From 255430279d65bfe92093d48c9a586b062a38303d Mon Sep 17 00:00:00 2001
From: Johannes Ranke <jranke@uni-bremen.de>
Date: Tue, 22 Jun 2021 15:15:02 +0200
Subject: Update development version of online docs

---
 docs/dev/pkgdown.yml                       |    2 +-
 docs/dev/reference/dimethenamid_2018-1.png |  Bin 0 -> 264364 bytes
 docs/dev/reference/dimethenamid_2018.html  |  288 +-
 docs/dev/reference/index.html              |    6 +
 docs/dev/reference/nlmixr.mmkin.html       | 9782 ++--------------------------
 docs/dev/reference/tffm0.html              |  226 +
 docs/dev/sitemap.xml                       |    3 +
 7 files changed, 1018 insertions(+), 9289 deletions(-)
 create mode 100644 docs/dev/reference/dimethenamid_2018-1.png
 create mode 100644 docs/dev/reference/tffm0.html

(limited to 'docs/dev')

diff --git a/docs/dev/pkgdown.yml b/docs/dev/pkgdown.yml
index 0b01e008..b2c50e79 100644
--- a/docs/dev/pkgdown.yml
+++ b/docs/dev/pkgdown.yml
@@ -10,7 +10,7 @@ articles:
   web_only/NAFTA_examples: NAFTA_examples.html
   web_only/benchmarks: benchmarks.html
   web_only/compiled_models: compiled_models.html
-last_built: 2021-06-11T09:09Z
+last_built: 2021-06-17T12:41Z
 urls:
   reference: https://pkgdown.jrwb.de/mkin/reference
   article: https://pkgdown.jrwb.de/mkin/articles
diff --git a/docs/dev/reference/dimethenamid_2018-1.png b/docs/dev/reference/dimethenamid_2018-1.png
new file mode 100644
index 00000000..52b8a2be
Binary files /dev/null and b/docs/dev/reference/dimethenamid_2018-1.png differ
diff --git a/docs/dev/reference/dimethenamid_2018.html b/docs/dev/reference/dimethenamid_2018.html
index a06599df..e255765e 100644
--- a/docs/dev/reference/dimethenamid_2018.html
+++ b/docs/dev/reference/dimethenamid_2018.html
@@ -77,7 +77,7 @@ constrained by data protection regulations." />
       </button>
       <span class="navbar-brand">
         <a class="navbar-link" href="../index.html">mkin</a>
-        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.3.9000</span>
+        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>
       </span>
     </div>
 
@@ -203,7 +203,291 @@ specific pieces of information in the comments.</p>
 #&gt; Elliot 2          0.75              33.37          23
 #&gt; Flaach            0.40                 NA          20
 #&gt; BBA 2.2           0.40                 NA          20
-#&gt; BBA 2.3           0.40                 NA          20</div></pre>
+#&gt; BBA 2.3           0.40                 NA          20</div><div class='input'><span class='va'>dmta_ds</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='fl'>1</span><span class='op'>:</span><span class='fl'>8</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>i</span><span class='op'>)</span> <span class='op'>{</span>
+  <span class='va'>ds_i</span> <span class='op'>&lt;-</span> <span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>ds</span><span class='op'>[[</span><span class='va'>i</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>data</span>
+  <span class='va'>ds_i</span><span class='op'>[</span><span class='va'>ds_i</span><span class='op'>$</span><span class='va'>name</span> <span class='op'>==</span> <span class='st'>"DMTAP"</span>, <span class='st'>"name"</span><span class='op'>]</span> <span class='op'>&lt;-</span>  <span class='st'>"DMTA"</span>
+  <span class='va'>ds_i</span><span class='op'>$</span><span class='va'>time</span> <span class='op'>&lt;-</span> <span class='va'>ds_i</span><span class='op'>$</span><span class='va'>time</span> <span class='op'>*</span> <span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>f_time_norm</span><span class='op'>[</span><span class='va'>i</span><span class='op'>]</span>
+  <span class='va'>ds_i</span>
+<span class='op'>}</span><span class='op'>)</span>
+<span class='fu'><a href='https://rdrr.io/r/base/names.html'>names</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>)</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>sapply</a></span><span class='op'>(</span><span class='va'>dimethenamid_2018</span><span class='op'>$</span><span class='va'>ds</span>, <span class='kw'>function</span><span class='op'>(</span><span class='va'>ds</span><span class='op'>)</span> <span class='va'>ds</span><span class='op'>$</span><span class='va'>title</span><span class='op'>)</span>
+<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/cbind.html'>rbind</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 1"</span><span class='op'>]</span><span class='op'>]</span>, <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 2"</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span>
+<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 1"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'>&lt;-</span> <span class='cn'>NULL</span>
+<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Borstel 2"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'>&lt;-</span> <span class='cn'>NULL</span>
+<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/cbind.html'>rbind</a></span><span class='op'>(</span><span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 1"</span><span class='op'>]</span><span class='op'>]</span>, <span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 2"</span><span class='op'>]</span><span class='op'>]</span><span class='op'>)</span>
+<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 1"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'>&lt;-</span> <span class='cn'>NULL</span>
+<span class='va'>dmta_ds</span><span class='op'>[[</span><span class='st'>"Elliot 2"</span><span class='op'>]</span><span class='op'>]</span> <span class='op'>&lt;-</span> <span class='cn'>NULL</span>
+<span class='co'># \dontrun{</span>
+<span class='va'>dfop_sfo3_plus</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>
+  DMTA <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"DFOP"</span>, <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"M23"</span>, <span class='st'>"M27"</span>, <span class='st'>"M31"</span><span class='op'>)</span><span class='op'>)</span>,
+  M23 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>,
+  M27 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>,
+  M31 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"M27"</span>, sink <span class='op'>=</span> <span class='cn'>FALSE</span><span class='op'>)</span>,
+  quiet <span class='op'>=</span> <span class='cn'>TRUE</span>
+<span class='op'>)</span>
+<span class='va'>f_dmta_mkin_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span>
+  <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"DFOP-SFO3+"</span> <span class='op'>=</span> <span class='va'>dfop_sfo3_plus</span><span class='op'>)</span>,
+  <span class='va'>dmta_ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span>
+<span class='fu'><a href='nlmixr.mmkin.html'>nlmixr_model</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'>With est = 'saem', a different error model is required for each observed variableChanging the error model to 'obs_tc' (Two-component error for each observed variable)</span></div><div class='output co'>#&gt; function () 
+#&gt; {
+#&gt;     ini({
+#&gt;         DMTA_0 = 98.7697627680706
+#&gt;         eta.DMTA_0 ~ 2.35171765917765
+#&gt;         log_k_M23 = -3.92162409637283
+#&gt;         eta.log_k_M23 ~ 0.549278519419884
+#&gt;         log_k_M27 = -4.33774620773911
+#&gt;         eta.log_k_M27 ~ 0.864474956685295
+#&gt;         log_k_M31 = -4.24767627688461
+#&gt;         eta.log_k_M31 ~ 0.750297149164171
+#&gt;         log_k1 = -2.2341008812259
+#&gt;         eta.log_k1 ~ 0.902976221565793
+#&gt;         log_k2 = -3.7762779983269
+#&gt;         eta.log_k2 ~ 1.57684519529298
+#&gt;         g_qlogis = 0.450175725479389
+#&gt;         eta.g_qlogis ~ 3.0851335687675
+#&gt;         f_DMTA_tffm0_1_qlogis = -2.09240906629456
+#&gt;         eta.f_DMTA_tffm0_1_qlogis ~ 0.3
+#&gt;         f_DMTA_tffm0_2_qlogis = -2.18057573598794
+#&gt;         eta.f_DMTA_tffm0_2_qlogis ~ 0.3
+#&gt;         f_DMTA_tffm0_3_qlogis = -2.14267187609763
+#&gt;         eta.f_DMTA_tffm0_3_qlogis ~ 0.3
+#&gt;         sigma_low_DMTA = 0.697933852349996
+#&gt;         rsd_high_DMTA = 0.0257724286053519
+#&gt;         sigma_low_M23 = 0.697933852349996
+#&gt;         rsd_high_M23 = 0.0257724286053519
+#&gt;         sigma_low_M27 = 0.697933852349996
+#&gt;         rsd_high_M27 = 0.0257724286053519
+#&gt;         sigma_low_M31 = 0.697933852349996
+#&gt;         rsd_high_M31 = 0.0257724286053519
+#&gt;     })
+#&gt;     model({
+#&gt;         DMTA_0_model = DMTA_0 + eta.DMTA_0
+#&gt;         DMTA(0) = DMTA_0_model
+#&gt;         k_M23 = exp(log_k_M23 + eta.log_k_M23)
+#&gt;         k_M27 = exp(log_k_M27 + eta.log_k_M27)
+#&gt;         k_M31 = exp(log_k_M31 + eta.log_k_M31)
+#&gt;         k1 = exp(log_k1 + eta.log_k1)
+#&gt;         k2 = exp(log_k2 + eta.log_k2)
+#&gt;         g = expit(g_qlogis + eta.g_qlogis)
+#&gt;         f_DMTA_tffm0_1 = expit(f_DMTA_tffm0_1_qlogis + eta.f_DMTA_tffm0_1_qlogis)
+#&gt;         f_DMTA_tffm0_2 = expit(f_DMTA_tffm0_2_qlogis + eta.f_DMTA_tffm0_2_qlogis)
+#&gt;         f_DMTA_tffm0_3 = expit(f_DMTA_tffm0_3_qlogis + eta.f_DMTA_tffm0_3_qlogis)
+#&gt;         f_DMTA_to_M23 = f_DMTA_tffm0_1
+#&gt;         f_DMTA_to_M27 = f_DMTA_tffm0_2 * (1 - f_DMTA_tffm0_1)
+#&gt;         f_DMTA_to_M31 = f_DMTA_tffm0_3 * (1 - f_DMTA_tffm0_2) * 
+#&gt;             (1 - f_DMTA_tffm0_1)
+#&gt;         d/dt(DMTA) = -((k1 * g * exp(-k1 * time) + k2 * (1 - 
+#&gt;             g) * exp(-k2 * time))/(g * exp(-k1 * time) + (1 - 
+#&gt;             g) * exp(-k2 * time))) * DMTA
+#&gt;         d/dt(M23) = +f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + 
+#&gt;             k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) + 
+#&gt;             (1 - g) * exp(-k2 * time))) * DMTA - k_M23 * M23
+#&gt;         d/dt(M27) = +f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + 
+#&gt;             k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) + 
+#&gt;             (1 - g) * exp(-k2 * time))) * DMTA - k_M27 * M27 + 
+#&gt;             k_M31 * M31
+#&gt;         d/dt(M31) = +f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + 
+#&gt;             k2 * (1 - g) * exp(-k2 * time))/(g * exp(-k1 * time) + 
+#&gt;             (1 - g) * exp(-k2 * time))) * DMTA - k_M31 * M31
+#&gt;         DMTA ~ add(sigma_low_DMTA) + prop(rsd_high_DMTA)
+#&gt;         M23 ~ add(sigma_low_M23) + prop(rsd_high_M23)
+#&gt;         M27 ~ add(sigma_low_M27) + prop(rsd_high_M27)
+#&gt;         M31 ~ add(sigma_low_M31) + prop(rsd_high_M31)
+#&gt;     })
+#&gt; }
+#&gt; &lt;environment: 0x555559c2bd78&gt;</div><div class='input'><span class='va'>f_dmta_nlmixr_focei</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_dmta_mkin_tc</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
+  control <span class='op'>=</span> <span class='fu'>nlmixr</span><span class='fu'>::</span><span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/foceiControl.html'>foceiControl</a></span><span class='op'>(</span>print <span class='op'>=</span> <span class='fl'>500</span><span class='op'>)</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:02 
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:04 
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:01 
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:08 
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:07 
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:07 
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:00 
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; [====|====|====|====|====|====|====|====|====|====] 0:00:00 
+#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>RxODE 1.1.0 using 8 threads (see ?getRxThreads)</span>
+#&gt; <span class='message'>  no cache: create with `rxCreateCache()`</span></div><div class='output co'>#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
+#&gt; F: Forward difference gradient approximation
+#&gt; C: Central difference gradient approximation
+#&gt; M: Mixed forward and central difference gradient approximation
+#&gt; Unscaled parameters for Omegas=chol(solve(omega));
+#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
+#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
+#&gt; |    #| Objective Fun |    DMTA_0 | log_k_M23 | log_k_M27 | log_k_M31 |
+#&gt; |.....................|    log_k1 |    log_k2 |  g_qlogis |f_DMTA_tffm0_1_qlogis |
+#&gt; |.....................|f_DMTA_tffm0_2_qlogis |f_DMTA_tffm0_3_qlogis | sigma_low |  rsd_high |
+#&gt; |.....................|        o1 |        o2 |        o3 |        o4 |
+#&gt; |.....................|        o5 |        o6 |        o7 |        o8 |
+#&gt; <span style='text-decoration: underline;'>|.....................|        o9 |       o10 |...........|...........|</span>
+#&gt; calculating covariance matrix
+#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: S matrix non-positive definite</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; nlmixr version used for fitting:    2.0.4 
+#&gt; mkin version used for pre-fitting:  1.0.5 
+#&gt; R version used for fitting:         4.1.0 
+#&gt; Date of fit:     Thu Jun 17 14:04:58 2021 
+#&gt; Date of summary: Thu Jun 17 14:04:58 2021 
+#&gt; 
+#&gt; Equations:
+#&gt; d_DMTA/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *
+#&gt;            time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))
+#&gt;            * DMTA
+#&gt; d_M23/dt = + f_DMTA_to_M23 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
+#&gt;            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+#&gt;            exp(-k2 * time))) * DMTA - k_M23 * M23
+#&gt; d_M27/dt = + f_DMTA_to_M27 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
+#&gt;            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+#&gt;            exp(-k2 * time))) * DMTA - k_M27 * M27 + k_M31 * M31
+#&gt; d_M31/dt = + f_DMTA_to_M31 * ((k1 * g * exp(-k1 * time) + k2 * (1 - g)
+#&gt;            * exp(-k2 * time)) / (g * exp(-k1 * time) + (1 - g) *
+#&gt;            exp(-k2 * time))) * DMTA - k_M31 * M31
+#&gt; 
+#&gt; Data:
+#&gt; 568 observations of 4 variable(s) grouped in 6 datasets
+#&gt; 
+#&gt; Degradation model predictions using RxODE
+#&gt; 
+#&gt; Fitted in 242.937 s
+#&gt; 
+#&gt; Variance model: Two-component variance function 
+#&gt; 
+#&gt; Mean of starting values for individual parameters:
+#&gt;       DMTA_0    log_k_M23    log_k_M27    log_k_M31 f_DMTA_ilr_1 f_DMTA_ilr_2 
+#&gt;      98.7698      -3.9216      -4.3377      -4.2477       0.1380       0.1393 
+#&gt; f_DMTA_ilr_3       log_k1       log_k2     g_qlogis 
+#&gt;      -1.7571      -2.2341      -3.7763       0.4502 
+#&gt; 
+#&gt; Mean of starting values for error model parameters:
+#&gt; sigma_low  rsd_high 
+#&gt;   0.69793   0.02577 
+#&gt; 
+#&gt; Fixed degradation parameter values:
+#&gt; None
+#&gt; 
+#&gt; Results:
+#&gt; 
+#&gt; Likelihood calculated by focei  
+#&gt;    AIC  BIC logLik
+#&gt;   1936 2031 -945.9
+#&gt; 
+#&gt; Optimised parameters:
+#&gt;                          est.   lower   upper
+#&gt; DMTA_0                98.7698 98.7356 98.8039
+#&gt; log_k_M23             -3.9216 -3.9235 -3.9197
+#&gt; log_k_M27             -4.3377 -4.3398 -4.3357
+#&gt; log_k_M31             -4.2477 -4.2497 -4.2457
+#&gt; log_k1                -2.2341 -2.2353 -2.2329
+#&gt; log_k2                -3.7763 -3.7781 -3.7744
+#&gt; g_qlogis               0.4502  0.4496  0.4507
+#&gt; f_DMTA_tffm0_1_qlogis -2.0924 -2.0936 -2.0912
+#&gt; f_DMTA_tffm0_2_qlogis -2.1806 -2.1818 -2.1794
+#&gt; f_DMTA_tffm0_3_qlogis -2.1427 -2.1439 -2.1415
+#&gt; 
+#&gt; Correlation: 
+#&gt;                       DMTA_0 l__M23 l__M27 l__M31 log_k1 log_k2 g_qlgs
+#&gt; log_k_M23             0                                               
+#&gt; log_k_M27             0      0                                        
+#&gt; log_k_M31             0      0      0                                 
+#&gt; log_k1                0      0      0      0                          
+#&gt; log_k2                0      0      0      0      0                   
+#&gt; g_qlogis              0      0      0      0      0      0            
+#&gt; f_DMTA_tffm0_1_qlogis 0      0      0      0      0      0      0     
+#&gt; f_DMTA_tffm0_2_qlogis 0      0      0      0      0      0      0     
+#&gt; f_DMTA_tffm0_3_qlogis 0      0      0      0      0      0      0     
+#&gt;                       f_DMTA_0_1 f_DMTA_0_2
+#&gt; log_k_M23                                  
+#&gt; log_k_M27                                  
+#&gt; log_k_M31                                  
+#&gt; log_k1                                     
+#&gt; log_k2                                     
+#&gt; g_qlogis                                   
+#&gt; f_DMTA_tffm0_1_qlogis                      
+#&gt; f_DMTA_tffm0_2_qlogis 0                    
+#&gt; f_DMTA_tffm0_3_qlogis 0          0         
+#&gt; 
+#&gt; Random effects (omega):
+#&gt;                           eta.DMTA_0 eta.log_k_M23 eta.log_k_M27 eta.log_k_M31
+#&gt; eta.DMTA_0                     2.352        0.0000        0.0000        0.0000
+#&gt; eta.log_k_M23                  0.000        0.5493        0.0000        0.0000
+#&gt; eta.log_k_M27                  0.000        0.0000        0.8645        0.0000
+#&gt; eta.log_k_M31                  0.000        0.0000        0.0000        0.7503
+#&gt; eta.log_k1                     0.000        0.0000        0.0000        0.0000
+#&gt; eta.log_k2                     0.000        0.0000        0.0000        0.0000
+#&gt; eta.g_qlogis                   0.000        0.0000        0.0000        0.0000
+#&gt; eta.f_DMTA_tffm0_1_qlogis      0.000        0.0000        0.0000        0.0000
+#&gt; eta.f_DMTA_tffm0_2_qlogis      0.000        0.0000        0.0000        0.0000
+#&gt; eta.f_DMTA_tffm0_3_qlogis      0.000        0.0000        0.0000        0.0000
+#&gt;                           eta.log_k1 eta.log_k2 eta.g_qlogis
+#&gt; eta.DMTA_0                     0.000      0.000        0.000
+#&gt; eta.log_k_M23                  0.000      0.000        0.000
+#&gt; eta.log_k_M27                  0.000      0.000        0.000
+#&gt; eta.log_k_M31                  0.000      0.000        0.000
+#&gt; eta.log_k1                     0.903      0.000        0.000
+#&gt; eta.log_k2                     0.000      1.577        0.000
+#&gt; eta.g_qlogis                   0.000      0.000        3.085
+#&gt; eta.f_DMTA_tffm0_1_qlogis      0.000      0.000        0.000
+#&gt; eta.f_DMTA_tffm0_2_qlogis      0.000      0.000        0.000
+#&gt; eta.f_DMTA_tffm0_3_qlogis      0.000      0.000        0.000
+#&gt;                           eta.f_DMTA_tffm0_1_qlogis eta.f_DMTA_tffm0_2_qlogis
+#&gt; eta.DMTA_0                                      0.0                       0.0
+#&gt; eta.log_k_M23                                   0.0                       0.0
+#&gt; eta.log_k_M27                                   0.0                       0.0
+#&gt; eta.log_k_M31                                   0.0                       0.0
+#&gt; eta.log_k1                                      0.0                       0.0
+#&gt; eta.log_k2                                      0.0                       0.0
+#&gt; eta.g_qlogis                                    0.0                       0.0
+#&gt; eta.f_DMTA_tffm0_1_qlogis                       0.3                       0.0
+#&gt; eta.f_DMTA_tffm0_2_qlogis                       0.0                       0.3
+#&gt; eta.f_DMTA_tffm0_3_qlogis                       0.0                       0.0
+#&gt;                           eta.f_DMTA_tffm0_3_qlogis
+#&gt; eta.DMTA_0                                      0.0
+#&gt; eta.log_k_M23                                   0.0
+#&gt; eta.log_k_M27                                   0.0
+#&gt; eta.log_k_M31                                   0.0
+#&gt; eta.log_k1                                      0.0
+#&gt; eta.log_k2                                      0.0
+#&gt; eta.g_qlogis                                    0.0
+#&gt; eta.f_DMTA_tffm0_1_qlogis                       0.0
+#&gt; eta.f_DMTA_tffm0_2_qlogis                       0.0
+#&gt; eta.f_DMTA_tffm0_3_qlogis                       0.3
+#&gt; 
+#&gt; Variance model:
+#&gt; sigma_low  rsd_high 
+#&gt;   0.69793   0.02577 
+#&gt; 
+#&gt; Backtransformed parameters:
+#&gt;                   est.    lower    upper
+#&gt; DMTA_0        98.76976 98.73563 98.80390
+#&gt; k_M23          0.01981  0.01977  0.01985
+#&gt; k_M27          0.01307  0.01304  0.01309
+#&gt; k_M31          0.01430  0.01427  0.01433
+#&gt; f_DMTA_to_M23  0.10984       NA       NA
+#&gt; f_DMTA_to_M27  0.09036       NA       NA
+#&gt; f_DMTA_to_M31  0.08399       NA       NA
+#&gt; k1             0.10709  0.10696  0.10722
+#&gt; k2             0.02291  0.02287  0.02295
+#&gt; g              0.61068  0.61055  0.61081
+#&gt; 
+#&gt; Resulting formation fractions:
+#&gt;                ff
+#&gt; DMTA_M23  0.10984
+#&gt; DMTA_M27  0.09036
+#&gt; DMTA_M31  0.08399
+#&gt; DMTA_sink 0.71581
+#&gt; 
+#&gt; Estimated disappearance times:
+#&gt;       DT50   DT90 DT50back DT50_k1 DT50_k2
+#&gt; DMTA 10.66  59.78       18   6.473   30.26
+#&gt; M23  34.99 116.24       NA      NA      NA
+#&gt; M27  53.05 176.23       NA      NA      NA
+#&gt; M31  48.48 161.05       NA      NA      NA</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_dmta_nlmixr_focei</span><span class='op'>)</span>
+</div><div class='img'><img src='dimethenamid_2018-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='co'># saem has a problem with this model/data combination, maybe because of the</span>
+<span class='co'># overparameterised error model, to be investigated</span>
+<span class='co'>#f_dmta_nlmixr_saem &lt;- nlmixr(f_dmta_mkin_tc, est = "saem",</span>
+<span class='co'>#  control = saemControl(print = 500))</span>
+<span class='co'>#summary(f_dmta_nlmixr_saem)</span>
+<span class='co'>#plot(f_dmta_nlmixr_saem)</span>
+<span class='co'># }</span>
+</div></pre>
   </div>
   <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
     <nav id="toc" data-toggle="toc" class="sticky-top">
diff --git a/docs/dev/reference/index.html b/docs/dev/reference/index.html
index f5825742..bb030605 100644
--- a/docs/dev/reference/index.html
+++ b/docs/dev/reference/index.html
@@ -581,6 +581,12 @@ kinetic models fitted with mkinfit</p></td>
         <td><p>Function to perform isometric log-ratio transformation</p></td>
       </tr><tr>
         
+        <td>
+          <p><code><a href="tffm0.html">tffm0()</a></code> <code><a href="tffm0.html">invtffm0()</a></code> </p>
+        </td>
+        <td><p>Transform formation fractions as in the first published mkin version</p></td>
+      </tr><tr>
+        
         <td>
           <p><code><a href="logLik.mkinfit.html">logLik(<i>&lt;mkinfit&gt;</i>)</a></code> </p>
         </td>
diff --git a/docs/dev/reference/nlmixr.mmkin.html b/docs/dev/reference/nlmixr.mmkin.html
index d017e463..d09f2ad4 100644
--- a/docs/dev/reference/nlmixr.mmkin.html
+++ b/docs/dev/reference/nlmixr.mmkin.html
@@ -161,6 +161,8 @@ Expectation Maximisation algorithm (SAEM).</p>
   error_model <span class='op'>=</span> <span class='va'>object</span><span class='op'>[[</span><span class='fl'>1</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>err_mod</span>,
   test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span>,
   conf.level <span class='op'>=</span> <span class='fl'>0.6</span>,
+  degparms_start <span class='op'>=</span> <span class='st'>"auto"</span>,
+  eta_start <span class='op'>=</span> <span class='st'>"auto"</span>,
   <span class='va'>...</span>,
   save <span class='op'>=</span> <span class='cn'>NULL</span>,
   envir <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/sys.parent.html'>parent.frame</a></span><span class='op'>(</span><span class='op'>)</span>
@@ -173,7 +175,8 @@ Expectation Maximisation algorithm (SAEM).</p>
   <span class='va'>object</span>,
   est <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"saem"</span>, <span class='st'>"focei"</span><span class='op'>)</span>,
   degparms_start <span class='op'>=</span> <span class='st'>"auto"</span>,
-  test_log_parms <span class='op'>=</span> <span class='cn'>FALSE</span>,
+  eta_start <span class='op'>=</span> <span class='st'>"auto"</span>,
+  test_log_parms <span class='op'>=</span> <span class='cn'>TRUE</span>,
   conf.level <span class='op'>=</span> <span class='fl'>0.6</span>,
   error_model <span class='op'>=</span> <span class='va'>object</span><span class='op'>[[</span><span class='fl'>1</span><span class='op'>]</span><span class='op'>]</span><span class='op'>$</span><span class='va'>err_mod</span>,
   add_attributes <span class='op'>=</span> <span class='cn'>FALSE</span>
@@ -221,6 +224,17 @@ when calculating mean degradation parameters using <a href='mean_degparms.html'>
       <th>conf.level</th>
       <td><p>Possibility to adjust the required confidence level
 for parameter that are tested if requested by 'test_log_parms'.</p></td>
+    </tr>
+    <tr>
+      <th>degparms_start</th>
+      <td><p>Parameter values given as a named numeric vector will
+be used to override the starting values obtained from the 'mmkin' object.</p></td>
+    </tr>
+    <tr>
+      <th>eta_start</th>
+      <td><p>Standard deviations on the transformed scale given as a
+named numeric vector will be used to override the starting values obtained
+from the 'mmkin' object.</p></td>
     </tr>
     <tr>
       <th>...</th>
@@ -242,11 +256,6 @@ for parameter that are tested if requested by 'test_log_parms'.</p></td>
       <th>digits</th>
       <td><p>Number of digits to use for printing</p></td>
     </tr>
-    <tr>
-      <th>degparms_start</th>
-      <td><p>Parameter values given as a named numeric vector will
-be used to override the starting values obtained from the 'mmkin' object.</p></td>
-    </tr>
     <tr>
       <th>add_attributes</th>
       <td><p>Should the starting values used for degradation model
@@ -281,8 +290,7 @@ obtained by fitting the same model to a list of datasets using <a href='mkinfit.
   cores <span class='op'>=</span> <span class='fl'>1</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>
 
 <span class='va'>f_nlmixr_sfo_saem</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_parent</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>RxODE 1.1.0 using 8 threads (see ?getRxThreads)</span>
-#&gt; <span class='message'>  no cache: create with `rxCreateCache()`</span></div><div class='output co'>#&gt; 1:    86.5083   -3.1968    4.1673    1.7173   48.7028
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; 1:    86.5083   -3.1968    4.1673    1.7173   48.7028
 #&gt; 2:    87.3628   -3.1468    3.9589    1.6315   45.1225
 #&gt; 3:    86.8866   -3.2249    3.7610    1.8212   43.0034
 #&gt; 4:    85.9210   -3.2427    3.5729    1.7302   39.4197
@@ -4453,9194 +4461,495 @@ obtained by fitting the same model to a list of datasets using <a href='mkinfit.
 
 <span class='co'># A single constant variance is currently only possible with est = 'focei' in nlmixr</span>
 <span class='va'>f_nlmixr_sfo_sfo_focei_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
-#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#&gt; F: Forward difference gradient approximation
-#&gt; C: Central difference gradient approximation
-#&gt; M: Mixed forward and central difference gradient approximation
-#&gt; Unscaled parameters for Omegas=chol(solve(omega));
-#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
-#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
-#&gt; |    #| Objective Fun |  parent_0 |log_k_parent |  log_k_A1 |f_parent_qlogis |
-#&gt; |.....................|     sigma |        o1 |        o2 |        o3 |
-#&gt; <span style='text-decoration: underline;'>|.....................|        o4 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    1</span>|     756.06625 |     1.000 |   -0.9701 |    -1.000 |   -0.9071 |
-#&gt; |.....................|   -0.8050 |   -0.8844 |   -0.8800 |   -0.8744 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8785 |...........|...........|...........|</span>
-#&gt; |    U|     756.06625 |     86.53 |    -3.207 |    -4.567 |   -0.3341 |
-#&gt; |.....................|     4.315 |    0.7003 |    0.9008 |     1.156 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9657 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     756.06625</span> |     86.53 |   0.04048 |   0.01039 |    0.4172 |
-#&gt; |.....................|     4.315 |    0.7003 |    0.9008 |     1.156 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9657 |...........|...........|...........|</span>
-#&gt; |    G|    Gill Diff. |     59.54 |   0.01874 |    0.7243 |    0.3705 |
-#&gt; |.....................|    -28.18 |     5.148 |     2.958 |    -8.197 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.917 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    2</span>|     3309.1113 |    0.1102 |   -0.9704 |    -1.011 |   -0.9126 |
-#&gt; |.....................|   -0.3838 |   -0.9613 |   -0.9242 |   -0.7519 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7901 |...........|...........|...........|</span>
-#&gt; |    U|     3309.1113 |     9.535 |    -3.207 |    -4.578 |   -0.3359 |
-#&gt; |.....................|     5.223 |    0.6464 |    0.8610 |     1.297 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.051 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     3309.1113</span> |     9.535 |   0.04047 |   0.01027 |    0.4168 |
-#&gt; |.....................|     5.223 |    0.6464 |    0.8610 |     1.297 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.051 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    3</span>|     782.04188 |    0.9110 |   -0.9702 |    -1.001 |   -0.9076 |
-#&gt; |.....................|   -0.7629 |   -0.8921 |   -0.8844 |   -0.8621 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8697 |...........|...........|...........|</span>
-#&gt; |    U|     782.04188 |     78.83 |    -3.207 |    -4.568 |   -0.3343 |
-#&gt; |.....................|     4.406 |    0.6949 |    0.8968 |     1.170 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9742 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     782.04188</span> |     78.83 |   0.04048 |   0.01037 |    0.4172 |
-#&gt; |.....................|     4.406 |    0.6949 |    0.8968 |     1.170 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9742 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    4</span>|     755.73406 |    0.9909 |   -0.9701 |    -1.000 |   -0.9071 |
-#&gt; |.....................|   -0.8007 |   -0.8851 |   -0.8804 |   -0.8731 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8776 |...........|...........|...........|</span>
-#&gt; |    U|     755.73406 |     85.75 |    -3.207 |    -4.567 |   -0.3341 |
-#&gt; |.....................|     4.324 |    0.6997 |    0.9004 |     1.157 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9666 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     755.73406</span> |     85.75 |   0.04048 |   0.01038 |    0.4172 |
-#&gt; |.....................|     4.324 |    0.6997 |    0.9004 |     1.157 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9666 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -16.83 |   0.07808 |    0.6495 |    0.3224 |
-#&gt; |.....................|    -27.54 |     3.811 |     2.903 |    -8.359 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.718 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    5</span>|     755.49648 |    0.9959 |   -0.9702 |    -1.000 |   -0.9072 |
-#&gt; |.....................|   -0.7924 |   -0.8863 |   -0.8813 |   -0.8706 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8759 |...........|...........|...........|</span>
-#&gt; |    U|     755.49648 |     86.18 |    -3.207 |    -4.568 |   -0.3341 |
-#&gt; |.....................|     4.342 |    0.6989 |    0.8996 |     1.160 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9682 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     755.49648</span> |     86.18 |   0.04048 |   0.01038 |    0.4172 |
-#&gt; |.....................|     4.342 |    0.6989 |    0.8996 |     1.160 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9682 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     25.35 |   0.04484 |    0.6934 |    0.3535 |
-#&gt; |.....................|    -25.80 |     4.244 |     2.831 |    -8.249 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.719 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    6</span>|     755.31010 |    0.9891 |   -0.9702 |    -1.000 |   -0.9073 |
-#&gt; |.....................|   -0.7855 |   -0.8874 |   -0.8820 |   -0.8684 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8744 |...........|...........|...........|</span>
-#&gt; |    U|      755.3101 |     85.59 |    -3.207 |    -4.568 |   -0.3342 |
-#&gt; |.....................|     4.357 |    0.6981 |    0.8989 |     1.163 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9697 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      755.3101</span> |     85.59 |   0.04048 |   0.01038 |    0.4172 |
-#&gt; |.....................|     4.357 |    0.6981 |    0.8989 |     1.163 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9697 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -31.39 |   0.08909 |    0.6380 |    0.3185 |
-#&gt; |.....................|    -24.71 |     3.519 |     2.751 |    -7.972 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.525 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    7</span>|     755.09582 |    0.9961 |   -0.9702 |    -1.001 |   -0.9074 |
-#&gt; |.....................|   -0.7787 |   -0.8884 |   -0.8828 |   -0.8661 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8728 |...........|...........|...........|</span>
-#&gt; |    U|     755.09582 |     86.20 |    -3.207 |    -4.568 |   -0.3342 |
-#&gt; |.....................|     4.372 |    0.6974 |    0.8982 |     1.165 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9712 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     755.09582</span> |     86.20 |   0.04047 |   0.01038 |    0.4172 |
-#&gt; |.....................|     4.372 |    0.6974 |    0.8982 |     1.165 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9712 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     26.63 |   0.04269 |    0.6973 |    0.3604 |
-#&gt; |.....................|    -23.22 |     4.086 |     2.689 |    -8.043 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.569 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    8</span>|     754.90743 |    0.9894 |   -0.9702 |    -1.001 |   -0.9075 |
-#&gt; |.....................|   -0.7716 |   -0.8897 |   -0.8836 |   -0.8636 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8711 |...........|...........|...........|</span>
-#&gt; |    U|     754.90743 |     85.62 |    -3.207 |    -4.568 |   -0.3342 |
-#&gt; |.....................|     4.387 |    0.6966 |    0.8975 |     1.168 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9729 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     754.90743</span> |     85.62 |   0.04047 |   0.01038 |    0.4172 |
-#&gt; |.....................|     4.387 |    0.6966 |    0.8975 |     1.168 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9729 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -27.88 |   0.08581 |    0.6437 |    0.3265 |
-#&gt; |.....................|    -22.15 |     3.354 |     2.606 |    -7.748 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.369 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    9</span>|     754.70769 |    0.9959 |   -0.9702 |    -1.001 |   -0.9076 |
-#&gt; |.....................|   -0.7645 |   -0.8908 |   -0.8845 |   -0.8610 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8693 |...........|...........|...........|</span>
-#&gt; |    U|     754.70769 |     86.18 |    -3.207 |    -4.568 |   -0.3343 |
-#&gt; |.....................|     4.402 |    0.6958 |    0.8967 |     1.171 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9747 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     754.70769</span> |     86.18 |   0.04047 |   0.01037 |    0.4172 |
-#&gt; |.....................|     4.402 |    0.6958 |    0.8967 |     1.171 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9747 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     25.01 |   0.04305 |    0.6984 |    0.3661 |
-#&gt; |.....................|    -20.67 |     3.871 |     2.535 |    -7.809 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.388 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   10</span>|     754.52507 |    0.9898 |   -0.9703 |    -1.001 |   -0.9078 |
-#&gt; |.....................|   -0.7574 |   -0.8922 |   -0.8854 |   -0.8580 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8672 |...........|...........|...........|</span>
-#&gt; |    U|     754.52507 |     85.65 |    -3.207 |    -4.569 |   -0.3343 |
-#&gt; |.....................|     4.417 |    0.6948 |    0.8958 |     1.175 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9766 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     754.52507</span> |     85.65 |   0.04047 |   0.01037 |    0.4172 |
-#&gt; |.....................|     4.417 |    0.6948 |    0.8958 |     1.175 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9766 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -24.90 |   0.08308 |    0.6490 |    0.3352 |
-#&gt; |.....................|    -19.59 |     3.181 |     2.445 |    -7.663 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.179 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   11</span>|     754.34076 |    0.9957 |   -0.9703 |    -1.002 |   -0.9079 |
-#&gt; |.....................|   -0.7502 |   -0.8935 |   -0.8864 |   -0.8548 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8650 |...........|...........|...........|</span>
-#&gt; |    U|     754.34076 |     86.16 |    -3.207 |    -4.569 |   -0.3344 |
-#&gt; |.....................|     4.433 |    0.6939 |    0.8950 |     1.178 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9787 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     754.34076</span> |     86.16 |   0.04047 |   0.01037 |    0.4172 |
-#&gt; |.....................|     4.433 |    0.6939 |    0.8950 |     1.178 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9787 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     23.15 |   0.04366 |    0.6990 |    0.3728 |
-#&gt; |.....................|    -18.16 |     3.647 |     2.362 |    -7.534 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.170 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   12</span>|     754.16941 |    0.9900 |   -0.9703 |    -1.002 |   -0.9081 |
-#&gt; |.....................|   -0.7432 |   -0.8951 |   -0.8875 |   -0.8512 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8626 |...........|...........|...........|</span>
-#&gt; |    U|     754.16941 |     85.67 |    -3.207 |    -4.569 |   -0.3344 |
-#&gt; |.....................|     4.448 |    0.6928 |    0.8940 |     1.182 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9811 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     754.16941</span> |     85.67 |   0.04047 |   0.01036 |    0.4172 |
-#&gt; |.....................|     4.448 |    0.6928 |    0.8940 |     1.182 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9811 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -22.36 |   0.07996 |    0.6524 |    0.3446 |
-#&gt; |.....................|    -17.12 |     3.002 |     2.262 |    -7.362 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.949 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   13</span>|     754.00081 |    0.9955 |   -0.9704 |    -1.002 |   -0.9083 |
-#&gt; |.....................|   -0.7363 |   -0.8967 |   -0.8886 |   -0.8472 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8599 |...........|...........|...........|</span>
-#&gt; |    U|     754.00081 |     86.14 |    -3.207 |    -4.570 |   -0.3345 |
-#&gt; |.....................|     4.463 |    0.6916 |    0.8930 |     1.187 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9836 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     754.00081</span> |     86.14 |   0.04047 |   0.01036 |    0.4171 |
-#&gt; |.....................|     4.463 |    0.6916 |    0.8930 |     1.187 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9836 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     21.00 |   0.04440 |    0.6979 |    0.3804 |
-#&gt; |.....................|    -15.79 |     3.414 |     2.168 |    -7.205 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.903 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   14</span>|     753.84435 |    0.9903 |   -0.9704 |    -1.003 |   -0.9086 |
-#&gt; |.....................|   -0.7296 |   -0.8985 |   -0.8898 |   -0.8427 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8570 |...........|...........|...........|</span>
-#&gt; |    U|     753.84435 |     85.70 |    -3.207 |    -4.570 |   -0.3346 |
-#&gt; |.....................|     4.477 |    0.6903 |    0.8919 |     1.192 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9865 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     753.84435</span> |     85.70 |   0.04047 |   0.01036 |    0.4171 |
-#&gt; |.....................|     4.477 |    0.6903 |    0.8919 |     1.192 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9865 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -19.93 |   0.07681 |    0.6538 |    0.3555 |
-#&gt; |.....................|    -14.84 |     2.820 |     2.056 |    -6.999 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.662 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   15</span>|     753.69372 |    0.9952 |   -0.9704 |    -1.003 |   -0.9089 |
-#&gt; |.....................|   -0.7234 |   -0.9005 |   -0.8911 |   -0.8377 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8537 |...........|...........|...........|</span>
-#&gt; |    U|     753.69372 |     86.12 |    -3.207 |    -4.571 |   -0.3347 |
-#&gt; |.....................|     4.491 |    0.6890 |    0.8908 |     1.198 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9897 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     753.69372</span> |     86.12 |   0.04046 |   0.01035 |    0.4171 |
-#&gt; |.....................|     4.491 |    0.6890 |    0.8908 |     1.198 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9897 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     18.81 |   0.04462 |    0.6942 |    0.3896 |
-#&gt; |.....................|    -13.66 |     3.180 |     1.953 |    -6.807 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.573 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   16</span>|     753.55534 |    0.9906 |   -0.9705 |    -1.004 |   -0.9093 |
-#&gt; |.....................|   -0.7176 |   -0.9027 |   -0.8924 |   -0.8322 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8502 |...........|...........|...........|</span>
-#&gt; |    U|     753.55534 |     85.72 |    -3.207 |    -4.571 |   -0.3348 |
-#&gt; |.....................|     4.503 |    0.6875 |    0.8896 |     1.204 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9931 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     753.55534</span> |     85.72 |   0.04046 |   0.01034 |    0.4171 |
-#&gt; |.....................|     4.503 |    0.6875 |    0.8896 |     1.204 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9931 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -17.61 |   0.07313 |    0.6517 |    0.3679 |
-#&gt; |.....................|    -12.86 |     2.639 |     1.835 |    -6.564 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.309 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   17</span>|     753.42478 |    0.9950 |   -0.9706 |    -1.005 |   -0.9097 |
-#&gt; |.....................|   -0.7124 |   -0.9049 |   -0.8937 |   -0.8262 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8464 |...........|...........|...........|</span>
-#&gt; |    U|     753.42478 |     86.11 |    -3.207 |    -4.572 |   -0.3350 |
-#&gt; |.....................|     4.515 |    0.6859 |    0.8884 |     1.211 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9967 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     753.42478</span> |     86.11 |   0.04046 |   0.01034 |    0.4170 |
-#&gt; |.....................|     4.515 |    0.6859 |    0.8884 |     1.211 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.9967 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     16.74 |   0.04433 |    0.6853 |    0.4002 |
-#&gt; |.....................|    -11.89 |     2.952 |     1.729 |    -6.336 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.181 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   18</span>|     753.30602 |    0.9909 |   -0.9706 |    -1.006 |   -0.9103 |
-#&gt; |.....................|   -0.7078 |   -0.9075 |   -0.8949 |   -0.8197 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8425 |...........|...........|...........|</span>
-#&gt; |    U|     753.30602 |     85.74 |    -3.207 |    -4.573 |   -0.3352 |
-#&gt; |.....................|     4.525 |    0.6841 |    0.8873 |     1.219 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.001 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     753.30602</span> |     85.74 |   0.04046 |   0.01033 |    0.4170 |
-#&gt; |.....................|     4.525 |    0.6841 |    0.8873 |     1.219 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.001 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -15.54 |   0.06924 |    0.6430 |    0.3812 |
-#&gt; |.....................|    -11.26 |     2.462 |     1.618 |    -6.066 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -3.903 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   19</span>|     753.19508 |    0.9949 |   -0.9707 |    -1.007 |   -0.9109 |
-#&gt; |.....................|   -0.7036 |   -0.9102 |   -0.8961 |   -0.8129 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8385 |...........|...........|...........|</span>
-#&gt; |    U|     753.19508 |     86.09 |    -3.208 |    -4.574 |   -0.3354 |
-#&gt; |.....................|     4.533 |    0.6822 |    0.8862 |     1.227 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.004 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     753.19508</span> |     86.09 |   0.04045 |   0.01032 |    0.4169 |
-#&gt; |.....................|     4.533 |    0.6822 |    0.8862 |     1.227 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.004 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     14.90 |   0.04352 |    0.6689 |    0.4113 |
-#&gt; |.....................|    -10.49 |     2.732 |     1.522 |    -5.813 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -3.751 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   20</span>|     753.09443 |    0.9911 |   -0.9708 |    -1.008 |   -0.9117 |
-#&gt; |.....................|   -0.7001 |   -0.9132 |   -0.8972 |   -0.8058 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8346 |...........|...........|...........|</span>
-#&gt; |    U|     753.09443 |     85.77 |    -3.208 |    -4.575 |   -0.3356 |
-#&gt; |.....................|     4.541 |    0.6801 |    0.8852 |     1.235 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.008 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     753.09443</span> |     85.77 |   0.04045 |   0.01031 |    0.4169 |
-#&gt; |.....................|     4.541 |    0.6801 |    0.8852 |     1.235 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.008 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -13.80 |   0.06521 |    0.6240 |    0.3942 |
-#&gt; |.....................|    -10.02 |     2.285 |     1.423 |    -5.526 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -3.476 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   21</span>|     753.00021 |    0.9948 |   -0.9709 |    -1.009 |   -0.9127 |
-#&gt; |.....................|   -0.6968 |   -0.9163 |   -0.8982 |   -0.7985 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8307 |...........|...........|...........|</span>
-#&gt; |    U|     753.00021 |     86.08 |    -3.208 |    -4.576 |   -0.3360 |
-#&gt; |.....................|     4.548 |    0.6779 |    0.8843 |     1.243 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.012 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     753.00021</span> |     86.08 |   0.04045 |   0.01029 |    0.4168 |
