From aa74f5a30853fb0a15c99c283e072f08ee819149 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
# S3 method for mmkin -nlme( +nlme( model, data = sys.frame(sys.parent()), fixed, @@ -253,8 +253,8 @@ parameters taken from the mmkin object are usedValue
-Upon success, a fitted nlme.mmkin object, which is an nlme object -with additional elements
+Upon success, a fitted 'nlme.mmkin' object, which is an nlme object +with additional elements. It also inherits from 'mixed.mmkin'.
Note
As the object inherits from nlme::nlme, there is a wealth of @@ -262,7 +262,8 @@ methods that will automatically work on 'nlme.mmkin' objects, such as
nlme::intervals()
,nlme::anova.lme()
andnlme::coef.lme()
.See also
- +
nlme_function()
, plot.mixed.mmkin, summary.nlme.mmkin, +parms.nlme.mmkinExamples
ds <- lapply(experimental_data_for_UBA_2019[6:10], @@ -288,21 +289,21 @@ methods that will automatically work on 'nlme.mmkin' objects, such as #> Log-likelihood: -238.5635 #> #> Fixed effects: -#> list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_ilr ~ 1) -#> parent_0 log_k1 log_k2 g_ilr -#> 94.17015133 -1.80015306 -4.14738870 0.02290935 +#> list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) +#> parent_0 log_k1 log_k2 g_qlogis +#> 94.17015185 -1.80015278 -4.14738834 0.03239833 #> #> Random effects: -#> Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_ilr ~ 1) +#> Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) #> Level: ds #> Structure: Diagonal -#> parent_0 log_k1 log_k2 g_ilr Residual -#> StdDev: 2.488249 0.8447273 1.32965 0.3289311 2.321364 +#> parent_0 log_k1 log_k2 g_qlogis Residual +#> StdDev: 2.488249 0.8447275 1.32965 0.4651789 2.321364 #>#> $distimes #> DT50 DT90 DT50back DT50_k1 DT50_k2 -#> parent 10.79857 100.7937 30.34193 4.193938 43.85443 +#> parent 10.79857 100.7937 30.34192 4.193937 43.85442 #># \dontrun{ f_nlme_2 <- nlme(f["SFO", ], start = c(parent_0 = 100, log_k_parent = 0.1)) @@ -353,35 +354,35 @@ methods that will automatically work on 'nlme.mmkin' objects, such as control = list(pnlsMaxIter = 120, tolerance = 5e-4), verbose = TRUE)#> #> **Iteration 1 -#> LME step: Loglik: -404.9582, nlminb iterations: 1 +#> LME step: Loglik: -404.9583, nlminb iterations: 1 #> reStruct parameters: #> ds1 ds2 ds3 ds4 ds5 ds6 -#> -0.4114355 0.9798697 1.6990037 0.7293315 0.3354323 1.7113046 +#> -0.4114356 0.9798646 1.3524300 0.7293315 0.3354323 1.3647313 #> Beginning PNLS step: .. completed fit_nlme() step. -#> PNLS step: RSS = 630.3644 -#> fixed effects: 93.82269 -5.455991 -0.6788957 -1.862196 -4.199671 0.05532828 +#> PNLS step: RSS = 630.3633 +#> fixed effects: 93.82269 -5.455993 -0.9601037 -1.862196 -4.199671 0.07824609 #> iterations: 120 #> Convergence crit. (must all become <= tolerance = 0.0005): #> fixed reStruct -#> 0.7885368 0.5822683 +#> 0.7897284 0.5822782 #> #> **Iteration 2 #> LME step: Loglik: -407.7755, nlminb iterations: 11 #> reStruct parameters: -#> ds1 ds2 ds3 ds4 ds5 ds6 -#> -0.371224133 0.003056179 1.789939402 0.724671158 0.301602977 1.754200729 +#> ds1 ds2 ds3 ds4 ds5 ds6 +#> -0.37122411 0.00305562 1.44336560 0.72467122 0.30160310 1.40762692 #> Beginning PNLS step: .. completed fit_nlme() step. -#> PNLS step: RSS = 630.3633 -#> fixed effects: 93.82269 -5.455992 -0.6788958 -1.862196 -4.199671 0.05532831 +#> PNLS step: RSS = 630.3637 +#> fixed effects: 93.82269 -5.455992 -0.9601036 -1.862196 -4.199671 0.0782462 #> iterations: 120 #> Convergence crit. (must all become <= tolerance = 0.0005): #> fixed reStruct -#> 4.789774e-07 2.200661e-05+#> 1.375673e-06 9.758294e-06#> Model df AIC BIC logLik Test L.Ratio p-value -#> f_nlme_dfop_sfo 1 13 843.8547 884.6201 -408.9273 +#> f_nlme_dfop_sfo 1 13 843.8547 884.6201 -408.9274 #> f_nlme_sfo_sfo 2 9 1085.1821 1113.4043 -533.5910 1 vs 2 249.3274 <.0001#> $ff @@ -400,7 +401,7 @@ methods that will automatically work on 'nlme.mmkin' objects, such as #> $distimes #> DT50 DT90 DT50back DT50_k1 DT50_k2 #> parent 11.07091 104.6320 31.49738 4.462384 46.20825 -#> A1 162.30536 539.1667 NA NA NA +#> A1 162.30523 539.1663 NA NA NA #>if (length(findFunction("varConstProp")) > 0) { # tc error model for nlme available # Attempts to fit metabolite kinetics with the tc error model are possible, @@ -425,23 +426,23 @@ methods that will automatically work on 'nlme.mmkin' objects, such as #> Log-likelihood: -238.4298 #> #> Fixed effects: -#> list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_ilr ~ 1) -#> parent_0 log_k1 log_k2 g_ilr -#> 94.04774463 -1.82339924 -4.16715509 0.04020161 +#> list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) +#> parent_0 log_k1 log_k2 g_qlogis +#> 94.04774566 -1.82339808 -4.16715311 0.05685186 #> #> Random effects: -#> Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_ilr ~ 1) +#> Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1) #> Level: ds #> Structure: Diagonal -#> parent_0 log_k1 log_k2 g_ilr Residual -#> StdDev: 2.473883 0.8499901 1.337187 0.3294411 1 +#> parent_0 log_k1 log_k2 g_qlogis Residual +#> StdDev: 2.473881 0.8499884 1.337185 0.4659005 1 #> #> Variance function: #> Structure: Constant plus proportion of variance covariate #> Formula: ~fitted(.) #> Parameter estimates: #> const prop -#> 2.23222625 0.01262414+#> 2.23224114 0.01262341