From a3e058f8bceca903e7952e66abb4744f66115921 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Mon, 9 Nov 2020 09:18:58 +0100
Subject: Some work on example code, pkgdown update
---
docs/dev/reference/saem.html | 180 ++++++++++++++++++++++++++++++++-----------
1 file changed, 136 insertions(+), 44 deletions(-)
(limited to 'docs/dev/reference/saem.html')
diff --git a/docs/dev/reference/saem.html b/docs/dev/reference/saem.html
index 25608fc8..26f4c3e3 100644
--- a/docs/dev/reference/saem.html
+++ b/docs/dev/reference/saem.html
@@ -229,27 +229,27 @@ using mmkin.
state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 07:04:09 2020"
+#> [1] "Mon Nov 9 09:03:11 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 07:04:11 2020"
+#> [1] "Mon Nov 9 09:03:13 2020"
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 07:04:12 2020"
+#> [1] "Mon Nov 9 09:03:14 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 07:04:13 2020"
f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
+#> [1] "Mon Nov 9 09:03:16 2020"
f_saem_fomc <- saem(f_mmkin_parent["FOMC", ])
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 07:04:14 2020"
+#> [1] "Mon Nov 9 09:03:16 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 07:04:16 2020"
f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
+#> [1] "Mon Nov 9 09:03:18 2020"
f_saem_dfop <- saem(f_mmkin_parent["DFOP", ])
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 07:04:16 2020"
+#> [1] "Mon Nov 9 09:03:19 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 07:04:19 2020"
+#> [1] "Mon Nov 9 09:03:22 2020"
#> Likelihoods computed by importance sampling
#> AIC BIC
#> 1 624.2428 622.2900
#> 2 467.7644 465.0305
-#> 3 491.3541 487.8391
+#> 3 491.3541 487.8391
#> Plotting convergence plots
#> Plotting individual fits
#> Simulating data using nsim = 1000 simulated datasets
+#> Computing WRES and npde .
+#> Plotting npde
#> ---------------------------------------------
+#> Distribution of npde:
+#> mean= -0.01736 (SE= 0.098 )
+#> variance= 0.8562 (SE= 0.13 )
+#> skewness= 0.513
+#> kurtosis= 1.202
+#> ---------------------------------------------
+#>
+#> Statistical tests
+#> Wilcoxon signed rank test : 0.652
+#> Fisher variance test : 0.338
+#> SW test of normality : 0.0757 .
+#> Global adjusted p-value : 0.227
+#> ---
+#> Signif. codes: '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1
+#> ---------------------------------------------
#> Performing simulations under the model.
+#> Plotting VPC
+#> Method used for VPC: binning by quantiles on X , dividing into the following intervals
+#> Interval Centered.On
+#> 1 (-1,3] 1.3
+#> 2 (3,8] 7.4
+#> 3 (8,14] 13.2
+#> 4 (14,21] 20.5
+#> 5 (21,37.7] 29.5
+#> 6 (37.7,60] 50.4
+#> 7 (60,90] 76.6
+#> 8 (90,120] 109.0
+#> 9 (120,180] 156.0
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 07:04:21 2020"
+#> [1] "Mon Nov 9 09:03:24 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 07:04:26 2020"
#> Likelihoods computed by importance sampling
#> AIC BIC
#> 1 467.7644 465.0305
#> 2 469.4862 466.3617
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 07:04:28 2020"
+#> [1] "Mon Nov 9 09:03:31 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 07:04:33 2020"
f_saem_dfop_sfo <- saem(f_mmkin["SFO-SFO", ])
+#> [1] "Mon Nov 9 09:03:36 2020"
f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ])
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 07:04:33 2020"
+#> [1] "Mon Nov 9 09:03:37 2020"
#> ....
