From 9275bcb39b5ee25753ef489d334b4906401970b3 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
mhmkin(objects, backend = "saemix", algorithm = "saem", ...)
+ mhmkin(objects, ...)
# S3 method for mmkin
mhmkin(objects, ...)
@@ -108,6 +108,9 @@ mhmkin(objects, ...)
mhmkin(
objects,
backend = "saemix",
+ algorithm = "saem",
+ no_random_effect = NULL,
+ auto_ranef_threshold = 3,
...,
cores = if (Sys.info()["sysname"] == "Windows") 1 else parallel::detectCores(),
cluster = NULL
@@ -129,6 +132,11 @@ Alternatively, a single mmkin object containing fits of
degradation models to the same data
+...
+Further arguments that will be passed to the nonlinear mixed-effects
+model fitting function.
+
+
backend
The backend to be used for fitting. Currently, only saemix is
supported
@@ -138,9 +146,17 @@ supported
The algorithm to be used for fitting (currently not used)
-...
-Further arguments that will be passed to the nonlinear mixed-effects
-model fitting function.
+no_random_effect
+Default is NULL and will be passed to saem. If
+you specify "auto", random effects are only included if the number
+of datasets in which the parameter passed the t-test is at least 'auto_ranef_threshold'.
+Beware that while this may make for convenient model reduction or even
+numerical stability of the algorithm, it will likely lead to
+underparameterised models.
+
+
+auto_ranef_threshold
+See 'no_random_effect.
cores
--
cgit v1.2.1