From 9275bcb39b5ee25753ef489d334b4906401970b3 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Mon, 14 Nov 2022 21:47:45 +0100 Subject: Update online docs --- docs/dev/reference/mkinpredict.html | 678 +++++++++++++++++------------------- 1 file changed, 321 insertions(+), 357 deletions(-) (limited to 'docs/dev/reference/mkinpredict.html') diff --git a/docs/dev/reference/mkinpredict.html b/docs/dev/reference/mkinpredict.html index 1ebaecb5..14f2b75b 100644 --- a/docs/dev/reference/mkinpredict.html +++ b/docs/dev/reference/mkinpredict.html @@ -1,69 +1,14 @@ - - - - - - - -Produce predictions from a kinetic model using specific parameters — mkinpredict • mkin - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Produce predictions from a kinetic model using specific parameters — mkinpredict • mkin - - - - - - - - - - - + + - - -
-
- -
- -
+

This function produces a time series for all the observed variables in a -kinetic model as specified by mkinmod, using a specific set of +kinetic model as specified by mkinmod, using a specific set of kinetic parameters and initial values for the state variables.

-
mkinpredict(x, odeparms, odeini, outtimes, ...)
-
-# S3 method for mkinmod
-mkinpredict(
-  x,
-  odeparms = c(k_parent_sink = 0.1),
-  odeini = c(parent = 100),
-  outtimes = seq(0, 120, by = 0.1),
-  solution_type = "deSolve",
-  use_compiled = "auto",
-  method.ode = "lsoda",
-  atol = 1e-08,
-  rtol = 1e-10,
-  map_output = TRUE,
-  na_stop = TRUE,
-  ...
-)
-
-# S3 method for mkinfit
-mkinpredict(
-  x,
-  odeparms = x$bparms.ode,
-  odeini = x$bparms.state,
-  outtimes = seq(0, 120, by = 0.1),
-  solution_type = "deSolve",
-  use_compiled = "auto",
-  method.ode = "lsoda",
-  atol = 1e-08,
-  rtol = 1e-10,
-  map_output = TRUE,
-  ...
-)
- -

Arguments

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
x

A kinetic model as produced by mkinmod, or a kinetic -fit as fitted by mkinfit. In the latter case, the fitted -parameters are used for the prediction.

odeparms

A numeric vector specifying the parameters used in the -kinetic model, which is generally defined as a set of ordinary -differential equations.

odeini

A numeric vector containing the initial values of the state +

+
mkinpredict(x, odeparms, odeini, outtimes, ...)
+
+# S3 method for mkinmod
+mkinpredict(
+  x,
+  odeparms = c(k_parent_sink = 0.1),
+  odeini = c(parent = 100),
+  outtimes = seq(0, 120, by = 0.1),
+  solution_type = "deSolve",
+  use_compiled = "auto",
+  method.ode = "lsoda",
+  atol = 1e-08,
+  rtol = 1e-10,
+  maxsteps = 20000,
+  map_output = TRUE,
+  na_stop = TRUE,
+  ...
+)
+
+# S3 method for mkinfit
+mkinpredict(
+  x,
+  odeparms = x$bparms.ode,
+  odeini = x$bparms.state,
+  outtimes = seq(0, 120, by = 0.1),
+  solution_type = "deSolve",
+  use_compiled = "auto",
+  method.ode = "lsoda",
+  atol = 1e-08,
+  rtol = 1e-10,
+  map_output = TRUE,
+  ...
+)
+
+ +
+

Arguments

+
x
+

A kinetic model as produced by mkinmod, or a kinetic fit as +fitted by mkinfit. In the latter case, the fitted parameters are used for +the prediction.

+ + +
odeparms
+

A numeric vector specifying the parameters used in the +kinetic model, which is generally defined as a set of ordinary differential +equations.

+ + +
odeini
+

A numeric vector containing the initial values of the state variables of the model. Note that the state variables can differ from the -observed variables, for example in the case of the SFORB model.

outtimes

A numeric vector specifying the time points for which model -predictions should be generated.

...

Further arguments passed to the ode solver in case such a -solver is used.

solution_type

The method that should be used for producing the +observed variables, for example in the case of the SFORB model.

+ + +
outtimes
+

A numeric vector specifying the time points for which model +predictions should be generated.

+ + +
...
+

Further arguments passed to the ode solver in case such a +solver is used.