-#&gt; |.....................|     4.548 |    0.6779 |    0.8843 |     1.243 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.012 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     13.31 |   0.04216 |    0.6406 |    0.4217 |
-#&gt; |.....................|    -9.402 |     2.517 |     1.347 |    -5.262 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -3.321 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   22</span>|     752.91432 |    0.9914 |   -0.9710 |    -1.010 |   -0.9139 |
-#&gt; |.....................|   -0.6939 |   -0.9197 |   -0.8991 |   -0.7911 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8272 |...........|...........|...........|</span>
-#&gt; |    U|     752.91432 |     85.79 |    -3.208 |    -4.578 |   -0.3364 |
-#&gt; |.....................|     4.555 |    0.6755 |    0.8835 |     1.252 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.015 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.91432</span> |     85.79 |   0.04044 |   0.01028 |    0.4167 |
-#&gt; |.....................|     4.555 |    0.6755 |    0.8835 |     1.252 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.015 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -12.35 |   0.06128 |    0.5909 |    0.4053 |
-#&gt; |.....................|    -9.027 |     2.101 |     1.271 |    -4.717 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -3.067 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   23</span>|     752.83200 |    0.9948 |   -0.9711 |    -1.012 |   -0.9155 |
-#&gt; |.....................|   -0.6906 |   -0.9238 |   -0.9000 |   -0.7843 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8235 |...........|...........|...........|</span>
-#&gt; |    U|       752.832 |     86.09 |    -3.208 |    -4.580 |   -0.3369 |
-#&gt; |.....................|     4.561 |    0.6727 |    0.8827 |     1.260 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.019 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>       752.832</span> |     86.09 |   0.04044 |   0.01026 |    0.4166 |
-#&gt; |.....................|     4.561 |    0.6727 |    0.8827 |     1.260 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.019 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     12.74 |   0.03978 |    0.5956 |    0.4312 |
-#&gt; |.....................|    -8.422 |     2.296 |     1.202 |    -4.471 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.914 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   24</span>|     752.75140 |    0.9918 |   -0.9713 |    -1.014 |   -0.9179 |
-#&gt; |.....................|   -0.6872 |   -0.9288 |   -0.9011 |   -0.7785 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8198 |...........|...........|...........|</span>
-#&gt; |    U|      752.7514 |     85.82 |    -3.208 |    -4.582 |   -0.3377 |
-#&gt; |.....................|     4.569 |    0.6692 |    0.8818 |     1.266 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.022 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      752.7514</span> |     85.82 |   0.04043 |   0.01024 |    0.4164 |
-#&gt; |.....................|     4.569 |    0.6692 |    0.8818 |     1.266 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.022 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -10.02 |   0.05546 |    0.5361 |    0.4172 |
-#&gt; |.....................|    -7.958 |     1.872 |     1.117 |    -4.424 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.664 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   25</span>|     752.68235 |    0.9947 |   -0.9715 |    -1.016 |   -0.9205 |
-#&gt; |.....................|   -0.6845 |   -0.9329 |   -0.9018 |   -0.7712 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8173 |...........|...........|...........|</span>
-#&gt; |    U|     752.68235 |     86.07 |    -3.208 |    -4.584 |   -0.3386 |
-#&gt; |.....................|     4.575 |    0.6663 |    0.8811 |     1.275 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.025 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.68235</span> |     86.07 |   0.04042 |   0.01022 |    0.4162 |
-#&gt; |.....................|     4.575 |    0.6663 |    0.8811 |     1.275 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.025 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     10.53 |   0.03715 |    0.5273 |    0.4360 |
-#&gt; |.....................|    -7.447 |     2.014 |     1.063 |    -3.990 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.556 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   26</span>|     752.62160 |    0.9918 |   -0.9717 |    -1.019 |   -0.9237 |
-#&gt; |.....................|   -0.6821 |   -0.9370 |   -0.9025 |   -0.7637 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8151 |...........|...........|...........|</span>
-#&gt; |    U|      752.6216 |     85.83 |    -3.209 |    -4.586 |   -0.3397 |
-#&gt; |.....................|     4.580 |    0.6635 |    0.8804 |     1.284 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.027 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      752.6216</span> |     85.83 |   0.04042 |   0.01020 |    0.4159 |
-#&gt; |.....................|     4.580 |    0.6635 |    0.8804 |     1.284 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.027 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -10.27 |   0.05173 |    0.4657 |    0.4178 |
-#&gt; |.....................|    -7.153 |     1.648 |     1.004 |    -3.701 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.385 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   27</span>|     752.55758 |    0.9944 |   -0.9719 |    -1.021 |   -0.9287 |
-#&gt; |.....................|   -0.6786 |   -0.9418 |   -0.9036 |   -0.7591 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8121 |...........|...........|...........|</span>
-#&gt; |    U|     752.55758 |     86.05 |    -3.209 |    -4.588 |   -0.3413 |
-#&gt; |.....................|     4.587 |    0.6600 |    0.8795 |     1.289 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.030 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.55758</span> |     86.05 |   0.04040 |   0.01017 |    0.4155 |
-#&gt; |.....................|     4.587 |    0.6600 |    0.8795 |     1.289 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.030 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     7.976 |   0.03464 |    0.4539 |    0.4351 |
-#&gt; |.....................|    -6.545 |     1.728 |    0.9236 |    -3.536 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.257 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   28</span>|     752.50465 |    0.9921 |   -0.9722 |    -1.023 |   -0.9345 |
-#&gt; |.....................|   -0.6755 |   -0.9456 |   -0.9043 |   -0.7539 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8090 |...........|...........|...........|</span>
-#&gt; |    U|     752.50465 |     85.85 |    -3.209 |    -4.590 |   -0.3432 |
-#&gt; |.....................|     4.594 |    0.6574 |    0.8788 |     1.295 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.033 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.50465</span> |     85.85 |   0.04039 |   0.01015 |    0.4150 |
-#&gt; |.....................|     4.594 |    0.6574 |    0.8788 |     1.295 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.033 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -8.947 |   0.04577 |    0.4043 |    0.4205 |
-#&gt; |.....................|    -6.122 |     1.399 |    0.8644 |    -3.339 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.062 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   29</span>|     752.46010 |    0.9944 |   -0.9724 |    -1.024 |   -0.9405 |
-#&gt; |.....................|   -0.6742 |   -0.9477 |   -0.9048 |   -0.7467 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8068 |...........|...........|...........|</span>
-#&gt; |    U|      752.4601 |     86.05 |    -3.209 |    -4.591 |   -0.3452 |
-#&gt; |.....................|     4.597 |    0.6559 |    0.8784 |     1.303 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.035 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      752.4601</span> |     86.05 |   0.04039 |   0.01014 |    0.4145 |
-#&gt; |.....................|     4.597 |    0.6559 |    0.8784 |     1.303 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.035 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     6.603 |   0.03134 |    0.3976 |    0.4307 |
-#&gt; |.....................|    -5.878 |     1.523 |    0.8347 |    -3.098 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.971 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   30</span>|     752.42045 |    0.9923 |   -0.9726 |    -1.025 |   -0.9478 |
-#&gt; |.....................|   -0.6717 |   -0.9497 |   -0.9056 |   -0.7410 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8056 |...........|...........|...........|</span>
-#&gt; |    U|     752.42045 |     85.87 |    -3.210 |    -4.593 |   -0.3477 |
-#&gt; |.....................|     4.602 |    0.6545 |    0.8777 |     1.310 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.036 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.42045</span> |     85.87 |   0.04038 |   0.01013 |    0.4139 |
-#&gt; |.....................|     4.602 |    0.6545 |    0.8777 |     1.310 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.036 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -7.567 |   0.04074 |    0.3551 |    0.4112 |
-#&gt; |.....................|    -5.553 |     1.278 |    0.7625 |    -2.890 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.881 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   31</span>|     752.38271 |    0.9943 |   -0.9729 |    -1.026 |   -0.9563 |
-#&gt; |.....................|   -0.6682 |   -0.9523 |   -0.9058 |   -0.7392 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8032 |...........|...........|...........|</span>
-#&gt; |    U|     752.38271 |     86.04 |    -3.210 |    -4.594 |   -0.3505 |
-#&gt; |.....................|     4.610 |    0.6527 |    0.8775 |     1.312 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.038 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.38271</span> |     86.04 |   0.04037 |   0.01012 |    0.4133 |
-#&gt; |.....................|     4.610 |    0.6527 |    0.8775 |     1.312 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.038 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     5.602 |   0.02847 |    0.3641 |    0.4189 |
-#&gt; |.....................|    -5.001 |     1.344 |    0.7516 |    -2.828 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.805 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   32</span>|     752.35435 |    0.9925 |   -0.9730 |    -1.028 |   -0.9633 |
-#&gt; |.....................|   -0.6679 |   -0.9545 |   -0.9069 |   -0.7341 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7988 |...........|...........|...........|</span>
-#&gt; |    U|     752.35435 |     85.89 |    -3.210 |    -4.595 |   -0.3529 |
-#&gt; |.....................|     4.611 |    0.6511 |    0.8766 |     1.318 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.043 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.35435</span> |     85.89 |   0.04036 |   0.01010 |    0.4127 |
-#&gt; |.....................|     4.611 |    0.6511 |    0.8766 |     1.318 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.043 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -6.571 |   0.03612 |    0.3357 |    0.4086 |
-#&gt; |.....................|    -4.992 |     1.118 |    0.6605 |    -2.632 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.560 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   33</span>|     752.32772 |    0.9943 |   -0.9732 |    -1.029 |   -0.9711 |
-#&gt; |.....................|   -0.6669 |   -0.9557 |   -0.9071 |   -0.7282 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7989 |...........|...........|...........|</span>
-#&gt; |    U|     752.32772 |     86.04 |    -3.210 |    -4.596 |   -0.3555 |
-#&gt; |.....................|     4.613 |    0.6503 |    0.8764 |     1.325 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.043 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.32772</span> |     86.04 |   0.04035 |   0.01009 |    0.4121 |
-#&gt; |.....................|     4.613 |    0.6503 |    0.8764 |     1.325 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.043 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     5.212 |   0.02538 |    0.3153 |    0.4089 |
-#&gt; |.....................|    -4.808 |     1.231 |    0.6502 |    -2.445 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.583 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   34</span>|     752.30453 |    0.9927 |   -0.9733 |    -1.030 |   -0.9795 |
-#&gt; |.....................|   -0.6622 |   -0.9567 |   -0.9058 |   -0.7271 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8012 |...........|...........|...........|</span>
-#&gt; |    U|     752.30453 |     85.90 |    -3.210 |    -4.598 |   -0.3583 |
-#&gt; |.....................|     4.623 |    0.6496 |    0.8775 |     1.326 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.040 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.30453</span> |     85.90 |   0.04035 |   0.01008 |    0.4114 |
-#&gt; |.....................|     4.623 |    0.6496 |    0.8775 |     1.326 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.040 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -5.777 |   0.03360 |    0.2795 |    0.3849 |
-#&gt; |.....................|    -4.177 |     1.041 |    0.7583 |    -2.411 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.694 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   35</span>|     752.28211 |    0.9943 |   -0.9735 |    -1.030 |   -0.9865 |
-#&gt; |.....................|   -0.6621 |   -0.9586 |   -0.9093 |   -0.7251 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7954 |...........|...........|...........|</span>
-#&gt; |    U|     752.28211 |     86.04 |    -3.210 |    -4.598 |   -0.3606 |
-#&gt; |.....................|     4.623 |    0.6483 |    0.8743 |     1.328 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.046 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.28211</span> |     86.04 |   0.04034 |   0.01008 |    0.4108 |
-#&gt; |.....................|     4.623 |    0.6483 |    0.8743 |     1.328 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.046 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     4.685 |   0.02318 |    0.3105 |    0.3984 |
-#&gt; |.....................|    -4.118 |     1.106 |    0.4577 |    -2.335 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.438 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   36</span>|     752.26507 |    0.9926 |   -0.9736 |    -1.031 |   -0.9930 |
-#&gt; |.....................|   -0.6630 |   -0.9604 |   -0.9091 |   -0.7199 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7902 |...........|...........|...........|</span>
-#&gt; |    U|     752.26507 |     85.89 |    -3.210 |    -4.598 |   -0.3628 |
-#&gt; |.....................|     4.621 |    0.6470 |    0.8745 |     1.334 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.051 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.26507</span> |     85.89 |   0.04034 |   0.01007 |    0.4103 |
-#&gt; |.....................|     4.621 |    0.6470 |    0.8745 |     1.334 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.051 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -6.810 |   0.03096 |    0.2910 |    0.3899 |
-#&gt; |.....................|    -4.283 |    0.8991 |    0.4756 |    -2.130 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.153 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   37</span>|     752.24597 |    0.9942 |   -0.9737 |    -1.033 |    -1.000 |
-#&gt; |.....................|   -0.6608 |   -0.9614 |   -0.9045 |   -0.7160 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7919 |...........|...........|...........|</span>
-#&gt; |    U|     752.24597 |     86.03 |    -3.211 |    -4.600 |   -0.3653 |
-#&gt; |.....................|     4.626 |    0.6463 |    0.8787 |     1.339 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.049 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.24597</span> |     86.03 |   0.04033 |   0.01005 |    0.4097 |
-#&gt; |.....................|     4.626 |    0.6463 |    0.8787 |     1.339 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.049 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     3.512 |   0.02244 |    0.2659 |    0.3868 |
-#&gt; |.....................|    -3.943 |    0.9821 |    0.8784 |    -2.032 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.263 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   38</span>|     752.22949 |    0.9926 |   -0.9738 |    -1.034 |    -1.007 |
-#&gt; |.....................|   -0.6572 |   -0.9618 |   -0.9098 |   -0.7144 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7948 |...........|...........|...........|</span>
-#&gt; |    U|     752.22949 |     85.90 |    -3.211 |    -4.601 |   -0.3676 |
-#&gt; |.....................|     4.634 |    0.6461 |    0.8739 |     1.341 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.047 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.22949</span> |     85.90 |   0.04033 |   0.01004 |    0.4091 |
-#&gt; |.....................|     4.634 |    0.6461 |    0.8739 |     1.341 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.047 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -6.652 |   0.02915 |    0.2261 |    0.3631 |
-#&gt; |.....................|    -3.474 |    0.8493 |    0.4224 |    -1.980 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.394 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   39</span>|     752.21433 |    0.9945 |   -0.9739 |    -1.034 |    -1.016 |
-#&gt; |.....................|   -0.6569 |   -0.9629 |   -0.9144 |   -0.7124 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7922 |...........|...........|...........|</span>
-#&gt; |    U|     752.21433 |     86.05 |    -3.211 |    -4.601 |   -0.3704 |
-#&gt; |.....................|     4.634 |    0.6453 |    0.8697 |     1.343 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.049 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.21433</span> |     86.05 |   0.04032 |   0.01004 |    0.4085 |
-#&gt; |.....................|     4.634 |    0.6453 |    0.8697 |     1.343 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.049 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     5.271 |   0.01812 |    0.2470 |    0.3694 |
-#&gt; |.....................|    -3.388 |    0.9655 |   0.02976 |    -1.920 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.299 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   40</span>|     752.19821 |    0.9933 |   -0.9740 |    -1.034 |    -1.022 |
-#&gt; |.....................|   -0.6566 |   -0.9648 |   -0.9096 |   -0.7099 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7872 |...........|...........|...........|</span>
-#&gt; |    U|     752.19821 |     85.95 |    -3.211 |    -4.602 |   -0.3726 |
-#&gt; |.....................|     4.635 |    0.6440 |    0.8741 |     1.346 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.054 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.19821</span> |     85.95 |   0.04032 |   0.01004 |    0.4079 |
-#&gt; |.....................|     4.635 |    0.6440 |    0.8741 |     1.346 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.054 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -2.667 |   0.02369 |    0.2481 |    0.3640 |
-#&gt; |.....................|    -3.371 |    0.7751 |    0.4401 |    -1.801 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.045 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   41</span>|     752.18532 |    0.9951 |   -0.9741 |    -1.036 |    -1.031 |
-#&gt; |.....................|   -0.6545 |   -0.9659 |   -0.9070 |   -0.7062 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7858 |...........|...........|...........|</span>
-#&gt; |    U|     752.18532 |     86.11 |    -3.211 |    -4.603 |   -0.3754 |
-#&gt; |.....................|     4.639 |    0.6432 |    0.8764 |     1.350 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.055 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.18532</span> |     86.11 |   0.04032 |   0.01002 |    0.4072 |
-#&gt; |.....................|     4.639 |    0.6432 |    0.8764 |     1.350 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.055 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     8.833 |   0.01368 |    0.2421 |    0.3674 |
-#&gt; |.....................|    -3.039 |    0.8770 |    0.6679 |    -1.687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.010 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   42</span>|     752.16831 |    0.9936 |   -0.9742 |    -1.037 |    -1.039 |
-#&gt; |.....................|   -0.6539 |   -0.9664 |   -0.9110 |   -0.7027 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7873 |...........|...........|...........|</span>
-#&gt; |    U|     752.16831 |     85.98 |    -3.211 |    -4.605 |   -0.3782 |
-#&gt; |.....................|     4.641 |    0.6428 |    0.8728 |     1.354 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.054 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.16831</span> |     85.98 |   0.04031 |   0.01001 |    0.4066 |
-#&gt; |.....................|     4.641 |    0.6428 |    0.8728 |     1.354 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.054 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |   -0.7512 |   0.02003 |    0.1902 |    0.3449 |
-#&gt; |.....................|    -2.985 |    0.7407 |    0.3269 |    -1.581 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.064 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   43</span>|     752.14828 |    0.9957 |   -0.9743 |    -1.038 |    -1.040 |
-#&gt; |.....................|   -0.6457 |   -0.9684 |   -0.9119 |   -0.6984 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7843 |...........|...........|...........|</span>
-#&gt; |    U|     752.14828 |     86.16 |    -3.211 |    -4.605 |   -0.3785 |
-#&gt; |.....................|     4.658 |    0.6414 |    0.8720 |     1.359 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.057 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.14828</span> |     86.16 |   0.04031 |   0.01000 |    0.4065 |
-#&gt; |.....................|     4.658 |    0.6414 |    0.8720 |     1.359 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.057 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     12.68 |  0.008742 |    0.2033 |    0.3626 |
-#&gt; |.....................|    -1.835 |    0.8163 |    0.2532 |    -1.452 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.9466 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   44</span>|     752.12689 |    0.9938 |   -0.9744 |    -1.038 |    -1.049 |
-#&gt; |.....................|   -0.6468 |   -0.9706 |   -0.9116 |   -0.6946 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7819 |...........|...........|...........|</span>
-#&gt; |    U|     752.12689 |     86.00 |    -3.211 |    -4.606 |   -0.3814 |
-#&gt; |.....................|     4.656 |    0.6399 |    0.8723 |     1.363 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.059 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.12689</span> |     86.00 |   0.04030 |  0.009996 |    0.4058 |
-#&gt; |.....................|     4.656 |    0.6399 |    0.8723 |     1.363 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.059 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |  -0.08747 |   0.01751 |    0.1808 |    0.3434 |
-#&gt; |.....................|    -2.013 |    0.5634 |    0.2760 |    -1.320 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7971 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   45</span>|     752.10460 |    0.9941 |   -0.9745 |    -1.039 |    -1.050 |
-#&gt; |.....................|   -0.6390 |   -0.9728 |   -0.9127 |   -0.6895 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7788 |...........|...........|...........|</span>
-#&gt; |    U|      752.1046 |     86.03 |    -3.211 |    -4.606 |   -0.3818 |
-#&gt; |.....................|     4.673 |    0.6383 |    0.8713 |     1.369 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.062 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      752.1046</span> |     86.03 |   0.04030 |  0.009989 |    0.4057 |
-#&gt; |.....................|     4.673 |    0.6383 |    0.8713 |     1.369 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.062 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   46</span>|     752.09051 |    0.9947 |   -0.9746 |    -1.040 |    -1.052 |
-#&gt; |.....................|   -0.6247 |   -0.9768 |   -0.9147 |   -0.6801 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7732 |...........|...........|...........|</span>
-#&gt; |    U|     752.09051 |     86.08 |    -3.211 |    -4.608 |   -0.3827 |
-#&gt; |.....................|     4.704 |    0.6355 |    0.8695 |     1.380 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.067 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.09051</span> |     86.08 |   0.04030 |  0.009976 |    0.4055 |
-#&gt; |.....................|     4.704 |    0.6355 |    0.8695 |     1.380 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.067 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     5.771 |   0.01029 |    0.1542 |    0.3620 |
-#&gt; |.....................|    0.8997 |    0.2873 |   0.01810 |   -0.9019 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.3639 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   47</span>|     752.06630 |    0.9944 |   -0.9751 |    -1.045 |    -1.068 |
-#&gt; |.....................|   -0.6300 |   -0.9815 |   -0.9184 |   -0.6573 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7726 |...........|...........|...........|</span>
-#&gt; |    U|      752.0663 |     86.05 |    -3.212 |    -4.613 |   -0.3878 |
-#&gt; |.....................|     4.692 |    0.6323 |    0.8661 |     1.407 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.068 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      752.0663</span> |     86.05 |   0.04028 |  0.009926 |    0.4043 |
-#&gt; |.....................|     4.692 |    0.6323 |    0.8661 |     1.407 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.068 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |     3.128 |  0.007908 |  0.004436 |    0.3353 |
-#&gt; |.....................|    0.2209 |    0.1645 |   -0.3029 |   -0.2852 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.2419 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   48</span>|     752.06241 |    0.9926 |   -0.9758 |    -1.042 |    -1.095 |
-#&gt; |.....................|   -0.6306 |   -0.9841 |   -0.9113 |   -0.6557 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7685 |...........|...........|...........|</span>
-#&gt; |    U|     752.06241 |     85.89 |    -3.213 |    -4.609 |   -0.3969 |
-#&gt; |.....................|     4.691 |    0.6304 |    0.8725 |     1.408 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.072 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.06241</span> |     85.89 |   0.04025 |  0.009958 |    0.4021 |
-#&gt; |.....................|     4.691 |    0.6304 |    0.8725 |     1.408 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.072 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -8.924 |   0.01284 |    0.1020 |    0.2919 |
-#&gt; |.....................|    0.1011 |  -0.08995 |    0.3194 |   -0.2130 |
-#&gt; <span style='text-decoration: underline;'>|.....................|  -0.05120 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   49</span>|     752.04768 |    0.9941 |   -0.9763 |    -1.043 |    -1.124 |
-#&gt; |.....................|   -0.6313 |   -0.9862 |   -0.9116 |   -0.6566 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7644 |...........|...........|...........|</span>
-#&gt; |    U|     752.04768 |     86.02 |    -3.213 |    -4.611 |   -0.4065 |
-#&gt; |.....................|     4.690 |    0.6289 |    0.8723 |     1.407 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.076 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.04768</span> |     86.02 |   0.04023 |  0.009946 |    0.3998 |
-#&gt; |.....................|     4.690 |    0.6289 |    0.8723 |     1.407 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.076 |...........|...........|...........|</span>
-#&gt; |    F| Forward Diff. |   0.04447 |  0.001311 |    0.1345 |    0.2729 |
-#&gt; |.....................|   0.05334 |  -0.06694 |    0.2984 |   -0.1966 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   0.06514 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   50</span>|     752.04768 |    0.9941 |   -0.9763 |    -1.043 |    -1.124 |
-#&gt; |.....................|   -0.6313 |   -0.9862 |   -0.9116 |   -0.6566 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7644 |...........|...........|...........|</span>
-#&gt; |    U|     752.04768 |     86.02 |    -3.213 |    -4.611 |   -0.4065 |
-#&gt; |.....................|     4.690 |    0.6289 |    0.8723 |     1.407 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.076 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     752.04768</span> |     86.02 |   0.04023 |  0.009946 |    0.3998 |
-#&gt; |.....................|     4.690 |    0.6289 |    0.8723 |     1.407 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.076 |...........|...........|...........|</span>
-#&gt; calculating covariance matrix
-#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
-#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#&gt; F: Forward difference gradient approximation
-#&gt; C: Central difference gradient approximation
-#&gt; M: Mixed forward and central difference gradient approximation
-#&gt; Unscaled parameters for Omegas=chol(solve(omega));
-#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
-#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
-#&gt; |    #| Objective Fun |  parent_0 |  log_k_A1 |f_parent_qlogis | log_alpha |
-#&gt; |.....................|  log_beta |     sigma |        o1 |        o2 |
-#&gt; <span style='text-decoration: underline;'>|.....................|        o3 |        o4 |        o5 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>    1</span>|     491.68697 |     1.000 |    -1.000 |   -0.9113 |   -0.8954 |
-#&gt; |.....................|   -0.8491 |   -0.8582 |   -0.8760 |   -0.8739 |
-#&gt; |.....................|   -0.8673 |   -0.8694 |   -0.8683 |...........|
-#&gt; |    U|     491.68697 |     94.21 |    -5.416 |   -0.9966 |   -0.2046 |
-#&gt; |.....................|     2.098 |     1.647 |    0.7612 |    0.8665 |
-#&gt; |.....................|     1.192 |     1.089 |     1.144 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     491.68697</span> |     94.21 |  0.004447 |    0.2696 |    0.8150 |
-#&gt; |.....................|     8.153 |     1.647 |    0.7612 |    0.8665 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.192 |     1.089 |     1.144 |...........|</span>
-#&gt; |    G|    Gill Diff. |     19.86 |     1.831 |   -0.1132 |  -0.03447 |
-#&gt; |.....................|   -0.1365 |    -48.08 |     10.28 |     8.952 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -12.04 |    -8.764 |    -10.61 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>    2</span>|     1105.9428 |    0.6506 |    -1.032 |   -0.9093 |   -0.8948 |
-#&gt; |.....................|   -0.8467 |  -0.01215 |    -1.057 |    -1.031 |
-#&gt; |.....................|   -0.6554 |   -0.7152 |   -0.6817 |...........|
-#&gt; |    U|     1105.9428 |     61.29 |    -5.448 |   -0.9946 |   -0.2040 |
-#&gt; |.....................|     2.101 |     2.344 |    0.6235 |    0.7300 |
-#&gt; |.....................|     1.445 |     1.256 |     1.357 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     1105.9428</span> |     61.29 |  0.004306 |    0.2700 |    0.8155 |
-#&gt; |.....................|     8.173 |     2.344 |    0.6235 |    0.7300 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.445 |     1.256 |     1.357 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>    3</span>|     499.02505 |    0.9651 |    -1.003 |   -0.9111 |   -0.8953 |
-#&gt; |.....................|   -0.8489 |   -0.7736 |   -0.8941 |   -0.8896 |
-#&gt; |.....................|   -0.8462 |   -0.8540 |   -0.8497 |...........|
-#&gt; |    U|     499.02505 |     90.91 |    -5.419 |   -0.9964 |   -0.2045 |
-#&gt; |.....................|     2.099 |     1.717 |    0.7475 |    0.8529 |
-#&gt; |.....................|     1.217 |     1.105 |     1.165 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     499.02505</span> |     90.91 |  0.004433 |    0.2696 |    0.8150 |
-#&gt; |.....................|     8.155 |     1.717 |    0.7475 |    0.8529 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.217 |     1.105 |     1.165 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>    4</span>|     491.11153 |    0.9924 |    -1.001 |   -0.9112 |   -0.8954 |
-#&gt; |.....................|   -0.8491 |   -0.8397 |   -0.8799 |   -0.8773 |
-#&gt; |.....................|   -0.8627 |   -0.8661 |   -0.8642 |...........|
-#&gt; |    U|     491.11153 |     93.49 |    -5.416 |   -0.9966 |   -0.2046 |
-#&gt; |.....................|     2.098 |     1.663 |    0.7582 |    0.8635 |
-#&gt; |.....................|     1.198 |     1.092 |     1.148 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     491.11153</span> |     93.49 |  0.004444 |    0.2696 |    0.8150 |
-#&gt; |.....................|     8.154 |     1.663 |    0.7582 |    0.8635 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.198 |     1.092 |     1.148 |...........|</span>
-#&gt; |    F| Forward Diff. |    -141.0 |     1.761 |   -0.2309 |   -0.1084 |
-#&gt; |.....................|   -0.3671 |    -44.06 |     11.23 |     7.698 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -11.77 |    -8.480 |    -10.17 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>    5</span>|     489.72110 |     1.001 |    -1.001 |   -0.9112 |   -0.8954 |
-#&gt; |.....................|   -0.8490 |   -0.8217 |   -0.8840 |   -0.8806 |
-#&gt; |.....................|   -0.8581 |   -0.8627 |   -0.8602 |...........|
-#&gt; |    U|      489.7211 |     94.29 |    -5.417 |   -0.9965 |   -0.2046 |
-#&gt; |.....................|     2.099 |     1.678 |    0.7552 |    0.8607 |
-#&gt; |.....................|     1.203 |     1.096 |     1.153 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>      489.7211</span> |     94.29 |  0.004441 |    0.2696 |    0.8150 |
-#&gt; |.....................|     8.154 |     1.678 |    0.7552 |    0.8607 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.203 |     1.096 |     1.153 |...........|</span>
-#&gt; |    F| Forward Diff. |     37.99 |     1.786 |  -0.09663 |  -0.03934 |
-#&gt; |.....................|   -0.1210 |    -40.49 |     9.520 |     7.642 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -11.65 |    -8.313 |    -10.04 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>    6</span>|     488.87741 |    0.9957 |    -1.002 |   -0.9111 |   -0.8953 |
-#&gt; |.....................|   -0.8490 |   -0.8027 |   -0.8883 |   -0.8842 |
-#&gt; |.....................|   -0.8530 |   -0.8591 |   -0.8558 |...........|
-#&gt; |    U|     488.87741 |     93.80 |    -5.418 |   -0.9965 |   -0.2045 |
-#&gt; |.....................|     2.099 |     1.693 |    0.7519 |    0.8576 |
-#&gt; |.....................|     1.209 |     1.100 |     1.158 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     488.87741</span> |     93.80 |  0.004437 |    0.2696 |    0.8150 |
-#&gt; |.....................|     8.155 |     1.693 |    0.7519 |    0.8576 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.209 |     1.100 |     1.158 |...........|</span>
-#&gt; |    F| Forward Diff. |    -68.52 |     1.732 |   -0.1791 |  -0.08434 |
-#&gt; |.....................|   -0.2775 |    -36.72 |     9.505 |     7.234 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -11.37 |    -8.098 |    -9.790 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>    7</span>|     487.98842 |     1.002 |    -1.003 |   -0.9111 |   -0.8953 |
-#&gt; |.....................|   -0.8489 |   -0.7841 |   -0.8926 |   -0.8878 |
-#&gt; |.....................|   -0.8478 |   -0.8553 |   -0.8512 |...........|
-#&gt; |    U|     487.98842 |     94.37 |    -5.418 |   -0.9964 |   -0.2045 |
-#&gt; |.....................|     2.099 |     1.708 |    0.7486 |    0.8545 |
-#&gt; |.....................|     1.215 |     1.104 |     1.163 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     487.98842</span> |     94.37 |  0.004434 |    0.2697 |    0.8150 |
-#&gt; |.....................|     8.156 |     1.708 |    0.7486 |    0.8545 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.215 |     1.104 |     1.163 |...........|</span>
-#&gt; |    F| Forward Diff. |     53.83 |     1.743 |  -0.07921 |  -0.03701 |
-#&gt; |.....................|  -0.09401 |    -33.22 |     8.823 |     7.101 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -11.24 |    -7.914 |    -9.621 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>    8</span>|     487.18834 |    0.9967 |    -1.004 |   -0.9110 |   -0.8953 |
-#&gt; |.....................|   -0.8488 |   -0.7657 |   -0.8973 |   -0.8916 |
-#&gt; |.....................|   -0.8421 |   -0.8512 |   -0.8463 |...........|
-#&gt; |    U|     487.18834 |     93.89 |    -5.419 |   -0.9963 |   -0.2045 |
-#&gt; |.....................|     2.099 |     1.724 |    0.7451 |    0.8512 |
-#&gt; |.....................|     1.222 |     1.108 |     1.169 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     487.18834</span> |     93.89 |  0.004430 |    0.2697 |    0.8151 |
-#&gt; |.....................|     8.156 |     1.724 |    0.7451 |    0.8512 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.222 |     1.108 |     1.169 |...........|</span>
-#&gt; |    F| Forward Diff. |    -47.29 |     1.692 |   -0.1608 |  -0.08286 |
-#&gt; |.....................|   -0.2512 |    -29.89 |     8.493 |     6.629 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -10.92 |    -7.677 |    -9.350 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>    9</span>|     486.46922 |     1.002 |    -1.005 |   -0.9109 |   -0.8952 |
-#&gt; |.....................|   -0.8487 |   -0.7480 |   -0.9022 |   -0.8958 |
-#&gt; |.....................|   -0.8355 |   -0.8466 |   -0.8406 |...........|
-#&gt; |    U|     486.46922 |     94.36 |    -5.420 |   -0.9963 |   -0.2045 |
-#&gt; |.....................|     2.099 |     1.738 |    0.7413 |    0.8476 |
-#&gt; |.....................|     1.230 |     1.113 |     1.175 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     486.46922</span> |     94.36 |  0.004425 |    0.2697 |    0.8151 |
-#&gt; |.....................|     8.157 |     1.738 |    0.7413 |    0.8476 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.230 |     1.113 |     1.175 |...........|</span>
-#&gt; |    F| Forward Diff. |     49.83 |     1.694 |  -0.07480 |  -0.03429 |
-#&gt; |.....................|  -0.09436 |    -26.68 |     8.123 |     6.503 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -10.68 |    -7.439 |    -9.119 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   10</span>|     485.78721 |    0.9968 |    -1.006 |   -0.9109 |   -0.8952 |
-#&gt; |.....................|   -0.8486 |   -0.7319 |   -0.9078 |   -0.9005 |
-#&gt; |.....................|   -0.8277 |   -0.8412 |   -0.8339 |...........|
-#&gt; |    U|     485.78721 |     93.91 |    -5.422 |   -0.9962 |   -0.2044 |
-#&gt; |.....................|     2.099 |     1.752 |    0.7370 |    0.8435 |
-#&gt; |.....................|     1.239 |     1.119 |     1.183 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     485.78721</span> |     93.91 |  0.004420 |    0.2697 |    0.8151 |
-#&gt; |.....................|     8.158 |     1.752 |    0.7370 |    0.8435 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.239 |     1.119 |     1.183 |...........|</span>
-#&gt; |    F| Forward Diff. |    -42.45 |     1.646 |   -0.1526 |  -0.07491 |
-#&gt; |.....................|   -0.2510 |    -24.12 |     7.576 |     5.974 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -10.35 |    -7.128 |    -8.768 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   11</span>|     485.17009 |     1.001 |    -1.008 |   -0.9107 |   -0.8952 |
-#&gt; |.....................|   -0.8484 |   -0.7183 |   -0.9141 |   -0.9058 |
-#&gt; |.....................|   -0.8180 |   -0.8347 |   -0.8257 |...........|
-#&gt; |    U|     485.17009 |     94.32 |    -5.423 |   -0.9961 |   -0.2044 |
-#&gt; |.....................|     2.099 |     1.763 |    0.7322 |    0.8389 |
-#&gt; |.....................|     1.251 |     1.126 |     1.192 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     485.17009</span> |     94.32 |  0.004413 |    0.2697 |    0.8152 |
-#&gt; |.....................|     8.160 |     1.763 |    0.7322 |    0.8389 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.251 |     1.126 |     1.192 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   12</span>|     484.56759 |     1.002 |    -1.010 |   -0.9106 |   -0.8951 |
-#&gt; |.....................|   -0.8481 |   -0.7038 |   -0.9212 |   -0.9119 |
-#&gt; |.....................|   -0.8067 |   -0.8272 |   -0.8163 |...........|
-#&gt; |    U|     484.56759 |     94.37 |    -5.425 |   -0.9959 |   -0.2043 |
-#&gt; |.....................|     2.099 |     1.775 |    0.7268 |    0.8336 |
-#&gt; |.....................|     1.264 |     1.134 |     1.203 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     484.56759</span> |     94.37 |  0.004404 |    0.2697 |    0.8152 |
-#&gt; |.....................|     8.162 |     1.775 |    0.7268 |    0.8336 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.264 |     1.134 |     1.203 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   13</span>|     483.17982 |     1.003 |    -1.015 |   -0.9102 |   -0.8949 |
-#&gt; |.....................|   -0.8475 |   -0.6634 |   -0.9410 |   -0.9287 |
-#&gt; |.....................|   -0.7754 |   -0.8064 |   -0.7900 |...........|
-#&gt; |    U|     483.17982 |     94.51 |    -5.431 |   -0.9956 |   -0.2042 |
-#&gt; |.....................|     2.100 |     1.808 |    0.7117 |    0.8190 |
-#&gt; |.....................|     1.302 |     1.157 |     1.233 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     483.17982</span> |     94.51 |  0.004381 |    0.2698 |    0.8153 |
-#&gt; |.....................|     8.167 |     1.808 |    0.7117 |    0.8190 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.302 |     1.157 |     1.233 |...........|</span>
-#&gt; |    F| Forward Diff. |     68.60 |     1.559 |  0.008498 |  -0.01857 |
-#&gt; |.....................|  -0.01950 |    -13.38 |     5.413 |     4.461 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -8.084 |    -5.202 |    -6.751 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   14</span>|     482.50435 |    0.9937 |    -1.034 |   -0.9105 |   -0.8944 |
-#&gt; |.....................|   -0.8462 |   -0.6947 |   -0.9713 |   -0.9553 |
-#&gt; |.....................|   -0.7043 |   -0.7694 |   -0.7343 |...........|
-#&gt; |    U|     482.50435 |     93.61 |    -5.449 |   -0.9958 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.782 |    0.6887 |    0.7959 |
-#&gt; |.....................|     1.386 |     1.197 |     1.297 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     482.50435</span> |     93.61 |  0.004300 |    0.2698 |    0.8158 |
-#&gt; |.....................|     8.177 |     1.782 |    0.6887 |    0.7959 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.386 |     1.197 |     1.297 |...........|</span>
-#&gt; |    F| Forward Diff. |    -85.62 |     1.442 |   -0.1650 |  -0.08233 |
-#&gt; |.....................|   -0.3434 |    -17.31 |     3.930 |     3.048 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.934 |    -3.045 |    -4.080 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   15</span>|     481.97261 |     1.003 |    -1.090 |   -0.9106 |   -0.8929 |
-#&gt; |.....................|   -0.8403 |   -0.7109 |   -0.9936 |   -0.9798 |
-#&gt; |.....................|   -0.6305 |   -0.7595 |   -0.6850 |...........|
-#&gt; |    U|     481.97261 |     94.53 |    -5.505 |   -0.9959 |   -0.2021 |
-#&gt; |.....................|     2.107 |     1.769 |    0.6717 |    0.7747 |
-#&gt; |.....................|     1.474 |     1.208 |     1.353 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     481.97261</span> |     94.53 |  0.004066 |    0.2697 |    0.8170 |
-#&gt; |.....................|     8.226 |     1.769 |    0.6717 |    0.7747 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.474 |     1.208 |     1.353 |...........|</span>
-#&gt; |    F| Forward Diff. |     56.89 |     1.274 |    0.1237 |   0.02279 |
-#&gt; |.....................|    0.2367 |    -19.64 |     1.923 |     2.281 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.663 |    -2.419 |    -1.870 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   16</span>|     481.06506 |     1.001 |    -1.169 |   -0.9152 |   -0.8919 |
-#&gt; |.....................|   -0.8407 |   -0.6475 |   -0.9528 |   -0.9773 |
-#&gt; |.....................|   -0.6368 |   -0.7786 |   -0.6952 |...........|
-#&gt; |    U|     481.06506 |     94.29 |    -5.585 |    -1.000 |   -0.2011 |
-#&gt; |.....................|     2.107 |     1.821 |    0.7028 |    0.7769 |
-#&gt; |.....................|     1.467 |     1.187 |     1.341 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     481.06506</span> |     94.29 |  0.003755 |    0.2688 |    0.8179 |
-#&gt; |.....................|     8.223 |     1.821 |    0.7028 |    0.7769 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.467 |     1.187 |     1.341 |...........|</span>
-#&gt; |    F| Forward Diff. |     24.24 |    0.9898 |   -0.1087 |   0.01886 |
-#&gt; |.....................|    0.1247 |    -10.78 |     3.743 |     2.188 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.085 |    -3.507 |    -2.452 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   17</span>|     481.22982 |    0.9921 |    -1.212 |   -0.9099 |   -0.8928 |
-#&gt; |.....................|   -0.8459 |   -0.6315 |    -1.015 |   -0.9814 |
-#&gt; |.....................|   -0.6906 |   -0.7213 |   -0.7106 |...........|
-#&gt; |    U|     481.22982 |     93.46 |    -5.628 |   -0.9952 |   -0.2020 |
-#&gt; |.....................|     2.102 |     1.834 |    0.6553 |    0.7733 |
-#&gt; |.....................|     1.403 |     1.250 |     1.324 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     481.22982</span> |     93.46 |  0.003596 |    0.2699 |    0.8171 |
-#&gt; |.....................|     8.180 |     1.834 |    0.6553 |    0.7733 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.403 |     1.250 |     1.324 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   18</span>|     481.29798 |    0.9919 |    -1.186 |   -0.9131 |   -0.8922 |
-#&gt; |.....................|   -0.8428 |   -0.6388 |   -0.9780 |   -0.9794 |
-#&gt; |.....................|   -0.6574 |   -0.7554 |   -0.7007 |...........|
-#&gt; |    U|     481.29798 |     93.44 |    -5.602 |   -0.9984 |   -0.2014 |
-#&gt; |.....................|     2.105 |     1.828 |    0.6836 |    0.7751 |
-#&gt; |.....................|     1.442 |     1.213 |     1.335 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     481.29798</span> |     93.44 |  0.003691 |    0.2693 |    0.8176 |
-#&gt; |.....................|     8.206 |     1.828 |    0.6836 |    0.7751 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.442 |     1.213 |     1.335 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   19</span>|     481.41397 |    0.9918 |    -1.173 |   -0.9147 |   -0.8919 |
-#&gt; |.....................|   -0.8412 |   -0.6424 |   -0.9596 |   -0.9784 |
-#&gt; |.....................|   -0.6408 |   -0.7724 |   -0.6957 |...........|
-#&gt; |    U|     481.41397 |     93.43 |    -5.589 |    -1.000 |   -0.2012 |
-#&gt; |.....................|     2.106 |     1.825 |    0.6976 |    0.7759 |
-#&gt; |.....................|     1.462 |     1.194 |     1.341 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     481.41397</span> |     93.43 |  0.003739 |    0.2689 |    0.8178 |
