#>
+
#> Successfully compiled differential equation model from auto-generated C code.
#> Package saemix, version 3.1.9000
+#> please direct bugs, questions and feedback to emmanuelle.comets@inserm.fr
m_saemix <- saemix_model(f_mmkin, cores = 1)
+
#>
#>
#> The following SaemixModel object was successfully created:
#>
@@ -234,8 +237,8 @@ variances of the deviations of the parameters from these mean values.
#> res <- unlist(res_list)
#> return(res)
#> }
-#> <bytecode: 0x55555bbf17c0>
-#> <environment: 0x55555bbec4e0>
+#> <bytecode: 0x55555c1e7720>
+#> <environment: 0x55555c1eff38>
#> Nb of parameters: 4
#> parameter names: parent_0 log_k_parent log_k_A1 f_parent_ilr_1
#> distribution:
@@ -250,11 +253,12 @@ variances of the deviations of the parameters from these mean values.
#> log_k_parent 0 1 0 0
#> log_k_A1 0 0 1 0
#> f_parent_ilr_1 0 0 0 1
-#> Error model: constant , initial values: a.1=1
+#> Error model: constant , initial values: a.1=4.97259024646577
#> No covariate in the model.
#> Initial values
#> parent_0 log_k_parent log_k_A1 f_parent_ilr_1
-#> Pop.CondInit 86.53449 -3.207005 -3.060308 -1.920449
d_saemix <- saemix_data(f_mmkin)
#>
+#> Pop.CondInit 86.53449 -3.207005 -3.060308 -1.920449
d_saemix <- saemix_data(f_mmkin)
+
#>
#>
#> The following SaemixData object was successfully created:
#>
@@ -262,14 +266,15 @@ variances of the deviations of the parameters from these mean values.
#> longitudinal data for use with the SAEM algorithm
#> Dataset ds_saemix
#> Structured data: value ~ time + name | ds
-#> X variable for graphs: time ()
#> Running main SAEM algorithm
-#> [1] "Wed May 27 07:45:07 2020"
+#> X variable for graphs: time ()
#> Running main SAEM algorithm
+#> [1] "Thu Oct 15 11:55:14 2020"
#> ..
#> Minimisation finished
-#> [1] "Wed May 27 07:51:24 2020"
#> Nonlinear mixed-effects model fit by the SAEM algorithm
+#> [1] "Thu Oct 15 11:57:07 2020"

#> Nonlinear mixed-effects model fit by the SAEM algorithm
#> -----------------------------------
#> ---- Data ----
#> -----------------------------------
@@ -333,8 +338,8 @@ variances of the deviations of the parameters from these mean values.
#> res <- unlist(res_list)
#> return(res)
#> }
-#> <bytecode: 0x55555bbf17c0>
-#> <environment: 0x55555bbec4e0>
+#> <bytecode: 0x55555c1e7720>
+#> <environment: 0x55555c1eff38>
#> Nb of parameters: 4
#> parameter names: parent_0 log_k_parent log_k_A1 f_parent_ilr_1
#> distribution:
@@ -349,7 +354,7 @@ variances of the deviations of the parameters from these mean values.
#> log_k_parent 0 1 0 0
#> log_k_A1 0 0 1 0
#> f_parent_ilr_1 0 0 0 1
-#> Error model: constant , initial values: a.1=1
+#> Error model: constant , initial values: a.1=4.97259024646577
#> No covariate in the model.
#> Initial values
#> parent_0 log_k_parent log_k_A1 f_parent_ilr_1
@@ -375,20 +380,20 @@ variances of the deviations of the parameters from these mean values.
#> ----------------------------------------------------
#> ----------------- Fixed effects ------------------
#> ----------------------------------------------------
-#> Parameter Estimate SE CV(%)
-#> [1,] parent_0 86.14 1.61 1.9
-#> [2,] log_k_parent -3.21 0.59 18.5
-#> [3,] log_k_A1 -4.66 0.30 6.4
-#> [4,] f_parent_ilr_1 -0.33 0.30 91.7
-#> [5,] a.1 4.68 0.27 5.8
+#> Parameter Estimate SE CV(%)
+#> parent_0 86.09 1.57 1.8
+#> log_k_parent -3.21 0.59 18.5
+#> log_k_A1 -4.69 0.31 6.6
+#> f_parent_ilr_1 -0.34 0.30 89.2
+#> a a.1 4.69 0.27 5.8
#> ----------------------------------------------------
#> ----------- Variance of random effects -----------
#> ----------------------------------------------------
#> Parameter Estimate SE CV(%)
-#> parent_0 omega2.parent_0 7.71 8.14 106
-#> log_k_parent omega2.log_k_parent 1.76 1.12 63
-#> log_k_A1 omega2.log_k_A1 0.26 0.26 101
-#> f_parent_ilr_1 omega2.f_parent_ilr_1 0.39 0.28 71
+#> parent_0 omega2.parent_0 7.07 7.72 109
+#> log_k_parent omega2.log_k_parent 1.75 1.11 63
+#> log_k_A1 omega2.log_k_A1 0.28 0.28 99
+#> f_parent_ilr_1 omega2.f_parent_ilr_1 0.39 0.27 71
#> ----------------------------------------------------
#> ------ Correlation matrix of random effects ------
#> ----------------------------------------------------
@@ -406,15 +411,245 @@ variances of the deviations of the parameters from these mean values.
