From d25974f643ee46b7cd5ccd8331dd7bb0b14ab27a Mon Sep 17 00:00:00 2001
From: Johannes Ranke Generate an anova object. The method to calculate the BIC is that from
+the saemix package. As in other prominent anova methods, models are sorted An saem.mmkin object further such objects Method for likelihood calculation: "is" (importance sampling),
+"lin" (linear approximation), or "gq" (Gaussian quadrature). Passed
+to saemix::logLik.SaemixObject Should a likelihood ratio test be performed? If TRUE,
+the alternative models are tested against the first model. Should
+only be done for nested models. Optional character vector of model names an "anova" data frame; the traditional (S3) result of anova()Arguments
+ Value
+
+
+
summary(<saem.mmkin>) print(<summary.saem.mmkin>)
Summary method for class "saem.mmkin"
Anova method for saem.mmkin objects
logLik method for saem.mmkin objects
Confidence intervals for parameters in saem.mmkin objects
Perform a hierarchical model fit with multiple starting values
Normalisation factors for aerobic soil degradation according to FOCUS guidance
Set non-detects and unquantified values in residue series without replicates
max_twa_parent() max_twa_sfo() max_twa_fomc() max_twa_dfop() max_twa_hs()
Produces a histogram of log-likelihoods, and an overlayed kernel density -estimate. In addition, the likelihood of the original fit is shown as -a red vertical line.
+Produces a histogram of log-likelihoods. In addition, the likelihood of the +original fit is shown as a red vertical line.
logLik method for saem.mmkin objects
+The fitted saem.mmkin object
Passed to saemix::logLik.SaemixObject
Passed to saemix::logLik.SaemixObject
A list of saem.mmkin objects, with class attributes 'multistart.saem.mmkin' and 'multistart'.
+ + +The object with the highest likelihood
+ + +The index of the object with the highest likelihood
+illparms(f_saem_full)
+#> [1] "sd(log_k2)"
-f_saem_reduced <- update(f_saem_full, covariance.model = diag(c(1, 1, 0, 1)))
+f_saem_reduced <- update(f_saem_full, no_random_effect = "log_k2")
+illparms(f_saem_reduced)
+#> character(0)
# On Windows, we need to create a cluster first. When working with
# such a cluster, we need to export the mmkin object to the cluster
# nodes, as it is referred to when updating the saem object on the nodes.
@@ -200,10 +219,8 @@ doi: 10.1186/s12859-021-04373-4.
clusterExport(cl, "f_mmkin")
#> Error in get(name, envir = envir): object 'f_mmkin' not found
f_saem_reduced_multi <- multistart(f_saem_reduced, n = 16, cluster = cl)
-#> Error in checkForRemoteErrors(val): 12 nodes produced errors; first error: object 'f_mmkin' not found
parhist(f_saem_reduced_multi, lpos = "bottomright")
-#> Error in parhist(f_saem_reduced_multi, lpos = "bottomright"): object 'f_saem_reduced_multi' not found
-#> Warning: calling par(new=TRUE) with no plot
+
# }
Produces a boxplot with all parameters from the multiple runs, divided by -using their medians as in the paper by Duchesne et al. (2021).
+Produces a boxplot with all parameters from the multiple runs, scaled +either by the parameters of the run with the highest likelihood, +or by their medians as proposed in the paper by Duchesne et al. (2021).
parhist(object, lpos = "bottomleft", main = "", ...)parhist(
+ object,
+ llmin = -Inf,
+ scale = c("best", "median"),
+ lpos = "bottomleft",
+ main = "",
+ ...
+)The multistart object
The minimum likelihood of objects to be shown
By default, scale parameters using the best available fit. +If 'median', parameters are scaled using the median parameters from all fits.
Positioning of the legend.
Will be passed to saemix::SaemixModel(). Per
+default, uncorrelated random effects are specified for all degradation
+parameters.
A data frame with covariate data for use in +'covariate_models', with dataset names as row names.
A list containing linear model formulas with one explanatory +variable, i.e. of the type 'parameter ~ covariate'. Covariates must be available +in the 'covariates' data frame.
Character vector of degradation parameters for +which there should be no variability over the groups. Only used +if the covariance model is not explicitly specified.
