From c73b2f30ec836c949885784ab576e814eb8070a9 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Tue, 9 Mar 2021 17:35:47 +0100
Subject: Some improvements for borderline cases
- fit_with_errors for saem()
- test_log_parms for mean_degparms() and saem()
---
docs/dev/reference/nlme.html | 33 ++++++++++++++++++++++-----------
1 file changed, 22 insertions(+), 11 deletions(-)
(limited to 'docs/dev/reference/nlme.html')
diff --git a/docs/dev/reference/nlme.html b/docs/dev/reference/nlme.html
index b850eb3d..78d132e9 100644
--- a/docs/dev/reference/nlme.html
+++ b/docs/dev/reference/nlme.html
@@ -75,7 +75,7 @@ datasets. They are used internally by the nlme.mmkin() method." />
mkin
- 1.0.3.9000
+ 1.0.4.9000
@@ -155,7 +155,7 @@ datasets. They are used internally by the nlme.m
nlme_function(object)
-mean_degparms(object, random = FALSE)
+mean_degparms(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
nlme_data(object)
@@ -170,6 +170,17 @@ datasets. They are used internally by the nlme.m
random |
Should a list with fixed and random effects be returned? |
+
+ test_log_parms |
+ If TRUE, log parameters are only considered in
+the mean calculations if their untransformed counterparts (most likely
+rate constants) pass the t-test for significant difference from zero. |
+
+
+ conf.level |
+ Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'. |
+
Value
@@ -211,7 +222,7 @@ nlme for the case of a single grouping variable ds.
nlme_f <- nlme_function(f)
# These assignments are necessary for these objects to be
# visible to nlme and augPred when evaluation is done by
-# pkgdown to generated the html docs.
+# pkgdown to generate the html docs.
assign("nlme_f", nlme_f, globalenv())
assign("grouped_data", grouped_data, globalenv())
@@ -226,28 +237,28 @@ nlme for the case of a single grouping variable ds.
#> Model: value ~ nlme_f(name, time, parent_0, log_k_parent_sink)
#> Data: grouped_data
#> AIC BIC logLik
-#> 300.6824 310.2426 -145.3412
+#> 298.2781 307.7372 -144.1391
#>
#> Random effects:
#> Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1)
#> Level: ds
#> Structure: Diagonal
#> parent_0 log_k_parent_sink Residual
-#> StdDev: 1.697361 0.6801209 3.666073
+#> StdDev: 0.937473 0.7098105 3.83543
#>
#> Fixed effects: parent_0 + log_k_parent_sink ~ 1
#> Value Std.Error DF t-value p-value
-#> parent_0 100.99378 1.3890416 46 72.70753 0
-#> log_k_parent_sink -3.07521 0.4018589 46 -7.65246 0
+#> parent_0 101.76838 1.1445443 45 88.91607 0
+#> log_k_parent_sink -3.05444 0.4195622 45 -7.28008 0
#> Correlation:
#> prnt_0
-#> log_k_parent_sink 0.027
+#> log_k_parent_sink 0.034
#>
#> Standardized Within-Group Residuals:
-#> Min Q1 Med Q3 Max
-#> -1.9942823 -0.5622565 0.1791579 0.7165038 2.0704781
+#> Min Q1 Med Q3 Max
+#> -2.61693595 -0.21853231 0.05740682 0.57209372 3.04598764
#>
-#> Number of Observations: 50
+#> Number of Observations: 49
#> Number of Groups: 3 # augPred does not work on fits with more than one state
# variable
--
cgit v1.2.1