From 91a5834dd701211f929fd25419dc34561ce3b4e7 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Fri, 14 Feb 2025 09:15:20 +0100 Subject: Initialize dev docs --- docs/dev/reference/parms.html | 250 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 250 insertions(+) create mode 100644 docs/dev/reference/parms.html (limited to 'docs/dev/reference/parms.html') diff --git a/docs/dev/reference/parms.html b/docs/dev/reference/parms.html new file mode 100644 index 00000000..71a8737f --- /dev/null +++ b/docs/dev/reference/parms.html @@ -0,0 +1,250 @@ + +Extract model parameters — parms • mkin + Skip to contents + + +
+
+
+ +
+

This function returns degradation model parameters as well as error +model parameters per default, in order to avoid working with a fitted model +without considering the error structure that was assumed for the fit.

+
+ +
+

Usage

+
parms(object, ...)
+
+# S3 method for class 'mkinfit'
+parms(object, transformed = FALSE, errparms = TRUE, ...)
+
+# S3 method for class 'mmkin'
+parms(object, transformed = FALSE, errparms = TRUE, ...)
+
+# S3 method for class 'multistart'
+parms(object, exclude_failed = TRUE, ...)
+
+# S3 method for class 'saem.mmkin'
+parms(object, ci = FALSE, covariates = NULL, ...)
+
+ +
+

Arguments

+ + +
object
+

A fitted model object.

+ + +
...
+

Not used

+ + +
transformed
+

Should the parameters be returned as used internally +during the optimisation?

+ + +
errparms
+

Should the error model parameters be returned +in addition to the degradation parameters?

+ + +
exclude_failed
+

For multistart objects, should rows for failed fits +be removed from the returned parameter matrix?

+ + +
ci
+

Should a matrix with estimates and confidence interval boundaries +be returned? If FALSE (default), a vector of estimates is returned if no +covariates are given, otherwise a matrix of estimates is returned, with +each column corresponding to a row of the data frame holding the covariates

+ + +
covariates
+

A data frame holding covariate values for which to +return parameter values. Only has an effect if 'ci' is FALSE.

+ +
+
+

Value

+

Depending on the object, a numeric vector of fitted model parameters, +a matrix (e.g. for mmkin row objects), or a list of matrices (e.g. for +mmkin objects with more than one row).

+
+
+

See also

+ +
+ +
+

Examples

+
# mkinfit objects
+fit <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE)
+parms(fit)
+#>   parent_0   k_parent      sigma 
+#> 82.4921598  0.3060633  4.6730124 
+parms(fit, transformed = TRUE)
+#>     parent_0 log_k_parent        sigma 
+#>    82.492160    -1.183963     4.673012 
+
+# mmkin objects
+ds <- lapply(experimental_data_for_UBA_2019[6:10],
+ function(x) subset(x$data[c("name", "time", "value")]))
+names(ds) <- paste("Dataset", 6:10)
+# \dontrun{
+fits <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE, cores = 1)
+parms(fits["SFO", ])
+#>            Dataset 6    Dataset 7  Dataset 8  Dataset 9  Dataset 10
+#> parent_0 88.52275400 82.666781678 86.8547308 91.7779306 82.14809450
+#> k_parent  0.05794659  0.009647805  0.2102974  0.1232258  0.00720421
+#> sigma     5.15274487  7.040168584  3.6769645  6.4669234  6.50457673
+parms(fits[, 2])
+#> $SFO
+#>             Dataset 7
+#> parent_0 82.666781678
+#> k_parent  0.009647805
+#> sigma     7.040168584
+#> 
+#> $FOMC
+#>           Dataset 7
+#> parent_0 92.6837649
+#> alpha     0.4967832
+#> beta     14.1451255
+#> sigma     1.9167519
+#> 
+#> $DFOP
+#>             Dataset 7
+#> parent_0 91.058971584
+#> k1        0.044946770
+#> k2        0.002868336
+#> g         0.526942414
+#> sigma     2.221302196
+#> 
+parms(fits)
+#> $SFO
+#>            Dataset 6    Dataset 7  Dataset 8  Dataset 9  Dataset 10
+#> parent_0 88.52275400 82.666781678 86.8547308 91.7779306 82.14809450
+#> k_parent  0.05794659  0.009647805  0.2102974  0.1232258  0.00720421
+#> sigma     5.15274487  7.040168584  3.6769645  6.4669234  6.50457673
+#> 
+#> $FOMC
+#>          Dataset 6  Dataset 7 Dataset 8 Dataset 9 Dataset 10
+#> parent_0 95.558575 92.6837649 90.719787 98.383939 94.8481458
+#> alpha     1.338667  0.4967832  1.639099  1.074460  0.2805272
+#> beta     13.033315 14.1451255  5.007077  4.397126  6.9052224
+#> sigma     1.847671  1.9167519  1.066063  3.146056  1.6222778
+#> 
+#> $DFOP
+#>            Dataset 6    Dataset 7   Dataset 8   Dataset 9   Dataset 10
+#> parent_0 96.55213663 91.058971584 90.34509493 98.14858820 94.311323735
+#> k1        0.21954588  0.044946770  0.41232288  0.31697588  0.080663857
+#> k2        0.02957934  0.002868336  0.07581766  0.03260384  0.003425417
+#> g         0.44845068  0.526942414  0.66091967  0.65322767  0.342652880
+#> sigma     1.35690468  2.221302196  1.34169076  2.87159846  1.942067831
+#> 
+parms(fits, transformed = TRUE)
+#> $SFO
+#>              Dataset 6 Dataset 7 Dataset 8 Dataset 9 Dataset 10
+#> parent_0     88.522754 82.666782 86.854731 91.777931  82.148095
+#> log_k_parent -2.848234 -4.641025 -1.559232 -2.093737  -4.933090
+#> sigma         5.152745  7.040169  3.676964  6.466923   6.504577
+#> 
+#> $FOMC
+#>            Dataset 6  Dataset 7  Dataset 8   Dataset 9 Dataset 10
+#> parent_0  95.5585751 92.6837649 90.7197870 98.38393898  94.848146
+#> log_alpha  0.2916741 -0.6996015  0.4941466  0.07181816  -1.271085
+#> log_beta   2.5675088  2.6493701  1.6108523  1.48095106   1.932278
+#> sigma      1.8476712  1.9167519  1.0660627  3.14605557   1.622278
+#> 
+#> $DFOP
+#>           Dataset 6  Dataset 7  Dataset 8  Dataset 9 Dataset 10
+#> parent_0 96.5521366 91.0589716 90.3450949 98.1485882 94.3113237
+#> log_k1   -1.5161940 -3.1022764 -0.8859486 -1.1489296 -2.5174647
+#> log_k2   -3.5206791 -5.8540232 -2.5794240 -3.4233253 -5.6765322
+#> g_qlogis -0.2069326  0.1078741  0.6673953  0.6332573 -0.6514943
+#> sigma     1.3569047  2.2213022  1.3416908  2.8715985  1.9420678
+#> 
+# }
+
+
+
+ + +
+ + + + + + + -- cgit v1.2.1