From 0c9b2f0e3c8ce65cb790c9e048476784cbbea070 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Fri, 11 Jun 2021 11:14:45 +0200
Subject: Finished 'summary.nlmixr.mmkin', checks, docs
---
docs/dev/reference/nlme.html | 41 ++++++++++-------------------------------
1 file changed, 10 insertions(+), 31 deletions(-)
(limited to 'docs/dev/reference/nlme.html')
diff --git a/docs/dev/reference/nlme.html b/docs/dev/reference/nlme.html
index 78d132e9..55a94443 100644
--- a/docs/dev/reference/nlme.html
+++ b/docs/dev/reference/nlme.html
@@ -75,7 +75,7 @@ datasets. They are used internally by the nlme.mmkin() method." />
mkin
- 1.0.4.9000
+ 1.0.5
@@ -155,8 +155,6 @@ datasets. They are used internally by the nlme.m
nlme_function(object)
-mean_degparms(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
-
nlme_data(object)
Arguments
@@ -166,30 +164,11 @@ datasets. They are used internally by the nlme.m
object |
An mmkin row object containing several fits of the same model to different datasets |
-
- random |
- Should a list with fixed and random effects be returned? |
-
-
- test_log_parms |
- If TRUE, log parameters are only considered in
-the mean calculations if their untransformed counterparts (most likely
-rate constants) pass the t-test for significant difference from zero. |
-
-
- conf.level |
- Possibility to adjust the required confidence level
-for parameter that are tested if requested by 'test_log_parms'. |
-
Value
A function that can be used with nlme
-If random is FALSE (default), a named vector containing mean values
-of the fitted degradation model parameters. If random is TRUE, a list with
-fixed and random effects, in the format required by the start argument of
-nlme for the case of a single grouping variable ds.
A groupedData
object
See also
@@ -217,7 +196,7 @@ nlme for the case of a single grouping variable ds.
ds <- c(d1 = d1, d2 = d2, d3 = d3)
f <- mmkin("SFO", ds, cores = 1, quiet = TRUE)
-mean_dp <- mean_degparms(f)
+mean_dp <- mean_degparms(f)
grouped_data <- nlme_data(f)
nlme_f <- nlme_function(f)
# These assignments are necessary for these objects to be
@@ -237,28 +216,28 @@ nlme for the case of a single grouping variable ds.
#> Model: value ~ nlme_f(name, time, parent_0, log_k_parent_sink)
#> Data: grouped_data
#> AIC BIC logLik
-#> 298.2781 307.7372 -144.1391
+#> 300.6824 310.2426 -145.3412
#>
#> Random effects:
#> Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1)
#> Level: ds
#> Structure: Diagonal
#> parent_0 log_k_parent_sink Residual
-#> StdDev: 0.937473 0.7098105 3.83543
+#> StdDev: 1.697361 0.6801209 3.666073
#>
#> Fixed effects: parent_0 + log_k_parent_sink ~ 1
#> Value Std.Error DF t-value p-value
-#> parent_0 101.76838 1.1445443 45 88.91607 0
-#> log_k_parent_sink -3.05444 0.4195622 45 -7.28008 0
+#> parent_0 100.99378 1.3890416 46 72.70753 0
+#> log_k_parent_sink -3.07521 0.4018589 46 -7.65246 0
#> Correlation:
#> prnt_0
-#> log_k_parent_sink 0.034
+#> log_k_parent_sink 0.027
#>
#> Standardized Within-Group Residuals:
-#> Min Q1 Med Q3 Max
-#> -2.61693595 -0.21853231 0.05740682 0.57209372 3.04598764
+#> Min Q1 Med Q3 Max
+#> -1.9942823 -0.5622565 0.1791579 0.7165038 2.0704781
#>
-#> Number of Observations: 49
+#> Number of Observations: 50
#> Number of Groups: 3 # augPred does not work on fits with more than one state
# variable
--
cgit v1.2.1