-#&gt; |.....................|     8.219 |     1.825 |    0.6976 |    0.7759 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.462 |     1.194 |     1.341 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   20</span>|     481.05031 |    0.9977 |    -1.169 |   -0.9152 |   -0.8919 |
-#&gt; |.....................|   -0.8407 |   -0.6461 |   -0.9533 |   -0.9776 |
-#&gt; |.....................|   -0.6366 |   -0.7782 |   -0.6949 |...........|
-#&gt; |    U|     481.05031 |     93.99 |    -5.585 |    -1.000 |   -0.2011 |
-#&gt; |.....................|     2.107 |     1.822 |    0.7024 |    0.7766 |
-#&gt; |.....................|     1.467 |     1.188 |     1.342 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     481.05031</span> |     93.99 |  0.003754 |    0.2688 |    0.8179 |
-#&gt; |.....................|     8.223 |     1.822 |    0.7024 |    0.7766 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.467 |     1.188 |     1.342 |...........|</span>
-#&gt; |    F| Forward Diff. |    -27.42 |    0.9768 |   -0.2107 |  -0.01109 |
-#&gt; |.....................|  -0.02839 |    -10.63 |     3.585 |     2.076 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.082 |    -3.487 |    -2.432 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   21</span>|     481.00693 |    0.9997 |    -1.170 |   -0.9150 |   -0.8919 |
-#&gt; |.....................|   -0.8408 |   -0.6450 |   -0.9548 |   -0.9778 |
-#&gt; |.....................|   -0.6377 |   -0.7765 |   -0.6951 |...........|
-#&gt; |    U|     481.00693 |     94.18 |    -5.586 |    -1.000 |   -0.2011 |
-#&gt; |.....................|     2.107 |     1.823 |    0.7012 |    0.7764 |
-#&gt; |.....................|     1.466 |     1.190 |     1.342 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     481.00693</span> |     94.18 |  0.003750 |    0.2689 |    0.8178 |
-#&gt; |.....................|     8.222 |     1.823 |    0.7012 |    0.7764 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.466 |     1.190 |     1.342 |...........|</span>
-#&gt; |    F| Forward Diff. |     5.549 |    0.9801 |   -0.1366 |  0.007724 |
-#&gt; |.....................|   0.06864 |    -10.47 |     3.736 |     2.095 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.145 |    -3.386 |    -2.439 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   22</span>|     480.97727 |    0.9982 |    -1.171 |   -0.9150 |   -0.8919 |
-#&gt; |.....................|   -0.8408 |   -0.6422 |   -0.9558 |   -0.9784 |
-#&gt; |.....................|   -0.6371 |   -0.7756 |   -0.6944 |...........|
-#&gt; |    U|     480.97727 |     94.04 |    -5.586 |    -1.000 |   -0.2011 |
-#&gt; |.....................|     2.107 |     1.825 |    0.7005 |    0.7760 |
-#&gt; |.....................|     1.466 |     1.191 |     1.342 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.97727</span> |     94.04 |  0.003749 |    0.2689 |    0.8178 |
-#&gt; |.....................|     8.222 |     1.825 |    0.7005 |    0.7760 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.466 |     1.191 |     1.342 |...........|</span>
-#&gt; |    F| Forward Diff. |    -18.22 |    0.9728 |   -0.1820 | -0.005388 |
-#&gt; |.....................| -0.004679 |    -10.15 |     3.348 |     1.956 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.141 |    -3.348 |    -2.415 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   23</span>|     480.94781 |    0.9999 |    -1.172 |   -0.9148 |   -0.8919 |
-#&gt; |.....................|   -0.8410 |   -0.6410 |   -0.9575 |   -0.9785 |
-#&gt; |.....................|   -0.6383 |   -0.7738 |   -0.6946 |...........|
-#&gt; |    U|     480.94781 |     94.20 |    -5.587 |    -1.000 |   -0.2011 |
-#&gt; |.....................|     2.107 |     1.826 |    0.6992 |    0.7758 |
-#&gt; |.....................|     1.465 |     1.193 |     1.342 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.94781</span> |     94.20 |  0.003745 |    0.2689 |    0.8178 |
-#&gt; |.....................|     8.220 |     1.826 |    0.6992 |    0.7758 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.465 |     1.193 |     1.342 |...........|</span>
-#&gt; |    F| Forward Diff. |     8.568 |    0.9740 |   -0.1199 |  0.009837 |
-#&gt; |.....................|   0.07469 |    -9.926 |     3.371 |    0.7973 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.181 |    -3.230 |    -2.408 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   24</span>|     480.92664 |    0.9984 |    -1.173 |   -0.9147 |   -0.8919 |
-#&gt; |.....................|   -0.8411 |   -0.6390 |   -0.9589 |   -0.9778 |
-#&gt; |.....................|   -0.6386 |   -0.7721 |   -0.6942 |...........|
-#&gt; |    U|     480.92664 |     94.06 |    -5.588 |    -1.000 |   -0.2011 |
-#&gt; |.....................|     2.107 |     1.828 |    0.6981 |    0.7765 |
-#&gt; |.....................|     1.465 |     1.195 |     1.343 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.92664</span> |     94.06 |  0.003741 |    0.2689 |    0.8178 |
-#&gt; |.....................|     8.219 |     1.828 |    0.6981 |    0.7765 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.465 |     1.195 |     1.343 |...........|</span>
-#&gt; |    F| Forward Diff. |    -15.24 |    0.9644 |   -0.1632 | -0.002739 |
-#&gt; |.....................| -0.008738 |    -9.656 |     3.177 |    0.7945 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.140 |    -3.159 |    -2.407 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   25</span>|     480.90633 |    0.9999 |    -1.174 |   -0.9146 |   -0.8920 |
-#&gt; |.....................|   -0.8412 |   -0.6376 |   -0.9602 |   -0.9760 |
-#&gt; |.....................|   -0.6390 |   -0.7705 |   -0.6939 |...........|
-#&gt; |    U|     480.90633 |     94.20 |    -5.589 |   -0.9999 |   -0.2012 |
-#&gt; |.....................|     2.106 |     1.829 |    0.6971 |    0.7780 |
-#&gt; |.....................|     1.464 |     1.196 |     1.343 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.90633</span> |     94.20 |  0.003737 |    0.2690 |    0.8178 |
-#&gt; |.....................|     8.219 |     1.829 |    0.6971 |    0.7780 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.464 |     1.196 |     1.343 |...........|</span>
-#&gt; |    F| Forward Diff. |     8.878 |    0.9654 |   -0.1149 |  0.008298 |
-#&gt; |.....................|   0.06381 |    -9.456 |     3.199 |     2.165 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.158 |    -3.035 |    -2.359 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   26</span>|     480.88677 |    0.9984 |    -1.175 |   -0.9145 |   -0.8920 |
-#&gt; |.....................|   -0.8413 |   -0.6358 |   -0.9617 |   -0.9757 |
-#&gt; |.....................|   -0.6395 |   -0.7687 |   -0.6936 |...........|
-#&gt; |    U|     480.88677 |     94.05 |    -5.591 |   -0.9998 |   -0.2012 |
-#&gt; |.....................|     2.106 |     1.831 |    0.6960 |    0.7783 |
-#&gt; |.....................|     1.464 |     1.198 |     1.343 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.88677</span> |     94.05 |  0.003733 |    0.2690 |    0.8178 |
-#&gt; |.....................|     8.218 |     1.831 |    0.6960 |    0.7783 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.464 |     1.198 |     1.343 |...........|</span>
-#&gt; |    F| Forward Diff. |    -15.55 |    0.9550 |   -0.1566 | -0.004027 |
-#&gt; |.....................|  -0.01529 |    -9.334 |     3.082 |    0.8457 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.216 |    -2.967 |    -2.371 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   27</span>|     480.86430 |    0.9998 |    -1.177 |   -0.9143 |   -0.8920 |
-#&gt; |.....................|   -0.8414 |   -0.6346 |   -0.9633 |   -0.9749 |
-#&gt; |.....................|   -0.6404 |   -0.7668 |   -0.6935 |...........|
-#&gt; |    U|      480.8643 |     94.19 |    -5.592 |   -0.9996 |   -0.2012 |
-#&gt; |.....................|     2.106 |     1.832 |    0.6948 |    0.7790 |
-#&gt; |.....................|     1.463 |     1.200 |     1.343 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>      480.8643</span> |     94.19 |  0.003727 |    0.2690 |    0.8177 |
-#&gt; |.....................|     8.217 |     1.832 |    0.6948 |    0.7790 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.463 |     1.200 |     1.343 |...........|</span>
-#&gt; |    F| Forward Diff. |     6.756 |    0.9537 |   -0.1079 |  0.006011 |
-#&gt; |.....................|   0.04748 |    -9.023 |     3.021 |     2.222 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.227 |    -2.836 |    -2.339 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   28</span>|     480.84403 |    0.9982 |    -1.178 |   -0.9142 |   -0.8920 |
-#&gt; |.....................|   -0.8415 |   -0.6324 |   -0.9646 |   -0.9751 |
-#&gt; |.....................|   -0.6405 |   -0.7653 |   -0.6931 |...........|
-#&gt; |    U|     480.84403 |     94.04 |    -5.593 |   -0.9995 |   -0.2012 |
-#&gt; |.....................|     2.106 |     1.833 |    0.6938 |    0.7788 |
-#&gt; |.....................|     1.462 |     1.202 |     1.344 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.84403</span> |     94.04 |  0.003723 |    0.2690 |    0.8177 |
-#&gt; |.....................|     8.216 |     1.833 |    0.6938 |    0.7788 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.462 |     1.202 |     1.344 |...........|</span>
-#&gt; |    F| Forward Diff. |    -17.74 |    0.9443 |   -0.1486 | -0.005686 |
-#&gt; |.....................|  -0.02964 |    -8.905 |     2.905 |     2.091 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.264 |    -2.753 |    -2.319 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   29</span>|     480.81486 |    0.9998 |    -1.179 |   -0.9140 |   -0.8921 |
-#&gt; |.....................|   -0.8417 |   -0.6315 |   -0.9657 |   -0.9770 |
-#&gt; |.....................|   -0.6415 |   -0.7640 |   -0.6932 |...........|
-#&gt; |    U|     480.81486 |     94.18 |    -5.595 |   -0.9993 |   -0.2013 |
-#&gt; |.....................|     2.106 |     1.834 |    0.6930 |    0.7772 |
-#&gt; |.....................|     1.461 |     1.203 |     1.344 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.81486</span> |     94.18 |  0.003718 |    0.2691 |    0.8177 |
-#&gt; |.....................|     8.215 |     1.834 |    0.6930 |    0.7772 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.461 |     1.203 |     1.344 |...........|</span>
-#&gt; |    F| Forward Diff. |     6.172 |    0.9439 |  -0.09077 |  0.005496 |
-#&gt; |.....................|   0.04002 |    -8.557 |     3.060 |    0.8688 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.237 |    -2.681 |    -2.329 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   30</span>|     480.79675 |    0.9982 |    -1.180 |   -0.9139 |   -0.8921 |
-#&gt; |.....................|   -0.8418 |   -0.6292 |   -0.9672 |   -0.9770 |
-#&gt; |.....................|   -0.6415 |   -0.7628 |   -0.6927 |...........|
-#&gt; |    U|     480.79675 |     94.04 |    -5.596 |   -0.9992 |   -0.2013 |
-#&gt; |.....................|     2.106 |     1.836 |    0.6918 |    0.7772 |
-#&gt; |.....................|     1.461 |     1.205 |     1.344 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.79675</span> |     94.04 |  0.003714 |    0.2691 |    0.8177 |
-#&gt; |.....................|     8.214 |     1.836 |    0.6918 |    0.7772 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.461 |     1.205 |     1.344 |...........|</span>
-#&gt; |    F| Forward Diff. |    -18.05 |    0.9344 |   -0.1333 | -0.006636 |
-#&gt; |.....................|  -0.03697 |    -8.406 |     2.763 |    0.7695 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.291 |    -2.623 |    -2.307 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   31</span>|     480.77804 |    0.9997 |    -1.182 |   -0.9138 |   -0.8921 |
-#&gt; |.....................|   -0.8419 |   -0.6281 |   -0.9686 |   -0.9750 |
-#&gt; |.....................|   -0.6417 |   -0.7615 |   -0.6923 |...........|
-#&gt; |    U|     480.77804 |     94.18 |    -5.597 |   -0.9991 |   -0.2013 |
-#&gt; |.....................|     2.106 |     1.837 |    0.6907 |    0.7789 |
-#&gt; |.....................|     1.461 |     1.206 |     1.345 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.77804</span> |     94.18 |  0.003708 |    0.2691 |    0.8176 |
-#&gt; |.....................|     8.213 |     1.837 |    0.6907 |    0.7789 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.461 |     1.206 |     1.345 |...........|</span>
-#&gt; |    F| Forward Diff. |     5.466 |    0.9331 |  -0.08875 |  0.003744 |
-#&gt; |.....................|   0.02543 |    -8.171 |     2.670 |     2.155 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.279 |    -2.534 |    -2.278 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   32</span>|     480.75892 |    0.9982 |    -1.183 |   -0.9137 |   -0.8921 |
-#&gt; |.....................|   -0.8419 |   -0.6258 |   -0.9698 |   -0.9756 |
-#&gt; |.....................|   -0.6414 |   -0.7603 |   -0.6917 |...........|
-#&gt; |    U|     480.75892 |     94.03 |    -5.598 |   -0.9991 |   -0.2014 |
-#&gt; |.....................|     2.106 |     1.839 |    0.6899 |    0.7784 |
-#&gt; |.....................|     1.461 |     1.207 |     1.346 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.75892</span> |     94.03 |  0.003704 |    0.2691 |    0.8176 |
-#&gt; |.....................|     8.212 |     1.839 |    0.6899 |    0.7784 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.461 |     1.207 |     1.346 |...........|</span>
-#&gt; |    F| Forward Diff. |    -18.29 |    0.9240 |   -0.1279 | -0.008301 |
-#&gt; |.....................|  -0.04619 |    -7.961 |     2.584 |    0.8229 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.311 |    -2.476 |    -2.253 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   33</span>|     480.73432 |    0.9997 |    -1.185 |   -0.9136 |   -0.8922 |
-#&gt; |.....................|   -0.8421 |   -0.6250 |   -0.9708 |   -0.9758 |
-#&gt; |.....................|   -0.6420 |   -0.7587 |   -0.6914 |...........|
-#&gt; |    U|     480.73432 |     94.18 |    -5.601 |   -0.9989 |   -0.2014 |
-#&gt; |.....................|     2.105 |     1.840 |    0.6891 |    0.7782 |
-#&gt; |.....................|     1.461 |     1.209 |     1.346 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.73432</span> |     94.18 |  0.003695 |    0.2692 |    0.8176 |
-#&gt; |.....................|     8.211 |     1.840 |    0.6891 |    0.7782 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.461 |     1.209 |     1.346 |...........|</span>
-#&gt; |    F| Forward Diff. |     5.056 |    0.9202 |  -0.07575 |  0.002374 |
-#&gt; |.....................|   0.02179 |    -7.789 |     2.502 |     2.101 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.273 |    -2.370 |    -2.217 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   34</span>|     480.71449 |    0.9983 |    -1.187 |   -0.9135 |   -0.8922 |
-#&gt; |.....................|   -0.8422 |   -0.6227 |   -0.9719 |   -0.9765 |
-#&gt; |.....................|   -0.6416 |   -0.7575 |   -0.6908 |...........|
-#&gt; |    U|     480.71449 |     94.05 |    -5.602 |   -0.9988 |   -0.2014 |
-#&gt; |.....................|     2.105 |     1.841 |    0.6883 |    0.7776 |
-#&gt; |.....................|     1.461 |     1.210 |     1.347 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.71449</span> |     94.05 |  0.003690 |    0.2692 |    0.8175 |
-#&gt; |.....................|     8.210 |     1.841 |    0.6883 |    0.7776 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.461 |     1.210 |     1.347 |...........|</span>
-#&gt; |    F| Forward Diff. |    -16.10 |    0.9104 |   -0.1099 | -0.008208 |
-#&gt; |.....................|  -0.04557 |    -7.571 |     2.606 |     1.992 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.295 |    -2.312 |    -2.196 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   35</span>|     480.68777 |    0.9997 |    -1.189 |   -0.9134 |   -0.8923 |
-#&gt; |.....................|   -0.8423 |   -0.6220 |   -0.9726 |   -0.9789 |
-#&gt; |.....................|   -0.6421 |   -0.7569 |   -0.6908 |...........|
-#&gt; |    U|     480.68777 |     94.18 |    -5.604 |   -0.9987 |   -0.2015 |
-#&gt; |.....................|     2.105 |     1.842 |    0.6877 |    0.7755 |
-#&gt; |.....................|     1.461 |     1.211 |     1.347 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.68777</span> |     94.18 |  0.003683 |    0.2692 |    0.8175 |
-#&gt; |.....................|     8.209 |     1.842 |    0.6877 |    0.7755 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.461 |     1.211 |     1.347 |...........|</span>
-#&gt; |    F| Forward Diff. |     4.858 |    0.9091 |  -0.06076 |  0.001972 |
-#&gt; |.....................|   0.01464 |    -7.318 |     2.391 |    0.7174 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.245 |    -2.255 |    -2.188 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   36</span>|     480.67297 |    0.9982 |    -1.190 |   -0.9134 |   -0.8923 |
-#&gt; |.....................|   -0.8424 |   -0.6196 |   -0.9738 |   -0.9789 |
-#&gt; |.....................|   -0.6415 |   -0.7559 |   -0.6900 |...........|
-#&gt; |    U|     480.67297 |     94.03 |    -5.605 |   -0.9987 |   -0.2015 |
-#&gt; |.....................|     2.105 |     1.844 |    0.6868 |    0.7755 |
-#&gt; |.....................|     1.461 |     1.212 |     1.348 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.67297</span> |     94.03 |  0.003678 |    0.2692 |    0.8175 |
-#&gt; |.....................|     8.209 |     1.844 |    0.6868 |    0.7755 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.461 |     1.212 |     1.348 |...........|</span>
-#&gt; |    F| Forward Diff. |    -18.29 |    0.8994 |   -0.1037 |  -0.01039 |
-#&gt; |.....................|  -0.05604 |    -7.086 |     2.324 |    0.6431 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.272 |    -2.229 |    -2.170 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   37</span>|     480.65610 |    0.9996 |    -1.192 |   -0.9134 |   -0.8923 |
-#&gt; |.....................|   -0.8424 |   -0.6187 |   -0.9745 |   -0.9768 |
-#&gt; |.....................|   -0.6410 |   -0.7549 |   -0.6892 |...........|
-#&gt; |    U|      480.6561 |     94.17 |    -5.607 |   -0.9987 |   -0.2015 |
-#&gt; |.....................|     2.105 |     1.845 |    0.6862 |    0.7773 |
-#&gt; |.....................|     1.462 |     1.213 |     1.348 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>      480.6561</span> |     94.17 |  0.003671 |    0.2692 |    0.8175 |
-#&gt; |.....................|     8.208 |     1.845 |    0.6862 |    0.7773 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.462 |     1.213 |     1.348 |...........|</span>
-#&gt; |    F| Forward Diff. |     3.523 |    0.8967 |  -0.06519 |-0.0005238 |
-#&gt; |.....................|  0.007306 |    -6.938 |     2.250 |    0.8205 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.209 |    -2.143 |    -2.109 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   38</span>|     480.63930 |    0.9982 |    -1.192 |   -0.9133 |   -0.8923 |
-#&gt; |.....................|   -0.8425 |   -0.6159 |   -0.9754 |   -0.9772 |
-#&gt; |.....................|   -0.6401 |   -0.7540 |   -0.6884 |...........|
-#&gt; |    U|      480.6393 |     94.04 |    -5.608 |   -0.9987 |   -0.2015 |
-#&gt; |.....................|     2.105 |     1.847 |    0.6856 |    0.7770 |
-#&gt; |.....................|     1.463 |     1.214 |     1.349 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>      480.6393</span> |     94.04 |  0.003670 |    0.2692 |    0.8175 |
-#&gt; |.....................|     8.208 |     1.847 |    0.6856 |    0.7770 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.463 |     1.214 |     1.349 |...........|</span>
-#&gt; |    F| Forward Diff. |    -17.45 |    0.8903 |   -0.1044 |  -0.01155 |
-#&gt; |.....................|  -0.05881 |    -6.641 |     2.195 |     1.966 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.207 |    -2.119 |    -2.090 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   39</span>|     480.61554 |    0.9996 |    -1.195 |   -0.9133 |   -0.8924 |
-#&gt; |.....................|   -0.8426 |   -0.6153 |   -0.9757 |   -0.9778 |
-#&gt; |.....................|   -0.6400 |   -0.7531 |   -0.6877 |...........|
-#&gt; |    U|     480.61554 |     94.16 |    -5.611 |   -0.9986 |   -0.2016 |
-#&gt; |.....................|     2.105 |     1.848 |    0.6853 |    0.7765 |
-#&gt; |.....................|     1.463 |     1.215 |     1.350 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.61554</span> |     94.16 |  0.003659 |    0.2692 |    0.8174 |
-#&gt; |.....................|     8.207 |     1.848 |    0.6853 |    0.7765 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.463 |     1.215 |     1.350 |...........|</span>
-#&gt; |    F| Forward Diff. |     2.395 |    0.8850 |  -0.05988 | -0.001937 |
-#&gt; |.....................| 0.0008548 |    -6.531 |     2.145 |    0.7341 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.178 |    -2.045 |    -2.040 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   40</span>|     480.59501 |    0.9985 |    -1.195 |   -0.9132 |   -0.8924 |
-#&gt; |.....................|   -0.8426 |   -0.6124 |   -0.9766 |   -0.9781 |
-#&gt; |.....................|   -0.6390 |   -0.7522 |   -0.6868 |...........|
-#&gt; |    U|     480.59501 |     94.06 |    -5.611 |   -0.9986 |   -0.2016 |
-#&gt; |.....................|     2.105 |     1.850 |    0.6846 |    0.7762 |
-#&gt; |.....................|     1.464 |     1.216 |     1.351 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.59501</span> |     94.06 |  0.003658 |    0.2692 |    0.8174 |
-#&gt; |.....................|     8.207 |     1.850 |    0.6846 |    0.7762 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.464 |     1.216 |     1.351 |...........|</span>
-#&gt; |    F| Forward Diff. |    -13.20 |    0.8797 |  -0.08878 |  -0.01245 |
-#&gt; |.....................|  -0.05202 |    -6.149 |     2.097 |     1.936 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.128 |    -2.007 |    -2.021 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   41</span>|     480.57374 |    0.9995 |    -1.198 |   -0.9132 |   -0.8924 |
-#&gt; |.....................|   -0.8426 |   -0.6117 |   -0.9768 |   -0.9794 |
-#&gt; |.....................|   -0.6387 |   -0.7515 |   -0.6862 |...........|
-#&gt; |    U|     480.57374 |     94.16 |    -5.614 |   -0.9986 |   -0.2016 |
-#&gt; |.....................|     2.105 |     1.851 |    0.6845 |    0.7751 |
-#&gt; |.....................|     1.464 |     1.217 |     1.352 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.57374</span> |     94.16 |  0.003647 |    0.2692 |    0.8174 |
-#&gt; |.....................|     8.207 |     1.851 |    0.6845 |    0.7751 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.464 |     1.217 |     1.352 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   42</span>|     480.55656 |    0.9993 |    -1.203 |   -0.9133 |   -0.8924 |
-#&gt; |.....................|   -0.8427 |   -0.6115 |   -0.9767 |   -0.9815 |
-#&gt; |.....................|   -0.6386 |   -0.7506 |   -0.6853 |...........|
-#&gt; |    U|     480.55656 |     94.14 |    -5.619 |   -0.9986 |   -0.2016 |
-#&gt; |.....................|     2.105 |     1.851 |    0.6846 |    0.7733 |
-#&gt; |.....................|     1.465 |     1.218 |     1.353 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.55656</span> |     94.14 |  0.003629 |    0.2692 |    0.8174 |
-#&gt; |.....................|     8.206 |     1.851 |    0.6846 |    0.7733 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.465 |     1.218 |     1.353 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   43</span>|     480.48642 |    0.9984 |    -1.228 |   -0.9134 |   -0.8925 |
-#&gt; |.....................|   -0.8432 |   -0.6102 |   -0.9761 |   -0.9914 |
-#&gt; |.....................|   -0.6380 |   -0.7463 |   -0.6812 |...........|
-#&gt; |    U|     480.48642 |     94.05 |    -5.643 |   -0.9987 |   -0.2017 |
-#&gt; |.....................|     2.104 |     1.852 |    0.6850 |    0.7647 |
-#&gt; |.....................|     1.465 |     1.223 |     1.357 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.48642</span> |     94.05 |  0.003541 |    0.2692 |    0.8174 |
-#&gt; |.....................|     8.202 |     1.852 |    0.6850 |    0.7647 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.465 |     1.223 |     1.357 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   44</span>|     480.43193 |    0.9946 |    -1.325 |   -0.9138 |   -0.8928 |
-#&gt; |.....................|   -0.8452 |   -0.6054 |   -0.9741 |    -1.031 |
-#&gt; |.....................|   -0.6354 |   -0.7292 |   -0.6649 |...........|
-#&gt; |    U|     480.43193 |     93.70 |    -5.741 |   -0.9991 |   -0.2020 |
-#&gt; |.....................|     2.102 |     1.856 |    0.6866 |    0.7303 |
-#&gt; |.....................|     1.469 |     1.241 |     1.376 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.43193</span> |     93.70 |  0.003212 |    0.2691 |    0.8171 |
-#&gt; |.....................|     8.185 |     1.856 |    0.6866 |    0.7303 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.469 |     1.241 |     1.376 |...........|</span>
-#&gt; |    F| Forward Diff. |    -73.68 |    0.5532 |  -0.05170 |  -0.03792 |
-#&gt; |.....................|   -0.2632 |    -4.949 |     2.751 |    -2.063 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -2.027 |   -0.5538 |    -1.006 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   45</span>|     480.12037 |    0.9986 |    -1.465 |   -0.9157 |   -0.8935 |
-#&gt; |.....................|   -0.8478 |   -0.6011 |   -0.9922 |    -1.022 |
-#&gt; |.....................|   -0.6184 |   -0.7143 |   -0.6451 |...........|
-#&gt; |    U|     480.12037 |     94.07 |    -5.880 |    -1.001 |   -0.2027 |
-#&gt; |.....................|     2.100 |     1.859 |    0.6728 |    0.7378 |
-#&gt; |.....................|     1.489 |     1.257 |     1.399 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.12037</span> |     94.07 |  0.002795 |    0.2687 |    0.8166 |
-#&gt; |.....................|     8.164 |     1.859 |    0.6728 |    0.7378 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.489 |     1.257 |     1.399 |...........|</span>
-#&gt; |    F| Forward Diff. |    -14.31 |    0.1919 | -0.006458 | -0.005637 |
-#&gt; |.....................|   -0.1500 |    -5.088 |    0.6605 |   -0.1467 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.672 |   0.02074 |   -0.4009 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   46</span>|     480.21684 |    0.9998 |    -1.532 |   -0.9143 |   -0.8951 |
-#&gt; |.....................|   -0.8360 |   -0.5884 |   -0.9862 |    -1.032 |
-#&gt; |.....................|   -0.5071 |   -0.7680 |   -0.6684 |...........|
-#&gt; |    U|     480.21684 |     94.19 |    -5.947 |   -0.9996 |   -0.2043 |
-#&gt; |.....................|     2.112 |     1.870 |    0.6773 |    0.7298 |
-#&gt; |.....................|     1.621 |     1.199 |     1.372 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.21684</span> |     94.19 |  0.002613 |    0.2690 |    0.8152 |
-#&gt; |.....................|     8.261 |     1.870 |    0.6773 |    0.7298 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.621 |     1.199 |     1.372 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   47</span>|     480.06028 |     1.000 |    -1.489 |   -0.9152 |   -0.8941 |
-#&gt; |.....................|   -0.8435 |   -0.5961 |   -0.9901 |    -1.026 |
-#&gt; |.....................|   -0.5774 |   -0.7340 |   -0.6536 |...........|
-#&gt; |    U|     480.06028 |     94.21 |    -5.905 |    -1.000 |   -0.2033 |
-#&gt; |.....................|     2.104 |     1.863 |    0.6744 |    0.7349 |
-#&gt; |.....................|     1.538 |     1.236 |     1.389 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.06028</span> |     94.21 |  0.002726 |    0.2688 |    0.8161 |
-#&gt; |.....................|     8.200 |     1.863 |    0.6744 |    0.7349 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.538 |     1.236 |     1.389 |...........|</span>
-#&gt; |    F| Forward Diff. |     6.437 |    0.1507 |   0.07551 | -0.008836 |
-#&gt; |.....................|   0.08632 |    -3.858 |    0.8547 |    0.1963 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.4591 |   -0.8475 |   -0.5830 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   48</span>|     480.03665 |    0.9987 |    -1.532 |   -0.9229 |   -0.8934 |
-#&gt; |.....................|   -0.8415 |   -0.5884 |    -1.015 |    -1.029 |
-#&gt; |.....................|   -0.5816 |   -0.7442 |   -0.6445 |...........|
-#&gt; |    U|     480.03665 |     94.09 |    -5.948 |    -1.008 |   -0.2026 |
-#&gt; |.....................|     2.106 |     1.870 |    0.6552 |    0.7323 |
-#&gt; |.....................|     1.533 |     1.225 |     1.399 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.03665</span> |     94.09 |  0.002612 |    0.2673 |    0.8166 |
-#&gt; |.....................|     8.216 |     1.870 |    0.6552 |    0.7323 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.533 |     1.225 |     1.399 |...........|</span>
-#&gt; |    F| Forward Diff. |    -11.33 |   0.04720 |   -0.3576 | -0.009993 |
-#&gt; |.....................|   0.09366 |    -3.049 |   -0.8552 |     2.379 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   0.07272 |    -1.673 |   -0.4189 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   49</span>|     480.00388 |    0.9997 |    -1.574 |   -0.9191 |   -0.8927 |
-#&gt; |.....................|   -0.8426 |   -0.5789 |    -1.009 |    -1.024 |
-#&gt; |.....................|   -0.5828 |   -0.7165 |   -0.6339 |...........|
-#&gt; |    U|     480.00388 |     94.18 |    -5.990 |    -1.004 |   -0.2019 |
-#&gt; |.....................|     2.105 |     1.878 |    0.6600 |    0.7361 |
-#&gt; |.....................|     1.531 |     1.255 |     1.412 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.00388</span> |     94.18 |  0.002504 |    0.2681 |    0.8172 |
-#&gt; |.....................|     8.207 |     1.878 |    0.6600 |    0.7361 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.531 |     1.255 |     1.412 |...........|</span>
-#&gt; |    F| Forward Diff. |     1.604 |  -0.07853 |   -0.1199 |   0.02191 |
-#&gt; |.....................|    0.1056 |    -1.650 |   -0.4080 |    0.6580 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.2834 |    0.2201 |    0.3460 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   50</span>|     480.03472 |     1.000 |    -1.551 |   -0.8873 |   -0.8972 |
-#&gt; |.....................|   -0.8660 |   -0.5703 |    -1.019 |    -1.030 |
-#&gt; |.....................|   -0.5914 |   -0.7201 |   -0.6545 |...........|
-#&gt; |    U|     480.03472 |     94.21 |    -5.967 |   -0.9727 |   -0.2064 |
-#&gt; |.....................|     2.082 |     1.885 |    0.6528 |    0.7314 |
-#&gt; |.....................|     1.521 |     1.251 |     1.388 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.03472</span> |     94.21 |  0.002563 |    0.2743 |    0.8135 |
-#&gt; |.....................|     8.017 |     1.885 |    0.6528 |    0.7314 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.521 |     1.251 |     1.388 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   51</span>|     480.00362 |    0.9987 |    -1.569 |   -0.9113 |   -0.8938 |
-#&gt; |.....................|   -0.8484 |   -0.5757 |    -1.011 |    -1.026 |
-#&gt; |.....................|   -0.5851 |   -0.7175 |   -0.6392 |...........|
-#&gt; |    U|     480.00362 |     94.09 |    -5.984 |   -0.9966 |   -0.2030 |
-#&gt; |.....................|     2.099 |     1.880 |    0.6585 |    0.7346 |
-#&gt; |.....................|     1.528 |     1.254 |     1.406 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     480.00362</span> |     94.09 |  0.002519 |    0.2696 |    0.8163 |
-#&gt; |.....................|     8.160 |     1.880 |    0.6585 |    0.7346 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.528 |     1.254 |     1.406 |...........|</span>
-#&gt; |    F| Forward Diff. |    -11.27 |  -0.06004 |    0.2734 | -0.003181 |
-#&gt; |.....................|   -0.1459 |    -1.804 |   -0.6958 |    0.2356 |
-#&gt; <span style='text-decoration: underline;'>|.....................|  -0.08489 |   -0.1057 |   -0.1437 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   52</span>|     479.99564 |     1.000 |    -1.563 |   -0.9133 |   -0.8943 |
-#&gt; |.....................|   -0.8490 |   -0.5744 |    -1.010 |    -1.027 |
-#&gt; |.....................|   -0.5870 |   -0.7192 |   -0.6381 |...........|
-#&gt; |    U|     479.99564 |     94.21 |    -5.979 |   -0.9986 |   -0.2035 |
-#&gt; |.....................|     2.099 |     1.881 |    0.6592 |    0.7342 |
-#&gt; |.....................|     1.526 |     1.252 |     1.407 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99564</span> |     94.21 |  0.002532 |    0.2692 |    0.8159 |
-#&gt; |.....................|     8.155 |     1.881 |    0.6592 |    0.7342 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.526 |     1.252 |     1.407 |...........|</span>
-#&gt; |    F| Forward Diff. |     5.442 |  -0.04353 |    0.2015 | -0.005586 |
-#&gt; |.....................|   -0.1078 |    -1.130 |   -0.4765 |   -0.6210 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   0.09560 |   0.04932 |    0.1423 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   53</span>|     479.99256 |    0.9995 |    -1.560 |   -0.9178 |   -0.8945 |
-#&gt; |.....................|   -0.8473 |   -0.5732 |    -1.008 |    -1.026 |
-#&gt; |.....................|   -0.5881 |   -0.7196 |   -0.6366 |...........|
-#&gt; |    U|     479.99256 |     94.16 |    -5.975 |    -1.003 |   -0.2037 |
-#&gt; |.....................|     2.100 |     1.882 |    0.6609 |    0.7344 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99256</span> |     94.16 |  0.002541 |    0.2683 |    0.8157 |
-#&gt; |.....................|     8.169 |     1.882 |    0.6609 |    0.7344 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |    F| Forward Diff. |    -1.663 |  -0.03616 |  -0.04918 |  -0.01811 |
-#&gt; |.....................|  -0.07323 |    -1.616 |   -0.5475 |   -0.9126 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.2713 |   -0.2260 |  -0.04317 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   54</span>|     479.99337 |    0.9995 |    -1.558 |   -0.9178 |   -0.8940 |
-#&gt; |.....................|   -0.8453 |   -0.5718 |    -1.004 |    -1.025 |
-#&gt; |.....................|   -0.5887 |   -0.7198 |   -0.6325 |...........|
-#&gt; |    U|     479.99337 |     94.16 |    -5.974 |    -1.003 |   -0.2032 |
-#&gt; |.....................|     2.102 |     1.883 |    0.6641 |    0.7358 |
-#&gt; |.....................|     1.524 |     1.251 |     1.413 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99337</span> |     94.16 |  0.002545 |    0.2683 |    0.8161 |
-#&gt; |.....................|     8.185 |     1.883 |    0.6641 |    0.7358 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.524 |     1.251 |     1.413 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   55</span>|     479.99257 |    0.9996 |    -1.559 |   -0.9178 |   -0.8942 |
-#&gt; |.....................|   -0.8464 |   -0.5725 |    -1.006 |    -1.026 |
-#&gt; |.....................|   -0.5884 |   -0.7197 |   -0.6348 |...........|
-#&gt; |    U|     479.99257 |     94.17 |    -5.975 |    -1.003 |   -0.2035 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6623 |    0.7351 |
-#&gt; |.....................|     1.525 |     1.252 |     1.411 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99257</span> |     94.17 |  0.002543 |    0.2683 |    0.8159 |
-#&gt; |.....................|     8.175 |     1.883 |    0.6623 |    0.7351 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.411 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   56</span>|     479.99255 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99255 |     94.18 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99255</span> |     94.18 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |    C| Central Diff. |     1.014 |  -0.03924 |  -0.07311 |  -0.03520 |
-#&gt; |.....................|  -0.07193 |    -1.047 |   -0.3482 |   -0.6653 |
-#&gt; <span style='text-decoration: underline;'>|.....................| -0.001386 |  0.002313 |  -0.01832 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   57</span>|     479.99382 |    0.9993 |    -1.559 |   -0.9177 |   -0.8943 |
-#&gt; |.....................|   -0.8469 |   -0.5723 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99382 |     94.14 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6617 |    0.7350 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99382</span> |     94.14 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6617 |    0.7350 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   58</span>|     479.99260 |    0.9996 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5726 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|      479.9926 |     94.17 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>      479.9926</span> |     94.17 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   59</span>|     479.99255 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99255 |     94.17 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99255</span> |     94.17 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   60</span>|     479.99254 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99254 |     94.18 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99254</span> |     94.18 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |    C| Central Diff. |    0.7083 |  -0.03937 |  -0.07377 |  -0.03537 |
-#&gt; |.....................|  -0.07427 |    -1.038 |   -0.3482 |   -0.6698 |
-#&gt; <span style='text-decoration: underline;'>|.....................| -0.009774 |   0.01032 |  -0.01719 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   61</span>|     479.99255 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99255 |     94.18 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99255</span> |     94.18 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   62</span>|     479.99264 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99264 |     94.18 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99264</span> |     94.18 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   63</span>|     479.99259 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99259 |     94.18 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99259</span> |     94.18 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   64</span>|     479.99259 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99259 |     94.18 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99259</span> |     94.18 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   65</span>|     479.99259 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99259 |     94.18 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99259</span> |     94.18 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   66</span>|     479.99259 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99259 |     94.18 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99259</span> |     94.18 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   67</span>|     479.99259 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99259 |     94.18 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99259</span> |     94.18 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   68</span>|     479.99259 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99259 |     94.18 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99259</span> |     94.18 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   69</span>|     479.99258 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99258 |     94.18 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99258</span> |     94.18 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   70</span>|     479.99258 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99258 |     94.18 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99258</span> |     94.18 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; |<span style='font-weight: bold;'>   71</span>|     479.99258 |    0.9997 |    -1.559 |   -0.9178 |   -0.8944 |
-#&gt; |.....................|   -0.8469 |   -0.5727 |    -1.007 |    -1.026 |
-#&gt; |.....................|   -0.5882 |   -0.7196 |   -0.6358 |...........|
-#&gt; |    U|     479.99258 |     94.18 |    -5.975 |    -1.003 |   -0.2036 |
-#&gt; |.....................|     2.101 |     1.883 |    0.6616 |    0.7348 |
-#&gt; |.....................|     1.525 |     1.252 |     1.409 |...........|
-#&gt; |    X|<span style='font-weight: bold;'>     479.99258</span> |     94.18 |  0.002542 |    0.2683 |    0.8158 |
-#&gt; |.....................|     8.172 |     1.883 |    0.6616 |    0.7348 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.525 |     1.252 |     1.409 |...........|</span>
-#&gt; calculating covariance matrix
-#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
-#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#&gt; F: Forward difference gradient approximation
-#&gt; C: Central difference gradient approximation
-#&gt; M: Mixed forward and central difference gradient approximation
-#&gt; Unscaled parameters for Omegas=chol(solve(omega));
-#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
-#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
-#&gt; |    #| Objective Fun |  parent_0 |  log_k_A1 |f_parent_qlogis |    log_k1 |
-#&gt; |.....................|    log_k2 |  g_qlogis |     sigma |        o1 |
-#&gt; |.....................|        o2 |        o3 |        o4 |        o5 |
-#&gt; <span style='text-decoration: underline;'>|.....................|        o6 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    1</span>|     514.27068 |     1.000 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8584 |   -0.8769 |
-#&gt; |.....................|   -0.8742 |   -0.8678 |   -0.8716 |   -0.8736 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8683 |...........|...........|...........|</span>
-#&gt; |    U|     514.27068 |     93.81 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     514.27068</span> |     93.81 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    G|    Gill Diff. |     26.19 |     1.724 |   -0.1273 |   0.01210 |
-#&gt; |.....................|   -0.2599 |   0.04964 |    -46.10 |     17.02 |
-#&gt; |.....................|     9.682 |    -11.00 |    -4.182 |     3.869 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -10.57 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    2</span>|     1072.3430 |    0.5548 |    -1.029 |   -0.9091 |   -0.9298 |
-#&gt; |.....................|   -0.9733 |   -0.8898 |  -0.07504 |    -1.166 |
-#&gt; |.....................|    -1.039 |   -0.6809 |   -0.8005 |   -0.9394 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6887 |...........|...........|...........|</span>
-#&gt; |    U|      1072.343 |     52.05 |    -5.403 |   -0.9690 |    -1.880 |
-#&gt; |.....................|    -4.266 |    0.1355 |     2.292 |    0.5199 |
-#&gt; |.....................|    0.7209 |     1.403 |     1.065 |    0.8339 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.368 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      1072.343</span> |     52.05 |  0.004504 |    0.2751 |    0.1526 |
-#&gt; |.....................|   0.01403 |    0.5338 |     2.292 |    0.5199 |
-#&gt; |.....................|    0.7209 |     1.403 |     1.065 |    0.8339 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.368 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    3</span>|     539.25377 |    0.9555 |    -1.003 |   -0.9110 |   -0.9296 |
-#&gt; |.....................|   -0.9773 |   -0.8890 |   -0.7801 |   -0.9058 |
-#&gt; |.....................|   -0.8907 |   -0.8491 |   -0.8645 |   -0.8802 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8503 |...........|...........|...........|</span>
-#&gt; |    U|     539.25377 |     89.63 |    -5.376 |   -0.9709 |    -1.880 |
-#&gt; |.....................|    -4.270 |    0.1356 |     1.712 |    0.7103 |
-#&gt; |.....................|    0.8487 |     1.204 |     1.001 |    0.8867 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.181 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     539.25377</span> |     89.63 |  0.004625 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01398 |    0.5339 |     1.712 |    0.7103 |
-#&gt; |.....................|    0.8487 |     1.204 |     1.001 |    0.8867 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.181 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    4</span>|     527.20532 |    0.9955 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9777 |   -0.8889 |   -0.8506 |   -0.8798 |
-#&gt; |.....................|   -0.8759 |   -0.8659 |   -0.8709 |   -0.8743 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8665 |...........|...........|...........|</span>
-#&gt; |    U|     527.20532 |     93.39 |    -5.374 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.654 |    0.7293 |
-#&gt; |.....................|    0.8615 |     1.184 |    0.9947 |    0.8920 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.162 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     527.20532</span> |     93.39 |  0.004637 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.654 |    0.7293 |
-#&gt; |.....................|    0.8615 |     1.184 |    0.9947 |    0.8920 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.162 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    5</span>|     527.55150 |    0.9996 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8576 |   -0.8772 |
-#&gt; |.....................|   -0.8744 |   -0.8676 |   -0.8715 |   -0.8737 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8681 |...........|...........|...........|</span>
-#&gt; |    U|      527.5515 |     93.77 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.648 |    0.7312 |
-#&gt; |.....................|    0.8628 |     1.182 |    0.9941 |    0.8925 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      527.5515</span> |     93.77 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.648 |    0.7312 |
-#&gt; |.....................|    0.8628 |     1.182 |    0.9941 |    0.8925 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    6</span>|     527.60332 |     1.000 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8584 |   -0.8769 |
-#&gt; |.....................|   -0.8743 |   -0.8678 |   -0.8716 |   -0.8737 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8682 |...........|...........|...........|</span>
-#&gt; |    U|     527.60332 |     93.81 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     527.60332</span> |     93.81 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    7</span>|     527.60868 |     1.000 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8584 |   -0.8769 |
-#&gt; |.....................|   -0.8742 |   -0.8678 |   -0.8716 |   -0.8736 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8683 |...........|...........|...........|</span>
-#&gt; |    U|     527.60868 |     93.81 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     527.60868</span> |     93.81 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    8</span>|     527.60932 |     1.000 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8584 |   -0.8769 |
-#&gt; |.....................|   -0.8742 |   -0.8678 |   -0.8716 |   -0.8736 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8683 |...........|...........|...........|</span>
-#&gt; |    U|     527.60932 |     93.81 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     527.60932</span> |     93.81 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    9</span>|     527.60939 |     1.000 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8584 |   -0.8769 |
-#&gt; |.....................|   -0.8742 |   -0.8678 |   -0.8716 |   -0.8736 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8683 |...........|...........|...........|</span>