+ + +
solution_type
+

The method that should be used for producing the predictions. This should generally be "analytical" if there is only one observed variable, and usually "deSolve" in the case of several observed variables. The third possibility "eigen" is faster but not applicable to -some models e.g. using FOMC for the parent compound.

use_compiled

If set to FALSE, no compiled version of the -mkinmod model is used, even if is present.

method.ode

The solution method passed via mkinpredict -to ode in case the solution type is "deSolve". The default -"lsoda" is performant, but sometimes fails to converge.

atol

Absolute error tolerance, passed to ode. Default -is 1e-8, lower than in lsoda.

rtol

Absolute error tolerance, passed to ode. Default -is 1e-10, much lower than in lsoda.

map_output

Boolean to specify if the output should list values for +some models e.g. using FOMC for the parent compound.

+ + +
use_compiled
+

If set to FALSE, no compiled version of the +mkinmod model is used, even if is present.

+ + +
method.ode
+

The solution method passed via mkinpredict to ode] in +case the solution type is "deSolve". The default "lsoda" is performant, but +sometimes fails to converge.

+ + +
atol
+

Absolute error tolerance, passed to ode. Default is 1e-8, +lower than in lsoda.

+ + +
rtol
+

Absolute error tolerance, passed to ode. Default is 1e-10, +much lower than in lsoda.

+ + +
maxsteps
+

Maximum number of steps, passed to ode.

+ + +
map_output
+

Boolean to specify if the output should list values for the observed variables (default) or for all state variables (if set to FALSE). Setting this to FALSE has no effect for analytical solutions, -as these always return mapped output.

na_stop

Should it be an error if deSolve::ode returns NaN values

+as these always return mapped output.

+ -

Value

+
na_stop
+

Should it be an error if ode returns NaN values

-

A matrix with the numeric solution in wide format

-

Author

+
+
+

Value

+ +

A matrix with the numeric solution in wide format

+
+
+

Author

Johannes Ranke

+
-

Examples

-
-SFO <- mkinmod(degradinol = mkinsub("SFO")) -# Compare solution types -mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20, - solution_type = "analytical") -
#> time degradinol -#> 0 0 100.0000000 -#> 1 1 74.0818221 -#> 2 2 54.8811636 -#> 3 3 40.6569660 -#> 4 4 30.1194212 -#> 5 5 22.3130160 -#> 6 6 16.5298888 -#> 7 7 12.2456428 -#> 8 8 9.0717953 -#> 9 9 6.7205513 -#> 10 10 4.9787068 -#> 11 11 3.6883167 -#> 12 12 2.7323722 -#> 13 13 2.0241911 -#> 14 14 1.4995577 -#> 15 15 1.1108997 -#> 16 16 0.8229747 -#> 17 17 0.6096747 -#> 18 18 0.4516581 -#> 19 19 0.3345965 -#> 20 20 0.2478752
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20, - solution_type = "deSolve") -
#> time degradinol -#> 0 0 100.0000000 -#> 1 1 74.0818221 -#> 2 2 54.8811636 -#> 3 3 40.6569660 -#> 4 4 30.1194212 -#> 5 5 22.3130160 -#> 6 6 16.5298888 -#> 7 7 12.2456428 -#> 8 8 9.0717953 -#> 9 9 6.7205513 -#> 10 10 4.9787068 -#> 11 11 3.6883167 -#> 12 12 2.7323722 -#> 13 13 2.0241911 -#> 14 14 1.4995577 -#> 15 15 1.1108996 -#> 16 16 0.8229747 -#> 17 17 0.6096747 -#> 18 18 0.4516581 -#> 19 19 0.3345965 -#> 20 20 0.2478752
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20, - solution_type = "deSolve", use_compiled = FALSE) -
