From 2a521ab0a4b7d981a2042353e2c60b8a877489b8 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Fri, 16 Sep 2022 10:51:48 +0200 Subject: Improve docs and update pkgdown --- docs/dev/reference/parms.html | 366 ++++++++++++++++++------------------------ 1 file changed, 159 insertions(+), 207 deletions(-) (limited to 'docs/dev/reference/parms.html') diff --git a/docs/dev/reference/parms.html b/docs/dev/reference/parms.html index 9f6f4225..ded4567a 100644 --- a/docs/dev/reference/parms.html +++ b/docs/dev/reference/parms.html @@ -1,69 +1,14 @@ - - - - - - - -Extract model parameters from mkinfit models — parms • mkin - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Extract model parameters — parms • mkin - + + - - - -
-
- -
- -
+
-

This function always returns degradation model parameters as well as error -model parameters, in order to avoid working with a fitted model without -considering the error structure that was assumed for the fit.

+

This function returns degradation model parameters as well as error +model parameters per default, in order to avoid working with a fitted model +without considering the error structure that was assumed for the fit.

+
+ +
+
parms(object, ...)
+
+# S3 method for mkinfit
+parms(object, transformed = FALSE, errparms = TRUE, ...)
+
+# S3 method for mmkin
+parms(object, transformed = FALSE, errparms = TRUE, ...)
-
parms(object, ...)
+    
+

Arguments

+
object
+

A fitted model object.

+ + +
...
+

Not used

-# S3 method for mkinfit -parms(object, transformed = FALSE, ...) -# S3 method for mmkin -parms(object, transformed = FALSE, ...)
+
transformed
+

Should the parameters be returned as used internally +during the optimisation?

-

Arguments

- - - - - - - - - - - - - - -
object

A fitted model object. Methods are implemented for -mkinfit() objects and for mmkin() objects.

...

Not used

transformed

Should the parameters be returned -as used internally during the optimisation?

-

Value

+
errparms
+

Should the error model parameters be returned +in addition to the degradation parameters?

-

For mkinfit objects, a numeric vector of fitted model parameters. -For mmkin row objects, a matrix with the parameters with a -row for each dataset. If the mmkin object has more than one row, a list of -such matrices is returned.

+
+
+

Value

+ -

Examples

-
# mkinfit objects -fit <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE) -parms(fit) -
#> parent_0 k_parent sigma -#> 82.4921598 0.3060633 4.6730124
parms(fit, transformed = TRUE) -
#> parent_0 log_k_parent sigma -#> 82.492160 -1.183963 4.673012
-# mmkin objects -ds <- lapply(experimental_data_for_UBA_2019[6:10], - function(x) subset(x$data[c("name", "time", "value")])) -names(ds) <- paste("Dataset", 6:10) -# \dontrun{ -fits <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE, cores = 1) -parms(fits["SFO", ]) -
#> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 -#> parent_0 88.52275400 82.666781678 86.8547308 91.7779306 82.14809450 -#> k_parent 0.05794659 0.009647805 0.2102974 0.1232258 0.00720421 -#> sigma 5.15274487 7.040168584 3.6769645 6.4669234 6.50457673
parms(fits[, 2]) -
#> $SFO -#> Dataset 7 -#> parent_0 82.666781678 -#> k_parent 0.009647805 -#> sigma 7.040168584 -#> -#> $FOMC -#> Dataset 7 -#> parent_0 92.6837649 -#> alpha 0.4967832 -#> beta 14.1451255 -#> sigma 1.9167519 -#> -#> $DFOP -#> Dataset 7 -#> parent_0 91.058971589 -#> k1 0.044946770 -#> k2 0.002868336 -#> g 0.526942415 -#> sigma 2.221302196 -#>
parms(fits) -
#> $SFO -#> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 -#> parent_0 88.52275400 82.666781678 86.8547308 91.7779306 82.14809450 -#> k_parent 0.05794659 0.009647805 0.2102974 0.1232258 0.00720421 -#> sigma 5.15274487 7.040168584 3.6769645 6.4669234 6.50457673 -#> -#> $FOMC -#> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 -#> parent_0 95.558575 92.6837649 90.719787 98.383939 94.8481459 -#> alpha 1.338667 0.4967832 1.639099 1.074460 0.2805272 -#> beta 13.033315 14.1451255 5.007077 4.397126 6.9052224 -#> sigma 1.847671 1.9167519 1.066063 3.146056 1.6222778 -#> -#> $DFOP -#> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 -#> parent_0 96.55213663 91.058971589 90.34509493 98.14858820 94.311323734 -#> k1 0.21954588 0.044946770 0.41232288 0.31697588 0.080663857 -#> k2 0.02957934 0.002868336 0.07581766 0.03260384 0.003425417 -#> g 0.44845068 0.526942415 0.66091967 0.65322767 0.342652880 -#> sigma 1.35690468 2.221302196 1.34169076 2.87159846 1.942067831 -#>
parms(fits, transformed = TRUE) -
#> $SFO -#> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 -#> parent_0 88.522754 82.666782 86.854731 91.777931 82.148094 -#> log_k_parent -2.848234 -4.641025 -1.559232 -2.093737 -4.933090 -#> sigma 5.152745 7.040169 3.676964 6.466923 6.504577 -#> -#> $FOMC -#> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 -#> parent_0 95.5585751 92.6837649 90.7197870 98.38393897 94.848146 -#> log_alpha 0.2916741 -0.6996015 0.4941466 0.07181816 -1.271085 -#> log_beta 2.5675088 2.6493701 1.6108523 1.48095106 1.932278 -#> sigma 1.8476712 1.9167519 1.0660627 3.14605557 1.622278 -#> -#> $DFOP -#> Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10 -#> parent_0 96.5521366 91.0589716 90.3450949 98.1485882 94.3113237 -#> log_k1 -1.5161940 -3.1022764 -0.8859486 -1.1489296 -2.5174647 -#> log_k2 -3.5206791 -5.8540232 -2.5794240 -3.4233253 -5.6765322 -#> g_qlogis -0.2069326 0.1078741 0.6673953 0.6332573 -0.6514943 -#> sigma 1.3569047 2.2213022 1.3416908 2.8715985 1.9420678 -#>
# } -
+