Convenience option to increase the number of iterations
summary(f_saem_dfop_sfo, data = TRUE)
-#> saemix version used for fitting: 3.1
+#> saemix version used for fitting: 3.2
#> mkin version used for pre-fitting: 1.1.2
#> R version used for fitting: 4.2.1
-#> Date of fit: Fri Sep 16 10:30:47 2022
-#> Date of summary: Fri Sep 16 10:30:47 2022
+#> Date of fit: Wed Oct 26 09:20:37 2022
+#> Date of summary: Wed Oct 26 09:20:37 2022
#>
#> Equations:
#> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
@@ -389,7 +427,7 @@ using mmkin.
#>
#> Model predictions using solution type analytical
#>
-#> Fitted in 9.651 s
+#> Fitted in 8.902 s
#> Using 300, 100 iterations and 10 chains
#>
#> Variance model: Constant variance
@@ -410,13 +448,20 @@ using mmkin.
#> 842 836.9 -408
#>
#> Optimised parameters:
-#> est. lower upper
-#> parent_0 93.7701 91.1458 96.3945
-#> log_k_A1 -5.8116 -7.5998 -4.0234
-#> f_parent_qlogis -0.9608 -1.3654 -0.5562
-#> log_k1 -2.5841 -3.6876 -1.4805
-#> log_k2 -3.5228 -5.3254 -1.7203
-#> g_qlogis -0.1027 -0.8719 0.6665
+#> est. lower upper
+#> parent_0 93.7701 91.1458 96.3945
+#> log_k_A1 -5.8116 -7.5998 -4.0234
+#> f_parent_qlogis -0.9608 -1.3654 -0.5562
+#> log_k1 -2.5841 -3.6876 -1.4805
+#> log_k2 -3.5228 -5.3254 -1.7203
+#> g_qlogis -0.1027 -0.8719 0.6665
+#> a.1 1.8856 1.6676 2.1037
+#> SD.parent_0 2.7682 0.7668 4.7695
+#> SD.log_k_A1 1.7447 0.4047 3.0848
+#> SD.f_parent_qlogis 0.4525 0.1620 0.7431
+#> SD.log_k1 1.2423 0.4560 2.0285
+#> SD.log_k2 2.0390 0.7601 3.3180
+#> SD.g_qlogis 0.4439 -0.3069 1.1947
#>
#> Correlation:
#> parnt_0 lg_k_A1 f_prnt_ log_k1 log_k2
diff --git a/docs/dev/reference/set_nd_nq.html b/docs/dev/reference/set_nd_nq.html
new file mode 100644
index 00000000..26a28339
--- /dev/null
+++ b/docs/dev/reference/set_nd_nq.html
@@ -0,0 +1,258 @@
+
+R/set_nd_nq.R
+ set_nd_nq.RdThis function automates replacing unquantified values in residue time and +depth series. For time series, the function performs part of the residue +processing proposed in the FOCUS kinetics guidance for parent compounds +and metabolites. For two-dimensional residue series over time and depth, +it automates the proposal of Boesten et al (2015).
+set_nd_nq(res_raw, lod, loq = NA, time_zero_presence = FALSE)
+
+set_nd_nq_focus(
+ res_raw,
+ lod,
+ loq = NA,
+ set_first_sample_nd = TRUE,
+ first_sample_nd_value = 0,
+ ignore_below_loq_after_first_nd = TRUE
+)Character vector of a residue time series, or matrix of +residue values with rows representing depth profiles for a specific sampling +time, and columns representing time series of residues at the same depth. +Values below the limit of detection (lod) have to be coded as "nd", values +between the limit of detection and the limit of quantification, if any, have +to be coded as "nq". Samples not analysed have to be coded as "na". All +values that are not "na", "nd" or "nq" have to be coercible to numeric
Limit of detection (numeric)
Limit of quantification(numeric). Must be specified if the FOCUS rule to +stop after the first non-detection is to be applied
Do we assume that residues occur at time zero? +This only affects samples from the first sampling time that have been +reported as "nd" (not detected).
Should the first sample be set to "first_sample_nd_value" +in case it is a non-detection?
Value to be used for the first sample if it is a non-detection
Should we ignore values below the LOQ after the first +non-detection that occurs after the quantified values?
