From b5b446b718b15ccaae5b197e147fc1358f0f564e Mon Sep 17 00:00:00 2001
From: Johannes Ranke
ds <- lapply(experimental_data_for_UBA_2019[6:10], - function(x) subset(x$data[c("name", "time", "value")])) -names(ds) <- paste("Dataset", 6:10) -sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), - A1 = mkinsub("SFO")) -#># \dontrun{ -f_mmkin <- mmkin(list("SFO-SFO" = sfo_sfo), ds, quiet = TRUE) +#>-#>m_saemix <- saemix_model(f_mmkin, cores = 1) +#>ds <- lapply(experimental_data_for_UBA_2019[6:10], + function(x) subset(x$data[c("name", "time", "value")])) +names(ds) <- paste("Dataset", 6:10) +f_mmkin_parent_p0_fixed <- mmkin("FOMC", ds, cores = 1, + state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE) +m_saemix_p0_fixed <- saemix_model(f_mmkin_parent_p0_fixed["FOMC", ])#> #> #> The following SaemixModel object was successfully created: @@ -208,59 +207,236 @@ variances of the deviations of the parameters from these mean values. #> Model function: Mixed model generated from mmkin object Model type: structural #> function (psi, id, xidep) #> { -#> uid <- unique(id) -#> res_list <- parallel::mclapply(uid, function(i) { -#> transparms_optim <- psi[i, ] -#> names(transparms_optim) <- names(degparms_optim) -#> odeini_optim <- transparms_optim[odeini_optim_parm_names] -#> names(odeini_optim) <- gsub("_0$", "", odeini_optim_parm_names) -#> odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)] -#> ode_transparms_optim_names <- setdiff(names(transparms_optim), -#> odeini_optim_parm_names) -#> odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], -#> mkin_model, transform_rates = object[[1]]$transform_rates, -#> transform_fractions = object[[1]]$transform_fractions) -#> odeparms <- c(odeparms_optim, odeparms_fixed) -#> xidep_i <- subset(xidep, id == i) -#> if (analytical) { -#> out_values <- mkin_model$deg_func(xidep_i, odeini, -#> odeparms) -#> } -#> else { -#> i_time <- xidep_i$time -#> i_name <- xidep_i$name -#> out_wide <- mkinpredict(mkin_model, odeparms = odeparms, -#> odeini = odeini, solution_type = object[[1]]$solution_type, -#> outtimes = sort(unique(i_time))) -#> out_index <- cbind(as.character(i_time), as.character(i_name)) -#> out_values <- out_wide[out_index] -#> } -#> return(out_values) -#> }, mc.cores = cores) -#> res <- unlist(res_list) -#> return(res) +#> odeini_fixed/(xidep[, "time"]/exp(psi[id, 2]) + 1)^exp(psi[id, +#> 1]) +#> } +#> <bytecode: 0x5555599945b8> +#> <environment: 0x555559984388> +#> Nb of parameters: 2 +#> parameter names: log_alpha log_beta +#> distribution: +#> Parameter Distribution Estimated +#> [1,] log_alpha normal Estimated +#> [2,] log_beta normal Estimated +#> Variance-covariance matrix: +#> log_alpha log_beta +#> log_alpha 1 0 +#> log_beta 0 1 +#> Error model: constant , initial values: a.1=2.95893806804889 +#> No covariate in the model. +#> Initial values +#> log_alpha log_beta +#> Pop.CondInit -0.347996 1.66788d_saemix_parent <- saemix_data(f_mmkin_parent_p0_fixed) +#> +#> +#> The following SaemixData object was successfully created: +#> +#> Object of class SaemixData +#> longitudinal data for use with the SAEM algorithm +#> Dataset ds_saemix +#> Structured data: value ~ time + name | ds +#> X variable for graphs: time ()saemix_options <- list(seed = 123456, displayProgress = FALSE, + save = FALSE, save.graphs = FALSE, nbiter.saemix = c(200, 80)) +f_saemix_p0_fixed <- saemix(m_saemix_p0_fixed, d_saemix_parent, saemix_options) +#> Running main SAEM algorithm +#> [1] "Thu Nov 5 23:53:29 2020" +#> .. +#> Minimisation finished +#> [1] "Thu Nov 5 23:53:30 2020"#> Nonlinear mixed-effects model fit by the SAEM algorithm +#> ----------------------------------- +#> ---- Data ---- +#> ----------------------------------- +#> Object of class SaemixData +#> longitudinal data for use with the SAEM algorithm +#> Dataset ds_saemix +#> Structured data: value ~ time + name | ds +#> X variable for graphs: time () +#> Dataset characteristics: +#> number of subjects: 5 +#> number of observations: 90 +#> average/min/max nb obs: 18.00 / 16 / 20 +#> First 10 lines of data: +#> ds time name value mdv cens occ ytype +#> 1 Dataset 6 0 parent 97.2 0 0 1 1 +#> 2 Dataset 6 0 parent 96.4 0 0 1 1 +#> 3 Dataset 6 3 parent 71.1 0 0 1 1 +#> 4 Dataset 6 3 parent 69.2 0 0 1 1 +#> 5 Dataset 6 6 parent 58.1 0 0 1 1 +#> 6 Dataset 6 6 parent 56.6 0 0 1 1 +#> 7 Dataset 6 10 parent 44.4 0 0 1 1 +#> 8 Dataset 6 10 parent 43.4 0 0 1 1 +#> 9 Dataset 6 20 parent 33.3 0 0 1 1 +#> 10 Dataset 6 20 parent 29.2 0 0 1 1 +#> ----------------------------------- +#> ---- Model ---- +#> ----------------------------------- +#> Nonlinear mixed-effects model +#> Model function: Mixed model generated from mmkin object Model type: structural +#> function (psi, id, xidep) +#> { +#> odeini_fixed/(xidep[, "time"]/exp(psi[id, 2]) + 1)^exp(psi[id, +#> 1]) +#> } +#> <bytecode: 0x5555599945b8> +#> <environment: 0x555559984388> +#> Nb of parameters: 2 +#> parameter names: log_alpha log_beta +#> distribution: +#> Parameter Distribution Estimated +#> [1,] log_alpha normal Estimated +#> [2,] log_beta normal Estimated +#> Variance-covariance matrix: +#> log_alpha log_beta +#> log_alpha 1 0 +#> log_beta 0 1 +#> Error model: constant , initial values: a.1=2.95893806804889 +#> No covariate in the model. +#> Initial values +#> log_alpha log_beta +#> Pop.CondInit -0.347996 1.66788 +#> ----------------------------------- +#> ---- Key algorithm options ---- +#> ----------------------------------- +#> Estimation of individual parameters (MAP) +#> Estimation of standard errors and linearised log-likelihood +#> Estimation of log-likelihood by importance sampling +#> Number of iterations: K1=200, K2=80 +#> Number of chains: 10 +#> Seed: 123456 +#> Number of MCMC iterations for IS: 5000 +#> Simulations: +#> nb of simulated datasets used for npde: 1000 +#> nb of simulated datasets used for VPC: 100 +#> Input/output +#> save the results to a file: FALSE +#> save the graphs to files: FALSE +#> ---------------------------------------------------- +#> ---- Results ---- +#> ---------------------------------------------------- +#> ----------------- Fixed effects ------------------ +#> ---------------------------------------------------- +#> Parameter Estimate SE CV(%) +#> log_alpha -0.33 0.30 91.6 +#> log_beta 1.70 0.21 12.4 +#> a a.1 3.15 0.25 7.9 +#> ---------------------------------------------------- +#> ----------- Variance of random effects ----------- +#> ---------------------------------------------------- +#> Parameter Estimate SE CV(%) +#> log_alpha omega2.log_alpha 0.44 0.28 65 +#> log_beta omega2.log_beta 0.18 0.14 79 +#> ---------------------------------------------------- +#> ------ Correlation matrix of random effects ------ +#> ---------------------------------------------------- +#> omega2.log_alpha omega2.log_beta +#> omega2.log_alpha 1 0 +#> omega2.log_beta 0 1 +#> ---------------------------------------------------- +#> --------------- Statistical criteria ------------- +#> ---------------------------------------------------- +#> Likelihood computed by linearisation +#> -2LL= 501.6082 +#> AIC = 511.6082 +#> BIC = 509.6554 +#> +#> Likelihood computed by importance sampling +#> -2LL= 501.7 +#> AIC = 511.7 +#> BIC = 509.7472 +#> ----------------------------------------------------+f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE) +m_saemix_sfo <- saemix_model(f_mmkin_parent["SFO", ]) +#> +#> +#> The following SaemixModel object was successfully created: +#> +#> Nonlinear mixed-effects model +#> Model function: Mixed model generated from mmkin object Model type: structural +#> function (psi, id, xidep) +#> { +#> psi[id, 1] * exp(-exp(psi[id, 2]) * xidep[, "time"]) #> } -#> <bytecode: 0x55555d62aeb8> -#> <environment: 0x55555e35c170> +#> <bytecode: 0x55555998d588> +#> <environment: 0x55555c0f4ae8> +#> Nb of parameters: 2 +#> parameter names: parent_0 log_k_parent +#> distribution: +#> Parameter Distribution Estimated +#> [1,] parent_0 normal Estimated +#> [2,] log_k_parent normal Estimated +#> Variance-covariance matrix: +#> parent_0 log_k_parent +#> parent_0 1 0 +#> log_k_parent 0 1 +#> Error model: constant , initial values: a.1=5.76827561471585 +#> No covariate in the model. +#> Initial values +#> parent_0 log_k_parent +#> Pop.CondInit 86.39406 -3.215063m_saemix_fomc <- saemix_model(f_mmkin_parent["FOMC", ]) +#> +#> +#> The following SaemixModel object was successfully created: +#> +#> Nonlinear mixed-effects model +#> Model function: Mixed model generated from mmkin object Model type: structural +#> function (psi, id, xidep) +#> { +#> psi[id, 1]/(xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, +#> 2]) +#> } +#> <bytecode: 0x55555998dc50> +#> <environment: 0x5555595d7668> +#> Nb of parameters: 3 +#> parameter names: parent_0 log_alpha log_beta +#> distribution: +#> Parameter Distribution Estimated +#> [1,] parent_0 normal Estimated +#> [2,] log_alpha normal Estimated +#> [3,] log_beta normal Estimated +#> Variance-covariance matrix: +#> parent_0 log_alpha log_beta +#> parent_0 1 0 0 +#> log_alpha 0 1 0 +#> log_beta 0 0 1 +#> Error model: constant , initial values: a.1=1.91976382242696 +#> No covariate in the model. +#> Initial values +#> parent_0 log_alpha log_beta +#> Pop.CondInit 94.43884 -0.2226095 2.048192m_saemix_dfop <- saemix_model(f_mmkin_parent["DFOP", ]) +#> +#> +#> The following SaemixModel object was successfully created: +#> +#> Nonlinear mixed-effects model +#> Model function: Mixed model generated from mmkin object Model type: structural +#> function (psi, id, xidep) +#> { +#> g <- plogis(psi[id, 4]) +#> t = xidep[, "time"] +#> psi[id, 1] * (g * exp(-exp(psi[id, 2]) * t) + (1 - g) * exp(-exp(psi[id, +#> 3]) * t)) +#> } +#> <bytecode: 0x55555998e548> +#> <environment: 0x555558225bf0> #> Nb of parameters: 4 -#> parameter names: parent_0 log_k_parent log_k_A1 f_parent_ilr_1 +#> parameter names: parent_0 log_k1 log_k2 g_qlogis #> distribution: -#> Parameter Distribution Estimated -#> [1,] parent_0 normal Estimated -#> [2,] log_k_parent normal Estimated -#> [3,] log_k_A1 normal Estimated -#> [4,] f_parent_ilr_1 normal Estimated +#> Parameter Distribution Estimated +#> [1,] parent_0 normal Estimated +#> [2,] log_k1 normal Estimated +#> [3,] log_k2 normal Estimated +#> [4,] g_qlogis normal Estimated #> Variance-covariance matrix: -#> parent_0 log_k_parent log_k_A1 