From 524a8bba89b95840b4e9215c403947a8bb76d7b2 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
-- cgit v1.2.1ds <- lapply(experimental_data_for_UBA_2019[6:10], function(x) x$data[c("name", "time", "value")]) names(ds) <- paste0("ds ", 6:10) -dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), - A1 = mkinsub("SFO"), quiet = TRUE) +dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), + A1 = mkinsub("SFO"), quiet = TRUE) # \dontrun{ f <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE) plot(f[, 3:4], standardized = TRUE) @@ -273,14 +273,14 @@ corresponding model prediction lines for the different datasets. # For this fit we need to increase pnlsMaxiter, and we increase the # tolerance in order to speed up the fit for this example evaluation f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3)) -plot(f_nlme) +#> Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!#> Warning: Iteration 2, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!#> Running main SAEM algorithm -#> [1] "Thu Nov 19 14:51:14 2020" +#> [1] "Mon Nov 30 15:52:45 2020" #> .... #> Minimisation finished -#> [1] "Thu Nov 19 14:51:24 2020"# }