-#&gt; |    U|     527.60939 |     93.81 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     527.60939</span> |     93.81 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   10</span>|     527.60940 |     1.000 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8584 |   -0.8769 |
-#&gt; |.....................|   -0.8742 |   -0.8678 |   -0.8716 |   -0.8736 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8683 |...........|...........|...........|</span>
-#&gt; |    U|      527.6094 |     93.81 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      527.6094</span> |     93.81 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   11</span>|     527.60940 |     1.000 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8584 |   -0.8769 |
-#&gt; |.....................|   -0.8742 |   -0.8678 |   -0.8716 |   -0.8736 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8683 |...........|...........|...........|</span>
-#&gt; |    U|      527.6094 |     93.81 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      527.6094</span> |     93.81 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   12</span>|     527.60940 |     1.000 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8584 |   -0.8769 |
-#&gt; |.....................|   -0.8742 |   -0.8678 |   -0.8716 |   -0.8736 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8683 |...........|...........|...........|</span>
-#&gt; |    U|      527.6094 |     93.81 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      527.6094</span> |     93.81 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   13</span>|     527.60941 |     1.000 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8584 |   -0.8769 |
-#&gt; |.....................|   -0.8742 |   -0.8678 |   -0.8716 |   -0.8736 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8683 |...........|...........|...........|</span>
-#&gt; |    U|     527.60941 |     93.81 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     527.60941</span> |     93.81 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   14</span>|     527.60941 |     1.000 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8584 |   -0.8769 |
-#&gt; |.....................|   -0.8742 |   -0.8678 |   -0.8716 |   -0.8736 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8683 |...........|...........|...........|</span>
-#&gt; |    U|     527.60941 |     93.81 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     527.60941</span> |     93.81 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   15</span>|     527.60941 |     1.000 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8584 |   -0.8769 |
-#&gt; |.....................|   -0.8742 |   -0.8678 |   -0.8716 |   -0.8736 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8683 |...........|...........|...........|</span>
-#&gt; |    U|     527.60941 |     93.81 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     527.60941</span> |     93.81 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   16</span>|     527.60941 |     1.000 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8584 |   -0.8769 |
-#&gt; |.....................|   -0.8742 |   -0.8678 |   -0.8716 |   -0.8736 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8683 |...........|...........|...........|</span>
-#&gt; |    U|     527.60941 |     93.81 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     527.60941</span> |     93.81 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   17</span>|     527.60941 |     1.000 |    -1.000 |   -0.9112 |   -0.9296 |
-#&gt; |.....................|   -0.9778 |   -0.8889 |   -0.8584 |   -0.8769 |
-#&gt; |.....................|   -0.8742 |   -0.8678 |   -0.8716 |   -0.8736 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8683 |...........|...........|...........|</span>
-#&gt; |    U|     527.60941 |     93.81 |    -5.373 |   -0.9711 |    -1.880 |
-#&gt; |.....................|    -4.271 |    0.1356 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     527.60941</span> |     93.81 |  0.004638 |    0.2747 |    0.1526 |
-#&gt; |.....................|   0.01397 |    0.5339 |     1.647 |    0.7314 |
-#&gt; |.....................|    0.8629 |     1.182 |    0.9940 |    0.8926 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |...........|...........|...........|</span>
-#&gt; calculating covariance matrix
-#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
+#&gt; <span class='message'>cmt(A1);</span>
+#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
+#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
+#&gt; <span class='message'>rx_expr_7~ETA[2]+THETA[2];</span>
+#&gt; <span class='message'>rx_expr_10~exp(rx_expr_7);</span>
+#&gt; <span class='message'>d/dt(parent)=-rx_expr_10*parent;</span>
+#&gt; <span class='message'>rx_expr_8~ETA[3]+THETA[3];</span>
+#&gt; <span class='message'>rx_expr_11~exp(rx_expr_8);</span>
+#&gt; <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_10*parent*f_parent_to_A1;</span>
+#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
+#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
+#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
+#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_13~rx_expr_5*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_lambda_~rx_expr_13+rx_expr_3;</span>
+#&gt; <span class='message'>rx_hi_~rx_expr_13+rx_expr_3;</span>
+#&gt; <span class='message'>rx_low_~0;</span>
+#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_9~parent*(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_14~rx_expr_9*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_14)*(rx_expr_0)+(rx_expr_4+rx_expr_14)*(rx_expr_2)*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_expr_12~Rx_pow_di(THETA[5],2);</span>
+#&gt; <span class='message'>rx_r_=(rx_expr_0)*rx_expr_12+(rx_expr_2)*(rx_expr_1)*rx_expr_12;</span>
+#&gt; <span class='message'>parent_0=THETA[1];</span>
+#&gt; <span class='message'>log_k_parent=THETA[2];</span>
+#&gt; <span class='message'>log_k_A1=THETA[3];</span>
+#&gt; <span class='message'>f_parent_qlogis=THETA[4];</span>
+#&gt; <span class='message'>sigma=THETA[5];</span>
+#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
+#&gt; <span class='message'>eta.log_k_parent=ETA[2];</span>
+#&gt; <span class='message'>eta.log_k_A1=ETA[3];</span>
+#&gt; <span class='message'>eta.f_parent_qlogis=ETA[4];</span>
+#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
+#&gt; <span class='message'>k_parent=rx_expr_10;</span>
+#&gt; <span class='message'>k_A1=rx_expr_11;</span>
+#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[4]+THETA[4])));</span>
+#&gt; <span class='message'>tad=tad();</span>
+#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt &lt;- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control &lt;- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret &lt;- new.env(parent = emptyenv())    }    else {        .ret &lt;- env    }    .ret$origData &lt;- data    .ret$etaNames &lt;- etaNames    .ret$thetaFixed &lt;- fixed    .ret$control &lt;- control    .ret$control$focei.mu.ref &lt;- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel &lt;- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel &lt;- TRUE        model &lt;- RxODE::rxGetLin(PKpars)        pred &lt;- eval(parse(text = "function(){return(Central);}"))    }    .square &lt;- function(x) x * x    .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames &lt;- .parNames &lt;- c()    .ret$adjLik &lt;- control$adjLik    .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0    if (!exists("noLik", envir = .ret)) {        .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol &lt;- .atol            .ret$control$rxControl$rtol &lt;- .rtol            .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol &lt;- .ssAtol            .ret$control$rxControl$ssRtol &lt;- .ssRtol        }        .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)        .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) &lt;- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) &gt; 0) {            .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) &gt; 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars &lt;- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol &lt;- .atol                .ret$control$rxControl$rtol &lt;- .rtol            }            .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)            .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) &lt;- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) &gt; 0) {                .covNames &lt;- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) &gt; 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars &lt;- .ret$model$extra.pars        }        else {            .extraPars &lt;- NULL        }    }    .ret$skipCov &lt;- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp &lt;- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) &lt; length(inits$THTA)) {                .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp &lt;- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr &lt;- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp &lt;- (.tmp | .uifErr)        }        .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms &lt;- thetaNames    }    .ret$thetaNames &lt;- .nms    .thetaReset$thetaNames &lt;- .nms    if (length(lower) == 1) {        lower &lt;- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper &lt;- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars &lt;- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) &gt; 0) {            inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars)            .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars))            lower &lt;- c(lower, .lowerErr)            upper &lt;- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID &lt;- 0    if (is.null(data$AMT))         data$AMT &lt;- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] &lt;- as.double(data[[.v]])    }    .ret$dataSav &lt;- data    .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w &lt;- which(tolower(names(data)) == "limit")    .limitName &lt;- NULL    if (length(.w) == 1L) {        .limitName &lt;- names(data)[.w]    }    .censName &lt;- NULL    .w &lt;- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName &lt;- names(data[.w])    }    data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh &lt;- .parseOM(inits$OMGA)        .nlh &lt;- sapply(.lh, length)        .osplt &lt;- rep(1:length(.lh), .nlh)        .lini &lt;- list(inits$THTA, unlist(.lh))        .nlini &lt;- sapply(.lini, length)        .nsplt &lt;- rep(1:length(.lini), .nlini)        .om0 &lt;- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames &lt;- .ret$etaNames        }        else {            .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType &lt;- .ret$rxInv$xType        .om0a &lt;- .om0        .om0a &lt;- .om0a/control$diagOmegaBoundLower        .om0b &lt;- .om0        .om0b &lt;- .om0b * control$diagOmegaBoundUpper        .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a))        .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a))        .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega &lt;- length(.omdf$lower)        .ret$control$neta &lt;- sum(.omdf$diag)        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)        lower &lt;- c(lower, .omdf$lower)        upper &lt;- c(upper, .omdf$upper)    }    else {        .ret$control$nomega &lt;- 0        .ret$control$neta &lt;- 0        .ret$xType &lt;- -1        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)    }    .ret$lower &lt;- lower    .ret$upper &lt;- upper    .ret$thetaIni &lt;- inits$THTA    .scaleC &lt;- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC &lt;- rep(NA_real_, length(lower))    }    else {        .scaleC &lt;- as.double(control$scaleC)        if (length(lower) &gt; length(.scaleC)) {            .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) &lt; length(.scaleC)) {            .scaleC &lt;- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC &lt;- .scaleC    if (exists("uif", envir = .ret)) {        .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- 1        }        .ini &lt;- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b &lt;- .ret$logitThetasLow[.i]            .c &lt;- .ret$logitThetasHi[.i]            .a &lt;- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) &amp; !is.null(control$etaMat)) {        .ret$etaMat &lt;- control$etaMat    }    else {        .ret$etaMat &lt;- etaMat    }    .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp &lt;- .ret$uif$logThetasList        .ret$logThetas &lt;- .tmp[[1]]        .ret$logThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasList        .ret$logitThetas &lt;- .tmp[[1]]        .ret$logitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListLow        .ret$logitThetasLow &lt;- .tmp[[1]]        .ret$logitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListHi        .ret$logitThetasHi &lt;- .tmp[[1]]        .ret$logitThetasHiF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasList        .ret$probitThetas &lt;- .tmp[[1]]        .ret$probitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListLow        .ret$probitThetasLow &lt;- .tmp[[1]]        .ret$probitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListHi        .ret$probitThetasHi &lt;- .tmp[[1]]        .ret$probitThetasHiF &lt;- .tmp[[2]]    }    else {        .ret$logThetasF &lt;- integer(0)        .ret$logitThetasF &lt;- integer(0)        .ret$logitThetasHiF &lt;- numeric(0)        .ret$logitThetasLowF &lt;- numeric(0)        .ret$logitThetas &lt;- integer(0)        .ret$logitThetasHi &lt;- numeric(0)        .ret$logitThetasLow &lt;- numeric(0)        .ret$probitThetasF &lt;- integer(0)        .ret$probitThetasHiF &lt;- numeric(0)        .ret$probitThetasLowF &lt;- numeric(0)        .ret$probitThetas &lt;- integer(0)        .ret$probitThetasHi &lt;- numeric(0)        .ret$probitThetasLow &lt;- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan &lt;- length(.ret$thetaIni)            .ret$nobs &lt;- sum(data$EVID == 0)        }    }    .ret$control$printTop &lt;- TRUE    .ret$control$nF &lt;- 0    .est0 &lt;- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq &lt;- 0L    }    .fitFun &lt;- function(.ret) {        this.env &lt;- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 &lt;- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm &lt;- names(.ret$thetaIni)                .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta &lt;- .thetaReset$omegaTheta                .ret$control$printTop &lt;- FALSE                .ret$etaMat &lt;- .thetaReset$etaMat                .ret$control$etaMat &lt;- .thetaReset$etaMat                .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations                .ret$control$nF &lt;- .thetaReset$nF                .ret$control$gillRetC &lt;- .thetaReset$gillRetC                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillDf &lt;- .thetaReset$gillDf                .ret$control$gillDf2 &lt;- .thetaReset$gillDf2                .ret$control$gillErr &lt;- .thetaReset$gillErr                .ret$control$rEps &lt;- .thetaReset$rEps                .ret$control$aEps &lt;- .thetaReset$aEps                .ret$control$rEpsC &lt;- .thetaReset$rEpsC                .ret$control$aEpsC &lt;- .thetaReset$aEpsC                .ret$control$c1 &lt;- .thetaReset$c1                .ret$control$c2 &lt;- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations &lt;- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun &lt;- .bobyqa                  .ret$control$outerOpt &lt;- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 &lt;- try(.fitFun(.ret))    .n &lt;- 1    while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations !=         0 &amp;&amp; .n &lt;= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF &lt;- 0        .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew &lt;- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] &lt; lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] &gt; upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni &lt;- .estNew        .ret0 &lt;- try(.fitFun(.ret))        .n &lt;- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret &lt;- .ret0    if (exists("parHistData", .ret)) {        .tmp &lt;- .ret$parHistData        .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter &lt;- .tmp$iter        .tmp &lt;- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) &lt;- c("val", "par", "iter")        .ret$parHist &lt;- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas &lt;- .ret$ranef        .thetas &lt;- .ret$fixef        .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table &lt;- tableControl()    }    if (control$calcTables) {        .ret &lt;- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 5.607 0.474 6.078</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
+#&gt; <span class='message'>cmt(A1);</span>
+#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
+#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
+#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
+#&gt; <span class='message'>rx_expr_8~ETA[5]+THETA[5];</span>
+#&gt; <span class='message'>rx_expr_13~exp(-(rx_expr_8));</span>
+#&gt; <span class='message'>rx_expr_15~t*rx_expr_13;</span>
+#&gt; <span class='message'>rx_expr_16~1+rx_expr_15;</span>
+#&gt; <span class='message'>rx_expr_18~rx_expr_7-(rx_expr_8);</span>
+#&gt; <span class='message'>rx_expr_20~exp(rx_expr_18);</span>
+#&gt; <span class='message'>d/dt(parent)=-rx_expr_20*parent/(rx_expr_16);</span>
+#&gt; <span class='message'>rx_expr_9~ETA[2]+THETA[2];</span>
+#&gt; <span class='message'>rx_expr_11~exp(rx_expr_9);</span>
+#&gt; <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_20*parent*f_parent_to_A1/(rx_expr_16);</span>
+#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
+#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
+#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
+#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_14~rx_expr_5*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_lambda_~rx_expr_14+rx_expr_3;</span>
+#&gt; <span class='message'>rx_hi_~rx_expr_14+rx_expr_3;</span>
+#&gt; <span class='message'>rx_low_~0;</span>
+#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_10~parent*(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_17~rx_expr_10*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_17)*(rx_expr_0)+(rx_expr_4+rx_expr_17)*(rx_expr_2)*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_expr_12~Rx_pow_di(THETA[6],2);</span>
+#&gt; <span class='message'>rx_r_=(rx_expr_0)*rx_expr_12+(rx_expr_2)*(rx_expr_1)*rx_expr_12;</span>
+#&gt; <span class='message'>parent_0=THETA[1];</span>
+#&gt; <span class='message'>log_k_A1=THETA[2];</span>
+#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
+#&gt; <span class='message'>log_alpha=THETA[4];</span>
+#&gt; <span class='message'>log_beta=THETA[5];</span>
+#&gt; <span class='message'>sigma=THETA[6];</span>
+#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
+#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
+#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
+#&gt; <span class='message'>eta.log_alpha=ETA[4];</span>
+#&gt; <span class='message'>eta.log_beta=ETA[5];</span>
+#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
+#&gt; <span class='message'>k_A1=rx_expr_11;</span>
+#&gt; <span class='message'>alpha=exp(rx_expr_7);</span>
+#&gt; <span class='message'>beta=exp(rx_expr_8);</span>
+#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
+#&gt; <span class='message'>tad=tad();</span>
+#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt &lt;- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control &lt;- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret &lt;- new.env(parent = emptyenv())    }    else {        .ret &lt;- env    }    .ret$origData &lt;- data    .ret$etaNames &lt;- etaNames    .ret$thetaFixed &lt;- fixed    .ret$control &lt;- control    .ret$control$focei.mu.ref &lt;- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel &lt;- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel &lt;- TRUE        model &lt;- RxODE::rxGetLin(PKpars)        pred &lt;- eval(parse(text = "function(){return(Central);}"))    }    .square &lt;- function(x) x * x    .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames &lt;- .parNames &lt;- c()    .ret$adjLik &lt;- control$adjLik    .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0    if (!exists("noLik", envir = .ret)) {        .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol &lt;- .atol            .ret$control$rxControl$rtol &lt;- .rtol            .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol &lt;- .ssAtol            .ret$control$rxControl$ssRtol &lt;- .ssRtol        }        .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)        .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) &lt;- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) &gt; 0) {            .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) &gt; 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars &lt;- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol &lt;- .atol                .ret$control$rxControl$rtol &lt;- .rtol            }            .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)            .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) &lt;- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) &gt; 0) {                .covNames &lt;- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) &gt; 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars &lt;- .ret$model$extra.pars        }        else {            .extraPars &lt;- NULL        }    }    .ret$skipCov &lt;- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp &lt;- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) &lt; length(inits$THTA)) {                .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp &lt;- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr &lt;- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp &lt;- (.tmp | .uifErr)        }        .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms &lt;- thetaNames    }    .ret$thetaNames &lt;- .nms    .thetaReset$thetaNames &lt;- .nms    if (length(lower) == 1) {        lower &lt;- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper &lt;- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars &lt;- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) &gt; 0) {            inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars)            .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars))            lower &lt;- c(lower, .lowerErr)            upper &lt;- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID &lt;- 0    if (is.null(data$AMT))         data$AMT &lt;- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] &lt;- as.double(data[[.v]])    }    .ret$dataSav &lt;- data    .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w &lt;- which(tolower(names(data)) == "limit")    .limitName &lt;- NULL    if (length(.w) == 1L) {        .limitName &lt;- names(data)[.w]    }    .censName &lt;- NULL    .w &lt;- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName &lt;- names(data[.w])    }    data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh &lt;- .parseOM(inits$OMGA)        .nlh &lt;- sapply(.lh, length)        .osplt &lt;- rep(1:length(.lh), .nlh)        .lini &lt;- list(inits$THTA, unlist(.lh))        .nlini &lt;- sapply(.lini, length)        .nsplt &lt;- rep(1:length(.lini), .nlini)        .om0 &lt;- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames &lt;- .ret$etaNames        }        else {            .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType &lt;- .ret$rxInv$xType        .om0a &lt;- .om0        .om0a &lt;- .om0a/control$diagOmegaBoundLower        .om0b &lt;- .om0        .om0b &lt;- .om0b * control$diagOmegaBoundUpper        .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a))        .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a))        .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega &lt;- length(.omdf$lower)        .ret$control$neta &lt;- sum(.omdf$diag)        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)        lower &lt;- c(lower, .omdf$lower)        upper &lt;- c(upper, .omdf$upper)    }    else {        .ret$control$nomega &lt;- 0        .ret$control$neta &lt;- 0        .ret$xType &lt;- -1        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)    }    .ret$lower &lt;- lower    .ret$upper &lt;- upper    .ret$thetaIni &lt;- inits$THTA    .scaleC &lt;- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC &lt;- rep(NA_real_, length(lower))    }    else {        .scaleC &lt;- as.double(control$scaleC)        if (length(lower) &gt; length(.scaleC)) {            .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) &lt; length(.scaleC)) {            .scaleC &lt;- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC &lt;- .scaleC    if (exists("uif", envir = .ret)) {        .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- 1        }        .ini &lt;- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b &lt;- .ret$logitThetasLow[.i]            .c &lt;- .ret$logitThetasHi[.i]            .a &lt;- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) &amp; !is.null(control$etaMat)) {        .ret$etaMat &lt;- control$etaMat    }    else {        .ret$etaMat &lt;- etaMat    }    .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp &lt;- .ret$uif$logThetasList        .ret$logThetas &lt;- .tmp[[1]]        .ret$logThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasList        .ret$logitThetas &lt;- .tmp[[1]]        .ret$logitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListLow        .ret$logitThetasLow &lt;- .tmp[[1]]        .ret$logitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListHi        .ret$logitThetasHi &lt;- .tmp[[1]]        .ret$logitThetasHiF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasList        .ret$probitThetas &lt;- .tmp[[1]]        .ret$probitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListLow        .ret$probitThetasLow &lt;- .tmp[[1]]        .ret$probitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListHi        .ret$probitThetasHi &lt;- .tmp[[1]]        .ret$probitThetasHiF &lt;- .tmp[[2]]    }    else {        .ret$logThetasF &lt;- integer(0)        .ret$logitThetasF &lt;- integer(0)        .ret$logitThetasHiF &lt;- numeric(0)        .ret$logitThetasLowF &lt;- numeric(0)        .ret$logitThetas &lt;- integer(0)        .ret$logitThetasHi &lt;- numeric(0)        .ret$logitThetasLow &lt;- numeric(0)        .ret$probitThetasF &lt;- integer(0)        .ret$probitThetasHiF &lt;- numeric(0)        .ret$probitThetasLowF &lt;- numeric(0)        .ret$probitThetas &lt;- integer(0)        .ret$probitThetasHi &lt;- numeric(0)        .ret$probitThetasLow &lt;- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan &lt;- length(.ret$thetaIni)            .ret$nobs &lt;- sum(data$EVID == 0)        }    }    .ret$control$printTop &lt;- TRUE    .ret$control$nF &lt;- 0    .est0 &lt;- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq &lt;- 0L    }    .fitFun &lt;- function(.ret) {        this.env &lt;- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 &lt;- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm &lt;- names(.ret$thetaIni)                .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta &lt;- .thetaReset$omegaTheta                .ret$control$printTop &lt;- FALSE                .ret$etaMat &lt;- .thetaReset$etaMat                .ret$control$etaMat &lt;- .thetaReset$etaMat                .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations                .ret$control$nF &lt;- .thetaReset$nF                .ret$control$gillRetC &lt;- .thetaReset$gillRetC                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillDf &lt;- .thetaReset$gillDf                .ret$control$gillDf2 &lt;- .thetaReset$gillDf2                .ret$control$gillErr &lt;- .thetaReset$gillErr                .ret$control$rEps &lt;- .thetaReset$rEps                .ret$control$aEps &lt;- .thetaReset$aEps                .ret$control$rEpsC &lt;- .thetaReset$rEpsC                .ret$control$aEpsC &lt;- .thetaReset$aEpsC                .ret$control$c1 &lt;- .thetaReset$c1                .ret$control$c2 &lt;- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations &lt;- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun &lt;- .bobyqa                  .ret$control$outerOpt &lt;- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 &lt;- try(.fitFun(.ret))    .n &lt;- 1    while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations !=         0 &amp;&amp; .n &lt;= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF &lt;- 0        .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew &lt;- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] &lt; lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] &gt; upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni &lt;- .estNew        .ret0 &lt;- try(.fitFun(.ret))        .n &lt;- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret &lt;- .ret0    if (exists("parHistData", .ret)) {        .tmp &lt;- .ret$parHistData        .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter &lt;- .tmp$iter        .tmp &lt;- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) &lt;- c("val", "par", "iter")        .ret$parHist &lt;- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas &lt;- .ret$ranef        .thetas &lt;- .ret$fixef        .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table &lt;- tableControl()    }    if (control$calcTables) {        .ret &lt;- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 6.853 0.393 7.242</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_const</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_const</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
+#&gt; <span class='message'>cmt(A1);</span>
+#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
+#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
+#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
+#&gt; <span class='message'>rx_expr_8~ETA[6]+THETA[6];</span>
+#&gt; <span class='message'>rx_expr_9~ETA[5]+THETA[5];</span>
+#&gt; <span class='message'>rx_expr_12~exp(rx_expr_7);</span>
+#&gt; <span class='message'>rx_expr_13~exp(rx_expr_9);</span>
+#&gt; <span class='message'>rx_expr_15~t*rx_expr_12;</span>
+#&gt; <span class='message'>rx_expr_16~t*rx_expr_13;</span>
+#&gt; <span class='message'>rx_expr_18~exp(-(rx_expr_8));</span>
+#&gt; <span class='message'>rx_expr_20~1+rx_expr_18;</span>
+#&gt; <span class='message'>rx_expr_25~1/(rx_expr_20);</span>
+#&gt; <span class='message'>rx_expr_27~(rx_expr_25);</span>
+#&gt; <span class='message'>rx_expr_28~1-rx_expr_27;</span>
+#&gt; <span class='message'>d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_20)+exp(rx_expr_9-rx_expr_16)*(rx_expr_28))/(exp(-t*rx_expr_12)/(rx_expr_20)+exp(-t*rx_expr_13)*(rx_expr_28));</span>
+#&gt; <span class='message'>rx_expr_10~ETA[2]+THETA[2];</span>
+#&gt; <span class='message'>rx_expr_14~exp(rx_expr_10);</span>
+#&gt; <span class='message'>d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_20)+exp(rx_expr_9-rx_expr_16)*(rx_expr_28))/(exp(-t*rx_expr_12)/(rx_expr_20)+exp(-t*rx_expr_13)*(rx_expr_28));</span>
+#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
+#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
+#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
+#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_19~rx_expr_5*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_lambda_~rx_expr_19+rx_expr_3;</span>
+#&gt; <span class='message'>rx_hi_~rx_expr_19+rx_expr_3;</span>
+#&gt; <span class='message'>rx_low_~0;</span>
+#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_11~parent*(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_23~rx_expr_11*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_23)*(rx_expr_0)+(rx_expr_4+rx_expr_23)*(rx_expr_2)*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_expr_17~Rx_pow_di(THETA[7],2);</span>
+#&gt; <span class='message'>rx_r_=(rx_expr_0)*rx_expr_17+(rx_expr_2)*(rx_expr_1)*rx_expr_17;</span>
+#&gt; <span class='message'>parent_0=THETA[1];</span>
+#&gt; <span class='message'>log_k_A1=THETA[2];</span>
+#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
+#&gt; <span class='message'>log_k1=THETA[4];</span>
+#&gt; <span class='message'>log_k2=THETA[5];</span>
+#&gt; <span class='message'>g_qlogis=THETA[6];</span>
+#&gt; <span class='message'>sigma=THETA[7];</span>
+#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
+#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
+#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
+#&gt; <span class='message'>eta.log_k1=ETA[4];</span>
+#&gt; <span class='message'>eta.log_k2=ETA[5];</span>
+#&gt; <span class='message'>eta.g_qlogis=ETA[6];</span>
+#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
+#&gt; <span class='message'>k_A1=rx_expr_14;</span>
+#&gt; <span class='message'>k1=rx_expr_12;</span>
+#&gt; <span class='message'>k2=rx_expr_13;</span>
+#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
+#&gt; <span class='message'>g=1/(rx_expr_20);</span>
+#&gt; <span class='message'>tad=tad();</span>
+#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt &lt;- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control &lt;- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret &lt;- new.env(parent = emptyenv())    }    else {        .ret &lt;- env    }    .ret$origData &lt;- data    .ret$etaNames &lt;- etaNames    .ret$thetaFixed &lt;- fixed    .ret$control &lt;- control    .ret$control$focei.mu.ref &lt;- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel &lt;- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel &lt;- TRUE        model &lt;- RxODE::rxGetLin(PKpars)        pred &lt;- eval(parse(text = "function(){return(Central);}"))    }    .square &lt;- function(x) x * x    .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames &lt;- .parNames &lt;- c()    .ret$adjLik &lt;- control$adjLik    .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0    if (!exists("noLik", envir = .ret)) {        .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol &lt;- .atol            .ret$control$rxControl$rtol &lt;- .rtol            .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol &lt;- .ssAtol            .ret$control$rxControl$ssRtol &lt;- .ssRtol        }        .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)        .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) &lt;- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) &gt; 0) {            .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) &gt; 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars &lt;- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol &lt;- .atol                .ret$control$rxControl$rtol &lt;- .rtol            }            .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)            .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) &lt;- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) &gt; 0) {                .covNames &lt;- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) &gt; 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars &lt;- .ret$model$extra.pars        }        else {            .extraPars &lt;- NULL        }    }    .ret$skipCov &lt;- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp &lt;- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) &lt; length(inits$THTA)) {                .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp &lt;- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr &lt;- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp &lt;- (.tmp | .uifErr)        }        .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms &lt;- thetaNames    }    .ret$thetaNames &lt;- .nms    .thetaReset$thetaNames &lt;- .nms    if (length(lower) == 1) {        lower &lt;- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper &lt;- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars &lt;- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) &gt; 0) {            inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars)            .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars))            lower &lt;- c(lower, .lowerErr)            upper &lt;- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID &lt;- 0    if (is.null(data$AMT))         data$AMT &lt;- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] &lt;- as.double(data[[.v]])    }    .ret$dataSav &lt;- data    .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w &lt;- which(tolower(names(data)) == "limit")    .limitName &lt;- NULL    if (length(.w) == 1L) {        .limitName &lt;- names(data)[.w]    }    .censName &lt;- NULL    .w &lt;- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName &lt;- names(data[.w])    }    data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh &lt;- .parseOM(inits$OMGA)        .nlh &lt;- sapply(.lh, length)        .osplt &lt;- rep(1:length(.lh), .nlh)        .lini &lt;- list(inits$THTA, unlist(.lh))        .nlini &lt;- sapply(.lini, length)        .nsplt &lt;- rep(1:length(.lini), .nlini)        .om0 &lt;- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames &lt;- .ret$etaNames        }        else {            .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType &lt;- .ret$rxInv$xType        .om0a &lt;- .om0        .om0a &lt;- .om0a/control$diagOmegaBoundLower        .om0b &lt;- .om0        .om0b &lt;- .om0b * control$diagOmegaBoundUpper        .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a))        .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a))        .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega &lt;- length(.omdf$lower)        .ret$control$neta &lt;- sum(.omdf$diag)        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)        lower &lt;- c(lower, .omdf$lower)        upper &lt;- c(upper, .omdf$upper)    }    else {        .ret$control$nomega &lt;- 0        .ret$control$neta &lt;- 0        .ret$xType &lt;- -1        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)    }    .ret$lower &lt;- lower    .ret$upper &lt;- upper    .ret$thetaIni &lt;- inits$THTA    .scaleC &lt;- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC &lt;- rep(NA_real_, length(lower))    }    else {        .scaleC &lt;- as.double(control$scaleC)        if (length(lower) &gt; length(.scaleC)) {            .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) &lt; length(.scaleC)) {            .scaleC &lt;- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC &lt;- .scaleC    if (exists("uif", envir = .ret)) {        .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- 1        }        .ini &lt;- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b &lt;- .ret$logitThetasLow[.i]            .c &lt;- .ret$logitThetasHi[.i]            .a &lt;- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) &amp; !is.null(control$etaMat)) {        .ret$etaMat &lt;- control$etaMat    }    else {        .ret$etaMat &lt;- etaMat    }    .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp &lt;- .ret$uif$logThetasList        .ret$logThetas &lt;- .tmp[[1]]        .ret$logThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasList        .ret$logitThetas &lt;- .tmp[[1]]        .ret$logitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListLow        .ret$logitThetasLow &lt;- .tmp[[1]]        .ret$logitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListHi        .ret$logitThetasHi &lt;- .tmp[[1]]        .ret$logitThetasHiF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasList        .ret$probitThetas &lt;- .tmp[[1]]        .ret$probitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListLow        .ret$probitThetasLow &lt;- .tmp[[1]]        .ret$probitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListHi        .ret$probitThetasHi &lt;- .tmp[[1]]        .ret$probitThetasHiF &lt;- .tmp[[2]]    }    else {        .ret$logThetasF &lt;- integer(0)        .ret$logitThetasF &lt;- integer(0)        .ret$logitThetasHiF &lt;- numeric(0)        .ret$logitThetasLowF &lt;- numeric(0)        .ret$logitThetas &lt;- integer(0)        .ret$logitThetasHi &lt;- numeric(0)        .ret$logitThetasLow &lt;- numeric(0)        .ret$probitThetasF &lt;- integer(0)        .ret$probitThetasHiF &lt;- numeric(0)        .ret$probitThetasLowF &lt;- numeric(0)        .ret$probitThetas &lt;- integer(0)        .ret$probitThetasHi &lt;- numeric(0)        .ret$probitThetasLow &lt;- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan &lt;- length(.ret$thetaIni)            .ret$nobs &lt;- sum(data$EVID == 0)        }    }    .ret$control$printTop &lt;- TRUE    .ret$control$nF &lt;- 0    .est0 &lt;- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq &lt;- 0L    }    .fitFun &lt;- function(.ret) {        this.env &lt;- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 &lt;- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm &lt;- names(.ret$thetaIni)                .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta &lt;- .thetaReset$omegaTheta                .ret$control$printTop &lt;- FALSE                .ret$etaMat &lt;- .thetaReset$etaMat                .ret$control$etaMat &lt;- .thetaReset$etaMat                .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations                .ret$control$nF &lt;- .thetaReset$nF                .ret$control$gillRetC &lt;- .thetaReset$gillRetC                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillDf &lt;- .thetaReset$gillDf                .ret$control$gillDf2 &lt;- .thetaReset$gillDf2                .ret$control$gillErr &lt;- .thetaReset$gillErr                .ret$control$rEps &lt;- .thetaReset$rEps                .ret$control$aEps &lt;- .thetaReset$aEps                .ret$control$rEpsC &lt;- .thetaReset$rEpsC                .ret$control$aEpsC &lt;- .thetaReset$aEpsC                .ret$control$c1 &lt;- .thetaReset$c1                .ret$control$c2 &lt;- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations &lt;- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun &lt;- .bobyqa                  .ret$control$outerOpt &lt;- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 &lt;- try(.fitFun(.ret))    .n &lt;- 1    while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations !=         0 &amp;&amp; .n &lt;= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF &lt;- 0        .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew &lt;- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] &lt; lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] &gt; upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni &lt;- .estNew        .ret0 &lt;- try(.fitFun(.ret))        .n &lt;- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret &lt;- .ret0    if (exists("parHistData", .ret)) {        .tmp &lt;- .ret$parHistData        .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter &lt;- .tmp$iter        .tmp &lt;- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) &lt;- c("val", "par", "iter")        .ret$parHist &lt;- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas &lt;- .ret$ranef        .thetas &lt;- .ret$fixef        .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table &lt;- tableControl()    }    if (control$calcTables) {        .ret &lt;- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 15.18 0.414 15.6</span></div><div class='input'>
 <span class='co'># Variance by variable is supported by 'saem' and 'focei'</span>
 <span class='va'>f_nlmixr_fomc_sfo_saem_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; 1:    93.6104   -5.6552   -0.1308    2.1755   -1.1174    2.9315    1.6064    0.6616    0.5897    0.4753    9.7765   10.2253
-#&gt; 2:    93.8838   -5.6936   -0.1062    2.2361   -1.0529    2.7849    1.5260    0.6285    0.5602    0.4515    7.9206    5.2721
-#&gt; 3:    93.9304   -5.7260   -0.0940    2.2480   -1.0317    2.6457    1.4889    0.5971    0.5322    0.4290    7.5051    3.6573
-#&gt; 4:    93.6107   -5.7914   -0.0929    2.2382   -1.0171    2.5134    2.0027    0.5676    0.5056    0.4075    7.3763    3.1438
-#&gt; 5:    93.7262   -5.7517   -0.0926    2.2365   -1.0306    2.3877    1.9026    0.5679    0.4803    0.3871    7.2914    3.0275
-#&gt; 6:    93.7261   -5.7719   -0.0823    2.2625   -1.0391    2.2683    2.1168    0.5638    0.4563    0.3678    7.0857    2.8196
-#&gt; 7:    93.5991   -5.8553   -0.0917    2.2659   -1.0146    2.1549    2.3708    0.5618    0.4335    0.3494    6.9413    2.7447
-#&gt; 8:    93.4288   -5.8969   -0.0885    2.2757   -1.0253    2.1183    2.4324    0.5615    0.4118    0.3319    7.2269    2.6781
-#&gt; 9:    93.4049   -6.1188   -0.0863    2.2841   -1.0154    2.0124    3.0090    0.5633    0.3912    0.3153    7.2084    2.7464
-#&gt; 10:    93.4773   -6.1940   -0.0816    2.2893   -1.0174    1.9958    3.6308    0.5540    0.3716    0.2996    7.2414    2.8980
-#&gt; 11:    93.5334   -6.1739   -0.0772    2.2901   -1.0479    2.2841    3.4492    0.5567    0.3531    0.2846    7.0567    2.8159
-#&gt; 12:    93.5824   -6.3716   -0.0875    2.2706   -1.0452    2.1699    4.3087    0.5505    0.3354    0.2704    7.2970    2.3790
-#&gt; 13:    93.8528   -6.3302   -0.0846    2.2564   -1.0302    2.0614    4.6014    0.5475    0.3186    0.2568    7.3901    2.1942
-#&gt; 14:    94.0343   -6.1408   -0.0887    2.2666   -1.0280    1.9995    4.3714    0.5202    0.3027    0.2440    7.1696    2.0730
-#&gt; 15:    94.1712   -6.3900   -0.0759    2.2825   -1.0112    1.8995    5.0913    0.5358    0.2876    0.2318    7.2155    2.0259
-#&gt; 16:    93.9481   -6.1284   -0.0798    2.2707   -1.0264    1.8046    4.8368    0.5501    0.2732    0.2202    7.2731    2.0912
-#&gt; 17:    93.7828   -6.2736   -0.0852    2.2870   -1.0249    1.7143    4.5949    0.5408    0.2595    0.2092    7.0213    2.0417
-#&gt; 18:    93.8758   -6.3616   -0.0851    2.2713   -1.0157    1.8699    4.9132    0.5349    0.2465    0.1987    7.0613    1.8601
-#&gt; 19:    93.7565   -6.5413   -0.0866    2.2695   -1.0166    2.5251    5.9754    0.5312    0.2547    0.1888    7.2555    1.7947
-#&gt; 20:    93.7233   -6.3942   -0.0970    2.2620   -1.0195    2.3989    5.6766    0.5484    0.2576    0.1794    7.0292    1.8687
-#&gt; 21:    93.8298   -6.2619   -0.0974    2.2570   -1.0118    2.2789    5.3928    0.5497    0.2545    0.1704    6.7138    1.8157
-#&gt; 22:    93.9520   -6.1633   -0.0874    2.2777   -1.0274    2.1650    5.1232    0.5437    0.2641    0.1622    6.8254    1.8443
-#&gt; 23:    93.8442   -6.3255   -0.0855    2.2568   -1.0151    2.1243    4.9615    0.5334    0.2885    0.1556    6.8049    1.8073
-#&gt; 24:    93.9659   -6.5470   -0.0855    2.2572   -1.0178    2.0788    6.2156    0.5425    0.2834    0.1583    6.9598    1.8686
-#&gt; 25:    94.3004   -6.4881   -0.0920    2.2371   -1.0187    3.2507    5.9048    0.5367    0.2872    0.1609    6.8709    1.8839
-#&gt; 26:    94.1750   -6.4437   -0.0964    2.2337   -1.0301    3.1136    5.6096    0.5307    0.2820    0.1611    6.5948    1.8742
-#&gt; 27:    94.6007   -6.3072   -0.0750    2.2936   -1.0343    3.9844    5.3291    0.5042    0.2679    0.1695    6.7524    1.8335
-#&gt; 28:    94.4915   -6.1389   -0.0826    2.2730   -1.0223    3.7852    5.0626    0.4998    0.2590    0.1812    6.4646    1.8937
-#&gt; 29:    94.1900   -6.1516   -0.0836    2.2680   -1.0287    3.7861    4.8095    0.4976    0.2612    0.1875    6.4674    1.8998
-#&gt; 30:    94.6632   -6.0574   -0.0773    2.2637   -1.0280    3.5968    4.5690    0.4948    0.2525    0.2040    6.5945    1.9022
-#&gt; 31:    94.3460   -6.1684   -0.0761    2.2677   -1.0276    3.4170    4.3406    0.4901    0.2690    0.2038    6.9918    1.8446
-#&gt; 32:    94.4385   -5.9347   -0.0751    2.2893   -1.0146    3.3283    4.1235    0.4882    0.2576    0.2002    6.7622    1.7754
-#&gt; 33:    94.7021   -5.9329   -0.0787    2.2987   -1.0108    3.3485    3.9174    0.4859    0.2640    0.1941    6.9648    1.8014
-#&gt; 34:    94.4058   -6.0311   -0.0692    2.2980   -1.0125    3.1811    3.7215    0.4994    0.2676    0.1936    6.9791    1.7561
-#&gt; 35:    94.4503   -6.0470   -0.0692    2.2950   -1.0100    3.5600    3.7611    0.4994    0.2637    0.1928    6.8010    1.7890
-#&gt; 36:    94.3400   -6.0339   -0.0792    2.2960   -1.0204    3.3820    3.5731    0.4822    0.2638    0.1887    6.6462    1.6763