f_parent_ilr_1 -#> parent_0 1 0 0 0 -#> log_k_parent 0 1 0 0 -#> log_k_A1 0 0 1 0 -#> f_parent_ilr_1 0 0 0 1 -#> Error model: constant , initial values: a.1=4.97259024646577 +#> parent_0 log_k1 log_k2 g_qlogis +#> parent_0 1 0 0 0 +#> log_k1 0 1 0 0 +#> log_k2 0 0 1 0 +#> g_qlogis 0 0 0 1 +#> Error model: constant , initial values: a.1=1.94671278396371 #> No covariate in the model. #> Initial values -#> parent_0 log_k_parent log_k_A1 f_parent_ilr_1 -#> Pop.CondInit 86.53449 -3.207005 -3.060308 -1.920449d_saemix <- saemix_data(f_mmkin) +#> parent_0 log_k1 log_k2 g_qlogis +#> Pop.CondInit 94.08322 -1.834163 -4.210797 0.11002d_saemix_parent <- saemix_data(f_mmkin_parent["SFO", ])#> #> #> The following SaemixData object was successfully created: @@ -269,15 +445,12 @@ variances of the deviations of the parameters from these mean values. #> longitudinal data for use with the SAEM algorithm #> Dataset ds_saemix #> Structured data: value ~ time + name | ds -#> X variable for graphs: time ()saemix_options <- list(seed = 123456, - save = FALSE, save.graphs = FALSE, displayProgress = FALSE, - nbiter.saemix = c(200, 80)) -f_saemix <- saemix(m_saemix, d_saemix, saemix_options) +#> X variable for graphs: time ()#> Running main SAEM algorithm -#> [1] "Thu Nov 5 08:26:39 2020" +#> [1] "Thu Nov 5 23:53:31 2020" #> .. #> Minimisation finished -#> [1] "Thu Nov 5 08:28:33 2020"#> Nonlinear mixed-effects model fit by the SAEM algorithm +#> [1] "Thu Nov 5 23:53:32 2020"#> Nonlinear mixed-effects model fit by the SAEM algorithm #> ----------------------------------- #> ---- Data ---- #> ----------------------------------- @@ -288,8 +461,8 @@ variances of the deviations of the parameters from these mean values. #> X variable for graphs: time () #> Dataset characteristics: #> number of subjects: 5 -#> number of observations: 170 -#> average/min/max nb obs: 34.00 / 30 / 38 +#> number of observations: 90 +#> average/min/max nb obs: 18.00 / 16 / 20 #> First 10 lines of data: #> ds time name value mdv cens occ ytype #> 1 Dataset 6 0 parent 97.2 0 0 1 1 @@ -309,59 +482,248 @@ variances of the deviations of the parameters from these mean values. #> Model function: Mixed model generated from mmkin object Model type: structural #> function (psi, id, xidep) #> { -#> uid <- unique(id) -#> res_list <- parallel::mclapply(uid, function(i) { -#> transparms_optim <- psi[i, ] -#> names(transparms_optim) <- names(degparms_optim) -#> odeini_optim <- transparms_optim[odeini_optim_parm_names] -#> names(odeini_optim) <- gsub("_0$", "", odeini_optim_parm_names) -#> odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)] -#> ode_transparms_optim_names <- setdiff(names(transparms_optim), -#> odeini_optim_parm_names) -#> odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], -#> mkin_model, transform_rates = object[[1]]$transform_rates, -#> transform_fractions = object[[1]]$transform_fractions) -#> odeparms <- c(odeparms_optim, odeparms_fixed) -#> xidep_i <- subset(xidep, id == i) -#> if (analytical) { -#> out_values <- mkin_model$deg_func(xidep_i, odeini, -#> odeparms) -#> } -#> else { -#> i_time <- xidep_i$time -#> i_name <- xidep_i$name -#> out_wide <- mkinpredict(mkin_model, odeparms = odeparms, -#> odeini = odeini, solution_type = object[[1]]$solution_type, -#> outtimes = sort(unique(i_time))) -#> out_index <- cbind(as.character(i_time), as.character(i_name)) -#> out_values <- out_wide[out_index] -#> } -#> return(out_values) -#> }, mc.cores = cores) -#> res <- unlist(res_list) -#> return(res) +#> psi[id, 1] * exp(-exp(psi[id, 2]) * xidep[, "time"]) #> } -#> <bytecode: 0x55555d62aeb8> -#> <environment: 0x55555e35c170> +#> <bytecode: 0x55555998d588> +#> <environment: 0x55555c0f4ae8> +#> Nb of parameters: 2 +#> parameter names: parent_0 log_k_parent +#> distribution: +#> Parameter Distribution Estimated +#> [1,] parent_0 normal Estimated +#> [2,] log_k_parent normal Estimated +#> Variance-covariance matrix: +#> parent_0 log_k_parent +#> parent_0 1 0 +#> log_k_parent 0 1 +#> Error model: constant , initial values: a.1=5.76827561471585 +#> No covariate in the model. +#> Initial values +#> parent_0 log_k_parent +#> Pop.CondInit 86.39406 -3.215063 +#> ----------------------------------- +#> ---- Key algorithm options ---- +#> ----------------------------------- +#> Estimation of individual parameters (MAP) +#> Estimation of standard errors and linearised log-likelihood +#> Estimation of log-likelihood by importance sampling +#> Number of iterations: K1=200, K2=80 +#> Number of chains: 10 +#> Seed: 123456 +#> Number of MCMC iterations for IS: 5000 +#> Simulations: +#> nb of simulated datasets used for npde: 1000 +#> nb of simulated datasets used for VPC: 100 +#> Input/output +#> save the results to a file: FALSE +#> save the graphs to files: FALSE +#> ---------------------------------------------------- +#> ---- Results ---- +#> ---------------------------------------------------- +#> ----------------- Fixed effects ------------------ +#> ---------------------------------------------------- +#> Parameter Estimate SE CV(%) +#> parent_0 85.8 1.85 2.2 +#> log_k_parent -3.2 0.59 18.3 +#> a a.1 6.2 0.49 7.9 +#> ---------------------------------------------------- +#> ----------- Variance of random effects ----------- +#> ---------------------------------------------------- +#> Parameter Estimate SE CV(%) +#> parent_0 omega2.parent_0 7.8 10.7 138 +#> log_k_parent omega2.log_k_parent 1.7 1.1 64 +#> ---------------------------------------------------- +#> ------ Correlation matrix of random effects ------ +#> ---------------------------------------------------- +#> omega2.parent_0 omega2.log_k_parent +#> omega2.parent_0 1 0 +#> omega2.log_k_parent 0 1 +#> ---------------------------------------------------- +#> --------------- Statistical criteria ------------- +#> ---------------------------------------------------- +#> Likelihood computed by linearisation +#> -2LL= 615.4074 +#> AIC = 625.4074 +#> BIC = 623.4546 +#> +#> Likelihood computed by importance sampling +#> -2LL= 614.4911 +#> AIC = 624.4911 +#> BIC = 622.5382 +#> ----------------------------------------------------#> Running main SAEM algorithm +#> [1] "Thu Nov 5 23:53:33 2020" +#> .. +#> Minimisation finished +#> [1] "Thu Nov 5 23:53:34 2020"#> Nonlinear mixed-effects model fit by the SAEM algorithm +#> ----------------------------------- +#> ---- Data ---- +#> ----------------------------------- +#> Object of class SaemixData +#> longitudinal data for use with the SAEM algorithm +#> Dataset ds_saemix +#> Structured data: value ~ time + name | ds +#> X variable for graphs: time () +#> Dataset characteristics: +#> number of subjects: 5 +#> number of observations: 90 +#> average/min/max nb obs: 18.00 / 16 / 20 +#> First 10 lines of data: +#> ds time name value mdv cens occ ytype +#> 1 Dataset 6 0 parent 97.2 0 0 1 1 +#> 2 Dataset 6 0 parent 96.4 0 0 1 1 +#> 3 Dataset 6 3 parent 71.1 0 0 1 1 +#> 4 Dataset 6 3 parent 69.2 0 0 1 1 +#> 5 Dataset 6 6 parent 58.1 0 0 1 1 +#> 6 Dataset 6 6 parent 56.6 0 0 1 1 +#> 7 Dataset 6 10 parent 44.4 0 0 1 1 +#> 8 Dataset 6 10 parent 43.4 0 0 1 1 +#> 9 Dataset 6 20 parent 33.3 0 0 1 1 +#> 10 Dataset 6 20 parent 29.2 0 0 1 1 +#> ----------------------------------- +#> ---- Model ---- +#> ----------------------------------- +#> Nonlinear mixed-effects model +#> Model function: Mixed model generated from mmkin object Model type: structural +#> function (psi, id, xidep) +#> { +#> psi[id, 1]/(xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, +#> 2]) +#> } +#> <bytecode: 0x55555998dc50> +#> <environment: 0x5555595d7668> +#> Nb of parameters: 3 +#> parameter names: parent_0 log_alpha log_beta +#> distribution: +#> Parameter Distribution Estimated +#> [1,] parent_0 normal Estimated +#> [2,] log_alpha normal Estimated +#> [3,] log_beta normal Estimated +#> Variance-covariance matrix: +#> parent_0 log_alpha log_beta +#> parent_0 1 0 0 +#> log_alpha 0 1 0 +#> log_beta 0 0 1 +#> Error model: constant , initial values: a.1=1.91976382242696 +#> No covariate in the model. +#> Initial values +#> parent_0 log_alpha log_beta +#> Pop.CondInit 94.43884 -0.2226095 2.048192 +#> ----------------------------------- +#> ---- Key algorithm options ---- +#> ----------------------------------- +#> Estimation of individual parameters (MAP) +#> Estimation of standard errors and linearised log-likelihood +#> Estimation of log-likelihood by importance sampling +#> Number of iterations: K1=200, K2=80 +#> Number of chains: 10 +#> Seed: 123456 +#> Number of MCMC iterations for IS: 5000 +#> Simulations: +#> nb of simulated datasets used for npde: 1000 +#> nb of simulated datasets used for VPC: 100 +#> Input/output +#> save the results to a file: FALSE +#> save the graphs to files: FALSE +#> ---------------------------------------------------- +#> ---- Results ---- +#> ---------------------------------------------------- +#> ----------------- Fixed effects ------------------ +#> ---------------------------------------------------- +#> Parameter Estimate SE CV(%) +#> parent_0 94.49 1.18 1.2 +#> log_alpha -0.21 0.30 142.0 +#> log_beta 2.06 0.21 10.4 +#> a a.1 2.28 0.19 8.2 +#> ---------------------------------------------------- +#> ----------- Variance of random effects ----------- +#> ---------------------------------------------------- +#> Parameter Estimate SE CV(%) +#> parent_0 omega2.parent_0 4.66 4.34 93 +#> log_alpha omega2.log_alpha 0.45 0.29 65 +#> log_beta omega2.log_beta 0.19 0.14 75 +#> ---------------------------------------------------- +#> ------ Correlation matrix of random effects ------ +#> ---------------------------------------------------- +#> omega2.parent_0 omega2.log_alpha omega2.log_beta +#> omega2.parent_0 1 0 0 +#> omega2.log_alpha 0 1 0 +#> omega2.log_beta 0 0 1 +#> ---------------------------------------------------- +#> --------------- Statistical criteria ------------- +#> ---------------------------------------------------- +#> Likelihood computed by linearisation +#> -2LL= 454.0598 +#> AIC = 468.0598 +#> BIC = 465.3259 +#> +#> Likelihood computed by importance sampling +#> -2LL= 453.7499 +#> AIC = 467.7499 +#> BIC = 465.016 +#> ----------------------------------------------------#> Running main SAEM algorithm +#> [1] "Thu Nov 5 23:53:35 2020" +#> .. +#> Minimisation finished +#> [1] "Thu Nov 5 23:53:37 2020"#> Nonlinear