Depending on the object, a numeric vector of fitted model parameters, +a matrix (e.g. for mmkin row objects), or a list of matrices (e.g. for +mmkin objects with more than one row).

+
+
+

See also

+ +
+ +
+

Examples

+
# mkinfit objects
+fit <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE)
+parms(fit)
+#>   parent_0   k_parent      sigma 
+#> 82.4921598  0.3060633  4.6730124 
+parms(fit, transformed = TRUE)
+#>     parent_0 log_k_parent        sigma 
+#>    82.492160    -1.183963     4.673012 
+
+# mmkin objects
+ds <- lapply(experimental_data_for_UBA_2019[6:10],
+ function(x) subset(x$data[c("name", "time", "value")]))
+names(ds) <- paste("Dataset", 6:10)
+# \dontrun{
+fits <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE, cores = 1)
+parms(fits["SFO", ])
+#>            Dataset 6    Dataset 7  Dataset 8  Dataset 9  Dataset 10
+#> parent_0 88.52275400 82.666781678 86.8547308 91.7779306 82.14809450
+#> k_parent  0.05794659  0.009647805  0.2102974  0.1232258  0.00720421
+#> sigma     5.15274487  7.040168584  3.6769645  6.4669234  6.50457673
+parms(fits[, 2])
+#> $SFO
+#>             Dataset 7
+#> parent_0 82.666781678
+#> k_parent  0.009647805
+#> sigma     7.040168584
+#> 
+#> $FOMC
+#>           Dataset 7
+#> parent_0 92.6837649
+#> alpha     0.4967832
+#> beta     14.1451255
+#> sigma     1.9167519
+#> 
+#> $DFOP
+#>             Dataset 7
+#> parent_0 91.058971589
+#> k1        0.044946770
+#> k2        0.002868336
+#> g         0.526942415
+#> sigma     2.221302196
+#> 
+parms(fits)
+#> $SFO
+#>            Dataset 6    Dataset 7  Dataset 8  Dataset 9  Dataset 10
+#> parent_0 88.52275400 82.666781678 86.8547308 91.7779306 82.14809450
+#> k_parent  0.05794659  0.009647805  0.2102974  0.1232258  0.00720421
+#> sigma     5.15274487  7.040168584  3.6769645  6.4669234  6.50457673
+#> 
+#> $FOMC
+#>          Dataset 6  Dataset 7 Dataset 8 Dataset 9 Dataset 10
+#> parent_0 95.558575 92.6837649 90.719787 98.383939 94.8481459
+#> alpha     1.338667  0.4967832  1.639099  1.074460  0.2805272
+#> beta     13.033315 14.1451255  5.007077  4.397126  6.9052224
+#> sigma     1.847671  1.9167519  1.066063  3.146056  1.6222778
+#> 
+#> $DFOP
+#>            Dataset 6    Dataset 7   Dataset 8   Dataset 9   Dataset 10
+#> parent_0 96.55213663 91.058971589 90.34509493 98.14858820 94.311323734
+#> k1        0.21954588  0.044946770  0.41232288  0.31697588  0.080663857
+#> k2        0.02957934  0.002868336  0.07581766  0.03260384  0.003425417
+#> g         0.44845068  0.526942415  0.66091967  0.65322767  0.342652880
+#> sigma     1.35690468  2.221302196  1.34169076  2.87159846  1.942067831
+#> 
+parms(fits, transformed = TRUE)
+#> $SFO
+#>              Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10
+#> parent_0     88.522754 82.666782 86.854731 91.777931  82.148094
+#> log_k_parent -2.848234 -4.641025 -1.559232 -2.093737  -4.933090
+#> sigma         5.152745  7.040169  3.676964  6.466923   6.504577
+#> 
+#> $FOMC
+#>            Dataset 6  Dataset 7  Dataset 8   Dataset 9 Dataset 10
+#> parent_0  95.5585751 92.6837649 90.7197870 98.38393897  94.848146
+#> log_alpha  0.2916741 -0.6996015  0.4941466  0.07181816  -1.271085
+#> log_beta   2.5675088  2.6493701  1.6108523  1.48095106   1.932278
+#> sigma      1.8476712  1.9167519  1.0660627  3.14605557   1.622278
+#> 
+#> $DFOP
+#>           Dataset 6  Dataset 7  Dataset 8  Dataset 9 Dataset 10
+#> parent_0 96.5521366 91.0589716 90.3450949 98.1485882 94.3113237
+#> log_k1   -1.5161940 -3.1022764 -0.8859486 -1.1489296 -2.5174647
+#> log_k2   -3.5206791 -5.8540232 -2.5794240 -3.4233253 -5.6765322
+#> g_qlogis -0.2069326  0.1078741  0.6673953  0.6332573 -0.6514943
+#> sigma     1.3569047  2.2213022  1.3416908  2.8715985  1.9420678
+#> 
+# }
+
+
+
- - - + + -- cgit v1.2.1