-#&gt; 37:    94.1497   -6.0221   -0.0879    2.2653   -1.0073    3.2129    3.3944    0.4979    0.2506    0.1793    6.4853    1.7911
-#&gt; 38:    94.1574   -5.8638   -0.0884    2.2752   -1.0156    3.0523    3.2247    0.4992    0.2435    0.1772    6.4329    1.7707
-#&gt; 39:    94.1680   -5.9558   -0.0948    2.2535   -1.0205    2.8997    3.0635    0.5065    0.2448    0.1819    6.4462    1.8100
-#&gt; 40:    94.0516   -6.0814   -0.0881    2.2531   -1.0356    2.7547    3.4976    0.4949    0.2515    0.1827    6.4734    1.8133
-#&gt; 41:    94.1522   -6.1880   -0.0849    2.2618   -1.0230    2.6170    4.1610    0.5129    0.2389    0.1797    6.4165    1.7782
-#&gt; 42:    94.2178   -6.1829   -0.0854    2.2791   -1.0325    2.8092    4.1174    0.5052    0.2288    0.1853    6.4332    1.7883
-#&gt; 43:    93.9083   -6.1600   -0.0831    2.2860   -1.0350    2.9631    3.9116    0.4914    0.2310    0.1826    6.4865    1.8449
-#&gt; 44:    93.9636   -6.1494   -0.0824    2.2903   -1.0150    2.8149    3.7221    0.4921    0.2214    0.1805    6.4818    1.9385
-#&gt; 45:    93.9937   -6.2329   -0.0895    2.2832   -1.0157    4.2815    4.5622    0.5075    0.2250    0.1796    6.4098    1.8355
-#&gt; 46:    93.8001   -6.1784   -0.0944    2.2664   -1.0212    4.0674    4.3341    0.5023    0.2274    0.1795    6.5539    1.7875
-#&gt; 47:    93.8997   -6.3400   -0.0945    2.2627   -1.0183    3.8641    4.9860    0.5017    0.2312    0.1834    6.5497    1.7838
-#&gt; 48:    93.7861   -6.3496   -0.0944    2.2713   -1.0255    3.6709    5.3403    0.5025    0.2197    0.1839    6.1766    1.9080
-#&gt; 49:    93.7128   -6.3914   -0.0944    2.2752   -1.0137    3.4873    5.6007    0.5051    0.2198    0.1788    6.3050    1.8320
-#&gt; 50:    94.1645   -6.3056   -0.0945    2.2755   -1.0062    3.3130    5.3207    0.4998    0.2176    0.1781    6.4998    1.8516
-#&gt; 51:    93.9897   -6.1556   -0.1026    2.2633   -1.0097    3.1473    5.0547    0.4853    0.2439    0.1796    6.3184    1.7981
-#&gt; 52:    93.7604   -6.2264   -0.1068    2.2485   -0.9936    2.9899    4.8209    0.4887    0.2542    0.1793    6.5076    1.7916
-#&gt; 53:    93.8821   -6.5447   -0.1049    2.2546   -1.0020    2.8404    6.5603    0.4701    0.2556    0.1789    6.5735    1.7763
-#&gt; 54:    93.8865   -6.4028   -0.1081    2.2507   -1.0162    2.6984    6.2323    0.4724    0.2576    0.1846    6.3607    1.8295
-#&gt; 55:    94.0120   -6.5455   -0.0986    2.2728   -1.0119    2.5635    6.3983    0.4550    0.2686    0.1773    6.6815    1.7869
-#&gt; 56:    94.1921   -6.6581   -0.0953    2.2713   -1.0151    2.4353    8.2169    0.4478    0.2675    0.1763    6.6257    1.7873
-#&gt; 57:    93.8812   -6.4499   -0.1081    2.2447   -1.0182    2.3136    7.8060    0.4683    0.2562    0.1804    6.2421    1.8455
-#&gt; 58:    93.9830   -6.5112   -0.1092    2.2436   -1.0136    2.1979    7.4157    0.4695    0.2569    0.1762    6.3196    1.8224
-#&gt; 59:    93.8537   -6.6528   -0.1105    2.2390   -1.0089    2.0880    9.0039    0.4689    0.2534    0.1692    6.3735    1.8049
-#&gt; 60:    93.7399   -6.4780   -0.1212    2.2263   -0.9979    1.9836    8.5537    0.4565    0.2445    0.1696    6.4748    1.8439
-#&gt; 61:    93.8180   -6.4608   -0.1243    2.2275   -1.0039    1.8844    8.1260    0.4630    0.2414    0.1693    6.3936    1.7653
-#&gt; 62:    93.5774   -6.3127   -0.1298    2.2250   -1.0022    1.7902    7.7197    0.4711    0.2452    0.1708    6.5708    1.8014
-#&gt; 63:    93.5731   -6.2060   -0.1327    2.2213   -1.0031    1.7007    7.3337    0.4685    0.2426    0.1712    6.4933    1.8318
-#&gt; 64:    93.3587   -6.2299   -0.1316    2.2290   -1.0004    1.6302    6.9671    0.4694    0.2460    0.1710    6.2584    1.8361
-#&gt; 65:    93.2982   -6.1900   -0.1354    2.2341   -0.9963    1.5487    6.6187    0.4685    0.2482    0.1750    6.0950    1.8341
-#&gt; 66:    93.4532   -6.2107   -0.1251    2.2254   -0.9786    1.4713    6.2878    0.4822    0.2489    0.1701    6.3732    1.7951
-#&gt; 67:    93.5878   -6.1823   -0.1208    2.2455   -0.9766    1.3977    5.9734    0.4860    0.2407    0.1668    6.4456    1.8371
-#&gt; 68:    93.5819   -5.9209   -0.1200    2.2599   -0.9792    1.3278    5.6747    0.4793    0.2412    0.1686    6.5728    1.8144
-#&gt; 69:    93.4002   -6.1142   -0.1242    2.2542   -0.9878    1.4433    5.3910    0.4730    0.2511    0.1830    6.3888    1.7900
-#&gt; 70:    93.2631   -6.1875   -0.1271    2.2639   -0.9844    1.5244    5.1214    0.4711    0.2444    0.1770    6.5093    1.7117
-#&gt; 71:    93.2629   -6.2944   -0.1275    2.2418   -0.9805    1.4481    4.8654    0.4612    0.2522    0.1748    6.4659    1.8500
-#&gt; 72:    93.0324   -6.2727   -0.1332    2.2421   -0.9766    1.3757    5.1467    0.4519    0.2524    0.1673    6.3452    1.8054
-#&gt; 73:    93.0174   -6.4402   -0.1391    2.2320   -0.9795    1.3069    6.1963    0.4480    0.2563    0.1637    6.3915    1.8506
-#&gt; 74:    93.0073   -6.4286   -0.1450    2.2241   -0.9962    1.2416    6.0011    0.4510    0.2461    0.1682    6.6924    1.8302
-#&gt; 75:    93.2607   -6.5056   -0.1379    2.2233   -0.9926    1.1795    6.0508    0.4573    0.2540    0.1669    6.4813    1.7896
-#&gt; 76:    93.2937   -6.1637   -0.1404    2.2228   -0.9970    1.1205    5.7483    0.4588    0.2529    0.1656    6.3781    1.7976
-#&gt; 77:    93.2223   -6.1702   -0.1381    2.2200   -0.9858    1.4369    5.4609    0.4633    0.2585    0.1697    6.3510    1.8749
-#&gt; 78:    93.3189   -6.1924   -0.1355    2.2238   -0.9944    1.3651    5.1878    0.4608    0.2631    0.1612    6.1888    1.7669
-#&gt; 79:    93.2417   -6.6345   -0.1335    2.2340   -0.9865    1.2968    7.3486    0.4570    0.2564    0.1532    6.0902    1.7505
-#&gt; 80:    93.3476   -6.3069   -0.1305    2.2319   -0.9880    1.6281    6.9812    0.4649    0.2525    0.1514    6.0659    1.7582
-#&gt; 81:    93.4798   -6.3145   -0.1253    2.2468   -0.9989    1.9108    6.6321    0.4447    0.2583    0.1579    6.0843    1.7959
-#&gt; 82:    93.2745   -6.2461   -0.1184    2.2529   -0.9937    1.8153    6.3005    0.4439    0.2602    0.1691    6.2826    1.7896
-#&gt; 83:    93.4628   -6.3953   -0.1189    2.2640   -0.9880    1.7245    6.1094    0.4430    0.2612    0.1709    6.4474    1.6820
-#&gt; 84:    93.3664   -6.2885   -0.1105    2.2675   -0.9875    1.6383    6.1170    0.4498    0.2689    0.1719    6.4847    1.6731
-#&gt; 85:    93.5090   -6.3029   -0.1095    2.2709   -0.9898    1.6666    6.1406    0.4365    0.2693    0.1710    6.2452    1.6594
-#&gt; 86:    93.5097   -6.2256   -0.1106    2.2701   -0.9928    1.5833    6.2468    0.4365    0.2749    0.1632    6.2007    1.7178
-#&gt; 87:    93.5165   -6.3038   -0.1046    2.2731   -0.9877    1.5041    5.9345    0.4398    0.2667    0.1603    6.3928    1.7003
-#&gt; 88:    93.3766   -6.2723   -0.1071    2.2771   -0.9881    1.4289    5.6378    0.4241    0.2538    0.1598    6.1043    1.6772
-#&gt; 89:    93.4448   -6.0430   -0.1102    2.2781   -0.9725    1.3575    5.3559    0.4187    0.2915    0.1518    6.0153    1.7593
-#&gt; 90:    93.2843   -6.1065   -0.1089    2.2866   -0.9705    1.5362    5.0881    0.4203    0.2844    0.1656    5.9235    1.6631
-#&gt; 91:    93.4159   -6.0210   -0.1095    2.2879   -0.9798    2.1371    4.8337    0.4245    0.2857    0.1573    5.9182    1.7482
-#&gt; 92:    93.3198   -6.2526   -0.1075    2.2919   -0.9791    2.0303    4.7352    0.4159    0.2918    0.1590    6.0853    1.6755
-#&gt; 93:    93.3269   -6.1838   -0.1173    2.2809   -0.9999    1.9287    4.4985    0.4211    0.2893    0.1684    6.1189    1.6734
-#&gt; 94:    93.2077   -6.1086   -0.1148    2.2890   -0.9918    2.1061    4.2736    0.4230    0.2802    0.1662    5.9328    1.7116
-#&gt; 95:    93.0207   -6.1510   -0.1170    2.2665   -0.9791    2.1360    4.0630    0.4199    0.2937    0.1734    6.1415    1.6737
-#&gt; 96:    93.2134   -6.1614   -0.1152    2.2861   -0.9711    2.5372    4.1579    0.4211    0.2790    0.1647    6.1575    1.6338
-#&gt; 97:    93.1425   -6.2333   -0.1140    2.2912   -0.9665    2.4103    4.4551    0.4136    0.2835    0.1645    6.0790    1.6652
-#&gt; 98:    92.9412   -6.2651   -0.1167    2.2847   -0.9738    2.2898    4.7233    0.4095    0.2882    0.1836    5.9305    1.6158
-#&gt; 99:    92.9087   -6.1870   -0.1177    2.2833   -0.9744    2.1753    4.4872    0.4142    0.2913    0.1876    5.9838    1.7003
-#&gt; 100:    92.7788   -6.2113   -0.1146    2.2928   -0.9939    2.0665    4.4195    0.4109    0.2945    0.1866    6.0195    1.7275
-#&gt; 101:    92.8783   -6.0718   -0.1080    2.2959   -0.9968    1.9632    4.1985    0.4142    0.2966    0.1778    6.2542    1.6844
-#&gt; 102:    93.0451   -6.3706   -0.1086    2.2894   -0.9974    1.8650    5.2121    0.4135    0.3030    0.1769    6.2204    1.6281
-#&gt; 103:    93.2901   -6.4069   -0.1066    2.2943   -0.9896    1.7718    5.7453    0.4152    0.2879    0.1818    6.0239    1.7299
-#&gt; 104:    93.3437   -6.3694   -0.1063    2.2769   -0.9914    1.6832    5.8903    0.4210    0.2884    0.1855    6.1116    1.7415
-#&gt; 105:    93.4609   -6.2767   -0.1060    2.2751   -1.0157    1.5990    5.5958    0.4214    0.2865    0.1841    6.1287    1.7322
-#&gt; 106:    93.5833   -6.2340   -0.1006    2.2879   -1.0084    1.8669    5.3160    0.4272    0.2982    0.1829    6.0211    1.6726
-#&gt; 107:    93.7800   -6.1505   -0.0948    2.2685   -1.0219    1.7735    5.0502    0.4325    0.2841    0.1753    5.8556    1.7636
-#&gt; 108:    93.8532   -6.3744   -0.0938    2.2650   -1.0210    2.0297    5.7080    0.4307    0.2836    0.1701    6.0669    1.6804
-#&gt; 109:    93.8994   -6.3544   -0.0829    2.2862   -1.0287    1.9282    5.4226    0.4184    0.3113    0.1789    6.2343    1.6667
-#&gt; 110:    94.0150   -6.5609   -0.0905    2.2821   -1.0088    2.1118    6.8121    0.4276    0.3275    0.1845    6.1640    1.6706
-#&gt; 111:    93.7887   -6.0185   -0.0925    2.2831   -1.0097    2.0062    6.4715    0.4209    0.3255    0.1852    6.2823    1.6301
-#&gt; 112:    93.9709   -6.0918   -0.0934    2.2857   -1.0067    2.2032    6.1479    0.4207    0.3285    0.1817    6.1718    1.6494
-#&gt; 113:    93.8761   -6.3434   -0.0955    2.2919   -1.0223    2.5209    5.8405    0.4259    0.3293    0.1842    6.0377    1.6431
-#&gt; 114:    93.6959   -6.2312   -0.0934    2.2782   -1.0154    2.3949    5.5485    0.4237    0.3460    0.1814    6.2225    1.6229
-#&gt; 115:    93.5487   -6.0915   -0.0971    2.2836   -1.0083    2.2751    5.2711    0.4199    0.3557    0.1783    6.5929    1.6479
-#&gt; 116:    93.5953   -6.1479   -0.1013    2.2760   -1.0018    2.1614    5.0075    0.4163    0.3399    0.1794    6.1822    1.6222
-#&gt; 117:    93.3508   -6.1730   -0.1076    2.2632   -0.9953    2.0533    4.7571    0.4057    0.3303    0.1803    6.3444    1.7106
-#&gt; 118:    93.4462   -5.9724   -0.1177    2.2557   -0.9963    2.0318    4.5193    0.3956    0.3349    0.1920    6.0439    1.7146
-#&gt; 119:    93.5841   -6.0400   -0.1151    2.2480   -1.0035    1.9956    4.2933    0.3968    0.3448    0.1929    6.0754    1.6750
-#&gt; 120:    93.4891   -6.0937   -0.1175    2.2499   -1.0006    1.8958    4.0786    0.3927    0.3392    0.1927    6.1654    1.6495
-#&gt; 121:    93.4611   -6.1371   -0.1217    2.2538   -1.0067    1.8011    3.8747    0.3864    0.3549    0.1851    5.9558    1.6940
-#&gt; 122:    93.4636   -6.1015   -0.1243    2.2564   -1.0002    1.7414    3.6810    0.3840    0.3557    0.1860    6.0583    1.6629
-#&gt; 123:    93.2988   -5.9318   -0.1243    2.2601   -0.9989    2.2063    3.4969    0.3840    0.3543    0.1833    5.9686    1.5966
-#&gt; 124:    93.4200   -5.9847   -0.1231    2.2594   -0.9991    2.0959    3.3221    0.3846    0.3544    0.1787    6.1292    1.5957
-#&gt; 125:    93.3727   -6.1217   -0.1239    2.2584   -1.0082    1.9911    3.6395    0.3838    0.3577    0.1782    6.2794    1.6262
-#&gt; 126:    93.4956   -6.0529   -0.1244    2.2482   -1.0096    1.8916    3.4576    0.3847    0.3505    0.1753    6.1181    1.6347
-#&gt; 127:    93.6265   -5.9360   -0.1298    2.2342   -1.0075    1.7970    3.2847    0.3887    0.3367    0.1691    6.2315    1.7051
-#&gt; 128:    93.4446   -6.0523   -0.1337    2.2453   -1.0079    1.7072    3.1205    0.3840    0.3302    0.1759    6.2082    1.6705
-#&gt; 129:    93.4470   -6.0065   -0.1321    2.2321   -1.0015    1.6636    2.9644    0.3853    0.3303    0.1671    6.1479    1.6733
-#&gt; 130:    93.3205   -5.9628   -0.1290    2.2252   -0.9954    2.0336    2.9210    0.3879    0.3284    0.1634    6.0582    1.6372
-#&gt; 131:    93.3836   -5.8919   -0.1358    2.2375   -0.9930    2.1392    2.7749    0.3801    0.3202    0.1644    5.9972    1.6837
-#&gt; 132:    93.1041   -5.9265   -0.1203    2.2552   -0.9929    2.0323    2.8741    0.3831    0.3353    0.1755    6.0648    1.5934
-#&gt; 133:    93.1617   -6.0668   -0.1175    2.2538   -0.9963    1.9306    3.6825    0.3846    0.3187    0.1790    6.0732    1.5684
-#&gt; 134:    93.1503   -6.1208   -0.1232    2.2644   -0.9851    2.3429    3.8026    0.3788    0.3296    0.1737    5.8807    1.5722
-#&gt; 135:    92.8629   -5.9726   -0.1197    2.2650   -0.9761    2.2257    3.6124    0.3802    0.3407    0.1765    5.8408    1.5446
-#&gt; 136:    93.1460   -6.0654   -0.1227    2.2661   -0.9736    2.1144    3.4583    0.3770    0.3434    0.1700    5.7690    1.5561
-#&gt; 137:    93.1243   -6.2350   -0.1274    2.2472   -0.9811    2.0087    4.3526    0.3733    0.3670    0.1615    5.9377    1.5224
-#&gt; 138:    93.1203   -6.1704   -0.1283    2.2472   -0.9891    1.9083    4.1557    0.3788    0.3671    0.1641    5.8765    1.5525
-#&gt; 139:    93.2841   -6.0586   -0.1366    2.2404   -0.9894    1.8129    4.3184    0.3718    0.3693    0.1630    6.1854    1.6388
-#&gt; 140:    93.4239   -6.2398   -0.1382    2.2459   -0.9713    1.7241    4.5903    0.3713    0.3627    0.1548    6.0737    1.5826
-#&gt; 141:    93.4149   -6.1972   -0.1388    2.2605   -0.9686    2.2179    4.5557    0.3701    0.3675    0.1486    6.0793    1.5603
-#&gt; 142:    93.4404   -5.8955   -0.1203    2.2682   -0.9706    2.1070    4.3279    0.3830    0.3719    0.1581    5.9534    1.6189
-#&gt; 143:    93.3108   -5.8069   -0.1142    2.2835   -0.9672    2.0194    4.1115    0.3787    0.3924    0.1592    5.9410    1.5521
-#&gt; 144:    93.3953   -5.7456   -0.1154    2.2891   -0.9553    2.2741    3.9059    0.3787    0.3849    0.1633    6.0163    1.5640
-#&gt; 145:    93.3322   -5.8301   -0.1100    2.2926   -0.9595    2.1604    3.7106    0.3687    0.3754    0.1657    5.8968    1.5844
-#&gt; 146:    93.0844   -5.8926   -0.1084    2.2870   -0.9605    2.0524    3.5251    0.3649    0.3713    0.1646    6.1960    1.5691
-#&gt; 147:    93.2106   -6.0084   -0.1074    2.2931   -0.9654    1.9498    3.5341    0.3646    0.3669    0.1641    6.0548    1.5230
-#&gt; 148:    93.2005   -6.1989   -0.1065    2.2924   -0.9740    1.8523    4.4855    0.3631    0.3660    0.1759    5.9600    1.5194
-#&gt; 149:    93.0788   -6.2470   -0.1108    2.2861   -0.9836    2.1348    4.7630    0.3597    0.3815    0.1815    5.9584    1.5227
-#&gt; 150:    93.2241   -6.2660   -0.1126    2.2847   -0.9912    2.1149    5.0574    0.3656    0.3788    0.1781    5.7213    1.5379
-#&gt; 151:    93.0046   -6.5379   -0.1164    2.2757   -0.9845    2.0092    6.8660    0.3719    0.3827    0.1807    5.7612    1.5697
-#&gt; 152:    93.2222   -6.4637   -0.1154    2.2737   -0.9950    1.6744    6.2289    0.3670    0.3881    0.1638    5.8514    1.5920
-#&gt; 153:    93.1619   -6.3230   -0.1224    2.2638   -0.9924    1.7907    5.5429    0.3842    0.3946    0.1720    5.7562    1.5493
-#&gt; 154:    93.0402   -6.4004   -0.1205    2.2633   -0.9868    1.7620    6.2494    0.3860    0.3891    0.1737    5.7577    1.5109
-#&gt; 155:    93.1692   -6.4353   -0.1203    2.2696   -0.9761    1.8710    6.4519    0.3949    0.3962    0.1721    5.8348    1.4949
-#&gt; 156:    93.2709   -6.2672   -0.1203    2.2663   -0.9708    2.1172    5.1692    0.3949    0.4187    0.1637    6.1251    1.5012
-#&gt; 157:    93.1264   -6.1931   -0.1208    2.2728   -0.9669    1.9985    4.7739    0.3938    0.4031    0.1696    6.1014    1.5627
-#&gt; 158:    93.1263   -6.1951   -0.1237    2.2826   -0.9729    1.7675    4.6131    0.3928    0.3904    0.1659    6.1582    1.5647
-#&gt; 159:    92.9780   -6.2831   -0.1242    2.2726   -0.9770    1.8348    5.4674    0.3938    0.3887    0.1631    6.0622    1.5787
-#&gt; 160:    93.1289   -6.4397   -0.1263    2.2651   -0.9675    2.4637    6.0560    0.3919    0.4017    0.1626    5.9486    1.5859
-#&gt; 161:    93.2629   -6.3336   -0.1294    2.2670   -0.9666    2.9602    5.4966    0.3872    0.3988    0.1667    5.9034    1.5421
-#&gt; 162:    93.1652   -6.3800   -0.1342    2.2518   -0.9754    2.8800    5.6206    0.3908    0.4158    0.1627    5.9332    1.5306
-#&gt; 163:    93.2886   -6.4115   -0.1437    2.2330   -0.9685    1.9997    6.2760    0.4015    0.4076    0.1623    5.7905    1.5398
-#&gt; 164:    93.4631   -6.7246   -0.1396    2.2358   -0.9854    1.8885    7.8014    0.3952    0.4028    0.1573    5.7052    1.5695
-#&gt; 165:    93.4757   -6.8408   -0.1404    2.2346   -0.9825    2.4877    9.3632    0.3948    0.4019    0.1615    5.8406    1.5902
-#&gt; 166:    93.9075   -6.7707   -0.1428    2.2331   -0.9848    1.9761    8.9292    0.3939    0.3909    0.1610    5.7600    1.5966
-#&gt; 167:    93.8895   -7.1938   -0.1363    2.2449   -0.9870    2.0894   11.4058    0.3850    0.3899    0.1627    5.8501    1.5748
-#&gt; 168:    93.5849   -6.8478   -0.1294    2.2466   -0.9888    2.3573    9.4037    0.3935    0.3808    0.1645    6.0206    1.6591
-#&gt; 169:    93.4931   -6.4550   -0.1173    2.2727   -0.9990    2.1948    6.5738    0.3844    0.4029    0.1699    6.0990    1.6123
-#&gt; 170:    93.7188   -6.4015   -0.1173    2.2715   -0.9981    1.8800    6.1745    0.3844    0.4001    0.1635    6.1990    1.5745
-#&gt; 171:    93.5938   -6.4389   -0.1119    2.2663   -0.9893    2.5731    6.5397    0.3858    0.4044    0.1554    6.1636    1.5631
-#&gt; 172:    93.4515   -6.2049   -0.1050    2.2937   -0.9701    2.6134    4.6813    0.3687    0.4017    0.1715    6.3875    1.5006
-#&gt; 173:    93.2254   -6.2074   -0.1041    2.3111   -0.9661    2.5799    4.6939    0.3669    0.4016    0.1738    6.5633    1.5229
-#&gt; 174:    93.4116   -6.1198   -0.1050    2.3075   -0.9711    3.0196    4.3080    0.3720    0.3988    0.1778    6.4856    1.5214
-#&gt; 175:    93.4952   -6.0439   -0.1050    2.3008   -0.9714    3.1172    3.7728    0.3720    0.3979    0.1749    6.1918    1.4985
-#&gt; 176:    93.6186   -6.0891   -0.1061    2.3033   -0.9794    2.1081    3.8909    0.3705    0.4029    0.1796    6.1064    1.4657
-#&gt; 177:    93.6432   -5.9977   -0.1031    2.2953   -0.9950    1.9411    3.4156    0.3694    0.3970    0.1843    6.0473    1.4918
-#&gt; 178:    93.5736   -6.0079   -0.0996    2.2986   -0.9809    1.7778    3.5107    0.3696    0.3909    0.1840    6.1243    1.4937
-#&gt; 179:    93.6407   -6.0246   -0.0977    2.3042   -0.9770    2.0631    3.8144    0.3718    0.3885    0.1798    6.1851    1.5212
-#&gt; 180:    93.6336   -5.8865   -0.0969    2.3217   -0.9871    2.2566    3.1377    0.3721    0.3715    0.1784    6.0747    1.5546
-#&gt; 181:    93.5075   -5.8632   -0.0965    2.3140   -0.9764    2.5812    2.9771    0.3715    0.3728    0.1876    5.9833    1.5356
-#&gt; 182:    93.4464   -5.8627   -0.0930    2.3211   -0.9713    2.5956    2.8054    0.3836    0.3759    0.1861    6.1293    1.6259
-#&gt; 183:    93.2737   -5.8238   -0.0977    2.3127   -0.9642    2.8739    2.6277    0.3846    0.3743    0.1868    6.0451    1.6493
-#&gt; 184:    93.2191   -5.9175   -0.0993    2.3107   -0.9592    2.3088    3.0689    0.3829    0.3515    0.1711    6.1487    1.6666
-#&gt; 185:    93.3626   -5.8872   -0.1070    2.3112   -0.9413    2.2812    3.2719    0.3712    0.3555    0.1783    6.1295    1.6288
-#&gt; 186:    93.1585   -5.8532   -0.1053    2.3140   -0.9665    2.7906    2.8415    0.3734    0.3531    0.1680    6.0294    1.6104
-#&gt; 187:    93.3041   -5.6798   -0.0957    2.3158   -0.9608    3.1056    2.0850    0.3813    0.3484    0.1728    6.1191    1.5813
-#&gt; 188:    93.2466   -5.6791   -0.0954    2.3172   -0.9446    3.8296    2.1956    0.3816    0.3439    0.1757    5.9670    1.5445
-#&gt; 189:    93.3532   -5.6883   -0.0859    2.3335   -0.9594    2.8968    2.3125    0.3691    0.3512    0.1812    5.9467    1.6101
-#&gt; 190:    93.5064   -5.6288   -0.0726    2.3548   -0.9562    2.8233    2.1930    0.3334    0.3700    0.1759    6.4036    1.5877
-#&gt; 191:    93.4145   -5.6906   -0.0726    2.3467   -0.9624    2.8818    2.3581    0.3334    0.3771    0.1712    6.2046    1.4952
-#&gt; 192:    93.2060   -5.7479   -0.0716    2.3433   -0.9618    2.5221    2.6613    0.3324    0.3909    0.1552    6.1651    1.4971
-#&gt; 193:    93.2904   -5.7634   -0.0811    2.3327   -0.9585    2.6968    2.6324    0.3339    0.3856    0.1632    6.5621    1.5258
-#&gt; 194:    93.5271   -5.7859   -0.0874    2.3419   -0.9580    2.8361    2.8424    0.3286    0.3784    0.1636    6.3714    1.5386
-#&gt; 195:    93.3944   -5.9358   -0.0838    2.3407   -0.9718    3.4161    3.2427    0.3315    0.3787    0.1678    6.3722    1.5181
-#&gt; 196:    93.2341   -5.9078   -0.0701    2.3492   -0.9816    3.1580    3.0586    0.3285    0.3666    0.1681    6.4633    1.5382
-#&gt; 197:    93.2967   -6.0131   -0.0745    2.3426   -0.9991    3.7978    3.6459    0.3353    0.3491    0.1796    6.2264    1.5310
-#&gt; 198:    93.2628   -5.7991   -0.0730    2.3434   -0.9819    2.3896    2.6695    0.3371    0.3431    0.1762    6.3141    1.5254
-#&gt; 199:    93.2765   -5.9078   -0.0782    2.3553   -0.9864    2.2760    3.3883    0.3420    0.3459    0.1866    6.0192    1.4982
-#&gt; 200:    93.0447   -5.9148   -0.0769    2.3543   -0.9759    2.1516    2.9675    0.3455    0.3476    0.1870    5.9079    1.4688
-#&gt; 201:    93.1655   -5.8951   -0.0763    2.3493   -0.9707    1.8254    2.9481    0.3448    0.3526    0.1831    6.0676    1.5097
-#&gt; 202:    93.1082   -5.8916   -0.0768    2.3499   -0.9673    1.8503    2.9562    0.3447    0.3574    0.1821    6.1282    1.5026
-#&gt; 203:    93.0728   -5.9316   -0.0774    2.3506   -0.9650    2.0210    3.2306    0.3441    0.3563    0.1827    6.1253    1.4974
-#&gt; 204:    93.0846   -5.9347   -0.0773    2.3494   -0.9648    2.1463    3.2567    0.3453    0.3563    0.1824    6.1301    1.4911
-#&gt; 205:    93.0929   -5.9439   -0.0781    2.3491   -0.9659    2.2204    3.3165    0.3453    0.3572    0.1823    6.1098    1.4941
-#&gt; 206:    93.1795   -5.9401   -0.0795    2.3481   -0.9681    2.2588    3.2940    0.3470    0.3568    0.1829    6.1132    1.4996
-#&gt; 207:    93.2303   -5.9158   -0.0805    2.3467   -0.9703    2.3439    3.1823    0.3484    0.3571    0.1845    6.1021    1.5059
-#&gt; 208:    93.2161   -5.8969   -0.0825    2.3440   -0.9700    2.3306    3.0999    0.3496    0.3563    0.1848    6.0998    1.5177
-#&gt; 209:    93.2077   -5.8842   -0.0848    2.3413   -0.9681    2.3580    3.0406    0.3499    0.3553    0.1841    6.0829    1.5199
-#&gt; 210:    93.1951   -5.8661   -0.0867    2.3383   -0.9656    2.4170    2.9578    0.3501    0.3543    0.1833    6.0562    1.5261
-#&gt; 211:    93.1870   -5.8543   -0.0892    2.3347   -0.9645    2.4650    2.9307    0.3502    0.3548    0.1831    6.0286    1.5289
-#&gt; 212:    93.2077   -5.8506   -0.0915    2.3316   -0.9626    2.4909    2.9544    0.3504    0.3555    0.1835    6.0079    1.5300
-#&gt; 213:    93.2104   -5.8492   -0.0938    2.3283   -0.9612    2.4695    2.9635    0.3503    0.3548    0.1841    5.9859    1.5341
-#&gt; 214:    93.2059   -5.8537   -0.0959    2.3255   -0.9615    2.4264    3.0084    0.3499    0.3540    0.1835    5.9698    1.5370
-#&gt; 215:    93.2051   -5.8569   -0.0977    2.3227   -0.9608    2.4277    3.0541    0.3495    0.3534    0.1830    5.9586    1.5374
-#&gt; 216:    93.1879   -5.8596   -0.0993    2.3199   -0.9600    2.4347    3.0802    0.3493    0.3534    0.1828    5.9465    1.5380
-#&gt; 217:    93.1834   -5.8621   -0.1008    2.3173   -0.9594    2.4479    3.0998    0.3491    0.3535    0.1827    5.9369    1.5402
-#&gt; 218:    93.1796   -5.8657   -0.1021    2.3152   -0.9593    2.4234    3.1238    0.3492    0.3534    0.1835    5.9184    1.5441
-#&gt; 219:    93.1680   -5.8721   -0.1032    2.3132   -0.9588    2.4640    3.1464    0.3494    0.3531    0.1839    5.8929    1.5493
-#&gt; 220:    93.1579   -5.8839   -0.1044    2.3118   -0.9586    2.5707    3.1909    0.3495    0.3531    0.1847    5.8754    1.5496
-#&gt; 221:    93.1557   -5.8882   -0.1058    2.3100   -0.9583    2.6662    3.2052    0.3492    0.3533    0.1854    5.8662    1.5518
-#&gt; 222:    93.1624   -5.8832   -0.1074    2.3075   -0.9578    2.7993    3.1736    0.3490    0.3542    0.1861    5.8489    1.5546
-#&gt; 223:    93.1699   -5.8771   -0.1086    2.3052   -0.9583    2.9085    3.1456    0.3488    0.3558    0.1871    5.8436    1.5610
-#&gt; 224:    93.1870   -5.8751   -0.1097    2.3037   -0.9583    2.9988    3.1279    0.3487    0.3570    0.1878    5.8390    1.5628
-#&gt; 225:    93.2094   -5.8719   -0.1110    2.3012   -0.9583    3.0581    3.1018    0.3485    0.3574    0.1885    5.8214    1.5656
-#&gt; 226:    93.2352   -5.8683   -0.1122    2.2988   -0.9587    3.1297    3.0761    0.3482    0.3584    0.1895    5.8105    1.5680
-#&gt; 227:    93.2611   -5.8653   -0.1132    2.2964   -0.9589    3.1563    3.0610    0.3476    0.3594    0.1904    5.8038    1.5701
-#&gt; 228:    93.2741   -5.8593   -0.1140    2.2943   -0.9591    3.1641    3.0356    0.3470    0.3603    0.1911    5.7984    1.5730
-#&gt; 229:    93.2899   -5.8593   -0.1151    2.2919   -0.9595    3.1626    3.0313    0.3466    0.3613    0.1918    5.7999    1.5745
-#&gt; 230:    93.3048   -5.8650   -0.1164    2.2899   -0.9593    3.1743    3.0542    0.3460    0.3624    0.1921    5.7990    1.5753
-#&gt; 231:    93.3159   -5.8638   -0.1177    2.2875   -0.9592    3.1930    3.0524    0.3454    0.3631    0.1924    5.7956    1.5748
-#&gt; 232:    93.3209   -5.8611   -0.1189    2.2852   -0.9590    3.1872    3.0420    0.3450    0.3639    0.1926    5.7921    1.5755
-#&gt; 233:    93.3196   -5.8556   -0.1200    2.2833   -0.9589    3.1861    3.0209    0.3445    0.3644    0.1926    5.7852    1.5779
-#&gt; 234:    93.3245   -5.8530   -0.1210    2.2813   -0.9591    3.1890    3.0115    0.3441    0.3651    0.1922    5.7781    1.5786
-#&gt; 235:    93.3219   -5.8522   -0.1218    2.2800   -0.9593    3.1573    3.0042    0.3437    0.3659    0.1917    5.7813    1.5797
-#&gt; 236:    93.3155   -5.8524   -0.1227    2.2789   -0.9595    3.1542    3.0035    0.3433    0.3669    0.1913    5.7834    1.5800
-#&gt; 237:    93.3060   -5.8556   -0.1235    2.2779   -0.9599    3.1308    3.0158    0.3430    0.3678    0.1910    5.7833    1.5809
-#&gt; 238:    93.3111   -5.8563   -0.1242    2.2772   -0.9602    3.1194    3.0099    0.3427    0.3683    0.1907    5.7842    1.5809
-#&gt; 239:    93.3177   -5.8580   -0.1248    2.2764   -0.9605    3.0944    3.0130    0.3423    0.3686    0.1904    5.7840    1.5815
-#&gt; 240:    93.3222   -5.8606   -0.1255    2.2754   -0.9608    3.0739    3.0140    0.3420    0.3686    0.1902    5.7843    1.5825
-#&gt; 241:    93.3289   -5.8627   -0.1262    2.2740   -0.9611    3.0848    3.0167    0.3417    0.3688    0.1900    5.7836    1.5840
-#&gt; 242:    93.3366   -5.8627   -0.1270    2.2727   -0.9612    3.1273    3.0103    0.3415    0.3691    0.1898    5.7855    1.5850
-#&gt; 243:    93.3441   -5.8646   -0.1277    2.2714   -0.9614    3.1530    3.0218    0.3414    0.3692    0.1896    5.7829    1.5856
-#&gt; 244:    93.3499   -5.8645   -0.1285    2.2700   -0.9618    3.1705    3.0265    0.3412    0.3694    0.1894    5.7778    1.5874
-#&gt; 245:    93.3619   -5.8673   -0.1294    2.2686   -0.9622    3.1863    3.0397    0.3412    0.3694    0.1892    5.7752    1.5889
-#&gt; 246:    93.3745   -5.8698   -0.1301    2.2671   -0.9627    3.2105    3.0484    0.3412    0.3693    0.1890    5.7716    1.5905
-#&gt; 247:    93.3838   -5.8757   -0.1307    2.2659   -0.9632    3.2158    3.0715    0.3412    0.3693    0.1889    5.7688    1.5922
-#&gt; 248:    93.3914   -5.8799   -0.1314    2.2650   -0.9640    3.2268    3.0851    0.3413    0.3690    0.1889    5.7648    1.5934
-#&gt; 249:    93.3983   -5.8844   -0.1319    2.2640   -0.9648    3.2471    3.0990    0.3415    0.3691    0.1889    5.7641    1.5944
-#&gt; 250:    93.4032   -5.8898   -0.1324    2.2629   -0.9655    3.2828    3.1197    0.3414    0.3694    0.1887    5.7623    1.5965
-#&gt; 251:    93.4053   -5.8939   -0.1329    2.2621   -0.9657    3.3074    3.1303    0.3414    0.3698    0.1887    5.7611    1.5978
-#&gt; 252:    93.4095   -5.8950   -0.1334    2.2613   -0.9658    3.3479    3.1281    0.3414    0.3701    0.1887    5.7578    1.5986
-#&gt; 253:    93.4132   -5.8956   -0.1340    2.2606   -0.9660    3.3486    3.1283    0.3413    0.3703    0.1887    5.7559    1.5999
-#&gt; 254:    93.4201   -5.8966   -0.1345    2.2597   -0.9660    3.3502    3.1298    0.3413    0.3706    0.1888    5.7593    1.5997
-#&gt; 255:    93.4235   -5.8953   -0.1349    2.2590   -0.9656    3.3332    3.1220    0.3412    0.3706    0.1887    5.7571    1.6012
-#&gt; 256:    93.4231   -5.8926   -0.1353    2.2585   -0.9651    3.3255    3.1104    0.3411    0.3706    0.1886    5.7569    1.6018
-#&gt; 257:    93.4247   -5.8874   -0.1356    2.2582   -0.9646    3.3164    3.0917    0.3410    0.3705    0.1885    5.7585    1.6030
-#&gt; 258:    93.4198   -5.8857   -0.1359    2.2580   -0.9641    3.3086    3.0828    0.3409    0.3702    0.1885    5.7608    1.6026
-#&gt; 259:    93.4125   -5.8833   -0.1362    2.2576   -0.9638    3.2926    3.0726    0.3408    0.3701    0.1885    5.7651    1.6023
-#&gt; 260:    93.4073   -5.8847   -0.1365    2.2572   -0.9640    3.2737    3.0759    0.3406    0.3703    0.1885    5.7687    1.6030
-#&gt; 261:    93.4049   -5.8885   -0.1368    2.2571   -0.9642    3.2510    3.0904    0.3402    0.3702    0.1882    5.7742    1.6028
-#&gt; 262:    93.4036   -5.8931   -0.1371    2.2566   -0.9645    3.2279    3.1104    0.3397    0.3699    0.1880    5.7766    1.6033
-#&gt; 263:    93.4026   -5.8964   -0.1375    2.2562   -0.9647    3.2024    3.1313    0.3395    0.3696    0.1877    5.7786    1.6029
-#&gt; 264:    93.3990   -5.9003   -0.1377    2.2559   -0.9649    3.1808    3.1545    0.3393    0.3694    0.1874    5.7778    1.6022
-#&gt; 265:    93.4005   -5.9013   -0.1380    2.2555   -0.9650    3.1664    3.1680    0.3390    0.3693    0.1871    5.7765    1.6021
-#&gt; 266:    93.4005   -5.9011   -0.1382    2.2552   -0.9653    3.1530    3.1708    0.3387    0.3692    0.1869    5.7763    1.6020
-#&gt; 267:    93.4006   -5.9035   -0.1384    2.2549   -0.9654    3.1384    3.1902    0.3384    0.3690    0.1866    5.7768    1.6014
-#&gt; 268:    93.3972   -5.9086   -0.1385    2.2547   -0.9653    3.1224    3.2331    0.3380    0.3688    0.1863    5.7778    1.6008
-#&gt; 269:    93.3936   -5.9113   -0.1386    2.2547   -0.9654    3.0959    3.2552    0.3377    0.3688    0.1861    5.7782    1.6001
-#&gt; 270:    93.3867   -5.9139   -0.1387    2.2547   -0.9653    3.0853    3.2756    0.3372    0.3687    0.1859    5.7787    1.5989
-#&gt; 271:    93.3836   -5.9154   -0.1389    2.2545   -0.9654    3.0824    3.2889    0.3367    0.3686    0.1858    5.7761    1.5980
-#&gt; 272:    93.3812   -5.9160   -0.1390    2.2543   -0.9653    3.0741    3.2919    0.3362    0.3686    0.1857    5.7729    1.5977
-#&gt; 273:    93.3767   -5.9174   -0.1390    2.2542   -0.9652    3.0663    3.2992    0.3358    0.3687    0.1856    5.7699    1.5970
-#&gt; 274:    93.3696   -5.9171   -0.1391    2.2543   -0.9652    3.0604    3.2940    0.3355    0.3687    0.1855    5.7688    1.5958
-#&gt; 275:    93.3658   -5.9177   -0.1393    2.2544   -0.9651    3.0605    3.2961    0.3353    0.3687    0.1853    5.7675    1.5952
-#&gt; 276:    93.3621   -5.9185   -0.1395    2.2543   -0.9649    3.0508    3.2992    0.3351    0.3686    0.1852    5.7672    1.5940
-#&gt; 277:    93.3602   -5.9206   -0.1397    2.2542   -0.9649    3.0453    3.3087    0.3349    0.3685    0.1851    5.7679    1.5935
-#&gt; 278:    93.3565   -5.9213   -0.1400    2.2539   -0.9648    3.0366    3.3117    0.3347    0.3683    0.1852    5.7695    1.5931
-#&gt; 279:    93.3548   -5.9222   -0.1403    2.2535   -0.9647    3.0284    3.3179    0.3345    0.3682    0.1854    5.7703    1.5928
-#&gt; 280:    93.3544   -5.9215   -0.1407    2.2528   -0.9647    3.0193    3.3141    0.3344    0.3683    0.1854    5.7714    1.5927
-#&gt; 281:    93.3533   -5.9205   -0.1410    2.2522   -0.9647    3.0130    3.3090    0.3341    0.3685    0.1855    5.7706    1.5927
-#&gt; 282:    93.3564   -5.9189   -0.1414    2.2514   -0.9648    3.0025    3.3019    0.3339    0.3686    0.1856    5.7682    1.5930
-#&gt; 283:    93.3571   -5.9164   -0.1417    2.2508   -0.9646    2.9990    3.2926    0.3337    0.3686    0.1858    5.7642    1.5943
-#&gt; 284:    93.3576   -5.9154   -0.1421    2.2501   -0.9644    2.9976    3.2895    0.3336    0.3686    0.1860    5.7625    1.5942
-#&gt; 285:    93.3584   -5.9142   -0.1425    2.2496   -0.9644    2.9906    3.2835    0.3334    0.3684    0.1861    5.7591    1.5939
-#&gt; 286:    93.3609   -5.9137   -0.1429    2.2491   -0.9642    2.9852    3.2817    0.3332    0.3682    0.1863    5.7572    1.5939
-#&gt; 287:    93.3641   -5.9131   -0.1433    2.2485   -0.9641    2.9732    3.2785    0.3331    0.3680    0.1863    5.7547    1.5944
-#&gt; 288:    93.3671   -5.9128   -0.1436    2.2480   -0.9641    2.9673    3.2767    0.3330    0.3679    0.1864    5.7540    1.5939
-#&gt; 289:    93.3676   -5.9125   -0.1440    2.2474   -0.9639    2.9663    3.2765    0.3329    0.3678    0.1865    5.7536    1.5939
-#&gt; 290:    93.3659   -5.9126   -0.1443    2.2469   -0.9637    2.9570    3.2776    0.3328    0.3678    0.1866    5.7523    1.5941
-#&gt; 291:    93.3620   -5.9109   -0.1447    2.2466   -0.9634    2.9472    3.2713    0.3327    0.3676    0.1866    5.7527    1.5943
-#&gt; 292:    93.3601   -5.9096   -0.1450    2.2462   -0.9632    2.9359    3.2664    0.3326    0.3675    0.1866    5.7517    1.5944
-#&gt; 293:    93.3582   -5.9077   -0.1453    2.2457   -0.9629    2.9295    3.2586    0.3326    0.3675    0.1866    5.7514    1.5945
-#&gt; 294:    93.3583   -5.9054   -0.1456    2.2454   -0.9626    2.9203    3.2478    0.3326    0.3676    0.1867    5.7508    1.5942
-#&gt; 295:    93.3577   -5.9037   -0.1459    2.2449   -0.9624    2.9216    3.2406    0.3325    0.3678    0.1867    5.7493    1.5934
-#&gt; 296:    93.3570   -5.9016   -0.1462    2.2445   -0.9623    2.9304    3.2334    0.3323    0.3680    0.1868    5.7502    1.5933
-#&gt; 297:    93.3538   -5.8988   -0.1462    2.2441   -0.9621    2.9429    3.2217    0.3321    0.3681    0.1870    5.7539    1.5939
-#&gt; 298:    93.3525   -5.8966   -0.1463    2.2438   -0.9620    2.9662    3.2118    0.3319    0.3683    0.1870    5.7555    1.5942
-#&gt; 299:    93.3526   -5.8957   -0.1465    2.2437   -0.9619    2.9812    3.2056    0.3318    0.3685    0.1870    5.7582    1.5938
-#&gt; 300:    93.3504   -5.8953   -0.1467    2.2436   -0.9616    2.9982    3.2029    0.3316    0.3688    0.1873    5.7609    1.5937
-#&gt; 301:    93.3469   -5.8941   -0.1469    2.2434   -0.9612    3.0124    3.1993    0.3315    0.3690    0.1875    5.7641    1.5933
-#&gt; 302:    93.3442   -5.8944   -0.1472    2.2434   -0.9609    3.0353    3.2015    0.3313    0.3692    0.1876    5.7660    1.5937
-#&gt; 303:    93.3428   -5.8970   -0.1474    2.2432   -0.9607    3.0454    3.2160    0.3312    0.3692    0.1876    5.7654    1.5938
-#&gt; 304:    93.3407   -5.9012   -0.1475    2.2430   -0.9607    3.0626    3.2409    0.3310    0.3693    0.1877    5.7649    1.5932
-#&gt; 305:    93.3395   -5.9051   -0.1476    2.2429   -0.9607    3.0756    3.2632    0.3308    0.3693    0.1879    5.7650    1.5924
-#&gt; 306:    93.3398   -5.9099   -0.1478    2.2429   -0.9607    3.0881    3.2952    0.3306    0.3694    0.1880    5.7655    1.5920
-#&gt; 307:    93.3406   -5.9128   -0.1479    2.2427   -0.9608    3.0995    3.3163    0.3305    0.3695    0.1880    5.7666    1.5921
-#&gt; 308:    93.3418   -5.9165   -0.1480    2.2426   -0.9610    3.1060    3.3420    0.3303    0.3696    0.1881    5.7674    1.5914
-#&gt; 309:    93.3437   -5.9205   -0.1481    2.2424   -0.9610    3.1185    3.3703    0.3301    0.3697    0.1882    5.7665    1.5908
-#&gt; 310:    93.3442   -5.9236   -0.1482    2.2422   -0.9612    3.1270    3.3902    0.3299    0.3698    0.1882    5.7650    1.5904
-#&gt; 311:    93.3482   -5.9268   -0.1482    2.2421   -0.9614    3.1333    3.4086    0.3296    0.3698    0.1882    5.7636    1.5900
-#&gt; 312:    93.3529   -5.9286   -0.1482    2.2420   -0.9615    3.1348    3.4186    0.3294    0.3699    0.1882    5.7622    1.5895
-#&gt; 313:    93.3573   -5.9290   -0.1481    2.2419   -0.9617    3.1332    3.4199    0.3291    0.3699    0.1882    5.7621    1.5891
-#&gt; 314:    93.3630   -5.9293   -0.1482    2.2418   -0.9619    3.1398    3.4211    0.3289    0.3700    0.1883    5.7594    1.5888
-#&gt; 315:    93.3669   -5.9284   -0.1483    2.2416   -0.9622    3.1464    3.4155    0.3286    0.3702    0.1885    5.7586    1.5889
-#&gt; 316:    93.3724   -5.9279   -0.1485    2.2412   -0.9624    3.1426    3.4124    0.3283    0.3704    0.1887    5.7581    1.5887
-#&gt; 317:    93.3763   -5.9281   -0.1487    2.2409   -0.9626    3.1335    3.4108    0.3281    0.3706    0.1888    5.7573    1.5880
-#&gt; 318:    93.3786   -5.9275   -0.1488    2.2405   -0.9627    3.1262    3.4057    0.3279    0.3709    0.1888    5.7579    1.5876
-#&gt; 319:    93.3821   -5.9275   -0.1490    2.2402   -0.9628    3.1273    3.4032    0.3276    0.3711    0.1889    5.7570    1.5870
-#&gt; 320:    93.3856   -5.9272   -0.1491    2.2401   -0.9629    3.1337    3.3989    0.3273    0.3715    0.1888    5.7563    1.5861
-#&gt; 321:    93.3902   -5.9263   -0.1492    2.2399   -0.9631    3.1388    3.3931    0.3269    0.3718    0.1887    5.7555    1.5852
-#&gt; 322:    93.3951   -5.9251   -0.1493    2.2397   -0.9631    3.1415    3.3856    0.3266    0.3721    0.1886    5.7552    1.5846
-#&gt; 323:    93.3988   -5.9251   -0.1493    2.2395   -0.9632    3.1377    3.3824    0.3262    0.3724    0.1885    5.7556    1.5841
-#&gt; 324:    93.4030   -5.9236   -0.1494    2.2394   -0.9633    3.1355    3.3738    0.3259    0.3727    0.1885    5.7562    1.5837
-#&gt; 325:    93.4047   -5.9219   -0.1495    2.2393   -0.9633    3.1415    3.3647    0.3256    0.3731    0.1884    5.7553    1.5831
-#&gt; 326:    93.4077   -5.9204   -0.1495    2.2391   -0.9634    3.1489    3.3564    0.3254    0.3735    0.1884    5.7562    1.5829
-#&gt; 327:    93.4121   -5.9185   -0.1496    2.2390   -0.9635    3.1503    3.3472    0.3250    0.3739    0.1884    5.7562    1.5825
-#&gt; 328:    93.4157   -5.9182   -0.1496    2.2389   -0.9636    3.1564    3.3432    0.3246    0.3743    0.1884    5.7559    1.5823
-#&gt; 329:    93.4181   -5.9169   -0.1496    2.2388   -0.9638    3.1666    3.3361    0.3243    0.3746    0.1884    5.7544    1.5822
-#&gt; 330:    93.4206   -5.9171   -0.1497    2.2386   -0.9640    3.1726    3.3349    0.3239    0.3748    0.1885    5.7538    1.5824
-#&gt; 331:    93.4214   -5.9172   -0.1497    2.2385   -0.9642    3.1764    3.3332    0.3236    0.3750    0.1886    5.7540    1.5824
-#&gt; 332:    93.4226   -5.9171   -0.1497    2.2385   -0.9645    3.1787    3.3303    0.3232    0.3752    0.1887    5.7539    1.5826
-#&gt; 333:    93.4242   -5.9168   -0.1497    2.2384   -0.9645    3.1757    3.3287    0.3229    0.3755    0.1886    5.7545    1.5823
-#&gt; 334:    93.4273   -5.9167   -0.1497    2.2383   -0.9645    3.1832    3.3290    0.3226    0.3758    0.1887    5.7540    1.5818
-#&gt; 335:    93.4306   -5.9170   -0.1498    2.2384   -0.9644    3.1910    3.3318    0.3223    0.3760    0.1887    5.7548    1.5814
-#&gt; 336:    93.4315   -5.9177   -0.1498    2.2384   -0.9644    3.1999    3.3355    0.3219    0.3762    0.1887    5.7558    1.5811
-#&gt; 337:    93.4332   -5.9181   -0.1499    2.2384   -0.9643    3.2145    3.3360    0.3216    0.3764    0.1887    5.7581    1.5805
-#&gt; 338:    93.4352   -5.9169   -0.1498    2.2384   -0.9643    3.2221    3.3307    0.3213    0.3767    0.1887    5.7592    1.5802
-#&gt; 339:    93.4385   -5.9152   -0.1498    2.2384   -0.9643    3.2356    3.3242    0.3210    0.3770    0.1887    5.7605    1.5797
-#&gt; 340:    93.4417   -5.9130   -0.1498    2.2384   -0.9643    3.2506    3.3167    0.3207    0.3773    0.1888    5.7599    1.5794
-#&gt; 341:    93.4452   -5.9102   -0.1497    2.2382   -0.9641    3.2568    3.3064    0.3205    0.3772    0.1888    5.7590    1.5799
-#&gt; 342:    93.4487   -5.9077   -0.1497    2.2381   -0.9641    3.2628    3.2970    0.3203    0.3772    0.1889    5.7587    1.5802
-#&gt; 343:    93.4519   -5.9055   -0.1497    2.2380   -0.9642    3.2685    3.2892    0.3201    0.3772    0.1889    5.7585    1.5810
-#&gt; 344:    93.4556   -5.9048   -0.1497    2.2379   -0.9643    3.2690    3.2847    0.3200    0.3771    0.1891    5.7573    1.5812
-#&gt; 345:    93.4588   -5.9041   -0.1498    2.2377   -0.9645    3.2704    3.2807    0.3199    0.3771    0.1893    5.7567    1.5811
-#&gt; 346:    93.4605   -5.9033   -0.1498    2.2376   -0.9647    3.2655    3.2747    0.3198    0.3770    0.1893    5.7557    1.5808
-#&gt; 347:    93.4638   -5.9027   -0.1498    2.2375   -0.9648    3.2725    3.2701    0.3198    0.3768    0.1894    5.7532    1.5808
-#&gt; 348:    93.4643   -5.9028   -0.1498    2.2373   -0.9649    3.2764    3.2676    0.3197    0.3768    0.1893    5.7523    1.5807
-#&gt; 349:    93.4664   -5.9023   -0.1497    2.2372   -0.9650    3.2806    3.2638    0.3197    0.3767    0.1893    5.7527    1.5815
-#&gt; 350:    93.4700   -5.9014   -0.1497    2.2370   -0.9651    3.2817    3.2585    0.3196    0.3767    0.1892    5.7534    1.5817
-#&gt; 351:    93.4724   -5.9001   -0.1497    2.2369   -0.9652    3.2825    3.2522    0.3196    0.3768    0.1892    5.7541    1.5818
-#&gt; 352:    93.4744   -5.8986   -0.1497    2.2369   -0.9653    3.2875    3.2460    0.3195    0.3768    0.1891    5.7546    1.5819
-#&gt; 353:    93.4738   -5.8975   -0.1496    2.2369   -0.9653    3.2891    3.2407    0.3195    0.3769    0.1889    5.7560    1.5822
-#&gt; 354:    93.4733   -5.8960   -0.1496    2.2369   -0.9652    3.2856    3.2333    0.3194    0.3768    0.1889    5.7579    1.5824
-#&gt; 355:    93.4731   -5.8944   -0.1496    2.2370   -0.9652    3.2893    3.2259    0.3194    0.3767    0.1888    5.7599    1.5826
-#&gt; 356:    93.4724   -5.8933   -0.1495    2.2373   -0.9652    3.2924    3.2197    0.3194    0.3767    0.1888    5.7608    1.5832
-#&gt; 357:    93.4723   -5.8929   -0.1493    2.2376   -0.9654    3.2907    3.2164    0.3194    0.3767    0.1887    5.7605    1.5833
-#&gt; 358:    93.4723   -5.8923   -0.1491    2.2378   -0.9654    3.2875    3.2120    0.3194    0.3766    0.1886    5.7608    1.5837
-#&gt; 359:    93.4705   -5.8931   -0.1490    2.2379   -0.9656    3.2875    3.2121    0.3194    0.3764    0.1886    5.7606    1.5843
-#&gt; 360:    93.4699   -5.8938   -0.1488    2.2382   -0.9658    3.2837    3.2133    0.3195    0.3763    0.1886    5.7606    1.5848
-#&gt; 361:    93.4693   -5.8951   -0.1487    2.2383   -0.9659    3.2822    3.2164    0.3195    0.3763    0.1886    5.7600    1.5852
-#&gt; 362:    93.4691   -5.8963   -0.1486    2.2385   -0.9660    3.2770    3.2196    0.3195    0.3763    0.1884    5.7618    1.5856
-#&gt; 363:    93.4681   -5.8970   -0.1485    2.2387   -0.9660    3.2706    3.2208    0.3195    0.3762    0.1883    5.7639    1.5857
-#&gt; 364:    93.4674   -5.8970   -0.1484    2.2389   -0.9660    3.2593    3.2189    0.3195    0.3760    0.1881    5.7659    1.5855
-#&gt; 365:    93.4680   -5.8968   -0.1482    2.2391   -0.9659    3.2513    3.2174    0.3196    0.3758    0.1881    5.7686    1.5857
-#&gt; 366:    93.4672   -5.8962   -0.1480    2.2393   -0.9658    3.2493    3.2161    0.3196    0.3755    0.1880    5.7714    1.5861
-#&gt; 367:    93.4656   -5.8953   -0.1479    2.2396   -0.9657    3.2462    3.2121    0.3195    0.3753    0.1881    5.7721    1.5862
-#&gt; 368:    93.4645   -5.8946   -0.1478    2.2398   -0.9657    3.2469    3.2083    0.3194    0.3750    0.1882    5.7724    1.5860
-#&gt; 369:    93.4638   -5.8946   -0.1476    2.2401   -0.9657    3.2544    3.2068    0.3194    0.3749    0.1882    5.7713    1.5856
-#&gt; 370:    93.4639   -5.8946   -0.1475    2.2404   -0.9657    3.2547    3.2066    0.3194    0.3748    0.1882    5.7719    1.5853
-#&gt; 371:    93.4646   -5.8959   -0.1474    2.2407   -0.9657    3.2584    3.2129    0.3194    0.3746    0.1883    5.7725    1.5847
-#&gt; 372:    93.4648   -5.8964   -0.1473    2.2409   -0.9658    3.2649    3.2172    0.3193    0.3745    0.1883    5.7730    1.5843
-#&gt; 373:    93.4658   -5.8958   -0.1471    2.2411   -0.9659    3.2744    3.2135    0.3193    0.3743    0.1884    5.7730    1.5843
-#&gt; 374:    93.4678   -5.8953   -0.1470    2.2412   -0.9662    3.2855    3.2100    0.3192    0.3742    0.1885    5.7727    1.5847
-#&gt; 375:    93.4697   -5.8955   -0.1470    2.2413   -0.9663    3.2917    3.2087    0.3190    0.3742    0.1885    5.7733    1.5845
-#&gt; 376:    93.4707   -5.8960   -0.1469    2.2414   -0.9664    3.2997    3.2095    0.3189    0.3741    0.1885    5.7726    1.5841
-#&gt; 377:    93.4712   -5.8965   -0.1468    2.2415   -0.9665    3.3016    3.2100    0.3188    0.3741    0.1885    5.7724    1.5836
-#&gt; 378:    93.4706   -5.8971   -0.1468    2.2416   -0.9665    3.2958    3.2113    0.3187    0.3741    0.1884    5.7733    1.5829
-#&gt; 379:    93.4699   -5.8983   -0.1467    2.2418   -0.9666    3.2940    3.2174    0.3186    0.3741    0.1883    5.7732    1.5827
-#&gt; 380:    93.4709   -5.8993   -0.1467    2.2418   -0.9667    3.2907    3.2225    0.3185    0.3739    0.1882    5.7726    1.5826
-#&gt; 381:    93.4730   -5.9009   -0.1467    2.2418   -0.9667    3.2861    3.2325    0.3185    0.3737    0.1881    5.7709    1.5825
-#&gt; 382:    93.4746   -5.9018   -0.1467    2.2418   -0.9667    3.2841    3.2407    0.3184    0.3734    0.1880    5.7692    1.5822
-#&gt; 383:    93.4744   -5.9033   -0.1468    2.2418   -0.9667    3.2847    3.2537    0.3184    0.3732    0.1878    5.7672    1.5819
-#&gt; 384:    93.4747   -5.9049   -0.1468    2.2418   -0.9667    3.2854    3.2640    0.3184    0.3729    0.1878    5.7657    1.5816
-#&gt; 385:    93.4751   -5.9062   -0.1468    2.2418   -0.9666    3.2917    3.2702    0.3184    0.3727    0.1877    5.7642    1.5813
-#&gt; 386:    93.4756   -5.9074   -0.1468    2.2418   -0.9666    3.2971    3.2753    0.3185    0.3725    0.1876    5.7625    1.5810
-#&gt; 387:    93.4761   -5.9084   -0.1469    2.2417   -0.9666    3.2988    3.2789    0.3185    0.3723    0.1875    5.7613    1.5804
-#&gt; 388:    93.4777   -5.9092   -0.1469    2.2417   -0.9666    3.3055    3.2811    0.3185    0.3721    0.1875    5.7599    1.5803
-#&gt; 389:    93.4805   -5.9092   -0.1468    2.2417   -0.9667    3.3138    3.2802    0.3185    0.3719    0.1874    5.7588    1.5803
-#&gt; 390:    93.4828   -5.9089   -0.1468    2.2417   -0.9667    3.3164    3.2782    0.3186    0.3718    0.1873    5.7576    1.5806
-#&gt; 391:    93.4854   -5.9094   -0.1467    2.2416   -0.9668    3.3265    3.2800    0.3186    0.3716    0.1873    5.7556    1.5804
-#&gt; 392:    93.4877   -5.9103   -0.1467    2.2416   -0.9669    3.3327    3.2836    0.3187    0.3715    0.1873    5.7535    1.5803
-#&gt; 393:    93.4899   -5.9110   -0.1467    2.2416   -0.9669    3.3419    3.2876    0.3187    0.3715    0.1873    5.7517    1.5803
-#&gt; 394:    93.4925   -5.9117   -0.1467    2.2416   -0.9669    3.3494    3.2903    0.3187    0.3714    0.1873    5.7508    1.5801
-#&gt; 395:    93.4945   -5.9121   -0.1467    2.2416   -0.9670    3.3536    3.2912    0.3187    0.3714    0.1873    5.7497    1.5796
-#&gt; 396:    93.4951   -5.9124   -0.1467    2.2416   -0.9670    3.3590    3.2918    0.3187    0.3715    0.1873    5.7476    1.5793
-#&gt; 397:    93.4955   -5.9123   -0.1467    2.2416   -0.9669    3.3626    3.2904    0.3186    0.3715    0.1873    5.7456    1.5788
-#&gt; 398:    93.4971   -5.9120   -0.1467    2.2416   -0.9669    3.3735    3.2887    0.3186    0.3716    0.1873    5.7433    1.5786
-#&gt; 399:    93.4995   -5.9116   -0.1467    2.2415   -0.9669    3.3854    3.2866    0.3186    0.3716    0.1873    5.7422    1.5785
-#&gt; 400:    93.5007   -5.9116   -0.1466    2.2415   -0.9669    3.3923    3.2856    0.3186    0.3717    0.1873    5.7416    1.5786