mixed-effects model fit by the SAEM algorithm +#> ----------------------------------- +#> ---- Data ---- +#> ----------------------------------- +#> Object of class SaemixData +#> longitudinal data for use with the SAEM algorithm +#> Dataset ds_saemix +#> Structured data: value ~ time + name | ds +#> X variable for graphs: time () +#> Dataset characteristics: +#> number of subjects: 5 +#> number of observations: 90 +#> average/min/max nb obs: 18.00 / 16 / 20 +#> First 10 lines of data: +#> ds time name value mdv cens occ ytype +#> 1 Dataset 6 0 parent 97.2 0 0 1 1 +#> 2 Dataset 6 0 parent 96.4 0 0 1 1 +#> 3 Dataset 6 3 parent 71.1 0 0 1 1 +#> 4 Dataset 6 3 parent 69.2 0 0 1 1 +#> 5 Dataset 6 6 parent 58.1 0 0 1 1 +#> 6 Dataset 6 6 parent 56.6 0 0 1 1 +#> 7 Dataset 6 10 parent 44.4 0 0 1 1 +#> 8 Dataset 6 10 parent 43.4 0 0 1 1 +#> 9 Dataset 6 20 parent 33.3 0 0 1 1 +#> 10 Dataset 6 20 parent 29.2 0 0 1 1 +#> ----------------------------------- +#> ---- Model ---- +#> ----------------------------------- +#> Nonlinear mixed-effects model +#> Model function: Mixed model generated from mmkin object Model type: structural +#> function (psi, id, xidep) +#> { +#> g <- plogis(psi[id, 4]) +#> t = xidep[, "time"] +#> psi[id, 1] * (g * exp(-exp(psi[id, 2]) * t) + (1 - g) * exp(-exp(psi[id, +#> 3]) * t)) +#> } +#> <bytecode: 0x55555998e548> +#> <environment: 0x555558225bf0> #> Nb of parameters: 4 -#> parameter names: parent_0 log_k_parent log_k_A1 f_parent_ilr_1 +#> parameter names: parent_0 log_k1 log_k2 g_qlogis #> distribution: -#> Parameter Distribution Estimated -#> [1,] parent_0 normal Estimated -#> [2,] log_k_parent normal Estimated -#> [3,] log_k_A1 normal Estimated -#> [4,] f_parent_ilr_1 normal Estimated +#> Parameter Distribution Estimated +#> [1,] parent_0 normal Estimated +#> [2,] log_k1 normal Estimated +#> [3,] log_k2 normal Estimated +#> [4,] g_qlogis normal Estimated #> Variance-covariance matrix: -#> parent_0 log_k_parent log_k_A1 f_parent_ilr_1 -#> parent_0 1 0 0 0 -#> log_k_parent 0 1 0 0 -#> log_k_A1 0 0 1 0 -#> f_parent_ilr_1 0 0 0 1 -#> Error model: constant , initial values: a.1=4.97259024646577 +#> parent_0 log_k1 log_k2 g_qlogis +#> parent_0 1 0 0 0 +#> log_k1 0 1 0 0 +#> log_k2 0 0 1 0 +#> g_qlogis 0 0 0 1 +#> Error model: constant , initial values: a.1=1.94671278396371 #> No covariate in the model. #> Initial values -#> parent_0 log_k_parent log_k_A1 f_parent_ilr_1 -#> Pop.CondInit 86.53449 -3.207005 -3.060308 -1.920449 +#> parent_0 log_k1 log_k2 g_qlogis +#> Pop.CondInit 94.08322 -1.834163 -4.210797 0.11002 #> ----------------------------------- #> ---- Key algorithm options ---- #> ----------------------------------- @@ -383,69 +745,195 @@ variances of the deviations of the parameters from these mean values. #> ---------------------------------------------------- #> ----------------- Fixed effects ------------------ #> ---------------------------------------------------- -#> Parameter Estimate SE CV(%) -#> parent_0 86.09 1.57 1.8 -#> log_k_parent -3.21 0.59 18.5 -#> log_k_A1 -4.69 0.31 6.6 -#> f_parent_ilr_1 -0.34 0.30 89.2 -#> a a.1 4.69 0.27 5.8 +#> Parameter Estimate SE CV(%) +#> parent_0 93.97 1.35 1.4 +#> log_k1 -2.37 0.58 24.5 +#> log_k2 -3.63 0.87 24.0 +#> g_qlogis -0.14 0.34 246.1 +#> a a.1 2.32 0.19 8.3 #> ---------------------------------------------------- #> ----------- Variance of random effects ----------- #> ---------------------------------------------------- -#> Parameter Estimate SE CV(%) -#> parent_0 omega2.parent_0 7.07 7.72 109 -#> log_k_parent omega2.log_k_parent 1.75 1.11 63 -#> log_k_A1 omega2.log_k_A1 0.28 0.28 99 -#> f_parent_ilr_1 omega2.f_parent_ilr_1 0.39 0.27 71 +#> Parameter Estimate SE CV(%) +#> parent_0 omega2.parent_0 6.97 5.72 82 +#> log_k1 omega2.log_k1 1.63 1.06 65 +#> log_k2 omega2.log_k2 3.73 2.39 64 +#> g_qlogis omega2.g_qlogis 0.16 0.27 173 #> ---------------------------------------------------- #> ------ Correlation matrix of random effects ------ #> ---------------------------------------------------- -#> omega2.parent_0 omega2.log_k_parent omega2.log_k_A1 -#> omega2.parent_0 1 0 0 -#> omega2.log_k_parent 0 1 0 -#> omega2.log_k_A1 0 0 1 -#> omega2.f_parent_ilr_1 0 0 0 -#> omega2.f_parent_ilr_1 -#> omega2.parent_0 0 -#> omega2.log_k_parent 0 -#> omega2.log_k_A1 0 -#> omega2.f_parent_ilr_1 1 +#> omega2.parent_0 omega2.log_k1 omega2.log_k2 omega2.g_qlogis +#> omega2.parent_0 1 0 0 0 +#> omega2.log_k1 0 1 0 0 +#> omega2.log_k2 0 0 1 0 +#> omega2.g_qlogis 0 0 0 1 #> ---------------------------------------------------- #> --------------- Statistical criteria ------------- #> ---------------------------------------------------- #> Likelihood computed by linearisation -#> -2LL= 1064.35 -#> AIC = 1082.35 -#> BIC = 1078.835 +#> -2LL= 485.4627 +#> AIC = 503.4627 +#> BIC = 499.9477 #> #> Likelihood computed by importance sampling -#> -2LL= 1063.475 -#> AIC = 1081.475 -#> BIC = 1077.96 -#> ----------------------------------------------------#> Plotting convergence plots# } -# Synthetic data with two-component error -sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) -dt50_sfo_in <- c(80, 90, 100, 111.111, 125) -k_in <- log(2) / dt50_sfo_in - -SFO <- mkinmod(parent = mkinsub("SFO")) - -pred_sfo <- function(k) { - mkinpredict(SFO, c(k_parent = k), - c(parent = 100), sampling_times) -} - -ds_sfo_mean <- lapply(k_in, pred_sfo) -set.seed(123456L) -ds_sfo_syn <- lapply(ds_sfo_mean, function(ds) { - add_err(ds, sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2), - n = 1)[[1]] - }) -# \dontrun{ -f_mmkin_syn <- mmkin("SFO", ds_sfo_syn, error_model = "tc", quiet = TRUE) -# plot(f_mmkin_syn) -m_saemix_tc <- saemix_model(f_mmkin_syn, cores = 1) +#> -2LL= 473.563 +#> AIC = 491.563 +#> BIC = 488.048 +#> ----------------------------------------------------#> Likelihoods computed by importance sampling#> AIC BIC +#> 1 624.4911 622.5382 +#> 2 467.7499 465.0160 +#> 3 491.5630 488.0480f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc") +m_saemix_fomc_tc <- saemix_model(f_mmkin_parent_tc["FOMC", ]) +#> +#> +#> The following SaemixModel object was successfully created: +#> +#> Nonlinear mixed-effects model +#> Model function: Mixed model generated from mmkin object Model type: structural +#> function (psi, id, xidep) +#> { +#> psi[id, 1]/(xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, +#> 2]) +#> } +#> <bytecode: 0x55555998dc50> +#> <environment: 0x555559a957f8> +#> Nb of parameters: 3 +#> parameter names: parent_0 log_alpha log_beta +#> distribution: +#> Parameter Distribution Estimated +#> [1,] parent_0 normal Estimated +#> [2,] log_alpha normal Estimated +#> [3,] log_beta normal Estimated +#> Variance-covariance matrix: +#> parent_0 log_alpha log_beta +#> parent_0 1 0 0 +#> log_alpha 0 1 0 +#> log_beta 0 0 1 +#> Error model: combined , initial values: a.1=1.10728182011691 b.1=0.024889924291374 +#> No covariate in the model. +#> Initial values +#> parent_0 log_alpha log_beta +#> Pop.CondInit 93.13042 -0.1215336 2.230815#> Running main SAEM algorithm +#> [1] "Thu Nov 5 23:53:38 2020" +#> .. +#> Minimisation finished +#> [1] "Thu Nov 5 23:53:42 2020"#> Nonlinear mixed-effects model fit by the SAEM algorithm +#> ----------------------------------- +#> ---- Data ---- +#> ----------------------------------- +#> Object of class SaemixData +#> longitudinal data for use with the SAEM algorithm +#> Dataset ds_saemix +#> Structured data: value ~ time + name | ds +#> X variable for graphs: time () +#> Dataset characteristics: +#> number of subjects: 5 +#> number of observations: 90 +#> average/min/max nb obs: 18.00 / 16 / 20 +#> First 10 lines of data: +#> ds time name value mdv cens occ ytype +#> 1 Dataset 6 0 parent 97.2 0 0 1 1 +#> 2 Dataset 6 0 parent 96.4 0 0 1 1 +#> 3 Dataset 6 3 parent 71.1 0 0 1 1 +#> 4 Dataset 6 3 parent 69.2 0 0 1 1 +#> 5 Dataset 6 6 parent 58.1 0 0 1 1 +#> 6 Dataset 6 6 parent 56.6 0 0 1 1 +#> 7 Dataset 6 10 parent 44.4 0 0 1 1 +#> 8 Dataset 6 10 parent 43.4 0 0 1 1 +#> 9 Dataset 6 20 parent 33.3 0 0 1 1 +#> 10 Dataset 6 20 parent 29.2 0 0 1 1 +#> ----------------------------------- +#> ---- Model ---- +#> ----------------------------------- +#> Nonlinear mixed-effects model +#> Model function: Mixed model generated from mmkin object Model type: structural +#> function (psi, id, xidep) +#> { +#> psi[id, 1]/(xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, +#> 2]) +#> } +#> <bytecode: 0x55555998dc50> +#> <environment: 0x555559a957f8> +#> Nb of parameters: 3 +#> parameter names: parent_0 log_alpha log_beta +#> distribution: +#> Parameter Distribution Estimated +#> [1,] parent_0 normal Estimated +#> [2,] log_alpha normal Estimated +#> [3,] log_beta normal Estimated +#> Variance-covariance matrix: +#> parent_0 log_alpha log_beta +#> parent_0 1 0 0 +#> log_alpha 0 1 0 +#> log_beta 0 0 1 +#> Error model: combined , initial values: a.1=1.10728182011691 b.1=0.024889924291374 +#> No covariate in the model. +#> Initial values +#> parent_0 log_alpha log_beta +#> Pop.CondInit 93.13042 -0.1215336 2.230815 +#> ----------------------------------- +#> ---- Key algorithm options ---- +#> ----------------------------------- +#> Estimation of individual parameters (MAP) +#> Estimation of standard errors and linearised log-likelihood +#> Estimation of log-likelihood by importance sampling +#> Number of iterations: K1=200, K2=80 +#> Number of chains: 10 +#> Seed: 123456 +#> Number of MCMC iterations for IS: 5000 +#> Simulations: +#> nb of simulated datasets used for npde: 1000 +#> nb of simulated datasets used for VPC: 100 +#> Input/output +#> save the results to a file: FALSE +#> save the graphs to files: FALSE +#> ---------------------------------------------------- +#> ---- Results ---- +#> ---------------------------------------------------- +#> ----------------- Fixed effects ------------------ +#> ---------------------------------------------------- +#> Parameter Estimate SE CV(%) +#> parent_0 94.4481 1.2052 1.3 +#> log_alpha -0.2088 0.3059 146.5 +#> log_beta 2.0668 0.2182 10.6 +#> a a.1 2.4273 0.3178 13.1 +#> b b.1 -0.0037 0.0062 168.3 +#> ---------------------------------------------------- +#> ----------- Variance of random effects ----------- +#> ---------------------------------------------------- +#> Parameter Estimate SE CV(%) +#> parent_0 omega2.parent_0 5.34 4.58 86 +#> log_alpha omega2.log_alpha 