#> --------------- Statistical criteria -------------
#> ----------------------------------------------------
#> Likelihood computed by linearisation
-#> -2LL= 1064.364
-#> AIC = 1082.364
-#> BIC = 1078.848
+#> -2LL= 1064.35
+#> AIC = 1082.35
+#> BIC = 1078.835
#>
#> Likelihood computed by importance sampling
-#> -2LL= 1063.462
-#> AIC = 1081.462
-#> BIC = 1077.947
-#> ----------------------------------------------------
#> Plotting convergence plots
# }
+#> -2LL= 1063.475
+#> AIC = 1081.475
+#> BIC = 1077.96
+#> ----------------------------------------------------
#> Plotting convergence plots

#>
+#>
+#> The following SaemixModel object was successfully created:
+#>
+#> Nonlinear mixed-effects model
+#> Model function: Mixed model generated from mmkin object Model type: structural
+#> function (psi, id, xidep)
+#> {
+#> uid <- unique(id)
+#> res_list <- parallel::mclapply(uid, function(i) {
+#> transparms_optim <- psi[i, ]
+#> names(transparms_optim) <- names(degparms_optim)
+#> odeini_optim <- transparms_optim[odeini_optim_parm_names]
+#> names(odeini_optim) <- gsub("_0$", "", odeini_optim_parm_names)
+#> odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)]
+#> ode_transparms_optim_names <- setdiff(names(transparms_optim),
+#> odeini_optim_parm_names)
+#> odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names],
+#> mkin_model, transform_rates = object[[1]]$transform_rates,
+#> transform_fractions = object[[1]]$transform_fractions)
+#> odeparms <- c(odeparms_optim, odeparms_fixed)
+#> xidep_i <- subset(xidep, id == i)
+#> if (analytical) {
+#> out_values <- mkin_model$deg_func(xidep_i, odeini,
+#> odeparms)
+#> }
+#> else {
+#> i_time <- xidep_i$time
+#> i_name <- xidep_i$name
+#> out_wide <- mkinpredict(mkin_model, odeparms = odeparms,
+#> odeini = odeini, solution_type = object[[1]]$solution_type,
+#> outtimes = sort(unique(i_time)))
+#> out_index <- cbind(as.character(i_time), as.character(i_name))
+#> out_values <- out_wide[out_index]
+#> }
+#> return(out_values)
+#> }, mc.cores = cores)
+#> res <- unlist(res_list)
+#> return(res)
+#> }
+#> <bytecode: 0x55555c1e7720>
+#> <environment: 0x55555be5b848>
+#> Nb of parameters: 2
+#> parameter names: parent_0 log_k_parent
+#> distribution:
+#> Parameter Distribution Estimated
+#> [1,] parent_0 normal Estimated
+#> [2,] log_k_parent normal Estimated
+#> Variance-covariance matrix:
+#> parent_0 log_k_parent
+#> parent_0 1 0
+#> log_k_parent 0 1
+#> Error model: combined , initial values: a.1=2.4206146215511 b.1=0.03831266409084
+#> No covariate in the model.
+#> Initial values
+#> parent_0 log_k_parent
+#> Pop.CondInit 100.2498 -9.33922
d_saemix_tc <- saemix_data(f_mmkin_syn)
+
#>
+#>
+#> The following SaemixData object was successfully created:
+#>
+#> Object of class SaemixData
+#> longitudinal data for use with the SAEM algorithm
+#> Dataset ds_saemix
+#> Structured data: value ~ time + name | ds
+#> X variable for graphs: time ()
#> Running main SAEM algorithm
+#> [1] "Thu Oct 15 11:57:25 2020"
+#> ..
+#> Minimisation finished
+#> [1] "Thu Oct 15 11:58:16 2020"
+#> Error in solve.default(Fth) :
+#> Lapack routine dgesv: system is exactly singular: U[2,2] = 0
+#> Error computing the Fisher Information Matrix: singular system.
+#> Error in solve.default(FO) :
+#> Lapack routine dgesv: system is exactly singular: U[2,2] = 0
+#> Error computing the Fisher Information Matrix: singular system.
