From 524a8bba89b95840b4e9215c403947a8bb76d7b2 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Mon, 30 Nov 2020 16:05:10 +0100
Subject: Complete rebuild of static docs of dev version
---
docs/dev/reference/nlme.mmkin.html | 184 +++++++++++++++++--------------------
1 file changed, 83 insertions(+), 101 deletions(-)
(limited to 'docs/dev/reference/nlme.mmkin.html')
diff --git a/docs/dev/reference/nlme.mmkin.html b/docs/dev/reference/nlme.mmkin.html
index 84990521..6d9f2007 100644
--- a/docs/dev/reference/nlme.mmkin.html
+++ b/docs/dev/reference/nlme.mmkin.html
@@ -193,8 +193,10 @@ mmkin model are used as fixed parameters
groups |
@@ -274,11 +276,14 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
f <- mmkin(c("SFO", "DFOP"), ds, quiet = TRUE, cores = 1)
library(nlme)
f_nlme_sfo <- nlme(f["SFO", ])
-f_nlme_dfop <- nlme(f["DFOP", ])
-AIC(f_nlme_sfo, f_nlme_dfop)
-#> df AIC
-#> f_nlme_sfo 5 625.0539
-#> f_nlme_dfop 9 495.1270
#> Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Model df AIC BIC logLik Test L.Ratio p-value
+#> f_nlme_sfo 1 6 622.0677 637.0666 -305.0338
+#> f_nlme_dfop 2 15 487.0134 524.5105 -228.5067 1 vs 2 153.0543 <.0001
#> Kinetic nonlinear mixed-effects model fit by maximum likelihood
#>
#> Structural model:
@@ -289,48 +294,30 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#> Data:
#> 90 observations of 1 variable(s) grouped in 5 datasets
#>
-#> Log-likelihood: -238.5635
+#> Log-likelihood: -228.5067
#>
#> Fixed effects:
#> list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
#> parent_0 log_k1 log_k2 g_qlogis
-#> 94.1702 -1.8002 -4.1474 0.0324
+#> 94.18273 -1.82135 -4.16872 0.08949
#>
#> Random effects:
#> Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
#> Level: ds
-#> Structure: Diagonal
-#> parent_0 log_k1 log_k2 g_qlogis Residual
-#> StdDev: 2.488 0.8447 1.33 0.4652 2.321
-#>
#> $distimes
#> DT50 DT90 DT50back DT50_k1 DT50_k2
-#> parent 10.79857 100.7937 30.34192 4.193937 43.85442
+#> parent 10.57119 101.0652 30.42366 4.283776 44.80015
#>
#> Kinetic nonlinear mixed-effects model fit by maximum likelihood
-#>
-#> Structural model:
-#> d_parent/dt = - k_parent * parent
-#>
-#> Data:
-#> observations of 0 variable(s) grouped in 0 datasets
-#>
-#> Log-likelihood: -404.3729
-#>
-#> Fixed effects:
-#> list(parent_0 ~ 1, log_k_parent ~ 1)
-#> parent_0 log_k_parent
-#> 75.933 -3.556
-#>
-#> Random effects:
-#> Formula: parent_0 ~ 1 | ds
-#> parent_0 Residual
-#> StdDev: 0.002417 21.63
-#>
#> Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 2, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!

#>
-#> **Iteration 1
-#> LME step: Loglik: -404.9583, nlminb iterations: 1
-#> reStruct parameters:
-#> ds1 ds2 ds3 ds4 ds5 ds6
-#> -0.4114356 0.9798646 1.3524300 0.7293315 0.3354323 1.3647313
-#> Beginning PNLS step: .. completed fit_nlme() step.
-#> PNLS step: RSS = 630.3633
-#> fixed effects: 93.82269 -5.455993 -0.9601037 -1.862196 -4.199671 0.07824609
-#> iterations: 120
-#> Convergence crit. (must all become <= tolerance = 0.0005):
-#> fixed reStruct
-#> 0.7897284 0.5822782
-#>
-#> **Iteration 2
-#> LME step: Loglik: -407.7755, nlminb iterations: 11
-#> reStruct parameters:
-#> ds1 ds2 ds3 ds4 ds5 ds6
-#> -0.37122411 0.00305562 1.44336560 0.72467122 0.30160310 1.40762692
-#> Beginning PNLS step: .. completed fit_nlme() step.