0.46 0.29 65 +#> log_beta omega2.log_beta 0.20 0.15 74 +#> ---------------------------------------------------- +#> ------ Correlation matrix of random effects ------ +#> ---------------------------------------------------- +#> omega2.parent_0 omega2.log_alpha omega2.log_beta +#> omega2.parent_0 1 0 0 +#> omega2.log_alpha 0 1 0 +#> omega2.log_beta 0 0 1 +#> ---------------------------------------------------- +#> --------------- Statistical criteria ------------- +#> ---------------------------------------------------- +#> Likelihood computed by linearisation +#> -2LL= 453.7703 +#> AIC = 469.7703 +#> BIC = 466.6458 +#> +#> Likelihood computed by importance sampling +#> -2LL= 453.6186 +#> AIC = 469.6186 +#> BIC = 466.4942 +#> ----------------------------------------------------#> Likelihoods computed by importance sampling#> AIC BIC +#> 1 467.7499 465.0160 +#> 2 469.6186 466.4942#>#> #> #> The following SaemixModel object was successfully created: @@ -468,7 +956,7 @@ variances of the deviations of the parameters from these mean values. #> transform_fractions = object[[1]]$transform_fractions) #> odeparms <- c(odeparms_optim, odeparms_fixed) #> xidep_i <- subset(xidep, id == i) -#> if (analytical) { +#> if (solution_type == "analytical") { #> out_values <- mkin_model$deg_func(xidep_i, odeini, #> odeparms) #> } @@ -476,7 +964,7 @@ variances of the deviations of the parameters from these mean values. #> i_time <- xidep_i$time #> i_name <- xidep_i$name #> out_wide <- mkinpredict(mkin_model, odeparms = odeparms, -#> odeini = odeini, solution_type = object[[1]]$solution_type, +#> odeini = odeini, solution_type = solution_type, #> outtimes = sort(unique(i_time))) #> out_index <- cbind(as.character(i_time), as.character(i_name)) #> out_values <- out_wide[out_index] @@ -486,23 +974,31 @@ variances of the deviations of the parameters from these mean values. #> res <- unlist(res_list) #> return(res) #> } -#> <bytecode: 0x55555d62aeb8> -#> <environment: 0x55555cd8e028> -#> Nb of parameters: 2 -#> parameter names: parent_0 log_k_parent +#> <bytecode: 0x55555998cba0> +#> <environment: 0x55555bd1fee8> +#> Nb of parameters: 6 +#> parameter names: parent_0 log_k_A1 f_parent_qlogis log_k1 log_k2 g_qlogis #> distribution: -#> Parameter Distribution Estimated -#> [1,] parent_0 normal Estimated -#> [2,] log_k_parent normal Estimated +#> Parameter Distribution Estimated +#> [1,] parent_0 normal Estimated +#> [2,] log_k_A1 normal Estimated +#> [3,] f_parent_qlogis normal Estimated +#> [4,] log_k1 normal Estimated +#> [5,] log_k2 normal Estimated +#> [6,] g_qlogis normal Estimated #> Variance-covariance matrix: -#> parent_0 log_k_parent -#> parent_0 1 0 -#> log_k_parent 0 1 -#> Error model: combined , initial values: a.1=1.05209877924905 b.1=0.0586479225303944 +#> parent_0 log_k_A1 f_parent_qlogis log_k1 log_k2 g_qlogis +#> parent_0 1 0 0 0 0 0 +#> log_k_A1 0 1 0 0 0 0 +#> f_parent_qlogis 0 0 1 0 0 0 +#> log_k1 0 0 0 1 0 0 +#> log_k2 0 0 0 0 1 0 +#> g_qlogis 0 0 0 0 0 1 +#> Error model: constant , initial values: a.1=1.64723790168612 #> No covariate in the model. #> Initial values -#> parent_0 log_k_parent -#> Pop.CondInit 100.315 -4.962075d_saemix_tc <- saemix_data(f_mmkin_syn) +#> parent_0 log_k_A1 f_parent_qlogis log_k1 log_k2 g_qlogis +#> Pop.CondInit 93.81015 -9.764746 -0.9711148 -1.879937 -4.270814 0.1356441d_saemix <- saemix_data(f_mmkin)#> #> #> The following SaemixData object was successfully created: @@ -511,12 +1007,12 @@ variances of the deviations of the parameters from these mean values. #> longitudinal data for use with the SAEM algorithm #> Dataset ds_saemix #> Structured data: value ~ time + name | ds -#> X variable for graphs: time ()#> Running main SAEM algorithm -#> [1] "Thu Nov 5 08:28:50 2020" +#> [1] "Thu Nov 5 23:53:43 2020" #> .. #> Minimisation finished -#> [1] "Thu Nov 5 08:29:41 2020"#> Nonlinear mixed-effects model fit by the SAEM algorithm +#> [1] "Thu Nov 5 23:56:33 2020"#> Nonlinear mixed-effects model fit by the SAEM algorithm #> ----------------------------------- #> ---- Data ---- #> ----------------------------------- @@ -527,20 +1023,20 @@ variances of the deviations of the parameters from these mean values. #> X variable for graphs: time () #> Dataset characteristics: #> number of subjects: 5 -#> number of observations: 90 -#> average/min/max nb obs: 18.00 / 18 / 18 +#> number of observations: 170 +#> average/min/max nb obs: 34.00 / 30 / 38 #> First 10 lines of data: -#> ds time name value mdv cens occ ytype -#> 1 1 0 parent 105.9 0 0 1 1 -#> 2 1 0 parent 98.0 0 0 1 1 -#> 3 1 1 parent 96.6 0 0 1 1 -#> 4 1 1 parent 99.8 0 0 1 1 -#> 5 1 3 parent 113.0 0 0 1 1 -#> 6 1 3 parent 103.2 0 0 1 1 -#> 7 1 7 parent 102.9 0 0 1 1 -#> 8 1 7 parent 110.8 0 0 1 1 -#> 9 1 14 parent 95.9 0 0 1 1 -#> 10 1 14 parent 85.9 0 0 1 1 +#> ds time name value mdv cens occ ytype +#> 1 Dataset 6 0 parent 97.2 0 0 1 1 +#> 2 Dataset 6 0 parent 96.4 0 0 1 1 +#> 3 Dataset 6 3 parent 71.1 0 0 1 1 +#> 4 Dataset 6 3 parent 69.2 0 0 1 1 +#> 5 Dataset 6 6 parent 58.1 0 0 1 1 +#> 6 Dataset 6 6 parent 56.6 0 0 1 1 +#> 7 Dataset 6 10 parent 44.4 0 0 1 1 +#> 8 Dataset 6 10 parent 43.4 0 0 1 1 +#> 9 Dataset 