#> time degradinol -#> 0 0 100.0000000 -#> 1 1 74.0818221 -#> 2 2 54.8811636 -#> 3 3 40.6569660 -#> 4 4 30.1194212 -#> 5 5 22.3130160 -#> 6 6 16.5298888 -#> 7 7 12.2456428 -#> 8 8 9.0717953 -#> 9 9 6.7205513 -#> 10 10 4.9787068 -#> 11 11 3.6883167 -#> 12 12 2.7323722 -#> 13 13 2.0241911 -#> 14 14 1.4995577 -#> 15 15 1.1108996 -#> 16 16 0.8229747 -#> 17 17 0.6096747 -#> 18 18 0.4516581 -#> 19 19 0.3345965 -#> 20 20 0.2478752
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20, - solution_type = "eigen") -
#> time degradinol -#> 0 0 100.0000000 -#> 1 1 74.0818221 -#> 2 2 54.8811636 -#> 3 3 40.6569660 -#> 4 4 30.1194212 -#> 5 5 22.3130160 -#> 6 6 16.5298888 -#> 7 7 12.2456428 -#> 8 8 9.0717953 -#> 9 9 6.7205513 -#> 10 10 4.9787068 -#> 11 11 3.6883167 -#> 12 12 2.7323722 -#> 13 13 2.0241911 -#> 14 14 1.4995577 -#> 15 15 1.1108997 -#> 16 16 0.8229747 -#> 17 17 0.6096747 -#> 18 18 0.4516581 -#> 19 19 0.3345965 -#> 20 20 0.2478752
-# Compare integration methods to analytical solution -mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20, - solution_type = "analytical")[21,] -
#> time degradinol -#> 20.0000000 0.2478752
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20, - method = "lsoda")[21,] -
#> time degradinol -#> 20.0000000 0.2478752
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20, - method = "ode45")[21,] -
#> time degradinol -#> 20.0000000 0.2478752
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20, - method = "rk4")[21,] -
#> time degradinol -#> 20.0000000 0.2480043
# rk4 is not as precise here - -# The number of output times used to make a lot of difference until the -# default for atol was adjusted -mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), - seq(0, 20, by = 0.1))[201,] -
#> time degradinol -#> 20.0000000 0.2478752
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), - seq(0, 20, by = 0.01))[2001,] -
#> time degradinol -#> 20.0000000 0.2478752
-# Comparison of the performance of solution types -SFO_SFO = mkinmod(parent = list(type = "SFO", to = "m1"), - m1 = list(type = "SFO"), use_of_ff = "max") -
#> Temporary DLL for differentials generated and loaded
if(require(rbenchmark)) { - benchmark(replications = 10, order = "relative", columns = c("test", "relative", "elapsed"), - eigen = mkinpredict(SFO_SFO, - c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01), - c(parent = 100, m1 = 0), seq(0, 20, by = 0.1), - solution_type = "eigen")[201,], - deSolve_compiled = mkinpredict(SFO_SFO, - c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01), - c(parent = 100, m1 = 0), seq(0, 20, by = 0.1), - solution_type = "deSolve")[201,], - deSolve = mkinpredict(SFO_SFO, - c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01), - c(parent = 100, m1 = 0), seq(0, 20, by = 0.1), - solution_type = "deSolve", use_compiled = FALSE)[201,], - analytical = mkinpredict(SFO_SFO, - c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01), - c(parent = 100, m1 = 0), seq(0, 20, by = 0.1), - solution_type = "analytical", use_compiled = FALSE)[201,]) -} -
#> test relative elapsed -#> 2 deSolve_compiled 1.0 0.005 -#> 4 analytical 1.0 0.005 -#> 1 eigen 4.4 0.022 -#> 3 deSolve 46.8 0.234
-# \dontrun{ - # Predict from a fitted model - f <- mkinfit(SFO_SFO, FOCUS_2006_C, quiet = TRUE) - f <- mkinfit(SFO_SFO, FOCUS_2006_C, quiet = TRUE, solution_type = "deSolve") - head(mkinpredict(f)) -
#> time parent m1 -#> 0 0.0 82.49216 0.000000 -#> 0.1 0.1 80.00562 1.236394 -#> 0.2 0.2 77.59404 2.423201 -#> 0.3 0.3 75.25514 3.562040 -#> 0.4 0.4 72.98675 4.654478 -#> 0.5 0.5 70.78673 5.702033
# } - -
+
+

