From 606ef9ad6cae0ddfae6db6b90deb03f81140e46f Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Tue, 10 Nov 2020 05:14:57 +0100
Subject: Digits for summary methods, print.saem.mmkin
---
docs/dev/reference/saem.html | 95 ++++++++++++++++++++++++--------------------
1 file changed, 53 insertions(+), 42 deletions(-)
(limited to 'docs/dev/reference/saem.html')
diff --git a/docs/dev/reference/saem.html b/docs/dev/reference/saem.html
index f1b4c421..f9cdf1c8 100644
--- a/docs/dev/reference/saem.html
+++ b/docs/dev/reference/saem.html
@@ -164,6 +164,9 @@ Expectation Maximisation algorithm (SAEM).
...
)
+# S3 method for saem.mmkin
+print(x, digits = max(3, getOption("digits") - 3), ...)
+
saemix_model(object, cores = 1, verbose = FALSE, ...)
saemix_data(object, verbose = FALSE, ...)
@@ -201,6 +204,14 @@ used.
Should we suppress any plotting that is done
by the saemix function? |
+
+ x |
+ An saem.mmkin object to print |
+
+
+ digits |
+ Number of digits to use for printing |
+
Value
@@ -230,27 +241,27 @@ using mmkin.
state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 17:18:28 2020"
+#> [1] "Tue Nov 10 05:12:21 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 17:18:30 2020"
+#> [1] "Tue Nov 10 05:12:23 2020"
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 17:18:31 2020"
+#> [1] "Tue Nov 10 05:12:24 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 17:18:33 2020"
f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
+#> [1] "Tue Nov 10 05:12:26 2020"
f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 17:18:33 2020"
+#> [1] "Tue Nov 10 05:12:26 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 17:18:35 2020"
f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
+#> [1] "Tue Nov 10 05:12:28 2020"
f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 17:18:36 2020"
+#> [1] "Tue Nov 10 05:12:29 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 17:18:39 2020"
+#> [1] "Tue Nov 10 05:12:32 2020"
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 17:18:41 2020"
+#> [1] "Tue Nov 10 05:12:34 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 17:18:46 2020"
#> Likelihoods computed by importance sampling
#> AIC BIC
#> 1 467.7644 465.0305
#> 2 469.4862 466.3617
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 17:18:48 2020"
+#> [1] "Tue Nov 10 05:12:42 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 17:18:53 2020"
f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
+#> [1] "Tue Nov 10 05:12:47 2020"
f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 17:18:54 2020"
+#> [1] "Tue Nov 10 05:12:48 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 17:19:03 2020"
#> saemix version used for fitting: 3.1.9000
#> mkin version used for pre-fitting: 0.9.50.4
#> R version used for fitting: 4.0.3
-#> Date of fit: Mon Nov 9 17:19:04 2020
-#> Date of summary: Mon Nov 9 17:19:04 2020
+#> Date of fit: Tue Nov 10 05:12:58 2020
+#> Date of summary: Tue Nov 10 05:12:58 2020
#>
#> Equations:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -347,7 +358,7 @@ using
mmkin.
#>
#> Model predictions using solution type analytical
#>
-#> Fitted in 9.941 s using 300, 100 iterations
+#> Fitted in 10.382 s using 300, 100 iterations
#>
#> Variance model: Constant variance
#>
@@ -363,17 +374,17 @@ using
mmkin.
#> Results:
#>
#> Likelihood computed by importance sampling
-#> AIC BIC logLik
-#> 841.3208 836.2435 -407.6604
+#> AIC BIC logLik
+#> 841.3 836.2 -407.7
#>
#> Optimised, transformed parameters with symmetric confidence intervals:
-#> est. lower upper
-#> parent_0 93.7514328489 91.113651 96.3892150
-#> log_k_A1 -6.1262333211 -8.432492 -3.8199749
-#> f_parent_qlogis -0.9739851652 -1.371984 -0.5759863
-#> log_k1 -2.4818388836 -3.746899 -1.2167788
-#> log_k2 -3.6138616567 -5.294149 -1.9335743
-#> g_qlogis -0.0004613666 -1.063179 1.0622564
+#> est. lower upper
+#> parent_0 93.7514328 91.114 96.389
+#> log_k_A1 -6.1262333 -8.432 -3.820
+#> f_parent_qlogis -0.9739852 -1.372 -0.576
+#> log_k1 -2.4818389 -3.747 -1.217
+#> log_k2 -3.6138617 -5.294 -1.934
+#> g_qlogis -0.0004614 -1.063 1.062
#>
#> Correlation:
#> prnt_0 lg__A1 f_prn_ log_k1 log_k2
@@ -384,26 +395,26 @@ using
mmkin.
#> g_qlogis -0.068 -0.016 0.011 -0.181 -0.181
#>
#> Random effects:
-#> est. lower upper
-#> SD.parent_0 2.7857084 0.7825105 4.7889063
-#> SD.log_k_A1 2.1412505 0.4425207 3.8399803
-#> SD.f_parent_qlogis 0.4463087 0.1609059 0.7317116
-#> SD.log_k1 1.4097204 0.5240566 2.2953842
-#> SD.log_k2 1.8739067 0.6979362 3.0498773
-#> SD.g_qlogis 0.4559301 -0.8149852 1.7268453
+#> est. lower upper
+#> SD.parent_0 2.7857 0.7825 4.7889
+#> SD.log_k_A1 2.1413 0.4425 3.8400
+#> SD.f_parent_qlogis 0.4463 0.1609 0.7317
+#> SD.log_k1 1.4097 0.5241 2.2954
+#> SD.log_k2 1.8739 0.6979 3.0499
+#> SD.g_qlogis 0.4559 -0.8150 1.7268
#>
#> Variance model:
-#> est. lower upper
-#> a.1 1.882757 1.665681 2.099832
+#> est. lower upper
+#> a.1 1.883 1.666 2.1
#>
#> Backtransformed parameters with asymmetric confidence intervals:
-#> est. lower upper
-#> parent_0 93.751432849 9.111365e+01 96.38921497
-#> k_A1 0.002184795 2.176784e-04 0.02192835
-#> f_parent_to_A1 0.274086887 2.022995e-01 0.35985666
-#> k1 0.083589373 2.359079e-02 0.29618269
-#> k2 0.026947583 5.020885e-03 0.14463032
-#> g 0.499884658 2.567024e-01 0.74312150
+#> est. lower upper
+#> parent_0 93.751433 9.111e+01 96.38921
+#> k_A1 0.002185 2.177e-04 0.02193
+#> f_parent_to_A1 0.274087 2.023e-01 0.35986
+#> k1 0.083589 2.359e-02 0.29618
+#> k2 0.026948 5.021e-03 0.14463
+#> g 0.499885 2.567e-01 0.74312
#>
#> Resulting formation fractions:
#> ff
--
cgit v1.2.1