-#> PNLS step: RSS = 630.3637
-#> fixed effects: 93.82269 -5.455992 -0.9601036 -1.862196 -4.199671 0.0782462
-#> iterations: 120
-#> Convergence crit. (must all become <= tolerance = 0.0005):
-#> fixed reStruct
-#> 1.375673e-06 9.758294e-06
#> Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 2, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 3, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
+
#> Model df AIC BIC logLik Test L.Ratio p-value
-#> f_nlme_dfop_sfo 1 13 843.8547 884.6201 -408.9274
-#> f_nlme_sfo_sfo 2 9 1085.1821 1113.4043 -533.5910 1 vs 2 249.3274 <.0001
+#> f_nlme_dfop_sfo 1 28 811.7199 899.5222 -377.8599
+#> f_nlme_sfo_sfo 2 15 1075.1934 1122.2304 -522.5967 1 vs 2 289.4736 <.0001
#> $ff
#> parent_sink parent_A1 A1_sink
-#> 0.5912432 0.4087568 1.0000000
+#> 0.6512742 0.3487258 1.0000000
#>
#> $distimes
-#> DT50 DT90
-#> parent 19.13518 63.5657
-#> A1 66.02155 219.3189
+#> DT50 DT90
+#> parent 18.03144 59.89916
+#> A1 102.72949 341.25997
#>
#> $ff
#> parent_A1 parent_sink
-#> 0.2768574 0.7231426
+#> 0.2762167 0.7237833
#>
#> $distimes
#> DT50 DT90 DT50back DT50_k1 DT50_k2
-#> parent 11.07091 104.6320 31.49738 4.462384 46.20825
-#> A1 162.30523 539.1663 NA NA NA
+#> parent 11.15024 133.9652 40.32755 4.688015 62.16017
+#> A1 235.83191 783.4167 NA NA NA
#>
#> Kinetic nonlinear mixed-effects model fit by maximum likelihood
+
#> Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 14, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 2, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 5, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 6, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 7, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 8, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 9, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 10, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 11, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 12, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 14, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 15, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 16, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 17, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 18, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Kinetic nonlinear mixed-effects model fit by maximum likelihood
#>
#> Structural model:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -426,31 +389,35 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#> Data:
#> 90 observations of 1 variable(s) grouped in 5 datasets
#>
-#> Log-likelihood: -238.4298
+#> Log-likelihood: -228.3575
#>
#> Fixed effects:
#> list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
#> parent_0 log_k1 log_k2 g_qlogis
-#> 94.04775 -1.82340 -4.16715 0.05685
+#> 93.6695 -1.9187 -4.4253 0.2215
#>
#> Random effects:
#> Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)
#> Level: ds
-#> Structure: Diagonal
-#> parent_0 log_k1 log_k2 g_qlogis Residual
-#> StdDev: 2.474 0.85 1.337 0.4659 1
+#> Structure: General positive-definite, Log-Cholesky parametrization
+#> StdDev Corr
+#> parent_0 2.8574651 prnt_0 log_k1 log_k2
+#> log_k1 0.9689083 0.506
+#> log_k2 1.5798002 0.446 0.997
+#> g_qlogis 0.5761569 -0.457 0.247 0.263
+#> Residual 1.0000000
#>
#> Variance function:
#> Structure: Constant plus proportion of variance covariate
#> Formula: ~fitted(.)
#> Parameter estimates:
-#> const prop
-#> 2.23224114 0.01262341
+#> const prop
+#> 2.0376990 0.0221686
#> Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Kinetic nonlinear mixed-effects model fit by maximum likelihood
#>
#> Structural model:
@@ -460,29 +427,44 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
#> Data:
#> 170 observations of 2 variable(s) grouped in 5 datasets
#>
-#> Log-likelihood: -472.976
+#> Log-likelihood: -462.2203
#>
#> Fixed effects:
#> list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1, log_k_A1_sink ~ 1)
#> parent_0 log_k_parent_sink log_k_parent_A1 log_k_A1_sink
-#> 87.976 -3.670 -4.164 -4.645
+#> 88.682 -3.664 -4.164 -4.665
#>
#> Random effects:
#> Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1, log_k_A1_sink ~ 1)
#> Level: ds
-#> Structure: Diagonal
-#> parent_0 log_k_parent_sink log_k_parent_A1 log_k_A1_sink Residual
-#> StdDev: 3.992 1.777 1.055 0.4821 6.483
+#> Structure: General positive-definite, Log-Cholesky parametrization
+#> StdDev Corr
+#> parent_0 4.9153305 prnt_0 lg_k__ l___A1
+#> log_k_parent_sink 1.8158570 0.956
+#> log_k_parent_A1 1.0514548 0.821 0.907
+#> log_k_A1_sink 0.4924122 0.035 0.315 0.533
+#> Residual 6.3987599
#>
#> Variance function:
#> Structure: Different standard deviations per stratum
#> Formula: ~1 | name
#> Parameter estimates:
#> parent A1
-#> 1.0000000 0.2050003
# The same with DFOP-SFO does not converge, apparently the variances of
- # parent and A1 are too similar in this case, so that the model is
- # overparameterised
- #f_nlme_dfop_sfo_obs <- nlme(f_2_obs["DFOP-SFO", ], control = list(maxIter = 100))
+#> 1.0000000 0.2040647
#> Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 2, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 3, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 2, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 3, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!
#> Warning: Iteration 6, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 7, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 8, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 9, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 11, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 12, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 15, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Warning: Iteration 25, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
#> Model df AIC BIC logLik Test L.Ratio p-value
+#> f_nlme_dfop_sfo 1 28 811.7199 899.5222 -377.8599
+#> f_nlme_dfop_sfo_obs 2 29 784.1304 875.0685 -363.0652 1 vs 2 29.5895 <.0001
+#> f_nlme_dfop_sfo_tc 3 29 791.9981 882.9362 -366.9990
# }
--
cgit v1.2.1