#> Minimisation finished
-#> [1] "Mon Nov 9 07:04:39 2020"
+#> [1] "Mon Nov 9 09:03:46 2020"
#> saemix version used for fitting: 3.1.9000
+#> mkin version used for pre-fitting: 0.9.50.4
+#> R version used for fitting: 4.0.3
+#> Date of fit: Mon Nov 9 09:03:47 2020
+#> Date of summary: Mon Nov 9 09:03:47 2020
+#>
+#> Equations:
+#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+#> time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+#> * parent
+#> d_A1/dt = + f_parent_to_A1 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
+#> * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+#> exp(-k2 * time))) * parent - k_A1 * A1
+#>
+#> Data:
+#> 170 observations of 2 variable(s) grouped in 5 datasets
+#>
+#> Model predictions using solution type analytical
+#>
+#> Fitted in 9.758 s using 300, 100 iterations
+#>
+#> Variance model: Constant variance
+#>
+#> Mean of starting values for individual parameters:
+#> parent_0 log_k_A1 f_parent_qlogis log_k1 log_k2
+#> 93.8101519 -9.7647455 -0.9711148 -1.8799371 -4.2708142
+#> g_qlogis
+#> 0.1356441
+#>
+#> Fixed degradation parameter values:
+#> None
+#>
+#> Results:
+#>
+#> Likelihood computed by importance sampling
+#> AIC BIC logLik
+#> 841.3208 836.2435 -407.6604
+#>
+#> Optimised, transformed parameters with symmetric confidence intervals:
+#> est. lower upper
+#> parent_0 93.7514328489 91.113651 96.3892150
+#> log_k_A1 -6.1262333211 -8.432492 -3.8199749
+#> f_parent_qlogis -0.9739851652 -1.371984 -0.5759863
+#> log_k1 -2.4818388836 -3.746899 -1.2167788
+#> log_k2 -3.6138616567 -5.294149 -1.9335743
+#> g_qlogis -0.0004613666 -1.063179 1.0622564
+#>
+#> Correlation:
+#> prnt_0 lg__A1 f_prn_ log_k1 log_k2
+#> log_k_A1 -0.013
+#> f_parent_qlogis -0.025 0.050
+#> log_k1 0.030 0.000 -0.005
+#> log_k2 0.013 0.005 -0.003 0.037
+#> g_qlogis -0.068 -0.016 0.011 -0.181 -0.181
+#>
+#> Random effects:
+#> est. lower upper
+#> SD.parent_0 2.7857084 0.7825105 4.7889063
+#> SD.log_k_A1 2.1412505 0.4425207 3.8399803
+#> SD.f_parent_qlogis 0.4463087 0.1609059 0.7317116
+#> SD.log_k1 1.4097204 0.5240566 2.2953842
+#> SD.log_k2 1.8739067 0.6979362 3.0498773
+#> SD.g_qlogis 0.4559301 -0.8149852 1.7268453
+#>
+#> Variance model:
+#> est. lower upper
+#> a.1 1.882757 1.665681 2.099832
+#>
+#> Backtransformed parameters with asymmetric confidence intervals:
+#> est. lower upper
+#> parent_0 93.751432849 9.111365e+01 96.38921497
+#> k_A1 0.002184795 2.176784e-04 0.02192835
+#> f_parent_to_A1 0.274086887 2.022995e-01 0.35985666
+#> k1 0.083589373 2.359079e-02 0.29618269
+#> k2 0.026947583 5.020885e-03 0.14463032
+#> g 0.499884658 2.567024e-01 0.74312150
+#>
+#> Resulting formation fractions:
+#> ff
+#> parent_A1 0.2741
+#> parent_sink 0.7259
+#>
+#> Estimated disappearance times:
+#> DT50 DT90 DT50back DT50_k1 DT50_k2
+#> parent 13.91 60.89 18.33 8.292 25.72
+#> A1 317.26 1053.91 NA NA NA
# Using a single core, the following takes about 6 minutes, using 10 cores
# it is slower instead of faster
-f_saem_fomc <- saem(f_mmkin["FOMC-SFO", ], cores = 1)
-
#> Running main SAEM algorithm
-#> [1] "Mon Nov 9 07:04:39 2020"
-#> DLSODA- At current T (=R1), MXSTEP (=I1) steps
-#> taken on this call before reaching TOUT
-#> In above message, I1 = 5000
-#>
-#> In above message, R1 = 0.00156238
-#>
-#> DLSODA- At T (=R1) and step size H (=R2), the
-#> corrector convergence failed repeatedly
-#> or with ABS(H) = HMIN
-#> In above message, R1 = 0, R2 = 1.1373e-10
-#>
-#> DLSODA- At current T (=R1), MXSTEP (=I1) steps
-#> taken on this call before reaching TOUT
-#> In above message, I1 = 5000
-#>
-#> In above message, R1 = 2.24752e-06
-#>
-#> DLSODA- At current T (=R1), MXSTEP (=I1) steps
-#> taken on this call before reaching TOUT
-#> In above message, I1 = 5000
-#>
-#> In above message, R1 = 0.000585935
-#>
-#> ....
-#> Minimisation finished
-#> [1] "Mon Nov 9 07:11:24 2020"
#> Warning: Creating predictions from the saemix model failed
# }
+#f_saem_fomc <- saem(f_mmkin["FOMC-SFO", ], cores = 1)
+# }