-#&gt; 401:    93.5028   -5.9109   -0.1467    2.2415   -0.9669    3.4020    3.2820    0.3186    0.3718    0.1873    5.7412    1.5787
-#&gt; 402:    93.5042   -5.9099   -0.1467    2.2414   -0.9669    3.4114    3.2781    0.3186    0.3719    0.1874    5.7406    1.5788
-#&gt; 403:    93.5054   -5.9090   -0.1467    2.2413   -0.9670    3.4179    3.2735    0.3186    0.3720    0.1874    5.7401    1.5785
-#&gt; 404:    93.5071   -5.9093   -0.1468    2.2412   -0.9670    3.4190    3.2726    0.3186    0.3720    0.1875    5.7392    1.5779
-#&gt; 405:    93.5087   -5.9087   -0.1468    2.2411   -0.9671    3.4186    3.2689    0.3186    0.3721    0.1876    5.7386    1.5776
-#&gt; 406:    93.5091   -5.9087   -0.1469    2.2411   -0.9671    3.4228    3.2688    0.3186    0.3721    0.1876    5.7377    1.5774
-#&gt; 407:    93.5094   -5.9091   -0.1470    2.2411   -0.9672    3.4285    3.2698    0.3186    0.3720    0.1877    5.7368    1.5770
-#&gt; 408:    93.5108   -5.9081   -0.1470    2.2410   -0.9672    3.4378    3.2648    0.3187    0.3719    0.1877    5.7358    1.5766
-#&gt; 409:    93.5113   -5.9082   -0.1470    2.2410   -0.9672    3.4444    3.2643    0.3187    0.3719    0.1878    5.7357    1.5763
-#&gt; 410:    93.5102   -5.9099   -0.1470    2.2410   -0.9672    3.4502    3.2731    0.3188    0.3719    0.1878    5.7359    1.5756
-#&gt; 411:    93.5097   -5.9109   -0.1469    2.2410   -0.9673    3.4534    3.2793    0.3188    0.3718    0.1878    5.7348    1.5753
-#&gt; 412:    93.5102   -5.9114   -0.1469    2.2410   -0.9673    3.4522    3.2836    0.3189    0.3717    0.1878    5.7330    1.5753
-#&gt; 413:    93.5110   -5.9120   -0.1469    2.2410   -0.9675    3.4534    3.2885    0.3189    0.3716    0.1878    5.7320    1.5756
-#&gt; 414:    93.5126   -5.9130   -0.1469    2.2410   -0.9675    3.4550    3.2943    0.3190    0.3716    0.1878    5.7314    1.5753
-#&gt; 415:    93.5144   -5.9140   -0.1469    2.2409   -0.9676    3.4574    3.3003    0.3190    0.3715    0.1878    5.7304    1.5751
-#&gt; 416:    93.5147   -5.9149   -0.1469    2.2409   -0.9676    3.4632    3.3059    0.3191    0.3714    0.1878    5.7292    1.5750
-#&gt; 417:    93.5132   -5.9156   -0.1468    2.2410   -0.9677    3.4675    3.3090    0.3192    0.3713    0.1878    5.7292    1.5747
-#&gt; 418:    93.5131   -5.9165   -0.1468    2.2410   -0.9678    3.4680    3.3130    0.3192    0.3712    0.1878    5.7296    1.5747
-#&gt; 419:    93.5142   -5.9166   -0.1467    2.2411   -0.9678    3.4663    3.3143    0.3193    0.3712    0.1879    5.7302    1.5744
-#&gt; 420:    93.5150   -5.9164   -0.1466    2.2412   -0.9679    3.4626    3.3130    0.3193    0.3712    0.1879    5.7303    1.5744
-#&gt; 421:    93.5162   -5.9169   -0.1465    2.2413   -0.9681    3.4596    3.3158    0.3194    0.3713    0.1880    5.7315    1.5743
-#&gt; 422:    93.5173   -5.9172   -0.1465    2.2414   -0.9682    3.4567    3.3165    0.3194    0.3714    0.1881    5.7332    1.5740
-#&gt; 423:    93.5174   -5.9178   -0.1464    2.2415   -0.9684    3.4550    3.3185    0.3194    0.3715    0.1882    5.7348    1.5741
-#&gt; 424:    93.5174   -5.9189   -0.1464    2.2417   -0.9685    3.4531    3.3225    0.3193    0.3716    0.1882    5.7360    1.5737
-#&gt; 425:    93.5171   -5.9184   -0.1463    2.2418   -0.9685    3.4508    3.3186    0.3192    0.3718    0.1882    5.7372    1.5738
-#&gt; 426:    93.5167   -5.9177   -0.1462    2.2419   -0.9686    3.4566    3.3143    0.3192    0.3720    0.1882    5.7385    1.5735
-#&gt; 427:    93.5185   -5.9174   -0.1462    2.2420   -0.9687    3.4561    3.3114    0.3191    0.3721    0.1881    5.7389    1.5734
-#&gt; 428:    93.5192   -5.9177   -0.1461    2.2421   -0.9688    3.4574    3.3112    0.3191    0.3722    0.1880    5.7398    1.5731
-#&gt; 429:    93.5184   -5.9179   -0.1460    2.2421   -0.9689    3.4558    3.3102    0.3190    0.3723    0.1879    5.7405    1.5729
-#&gt; 430:    93.5170   -5.9187   -0.1460    2.2421   -0.9690    3.4575    3.3132    0.3190    0.3724    0.1879    5.7404    1.5727
-#&gt; 431:    93.5156   -5.9192   -0.1460    2.2422   -0.9691    3.4556    3.3150    0.3190    0.3724    0.1879    5.7405    1.5726
-#&gt; 432:    93.5148   -5.9203   -0.1459    2.2422   -0.9692    3.4557    3.3201    0.3190    0.3725    0.1878    5.7409    1.5727
-#&gt; 433:    93.5134   -5.9215   -0.1459    2.2422   -0.9692    3.4569    3.3263    0.3190    0.3726    0.1878    5.7415    1.5731
-#&gt; 434:    93.5128   -5.9222   -0.1459    2.2423   -0.9691    3.4623    3.3304    0.3190    0.3726    0.1877    5.7422    1.5728
-#&gt; 435:    93.5116   -5.9231   -0.1459    2.2424   -0.9691    3.4672    3.3376    0.3191    0.3727    0.1877    5.7424    1.5726
-#&gt; 436:    93.5111   -5.9228   -0.1459    2.2425   -0.9692    3.4658    3.3352    0.3190    0.3727    0.1876    5.7429    1.5725
-#&gt; 437:    93.5100   -5.9227   -0.1459    2.2425   -0.9692    3.4651    3.3328    0.3190    0.3727    0.1876    5.7430    1.5725
-#&gt; 438:    93.5071   -5.9230   -0.1459    2.2425   -0.9692    3.4614    3.3329    0.3190    0.3728    0.1876    5.7437    1.5725
-#&gt; 439:    93.5035   -5.9225   -0.1459    2.2426   -0.9691    3.4555    3.3298    0.3190    0.3728    0.1875    5.7449    1.5725
-#&gt; 440:    93.5006   -5.9222   -0.1459    2.2426   -0.9690    3.4503    3.3286    0.3190    0.3728    0.1874    5.7461    1.5723
-#&gt; 441:    93.4988   -5.9220   -0.1459    2.2427   -0.9689    3.4445    3.3272    0.3190    0.3728    0.1874    5.7466    1.5721
-#&gt; 442:    93.4971   -5.9216   -0.1459    2.2428   -0.9688    3.4392    3.3265    0.3190    0.3728    0.1874    5.7475    1.5721
-#&gt; 443:    93.4957   -5.9214   -0.1458    2.2429   -0.9688    3.4338    3.3256    0.3190    0.3729    0.1874    5.7487    1.5723
-#&gt; 444:    93.4949   -5.9210   -0.1458    2.2430   -0.9688    3.4288    3.3236    0.3189    0.3729    0.1874    5.7502    1.5721
-#&gt; 445:    93.4932   -5.9210   -0.1458    2.2430   -0.9687    3.4283    3.3237    0.3189    0.3731    0.1874    5.7516    1.5719
-#&gt; 446:    93.4922   -5.9205   -0.1458    2.2430   -0.9687    3.4253    3.3215    0.3188    0.3733    0.1873    5.7524    1.5717
-#&gt; 447:    93.4917   -5.9205   -0.1458    2.2430   -0.9686    3.4257    3.3213    0.3187    0.3736    0.1873    5.7528    1.5715
-#&gt; 448:    93.4924   -5.9205   -0.1458    2.2430   -0.9685    3.4296    3.3209    0.3186    0.3737    0.1872    5.7532    1.5717
-#&gt; 449:    93.4920   -5.9203   -0.1459    2.2430   -0.9684    3.4302    3.3194    0.3185    0.3739    0.1872    5.7542    1.5717
-#&gt; 450:    93.4915   -5.9207   -0.1459    2.2430   -0.9684    3.4314    3.3217    0.3184    0.3741    0.1871    5.7551    1.5715
-#&gt; 451:    93.4915   -5.9214   -0.1459    2.2430   -0.9684    3.4371    3.3253    0.3183    0.3743    0.1871    5.7562    1.5717
-#&gt; 452:    93.4926   -5.9212   -0.1458    2.2430   -0.9683    3.4417    3.3242    0.3182    0.3745    0.1870    5.7567    1.5717
-#&gt; 453:    93.4935   -5.9211   -0.1459    2.2430   -0.9683    3.4413    3.3232    0.3182    0.3746    0.1870    5.7574    1.5714
-#&gt; 454:    93.4941   -5.9209   -0.1459    2.2429   -0.9683    3.4406    3.3222    0.3182    0.3748    0.1870    5.7580    1.5713
-#&gt; 455:    93.4947   -5.9212   -0.1459    2.2429   -0.9684    3.4450    3.3232    0.3181    0.3750    0.1870    5.7580    1.5710
-#&gt; 456:    93.4950   -5.9214   -0.1459    2.2429   -0.9684    3.4481    3.3236    0.3181    0.3751    0.1870    5.7585    1.5708
-#&gt; 457:    93.4961   -5.9220   -0.1459    2.2429   -0.9685    3.4516    3.3266    0.3180    0.3752    0.1869    5.7590    1.5707
-#&gt; 458:    93.4965   -5.9218   -0.1459    2.2428   -0.9685    3.4553    3.3257    0.3179    0.3753    0.1869    5.7589    1.5707
-#&gt; 459:    93.4959   -5.9212   -0.1459    2.2428   -0.9685    3.4572    3.3229    0.3178    0.3754    0.1868    5.7596    1.5705
-#&gt; 460:    93.4960   -5.9209   -0.1459    2.2428   -0.9685    3.4573    3.3209    0.3178    0.3755    0.1868    5.7598    1.5704
-#&gt; 461:    93.4944   -5.9211   -0.1459    2.2428   -0.9685    3.4592    3.3202    0.3177    0.3757    0.1868    5.7609    1.5701
-#&gt; 462:    93.4941   -5.9214   -0.1459    2.2428   -0.9686    3.4630    3.3206    0.3176    0.3759    0.1868    5.7617    1.5700
-#&gt; 463:    93.4932   -5.9215   -0.1459    2.2429   -0.9686    3.4708    3.3197    0.3175    0.3761    0.1868    5.7622    1.5699
-#&gt; 464:    93.4933   -5.9209   -0.1459    2.2429   -0.9685    3.4759    3.3162    0.3175    0.3762    0.1869    5.7628    1.5696
-#&gt; 465:    93.4928   -5.9204   -0.1459    2.2428   -0.9685    3.4794    3.3133    0.3174    0.3764    0.1870    5.7642    1.5693
-#&gt; 466:    93.4934   -5.9197   -0.1460    2.2428   -0.9685    3.4838    3.3105    0.3173    0.3766    0.1870    5.7659    1.5693
-#&gt; 467:    93.4931   -5.9197   -0.1460    2.2428   -0.9685    3.4866    3.3094    0.3172    0.3768    0.1871    5.7667    1.5691
-#&gt; 468:    93.4933   -5.9198   -0.1460    2.2428   -0.9685    3.4916    3.3099    0.3172    0.3769    0.1871    5.7672    1.5690
-#&gt; 469:    93.4936   -5.9200   -0.1461    2.2427   -0.9685    3.4929    3.3119    0.3171    0.3771    0.1871    5.7681    1.5689
-#&gt; 470:    93.4938   -5.9200   -0.1461    2.2427   -0.9685    3.4931    3.3111    0.3171    0.3773    0.1871    5.7685    1.5687
-#&gt; 471:    93.4943   -5.9198   -0.1461    2.2427   -0.9685    3.4932    3.3097    0.3170    0.3776    0.1871    5.7681    1.5686
-#&gt; 472:    93.4931   -5.9197   -0.1461    2.2427   -0.9684    3.4923    3.3092    0.3170    0.3778    0.1870    5.7683    1.5686
-#&gt; 473:    93.4928   -5.9193   -0.1461    2.2426   -0.9684    3.4918    3.3068    0.3169    0.3781    0.1870    5.7690    1.5685
-#&gt; 474:    93.4920   -5.9193   -0.1462    2.2426   -0.9683    3.4878    3.3075    0.3169    0.3781    0.1870    5.7687    1.5688
-#&gt; 475:    93.4909   -5.9191   -0.1463    2.2425   -0.9683    3.4868    3.3069    0.3169    0.3782    0.1869    5.7681    1.5692
-#&gt; 476:    93.4887   -5.9190   -0.1464    2.2424   -0.9682    3.4881    3.3072    0.3169    0.3783    0.1869    5.7673    1.5694
-#&gt; 477:    93.4875   -5.9185   -0.1465    2.2423   -0.9681    3.4847    3.3059    0.3169    0.3784    0.1868    5.7667    1.5696
-#&gt; 478:    93.4867   -5.9182   -0.1466    2.2421   -0.9681    3.4804    3.3056    0.3170    0.3784    0.1867    5.7661    1.5700
-#&gt; 479:    93.4865   -5.9178   -0.1468    2.2419   -0.9681    3.4768    3.3043    0.3171    0.3784    0.1867    5.7657    1.5702
-#&gt; 480:    93.4863   -5.9181   -0.1469    2.2417   -0.9680    3.4733    3.3057    0.3172    0.3784    0.1866    5.7656    1.5702
-#&gt; 481:    93.4865   -5.9182   -0.1470    2.2415   -0.9680    3.4694    3.3069    0.3173    0.3784    0.1866    5.7648    1.5705
-#&gt; 482:    93.4871   -5.9187   -0.1472    2.2412   -0.9681    3.4667    3.3089    0.3173    0.3784    0.1865    5.7631    1.5709
-#&gt; 483:    93.4860   -5.9192   -0.1473    2.2410   -0.9681    3.4668    3.3107    0.3174    0.3785    0.1865    5.7624    1.5709
-#&gt; 484:    93.4858   -5.9193   -0.1474    2.2408   -0.9681    3.4681    3.3111    0.3174    0.3786    0.1864    5.7615    1.5713
-#&gt; 485:    93.4858   -5.9195   -0.1476    2.2406   -0.9681    3.4643    3.3110    0.3174    0.3787    0.1864    5.7612    1.5717
-#&gt; 486:    93.4853   -5.9198   -0.1477    2.2404   -0.9682    3.4665    3.3115    0.3174    0.3788    0.1864    5.7612    1.5717
-#&gt; 487:    93.4856   -5.9201   -0.1478    2.2402   -0.9682    3.4687    3.3143    0.3173    0.3790    0.1864    5.7612    1.5719
-#&gt; 488:    93.4858   -5.9209   -0.1479    2.2401   -0.9683    3.4688    3.3186    0.3173    0.3792    0.1864    5.7626    1.5722
-#&gt; 489:    93.4870   -5.9211   -0.1480    2.2399   -0.9684    3.4681    3.3198    0.3174    0.3794    0.1863    5.7640    1.5725
-#&gt; 490:    93.4881   -5.9213   -0.1481    2.2398   -0.9684    3.4694    3.3211    0.3174    0.3797    0.1864    5.7650    1.5728
-#&gt; 491:    93.4892   -5.9210   -0.1482    2.2395   -0.9685    3.4716    3.3193    0.3173    0.3799    0.1864    5.7650    1.5732
-#&gt; 492:    93.4907   -5.9211   -0.1483    2.2393   -0.9686    3.4754    3.3179    0.3173    0.3801    0.1865    5.7648    1.5736
-#&gt; 493:    93.4928   -5.9215   -0.1484    2.2390   -0.9686    3.4858    3.3185    0.3173    0.3803    0.1865    5.7640    1.5738
-#&gt; 494:    93.4937   -5.9217   -0.1485    2.2388   -0.9687    3.4940    3.3182    0.3172    0.3805    0.1865    5.7639    1.5740
-#&gt; 495:    93.4945   -5.9213   -0.1485    2.2386   -0.9688    3.4998    3.3151    0.3172    0.3808    0.1866    5.7638    1.5742
-#&gt; 496:    93.4953   -5.9208   -0.1486    2.2384   -0.9688    3.5036    3.3123    0.3172    0.3810    0.1867    5.7635    1.5745
-#&gt; 497:    93.4969   -5.9205   -0.1487    2.2382   -0.9689    3.5064    3.3109    0.3172    0.3813    0.1868    5.7637    1.5747
-#&gt; 498:    93.4980   -5.9205   -0.1488    2.2379   -0.9690    3.5057    3.3104    0.3171    0.3815    0.1868    5.7639    1.5752
-#&gt; 499:    93.4999   -5.9205   -0.1488    2.2377   -0.9691    3.5095    3.3102    0.3171    0.3817    0.1869    5.7639    1.5756
-#&gt; 500:    93.5013   -5.9210   -0.1489    2.2376   -0.9691    3.5093    3.3135    0.3171    0.3818    0.1869    5.7644    1.5758</div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
-#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#&gt; F: Forward difference gradient approximation
-#&gt; C: Central difference gradient approximation
-#&gt; M: Mixed forward and central difference gradient approximation
-#&gt; Unscaled parameters for Omegas=chol(solve(omega));
-#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
-#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
-#&gt; |    #| Objective Fun |  parent_0 |  log_k_A1 |f_parent_qlogis | log_alpha |
-#&gt; |.....................|  log_beta |sigma_parent |  sigma_A1 |        o1 |
-#&gt; |.....................|        o2 |        o3 |        o4 |        o5 |
-#&gt; |<span style='font-weight: bold;'>    1</span>|     470.09130 |     1.000 |    -1.000 |   -0.9119 |   -0.8960 |
-#&gt; |.....................|   -0.8494 |   -0.8528 |   -0.8683 |   -0.8768 |
-#&gt; |.....................|   -0.8744 |   -0.8681 |   -0.8700 |   -0.8694 |
-#&gt; |    U|      470.0913 |     94.11 |    -5.371 |   -0.9909 |   -0.1965 |
-#&gt; |.....................|     2.121 |     1.952 |     1.178 |    0.7545 |
-#&gt; |.....................|    0.8769 |     1.189 |     1.095 |     1.127 |
-#&gt; |    X|<span style='font-weight: bold;'>      470.0913</span> |     94.11 |  0.004648 |    0.2707 |    0.8216 |
-#&gt; |.....................|     8.339 |     1.952 |     1.178 |    0.7545 |
-#&gt; |.....................|    0.8769 |     1.189 |     1.095 |     1.127 |
-#&gt; |    G|    Gill Diff. |     72.01 |     2.213 |   -0.2476 |   -0.3163 |
-#&gt; |.....................|   -0.8532 |    -32.82 |    -13.44 |     9.552 |
-#&gt; |.....................|     11.72 |    -12.16 |    -9.599 |    -9.049 |
-#&gt; |<span style='font-weight: bold;'>    2</span>|     5180.4321 |    0.1393 |    -1.026 |   -0.9090 |   -0.8922 |
-#&gt; |.....................|   -0.8392 |   -0.4605 |   -0.7077 |   -0.9910 |
-#&gt; |.....................|    -1.014 |   -0.7228 |   -0.7553 |   -0.7612 |
-#&gt; |    U|     5180.4321 |     13.11 |    -5.398 |   -0.9880 |   -0.1927 |
-#&gt; |.....................|     2.131 |     2.334 |     1.272 |    0.6684 |
-#&gt; |.....................|    0.7541 |     1.362 |     1.220 |     1.248 |
-#&gt; |    X|<span style='font-weight: bold;'>     5180.4321</span> |     13.11 |  0.004526 |    0.2713 |    0.8247 |
-#&gt; |.....................|     8.424 |     2.334 |     1.272 |    0.6684 |
-#&gt; |.....................|    0.7541 |     1.362 |     1.220 |     1.248 |
-#&gt; |<span style='font-weight: bold;'>    3</span>|     529.93288 |    0.9139 |    -1.003 |   -0.9116 |   -0.8956 |
-#&gt; |.....................|   -0.8484 |   -0.8135 |   -0.8523 |   -0.8883 |
-#&gt; |.....................|   -0.8884 |   -0.8536 |   -0.8585 |   -0.8585 |
-#&gt; |    U|     529.93288 |     86.01 |    -5.374 |   -0.9906 |   -0.1961 |
-#&gt; |.....................|     2.122 |     1.990 |     1.187 |    0.7459 |
-#&gt; |.....................|    0.8647 |     1.206 |     1.107 |     1.139 |
-#&gt; |    X|<span style='font-weight: bold;'>     529.93288</span> |     86.01 |  0.004635 |    0.2708 |    0.8219 |
-#&gt; |.....................|     8.347 |     1.990 |     1.187 |    0.7459 |
-#&gt; |.....................|    0.8647 |     1.206 |     1.107 |     1.139 |
-#&gt; |<span style='font-weight: bold;'>    4</span>|     469.96296 |    0.9914 |    -1.000 |   -0.9119 |   -0.8959 |
-#&gt; |.....................|   -0.8493 |   -0.8489 |   -0.8667 |   -0.8780 |
-#&gt; |.....................|   -0.8758 |   -0.8667 |   -0.8689 |   -0.8683 |
-#&gt; |    U|     469.96296 |     93.30 |    -5.372 |   -0.9909 |   -0.1965 |
-#&gt; |.....................|     2.121 |     1.955 |     1.179 |    0.7536 |
-#&gt; |.....................|    0.8757 |     1.191 |     1.096 |     1.128 |
-#&gt; |    X|<span style='font-weight: bold;'>     469.96296</span> |     93.30 |  0.004646 |    0.2707 |    0.8216 |
-#&gt; |.....................|     8.339 |     1.955 |     1.179 |    0.7536 |
-#&gt; |.....................|    0.8757 |     1.191 |     1.096 |     1.128 |
-#&gt; |    F| Forward Diff. |    -91.63 |     2.121 |   -0.4143 |   -0.3985 |
-#&gt; |.....................|    -1.124 |    -34.23 |    -12.87 |     9.567 |
-#&gt; |.....................|     8.592 |    -11.79 |    -9.469 |    -8.518 |
-#&gt; |<span style='font-weight: bold;'>    5</span>|     469.41305 |    0.9973 |    -1.001 |   -0.9118 |   -0.8959 |
-#&gt; |.....................|   -0.8491 |   -0.8424 |   -0.8642 |   -0.8798 |
-#&gt; |.....................|   -0.8776 |   -0.8644 |   -0.8670 |   -0.8666 |
-#&gt; |    U|     469.41305 |     93.85 |    -5.372 |   -0.9908 |   -0.1964 |
-#&gt; |.....................|     2.121 |     1.962 |     1.180 |    0.7523 |
-#&gt; |.....................|    0.8741 |     1.193 |     1.098 |     1.130 |
-#&gt; |    X|<span style='font-weight: bold;'>     469.41305</span> |     93.85 |  0.004644 |    0.2707 |    0.8217 |
-#&gt; |.....................|     8.341 |     1.962 |     1.180 |    0.7523 |
-#&gt; |.....................|    0.8741 |     1.193 |     1.098 |     1.130 |
-#&gt; |    F| Forward Diff. |     19.88 |     2.163 |   -0.2989 |   -0.3449 |
-#&gt; |.....................|   -0.9473 |    -32.84 |    -13.22 |     8.952 |
-#&gt; |.....................|     11.37 |    -11.75 |    -9.421 |    -8.530 |
-#&gt; |<span style='font-weight: bold;'>    6</span>|     469.13124 |    0.9930 |    -1.001 |   -0.9118 |   -0.8958 |
-#&gt; |.....................|   -0.8489 |   -0.8354 |   -0.8614 |   -0.8817 |
-#&gt; |.....................|   -0.8801 |   -0.8619 |   -0.8650 |   -0.8648 |
-#&gt; |    U|     469.13124 |     93.45 |    -5.373 |   -0.9908 |   -0.1963 |
-#&gt; |.....................|     2.121 |     1.969 |     1.182 |    0.7508 |
-#&gt; |.....................|    0.8719 |     1.196 |     1.100 |     1.132 |
-#&gt; |    X|<span style='font-weight: bold;'>     469.13124</span> |     93.45 |  0.004642 |    0.2708 |    0.8218 |
-#&gt; |.....................|     8.343 |     1.969 |     1.182 |    0.7508 |
-#&gt; |.....................|    0.8719 |     1.196 |     1.100 |     1.132 |
-#&gt; |    F| Forward Diff. |    -60.06 |     2.108 |   -0.3845 |   -0.3876 |
-#&gt; |.....................|    -1.088 |    -32.82 |    -12.89 |     8.720 |
-#&gt; |.....................|     9.663 |    -11.60 |    -9.301 |    -8.348 |
-#&gt; |<span style='font-weight: bold;'>    7</span>|     468.71336 |    0.9979 |    -1.002 |   -0.9117 |   -0.8957 |
-#&gt; |.....................|   -0.8487 |   -0.8285 |   -0.8586 |   -0.8835 |
-#&gt; |.....................|   -0.8823 |   -0.8594 |   -0.8631 |   -0.8630 |
-#&gt; |    U|     468.71336 |     93.91 |    -5.373 |   -0.9907 |   -0.1962 |
-#&gt; |.....................|     2.122 |     1.975 |     1.183 |    0.7495 |
-#&gt; |.....................|    0.8700 |     1.199 |     1.102 |     1.134 |
-#&gt; |    X|<span style='font-weight: bold;'>     468.71336</span> |     93.91 |  0.004640 |    0.2708 |    0.8218 |
-#&gt; |.....................|     8.345 |     1.975 |     1.183 |    0.7495 |
-#&gt; |.....................|    0.8700 |     1.199 |     1.102 |     1.134 |
-#&gt; |    F| Forward Diff. |     31.80 |     2.131 |   -0.3007 |   -0.3556 |
-#&gt; |.....................|   -0.9543 |    -30.66 |    -12.35 |     8.979 |
-#&gt; |.....................|     9.681 |    -11.54 |    -9.231 |    -8.330 |
-#&gt; |<span style='font-weight: bold;'>    8</span>|     468.42878 |    0.9931 |    -1.002 |   -0.9116 |   -0.8956 |
-#&gt; |.....................|   -0.8484 |   -0.8217 |   -0.8559 |   -0.8855 |
-#&gt; |.....................|   -0.8845 |   -0.8568 |   -0.8610 |   -0.8612 |
-#&gt; |    U|     468.42878 |     93.46 |    -5.373 |   -0.9906 |   -0.1962 |
-#&gt; |.....................|     2.122 |     1.982 |     1.185 |    0.7480 |
-#&gt; |.....................|    0.8681 |     1.202 |     1.105 |     1.136 |
-#&gt; |    X|<span style='font-weight: bold;'>     468.42878</span> |     93.46 |  0.004638 |    0.2708 |    0.8219 |
-#&gt; |.....................|     8.346 |     1.982 |     1.185 |    0.7480 |
-#&gt; |.....................|    0.8681 |     1.202 |     1.105 |     1.136 |
-#&gt; |    F| Forward Diff. |    -55.97 |     2.081 |   -0.3855 |   -0.3928 |
-#&gt; |.....................|    -1.100 |    -30.89 |    -12.11 |     8.596 |
-#&gt; |.....................|     9.353 |    -11.36 |    -9.087 |    -8.137 |
-#&gt; |<span style='font-weight: bold;'>    9</span>|     468.02528 |    0.9977 |    -1.003 |   -0.9115 |   -0.8955 |
-#&gt; |.....................|   -0.8482 |   -0.8148 |   -0.8531 |   -0.8875 |
-#&gt; |.....................|   -0.8866 |   -0.8542 |   -0.8589 |   -0.8593 |
-#&gt; |    U|     468.02528 |     93.90 |    -5.374 |   -0.9905 |   -0.1961 |
-#&gt; |.....................|     2.122 |     1.989 |     1.187 |    0.7465 |
-#&gt; |.....................|    0.8662 |     1.206 |     1.107 |     1.138 |
-#&gt; |    X|<span style='font-weight: bold;'>     468.02528</span> |     93.90 |  0.004636 |    0.2708 |    0.8220 |
-#&gt; |.....................|     8.348 |     1.989 |     1.187 |    0.7465 |
-#&gt; |.....................|    0.8662 |     1.206 |     1.107 |     1.138 |
-#&gt; |    F| Forward Diff. |     28.40 |     2.101 |   -0.3066 |   -0.3612 |
-#&gt; |.....................|   -0.9721 |    -29.21 |    -11.91 |     8.561 |
-#&gt; |.....................|     9.360 |    -11.31 |    -9.026 |    -8.108 |
-#&gt; |<span style='font-weight: bold;'>   10</span>|     467.76129 |    0.9930 |    -1.003 |   -0.9115 |   -0.8954 |
-#&gt; |.....................|   -0.8479 |   -0.8081 |   -0.8503 |   -0.8895 |
-#&gt; |.....................|   -0.8888 |   -0.8515 |   -0.8567 |   -0.8574 |
-#&gt; |    U|     467.76129 |     93.46 |    -5.374 |   -0.9905 |   -0.1960 |
-#&gt; |.....................|     2.122 |     1.995 |     1.188 |    0.7450 |
-#&gt; |.....................|    0.8643 |     1.209 |     1.109 |     1.140 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.76129</span> |     93.46 |  0.004633 |    0.2708 |    0.8220 |
-#&gt; |.....................|     8.351 |     1.995 |     1.188 |    0.7450 |
-#&gt; |.....................|    0.8643 |     1.209 |     1.109 |     1.140 |
-#&gt; |    F| Forward Diff. |    -56.33 |     2.052 |   -0.3905 |   -0.3944 |
-#&gt; |.....................|    -1.108 |    -29.62 |    -11.80 |     8.124 |
-#&gt; |.....................|     9.000 |    -11.14 |    -8.878 |    -7.912 |
-#&gt; |<span style='font-weight: bold;'>   11</span>|     467.36507 |    0.9976 |    -1.004 |   -0.9114 |   -0.8953 |
-#&gt; |.....................|   -0.8477 |   -0.8013 |   -0.8475 |   -0.8914 |
-#&gt; |.....................|   -0.8910 |   -0.8487 |   -0.8545 |   -0.8554 |
-#&gt; |    U|     467.36507 |     93.88 |    -5.375 |   -0.9904 |   -0.1959 |
-#&gt; |.....................|     2.123 |     2.002 |     1.190 |    0.7435 |
-#&gt; |.....................|    0.8624 |     1.212 |     1.112 |     1.142 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.36507</span> |     93.88 |  0.004631 |    0.2708 |    0.8221 |
-#&gt; |.....................|     8.353 |     2.002 |     1.190 |    0.7435 |
-#&gt; |.....................|    0.8624 |     1.212 |     1.112 |     1.142 |
-#&gt; |    F| Forward Diff. |     25.62 |     2.072 |   -0.2964 |   -0.3658 |
-#&gt; |.....................|   -0.9890 |    -26.78 |    -10.91 |     8.547 |
-#&gt; |.....................|     9.002 |    -11.08 |    -8.799 |    -7.879 |
-#&gt; |<span style='font-weight: bold;'>   12</span>|     467.13453 |    0.9928 |    -1.004 |   -0.9113 |   -0.8952 |
-#&gt; |.....................|   -0.8474 |   -0.7947 |   -0.8448 |   -0.8935 |
-#&gt; |.....................|   -0.8932 |   -0.8459 |   -0.8523 |   -0.8534 |
-#&gt; |    U|     467.13453 |     93.43 |    -5.376 |   -0.9903 |   -0.1958 |
-#&gt; |.....................|     2.123 |     2.008 |     1.191 |    0.7419 |
-#&gt; |.....................|    0.8604 |     1.215 |     1.114 |     1.145 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.13453</span> |     93.43 |  0.004628 |    0.2709 |    0.8222 |
-#&gt; |.....................|     8.355 |     2.008 |     1.191 |    0.7419 |
-#&gt; |.....................|    0.8604 |     1.215 |     1.114 |     1.145 |
-#&gt; |    F| Forward Diff. |    -59.86 |     2.021 |   -0.3893 |   -0.4093 |
-#&gt; |.....................|    -1.140 |    -28.00 |    -11.13 |     7.926 |
-#&gt; |.....................|     9.918 |    -10.90 |    -8.684 |    -7.680 |
-#&gt; |<span style='font-weight: bold;'>   13</span>|     466.72836 |    0.9971 |    -1.005 |   -0.9112 |   -0.8951 |
-#&gt; |.....................|   -0.8471 |   -0.7882 |   -0.8421 |   -0.8957 |
-#&gt; |.....................|   -0.8959 |   -0.8428 |   -0.8499 |   -0.8513 |
-#&gt; |    U|     466.72836 |     93.84 |    -5.376 |   -0.9902 |   -0.1956 |
-#&gt; |.....................|     2.123 |     2.015 |     1.193 |    0.7403 |
-#&gt; |.....................|    0.8581 |     1.219 |     1.117 |     1.147 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.72836</span> |     93.84 |  0.004626 |    0.2709 |    0.8223 |
-#&gt; |.....................|     8.358 |     2.015 |     1.193 |    0.7403 |
-#&gt; |.....................|    0.8581 |     1.219 |     1.117 |     1.147 |
-#&gt; |    F| Forward Diff. |     18.13 |     2.039 |   -0.3145 |   -0.3694 |
-#&gt; |.....................|    -1.015 |    -26.10 |    -10.63 |     8.044 |
-#&gt; |.....................|     8.616 |    -10.80 |    -8.580 |    -7.637 |
-#&gt; |<span style='font-weight: bold;'>   14</span>|     466.53378 |    0.9925 |    -1.005 |   -0.9111 |   -0.8950 |
-#&gt; |.....................|   -0.8468 |   -0.7815 |   -0.8394 |   -0.8978 |
-#&gt; |.....................|   -0.8981 |   -0.8400 |   -0.8477 |   -0.8494 |
-#&gt; |    U|     466.53378 |     93.40 |    -5.377 |   -0.9901 |   -0.1956 |
-#&gt; |.....................|     2.123 |     2.021 |     1.195 |    0.7387 |
-#&gt; |.....................|    0.8562 |     1.222 |     1.119 |     1.149 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.53378</span> |     93.40 |  0.004623 |    0.2709 |    0.8224 |
-#&gt; |.....................|     8.360 |     2.021 |     1.195 |    0.7387 |
-#&gt; |.....................|    0.8562 |     1.222 |     1.119 |     1.149 |
-#&gt; |    F| Forward Diff. |    -63.81 |     1.989 |   -0.4067 |   -0.4178 |
-#&gt; |.....................|    -1.167 |    -26.39 |    -10.45 |     7.924 |
-#&gt; |.....................|     8.221 |    -10.62 |    -8.445 |    -7.432 |
-#&gt; |<span style='font-weight: bold;'>   15</span>|     466.13347 |    0.9972 |    -1.006 |   -0.9110 |   -0.8949 |
-#&gt; |.....................|   -0.8464 |   -0.7752 |   -0.8368 |   -0.9000 |
-#&gt; |.....................|   -0.9002 |   -0.8369 |   -0.8452 |   -0.8472 |
-#&gt; |    U|     466.13347 |     93.85 |    -5.377 |   -0.9900 |   -0.1954 |
-#&gt; |.....................|     2.124 |     2.027 |     1.196 |    0.7370 |
-#&gt; |.....................|    0.8543 |     1.226 |     1.122 |     1.152 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.13347</span> |     93.85 |  0.004620 |    0.2709 |    0.8225 |
-#&gt; |.....................|     8.363 |     2.027 |     1.196 |    0.7370 |
-#&gt; |.....................|    0.8543 |     1.226 |     1.122 |     1.152 |
-#&gt; |    F| Forward Diff. |     18.92 |     2.012 |   -0.3108 |   -0.3757 |
-#&gt; |.....................|    -1.021 |    -25.52 |    -10.81 |     7.279 |
-#&gt; |.....................|     9.661 |    -10.54 |    -8.331 |    -7.395 |
-#&gt; |<span style='font-weight: bold;'>   16</span>|     465.94504 |    0.9925 |    -1.006 |   -0.9109 |   -0.8948 |
-#&gt; |.....................|   -0.8461 |   -0.7686 |   -0.8339 |   -0.9019 |
-#&gt; |.....................|   -0.9028 |   -0.8341 |   -0.8430 |   -0.8453 |
-#&gt; |    U|     465.94504 |     93.41 |    -5.378 |   -0.9899 |   -0.1953 |
-#&gt; |.....................|     2.124 |     2.034 |     1.198 |    0.7356 |
-#&gt; |.....................|    0.8521 |     1.229 |     1.124 |     1.154 |
-#&gt; |    X|<span style='font-weight: bold;'>     465.94504</span> |     93.41 |  0.004618 |    0.2709 |    0.8226 |
-#&gt; |.....................|     8.366 |     2.034 |     1.198 |    0.7356 |
-#&gt; |.....................|    0.8521 |     1.229 |     1.124 |     1.154 |
-#&gt; |    F| Forward Diff. |    -61.65 |     1.961 |   -0.4097 |   -0.4254 |
-#&gt; |.....................|    -1.181 |    -25.22 |    -10.13 |     7.338 |
-#&gt; |.....................|     9.206 |    -10.38 |    -8.223 |    -7.205 |
-#&gt; |<span style='font-weight: bold;'>   17</span>|     465.56754 |    0.9973 |    -1.007 |   -0.9108 |   -0.8946 |
-#&gt; |.....................|   -0.8457 |   -0.7626 |   -0.8312 |   -0.9037 |
-#&gt; |.....................|   -0.9058 |   -0.8309 |   -0.8405 |   -0.8432 |
-#&gt; |    U|     465.56754 |     93.86 |    -5.378 |   -0.9898 |   -0.1952 |
-#&gt; |.....................|     2.125 |     2.040 |     1.199 |    0.7342 |
-#&gt; |.....................|    0.8494 |     1.233 |     1.127 |     1.156 |
-#&gt; |    X|<span style='font-weight: bold;'>     465.56754</span> |     93.86 |  0.004615 |    0.2710 |    0.8227 |
-#&gt; |.....................|     8.369 |     2.040 |     1.199 |    0.7342 |
-#&gt; |.....................|    0.8494 |     1.233 |     1.127 |     1.156 |
-#&gt; |    F| Forward Diff. |     20.78 |     1.982 |   -0.3060 |   -0.3796 |
-#&gt; |.....................|    -1.026 |    -23.61 |    -9.859 |     7.282 |
-#&gt; |.....................|     6.603 |    -10.29 |    -8.096 |    -7.167 |
-#&gt; |<span style='font-weight: bold;'>   18</span>|     465.36858 |    0.9928 |    -1.008 |   -0.9107 |   -0.8945 |
-#&gt; |.....................|   -0.8454 |   -0.7560 |   -0.8284 |   -0.9059 |
-#&gt; |.....................|   -0.9077 |   -0.8278 |   -0.8381 |   -0.8410 |
-#&gt; |    U|     465.36858 |     93.44 |    -5.379 |   -0.9897 |   -0.1950 |
-#&gt; |.....................|     2.125 |     2.046 |     1.201 |    0.7326 |
-#&gt; |.....................|    0.8477 |     1.237 |     1.130 |     1.159 |
-#&gt; |    X|<span style='font-weight: bold;'>     465.36858</span> |     93.44 |  0.004612 |    0.2710 |    0.8228 |
-#&gt; |.....................|     8.372 |     2.046 |     1.201 |    0.7326 |
-#&gt; |.....................|    0.8477 |     1.237 |     1.130 |     1.159 |
-#&gt; |    F| Forward Diff. |    -55.43 |     1.935 |   -0.4028 |   -0.4254 |
-#&gt; |.....................|    -1.182 |    -23.34 |    -9.189 |     7.305 |
-#&gt; |.....................|     7.555 |    -10.07 |    -7.946 |    -6.960 |
-#&gt; |<span style='font-weight: bold;'>   19</span>|     465.01863 |    0.9972 |    -1.008 |   -0.9105 |   -0.8943 |
-#&gt; |.....................|   -0.8449 |   -0.7499 |   -0.8257 |   -0.9082 |
-#&gt; |.....................|   -0.9092 |   -0.8240 |   -0.8352 |   -0.8386 |
-#&gt; |    U|     465.01863 |     93.84 |    -5.380 |   -0.9895 |   -0.1948 |
-#&gt; |.....................|     2.125 |     2.052 |     1.203 |    0.7308 |
-#&gt; |.....................|    0.8464 |     1.241 |     1.133 |     1.161 |
-#&gt; |    X|<span style='font-weight: bold;'>     465.01863</span> |     93.84 |  0.004609 |    0.2710 |    0.8230 |
-#&gt; |.....................|     8.376 |     2.052 |     1.203 |    0.7308 |
-#&gt; |.....................|    0.8464 |     1.241 |     1.133 |     1.161 |
-#&gt; |    F| Forward Diff. |     18.74 |     1.956 |   -0.3105 |   -0.3857 |
-#&gt; |.....................|    -1.041 |    -22.36 |    -9.386 |     7.151 |
-#&gt; |.....................|     7.639 |    -9.969 |    -7.832 |    -6.900 |
-#&gt; |<span style='font-weight: bold;'>   20</span>|     464.81883 |    0.9930 |    -1.009 |   -0.9104 |   -0.8942 |
-#&gt; |.....................|   -0.8445 |   -0.7435 |   -0.8230 |   -0.9105 |
-#&gt; |.....................|   -0.9115 |   -0.8207 |   -0.8326 |   -0.8363 |
-#&gt; |    U|     464.81883 |     93.45 |    -5.381 |   -0.9894 |   -0.1947 |
-#&gt; |.....................|     2.126 |     2.058 |     1.204 |    0.7291 |
-#&gt; |.....................|    0.8444 |     1.245 |     1.136 |     1.164 |
-#&gt; |    X|<span style='font-weight: bold;'>     464.81883</span> |     93.45 |  0.004605 |    0.2710 |    0.8231 |
-#&gt; |.....................|     8.380 |     2.058 |     1.204 |    0.7291 |
-#&gt; |.....................|    0.8444 |     1.245 |     1.136 |     1.164 |
-#&gt; |    F| Forward Diff. |    -51.40 |     1.910 |   -0.3971 |   -0.4173 |
-#&gt; |.....................|    -1.192 |    -21.85 |    -8.569 |     7.088 |
-#&gt; |.....................|     7.257 |    -9.784 |    -7.694 |    -6.698 |
-#&gt; |<span style='font-weight: bold;'>   21</span>|     464.49434 |    0.9973 |    -1.010 |   -0.9102 |   -0.8940 |
-#&gt; |.....................|   -0.8439 |   -0.7380 |   -0.8206 |   -0.9131 |
-#&gt; |.....................|   -0.9139 |   -0.8168 |   -0.8296 |   -0.8338 |
-#&gt; |    U|     464.49434 |     93.85 |    -5.381 |   -0.9892 |   -0.1945 |
-#&gt; |.....................|     2.126 |     2.064 |     1.206 |    0.7271 |
-#&gt; |.....................|    0.8423 |     1.250 |     1.139 |     1.167 |
-#&gt; |    X|<span style='font-weight: bold;'>     464.49434</span> |     93.85 |  0.004602 |    0.2711 |    0.8233 |
-#&gt; |.....................|     8.385 |     2.064 |     1.206 |    0.7271 |
-#&gt; |.....................|    0.8423 |     1.250 |     1.139 |     1.167 |
-#&gt; |    F| Forward Diff. |     20.43 |     1.927 |   -0.3065 |   -0.3887 |
-#&gt; |.....................|    -1.043 |    -20.85 |    -8.676 |     6.819 |
-#&gt; |.....................|     7.291 |    -9.652 |    -7.555 |    -6.636 |
-#&gt; |<span style='font-weight: bold;'>   22</span>|     464.27900 |    0.9935 |    -1.011 |   -0.9101 |   -0.8938 |
-#&gt; |.....................|   -0.8433 |   -0.7319 |   -0.8180 |   -0.9156 |
-#&gt; |.....................|   -0.9164 |   -0.8129 |   -0.8266 |   -0.8314 |
-#&gt; |    U|       464.279 |     93.50 |    -5.382 |   -0.9891 |   -0.1943 |
-#&gt; |.....................|     2.127 |     2.070 |     1.207 |    0.7252 |
-#&gt; |.....................|    0.8401 |     1.255 |     1.142 |     1.169 |
-#&gt; |    X|<span style='font-weight: bold;'>       464.279</span> |     93.50 |  0.004598 |    0.2711 |    0.8234 |
-#&gt; |.....................|     8.389 |     2.070 |     1.207 |    0.7252 |
-#&gt; |.....................|    0.8401 |     1.255 |     1.142 |     1.169 |
-#&gt; |    F| Forward Diff. |    -42.65 |     1.884 |   -0.3905 |   -0.4168 |
-#&gt; |.....................|    -1.174 |    -21.12 |    -8.566 |     6.431 |
-#&gt; |.....................|     8.301 |    -9.439 |    -7.399 |    -6.436 |
-#&gt; |<span style='font-weight: bold;'>   23</span>|     463.98221 |    0.9971 |    -1.012 |   -0.9099 |   -0.8935 |
-#&gt; |.....................|   -0.8426 |   -0.7266 |   -0.8156 |   -0.9179 |
-#&gt; |.....................|   -0.9200 |   -0.8088 |   -0.8235 |   -0.8288 |
-#&gt; |    U|     463.98221 |     93.84 |    -5.383 |   -0.9889 |   -0.1940 |
-#&gt; |.....................|     2.128 |     2.075 |     1.209 |    0.7235 |
-#&gt; |.....................|    0.8370 |     1.260 |     1.146 |     1.172 |
-#&gt; |    X|<span style='font-weight: bold;'>     463.98221</span> |     93.84 |  0.004593 |    0.2711 |    0.8236 |
-#&gt; |.....................|     8.395 |     2.075 |     1.209 |    0.7235 |
-#&gt; |.....................|    0.8370 |     1.260 |     1.146 |     1.172 |
-#&gt; |    F| Forward Diff. |     17.69 |     1.891 |   -0.3039 |   -0.3774 |
-#&gt; |.....................|    -1.038 |    -20.36 |    -8.704 |     6.334 |
-#&gt; |.....................|     6.886 |    -9.291 |    -7.246 |    -6.355 |
-#&gt; |<span style='font-weight: bold;'>   24</span>|     463.80345 |    0.9930 |    -1.013 |   -0.9097 |   -0.8933 |
-#&gt; |.....................|   -0.8421 |   -0.7205 |   -0.8127 |   -0.9199 |
-#&gt; |.....................|   -0.9227 |   -0.8053 |   -0.8209 |   -0.8265 |
-#&gt; |    U|     463.80345 |     93.45 |    -5.384 |   -0.9887 |   -0.1939 |
-#&gt; |.....................|     2.128 |     2.081 |     1.210 |    0.7220 |
-#&gt; |.....................|    0.8346 |     1.264 |     1.148 |     1.175 |
-#&gt; |    X|<span style='font-weight: bold;'>     463.80345</span> |     93.45 |  0.004590 |    0.2712 |    0.8238 |
-#&gt; |.....................|     8.399 |     2.081 |     1.210 |    0.7220 |
-#&gt; |.....................|    0.8346 |     1.264 |     1.148 |     1.175 |
-#&gt; |    F| Forward Diff. |    -49.16 |     1.846 |   -0.3979 |   -0.4233 |
-#&gt; |.....................|    -1.191 |    -20.11 |    -8.128 |     6.150 |
-#&gt; |.....................|     7.842 |    -9.114 |    -7.113 |    -6.163 |
-#&gt; |<span style='font-weight: bold;'>   25</span>|     463.50095 |    0.9970 |    -1.014 |   -0.9095 |   -0.8930 |
-#&gt; |.....................|   -0.8413 |   -0.7152 |   -0.8100 |   -0.9219 |
-#&gt; |.....................|   -0.9258 |   -0.8011 |   -0.8178 |   -0.8240 |
-#&gt; |    U|     463.50095 |     93.83 |    -5.385 |   -0.9885 |   -0.1936 |
-#&gt; |.....................|     2.129 |     2.086 |     1.212 |    0.7205 |
-#&gt; |.....................|    0.8318 |     1.269 |     1.152 |     1.178 |
-#&gt; |    X|<span style='font-weight: bold;'>     463.50095</span> |     93.83 |  0.004585 |    0.2712 |    0.8240 |
-#&gt; |.....................|     8.406 |     2.086 |     1.212 |    0.7205 |
-#&gt; |.....................|    0.8318 |     1.269 |     1.152 |     1.178 |
-#&gt; |    F| Forward Diff. |     15.76 |     1.857 |   -0.2989 |   -0.3817 |
-#&gt; |.....................|    -1.050 |    -19.47 |    -8.354 |     5.597 |
-#&gt; |.....................|     5.177 |    -8.956 |    -6.950 |    -6.091 |
-#&gt; |<span style='font-weight: bold;'>   26</span>|     463.33971 |    0.9930 |    -1.014 |   -0.9093 |   -0.8928 |
-#&gt; |.....................|   -0.8408 |   -0.7088 |   -0.8070 |   -0.9237 |
-#&gt; |.....................|   -0.9274 |   -0.7974 |   -0.8150 |   -0.8217 |
-#&gt; |    U|     463.33971 |     93.45 |    -5.386 |   -0.9883 |   -0.1934 |
-#&gt; |.....................|     2.129 |     2.092 |     1.214 |    0.7192 |
-#&gt; |.....................|    0.8304 |     1.273 |     1.155 |     1.180 |
-#&gt; |    X|<span style='font-weight: bold;'>     463.33971</span> |     93.45 |  0.004581 |    0.2712 |    0.8242 |
-#&gt; |.....................|     8.411 |     2.092 |     1.214 |    0.7192 |
-#&gt; |.....................|    0.8304 |     1.273 |     1.155 |     1.180 |
-#&gt; |    F| Forward Diff. |    -49.38 |     1.817 |   -0.3945 |   -0.4254 |
-#&gt; |.....................|    -1.192 |    -18.49 |    -7.219 |     6.140 |
-#&gt; |.....................|     6.147 |    -8.752 |    -6.775 |    -5.892 |
-#&gt; |<span style='font-weight: bold;'>   27</span>|     463.06378 |    0.9971 |    -1.016 |   -0.9091 |   -0.8925 |
-#&gt; |.....................|   -0.8398 |   -0.7035 |   -0.8044 |   -0.9255 |
-#&gt; |.....................|   -0.9274 |   -0.7927 |   -0.8116 |   -0.8189 |
-#&gt; |    U|     463.06378 |     93.84 |    -5.387 |   -0.9881 |   -0.1930 |
-#&gt; |.....................|     2.130 |     2.097 |     1.215 |    0.7178 |
-#&gt; |.....................|    0.8305 |     1.279 |     1.159 |     1.184 |
-#&gt; |    X|<span style='font-weight: bold;'>     463.06378</span> |     93.84 |  0.004575 |    0.2713 |    0.8245 |
-#&gt; |.....................|     8.419 |     2.097 |     1.215 |    0.7178 |
-#&gt; |.....................|    0.8305 |     1.279 |     1.159 |     1.184 |
-#&gt; |    F| Forward Diff. |     17.15 |     1.839 |   -0.2941 |   -0.3829 |
-#&gt; |.....................|    -1.046 |    -18.21 |    -7.786 |     5.595 |
-#&gt; |.....................|     7.714 |    -8.592 |    -6.652 |    -5.814 |
-#&gt; |<span style='font-weight: bold;'>   28</span>|     462.87224 |    0.9938 |    -1.017 |   -0.9088 |   -0.8922 |
-#&gt; |.....................|   -0.8390 |   -0.6982 |   -0.8019 |   -0.9277 |
-#&gt; |.....................|   -0.9311 |   -0.7885 |   -0.8085 |   -0.8163 |
-#&gt; |    U|     462.87224 |     93.52 |    -5.388 |   -0.9879 |   -0.1927 |
-#&gt; |.....................|     2.131 |     2.102 |     1.217 |    0.7161 |
-#&gt; |.....................|    0.8272 |     1.284 |     1.162 |     1.186 |
-#&gt; |    X|<span style='font-weight: bold;'>     462.87224</span> |     93.52 |  0.004570 |    0.2713 |    0.8247 |
-#&gt; |.....................|     8.425 |     2.102 |     1.217 |    0.7161 |
-#&gt; |.....................|    0.8272 |     1.284 |     1.162 |     1.186 |
-#&gt; |    F| Forward Diff. |    -35.81 |     1.797 |   -0.3699 |   -0.4180 |
-#&gt; |.....................|    -1.164 |    -17.54 |    -6.949 |     5.683 |
-#&gt; |.....................|     5.938 |    -8.368 |    -6.484 |    -5.617 |
-#&gt; |<span style='font-weight: bold;'>   29</span>|     462.64279 |    0.9976 |    -1.018 |   -0.9085 |   -0.8918 |
-#&gt; |.....................|   -0.8379 |   -0.6938 |   -0.7998 |   -0.9297 |
-#&gt; |.....................|   -0.9347 |   -0.7837 |   -0.8051 |   -0.8136 |
-#&gt; |    U|     462.64279 |     93.88 |    -5.390 |   -0.9876 |   -0.1923 |
-#&gt; |.....................|     2.132 |     2.107 |     1.218 |    0.7146 |
-#&gt; |.....................|    0.8240 |     1.289 |     1.166 |     1.189 |
-#&gt; |    X|<span style='font-weight: bold;'>     462.64279</span> |     93.88 |  0.004563 |    0.2714 |    0.8250 |
-#&gt; |.....................|     8.435 |     2.107 |     1.218 |    0.7146 |
-#&gt; |.....................|    0.8240 |     1.289 |     1.166 |     1.189 |
-#&gt; |    F| Forward Diff. |     23.89 |     1.802 |   -0.2695 |   -0.3764 |
-#&gt; |.....................|    -1.014 |    -17.48 |    -7.590 |     5.234 |
-#&gt; |.....................|     7.275 |    -8.199 |    -6.306 |    -5.540 |
-#&gt; |<span style='font-weight: bold;'>   30</span>|     462.43086 |    0.9946 |    -1.020 |   -0.9083 |   -0.8914 |
-#&gt; |.....................|   -0.8367 |   -0.6890 |   -0.7974 |   -0.9317 |
-#&gt; |.....................|   -0.9381 |   -0.7789 |   -0.8017 |   -0.8108 |
-#&gt; |    U|     462.43086 |     93.61 |    -5.391 |   -0.9873 |   -0.1919 |
-#&gt; |.....................|     2.134 |     2.111 |     1.219 |    0.7131 |
-#&gt; |.....................|    0.8211 |     1.295 |     1.169 |     1.193 |
-#&gt; |    X|<span style='font-weight: bold;'>     462.43086</span> |     93.61 |  0.004556 |    0.2715 |    0.8254 |
-#&gt; |.....................|     8.445 |     2.111 |     1.219 |    0.7131 |
-#&gt; |.....................|    0.8211 |     1.295 |     1.169 |     1.193 |
-#&gt; |    F| Forward Diff. |    -22.12 |     1.763 |   -0.3409 |   -0.4033 |
-#&gt; |.....................|    -1.105 |    -16.76 |    -6.743 |     5.132 |
-#&gt; |.....................|     5.573 |    -7.935 |    -6.123 |    -5.337 |
-#&gt; |<span style='font-weight: bold;'>   31</span>|     462.24769 |    0.9981 |    -1.021 |   -0.9079 |   -0.8909 |
-#&gt; |.....................|   -0.8355 |   -0.6838 |   -0.7950 |   -0.9332 |
-#&gt; |.....................|   -0.9404 |   -0.7741 |   -0.7984 |   -0.8080 |
-#&gt; |    U|     462.24769 |     93.94 |    -5.393 |   -0.9870 |   -0.1915 |
-#&gt; |.....................|     2.135 |     2.117 |     1.221 |    0.7120 |
-#&gt; |.....................|    0.8190 |     1.301 |     1.173 |     1.196 |
-#&gt; |    X|<span style='font-weight: bold;'>     462.24769</span> |     93.94 |  0.004549 |    0.2715 |    0.8258 |
-#&gt; |.....................|     8.455 |     2.117 |     1.221 |    0.7120 |
-#&gt; |.....................|    0.8190 |     1.301 |     1.173 |     1.196 |
-#&gt; |    F| Forward Diff. |     32.76 |     1.771 |   -0.2440 |   -0.3645 |
-#&gt; |.....................|   -0.9678 |    -16.08 |    -6.874 |     5.077 |
-#&gt; |.....................|     5.606 |    -7.758 |    -5.959 |    -5.256 |
-#&gt; |<span style='font-weight: bold;'>   32</span>|     462.04894 |    0.9949 |    -1.023 |   -0.9076 |   -0.8904 |
-#&gt; |.....................|   -0.8341 |   -0.6790 |   -0.7932 |   -0.9353 |
-#&gt; |.....................|   -0.9395 |   -0.7687 |   -0.7947 |   -0.8049 |
-#&gt; |    U|     462.04894 |     93.63 |    -5.395 |   -0.9866 |   -0.1909 |
-#&gt; |.....................|     2.136 |     2.121 |     1.222 |    0.7104 |
-#&gt; |.....................|    0.8198 |     1.307 |     1.177 |     1.199 |
-#&gt; |    X|<span style='font-weight: bold;'>     462.04894</span> |     93.63 |  0.004540 |    0.2716 |    0.8262 |
-#&gt; |.....................|     8.467 |     2.121 |     1.222 |    0.7104 |
-#&gt; |.....................|    0.8198 |     1.307 |     1.177 |     1.199 |
-#&gt; |    F| Forward Diff. |    -16.92 |     1.743 |   -0.3189 |   -0.3951 |
-#&gt; |.....................|    -1.072 |    -15.84 |    -6.430 |     4.847 |
-#&gt; |.....................|     5.467 |    -7.483 |    -5.756 |    -5.023 |
-#&gt; |<span style='font-weight: bold;'>   33</span>|     461.88553 |    0.9980 |    -1.025 |   -0.9073 |   -0.8898 |
-#&gt; |.....................|   -0.8327 |   -0.6736 |   -0.7912 |   -0.9375 |
-#&gt; |.....................|   -0.9397 |   -0.7637 |   -0.7912 |   -0.8019 |
-#&gt; |    U|     461.88553 |     93.92 |    -5.397 |   -0.9863 |   -0.1904 |
-#&gt; |.....................|     2.138 |     2.126 |     1.223 |    0.7088 |
-#&gt; |.....................|    0.8197 |     1.313 |     1.181 |     1.203 |
-#&gt; |    X|<span style='font-weight: bold;'>     461.88553</span> |     93.92 |  0.004531 |    0.2716 |    0.8266 |
-#&gt; |.....................|     8.479 |     2.126 |     1.223 |    0.7088 |
-#&gt; |.....................|    0.8197 |     1.313 |     1.181 |     1.203 |
-#&gt; |    F| Forward Diff. |     30.55 |     1.755 |   -0.2327 |   -0.3563 |
-#&gt; |.....................|   -0.9551 |    -15.13 |    -6.434 |     4.973 |
-#&gt; |.....................|     5.515 |    -7.304 |    -5.584 |    -4.904 |
-#&gt; |<span style='font-weight: bold;'>   34</span>|     461.69674 |    0.9949 |    -1.028 |   -0.9069 |   -0.8892 |
-#&gt; |.....................|   -0.8309 |   -0.6692 |   -0.7896 |   -0.9402 |
-#&gt; |.....................|   -0.9399 |   -0.7583 |   -0.7876 |   -0.7990 |
-#&gt; |    U|     461.69674 |     93.63 |    -5.400 |   -0.9859 |   -0.1897 |
-#&gt; |.....................|     2.139 |     2.131 |     1.224 |    0.7067 |
-#&gt; |.....................|    0.8195 |     1.320 |     1.185 |     1.206 |
-#&gt; |    X|<span style='font-weight: bold;'>     461.69674</span> |     93.63 |  0.004519 |    0.2717 |    0.8272 |
-#&gt; |.....................|     8.494 |     2.131 |     1.224 |    0.7067 |
-#&gt; |.....................|    0.8195 |     1.320 |     1.185 |     1.206 |
-#&gt; |    F| Forward Diff. |    -16.57 |     1.720 |   -0.3086 |   -0.3856 |
-#&gt; |.....................|    -1.039 |    -14.73 |    -5.908 |     4.823 |
-#&gt; |.....................|     5.359 |    -7.008 |    -5.393 |    -4.695 |
