From 6476f5f49b373cd4cf05f2e73389df83e437d597 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Thu, 13 Feb 2025 16:30:31 +0100 Subject: Axis legend formatting, update vignettes --- docs/dev/reference/illparms.html | 253 --------------------------------------- 1 file changed, 253 deletions(-) delete mode 100644 docs/dev/reference/illparms.html (limited to 'docs/dev/reference/illparms.html') diff --git a/docs/dev/reference/illparms.html b/docs/dev/reference/illparms.html deleted file mode 100644 index 7bf6c1fe..00000000 --- a/docs/dev/reference/illparms.html +++ /dev/null @@ -1,253 +0,0 @@ - -Method to get the names of ill-defined parameters — illparms • mkin - - -
-
- - - -
-
- - -
-

The method for generalised nonlinear regression fits as obtained -with mkinfit and mmkin checks if the degradation parameters -pass the Wald test (in degradation kinetics often simply called t-test) for -significant difference from zero. For this test, the parameterisation -without parameter transformations is used.

-
- -
-
illparms(object, ...)
-
-# S3 method for mkinfit
-illparms(object, conf.level = 0.95, ...)
-
-# S3 method for illparms.mkinfit
-print(x, ...)
-
-# S3 method for mmkin
-illparms(object, conf.level = 0.95, ...)
-
-# S3 method for illparms.mmkin
-print(x, ...)
-
-# S3 method for saem.mmkin
-illparms(
-  object,
-  conf.level = 0.95,
-  random = TRUE,
-  errmod = TRUE,
-  slopes = TRUE,
-  ...
-)
-
-# S3 method for illparms.saem.mmkin
-print(x, ...)
-
-# S3 method for mhmkin
-illparms(object, conf.level = 0.95, random = TRUE, errmod = TRUE, ...)
-
-# S3 method for illparms.mhmkin
-print(x, ...)
-
- -
-

Arguments

-
object
-

The object to investigate

- - -
...
-

For potential future extensions

- - -
conf.level
-

The confidence level for checking p values

- - -
x
-

The object to be printed

- - -
random
-

For hierarchical fits, should random effects be tested?

- - -
errmod
-

For hierarchical fits, should error model parameters be -tested?

- - -
slopes
-

For hierarchical saem fits using saemix as backend, -should slope parameters in the covariate model(starting with 'beta_') be -tested?

- -
-
-

Value

- - -

For mkinfit or saem objects, a character vector of parameter -names. For mmkin or mhmkin objects, a matrix like object of class -'illparms.mmkin' or 'illparms.mhmkin'.

-
-
-

Details

-

The method for hierarchical model fits, also known as nonlinear -mixed-effects model fits as obtained with saem and mhmkin -checks if any of the confidence intervals for the random -effects expressed as standard deviations include zero, and if -the confidence intervals for the error model parameters include -zero.

-
-
-

Note

-

All return objects have printing methods. For the single fits, printing -does not output anything in the case no ill-defined parameters are found.

-
- -
-

Examples

-
fit <- mkinfit("FOMC", FOCUS_2006_A, quiet = TRUE)
-illparms(fit)
-#> [1] "parent_0" "alpha"    "beta"     "sigma"   
-# \dontrun{
-fits <- mmkin(
-  c("SFO", "FOMC"),
-  list("FOCUS A" = FOCUS_2006_A,
-       "FOCUS C" = FOCUS_2006_C),
-  quiet = TRUE)
-illparms(fits)
-#>       dataset
-#> model  FOCUS A                      FOCUS C
-#>   SFO                                      
-#>   FOMC parent_0, alpha, beta, sigma        
-# }
-
-
-
- -
- - -
- - - - - - - - -- cgit v1.2.1