaMat .ret$control$maxInnerIterations <- .thetaReset$maxInnerIterations .ret$control$nF <- .thetaReset$nF .ret$control$gillRetC <- .thetaReset$gillRetC .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillRet <- .thetaReset$gillRet .ret$control$gillDf <- .thetaReset$gillDf .ret$control$gillDf2 <- .thetaReset$gillDf2 .ret$control$gillErr <- .thetaReset$gillErr .ret$control$rEps <- .thetaReset$rEps .ret$control$aEps <- .thetaReset$aEps .ret$control$rEpsC <- .thetaReset$rEpsC .ret$control$aEpsC <- .thetaReset$aEpsC .ret$control$c1 <- .thetaReset$c1 .ret$control$c2 <- .thetaReset$c2 if (this.env$zeroOuter) { message("Posthoc reset") .ret$control$maxOuterIterations <- 0L } else if (this.env$zeroGrad) { message("Theta reset (zero gradient values); Switch to bobyqa") RxODE::rxReq("minqa") .ret$control$outerOptFun <- .bobyqa .ret$control$outerOpt <- -1L } else { message("Theta reset (ETA drift)") } } } if (this.env$err != "") { stop(this.env$err) } else { return(.ret0) } } .ret0 <- try(.fitFun(.ret)) .n <- 1 while (inherits(.ret0, "try-error") && control$maxOuterIterations != 0 && .n <= control$nRetries) { message(sprintf("Restart %s", .n)) .ret$control$nF <- 0 .estNew <- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) - 0.1 * .n .estNew <- sapply(seq_along(.est0), function(.i) { if (.ret$thetaFixed[.i]) { return(.est0[.i]) } else if (.estNew[.i] < lower[.i]) { return(lower + (.Machine$double.eps)^(1/7)) } else if (.estNew[.i] > upper[.i]) { return(upper - (.Machine$double.eps)^(1/7)) } else { return(.estNew[.i]) } }) .ret$thetaIni <- .estNew .ret0 <- try(.fitFun(.ret)) .n <- .n + 1 } if (inherits(.ret0, "try-error")) stop("Could not fit data.") .ret <- .ret0 if (exists("parHistData", .ret)) { .tmp <- .ret$parHistData .tmp <- .tmp[.tmp$type == "Unscaled", names(.tmp) != "type"] .iter <- .tmp$iter .tmp <- .tmp[, names(.tmp) != "iter"] .ret$parHistStacked <- data.frame(stack(.tmp), iter = .iter) names(.ret$parHistStacked) <- c("val", "par", "iter") .ret$parHist <- data.frame(iter = .iter, .tmp) } if (.mixed) { .etas <- .ret$ranef .thetas <- .ret$fixef .pars <- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas) .ret$shrink <- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega, .pars$eta.lst, length(.etas$ID)) .updateParFixed(.ret) } else { .updateParFixed(.ret) } if (!exists("table", .ret)) { .ret$table <- tableControl() } if (control$calcTables) { .ret <- addTable(.ret, updateObject = "no", keep = keep, drop = drop, table = .ret$table) } .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod, pred = function() { return(nlmixr_pred) }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper, fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names, control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.
#> Timing stopped at: 121.4 8.294 129.7
#> Timing stopped at: 121.5 8.294 129.9
#> Error in summary(f_dmta_nlmixr_focei): object 'f_dmta_nlmixr_focei' not found
#> Error in plot(f_dmta_nlmixr_focei): object 'f_dmta_nlmixr_focei' not found
#> Running main SAEM algorithm
-#> [1] "Thu Sep 16 14:06:56 2021"
+#> [1] "Tue Oct 5 16:58:50 2021"
#> ....
#> Minimisation finished
-#> [1] "Thu Sep 16 14:25:28 2021"
#> user system elapsed
-#> 1176.278 0.021 1176.388
+#> [1] "Tue Oct 5 17:17:24 2021"
#> user system elapsed
+#> 1181.365 0.031 1181.470
#> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)
#> ℹ parameter labels from comments are typically ignored in non-interactive mode
#> ℹ Need to run with the source intact to parse comments
#>
#> → generate SAEM model
#> ✔ done
#> 1: 98.3400 -3.5096 -3.3392 -3.7596 -2.2055 -2.7755 1.0281 -2.7872 -2.7223 -2.8341 2.6422 0.7027 0.8124 0.7085 0.8560 1.4980 3.2777 0.3063 0.2850 0.2850 4.1120 0.3716 4.4582 0.3994 4.4820 0.4025 3.7803 0.5780
-#> 500: 97.8212 -4.4030 -4.0872 -4.1289 -2.8278 -4.3505 2.6614 -2.1252 -2.1308 -2.0749 2.9463 1.2933 0.2802 0.3467 0.4814 0.7877 3.0743 0.1508 0.1523 0.3155 0.9557 0.0333 0.4787 0.1073 0.6826 0.0707 0.7849 0.0356
#> Calculating covariance matrix
#>
#> Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)
#>
#> → creating full model...
#> → pruning branches (`if`/`else`)...