6 20 parent 33.3 0 0 1 1 +#> 10 Dataset 6 20 parent 29.2 0 0 1 1 #> ----------------------------------- #> ---- Model ---- #> ----------------------------------- @@ -562,7 +1058,7 @@ variances of the deviations of the parameters from these mean values. #> transform_fractions = object[[1]]$transform_fractions) #> odeparms <- c(odeparms_optim, odeparms_fixed) #> xidep_i <- subset(xidep, id == i) -#> if (analytical) { +#> if (solution_type == "analytical") { #> out_values <- mkin_model$deg_func(xidep_i, odeini, #> odeparms) #> } @@ -570,7 +1066,7 @@ variances of the deviations of the parameters from these mean values. #> i_time <- xidep_i$time #> i_name <- xidep_i$name #> out_wide <- mkinpredict(mkin_model, odeparms = odeparms, -#> odeini = odeini, solution_type = object[[1]]$solution_type, +#> odeini = odeini, solution_type = solution_type, #> outtimes = sort(unique(i_time))) #> out_index <- cbind(as.character(i_time), as.character(i_name)) #> out_values <- out_wide[out_index] @@ -580,23 +1076,31 @@ variances of the deviations of the parameters from these mean values. #> res <- unlist(res_list) #> return(res) #> } -#> <bytecode: 0x55555d62aeb8> -#> <environment: 0x55555cd8e028> -#> Nb of parameters: 2 -#> parameter names: parent_0 log_k_parent +#> <bytecode: 0x55555998cba0> +#> <environment: 0x55555bd1fee8> +#> Nb of parameters: 6 +#> parameter names: parent_0 log_k_A1 f_parent_qlogis log_k1 log_k2 g_qlogis #> distribution: -#> Parameter Distribution Estimated -#> [1,] parent_0 normal Estimated -#> [2,] log_k_parent normal Estimated +#> Parameter Distribution Estimated +#> [1,] parent_0 normal Estimated +#> [2,] log_k_A1 normal Estimated +#> [3,] f_parent_qlogis normal Estimated +#> [4,] log_k1 normal Estimated +#> [5,] log_k2 normal Estimated +#> [6,] g_qlogis normal Estimated #> Variance-covariance matrix: -#> parent_0 log_k_parent -#> parent_0 1 0 -#> log_k_parent 0 1 -#> Error model: combined , initial values: a.1=1.05209877924905 b.1=0.0586479225303944 +#> parent_0 log_k_A1 f_parent_qlogis log_k1 log_k2 g_qlogis +#> parent_0 1 0 0 0 0 0 +#> log_k_A1 0 1 0 0 0 0 +#> f_parent_qlogis 0 0 1 0 0 0 +#> log_k1 0 0 0 1 0 0 +#> log_k2 0 0 0 0 1 0 +#> g_qlogis 0 0 0 0 0 1 +#> Error model: constant , initial values: a.1=1.64723790168612 #> No covariate in the model. #> Initial values -#> parent_0 log_k_parent -#> Pop.CondInit 100.315 -4.962075 +#> parent_0 log_k_A1 f_parent_qlogis log_k1 log_k2 g_qlogis +#> Pop.CondInit 93.81015 -9.764746 -0.9711148 -1.879937 -4.270814 0.1356441 #> ----------------------------------- #> ---- Key algorithm options ---- #> ----------------------------------- @@ -618,37 +1122,55 @@ variances of the deviations of the parameters from these mean values. #> ---------------------------------------------------- #> ----------------- Fixed effects ------------------ #> ---------------------------------------------------- -#> Parameter Estimate SE CV(%) -#> parent_0 100.232 1.266 1.3 -#> log_k_parent -4.961 0.089 1.8 -#> a a.1 -0.106 1.211 1142.0 -#> b b.1 0.071 0.017 24.2 +#> Parameter Estimate SE CV(%) +#> parent_0 93.78 1.35 1.4 +#> log_k_A1 -6.05 1.12 18.5 +#> f_parent_qlogis -0.97 0.20 21.1 +#> log_k1 -2.46 0.51 20.7 +#> log_k2 -3.63 0.95 26.3 +#> g_qlogis -0.08 0.36 447.7 +#> a a.1 1.88 0.11 5.9 #> ---------------------------------------------------- #> ----------- Variance of random effects ----------- #> ---------------------------------------------------- -#> Parameter Estimate SE CV(%) -#> parent_0 omega2.parent_0 3.334 5.024 151 -#> log_k_parent omega2.log_k_parent 0.036 0.024 68 +#> Parameter Estimate SE CV(%) +#> parent_0 omega2.parent_0 7.85 5.76 73 +#> log_k_A1 omega2.log_k_A1 4.27 3.44 80 +#> f_parent_qlogis omega2.f_parent_qlogis 0.20 0.13 65 +#> log_k1 omega2.log_k1 1.08 0.77 72 +#> log_k2 omega2.log_k2 4.24 2.83 67 +#> g_qlogis omega2.g_qlogis 0.21 0.26 123 #> ---------------------------------------------------- #> ------ Correlation matrix of random effects ------ #> ---------------------------------------------------- -#> omega2.parent_0 omega2.log_k_parent -#> omega2.parent_0 1 0 -#> omega2.log_k_parent 0 1 +#> omega2.parent_0 omega2.log_k_A1 omega2.f_parent_qlogis +#> omega2.parent_0 1 0 0 +#> omega2.log_k_A1 0 1 0 +#> omega2.f_parent_qlogis 0 0 1 +#> omega2.log_k1 0 0 0 +#> omega2.log_k2 0 0 0 +#> omega2.g_qlogis 0 0 0 +#> omega2.log_k1 omega2.log_k2 omega2.g_qlogis +#> omega2.parent_0 0 0 0 +#> omega2.log_k_A1 0 0 0 +#> omega2.f_parent_qlogis 0 0 0 +#> omega2.log_k1 1 0 0 +#> omega2.log_k2 0 1 0 +#> omega2.g_qlogis 0 0 1 #> ---------------------------------------------------- #> --------------- Statistical criteria ------------- #> ---------------------------------------------------- #> Likelihood computed by linearisation -#> -2LL= 575.5586 -#> AIC = 587.5586 -#> BIC = 585.2153 +#> -2LL= 879.7721 +#> AIC = 905.7721 +#> BIC = 900.6948 #> #> Likelihood computed by importance sampling -#> -2LL= 575.7797 -#> AIC = 587.7797 -#> BIC = 585.4364 -#> ----------------------------------------------------#> Plotting convergence plots# } +#> -2LL= 816.8276 +#> AIC = 842.8276 +#> BIC = 837.7503 +#> ----------------------------------------------------+# }