-#&gt; |<span style='font-weight: bold;'>   35</span>|     461.54208 |    0.9978 |    -1.031 |   -0.9065 |   -0.8885 |
-#&gt; |.....................|   -0.8293 |   -0.6648 |   -0.7883 |   -0.9440 |
-#&gt; |.....................|   -0.9414 |   -0.7533 |   -0.7842 |   -0.7963 |
-#&gt; |    U|     461.54208 |     93.91 |    -5.402 |   -0.9855 |   -0.1891 |
-#&gt; |.....................|     2.141 |     2.135 |     1.225 |    0.7038 |
-#&gt; |.....................|    0.8182 |     1.325 |     1.189 |     1.209 |
-#&gt; |    X|<span style='font-weight: bold;'>     461.54208</span> |     93.91 |  0.004507 |    0.2718 |    0.8277 |
-#&gt; |.....................|     8.508 |     2.135 |     1.225 |    0.7038 |
-#&gt; |.....................|    0.8182 |     1.325 |     1.189 |     1.209 |
-#&gt; |    F| Forward Diff. |     27.49 |     1.722 |   -0.2172 |   -0.3438 |
-#&gt; |.....................|   -0.9069 |    -13.76 |    -5.979 |     4.702 |
-#&gt; |.....................|     5.353 |    -6.828 |    -5.231 |    -4.587 |
-#&gt; |<span style='font-weight: bold;'>   36</span>|     461.38014 |    0.9949 |    -1.034 |   -0.9061 |   -0.8878 |
-#&gt; |.....................|   -0.8274 |   -0.6624 |   -0.7872 |   -0.9482 |
-#&gt; |.....................|   -0.9437 |   -0.7482 |   -0.7807 |   -0.7935 |
-#&gt; |    U|     461.38014 |     93.63 |    -5.405 |   -0.9851 |   -0.1883 |
-#&gt; |.....................|     2.143 |     2.137 |     1.225 |    0.7007 |
-#&gt; |.....................|    0.8162 |     1.332 |     1.192 |     1.212 |
-#&gt; |    X|<span style='font-weight: bold;'>     461.38014</span> |     93.63 |  0.004492 |    0.2719 |    0.8283 |
-#&gt; |.....................|     8.524 |     2.137 |     1.225 |    0.7007 |
-#&gt; |.....................|    0.8162 |     1.332 |     1.192 |     1.212 |
-#&gt; |    F| Forward Diff. |    -16.54 |     1.681 |   -0.2967 |   -0.3702 |
-#&gt; |.....................|    -1.003 |    -14.15 |    -5.693 |     4.358 |
-#&gt; |.....................|     5.078 |    -6.560 |    -5.051 |    -4.397 |
-#&gt; |<span style='font-weight: bold;'>   37</span>|     461.22820 |    0.9976 |    -1.038 |   -0.9057 |   -0.8870 |
-#&gt; |.....................|   -0.8255 |   -0.6585 |   -0.7854 |   -0.9513 |
-#&gt; |.....................|   -0.9460 |   -0.7433 |   -0.7774 |   -0.7908 |
-#&gt; |    U|      461.2282 |     93.88 |    -5.409 |   -0.9847 |   -0.1876 |
-#&gt; |.....................|     2.145 |     2.141 |     1.226 |    0.6983 |
-#&gt; |.....................|    0.8141 |     1.337 |     1.196 |     1.215 |
-#&gt; |    X|<span style='font-weight: bold;'>      461.2282</span> |     93.88 |  0.004476 |    0.2720 |    0.8290 |
-#&gt; |.....................|     8.540 |     2.141 |     1.226 |    0.6983 |
-#&gt; |.....................|    0.8141 |     1.337 |     1.196 |     1.215 |
-#&gt; |    F| Forward Diff. |     22.68 |     1.675 |   -0.2117 |   -0.3293 |
-#&gt; |.....................|   -0.8651 |    -13.27 |    -5.458 |     4.237 |
-#&gt; |.....................|     3.708 |    -6.326 |    -4.874 |    -4.289 |
-#&gt; |<span style='font-weight: bold;'>   38</span>|     461.10880 |    0.9948 |    -1.041 |   -0.9053 |   -0.8864 |
-#&gt; |.....................|   -0.8238 |   -0.6532 |   -0.7845 |   -0.9533 |
-#&gt; |.....................|   -0.9419 |   -0.7394 |   -0.7747 |   -0.7885 |
-#&gt; |    U|      461.1088 |     93.62 |    -5.412 |   -0.9844 |   -0.1869 |
-#&gt; |.....................|     2.146 |     2.146 |     1.227 |    0.6968 |
-#&gt; |.....................|    0.8177 |     1.342 |     1.199 |     1.218 |
-#&gt; |    X|<span style='font-weight: bold;'>      461.1088</span> |     93.62 |  0.004461 |    0.2720 |    0.8295 |
-#&gt; |.....................|     8.555 |     2.146 |     1.227 |    0.6968 |
-#&gt; |.....................|    0.8177 |     1.342 |     1.199 |     1.218 |
-#&gt; |    F| Forward Diff. |    -17.23 |     1.655 |   -0.2888 |   -0.3567 |
-#&gt; |.....................|   -0.9524 |    -13.71 |    -5.652 |     3.877 |
-#&gt; |.....................|     5.125 |    -6.149 |    -4.743 |    -4.110 |
-#&gt; |<span style='font-weight: bold;'>   39</span>|     460.99174 |    0.9974 |    -1.045 |   -0.9049 |   -0.8856 |
-#&gt; |.....................|   -0.8221 |   -0.6468 |   -0.7824 |   -0.9536 |
-#&gt; |.....................|   -0.9388 |   -0.7360 |   -0.7723 |   -0.7867 |
-#&gt; |    U|     460.99174 |     93.87 |    -5.416 |   -0.9840 |   -0.1862 |
-#&gt; |.....................|     2.148 |     2.153 |     1.228 |    0.6966 |
-#&gt; |.....................|    0.8204 |     1.346 |     1.202 |     1.220 |
-#&gt; |    X|<span style='font-weight: bold;'>     460.99174</span> |     93.87 |  0.004444 |    0.2721 |    0.8301 |
-#&gt; |.....................|     8.569 |     2.153 |     1.228 |    0.6966 |
-#&gt; |.....................|    0.8204 |     1.346 |     1.202 |     1.220 |
-#&gt; |    F| Forward Diff. |     21.44 |     1.663 |   -0.2166 |   -0.3206 |
-#&gt; |.....................|   -0.8444 |    -13.00 |    -5.647 |     3.881 |
-#&gt; |.....................|     5.370 |    -6.036 |    -4.631 |    -4.039 |
-#&gt; |<span style='font-weight: bold;'>   40</span>|     460.85317 |    0.9948 |    -1.049 |   -0.9044 |   -0.8849 |
-#&gt; |.....................|   -0.8203 |   -0.6417 |   -0.7791 |   -0.9516 |
-#&gt; |.....................|   -0.9438 |   -0.7341 |   -0.7712 |   -0.7862 |
-#&gt; |    U|     460.85317 |     93.62 |    -5.420 |   -0.9835 |   -0.1854 |
-#&gt; |.....................|     2.150 |     2.158 |     1.230 |    0.6981 |
-#&gt; |.....................|    0.8161 |     1.348 |     1.203 |     1.220 |
-#&gt; |    X|<span style='font-weight: bold;'>     460.85317</span> |     93.62 |  0.004425 |    0.2722 |    0.8308 |
-#&gt; |.....................|     8.585 |     2.158 |     1.230 |    0.6981 |
-#&gt; |.....................|    0.8161 |     1.348 |     1.203 |     1.220 |
-#&gt; |    F| Forward Diff. |    -17.08 |     1.613 |   -0.2650 |   -0.3380 |
-#&gt; |.....................|   -0.8994 |    -12.83 |    -5.261 |     3.879 |
-#&gt; |.....................|     3.650 |    -5.911 |    -4.518 |    -3.985 |
-#&gt; |<span style='font-weight: bold;'>   41</span>|     460.73362 |    0.9974 |    -1.054 |   -0.9040 |   -0.8841 |
-#&gt; |.....................|   -0.8184 |   -0.6359 |   -0.7754 |   -0.9517 |
-#&gt; |.....................|   -0.9423 |   -0.7308 |   -0.7693 |   -0.7845 |
-#&gt; |    U|     460.73362 |     93.86 |    -5.425 |   -0.9831 |   -0.1846 |
-#&gt; |.....................|     2.152 |     2.163 |     1.232 |    0.6980 |
-#&gt; |.....................|    0.8173 |     1.352 |     1.205 |     1.222 |
-#&gt; |    X|<span style='font-weight: bold;'>     460.73362</span> |     93.86 |  0.004404 |    0.2723 |    0.8314 |
-#&gt; |.....................|     8.601 |     2.163 |     1.232 |    0.6980 |
-#&gt; |.....................|    0.8173 |     1.352 |     1.205 |     1.222 |
-#&gt; |    F| Forward Diff. |     20.68 |     1.612 |   -0.1811 |   -0.2966 |
-#&gt; |.....................|   -0.7710 |    -11.91 |    -4.976 |     4.011 |
-#&gt; |.....................|     3.788 |    -5.788 |    -4.468 |    -3.936 |
-#&gt; |<span style='font-weight: bold;'>   42</span>|     460.64877 |    0.9948 |    -1.058 |   -0.9038 |   -0.8835 |
-#&gt; |.....................|   -0.8171 |   -0.6318 |   -0.7737 |   -0.9543 |
-#&gt; |.....................|   -0.9372 |   -0.7272 |   -0.7669 |   -0.7822 |
-#&gt; |    U|     460.64877 |     93.62 |    -5.429 |   -0.9829 |   -0.1841 |
-#&gt; |.....................|     2.153 |     2.167 |     1.233 |    0.6961 |
-#&gt; |.....................|    0.8219 |     1.357 |     1.208 |     1.225 |
-#&gt; |    X|<span style='font-weight: bold;'>     460.64877</span> |     93.62 |  0.004387 |    0.2723 |    0.8319 |
-#&gt; |.....................|     8.612 |     2.167 |     1.233 |    0.6961 |
-#&gt; |.....................|    0.8219 |     1.357 |     1.208 |     1.225 |
-#&gt; |    F| Forward Diff. |    -16.17 |     1.594 |   -0.2646 |   -0.3254 |
-#&gt; |.....................|   -0.8335 |    -11.77 |    -4.666 |     3.810 |
-#&gt; |.....................|     5.289 |    -5.625 |    -4.348 |    -3.754 |
-#&gt; |<span style='font-weight: bold;'>   43</span>|     460.54180 |    0.9972 |    -1.063 |   -0.9035 |   -0.8829 |
-#&gt; |.....................|   -0.8158 |   -0.6297 |   -0.7745 |   -0.9584 |
-#&gt; |.....................|   -0.9393 |   -0.7227 |   -0.7634 |   -0.7794 |
-#&gt; |    U|      460.5418 |     93.85 |    -5.434 |   -0.9826 |   -0.1834 |
-#&gt; |.....................|     2.154 |     2.169 |     1.233 |    0.6929 |
-#&gt; |.....................|    0.8200 |     1.362 |     1.211 |     1.228 |
-#&gt; |    X|<span style='font-weight: bold;'>      460.5418</span> |     93.85 |  0.004366 |    0.2724 |    0.8324 |
-#&gt; |.....................|     8.623 |     2.169 |     1.233 |    0.6929 |
-#&gt; |.....................|    0.8200 |     1.362 |     1.211 |     1.228 |
-#&gt; |    F| Forward Diff. |     18.48 |     1.582 |   -0.1851 |   -0.2851 |
-#&gt; |.....................|   -0.7462 |    -11.38 |    -4.808 |     3.651 |
-#&gt; |.....................|     5.261 |    -5.402 |    -4.159 |    -3.623 |
-#&gt; |<span style='font-weight: bold;'>   44</span>|     460.43711 |    0.9948 |    -1.067 |   -0.9032 |   -0.8823 |
-#&gt; |.....................|   -0.8147 |   -0.6284 |   -0.7753 |   -0.9609 |
-#&gt; |.....................|   -0.9464 |   -0.7199 |   -0.7613 |   -0.7778 |
-#&gt; |    U|     460.43711 |     93.63 |    -5.438 |   -0.9823 |   -0.1829 |
-#&gt; |.....................|     2.156 |     2.171 |     1.232 |    0.6911 |
-#&gt; |.....................|    0.8138 |     1.365 |     1.214 |     1.230 |
-#&gt; |    X|<span style='font-weight: bold;'>     460.43711</span> |     93.63 |  0.004347 |    0.2724 |    0.8329 |
-#&gt; |.....................|     8.632 |     2.171 |     1.232 |    0.6911 |
-#&gt; |.....................|    0.8138 |     1.365 |     1.214 |     1.230 |
-#&gt; |<span style='font-weight: bold;'>   45</span>|     460.35910 |    0.9948 |    -1.072 |   -0.9029 |   -0.8817 |
-#&gt; |.....................|   -0.8135 |   -0.6285 |   -0.7770 |   -0.9633 |
-#&gt; |.....................|   -0.9542 |   -0.7172 |   -0.7594 |   -0.7765 |
-#&gt; |    U|      460.3591 |     93.63 |    -5.443 |   -0.9820 |   -0.1822 |
-#&gt; |.....................|     2.157 |     2.170 |     1.231 |    0.6893 |
-#&gt; |.....................|    0.8069 |     1.368 |     1.216 |     1.231 |
-#&gt; |    X|<span style='font-weight: bold;'>      460.3591</span> |     93.63 |  0.004325 |    0.2725 |    0.8334 |
-#&gt; |.....................|     8.643 |     2.170 |     1.231 |    0.6893 |
-#&gt; |.....................|    0.8069 |     1.368 |     1.216 |     1.231 |
-#&gt; |<span style='font-weight: bold;'>   46</span>|     460.06586 |    0.9948 |    -1.095 |   -0.9016 |   -0.8789 |
-#&gt; |.....................|   -0.8080 |   -0.6294 |   -0.7850 |   -0.9744 |
-#&gt; |.....................|   -0.9902 |   -0.7052 |   -0.7507 |   -0.7704 |
-#&gt; |    U|     460.06586 |     93.63 |    -5.466 |   -0.9807 |   -0.1794 |
-#&gt; |.....................|     2.162 |     2.170 |     1.227 |    0.6809 |
-#&gt; |.....................|    0.7753 |     1.383 |     1.225 |     1.238 |
-#&gt; |    X|<span style='font-weight: bold;'>     460.06586</span> |     93.63 |  0.004227 |    0.2728 |    0.8358 |
-#&gt; |.....................|     8.691 |     2.170 |     1.227 |    0.6809 |
-#&gt; |.....................|    0.7753 |     1.383 |     1.225 |     1.238 |
-#&gt; |<span style='font-weight: bold;'>   47</span>|     459.86897 |    0.9949 |    -1.169 |   -0.8972 |   -0.8697 |
-#&gt; |.....................|   -0.7899 |   -0.6321 |   -0.8109 |    -1.010 |
-#&gt; |.....................|    -1.107 |   -0.6662 |   -0.7224 |   -0.7508 |
-#&gt; |    U|     459.86897 |     93.63 |    -5.541 |   -0.9763 |   -0.1702 |
-#&gt; |.....................|     2.180 |     2.167 |     1.211 |    0.6537 |
-#&gt; |.....................|    0.6731 |     1.429 |     1.256 |     1.260 |
-#&gt; |    X|<span style='font-weight: bold;'>     459.86897</span> |     93.63 |  0.003924 |    0.2736 |    0.8435 |
-#&gt; |.....................|     8.849 |     2.167 |     1.211 |    0.6537 |
-#&gt; |.....................|    0.6731 |     1.429 |     1.256 |     1.260 |
-#&gt; |    F| Forward Diff. |    -18.09 |    0.8663 |    0.2544 |  0.003114 |
-#&gt; |.....................|   -0.1212 |    -11.64 |    -7.047 |    0.1395 |
-#&gt; |.....................|    -6.727 |    -2.881 |    -1.866 |    -2.263 |
-#&gt; |<span style='font-weight: bold;'>   48</span>|     458.58262 |    0.9946 |    -1.323 |   -0.9067 |   -0.8597 |
-#&gt; |.....................|   -0.7710 |   -0.5295 |   -0.7001 |   -0.9650 |
-#&gt; |.....................|    -1.113 |   -0.6398 |   -0.7228 |   -0.7390 |
-#&gt; |    U|     458.58262 |     93.60 |    -5.695 |   -0.9858 |   -0.1602 |
-#&gt; |.....................|     2.199 |     2.267 |     1.277 |    0.6880 |
-#&gt; |.....................|    0.6674 |     1.460 |     1.256 |     1.273 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.58262</span> |     93.60 |  0.003363 |    0.2717 |    0.8520 |
-#&gt; |.....................|     9.019 |     2.267 |     1.277 |    0.6880 |
-#&gt; |.....................|    0.6674 |     1.460 |     1.256 |     1.273 |
-#&gt; |    F| Forward Diff. |    -24.91 |    0.5848 |  -0.03458 |    0.2475 |
-#&gt; |.....................|    0.3762 |    -4.573 |  -0.04388 |     1.648 |
-#&gt; |.....................|    -5.878 |    -2.073 |    -1.935 |    -2.146 |
-#&gt; |<span style='font-weight: bold;'>   49</span>|     460.44377 |    0.9922 |    -1.558 |   -0.9059 |   -0.8818 |
-#&gt; |.....................|   -0.8081 |   -0.3861 |   -0.8607 |    -1.070 |
-#&gt; |.....................|   -0.9432 |   -0.5131 |   -0.5915 |   -0.5851 |
-#&gt; |    U|     460.44377 |     93.38 |    -5.929 |   -0.9849 |   -0.1824 |
-#&gt; |.....................|     2.162 |     2.407 |     1.182 |    0.6086 |
-#&gt; |.....................|    0.8166 |     1.611 |     1.400 |     1.447 |
-#&gt; |    X|<span style='font-weight: bold;'>     460.44377</span> |     93.38 |  0.002660 |    0.2719 |    0.8333 |
-#&gt; |.....................|     8.690 |     2.407 |     1.182 |    0.6086 |
-#&gt; |.....................|    0.8166 |     1.611 |     1.400 |     1.447 |
-#&gt; |<span style='font-weight: bold;'>   50</span>|     458.18867 |    0.9958 |    -1.393 |   -0.9065 |   -0.8663 |
-#&gt; |.....................|   -0.7821 |   -0.4865 |   -0.7479 |   -0.9965 |
-#&gt; |.....................|    -1.062 |   -0.6019 |   -0.6835 |   -0.6930 |
-#&gt; |    U|     458.18867 |     93.71 |    -5.765 |   -0.9855 |   -0.1668 |
-#&gt; |.....................|     2.188 |     2.309 |     1.248 |    0.6642 |
-#&gt; |.....................|    0.7122 |     1.506 |     1.299 |     1.325 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.18867</span> |     93.71 |  0.003136 |    0.2718 |    0.8463 |
-#&gt; |.....................|     8.919 |     2.309 |     1.248 |    0.6642 |
-#&gt; |.....................|    0.7122 |     1.506 |     1.299 |     1.325 |
-#&gt; |    F| Forward Diff. |    -3.049 |    0.4396 |   -0.1330 |   0.02964 |
-#&gt; |.....................|  -0.08039 |    -2.599 |    -3.012 |   -0.1957 |
-#&gt; |.....................|    -2.463 |   -0.6721 |    0.3494 |    0.7476 |
-#&gt; |<span style='font-weight: bold;'>   51</span>|     458.45407 |    0.9980 |    -1.449 |   -0.8787 |   -0.8738 |
-#&gt; |.....................|   -0.7836 |   -0.4935 |   -0.7244 |    -1.061 |
-#&gt; |.....................|    -1.034 |   -0.5419 |   -0.6952 |   -0.7610 |
-#&gt; |    U|     458.45407 |     93.92 |    -5.821 |   -0.9579 |   -0.1743 |
-#&gt; |.....................|     2.187 |     2.302 |     1.262 |    0.6155 |
-#&gt; |.....................|    0.7366 |     1.577 |     1.286 |     1.249 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.45407</span> |     93.92 |  0.002965 |    0.2773 |    0.8400 |
-#&gt; |.....................|     8.906 |     2.302 |     1.262 |    0.6155 |
-#&gt; |.....................|    0.7366 |     1.577 |     1.286 |     1.249 |
-#&gt; |<span style='font-weight: bold;'>   52</span>|     458.19883 |    0.9985 |    -1.406 |   -0.9001 |   -0.8680 |
-#&gt; |.....................|   -0.7823 |   -0.4861 |   -0.7404 |    -1.011 |
-#&gt; |.....................|    -1.054 |   -0.5879 |   -0.6864 |   -0.7089 |
-#&gt; |    U|     458.19883 |     93.97 |    -5.778 |   -0.9792 |   -0.1685 |
-#&gt; |.....................|     2.188 |     2.309 |     1.253 |    0.6534 |
-#&gt; |.....................|    0.7193 |     1.522 |     1.296 |     1.307 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.19883</span> |     93.97 |  0.003096 |    0.2731 |    0.8449 |
-#&gt; |.....................|     8.917 |     2.309 |     1.253 |    0.6534 |
-#&gt; |.....................|    0.7193 |     1.522 |     1.296 |     1.307 |
-#&gt; |<span style='font-weight: bold;'>   53</span>|     458.20478 |    0.9986 |    -1.399 |   -0.9039 |   -0.8670 |
-#&gt; |.....................|   -0.7821 |   -0.4848 |   -0.7433 |    -1.002 |
-#&gt; |.....................|    -1.058 |   -0.5961 |   -0.6848 |   -0.6996 |
-#&gt; |    U|     458.20478 |     93.98 |    -5.770 |   -0.9830 |   -0.1675 |
-#&gt; |.....................|     2.188 |     2.311 |     1.251 |    0.6601 |
-#&gt; |.....................|    0.7162 |     1.512 |     1.297 |     1.318 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.20478</span> |     93.98 |  0.003120 |    0.2723 |    0.8458 |
-#&gt; |.....................|     8.919 |     2.311 |     1.251 |    0.6601 |
-#&gt; |.....................|    0.7162 |     1.512 |     1.297 |     1.318 |
-#&gt; |<span style='font-weight: bold;'>   54</span>|     458.21371 |    0.9986 |    -1.394 |   -0.9063 |   -0.8663 |
-#&gt; |.....................|   -0.7820 |   -0.4840 |   -0.7451 |   -0.9963 |
-#&gt; |.....................|    -1.060 |   -0.6013 |   -0.6838 |   -0.6937 |
-#&gt; |    U|     458.21371 |     93.98 |    -5.765 |   -0.9854 |   -0.1669 |
-#&gt; |.....................|     2.188 |     2.311 |     1.250 |    0.6644 |
-#&gt; |.....................|    0.7142 |     1.506 |     1.298 |     1.325 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.21371</span> |     93.98 |  0.003135 |    0.2718 |    0.8463 |
-#&gt; |.....................|     8.920 |     2.311 |     1.250 |    0.6644 |
-#&gt; |.....................|    0.7142 |     1.506 |     1.298 |     1.325 |
-#&gt; |<span style='font-weight: bold;'>   55</span>|     458.18572 |    0.9965 |    -1.393 |   -0.9064 |   -0.8663 |
-#&gt; |.....................|   -0.7820 |   -0.4858 |   -0.7472 |   -0.9964 |
-#&gt; |.....................|    -1.062 |   -0.6017 |   -0.6836 |   -0.6932 |
-#&gt; |    U|     458.18572 |     93.79 |    -5.765 |   -0.9855 |   -0.1668 |
-#&gt; |.....................|     2.188 |     2.310 |     1.249 |    0.6643 |
-#&gt; |.....................|    0.7128 |     1.506 |     1.299 |     1.325 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.18572</span> |     93.79 |  0.003136 |    0.2718 |    0.8463 |
-#&gt; |.....................|     8.919 |     2.310 |     1.249 |    0.6643 |
-#&gt; |.....................|    0.7128 |     1.506 |     1.299 |     1.325 |
-#&gt; |    F| Forward Diff. |     5.905 |    0.4355 |   -0.1157 |   0.02634 |
-#&gt; |.....................|  -0.05151 |    -1.735 |    -2.785 |  -0.07657 |
-#&gt; |.....................|    -2.587 |   -0.1320 |   0.06282 |    0.8041 |
-#&gt; |<span style='font-weight: bold;'>   56</span>|     458.18221 |    0.9957 |    -1.394 |   -0.9063 |   -0.8663 |
-#&gt; |.....................|   -0.7820 |   -0.4856 |   -0.7465 |   -0.9968 |
-#&gt; |.....................|    -1.061 |   -0.6016 |   -0.6835 |   -0.6937 |
-#&gt; |    U|     458.18221 |     93.70 |    -5.765 |   -0.9853 |   -0.1669 |
-#&gt; |.....................|     2.188 |     2.310 |     1.249 |    0.6640 |
-#&gt; |.....................|    0.7132 |     1.506 |     1.299 |     1.325 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.18221</span> |     93.70 |  0.003135 |    0.2718 |    0.8463 |
-#&gt; |.....................|     8.920 |     2.310 |     1.249 |    0.6640 |
-#&gt; |.....................|    0.7132 |     1.506 |     1.299 |     1.325 |
-#&gt; |    F| Forward Diff. |    -4.339 |    0.4378 |   -0.1282 |   0.03581 |
-#&gt; |.....................|  -0.09329 |    -1.978 |    -2.551 |  -0.01933 |
-#&gt; |.....................|    -3.951 |   -0.1424 |   0.01723 |    0.8408 |
-#&gt; |<span style='font-weight: bold;'>   57</span>|     458.17882 |    0.9963 |    -1.394 |   -0.9061 |   -0.8663 |
-#&gt; |.....................|   -0.7819 |   -0.4855 |   -0.7459 |   -0.9972 |
-#&gt; |.....................|    -1.060 |   -0.6016 |   -0.6832 |   -0.6941 |
-#&gt; |    U|     458.17882 |     93.76 |    -5.766 |   -0.9852 |   -0.1669 |
-#&gt; |.....................|     2.188 |     2.310 |     1.250 |    0.6637 |
-#&gt; |.....................|    0.7139 |     1.506 |     1.299 |     1.324 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.17882</span> |     93.76 |  0.003134 |    0.2719 |    0.8463 |
-#&gt; |.....................|     8.920 |     2.310 |     1.250 |    0.6637 |
-#&gt; |.....................|    0.7139 |     1.506 |     1.299 |     1.324 |
-#&gt; |    F| Forward Diff. |     2.737 |    0.4289 |   -0.1193 |   0.04099 |
-#&gt; |.....................|  -0.07175 |    -2.104 |    -2.655 |   -0.1084 |
-#&gt; |.....................|    -2.489 |  -0.08715 |    0.1037 |    0.7775 |
-#&gt; |<span style='font-weight: bold;'>   58</span>|     458.17628 |    0.9955 |    -1.394 |   -0.9061 |   -0.8663 |
-#&gt; |.....................|   -0.7819 |   -0.4849 |   -0.7451 |   -0.9972 |
-#&gt; |.....................|    -1.060 |   -0.6016 |   -0.6832 |   -0.6943 |
-#&gt; |    U|     458.17628 |     93.69 |    -5.766 |   -0.9851 |   -0.1669 |
-#&gt; |.....................|     2.188 |     2.311 |     1.250 |    0.6637 |
-#&gt; |.....................|    0.7145 |     1.506 |     1.299 |     1.324 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.17628</span> |     93.69 |  0.003133 |    0.2719 |    0.8463 |
-#&gt; |.....................|     8.920 |     2.311 |     1.250 |    0.6637 |
-#&gt; |.....................|    0.7145 |     1.506 |     1.299 |     1.324 |
-#&gt; |    F| Forward Diff. |    -5.829 |    0.4364 |   -0.1238 |   0.03009 |
-#&gt; |.....................|  -0.09450 |    -1.871 |    -2.366 |   0.01771 |
-#&gt; |.....................|    -2.486 |  -0.08743 |   0.03350 |    0.7982 |
-#&gt; |<span style='font-weight: bold;'>   59</span>|     458.17323 |    0.9963 |    -1.395 |   -0.9059 |   -0.8664 |
-#&gt; |.....................|   -0.7819 |   -0.4846 |   -0.7446 |   -0.9977 |
-#&gt; |.....................|    -1.059 |   -0.6018 |   -0.6829 |   -0.6949 |
-#&gt; |    U|     458.17323 |     93.77 |    -5.766 |   -0.9850 |   -0.1669 |
-#&gt; |.....................|     2.188 |     2.311 |     1.250 |    0.6633 |
-#&gt; |.....................|    0.7149 |     1.506 |     1.299 |     1.323 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.17323</span> |     93.77 |  0.003132 |    0.2719 |    0.8463 |
-#&gt; |.....................|     8.921 |     2.311 |     1.250 |    0.6633 |
-#&gt; |.....................|    0.7149 |     1.506 |     1.299 |     1.323 |
-#&gt; |    F| Forward Diff. |     3.135 |    0.4259 |   -0.1111 |   0.03860 |
-#&gt; |.....................|  -0.07150 |    -1.713 |    -2.294 |   -0.1635 |
-#&gt; |.....................|    -3.755 |   -0.1071 |    0.1242 |    0.7274 |
-#&gt; |<span style='font-weight: bold;'>   60</span>|     458.17055 |    0.9957 |    -1.395 |   -0.9058 |   -0.8664 |
-#&gt; |.....................|   -0.7818 |   -0.4843 |   -0.7440 |   -0.9980 |
-#&gt; |.....................|    -1.058 |   -0.6018 |   -0.6828 |   -0.6953 |
-#&gt; |    U|     458.17055 |     93.70 |    -5.766 |   -0.9848 |   -0.1669 |
-#&gt; |.....................|     2.188 |     2.311 |     1.251 |    0.6631 |
-#&gt; |.....................|    0.7157 |     1.506 |     1.300 |     1.323 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.17055</span> |     93.70 |  0.003131 |    0.2719 |    0.8463 |
-#&gt; |.....................|     8.921 |     2.311 |     1.251 |    0.6631 |
-#&gt; |.....................|    0.7157 |     1.506 |     1.300 |     1.323 |
-#&gt; |    F| Forward Diff. |    -3.767 |    0.4346 |   -0.1027 |   0.03296 |
-#&gt; |.....................|  -0.07232 |    -2.503 |    -3.089 |   -0.1630 |
-#&gt; |.....................|    -2.382 |  -0.08570 |    0.1151 |    0.7161 |
-#&gt; |<span style='font-weight: bold;'>   61</span>|     458.16819 |    0.9965 |    -1.395 |   -0.9058 |   -0.8664 |
-#&gt; |.....................|   -0.7818 |   -0.4837 |   -0.7432 |   -0.9981 |
-#&gt; |.....................|    -1.058 |   -0.6018 |   -0.6828 |   -0.6955 |
-#&gt; |    U|     458.16819 |     93.79 |    -5.767 |   -0.9848 |   -0.1669 |
-#&gt; |.....................|     2.188 |     2.312 |     1.251 |    0.6630 |
-#&gt; |.....................|    0.7162 |     1.506 |     1.300 |     1.322 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16819</span> |     93.79 |  0.003130 |    0.2719 |    0.8462 |
-#&gt; |.....................|     8.921 |     2.312 |     1.251 |    0.6630 |
-#&gt; |.....................|    0.7162 |     1.506 |     1.300 |     1.322 |
-#&gt; |    F| Forward Diff. |     6.568 |    0.4333 |  -0.07429 |   0.03599 |
-#&gt; |.....................|  -0.03802 |    -2.553 |    -3.191 |   -0.5393 |
-#&gt; |.....................|   -0.9714 |   -0.8035 |    0.1031 |    0.6902 |
-#&gt; |<span style='font-weight: bold;'>   62</span>|     458.16513 |    0.9957 |    -1.396 |   -0.9056 |   -0.8666 |
-#&gt; |.....................|   -0.7821 |   -0.4835 |   -0.7425 |   -0.9983 |
-#&gt; |.....................|    -1.057 |   -0.6019 |   -0.6824 |   -0.6959 |
-#&gt; |    U|     458.16513 |     93.70 |    -5.767 |   -0.9847 |   -0.1672 |
-#&gt; |.....................|     2.188 |     2.312 |     1.252 |    0.6629 |
-#&gt; |.....................|    0.7164 |     1.506 |     1.300 |     1.322 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16513</span> |     93.70 |  0.003129 |    0.2720 |    0.8461 |
-#&gt; |.....................|     8.919 |     2.312 |     1.252 |    0.6629 |
-#&gt; |.....................|    0.7164 |     1.506 |     1.300 |     1.322 |
-#&gt; |    F| Forward Diff. |    -3.933 |    0.4306 |  -0.09800 |   0.02413 |
-#&gt; |.....................|  -0.09225 |    -1.469 |    -2.000 |  -0.05194 |
-#&gt; |.....................|    -3.675 |  -0.07209 |   0.09082 |    0.7196 |
-#&gt; |<span style='font-weight: bold;'>   63</span>|     458.16261 |    0.9962 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4834 |   -0.7420 |   -0.9986 |
-#&gt; |.....................|    -1.057 |   -0.6017 |   -0.6820 |   -0.6964 |
-#&gt; |    U|     458.16261 |     93.76 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.312 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7170 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16261</span> |     93.76 |  0.003127 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.312 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7170 |     1.506 |     1.300 |     1.321 |
-#&gt; |    F| Forward Diff. |     2.233 |    0.4197 |  -0.09277 |   0.03004 |
-#&gt; |.....................|  -0.08165 |    -1.772 |    -2.245 |  -0.08206 |
-#&gt; |.....................|    -2.339 |   -0.1510 |   0.07888 |    0.6887 |
-#&gt; |<span style='font-weight: bold;'>   64</span>|     458.16062 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16062 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16062</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    M|   Mixed Diff. |    -6.515 |    0.4169 |   -0.1028 |-1.670e+05 |
-#&gt; |.....................|   -0.1097 |    -2.956 |    -2.997 |   -0.5657 |
-#&gt; |.....................|    -4.153 |   -0.6659 |   -0.7853 |    0.1256 |
-#&gt; |<span style='font-weight: bold;'>   65</span>|     458.16519 |    0.9948 |    -1.397 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4822 |   -0.7405 |   -0.9986 |
-#&gt; |.....................|    -1.055 |   -0.6016 |   -0.6821 |   -0.6969 |
-#&gt; |    U|     458.16519 |     93.62 |    -5.768 |   -0.9844 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.253 |    0.6627 |
-#&gt; |.....................|    0.7183 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16519</span> |     93.62 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.253 |    0.6627 |
-#&gt; |.....................|    0.7183 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   66</span>|     458.16209 |    0.9951 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4825 |   -0.7409 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6968 |
-#&gt; |    U|     458.16209 |     93.65 |    -5.768 |   -0.9844 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.253 |    0.6626 |
-#&gt; |.....................|    0.7180 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16209</span> |     93.65 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.253 |    0.6626 |
-#&gt; |.....................|    0.7180 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   67</span>|     458.16115 |    0.9953 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4827 |   -0.7410 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16115 |     93.67 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.253 |    0.6626 |
-#&gt; |.....................|    0.7178 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16115</span> |     93.67 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.253 |    0.6626 |
-#&gt; |.....................|    0.7178 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   68</span>|     458.16084 |    0.9954 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4827 |   -0.7411 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16084 |     93.68 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7177 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16084</span> |     93.68 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7177 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   69</span>|     458.16072 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16072 |     93.68 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7177 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16072</span> |     93.68 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7177 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   70</span>|     458.16067 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16067 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7177 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16067</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7177 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   71</span>|     458.16067 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16067 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16067</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   72</span>|     458.16067 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16067 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16067</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   73</span>|     458.16072 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16072 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16072</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   74</span>|     458.16068 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16068 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16068</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   75</span>|     458.16068 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16068 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16068</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   76</span>|     458.16068 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16068 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16068</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   77</span>|     458.16068 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16068 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16068</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   78</span>|     458.16068 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16068 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16068</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   79</span>|     458.16068 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16068 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16068</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   80</span>|     458.16068 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16068 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16068</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   81</span>|     458.16067 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16067 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16067</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   82</span>|     458.16068 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16068 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16068</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   83</span>|     458.16068 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16068 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16068</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   84</span>|     458.16068 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16068 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16068</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   85</span>|     458.16068 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16068 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16068</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   86</span>|     458.16067 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16067 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16067</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   87</span>|     458.16067 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16067 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16067</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   88</span>|     458.16067 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16067 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16067</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   89</span>|     458.16067 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16067 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16067</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   90</span>|     458.16067 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16067 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16067</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   91</span>|     458.16067 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16067 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16067</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |<span style='font-weight: bold;'>   92</span>|     458.16067 |    0.9955 |    -1.396 |   -0.9054 |   -0.8667 |
-#&gt; |.....................|   -0.7822 |   -0.4828 |   -0.7412 |   -0.9986 |
-#&gt; |.....................|    -1.056 |   -0.6017 |   -0.6821 |   -0.6967 |
-#&gt; |    U|     458.16067 |     93.69 |    -5.768 |   -0.9845 |   -0.1673 |
-#&gt; |.....................|     2.188 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; |    X|<span style='font-weight: bold;'>     458.16067</span> |     93.69 |  0.003126 |    0.2720 |    0.8460 |
-#&gt; |.....................|     8.918 |     2.313 |     1.252 |    0.6626 |
-#&gt; |.....................|    0.7176 |     1.506 |     1.300 |     1.321 |
-#&gt; calculating covariance matrix
-#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; 1:    93.5791   -5.6199   -2.0817   -3.9984   -1.2037    0.1481    4.5359    1.6042    1.1515    2.4545    0.4989    0.5230   19.1822   10.0277
-#&gt; 2:    93.5157   -5.6781   -1.9742   -4.0546   -1.1333    0.1109    4.4678    1.5240    1.0939    2.3318    0.4740    0.6338   12.8885    7.4711
-#&gt; 3:    93.2898   -5.7047   -1.8559   -4.1328   -1.0939    0.0438    5.0096    1.4478    1.1939    2.2152    0.4503    0.6021   11.0381    5.1444
-#&gt; 4:    93.0426   -5.7814   -1.8501   -4.1839   -1.0410    0.0594    6.3802    1.4778    1.2229    2.1556    0.4278    0.5972   10.2381    4.4049
-#&gt; 5:    92.9134   -5.8482   -1.8162   -4.2071   -1.0582    0.0732    6.9858    1.8242    1.1718    2.3151    0.4064    0.5822    9.8642    4.4088
-#&gt; 6:    92.7655   -5.8047   -1.8535   -4.2041   -0.9870    0.0611    6.6365    1.7739    1.1619    2.2910    0.3861    0.5531    8.6374    4.0594
-#&gt; 7:    93.0259   -5.8252   -1.9173   -4.2093   -0.9549    0.0995    6.3047    2.2731    1.1038    2.1765    0.3668    0.5255    9.0819    3.0678
-#&gt; 8:    93.1406   -5.7510   -1.9019   -4.2213   -0.9559    0.1508    5.9894    2.5908    1.0919    2.0948    0.3484    0.4992    8.3332    2.3703
-#&gt; 9:    93.3980   -5.5162   -1.9512   -4.2707   -0.9026    0.1570    5.6900    2.4612    1.0373    2.3579    0.3310    0.4742    7.7762    2.1692
-#&gt; 10:    93.5148   -5.4966   -1.9184   -4.2482   -0.9045    0.1396    5.4055    2.3382    0.9855    2.2400    0.3145    0.4652    7.5796    1.9233
-#&gt; 11:    93.1833   -5.5679   -1.9315   -4.2869   -0.9148    0.1713    5.1352    2.2213    0.9362    2.1465    0.2987    0.4622    7.5181    1.8003
-#&gt; 12:    92.9902   -5.7249   -1.9741   -4.3054   -0.9148    0.1927    4.8784    2.9298    0.8975    2.3858    0.2838    0.5005    7.3638    1.7074
-#&gt; 13:    92.5821   -5.7143   -1.9662   -4.3403   -0.8940    0.1595    4.6345    2.8035    0.9305    2.5370    0.2696    0.4755    7.1732    1.6333
-#&gt; 14:    92.1385   -5.5571   -1.9874   -4.2935   -0.8815    0.1762    5.5000    2.6634    0.9011    2.4102    0.2561    0.5012    7.1920    1.7020
-#&gt; 15:    92.1244   -5.5198   -1.9701   -4.3134   -0.8984    0.1704    5.2250    2.5302    0.9705    2.4401    0.2433    0.4839    7.4072    1.6160
-#&gt; 16:    92.6306   -5.4666   -1.9776   -4.3023   -0.8906    0.1737    4.9638    2.4037    1.0278    2.3181    0.2312    0.5183    7.5105    1.6033
-#&gt; 17:    92.5769   -5.4886   -2.0034   -4.3892   -0.8863    0.1967    5.6659    2.2835    1.0796    2.7700    0.2196    0.5138    7.6495    1.4656
-#&gt; 18:    92.0321   -5.5257   -2.0086   -4.3651   -0.8914    0.1869    6.5345    2.1693    1.0771    2.6315    0.2086    0.4906    7.8248    1.4297
-#&gt; 19:    92.5497   -5.5509   -1.9892   -4.3590   -0.8947    0.2148    6.2078    2.0936    1.0629    2.4999    0.1992    0.4847    7.8809    1.4881
-#&gt; 20:    92.3638   -5.5322   -1.9943   -4.3507   -0.9153    0.1787    6.2176    2.1784    1.0242    2.5190    0.1923    0.4604    7.7900    1.5147
-#&gt; 21:    92.3946   -5.5963   -1.9984   -4.3234   -0.9031    0.1961    5.9067    2.4305    0.9962    2.3930    0.1827    0.4374    7.6671    1.5182
-#&gt; 22:    92.3389   -5.7757   -1.9686   -4.3485   -0.9054    0.1677    5.6113    3.2010    0.9650    2.4493    0.1907    0.4220    7.1305    1.5425
-#&gt; 23:    92.5054   -5.7766   -1.9947   -4.3613   -0.9069    0.1781    5.3308    3.2506    0.9932    2.5478    0.1868    0.4217    7.6690    1.4526
-#&gt; 24:    92.5865   -5.8597   -1.9691   -4.4676   -0.8950    0.1755    5.0642    4.0954    0.9471    3.5482    0.1891    0.4438    7.2397    1.6349
-#&gt; 25:    92.3775   -5.8727   -1.9577   -4.4964   -0.8955    0.1477    4.8354    3.8906    0.9557    3.5054    0.2003    0.4216    6.7966    1.5576
-#&gt; 26:    92.2427   -5.9696   -1.9672   -4.4384   -0.9063    0.1733    4.5937    4.0917    0.9924    3.3326    0.1918    0.4341    6.9377    1.5723
-#&gt; 27:    92.7312   -5.8434   -1.9590   -4.3655   -0.9095    0.1669    4.4448    3.8871    1.0032    3.1660    0.2006    0.4320    7.1970    1.5118
-#&gt; 28:    92.7033   -5.8759   -1.9827   -4.3776   -0.9145    0.1844    4.5885    3.6928    0.9750    3.0077    0.2093    0.4104    6.8745    1.4865
-#&gt; 29:    92.5242   -5.8627   -1.9806   -4.4623   -0.9142    0.2069    5.2823    3.5081    0.9748    3.5849    0.2098    0.4120    6.9735    1.5115
-#&gt; 30:    92.2312   -5.8332   -1.9739   -4.3699   -0.9100    0.1624    5.0182    3.5473    0.9553    3.4056    0.2102    0.3914    6.8547    1.5172
-#&gt; 31:    92.1659   -5.7898   -1.9642   -4.3956   -0.9105    0.1625    4.7672    3.3700    0.9442    3.2571    0.2071    0.3795    6.5191    1.5452
-#&gt; 32:    92.5436   -5.7968   -1.9642   -4.3987   -0.9179    0.1110    4.5289    3.2015    0.9382    3.0943    0.2024    0.3605    6.5921    1.5105
-#&gt; 33:    92.7837   -5.8155   -1.9539   -4.3145   -0.9157    0.1398    4.3024    3.3616    0.9119    2.9395    0.1981    0.3494    6.2870    1.6036
-#&gt; 34:    93.0500   -5.8853   -1.9587   -4.2507   -0.9146    0.1455    4.0873    4.3592    0.9129    2.7926    0.1961    0.3319    6.3493    1.6059
-#&gt; 35:    93.1208   -5.8581   -1.9614   -4.2722   -0.9127    0.1255    4.0645    4.1413    0.9262    2.6529    0.1964    0.3157    6.1337    1.6010
-#&gt; 36:    93.1002   -5.8598   -1.9886   -4.2092   -0.9076    0.1192    4.2392    3.9342    0.9566    2.5203    0.2015    0.3222    6.5326    1.4847
-#&gt; 37:    92.8242   -5.6228   -1.9655   -4.2054   -0.9099    0.1010    6.8190    3.7375    0.9087    2.3943    0.1942    0.3141    6.2613    1.6015
-#&gt; 38:    93.1512   -5.5747   -1.9736   -4.2054   -0.9115    0.0887    6.4781    3.5506    0.8904    2.2746    0.1930    0.3298    6.4960    1.5750
-#&gt; 39:    92.9998   -5.5416   -1.9750   -4.2124   -0.9101    0.0953    6.1542    3.3731    0.9013    2.1608    0.1858    0.3204    6.6470    1.5705
-#&gt; 40:    93.2158   -5.7057   -1.9587   -4.2101   -0.9122    0.0630    5.8464    3.2044    0.9350    2.1357    0.1851    0.3044    6.6842    1.5069
-#&gt; 41:    93.0585   -5.5453   -1.9306   -4.2101   -0.9021    0.0531    5.5541    3.0442    0.9458    2.1673    0.1851    0.2892    6.3923    1.5949
-#&gt; 42:    93.0958   -5.4512   -1.9484   -4.2227   -0.8959    0.0649    5.2764    2.8920    0.9571    2.1930    0.1829    0.2747    6.3082    1.5985
-#&gt; 43:    93.2333   -5.5398   -1.9391   -4.2400   -0.8972    0.0870    5.0126    2.7474    0.9913    2.2830    0.1984    0.2720    6.0810    1.6131
-#&gt; 44:    92.9479   -5.5648   -1.9227   -4.2468   -0.9104    0.0963    4.7620    2.6100    0.9682    2.2976    0.2038    0.2648    5.8461    1.6955
-#&gt; 45:    93.0244   -5.6247   -1.9379   -4.2588   -0.9093    0.0865    5.2997    2.4894    0.9837    2.3100    0.2039    0.2844    5.9439    1.6121
-#&gt; 46:    92.5959   -5.6240   -1.9513   -4.2588   -0.9172    0.0923    5.3111    2.5081    1.0158    2.3100    0.2050    0.2702    6.0141    1.6189
-#&gt; 47:    92.8483   -5.5823   -1.9529   -4.2684   -0.9194    0.0770    6.2469    2.3827    1.0328    2.3567    0.2104    0.2567    6.0472    1.5858
-#&gt; 48:    92.6210   -5.6336   -1.9379   -4.3049   -0.9054    0.0747    7.5721    2.3177    1.0379    2.5427    0.2103    0.2439    6.0431    1.5860
-#&gt; 49:    92.6337   -5.6723   -1.9486   -4.2879   -0.8985    0.0773    7.1935    2.6572    1.0181    2.4515    0.2056    0.2559    6.0895    1.5217
-#&gt; 50:    92.2413   -5.7138   -1.9587   -4.2804   -0.8926    0.0774    8.1551    2.9779    1.0282    2.4807    0.2090    0.2510    6.2355    1.5223
-#&gt; 51:    92.2223   -5.6765   -1.9496   -4.2971   -0.8840    0.1034    7.7638    3.0625    1.0017    2.6024    0.2075    0.2384    6.3495    1.6621
-#&gt; 52:    92.4242   -5.6573   -1.9408   -4.2943   -0.8993    0.1136    8.3190    2.9093    1.0044    2.4822    0.2163    0.2411    6.0611    1.5241
-#&gt; 53:    92.6070   -5.5921   -1.9397   -4.2873   -0.9046    0.0904   10.3681    2.7639    1.0098    2.4895    0.2194    0.2393    6.1728    1.5264
-#&gt; 54:    92.9339   -5.6194   -1.9292   -4.2950   -0.9006    0.1010    9.9150    2.6257    1.0088    2.4268    0.2346    0.2492    5.9203    1.5693
-#&gt; 55:    93.4640   -5.5851   -1.8969   -4.2614   -0.9065    0.1058   10.3986    2.4944    1.0204    2.3055    0.2257    0.2403    5.7030    1.5717
-#&gt; 56:    93.3646   -5.5851   -1.9127   -4.3130   -0.9196    0.1077    9.8787    2.3697    1.0067    2.6259    0.2261    0.2370    5.7389    1.5053
-#&gt; 57:    93.5408   -5.4962   -1.9150   -4.3285   -0.9148    0.0880    9.3848    2.2512    0.9903    2.6118    0.2160    0.2494    5.7530    1.5780
-#&gt; 58:    93.5195   -5.4358   -1.9459   -4.3041   -0.9076    0.1022    8.9155    2.1386    1.0220    2.5253    0.2220    0.2578    6.0138    1.4494
-#&gt; 59:    93.5906   -5.4624   -1.9507   -4.3065   -0.9124    0.1374    8.4698    2.0317    1.0230    2.5539    0.2212    0.2449    5.7538    1.6021
-#&gt; 60:    93.3308   -5.3784   -1.9540   -4.2417   -0.9173    0.1337    8.0463    1.9301    1.0298    2.4262    0.2173    0.2327    5.8841    1.4634
-#&gt; 61:    93.3506   -5.4000   -1.9688   -4.2389   -0.9130    0.0942    7.6440    1.8336    1.0437    2.3049    0.2216    0.2210    6.0098    1.4243
-#&gt; 62:    93.6969   -5.4175   -1.9467   -4.2389   -0.9135    0.1315    7.2618    1.7419    1.0213    2.2519    0.2250    0.2149    5.6278    1.4755
-#&gt; 63:    93.6188   -5.3860   -1.9295   -4.2637   -0.9222    0.1196    7.8033    1.6548    1.0340    2.2699    0.2282    0.2282    5.6763    1.4755
-#&gt; 64:    93.6782   -5.4118   -1.9518   -4.2655   -0.9298    0.1055    8.3519    1.5721    1.0227    2.4426    0.2317    0.2560    5.8006    1.4724
-#&gt; 65:    93.5253   -5.4313   -1.9314   -4.2538   -0.9245    0.0919    7.9343    1.4980    1.0771    2.3486    0.2249    0.2635    5.8752    1.4850
-#&gt; 66:    93.3192   -5.5672   -1.9715   -4.2575   -0.9224    0.1404    8.2293    1.9722    1.0233    2.3758    0.2365    0.2546    5.9462    1.5148
-#&gt; 67:    93.0765   -5.4861   -1.9673   -4.2472   -0.9103    0.0935    8.3227    1.8736    0.9889    2.3305    0.2493    0.2419    5.7836    1.4946
-#&gt; 68:    93.2666   -5.4963   -1.9635   -4.2435   -0.9093    0.0940    9.2911    1.7800    1.0050    2.3179    0.2495    0.2298    5.7104    1.4797
-#&gt; 69:    93.3894   -5.5666   -1.9342   -4.2325   -0.9227    0.0957    9.0211    2.0287    1.0012    2.3052    0.2483    0.2348    5.8939    1.5158
-#&gt; 70:    93.2671   -5.5710   -1.9486   -4.2723   -0.9323    0.1062    8.5700    2.1251    0.9714    2.3266    0.2498    0.2466    6.1562    1.5041
-#&gt; 71:    92.9975   -5.5829   -1.9507   -4.2632   -0.9317    0.1166    8.1415    2.0322    0.9403    2.3654    0.2373    0.2454    5.8668    1.5122
-#&gt; 72:    92.6364   -5.5255   -1.9888   -4.2605   -0.9255    0.1062    8.8866    1.9306    0.9680    2.4488    0.2314    0.2438    6.2101    1.5098
-#&gt; 73:    92.4442   -5.5679   -1.9880   -4.3501   -0.9070    0.0972    9.1986    1.9203    0.9597    3.1091    0.2369    0.2412    6.1257    1.5029
-#&gt; 74:    92.3866   -5.5447   -1.9895   -4.3137   -0.9004    0.0898   10.2222    1.8961    0.9573    2.9536    0.2494    0.2361    6.0474    1.4875
-#&gt; 75:    92.2491   -5.6481   -1.9591   -4.3587   -0.8991    0.1028    9.7111    2.2694    1.0140    2.9121    0.2524    0.2243    6.0995    1.4780
-#&gt; 76:    92.4656   -5.6014   -1.9860   -4.3538   -0.9015    0.0978   11.3121    2.1560    0.9861    2.9372    0.2489    0.2314    6.0996    1.4464
-#&gt; 77:    92.5076   -5.5929   -1.9560   -4.3624   -0.9051    0.1008   12.0483    2.0482    1.0212    3.0132    0.2551    0.2378    5.9595    1.5081
-#&gt; 78:    92.5987   -5.7000   -1.9592   -4.3611   -0.9131    0.0958   11.4458    2.3873    1.0062    2.9848    0.2549    0.2372    6.0385    1.4666
-#&gt; 79:    92.4883   -5.7675   -1.9900   -4.4226   -0.9163    0.1153   10.8735    2.7867    0.9616    3.4984    0.2546    0.2309    5.9441    1.4722
-#&gt; 80:    92.1716   -5.7782   -1.9810   -4.4398   -0.9122    0.1193   10.3299    3.0280    0.9642    3.6766    0.2520    0.2291    6.3013    1.4698
-#&gt; 81:    92.1145   -5.8494   -1.9836   -4.3634   -0.9196    0.1013    9.8134    3.1850    0.9160    3.4927    0.2562    0.2409    6.2458    1.4664