#> ✔ done
#> → loading into symengine environment...
#> ✔ done
#> → compiling EBE model...
#>
#> ✔ done
#> Needed Covariates:
#> [1] "CMT"
#> Calculating residuals/tables
#> done
#> user system elapsed
-#> 800.784 3.715 149.687
traceplot(f_dmta_nlmixr_saem$nm)
+
#> With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)
#> Warning: number of items to replace is not a multiple of replacement length
#> ℹ parameter labels from comments are typically ignored in non-interactive mode
#> ℹ Need to run with the source intact to parse comments
#> Error in eval(substitute(expr), data, enclos = parent.frame()): Cannot run SAEM since some of the parameters are not mu-referenced (eta.f_DMTA_tffm0_1_qlogis, eta.f_DMTA_tffm0_2_qlogis, eta.f_DMTA_tffm0_3_qlogis)
#> Timing stopped at: 0.849 0.016 0.864
#> Timing stopped at: 1.041 0.016 1.058
traceplot(f_dmta_nlmixr_saem$nm)
#> Error in traceplot(f_dmta_nlmixr_saem$nm): could not find function "traceplot"
#> nlmixr version used for fitting: 2.0.5
-#> mkin version used for pre-fitting: 1.1.0
-#> R version used for fitting: 4.1.1
-#> Date of fit: Thu Sep 16 14:29:02 2021
-#> Date of summary: Thu Sep 16 14:29:02 2021
-#>
-#> Equations:
-#> d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
-#> time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
-#> * DMTA
-#> d_M23/dt = + f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
-#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
-#> exp(-k2 * time))) * DMTA - k_M23 * M23
-#> d_M27/dt = + f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
-#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
-#> exp(-k2 * time))) * DMTA - k_M27 * M27 + k_M31 * M31
-#> d_M31/dt = + f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
-#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
-#> exp(-k2 * time))) * DMTA - k_M31 * M31
-#>
-#> Data:
-#> 563 observations of 4 variable(s) grouped in 6 datasets
-#>
-#> Degradation model predictions using RxODE
-#>
-#> Fitted in 149.421 s
-#>
-#> Variance model: Two-component variance function
-#>
-#> Mean of starting values for individual parameters:
-#> DMTA_0 log_k_M23 log_k_M27 log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2
-#> 98.7132 -3.9216 -4.3306 -4.2442 0.1376 0.1388
-#> f_DMTA_ilr_3 log_k1 log_k2 g_qlogis
-#> -1.7554 -2.2352 -3.7758 0.4363
-#>
-#> Mean of starting values for error model parameters:
-#> sigma_low_DMTA rsd_high_DMTA sigma_low_M23 rsd_high_M23 sigma_low_M27
-#> 0.70012 0.02577 0.70012 0.02577 0.70012
-#> rsd_high_M27 sigma_low_M31 rsd_high_M31
-#> 0.02577 0.70012 0.02577
-#>
-#> Fixed degradation parameter values:
-#> None
-#>
-#> Results:
-#>
-#> Likelihood calculated by focei
-#> AIC BIC logLik
-#> 1953 2074 -948.3
-#>
-#> Optimised parameters:
-#> est. lower upper
-#> DMTA_0 97.821 95.862 99.780
-#> log_k_M23 -4.403 -5.376 -3.430
-#> log_k_M27 -4.087 -4.545 -3.629
-#> log_k_M31 -4.129 -4.639 -3.618
-#> log_k1 -2.828 -3.389 -2.266
-#> log_k2 -4.351 -5.472 -3.229
-#> g_qlogis 2.661 0.824 4.499
-#> f_DMTA_tffm0_1_qlogis -2.125 -2.449 -1.801
-#> f_DMTA_tffm0_2_qlogis -2.131 -2.468 -1.794
-#> f_DMTA_tffm0_3_qlogis -2.075 -2.540 -1.610
-#>
-#> Correlation:
-#> DMTA_0 l__M23 l__M27 l__M31 log_k1 log_k2 g_qlgs
-#> log_k_M23 -0.019
-#> log_k_M27 -0.028 0.004
-#> log_k_M31 -0.019 0.003 0.075
-#> log_k1 0.038 -0.004 -0.006 -0.003
