From 6476f5f49b373cd4cf05f2e73389df83e437d597 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Thu, 13 Feb 2025 16:30:31 +0100 Subject: Axis legend formatting, update vignettes --- docs/dev/reference/nlme.html | 244 ------------------------------------------- 1 file changed, 244 deletions(-) delete mode 100644 docs/dev/reference/nlme.html (limited to 'docs/dev/reference/nlme.html') diff --git a/docs/dev/reference/nlme.html b/docs/dev/reference/nlme.html deleted file mode 100644 index 81c45ab9..00000000 --- a/docs/dev/reference/nlme.html +++ /dev/null @@ -1,244 +0,0 @@ - -Helper functions to create nlme models from mmkin row objects — nlme_function • mkin - - -
-
- - - -
-
- - -
-

These functions facilitate setting up a nonlinear mixed effects model for -an mmkin row object. An mmkin row object is essentially a list of mkinfit -objects that have been obtained by fitting the same model to a list of -datasets. They are used internally by the nlme.mmkin() method.

-
- -
-
nlme_function(object)
-
-nlme_data(object)
-
- -
-

Arguments

-
object
-

An mmkin row object containing several fits of the same model to different datasets

- -
-
-

Value

- - -

A function that can be used with nlme

- - -

A groupedData object

-
-
-

See also

- -
- -
-

Examples

-
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
-m_SFO <- mkinmod(parent = mkinsub("SFO"))
-d_SFO_1 <- mkinpredict(m_SFO,
-  c(k_parent = 0.1),
-  c(parent = 98), sampling_times)
-d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time")
-d_SFO_2 <- mkinpredict(m_SFO,
-  c(k_parent = 0.05),
-  c(parent = 102), sampling_times)
-d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time")
-d_SFO_3 <- mkinpredict(m_SFO,
-  c(k_parent = 0.02),
-  c(parent = 103), sampling_times)
-d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time")
-
-d1 <- add_err(d_SFO_1, function(value) 3, n = 1)
-d2 <- add_err(d_SFO_2, function(value) 2, n = 1)
-d3 <- add_err(d_SFO_3, function(value) 4, n = 1)
-ds <- c(d1 = d1, d2 = d2, d3 = d3)
-
-f <- mmkin("SFO", ds, cores = 1, quiet = TRUE)
-mean_dp <- mean_degparms(f)
-grouped_data <- nlme_data(f)
-nlme_f <- nlme_function(f)
-# These assignments are necessary for these objects to be
-# visible to nlme and augPred when evaluation is done by
-# pkgdown to generate the html docs.
-assign("nlme_f", nlme_f, globalenv())
-assign("grouped_data", grouped_data, globalenv())
-
-library(nlme)
-m_nlme <- nlme(value ~ nlme_f(name, time, parent_0, log_k_parent_sink),
-  data = grouped_data,
-  fixed = parent_0 + log_k_parent_sink ~ 1,
-  random = pdDiag(parent_0 + log_k_parent_sink ~ 1),
-  start = mean_dp)
-summary(m_nlme)
-#> Nonlinear mixed-effects model fit by maximum likelihood
-#>   Model: value ~ nlme_f(name, time, parent_0, log_k_parent_sink) 
-#>   Data: grouped_data 
-#>        AIC      BIC    logLik
-#>   266.6428 275.8935 -128.3214
-#> 
-#> Random effects:
-#>  Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1)
-#>  Level: ds
-#>  Structure: Diagonal
-#>             parent_0 log_k_parent_sink Residual
-#> StdDev: 0.0004253489         0.7058039 3.065183
-#> 
-#> Fixed effects:  parent_0 + log_k_parent_sink ~ 1 
-#>                       Value Std.Error DF   t-value p-value
-#> parent_0          101.18323 0.7900461 43 128.07256       0
-#> log_k_parent_sink  -3.08708 0.4171755 43  -7.39995       0
-#>  Correlation: 
-#>                   prnt_0
-#> log_k_parent_sink 0.031 
-#> 
-#> Standardized Within-Group Residuals:
-#>         Min          Q1         Med          Q3         Max 
-#> -2.38427071 -0.52059848  0.03593021  0.39987268  2.73188969 
-#> 
-#> Number of Observations: 47
-#> Number of Groups: 3 
-plot(augPred(m_nlme, level = 0:1), layout = c(3, 1))
-
-# augPred does not work on fits with more than one state
-# variable
-#
-# The procedure is greatly simplified by the nlme.mmkin function
-f_nlme <- nlme(f)
-plot(f_nlme)
-
-
-
-
- -
- - -
- - - - - - - - -- cgit v1.2.1