From 0af6a61b84cc29cdbfad16a6fc7ee0e6f88c7d0f Mon Sep 17 00:00:00 2001
From: Johannes Ranke
Date: Thu, 22 Oct 2020 13:14:31 +0200
Subject: Really fix check for nlme::varConstProp
And add output for nlme fit translating the mkinfit error model "obs"
into nlme::varIdent().
---
docs/dev/reference/nlme.mmkin.html | 51 +++++++++++++++++++++++++++++++++++---
1 file changed, 48 insertions(+), 3 deletions(-)
(limited to 'docs/dev/reference')
diff --git a/docs/dev/reference/nlme.mmkin.html b/docs/dev/reference/nlme.mmkin.html
index d186d785..6e83b700 100644
--- a/docs/dev/reference/nlme.mmkin.html
+++ b/docs/dev/reference/nlme.mmkin.html
@@ -448,7 +448,7 @@ with additional elements
#> parent 11.07091 104.6320 31.49738 4.462384 46.20825
#> A1 162.30536 539.1667 NA NA NA
#> #> Error in if (findFunction("varConstProp")) { f_tc <- mmkin(c("SFO", "DFOP"), ds, quiet = TRUE, error_model = "tc") f_nlme_sfo_tc <- nlme(f_tc["SFO", ]) f_nlme_dfop_tc <- nlme(f_tc["DFOP", ]) AIC(f_nlme_sfo, f_nlme_sfo_tc, f_nlme_dfop, f_nlme_dfop_tc) print(f_nlme_dfop_tc)}: argument is not interpretable as logical
#> Nonlinear mixed-effects model fit by maximum likelihood
+#> Model: value ~ (mkin::get_deg_func())(name, time, parent_0, log_k1, log_k2, g_ilr)
+#> Data: "Not shown"
+#> Log-likelihood: -238.4298
+#> Fixed: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_ilr ~ 1)
+#> parent_0 log_k1 log_k2 g_ilr
+#> 94.04774463 -1.82339924 -4.16715509 0.04020161
+#>
+#> Random effects:
+#> Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_ilr ~ 1)
+#> Level: ds
+#> Structure: Diagonal
+#> parent_0 log_k1 log_k2 g_ilr Residual
+#> StdDev: 2.473883 0.8499901 1.337187 0.3294411 1
+#>
+#> Variance function:
+#> Structure: Constant plus proportion of variance covariate
+#> Formula: ~fitted(.)
+#> Parameter estimates:
+#> const prop
+#> 2.23222625 0.01262414
+#> Number of Observations: 90
+#> Number of Groups: 5
#> Nonlinear mixed-effects model fit by maximum likelihood
+#> Model: value ~ (mkin::get_deg_func())(name, time, parent_0, log_k_parent_sink, log_k_parent_A1, log_k_A1_sink)
+#> Data: "Not shown"
+#> Log-likelihood: -472.976
+#> Fixed: list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1, log_k_A1_sink ~ 1)
+#> parent_0 log_k_parent_sink log_k_parent_A1 log_k_A1_sink
+#> 87.975536 -3.669816 -4.164127 -4.645073
+#>
+#> Random effects:
+#> Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1, log_k_A1_sink ~ 1)
+#> Level: ds
+#> Structure: Diagonal
+#> parent_0 log_k_parent_sink log_k_parent_A1 log_k_A1_sink Residual
+#> StdDev: 3.992214 1.77702 1.054733 0.4821383 6.482585
+#>
+#> Variance function:
+#> Structure: Different standard deviations per stratum
+#> Formula: ~1 | name
+#> Parameter estimates:
+#> parent A1
+#> 1.0000000 0.2050003
+#> Number of Observations: 170
+#> Number of Groups: 5
# The same with DFOP-SFO does not converge, apparently the variances of
# parent and A1 are too similar in this case, so that the model is
# overparameterised
#f_nlme_dfop_sfo_obs <- nlme(f_2_obs["DFOP-SFO", ], control = list(maxIter = 100))
--
cgit v1.2.1