-#> log_k2 0.046 0.011 0.008 0.009 0.068
-#> g_qlogis -0.067 0.004 0.006 0.001 -0.076 -0.409
-#> f_DMTA_tffm0_1_qlogis -0.062 0.055 0.006 0.004 -0.008 -0.004 0.012
-#> f_DMTA_tffm0_2_qlogis -0.062 0.010 0.058 -0.034 -0.008 -0.007 0.014
-#> f_DMTA_tffm0_3_qlogis -0.052 0.009 0.056 0.071 -0.006 -0.001 0.008
-#> f_DMTA_0_1 f_DMTA_0_2
-#> log_k_M23
-#> log_k_M27
-#> log_k_M31
-#> log_k1
-#> log_k2
-#> g_qlogis
-#> f_DMTA_tffm0_1_qlogis
-#> f_DMTA_tffm0_2_qlogis 0.017
-#> f_DMTA_tffm0_3_qlogis 0.014 -0.005
-#>
-#> Random effects (omega):
-#> eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31
-#> eta.DMTA_0 2.946 0.000 0.0000 0.0000
-#> eta.log_k_M23 0.000 1.293 0.0000 0.0000
-#> eta.log_k_M27 0.000 0.000 0.2802 0.0000
-#> eta.log_k_M31 0.000 0.000 0.0000 0.3467
-#> eta.log_k1 0.000 0.000 0.0000 0.0000
-#> eta.log_k2 0.000 0.000 0.0000 0.0000
-#> eta.g_qlogis 0.000 0.000 0.0000 0.0000
-#> eta.f_DMTA_tffm0_1_qlogis 0.000 0.000 0.0000 0.0000
-#> eta.f_DMTA_tffm0_2_qlogis 0.000 0.000 0.0000 0.0000
-#> eta.f_DMTA_tffm0_3_qlogis 0.000 0.000 0.0000 0.0000
-#> eta.log_k1 eta.log_k2 eta.g_qlogis
-#> eta.DMTA_0 0.0000 0.0000 0.000
-#> eta.log_k_M23 0.0000 0.0000 0.000
-#> eta.log_k_M27 0.0000 0.0000 0.000
-#> eta.log_k_M31 0.0000 0.0000 0.000
-#> eta.log_k1 0.4814 0.0000 0.000
-#> eta.log_k2 0.0000 0.7877 0.000
-#> eta.g_qlogis 0.0000 0.0000 3.074
-#> eta.f_DMTA_tffm0_1_qlogis 0.0000 0.0000 0.000
-#> eta.f_DMTA_tffm0_2_qlogis 0.0000 0.0000 0.000
-#> eta.f_DMTA_tffm0_3_qlogis 0.0000 0.0000 0.000
-#> eta.f_DMTA_tffm0_1_qlogis eta.f_DMTA_tffm0_2_qlogis
-#> eta.DMTA_0 0.0000 0.0000
-#> eta.log_k_M23 0.0000 0.0000
-#> eta.log_k_M27 0.0000 0.0000
-#> eta.log_k_M31 0.0000 0.0000
-#> eta.log_k1 0.0000 0.0000
-#> eta.log_k2 0.0000 0.0000
-#> eta.g_qlogis 0.0000 0.0000
-#> eta.f_DMTA_tffm0_1_qlogis 0.1508 0.0000
-#> eta.f_DMTA_tffm0_2_qlogis 0.0000 0.1523
-#> eta.f_DMTA_tffm0_3_qlogis 0.0000 0.0000
-#> eta.f_DMTA_tffm0_3_qlogis
-#> eta.DMTA_0 0.0000
-#> eta.log_k_M23 0.0000
-#> eta.log_k_M27 0.0000
-#> eta.log_k_M31 0.0000
-#> eta.log_k1 0.0000
-#> eta.log_k2 0.0000
-#> eta.g_qlogis 0.0000
-#> eta.f_DMTA_tffm0_1_qlogis 0.0000
-#> eta.f_DMTA_tffm0_2_qlogis 0.0000
-#> eta.f_DMTA_tffm0_3_qlogis 0.3155
-#>
-#> Variance model:
-#> sigma_low_DMTA rsd_high_DMTA sigma_low_M23 rsd_high_M23 sigma_low_M27
-#> 0.95572 0.03325 0.47871 0.10733 0.68264
-#> rsd_high_M27 sigma_low_M31 rsd_high_M31
-#> 0.07072 0.78486 0.03557
-#>
-#> Backtransformed parameters:
-#> est. lower upper
-#> DMTA_0 97.82122 95.862233 99.78020
-#> k_M23 0.01224 0.004625 0.03239
-#> k_M27 0.01679 0.010615 0.02654
-#> k_M31 0.01610 0.009664 0.02683
-#> f_DMTA_to_M23 0.10668 NA NA
-#> f_DMTA_to_M27 0.09481 NA NA
-#> f_DMTA_to_M31 0.08908 NA NA
-#> k1 0.05914 0.033731 0.10370
-#> k2 0.01290 0.004204 0.03958
-#> g 0.93471 0.695081 0.98900
-#>
-#> Resulting formation fractions:
-#> ff
-#> DMTA_M23 0.10668
-#> DMTA_M27 0.09481
-#> DMTA_M31 0.08908
-#> DMTA_sink 0.70943
-#>
-#> Estimated disappearance times:
-#> DT50 DT90 DT50back DT50_k1 DT50_k2
-#> DMTA 12.57 45.43 13.67 11.72 53.73
-#> M23 56.63 188.11 NA NA NA
-#> M27 41.29 137.18 NA NA NA
-#> M31 43.05 143.01 NA NA NA
# }
+
#> Error in summary(f_dmta_nlmixr_saem): object 'f_dmta_nlmixr_saem' not found
#> Error in plot(f_dmta_nlmixr_saem): object 'f_dmta_nlmixr_saem' not found
# }