A numeric vector, if a vector was supplied, or a numeric matrix otherwise
+set_nd_nq_focus(): Set non-detects in residue time series according to FOCUS rules
Boesten, J. J. T. I., van der Linden, A. M. A., Beltman, W. H. +J. and Pol, J. W. (2015). Leaching of plant protection products and their +transformation products; Proposals for improving the assessment of leaching +to groundwater in the Netherlands — Version 2. Alterra report 2630, Alterra +Wageningen UR (University & Research centre)
+FOCUS (2014) Generic Guidance for Estimating Persistence and Degradation +Kinetics from Environmental Fate Studies on Pesticides in EU Registration, Version 1.1, +18 December 2014, p. 251
+# FOCUS (2014) p. 75/76 and 131/132
+parent_1 <- c(.12, .09, .05, .03, "nd", "nd", "nd", "nd", "nd", "nd")
+set_nd_nq(parent_1, 0.02)
+#> [1] 0.12 0.09 0.05 0.03 0.01 NA NA NA NA NA
+parent_2 <- c(.12, .09, .05, .03, "nd", "nd", .03, "nd", "nd", "nd")
+set_nd_nq(parent_2, 0.02)
+#> [1] 0.12 0.09 0.05 0.03 0.01 0.01 0.03 0.01 NA NA
+set_nd_nq_focus(parent_2, 0.02, loq = 0.05)
+#> [1] 0.12 0.09 0.05 0.03 0.01 NA NA NA NA NA
+parent_3 <- c(.12, .09, .05, .03, "nd", "nd", .06, "nd", "nd", "nd")
+set_nd_nq(parent_3, 0.02)
+#> [1] 0.12 0.09 0.05 0.03 0.01 0.01 0.06 0.01 NA NA
+set_nd_nq_focus(parent_3, 0.02, loq = 0.05)
+#> [1] 0.12 0.09 0.05 0.03 0.01 0.01 0.06 0.01 NA NA
+metabolite <- c("nd", "nd", "nd", 0.03, 0.06, 0.10, 0.11, 0.10, 0.09, 0.05, 0.03, "nd", "nd")
+set_nd_nq(metabolite, 0.02)
+#> [1] NA NA 0.01 0.03 0.06 0.10 0.11 0.10 0.09 0.05 0.03 0.01 NA
+set_nd_nq_focus(metabolite, 0.02, 0.05)
+#> [1] 0.00 NA 0.01 0.03 0.06 0.10 0.11 0.10 0.09 0.05 0.03 0.01 NA
+#
+# Boesten et al. (2015), p. 57/58
+table_8 <- matrix(
+ c(10, 10, rep("nd", 4),
+ 10, 10, rep("nq", 2), rep("nd", 2),
+ 10, 10, 10, "nq", "nd", "nd",
+ "nq", 10, "nq", rep("nd", 3),
+ "nd", "nq", "nq", rep("nd", 3),
+ rep("nd", 6), rep("nd", 6)),
+ ncol = 6, byrow = TRUE)
+set_nd_nq(table_8, 0.5, 1.5, time_zero_presence = TRUE)
+#> [,1] [,2] [,3] [,4] [,5] [,6]
+#> [1,] 10.00 10.00 0.25 0.25 NA NA
+#> [2,] 10.00 10.00 1.00 1.00 0.25 NA
+#> [3,] 10.00 10.00 10.00 1.00 0.25 NA
+#> [4,] 1.00 10.00 1.00 0.25 NA NA
+#> [5,] 0.25 1.00 1.00 0.25 NA NA
+#> [6,] NA 0.25 0.25 NA NA NA
+#> [7,] NA NA NA NA NA NA
+table_10 <- matrix(
+ c(10, 10, rep("nd", 4),
+ 10, 10, rep("nd", 4),
+ 10, 10, 10, rep("nd", 3),
+ "nd", 10, rep("nd", 4),
+ rep("nd", 18)),
+ ncol = 6, byrow = TRUE)
+set_nd_nq(table_10, 0.5, time_zero_presence = TRUE)
+#> [,1] [,2] [,3] [,4] [,5] [,6]
+#> [1,] 10.00 10.00 0.25 NA NA NA
+#> [2,] 10.00 10.00 0.25 NA NA NA
+#> [3,] 10.00 10.00 10.00 0.25 NA NA
+#> [4,] 0.25 10.00 0.25 NA NA NA
+#> [5,] NA 0.25 NA NA NA NA
+#> [6,] NA NA NA NA NA NA
+#> [7,] NA NA NA NA NA NA
+