#> Nonlinear mixed-effects model fit by the SAEM algorithm
+#> -----------------------------------
+#> ---- Data ----
+#> -----------------------------------
+#> Object of class SaemixData
+#> longitudinal data for use with the SAEM algorithm
+#> Dataset ds_saemix
+#> Structured data: value ~ time + name | ds
+#> X variable for graphs: time ()
+#> Dataset characteristics:
+#> number of subjects: 5
+#> number of observations: 90
+#> average/min/max nb obs: 18.00 / 18 / 18
+#> First 10 lines of data:
+#> ds time name value mdv cens occ ytype
+#> 1 1 0 parent 105.9 0 0 1 1
+#> 2 1 0 parent 98.0 0 0 1 1
+#> 3 1 1 parent 97.4 0 0 1 1
+#> 4 1 1 parent 100.5 0 0 1 1
+#> 5 1 3 parent 115.6 0 0 1 1
+#> 6 1 3 parent 105.6 0 0 1 1
+#> 7 1 7 parent 108.6 0 0 1 1
+#> 8 1 7 parent 117.0 0 0 1 1
+#> 9 1 14 parent 107.0 0 0 1 1
+#> 10 1 14 parent 95.8 0 0 1 1
+#> -----------------------------------
+#> ---- Model ----
+#> -----------------------------------
+#> Nonlinear mixed-effects model
+#> Model function: Mixed model generated from mmkin object Model type: structural
+#> function (psi, id, xidep)
+#> {
+#> uid <- unique(id)
+#> res_list <- parallel::mclapply(uid, function(i) {
+#> transparms_optim <- psi[i, ]
+#> names(transparms_optim) <- names(degparms_optim)
+#> odeini_optim <- transparms_optim[odeini_optim_parm_names]
+#> names(odeini_optim) <- gsub("_0$", "", odeini_optim_parm_names)
+#> odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)]
+#> ode_transparms_optim_names <- setdiff(names(transparms_optim),
+#> odeini_optim_parm_names)
+#> odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names],
+#> mkin_model, transform_rates = object[[1]]$transform_rates,
+#> transform_fractions = object[[1]]$transform_fractions)
+#> odeparms <- c(odeparms_optim, odeparms_fixed)
+#> xidep_i <- subset(xidep, id == i)
+#> if (analytical) {
+#> out_values <- mkin_model$deg_func(xidep_i, odeini,
+#> odeparms)
+#> }
+#> else {
+#> i_time <- xidep_i$time
+#> i_name <- xidep_i$name
+#> out_wide <- mkinpredict(mkin_model, odeparms = odeparms,
+#> odeini = odeini, solution_type = object[[1]]$solution_type,
+#> outtimes = sort(unique(i_time)))
+#> out_index <- cbind(as.character(i_time), as.character(i_name))
+#> out_values <- out_wide[out_index]
+#> }
+#> return(out_values)
+#> }, mc.cores = cores)
+#> res <- unlist(res_list)
+#> return(res)
+#> }
+#> <bytecode: 0x55555c1e7720>
+#> <environment: 0x55555be5b848>
+#> Nb of parameters: 2
+#> parameter names: parent_0 log_k_parent
+#> distribution:
+#> Parameter Distribution Estimated
+#> [1,] parent_0 normal Estimated
+#> [2,] log_k_parent normal Estimated
+#> Variance-covariance matrix:
+#> parent_0 log_k_parent
+#> parent_0 1 0
+#> log_k_parent 0 1
+#> Error model: combined , initial values: a.1=2.4206146215511 b.1=0.03831266409084
+#> No covariate in the model.
+#> Initial values
+#> parent_0 log_k_parent
+#> Pop.CondInit 100.2498 -9.33922
+#> -----------------------------------
+#> ---- Key algorithm options ----
+#> -----------------------------------
+#> Estimation of individual parameters (MAP)
+#> Estimation of standard errors and linearised log-likelihood
+#> Estimation of log-likelihood by importance sampling
+#> Number of iterations: K1=200, K2=80
+#> Number of chains: 10
+#> Seed: 123456
+#> Number of MCMC iterations for IS: 5000
+#> Simulations:
+#> nb of simulated datasets used for npde: 1000
+#> nb of simulated datasets used for VPC: 100
+#> Input/output
+#> save the results to a file: FALSE
+#> save the graphs to files: FALSE
+#> ----------------------------------------------------
+#> ---- Results ----
+#> ----------------------------------------------------
+#> ----------------- Fixed effects ------------------
+#> ----------------------------------------------------
+#> Parameter Estimate SE CV(%)
+#> parent_0 97.44 <NA> <NA>
+#> log_k_parent -56.97 <NA> <NA>
+#> a a.1 -7.12 <NA> <NA>
+#> b b.1 0.15 <NA> <NA>
+#> ----------------------------------------------------
+#> ----------- Variance of random effects -----------
+#> ----------------------------------------------------
+#> Parameter Estimate SE CV(%)
+#> parent_0 omega2.parent_0 2.8 NA NA
+#> log_k_parent omega2.log_k_parent 750.3 NA NA
+#> ----------------------------------------------------
+#> ------ Correlation matrix of random effects ------
+#> ----------------------------------------------------
+#> omega2.parent_0 omega2.log_k_parent
+#> omega2.parent_0 1 0
+#> omega2.log_k_parent 0 1
+#> ----------------------------------------------------
+#> --------------- Statistical criteria -------------
+#> ----------------------------------------------------
+#> Likelihood computed by linearisation
+#> -2LL= 623.7744
+#> AIC = 635.7744
+#> BIC = 633.431
+#>
+#> Likelihood computed by importance sampling
+#> -2LL= 621.1909
+#> AIC = 633.1909
+#> BIC = 630.8475
+#> ----------------------------------------------------
#> Plotting convergence plots