Examples

+

+SFO <- mkinmod(degradinol = mkinsub("SFO"))
+# Compare solution types
+mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
+      solution_type = "analytical")
+#>    time  degradinol
+#> 0     0 100.0000000
+#> 1     1  74.0818221
+#> 2     2  54.8811636
+#> 3     3  40.6569660
+#> 4     4  30.1194212
+#> 5     5  22.3130160
+#> 6     6  16.5298888
+#> 7     7  12.2456428
+#> 8     8   9.0717953
+#> 9     9   6.7205513
+#> 10   10   4.9787068
+#> 11   11   3.6883167
+#> 12   12   2.7323722
+#> 13   13   2.0241911
+#> 14   14   1.4995577
+#> 15   15   1.1108997
+#> 16   16   0.8229747
+#> 17   17   0.6096747
+#> 18   18   0.4516581
+#> 19   19   0.3345965
+#> 20   20   0.2478752
+mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
+      solution_type = "deSolve")
+#>    time  degradinol
+#> 0     0 100.0000000
+#> 1     1  74.0818221
+#> 2     2  54.8811636
+#> 3     3  40.6569660
+#> 4     4  30.1194212
+#> 5     5  22.3130160
+#> 6     6  16.5298888
+#> 7     7  12.2456428
+#> 8     8   9.0717953
+#> 9     9   6.7205513
+#> 10   10   4.9787068
+#> 11   11   3.6883167
+#> 12   12   2.7323722
+#> 13   13   2.0241911
+#> 14   14   1.4995577
+#> 15   15   1.1108996
+#> 16   16   0.8229747
+#> 17   17   0.6096747
+#> 18   18   0.4516581
+#> 19   19   0.3345965
+#> 20   20   0.2478752
+mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
+      solution_type = "deSolve", use_compiled = FALSE)
+#>    time  degradinol
+#> 0     0 100.0000000
+#> 1     1  74.0818221
+#> 2     2  54.8811636
+#> 3     3  40.6569660
+#> 4     4  30.1194212
+#> 5     5  22.3130160
+#> 6     6  16.5298888
+#> 7     7  12.2456428
+#> 8     8   9.0717953
+#> 9     9   6.7205513
+#> 10   10   4.9787068
+#> 11   11   3.6883167
+#> 12   12   2.7323722
+#> 13   13   2.0241911
+#> 14   14   1.4995577
+#> 15   15   1.1108996
+#> 16   16   0.8229747
+#> 17   17   0.6096747
+#> 18   18   0.4516581
+#> 19   19   0.3345965
+#> 20   20   0.2478752
+mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
+      solution_type = "eigen")
+#>    time  degradinol
+#> 0     0 100.0000000
+#> 1     1  74.0818221
+#> 2     2  54.8811636
+#> 3     3  40.6569660
+#> 4     4  30.1194212
+#> 5     5  22.3130160
+#> 6     6  16.5298888
+#> 7     7  12.2456428
+#> 8     8   9.0717953
+#> 9     9   6.7205513
+#> 10   10   4.9787068
+#> 11   11   3.6883167
+#> 12   12   2.7323722
+#> 13   13   2.0241911
+#> 14   14   1.4995577
+#> 15   15   1.1108997
+#> 16   16   0.8229747
+#> 17   17   0.6096747
+#> 18   18   0.4516581
+#> 19   19   0.3345965
+#> 20   20   0.2478752
+
+# Compare integration methods to analytical solution
+mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
+      solution_type = "analytical")[21,]
+#>       time degradinol 
+#> 20.0000000  0.2478752 
+mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
+      method = "lsoda")[21,]
+#>       time degradinol 
+#> 20.0000000  0.2478752 
+mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
+      method = "ode45")[21,]
+#>       time degradinol 
+#> 20.0000000  0.2478752 
+mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
+      method = "rk4")[21,]
+#>       time degradinol 
+#> 20.0000000  0.2480043 
+# rk4 is not as precise here
+
+# The number of output times used to make a lot of difference until the
+# default for atol was adjusted
+mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100),
+      seq(0, 20, by = 0.1))[201,]
+#>       time degradinol 
+#> 20.0000000  0.2478752 
+mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100),
+      seq(0, 20, by = 0.01))[2001,]
+#>       time degradinol 
+#> 20.0000000  0.2478752 
+
+# Comparison of the performance of solution types
+SFO_SFO = mkinmod(parent = list(type = "SFO", to = "m1"),
+                  m1 = list(type = "SFO"), use_of_ff = "max")
+#> Temporary DLL for differentials generated and loaded
+if(require(rbenchmark)) {
+  benchmark(replications = 10, order = "relative", columns = c("test", "relative", "elapsed"),
+    eigen = mkinpredict(SFO_SFO,
+      c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01),
+      c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
+      solution_type = "eigen")[201,],
+    deSolve_compiled = mkinpredict(SFO_SFO,
+      c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01),
+      c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
+      solution_type = "deSolve")[201,],
+    deSolve = mkinpredict(SFO_SFO,
+      c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01),
+      c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
+      solution_type = "deSolve", use_compiled = FALSE)[201,],
+    analytical = mkinpredict(SFO_SFO,
+      c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01),
+      c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
+      solution_type = "analytical", use_compiled = FALSE)[201,])
+}
+#> Loading required package: rbenchmark
+#>               test relative elapsed
+#> 2 deSolve_compiled     1.00   0.004
+#> 4       analytical     5.25   0.021
+#> 1            eigen     6.00   0.024
+#> 3          deSolve    52.50   0.210
+
+# \dontrun{
+  # Predict from a fitted model
+  f <- mkinfit(SFO_SFO, FOCUS_2006_C, quiet = TRUE)
+  f <- mkinfit(SFO_SFO, FOCUS_2006_C, quiet = TRUE, solution_type = "deSolve")
+  head(mkinpredict(f))
+#> DLSODA-  At current T (=R1), MXSTEP (=I1) steps   
+#>       taken on this call before reaching TOUT     
+#> In above message, I1 = 1
+#>  
+#> In above message, R1 = 9.99904e-07
+#>  
+#> Warning: an excessive amount of work (> maxsteps ) was done, but integration was not successful - increase maxsteps
+#> Warning: Returning early. Results are accurate, as far as they go
+#> Error in out[available, var]: (subscript) logical subscript too long
+# }
+
+
+
+
- - - + + -- cgit v1.2.1