-#&gt; 82:    92.3761   -5.9668   -1.9722   -4.3888   -0.9240    0.1139    9.9738    3.9484    0.8923    3.3519    0.2434    0.2318    6.0987    1.4847
-#&gt; 83:    92.7805   -6.1135   -1.9335   -4.3600   -0.9273    0.1027   11.2060    4.7684    0.8932    3.1843    0.2454    0.2202    5.9824    1.4920
-#&gt; 84:    92.9601   -6.2190   -1.9374   -4.3187   -0.9376    0.1140   10.6457    5.6632    0.9077    3.0250    0.2464    0.2188    5.9979    1.5152
-#&gt; 85:    92.4579   -6.1486   -1.9398   -4.3269   -0.9417    0.0979   10.1134    5.3800    0.9011    2.8738    0.2446    0.2330    5.7007    1.5648
-#&gt; 86:    92.3580   -6.2177   -1.9549   -4.3287   -0.9510    0.1073    9.6077    5.1608    0.9318    2.7301    0.2497    0.2214    5.9916    1.5305
-#&gt; 87:    92.8919   -6.3309   -1.9480   -4.3285   -0.9647    0.1009    9.1273    6.4577    0.9494    2.7023    0.2408    0.2126    5.9053    1.4313
-#&gt; 88:    93.0621   -6.1220   -1.9623   -4.3341   -0.9624    0.1300    8.6710    6.1349    0.9563    2.6593    0.2404    0.2130    6.1925    1.4510
-#&gt; 89:    92.7711   -6.2636   -1.9545   -4.3520   -0.9496    0.1227    8.2374    6.2143    0.9791    2.5862    0.2346    0.2333    5.9772    1.4523
-#&gt; 90:    92.9148   -6.5481   -1.9586   -4.3275   -0.9496    0.1096    7.8255    8.2617    0.9787    2.4647    0.2346    0.2216    5.9136    1.4247
-#&gt; 91:    92.8129   -6.4655   -1.9753   -4.3287   -0.9435    0.1210    9.1893    7.8487    0.9642    2.5304    0.2354    0.2268    5.9129    1.4229
-#&gt; 92:    93.1090   -6.4752   -1.9841   -4.3533   -0.9428    0.1509   10.1133    7.7232    0.9160    2.6037    0.2457    0.2265    5.8601    1.4646
-#&gt; 93:    93.4781   -6.3780   -1.9909   -4.3713   -0.9450    0.1544    9.6076    7.3370    0.9153    2.7656    0.2485    0.2499    5.9150    1.5180
-#&gt; 94:    93.2125   -6.3021   -1.9798   -4.3459   -0.9470    0.1520    9.6738    6.9702    0.9314    2.6273    0.2428    0.2519    5.8752    1.4456
-#&gt; 95:    93.0091   -5.9727   -1.9828   -4.3777   -0.9447    0.1370    9.6411    6.6217    0.9107    2.7137    0.2428    0.2556    5.8302    1.4477
-#&gt; 96:    92.8731   -5.7813   -1.9952   -4.3343   -0.9352    0.1505    9.1590    6.2906    0.9011    2.5780    0.2366    0.2546    6.0545    1.4887
-#&gt; 97:    92.7834   -5.8119   -1.9975   -4.3303   -0.9258    0.1231    8.8022    5.9760    0.9005    2.5331    0.2392    0.2419    5.9522    1.4754
-#&gt; 98:    92.8447   -5.9773   -1.9940   -4.3353   -0.9301    0.1409    8.3621    5.6772    0.9244    2.4828    0.2426    0.2490    6.1027    1.4129
-#&gt; 99:    93.1697   -5.8958   -1.9964   -4.3325   -0.9248    0.1411    7.9440    5.3934    0.9586    2.6138    0.2378    0.2545    6.2793    1.3719
-#&gt; 100:    93.2536   -5.8481   -2.0009   -4.3408   -0.9304    0.1718    8.7965    5.1237    0.9290    2.6161    0.2398    0.2418    6.0908    1.4534
-#&gt; 101:    93.2942   -5.8684   -1.9650   -4.3096   -0.9305    0.1496    9.7633    4.8675    0.9166    2.4853    0.2372    0.2565    5.9079    1.4948
-#&gt; 102:    93.2636   -6.1363   -1.9517   -4.2653   -0.9235    0.1175   10.7772    5.1927    0.8944    2.3610    0.2448    0.2812    5.7748    1.5533
-#&gt; 103:    92.6954   -5.9371   -1.9524   -4.2792   -0.9045    0.1288   10.2383    4.9331    0.8876    2.2429    0.2406    0.2720    5.5496    1.5601
-#&gt; 104:    92.6149   -6.0650   -1.9532   -4.2752   -0.9048    0.0973   10.9914    4.6864    0.8845    2.1875    0.2475    0.2584    5.5593    1.4897
-#&gt; 105:    92.8231   -5.9779   -1.9650   -4.2939   -0.9013    0.1112   10.4712    4.4521    0.9193    2.1985    0.2416    0.2455    5.4420    1.4910
-#&gt; 106:    92.7599   -5.9602   -1.9594   -4.3018   -0.9026    0.1273   10.1396    4.2295    0.9308    2.1700    0.2453    0.2625    5.5458    1.4429
-#&gt; 107:    93.1433   -5.9509   -1.9638   -4.2715   -0.9324    0.1385    9.6327    4.0415    0.9271    2.1026    0.2415    0.2626    5.4762    1.4286
-#&gt; 108:    93.1354   -5.7359   -1.9691   -4.2962   -0.9256    0.1346   10.2794    3.8394    0.9387    2.1671    0.2412    0.2627    5.5107    1.4200
-#&gt; 109:    92.9608   -5.8252   -1.9780   -4.3149   -0.9125    0.1564    9.7654    4.0619    0.9380    2.1731    0.2325    0.2657    5.8118    1.4379
-#&gt; 110:    93.1043   -5.7632   -1.9874   -4.2868   -0.9113    0.1178    9.2771    3.8588    0.9420    2.1477    0.2214    0.2524    5.9352    1.4377
-#&gt; 111:    92.8879   -5.7965   -1.9781   -4.2851   -0.9147    0.1107    8.8133    3.6659    0.9526    2.1891    0.2130    0.2398    5.6360    1.4461
-#&gt; 112:    92.9347   -5.7484   -1.9460   -4.2825   -0.9195    0.1078    8.3726    3.4826    0.9710    2.2687    0.2051    0.2278    5.5771    1.5123
-#&gt; 113:    92.7217   -5.7193   -1.9328   -4.2721   -0.9252    0.1021    7.9540    3.3085    1.0056    2.2848    0.2244    0.2164    5.7135    1.5082
-#&gt; 114:    92.9944   -5.7382   -1.9414   -4.2835   -0.9210    0.1210    7.5563    3.1430    1.0184    2.2457    0.2260    0.2182    5.6799    1.4751
-#&gt; 115:    93.1261   -5.8876   -1.9290   -4.2753   -0.9382    0.0960    9.7696    3.4406    1.0140    2.2745    0.2171    0.2073    5.3919    1.4919
-#&gt; 116:    92.7669   -5.9842   -1.9484   -4.2828   -0.9504    0.1122    9.2811    4.1332    1.0202    2.2835    0.2160    0.2136    5.3651    1.5337
-#&gt; 117:    92.9804   -5.9847   -1.9584   -4.2879   -0.9474    0.1234    9.2911    3.9265    0.9692    2.3115    0.2135    0.2163    5.1053    1.4774
-#&gt; 118:    93.2853   -5.8443   -1.9494   -4.2700   -0.9400    0.1105    9.8572    3.7302    0.9736    2.2489    0.2192    0.2223    5.2416    1.4668
-#&gt; 119:    93.2776   -5.8592   -1.9458   -4.2600   -0.9394    0.1072    9.3643    3.5437    0.9789    2.1964    0.2176    0.2205    5.2942    1.4847
-#&gt; 120:    93.0335   -5.8156   -1.9453   -4.2623   -0.9437    0.1139    8.8961    3.3665    0.9698    2.2380    0.2206    0.2231    5.4427    1.4470
-#&gt; 121:    93.0115   -5.8402   -1.9355   -4.2596   -0.9291    0.1138    8.4513    3.3018    0.9743    2.1463    0.2096    0.2120    5.1537    1.4487
-#&gt; 122:    93.6277   -5.8852   -1.9276   -4.2787   -0.9419    0.1388    8.0287    3.4114    0.9438    2.1410    0.2072    0.2104    5.1198    1.5201
-#&gt; 123:    93.4952   -6.0977   -1.9332   -4.2847   -0.9431    0.1412    7.6273    4.8225    0.9472    2.1335    0.2081    0.2129    5.2003    1.6193
-#&gt; 124:    93.7207   -6.2280   -1.9105   -4.2692   -0.9551    0.1422    7.2459    5.4835    0.9657    2.0896    0.2148    0.2272    5.2901    1.5482
-#&gt; 125:    93.6041   -6.0808   -1.9356   -4.2748   -0.9531    0.1184    7.0201    5.2094    0.9591    2.0421    0.2089    0.2158    5.3848    1.4896
-#&gt; 126:    93.5193   -6.0164   -1.9296   -4.2890   -0.9600    0.1351    7.6848    4.9489    0.9931    2.1387    0.1989    0.2129    5.1988    1.4492
-#&gt; 127:    93.7135   -5.9340   -1.9448   -4.2883   -0.9633    0.1428    8.3411    4.7014    0.9820    2.1192    0.1985    0.2046    5.3953    1.4985
-#&gt; 128:    94.2312   -5.8849   -1.9404   -4.2754   -0.9633    0.1495    7.9240    4.4664    0.9884    2.0587    0.1902    0.2171    5.7113    1.4987
-#&gt; 129:    94.0390   -5.8674   -1.9229   -4.3309   -0.9614    0.1472    8.5108    4.2430    1.0319    2.1023    0.1909    0.2154    5.5654    1.4294
-#&gt; 130:    93.4178   -6.0458   -1.9224   -4.3364   -0.9560    0.1570    8.0852    4.4639    1.0184    2.2804    0.1869    0.2182    5.6585    1.4443
-#&gt; 131:    93.5483   -6.2682   -1.9258   -4.3654   -0.9554    0.1449    7.6810    5.6020    1.0254    2.3477    0.1857    0.2230    5.4266    1.4324
-#&gt; 132:    93.5180   -6.3297   -1.9204   -4.3577   -0.9640    0.1365    7.2969    5.5672    1.0354    2.3257    0.1788    0.2118    5.4913    1.4859
-#&gt; 133:    93.4707   -6.0990   -1.9415   -4.3315   -0.9775    0.1232    6.9321    5.2888    1.0686    2.3421    0.1851    0.2012    5.8429    1.4618
-#&gt; 134:    93.1012   -6.1236   -1.9308   -4.3409   -0.9654    0.1225    7.6471    5.0244    1.0517    2.4652    0.1947    0.2008    5.6902    1.5432
-#&gt; 135:    93.2545   -6.1070   -1.9408   -4.3415   -0.9553    0.1228    9.2701    4.7732    1.0160    2.3607    0.1919    0.1907    5.5154    1.5317
-#&gt; 136:    93.3338   -6.0321   -1.9336   -4.3074   -0.9598    0.1120    8.8066    4.5345    0.9652    2.2427    0.1999    0.2249    5.3667    1.6036
-#&gt; 137:    93.5910   -6.0627   -1.9339   -4.3074   -0.9529    0.1407    8.3663    4.3078    0.9538    2.2128    0.1966    0.2195    5.2959    1.6015
-#&gt; 138:    93.6338   -5.9702   -1.9252   -4.3105   -0.9615    0.1373    7.9480    4.0924    0.9875    2.2635    0.1964    0.2218    5.4532    1.5261
-#&gt; 139:    93.6403   -5.8913   -1.9237   -4.2962   -0.9582    0.1165    8.0749    3.8878    0.9746    2.2457    0.1972    0.2125    5.9356    1.5173
-#&gt; 140:    92.8503   -5.8314   -1.9452   -4.3180   -0.9487    0.1142    8.6356    3.6934    0.9933    2.2044    0.1961    0.2019    5.7908    1.5138
-#&gt; 141:    93.1249   -6.0584   -1.9448   -4.3139   -0.9367    0.0950    8.9231    4.4196    1.0220    2.2246    0.2079    0.2077    6.0233    1.4339
-#&gt; 142:    93.1846   -6.3026   -1.9152   -4.3093   -0.9392    0.0866   10.1508    5.9592    1.0562    2.3325    0.2082    0.2133    5.5285    1.4832
-#&gt; 143:    92.4682   -6.1485   -1.9146   -4.2812   -0.9376    0.0260    9.6433    5.6613    1.0618    2.3594    0.2000    0.2027    6.0573    1.4428
-#&gt; 144:    92.7792   -6.1108   -1.8939   -4.2740   -0.9341    0.0765    9.1611    5.3782    1.0917    2.3074    0.2057    0.2240    6.2141    1.4953
-#&gt; 145:    93.1314   -6.2086   -1.8939   -4.3580   -0.9341    0.0741    8.7031    5.1093    1.0931    2.7164    0.2105    0.2229    5.8543    1.4855
-#&gt; 146:    93.2254   -6.2170   -1.8998   -4.3724   -0.9311    0.0677    8.2679    5.0506    1.0811    2.8434    0.2049    0.2118    5.5455    1.4763
-#&gt; 147:    93.3264   -6.0136   -1.8998   -4.3853   -0.9328    0.0817    9.4673    4.7980    1.0668    2.8512    0.2009    0.2114    5.5518    1.5225
-#&gt; 148:    93.2298   -5.9143   -1.8921   -4.5001   -0.9296    0.1057    8.9939    4.5581    1.0563    3.8266    0.1982    0.2043    5.5242    1.5614
-#&gt; 149:    93.3604   -5.9894   -1.8832   -4.5223   -0.9338    0.0858    8.5442    4.3302    1.0544    4.3930    0.1986    0.2003    5.4353    1.4957
-#&gt; 150:    93.4715   -5.9630   -1.8833   -4.4796   -0.9335    0.0827    8.1170    4.1137    1.0912    4.1733    0.1984    0.1903    5.7477    1.4554
-#&gt; 151:    93.3385   -5.8026   -1.9052   -4.4507   -0.9368    0.0684    8.7726    3.9080    1.1249    3.9647    0.2074    0.1808    5.7693    1.4400
-#&gt; 152:    93.1682   -5.8529   -1.9441   -4.3545   -0.9309    0.0752    8.8042    3.1783    1.0496    3.0168    0.2069    0.1688    5.9161    1.4565
-#&gt; 153:    93.0559   -6.0261   -1.9425   -4.3431   -0.9327    0.1016    9.1435    3.9939    1.0120    2.8470    0.1894    0.1509    5.4435    1.5486
-#&gt; 154:    92.8582   -6.0887   -1.9278   -4.3094   -0.9352    0.1064    8.4316    4.2991    0.9819    2.6257    0.1907    0.1609    5.4587    1.5208
-#&gt; 155:    93.3200   -5.8480   -1.9149   -4.3363   -0.9294    0.1143    9.6700    3.1734    0.9942    2.6441    0.1824    0.1906    5.5193    1.6410
-#&gt; 156:    93.3199   -5.9053   -1.9213   -4.3163   -0.9369    0.1291    7.5899    3.5902    0.9823    2.4648    0.1770    0.1956    5.3816    1.5356
-#&gt; 157:    93.2434   -5.8763   -1.9161   -4.3035   -0.9549    0.1075    8.4137    3.2576    0.9935    2.5007    0.1795    0.1852    5.4053    1.5706
-#&gt; 158:    93.1494   -5.9243   -1.8929   -4.3162   -0.9680    0.1296    8.2959    3.3262    1.0029    2.4943    0.1866    0.1921    5.4369    1.5510
-#&gt; 159:    93.5683   -6.0335   -1.9127   -4.3040   -0.9675    0.1271    7.7222    4.0079    0.9768    2.5765    0.1869    0.2028    5.7165    1.4968
-#&gt; 160:    93.9417   -6.0018   -1.9085   -4.2818   -0.9611    0.1161    5.8791    4.4991    0.9658    2.4933    0.1878    0.1986    6.0579    1.5272
-#&gt; 161:    94.1252   -5.9264   -1.8943   -4.2805   -0.9645    0.0860    4.9517    3.6307    0.9754    2.4988    0.1934    0.1785    5.7457    1.5878
-#&gt; 162:    93.9389   -5.7613   -1.8946   -4.2410   -0.9752    0.0898    6.7269    2.5865    1.0184    2.4379    0.1933    0.1908    5.9052    1.5215
-#&gt; 163:    93.5890   -5.7243   -1.8992   -4.2636   -0.9722    0.0759    8.4484    2.5137    1.0151    2.3869    0.1928    0.1889    5.4694    1.5048
-#&gt; 164:    93.9751   -5.7314   -1.8786   -4.3271   -0.9702    0.1020    6.6884    2.5136    1.0133    2.8395    0.1907    0.1998    5.4625    1.4854
-#&gt; 165:    93.9708   -5.7409   -1.8856   -4.3129   -0.9616    0.1094    5.8809    2.4589    1.0401    2.6662    0.1912    0.1998    5.4339    1.4549
-#&gt; 166:    93.9265   -5.6937   -1.9134   -4.3080   -0.9702    0.1151    5.6940    2.4086    1.0065    2.6864    0.1983    0.1987    5.6907    1.4857
-#&gt; 167:    93.4157   -5.7312   -1.9163   -4.3286   -0.9638    0.1216    5.1230    2.5468    1.0487    2.5930    0.1917    0.1940    5.5938    1.4267
-#&gt; 168:    93.3701   -5.8757   -1.9196   -4.3493   -0.9579    0.1134    6.0802    3.3929    1.0517    2.6981    0.1888    0.2063    5.4125    1.4365
-#&gt; 169:    93.4342   -6.0262   -1.9041   -4.3347   -0.9526    0.0997    6.0780    3.6349    1.0623    2.7344    0.1946    0.1978    5.4930    1.4594
-#&gt; 170:    93.3751   -6.1195   -1.9093   -4.3541   -0.9872    0.0834    6.8972    4.0337    1.0763    2.8428    0.2077    0.2005    5.6759    1.4455
-#&gt; 171:    93.3603   -6.0360   -1.9196   -4.4632   -0.9763    0.0866    7.4236    3.6025    1.0684    3.7611    0.2046    0.1894    5.6282    1.4414
-#&gt; 172:    93.2776   -5.9538   -1.9031   -4.4815   -0.9779    0.1024    5.4751    3.2802    1.0599    3.9487    0.2115    0.1990    5.6116    1.4230
-#&gt; 173:    93.4470   -5.8580   -1.9193   -4.4170   -0.9641    0.0957    5.6416    2.8005    1.0440    3.4509    0.2066    0.1863    5.5804    1.4485
-#&gt; 174:    93.2952   -5.8590   -1.9010   -4.3600   -0.9640    0.0789    6.4314    2.9503    1.0808    2.9773    0.2045    0.1969    5.4423    1.4421
-#&gt; 175:    93.3756   -5.7733   -1.8959   -4.3621   -0.9504    0.0609    6.1723    2.5287    1.0950    3.0019    0.2127    0.2053    5.4338    1.4470
-#&gt; 176:    93.1450   -5.8266   -1.9053   -4.3401   -0.9457    0.0633    6.5237    3.0522    1.0942    2.9464    0.2134    0.2021    5.6501    1.3664
-#&gt; 177:    92.7723   -5.9978   -1.9231   -4.3529   -0.9524    0.0658    7.4519    4.2374    1.0640    3.0260    0.2158    0.2146    5.9180    1.4100
-#&gt; 178:    92.7261   -5.9836   -1.9189   -4.3349   -0.9576    0.0768    5.5211    4.2557    1.0611    2.8827    0.2169    0.2088    5.8872    1.4206
-#&gt; 179:    92.9599   -6.0071   -1.9259   -4.3081   -0.9581    0.0657    6.0953    3.8205    1.0816    2.6709    0.2122    0.2014    5.8221    1.4026
-#&gt; 180:    93.0831   -6.1544   -1.9400   -4.3018   -0.9496    0.0411    4.2312    4.9005    1.1064    2.6542    0.2143    0.2221    6.3264    1.3820
-#&gt; 181:    92.8840   -6.0889   -1.9364   -4.3200   -0.9566    0.0861    4.2186    4.4615    1.0930    2.7270    0.2142    0.2424    6.0486    1.4035
-#&gt; 182:    93.1913   -6.1457   -1.9384   -4.3085   -0.9606    0.0733    6.2878    4.6026    1.0917    2.6393    0.2131    0.2151    5.7042    1.4952
-#&gt; 183:    93.1218   -6.3114   -1.9355   -4.2883   -0.9742    0.0741    7.2675    5.1377    1.0914    2.5060    0.2220    0.2111    5.5099    1.4097
-#&gt; 184:    93.1462   -6.3147   -1.9068   -4.2880   -0.9653    0.0893    7.6928    5.6510    1.0563    2.5066    0.2256    0.2201    5.4138    1.5319
-#&gt; 185:    93.1825   -6.3608   -1.9265   -4.2815   -0.9549    0.0873    7.1340    5.9801    1.0363    2.4788    0.2177    0.1958    5.4202    1.4569
-#&gt; 186:    93.6270   -6.1413   -1.9278   -4.2702   -0.9696    0.1185    6.7652    4.5535    1.0400    2.3673    0.2163    0.1932    5.3005    1.5012
-#&gt; 187:    93.9922   -6.3364   -1.9269   -4.2702   -0.9729    0.1197    7.7694    6.1592    0.9948    2.3673    0.2196    0.2091    5.3075    1.5105
-#&gt; 188:    93.8884   -6.0236   -1.9207   -4.2928   -0.9900    0.1343    7.8090    4.2847    0.9840    2.4238    0.2195    0.1966    5.2861    1.5607
-#&gt; 189:    94.3110   -6.0809   -1.9145   -4.2826   -0.9840    0.1224    8.5580    4.0998    0.9800    2.4505    0.2294    0.1840    5.7107    1.5180
-#&gt; 190:    94.0039   -6.0996   -1.9140   -4.2793   -0.9782    0.1429   10.6594    4.1655    0.9796    2.4415    0.2297    0.1960    5.7533    1.5720
-#&gt; 191:    93.9692   -6.1129   -1.9362   -4.3261   -0.9705    0.1462    8.8201    4.3146    1.0124    2.4625    0.2287    0.2049    5.5670    1.5206
-#&gt; 192:    93.3178   -5.9759   -1.9192   -4.3378   -0.9664    0.1434    8.8047    3.7150    1.0282    2.4137    0.2243    0.1977    5.3858    1.4599
-#&gt; 193:    93.1427   -5.9388   -1.9391   -4.3211   -0.9650    0.1401    7.1862    3.2835    1.0218    2.3216    0.2163    0.1866    5.3930    1.5017
-#&gt; 194:    93.0588   -6.0605   -1.9361   -4.3350   -0.9462    0.1330    6.8930    4.0020    1.0166    2.3186    0.2057    0.1818    5.2535    1.5075
-#&gt; 195:    93.1820   -6.1201   -1.9579   -4.3034   -0.9534    0.1557    8.1300    4.4218    0.9932    2.1873    0.2099    0.1834    5.4862    1.4698
-#&gt; 196:    93.2230   -5.8879   -1.9725   -4.2965   -0.9584    0.1390    8.1307    3.0777    1.0051    2.1597    0.2089    0.1683    5.7058    1.3970
-#&gt; 197:    93.3504   -5.8829   -1.9677   -4.3075   -0.9577    0.1638    6.7115    3.0660    1.0050    2.1377    0.2024    0.1642    5.4691    1.5016
-#&gt; 198:    93.3016   -5.8771   -1.9885   -4.3241   -0.9605    0.1562    6.4722    3.0381    0.9727    2.2053    0.1975    0.1683    5.3434    1.4885
-#&gt; 199:    93.2464   -5.8787   -1.9871   -4.3430   -0.9528    0.1751    4.5894    3.0445    0.9748    2.2247    0.1886    0.1780    5.4469    1.4405
-#&gt; 200:    93.3474   -5.7995   -1.9767   -4.3298   -0.9480    0.1947    4.7024    2.8535    0.9895    2.2234    0.1951    0.2012    5.5130    1.4641
-#&gt; 201:    93.3231   -5.8169   -1.9737   -4.3268   -0.9510    0.1804    4.4248    2.8913    0.9738    2.2141    0.1955    0.2057    5.5422    1.4843
-#&gt; 202:    93.3484   -5.8009   -1.9732   -4.3240   -0.9519    0.1674    4.4068    2.8084    0.9736    2.2040    0.1959    0.2033    5.5843    1.4744
-#&gt; 203:    93.2617   -5.7915   -1.9678   -4.3211   -0.9535    0.1629    4.5333    2.7678    0.9877    2.1980    0.1961    0.2023    5.6265    1.4811
-#&gt; 204:    93.2210   -5.8071   -1.9647   -4.3220   -0.9504    0.1629    4.6144    2.8347    0.9922    2.1938    0.1937    0.2013    5.5745    1.4988
-#&gt; 205:    93.1914   -5.8104   -1.9667   -4.3225   -0.9484    0.1593    4.5880    2.8639    0.9931    2.1952    0.1916    0.1979    5.5960    1.5057
-#&gt; 206:    93.1827   -5.8348   -1.9697   -4.3236   -0.9498    0.1587    4.7189    3.0353    0.9929    2.2016    0.1922    0.1947    5.6096    1.5136
-#&gt; 207:    93.2017   -5.8760   -1.9714   -4.3239   -0.9518    0.1592    4.8171    3.2659    0.9947    2.2042    0.1927    0.1910    5.6413    1.5078
-#&gt; 208:    93.2226   -5.8819   -1.9736   -4.3261   -0.9532    0.1610    4.8241    3.2964    0.9957    2.2122    0.1938    0.1878    5.6704    1.5031
-#&gt; 209:    93.2158   -5.8786   -1.9743   -4.3278   -0.9538    0.1595    4.6275    3.2763    0.9963    2.2279    0.1950    0.1848    5.6758    1.5038
-#&gt; 210:    93.2216   -5.8798   -1.9746   -4.3286   -0.9535    0.1589    4.5667    3.2857    0.9974    2.2473    0.1948    0.1834    5.6707    1.5054
-#&gt; 211:    93.2238   -5.8847   -1.9763   -4.3302   -0.9530    0.1591    4.5745    3.2932    0.9956    2.2576    0.1948    0.1823    5.6691    1.4990
-#&gt; 212:    93.2242   -5.8893   -1.9777   -4.3323   -0.9532    0.1600    4.6203    3.2955    0.9938    2.2704    0.1958    0.1814    5.6732    1.4994
-#&gt; 213:    93.2246   -5.8950   -1.9756   -4.3345   -0.9532    0.1588    4.7363    3.3106    0.9894    2.2864    0.1960    0.1791    5.6401    1.5015
-#&gt; 214:    93.2056   -5.9070   -1.9740   -4.3368   -0.9532    0.1586    4.7814    3.3538    0.9888    2.3047    0.1960    0.1761    5.6265    1.5008
-#&gt; 215:    93.2126   -5.9157   -1.9720   -4.3405   -0.9533    0.1580    4.9117    3.3916    0.9890    2.3191    0.1959    0.1742    5.6054    1.5015
-#&gt; 216:    93.2161   -5.9242   -1.9716   -4.3423   -0.9533    0.1594    5.0163    3.4425    0.9897    2.3291    0.1959    0.1739    5.5975    1.5005
-#&gt; 217:    93.2193   -5.9351   -1.9715   -4.3445   -0.9537    0.1614    4.9927    3.5085    0.9905    2.3309    0.1957    0.1739    5.5905    1.5024
-#&gt; 218:    93.1973   -5.9314   -1.9725   -4.3479   -0.9548    0.1640    5.0502    3.4902    0.9918    2.3344    0.1952    0.1740    5.5909    1.5046
-#&gt; 219:    93.1938   -5.9312   -1.9729   -4.3508   -0.9539    0.1664    5.0446    3.4901    0.9922    2.3365    0.1949    0.1746    5.5808    1.5046
-#&gt; 220:    93.1994   -5.9424   -1.9734   -4.3531   -0.9536    0.1683    5.0462    3.5593    0.9917    2.3370    0.1945    0.1754    5.5831    1.5055
-#&gt; 221:    93.2015   -5.9511   -1.9746   -4.3550   -0.9537    0.1702    5.1062    3.6002    0.9899    2.3368    0.1945    0.1762    5.5731    1.5043
-#&gt; 222:    93.2057   -5.9653   -1.9756   -4.3571   -0.9541    0.1718    5.1727    3.6876    0.9886    2.3364    0.1943    0.1776    5.5813    1.5047
-#&gt; 223:    93.1998   -5.9723   -1.9761   -4.3592   -0.9540    0.1726    5.1866    3.7239    0.9871    2.3428    0.1940    0.1791    5.5702    1.5047
-#&gt; 224:    93.2042   -5.9799   -1.9768   -4.3615   -0.9540    0.1734    5.1516    3.7613    0.9849    2.3531    0.1934    0.1809    5.5705    1.5039
-#&gt; 225:    93.1974   -5.9813   -1.9776   -4.3648   -0.9540    0.1740    5.1225    3.7676    0.9840    2.3663    0.1929    0.1834    5.5698    1.5030
-#&gt; 226:    93.1963   -5.9807   -1.9777   -4.3679   -0.9535    0.1751    5.1632    3.7694    0.9839    2.3785    0.1927    0.1850    5.5676    1.5069
-#&gt; 227:    93.1912   -5.9740   -1.9783   -4.3707   -0.9533    0.1768    5.1987    3.7421    0.9835    2.3931    0.1922    0.1855    5.5597    1.5091
-#&gt; 228:    93.1902   -5.9799   -1.9792   -4.3745   -0.9533    0.1784    5.2070    3.7641    0.9825    2.4134    0.1917    0.1861    5.5502    1.5086
-#&gt; 229:    93.1903   -5.9894   -1.9805   -4.3792   -0.9533    0.1796    5.2398    3.8109    0.9812    2.4382    0.1910    0.1870    5.5486    1.5075
-#&gt; 230:    93.1833   -5.9946   -1.9816   -4.3836   -0.9530    0.1814    5.2357    3.8346    0.9800    2.4614    0.1904    0.1883    5.5515    1.5065
-#&gt; 231:    93.1740   -6.0001   -1.9834   -4.3871   -0.9528    0.1833    5.2848    3.8635    0.9783    2.4814    0.1898    0.1893    5.5526    1.5057
-#&gt; 232:    93.1581   -6.0071   -1.9852   -4.3904   -0.9523    0.1857    5.3056    3.8967    0.9766    2.5002    0.1891    0.1904    5.5571    1.5057
-#&gt; 233:    93.1417   -6.0131   -1.9865   -4.3933   -0.9517    0.1869    5.3290    3.9227    0.9745    2.5129    0.1885    0.1909    5.5609    1.5069
-#&gt; 234:    93.1245   -6.0198   -1.9878   -4.3961   -0.9514    0.1880    5.3062    3.9567    0.9731    2.5269    0.1886    0.1916    5.5645    1.5074
-#&gt; 235:    93.1084   -6.0269   -1.9885   -4.3985   -0.9514    0.1892    5.3213    3.9969    0.9729    2.5390    0.1887    0.1931    5.5722    1.5065
-#&gt; 236:    93.1037   -6.0382   -1.9897   -4.4009   -0.9517    0.1899    5.3601    4.0674    0.9744    2.5501    0.1886    0.1949    5.5811    1.5066
-#&gt; 237:    93.0989   -6.0432   -1.9906   -4.4031   -0.9518    0.1909    5.3744    4.0877    0.9755    2.5623    0.1885    0.1964    5.5890    1.5051
-#&gt; 238:    93.0932   -6.0433   -1.9912   -4.4041   -0.9521    0.1915    5.4192    4.0775    0.9772    2.5698    0.1886    0.1980    5.5980    1.5029
-#&gt; 239:    93.0943   -6.0475   -1.9913   -4.4056   -0.9520    0.1921    5.4483    4.0960    0.9792    2.5785    0.1888    0.1997    5.5999    1.5011
-#&gt; 240:    93.0904   -6.0498   -1.9909   -4.4070   -0.9520    0.1925    5.4921    4.1095    0.9814    2.5867    0.1887    0.2011    5.5974    1.5013
-#&gt; 241:    93.0883   -6.0508   -1.9910   -4.4086   -0.9520    0.1931    5.5503    4.1140    0.9827    2.5966    0.1887    0.2023    5.6049    1.4997
-#&gt; 242:    93.0884   -6.0487   -1.9916   -4.4102   -0.9517    0.1940    5.5634    4.1021    0.9831    2.6059    0.1886    0.2039    5.6116    1.5005
-#&gt; 243:    93.0836   -6.0466   -1.9920   -4.4123   -0.9517    0.1950    5.5786    4.0878    0.9837    2.6204    0.1887    0.2054    5.6217    1.5000
-#&gt; 244:    93.0756   -6.0477   -1.9926   -4.4149   -0.9517    0.1956    5.5827    4.0904    0.9843    2.6385    0.1887    0.2070    5.6306    1.4995
-#&gt; 245:    93.0664   -6.0533   -1.9930   -4.4174   -0.9514    0.1963    5.6228    4.1208    0.9857    2.6549    0.1888    0.2086    5.6346    1.4996
-#&gt; 246:    93.0643   -6.0543   -1.9931   -4.4200   -0.9511    0.1969    5.6236    4.1257    0.9872    2.6735    0.1886    0.2096    5.6381    1.4989
-#&gt; 247:    93.0631   -6.0568   -1.9929   -4.4227   -0.9511    0.1974    5.6045    4.1389    0.9889    2.6910    0.1886    0.2107    5.6408    1.4984
-#&gt; 248:    93.0636   -6.0567   -1.9924   -4.4264   -0.9513    0.1974    5.6016    4.1412    0.9906    2.7225    0.1886    0.2117    5.6424    1.4992
-#&gt; 249:    93.0727   -6.0560   -1.9920   -4.4302   -0.9514    0.1973    5.6088    4.1383    0.9922    2.7584    0.1885    0.2125    5.6441    1.4992
-#&gt; 250:    93.0865   -6.0551   -1.9915   -4.4337   -0.9512    0.1973    5.6127    4.1386    0.9941    2.7852    0.1884    0.2135    5.6522    1.4977
-#&gt; 251:    93.0887   -6.0551   -1.9910   -4.4364   -0.9511    0.1967    5.5869    4.1455    0.9964    2.8060    0.1883    0.2146    5.6561    1.4968
-#&gt; 252:    93.0877   -6.0522   -1.9904   -4.4376   -0.9511    0.1964    5.5778    4.1346    0.9987    2.8151    0.1883    0.2155    5.6583    1.4964
-#&gt; 253:    93.0843   -6.0518   -1.9897   -4.4391   -0.9512    0.1961    5.5948    4.1323    1.0011    2.8253    0.1884    0.2164    5.6588    1.4972
-#&gt; 254:    93.0818   -6.0518   -1.9896   -4.4399   -0.9512    0.1957    5.6122    4.1352    1.0016    2.8319    0.1882    0.2169    5.6573    1.4991
-#&gt; 255:    93.0838   -6.0524   -1.9895   -4.4401   -0.9514    0.1954    5.6310    4.1366    1.0025    2.8408    0.1880    0.2174    5.6584    1.4996
-#&gt; 256:    93.0850   -6.0579   -1.9892   -4.4400   -0.9515    0.1948    5.6526    4.1752    1.0043    2.8482    0.1879    0.2181    5.6611    1.4979
-#&gt; 257:    93.0868   -6.0600   -1.9890   -4.4391   -0.9517    0.1940    5.6742    4.1941    1.0055    2.8499    0.1878    0.2189    5.6649    1.4985
-#&gt; 258:    93.0873   -6.0606   -1.9888   -4.4391   -0.9518    0.1932    5.7088    4.2037    1.0066    2.8552    0.1877    0.2196    5.6668    1.4983
-#&gt; 259:    93.0912   -6.0650   -1.9882   -4.4377   -0.9519    0.1925    5.7494    4.2300    1.0080    2.8537    0.1877    0.2204    5.6729    1.4977
-#&gt; 260:    93.0964   -6.0699   -1.9874   -4.4362   -0.9519    0.1918    5.7609    4.2588    1.0100    2.8513    0.1877    0.2212    5.6792    1.4974
-#&gt; 261:    93.1014   -6.0737   -1.9866   -4.4350   -0.9522    0.1913    5.7971    4.2807    1.0115    2.8496    0.1877    0.2220    5.6812    1.4969
-#&gt; 262:    93.1064   -6.0734   -1.9859   -4.4346   -0.9526    0.1909    5.7936    4.2719    1.0129    2.8505    0.1877    0.2228    5.6824    1.4958
-#&gt; 263:    93.1092   -6.0783   -1.9850   -4.4344   -0.9530    0.1906    5.8078    4.2973    1.0141    2.8525    0.1879    0.2233    5.6815    1.4954
-#&gt; 264:    93.1128   -6.0830   -1.9842   -4.4338   -0.9535    0.1901    5.8245    4.3273    1.0146    2.8527    0.1880    0.2237    5.6768    1.4958
-#&gt; 265:    93.1198   -6.0874   -1.9834   -4.4331   -0.9541    0.1895    5.8467    4.3490    1.0149    2.8522    0.1880    0.2238    5.6693    1.4965
-#&gt; 266:    93.1284   -6.0890   -1.9828   -4.4327   -0.9546    0.1888    5.8350    4.3488    1.0149    2.8513    0.1881    0.2239    5.6650    1.4970
-#&gt; 267:    93.1380   -6.0926   -1.9819   -4.4326   -0.9549    0.1883    5.8440    4.3677    1.0156    2.8526    0.1883    0.2240    5.6609    1.4974
-#&gt; 268:    93.1480   -6.0915   -1.9810   -4.4321   -0.9552    0.1873    5.8565    4.3552    1.0163    2.8522    0.1886    0.2238    5.6537    1.4990
-#&gt; 269:    93.1539   -6.0910   -1.9803   -4.4314   -0.9556    0.1866    5.8709    4.3438    1.0179    2.8503    0.1888    0.2237    5.6495    1.4989
-#&gt; 270:    93.1620   -6.0898   -1.9798   -4.4311   -0.9561    0.1861    5.8678    4.3301    1.0197    2.8507    0.1890    0.2235    5.6466    1.4984
-#&gt; 271:    93.1668   -6.0881   -1.9792   -4.4305   -0.9565    0.1857    5.8508    4.3147    1.0209    2.8487    0.1891    0.2234    5.6487    1.4997
-#&gt; 272:    93.1725   -6.0848   -1.9787   -4.4300   -0.9569    0.1855    5.8431    4.2948    1.0217    2.8474    0.1894    0.2233    5.6488    1.5000
-#&gt; 273:    93.1770   -6.0809   -1.9783   -4.4297   -0.9572    0.1850    5.8432    4.2739    1.0227    2.8470    0.1897    0.2235    5.6497    1.5000
-#&gt; 274:    93.1797   -6.0774   -1.9776   -4.4299   -0.9574    0.1846    5.8549    4.2532    1.0243    2.8494    0.1901    0.2235    5.6511    1.5003
-#&gt; 275:    93.1829   -6.0759   -1.9774   -4.4303   -0.9578    0.1845    5.8633    4.2387    1.0255    2.8514    0.1906    0.2234    5.6561    1.5010
-#&gt; 276:    93.1846   -6.0764   -1.9771   -4.4303   -0.9581    0.1845    5.8738    4.2322    1.0267    2.8523    0.1911    0.2232    5.6554    1.5020
-#&gt; 277:    93.1880   -6.0792   -1.9768   -4.4305   -0.9584    0.1844    5.8980    4.2423    1.0278    2.8541    0.1915    0.2229    5.6586    1.5019
-#&gt; 278:    93.1920   -6.0791   -1.9766   -4.4307   -0.9586    0.1841    5.9368    4.2391    1.0289    2.8559    0.1919    0.2226    5.6600    1.5024
-#&gt; 279:    93.1892   -6.0786   -1.9766   -4.4310   -0.9586    0.1839    5.9822    4.2309    1.0300    2.8584    0.1925    0.2226    5.6642    1.5015
-#&gt; 280:    93.1868   -6.0782   -1.9765   -4.4311   -0.9587    0.1836    6.0381    4.2253    1.0311    2.8616    0.1930    0.2227    5.6686    1.5008
-#&gt; 281:    93.1805   -6.0781   -1.9764   -4.4309   -0.9586    0.1832    6.0718    4.2228    1.0325    2.8626    0.1936    0.2227    5.6741    1.5002
-#&gt; 282:    93.1780   -6.0768   -1.9762   -4.4318   -0.9585    0.1829    6.0867    4.2160    1.0341    2.8701    0.1941    0.2228    5.6740    1.4998
-#&gt; 283:    93.1777   -6.0736   -1.9760   -4.4325   -0.9583    0.1825    6.1250    4.2003    1.0355    2.8768    0.1946    0.2228    5.6761    1.5010
-#&gt; 284:    93.1745   -6.0726   -1.9757   -4.4337   -0.9582    0.1823    6.1509    4.1975    1.0370    2.8843    0.1951    0.2227    5.6764    1.5009
-#&gt; 285:    93.1742   -6.0719   -1.9755   -4.4348   -0.9579    0.1820    6.1652    4.1936    1.0381    2.8910    0.1954    0.2225    5.6773    1.5011
-#&gt; 286:    93.1706   -6.0698   -1.9754   -4.4356   -0.9576    0.1818    6.1840    4.1844    1.0394    2.8966    0.1958    0.2224    5.6780    1.5011
-#&gt; 287:    93.1672   -6.0678   -1.9752   -4.4370   -0.9573    0.1816    6.2123    4.1767    1.0400    2.9079    0.1963    0.2224    5.6757    1.5015
-#&gt; 288:    93.1628   -6.0658   -1.9753   -4.4379   -0.9572    0.1815    6.2355    4.1700    1.0407    2.9150    0.1967    0.2223    5.6742    1.5013
-#&gt; 289:    93.1588   -6.0628   -1.9753   -4.4389   -0.9569    0.1818    6.2435    4.1565    1.0416    2.9217    0.1969    0.2218    5.6777    1.5007
-#&gt; 290:    93.1560   -6.0590   -1.9754   -4.4399   -0.9565    0.1820    6.2564    4.1394    1.0425    2.9291    0.1971    0.2214    5.6778    1.5006
-#&gt; 291:    93.1552   -6.0555   -1.9754   -4.4409   -0.9562    0.1821    6.2753    4.1246    1.0435    2.9375    0.1973    0.2210    5.6779    1.5009
-#&gt; 292:    93.1546   -6.0541   -1.9754   -4.4415   -0.9558    0.1820    6.2881    4.1183    1.0444    2.9414    0.1975    0.2205    5.6762    1.5006
-#&gt; 293:    93.1506   -6.0535   -1.9756   -4.4424   -0.9555    0.1821    6.2856    4.1182    1.0454    2.9474    0.1976    0.2200    5.6770    1.4994
-#&gt; 294:    93.1453   -6.0520   -1.9758   -4.4424   -0.9553    0.1819    6.2733    4.1124    1.0463    2.9487    0.1979    0.2195    5.6792    1.4985
-#&gt; 295:    93.1431   -6.0487   -1.9760   -4.4421   -0.9551    0.1820    6.2655    4.1009    1.0469    2.9498    0.1982    0.2190    5.6797    1.4989
-#&gt; 296:    93.1425   -6.0460   -1.9760   -4.4432   -0.9548    0.1818    6.2801    4.0912    1.0478    2.9566    0.1984    0.2185    5.6795    1.4989
-#&gt; 297:    93.1403   -6.0442   -1.9761   -4.4440   -0.9545    0.1818    6.2979    4.0836    1.0485    2.9626    0.1987    0.2182    5.6783    1.4978
-#&gt; 298:    93.1400   -6.0438   -1.9763   -4.4440   -0.9543    0.1817    6.3069    4.0842    1.0492    2.9646    0.1989    0.2178    5.6783    1.4968
-#&gt; 299:    93.1373   -6.0426   -1.9764   -4.4445   -0.9540    0.1813    6.3134    4.0790    1.0505    2.9694    0.1991    0.2175    5.6800    1.4953
-#&gt; 300:    93.1340   -6.0412   -1.9764   -4.4450   -0.9538    0.1811    6.3192    4.0731    1.0516    2.9744    0.1993    0.2171    5.6782    1.4938
-#&gt; 301:    93.1330   -6.0402   -1.9766   -4.4455   -0.9535    0.1808    6.3278    4.0685    1.0531    2.9784    0.1996    0.2167    5.6819    1.4925
-#&gt; 302:    93.1308   -6.0402   -1.9768   -4.4457   -0.9534    0.1806    6.3417    4.0684    1.0549    2.9813    0.1998    0.2163    5.6824    1.4905
-#&gt; 303:    93.1294   -6.0373   -1.9769   -4.4459   -0.9532    0.1804    6.3489    4.0538    1.0565    2.9838    0.2000    0.2159    5.6841    1.4890
-#&gt; 304:    93.1304   -6.0345   -1.9771   -4.4461   -0.9530    0.1801    6.3543    4.0409    1.0581    2.9859    0.2002    0.2155    5.6869    1.4875
-#&gt; 305:    93.1287   -6.0319   -1.9772   -4.4463   -0.9528    0.1800    6.3496    4.0293    1.0597    2.9882    0.2003    0.2151    5.6902    1.4867
-#&gt; 306:    93.1261   -6.0301   -1.9775   -4.4474   -0.9527    0.1802    6.3479    4.0231    1.0614    2.9989    0.2003    0.2145    5.6963    1.4856
-#&gt; 307:    93.1232   -6.0284   -1.9777   -4.4479   -0.9526    0.1802    6.3507    4.0135    1.0629    3.0036    0.2004    0.2141    5.6987    1.4849
-#&gt; 308:    93.1192   -6.0264   -1.9779   -4.4483   -0.9524    0.1802    6.3641    4.0019    1.0644    3.0084    0.2004    0.2135    5.6991    1.4837
-#&gt; 309:    93.1137   -6.0253   -1.9783   -4.4487   -0.9522    0.1803    6.3579    3.9953    1.0658    3.0133    0.2004    0.2130    5.7035    1.4826
-#&gt; 310:    93.1100   -6.0223   -1.9787   -4.4489   -0.9520    0.1804    6.3423    3.9800    1.0665    3.0171    0.2005    0.2126    5.7061    1.4822
-#&gt; 311:    93.1044   -6.0215   -1.9791   -4.4496   -0.9517    0.1804    6.3365    3.9744    1.0675    3.0251    0.2005    0.2121    5.7092    1.4816
-#&gt; 312:    93.1006   -6.0206   -1.9795   -4.4501   -0.9516    0.1806    6.3317    3.9681    1.0688    3.0321    0.2006    0.2115    5.7128    1.4805
-#&gt; 313:    93.0951   -6.0194   -1.9797   -4.4499   -0.9516    0.1805    6.3297    3.9609    1.0702    3.0333    0.2008    0.2109    5.7137    1.4805
-#&gt; 314:    93.0922   -6.0192   -1.9800   -4.4497   -0.9515    0.1804    6.3486    3.9570    1.0715    3.0345    0.2009    0.2104    5.7144    1.4800
-#&gt; 315:    93.0883   -6.0186   -1.9804   -4.4495   -0.9515    0.1803    6.3712    3.9528    1.0726    3.0351    0.2011    0.2100    5.7156    1.4794
-#&gt; 316:    93.0808   -6.0182   -1.9808   -4.4492   -0.9514    0.1802    6.3979    3.9483    1.0738    3.0345    0.2013    0.2097    5.7164    1.4792
-#&gt; 317:    93.0758   -6.0174   -1.9813   -4.4487   -0.9513    0.1801    6.4377    3.9428    1.0747    3.0327    0.2015    0.2094    5.7175    1.4787
-#&gt; 318:    93.0713   -6.0166   -1.9816   -4.4484   -0.9513    0.1801    6.4856    3.9375    1.0757    3.0316    0.2017    0.2091    5.7197    1.4778
-#&gt; 319:    93.0659   -6.0176   -1.9819   -4.4482   -0.9511    0.1800    6.5263    3.9425    1.0768    3.0313    0.2018    0.2088    5.7218    1.4772
-#&gt; 320:    93.0607   -6.0165   -1.9822   -4.4484   -0.9510    0.1798    6.5554    3.9372    1.0777    3.0329    0.2019    0.2087    5.7236    1.4771
-#&gt; 321:    93.0551   -6.0145   -1.9825   -4.4487   -0.9509    0.1797    6.5844    3.9275    1.0787    3.0368    0.2021    0.2085    5.7256    1.4766
-#&gt; 322:    93.0531   -6.0130   -1.9827   -4.4491   -0.9507    0.1797    6.6073    3.9201    1.0797    3.0400    0.2021    0.2082    5.7250    1.4759
-#&gt; 323:    93.0477   -6.0123   -1.9828   -4.4493   -0.9506    0.1794    6.6255    3.9149    1.0804    3.0420    0.2021    0.2080    5.7249    1.4756
-#&gt; 324:    93.0425   -6.0107   -1.9829   -4.4498   -0.9504    0.1792    6.6282    3.9060    1.0813    3.0457    0.2022    0.2078    5.7250    1.4754
-#&gt; 325:    93.0389   -6.0090   -1.9830   -4.4504   -0.9503    0.1792    6.6252    3.8965    1.0819    3.0496    0.2022    0.2077    5.7246    1.4749
-#&gt; 326:    93.0411   -6.0093   -1.9832   -4.4509   -0.9503    0.1795    6.6358    3.8976    1.0827    3.0516    0.2022    0.2076    5.7248    1.4738
-#&gt; 327:    93.0418   -6.0095   -1.9834   -4.4514   -0.9503    0.1797    6.6415    3.8962    1.0834    3.0533    0.2022    0.2075    5.7237    1.4737
-#&gt; 328:    93.0434   -6.0093   -1.9835   -4.4520   -0.9503    0.1798    6.6621    3.8957    1.0841    3.0550    0.2022    0.2074    5.7247    1.4731
-#&gt; 329:    93.0446   -6.0109   -1.9836   -4.4522   -0.9503    0.1798    6.6763    3.9048    1.0847    3.0543    0.2022    0.2072    5.7259    1.4725
-#&gt; 330:    93.0451   -6.0133   -1.9838   -4.4518   -0.9503    0.1799    6.6859    3.9192    1.0852    3.0521    0.2022    0.2070    5.7252    1.4719
-#&gt; 331:    93.0456   -6.0136   -1.9838   -4.4516   -0.9503    0.1799    6.6773    3.9217    1.0858    3.0505    0.2022    0.2067    5.7250    1.4715
-#&gt; 332:    93.0463   -6.0133   -1.9839   -4.4515   -0.9504    0.1799    6.6560    3.9195    1.0863    3.0494    0.2022    0.2063    5.7255    1.4710
-#&gt; 333:    93.0496   -6.0122   -1.9839   -4.4513   -0.9505    0.1800    6.6484    3.9134    1.0869    3.0474    0.2022    0.2060    5.7253    1.4705
-#&gt; 334:    93.0520   -6.0105   -1.9838   -4.4513   -0.9505    0.1801    6.6314    3.9035    1.0877    3.0462    0.2022    0.2056    5.7259    1.4702
-#&gt; 335:    93.0550   -6.0088   -1.9836   -4.4510   -0.9507    0.1800    6.6194    3.8941    1.0887    3.0451    0.2022    0.2051    5.7263    1.4702
-#&gt; 336:    93.0554   -6.0081   -1.9834   -4.4509   -0.9508    0.1800    6.6100    3.8896    1.0896    3.0444    0.2022    0.2048    5.7266    1.4705
-#&gt; 337:    93.0582   -6.0067   -1.9832   -4.4507   -0.9509    0.1800    6.6089    3.8805    1.0904    3.0445    0.2021    0.2044    5.7260    1.4706
-#&gt; 338:    93.0631   -6.0073   -1.9831   -4.4507   -0.9511    0.1801    6.5993    3.8798    1.0908    3.0443    0.2021    0.2040    5.7250    1.4711
-#&gt; 339:    93.0689   -6.0071   -1.9831   -4.4508   -0.9513    0.1803    6.5976    3.8749    1.0911    3.0442    0.2021    0.2037    5.7240    1.4714
-#&gt; 340:    93.0694   -6.0085   -1.9831   -4.4507   -0.9516    0.1804    6.5915    3.8779    1.0914    3.0436    0.2022    0.2032    5.7227    1.4711
-#&gt; 341:    93.0709   -6.0097   -1.9830   -4.4508   -0.9518    0.1804    6.5862    3.8803    1.0915    3.0429    0.2023    0.2026    5.7213    1.4715
-#&gt; 342:    93.0741   -6.0104   -1.9829   -4.4507   -0.9521    0.1804    6.5894    3.8812    1.0918    3.0417    0.2024    0.2022    5.7204    1.4714
-#&gt; 343:    93.0781   -6.0122   -1.9829   -4.4505   -0.9523    0.1804    6.5907    3.8870    1.0921    3.0410    0.2024    0.2016    5.7202    1.4712
-#&gt; 344:    93.0818   -6.0134   -1.9829   -4.4503   -0.9525    0.1804    6.5908    3.8895    1.0926    3.0400    0.2025    0.2011    5.7182    1.4712
-#&gt; 345:    93.0850   -6.0148   -1.9829   -4.4500   -0.9528    0.1806    6.5984    3.8931    1.0926    3.0387    0.2026    0.2006    5.7169    1.4712
-#&gt; 346:    93.0849   -6.0155   -1.9831   -4.4502   -0.9529    0.1807    6.6079    3.8986    1.0931    3.0401    0.2028    0.2002    5.7172    1.4716
-#&gt; 347:    93.0859   -6.0161   -1.9832   -4.4503   -0.9530    0.1809    6.6307    3.9028    1.0941    3.0404    0.2029    0.1998    5.7170    1.4712
-#&gt; 348:    93.0885   -6.0173   -1.9833   -4.4503   -0.9532    0.1809    6.6470    3.9096    1.0951    3.0404    0.2030    0.1993    5.7174    1.4708
-#&gt; 349:    93.0894   -6.0189   -1.9835   -4.4503   -0.9534    0.1810    6.6443    3.9190    1.0955    3.0410    0.2031    0.1989    5.7175    1.4707
-#&gt; 350:    93.0924   -6.0196   -1.9836   -4.4502   -0.9535    0.1813    6.6543    3.9218    1.0957    3.0409    0.2032    0.1983    5.7182    1.4705
-#&gt; 351:    93.0938   -6.0203   -1.9838   -4.4503   -0.9536    0.1814    6.6630    3.9233    1.0963    3.0417    0.2032    0.1977    5.7189    1.4703
-#&gt; 352:    93.0946   -6.0210   -1.9838   -4.4505   -0.9537    0.1816    6.6698    3.9263    1.0968    3.0432    0.2033    0.1973    5.7196    1.4701
-#&gt; 353:    93.0969   -6.0214   -1.9839   -4.4505   -0.9538    0.1818    6.6837    3.9270    1.0973    3.0442    0.2034    0.1968    5.7199    1.4701
-#&gt; 354:    93.1014   -6.0199   -1.9839   -4.4504   -0.9539    0.1817    6.7040    3.9204    1.0978    3.0438    0.2034    0.1962    5.7191    1.4703
-#&gt; 355:    93.1035   -6.0197   -1.9838   -4.4502   -0.9539    0.1816    6.7119    3.9222    1.0983    3.0433    0.2034    0.1957    5.7194    1.4706
-#&gt; 356:    93.1055   -6.0198   -1.9839   -4.4496   -0.9539    0.1815    6.7302    3.9277    1.0989    3.0409    0.2035    0.1952    5.7206    1.4707
-#&gt; 357:    93.1080   -6.0188   -1.9837   -4.4490   -0.9540    0.1813    6.7558    3.9243    1.0997    3.0386    0.2035    0.1948    5.7217    1.4706
-#&gt; 358:    93.1111   -6.0182   -1.9835   -4.4484   -0.9541    0.1812    6.7733    3.9204    1.1005    3.0365    0.2035    0.1944    5.7209    1.4700
-#&gt; 359:    93.1148   -6.0175   -1.9834   -4.4481   -0.9542    0.1811    6.7997    3.9151    1.1012    3.0355    0.2035    0.1940    5.7191    1.4696
-#&gt; 360:    93.1157   -6.0176   -1.9832   -4.4478   -0.9543    0.1810    6.8133    3.9155    1.1017    3.0340    0.2035    0.1937    5.7158    1.4691
-#&gt; 361:    93.1169   -6.0185   -1.9830   -4.4476   -0.9544    0.1808    6.8098    3.9232    1.1022    3.0328    0.2035    0.1934    5.7143    1.4690
-#&gt; 362:    93.1173   -6.0205   -1.9829   -4.4472   -0.9545    0.1805    6.8125    3.9361    1.1024    3.0319    0.2035    0.1931    5.7137    1.4693
-#&gt; 363:    93.1162   -6.0230   -1.9828   -4.4467   -0.9545    0.1801    6.8240    3.9524    1.1025    3.0312    0.2035    0.1928    5.7125    1.4695
-#&gt; 364:    93.1173   -6.0240   -1.9826   -4.4464   -0.9546    0.1799    6.8341    3.9575    1.1027    3.0307    0.2035    0.1924    5.7092    1.4695
-#&gt; 365:    93.1199   -6.0259   -1.9824   -4.4462   -0.9547    0.1796    6.8476    3.9687    1.1028    3.0316    0.2036    0.1920    5.7073    1.4695
-#&gt; 366:    93.1220   -6.0277   -1.9821   -4.4461   -0.9548    0.1793    6.8542    3.9777    1.1032    3.0319    0.2037    0.1916    5.7060    1.4694
-#&gt; 367:    93.1230   -6.0287   -1.9819   -4.4460   -0.9548    0.1791    6.8633    3.9829    1.1038    3.0331    0.2038    0.1914    5.7056    1.4693
-#&gt; 368:    93.1255   -6.0276   -1.9816   -4.4459   -0.9549    0.1789    6.8734    3.9764    1.1038    3.0341    0.2038    0.1912    5.7050    1.4695
-#&gt; 369:    93.1258   -6.0263   -1.9814   -4.4461   -0.9549    0.1787    6.8756    3.9698    1.1039    3.0357    0.2039    0.1910    5.7031    1.4697
-#&gt; 370:    93.1288   -6.0252   -1.9811   -4.4463   -0.9548    0.1785    6.8892    3.9639    1.1039    3.0375    0.2040    0.1909    5.7029    1.4701
-#&gt; 371:    93.1317   -6.0245   -1.9810   -4.4467   -0.9548    0.1784    6.8974    3.9601    1.1037    3.0391    0.2040    0.1907    5.7037    1.4700
-#&gt; 372:    93.1346   -6.0233   -1.9811   -4.4465   -0.9548    0.1781    6.9042    3.9536    1.1035    3.0386    0.2040    0.1905    5.7038    1.4700
-#&gt; 373:    93.1340   -6.0234   -1.9810   -4.4461   -0.9547    0.1778    6.9034    3.9548    1.1034    3.0371    0.2039    0.1903    5.7040    1.4698
-#&gt; 374:    93.1324   -6.0230   -1.9811   -4.4456   -0.9547    0.1775    6.9080    3.9527    1.1034    3.0349    0.2038    0.1901    5.7055    1.4691
-#&gt; 375:    93.1309   -6.0226   -1.9812   -4.4451   -0.9546    0.1773    6.9093    3.9493    1.1034    3.0334    0.2037    0.1899    5.7063    1.4683
-#&gt; 376:    93.1298   -6.0215   -1.9811   -4.4447   -0.9546    0.1770    6.9039    3.9432    1.1035    3.0319    0.2036    0.1897    5.7064    1.4678
-#&gt; 377:    93.1296   -6.0209   -1.9811   -4.4443   -0.9546    0.1768    6.8932    3.9390    1.1036    3.0305    0.2035    0.1895    5.7056    1.4672
-#&gt; 378:    93.1292   -6.0200   -1.9810   -4.4438   -0.9545    0.1764    6.8850    3.9349    1.1037    3.0288    0.2034    0.1892    5.7068    1.4667
-#&gt; 379:    93.1284   -6.0196   -1.9808   -4.4432   -0.9544    0.1760    6.8766    3.9318    1.1038    3.0266    0.2033    0.1890    5.7072    1.4665
-#&gt; 380:    93.1304   -6.0182   -1.9806   -4.4425   -0.9543    0.1756    6.8737    3.9249    1.1040    3.0236    0.2033    0.1888    5.7074    1.4662
-#&gt; 381:    93.1315   -6.0169   -1.9804   -4.4417   -0.9542    0.1754    6.8707    3.9193    1.1040    3.0210    0.2032    0.1886    5.7066    1.4661
-#&gt; 382:    93.1331   -6.0160   -1.9801   -4.4409   -0.9542    0.1750    6.8645    3.9150    1.1040    3.0187    0.2032    0.1885    5.7063    1.4664
-#&gt; 383:    93.1334   -6.0153   -1.9800   -4.4403   -0.9542    0.1746    6.8599    3.9123    1.1037    3.0167    0.2032    0.1882    5.7074    1.4665
-#&gt; 384:    93.1328   -6.0140   -1.9801   -4.4397   -0.9540    0.1742    6.8600    3.9074    1.1034    3.0149    0.2031    0.1879    5.7072    1.4667
-#&gt; 385:    93.1306   -6.0137   -1.9801   -4.4392   -0.9539    0.1739    6.8449    3.9073    1.1031    3.0137    0.2030    0.1876    5.7084    1.4665
-#&gt; 386:    93.1281   -6.0134   -1.9801   -4.4388   -0.9539    0.1735    6.8356    3.9088    1.1028    3.0123    0.2029    0.1872    5.7087    1.4667
-#&gt; 387:    93.1267   -6.0141   -1.9801   -4.4384   -0.9537    0.1732    6.8364    3.9150    1.1025    3.0110    0.2028    0.1869    5.7101    1.4669
-#&gt; 388:    93.1252   -6.0142   -1.9801   -4.4380   -0.9536    0.1730    6.8374    3.9192    1.1022    3.0097    0.2028    0.1866    5.7110    1.4670
-#&gt; 389:    93.1223   -6.0140   -1.9801   -4.4375   -0.9535    0.1728    6.8334    3.9209    1.1019    3.0083    0.2028    0.1862    5.7105    1.4674
-#&gt; 390:    93.1221   -6.0144   -1.9800   -4.4371   -0.9534    0.1726    6.8248    3.9256    1.1014    3.0068    0.2028    0.1859    5.7098    1.4675
-#&gt; 391:    93.1210   -6.0149   -1.9799   -4.4365   -0.9533    0.1725    6.8339    3.9293    1.1011    3.0054    0.2028    0.1856    5.7109    1.4678
-#&gt; 392:    93.1193   -6.0145   -1.9799   -4.4360   -0.9532    0.1724    6.8360    3.9279    1.1009    3.0040    0.2028    0.1852    5.7107    1.4678
-#&gt; 393:    93.1200   -6.0149   -1.9799   -4.4357   -0.9532    0.1723    6.8461    3.9287    1.1005    3.0019    0.2028    0.1849    5.7100    1.4678
-#&gt; 394:    93.1202   -6.0138   -1.9799   -4.4355   -0.9532    0.1723    6.8520    3.9229    1.1006    3.0003    0.2028    0.1846    5.7085    1.4679
-#&gt; 395:    93.1203   -6.0134   -1.9800   -4.4354   -0.9532    0.1723    6.8583    3.9200    1.1005    2.9987    0.2027    0.1844    5.7072    1.4680
-#&gt; 396:    93.1195   -6.0131   -1.9800   -4.4353   -0.9532    0.1724    6.8593    3.9169    1.1004    2.9969    0.2027    0.1842    5.7062    1.4676
-#&gt; 397:    93.1195   -6.0130   -1.9801   -4.4352   -0.9532    0.1724    6.8591    3.9143    1.1004    2.9958    0.2027    0.1839    5.7046    1.4675
-#&gt; 398:    93.1200   -6.0128   -1.9801   -4.4352   -0.9532    0.1725    6.8522    3.9125    1.1004    2.9945    0.2028    0.1836    5.7032    1.4675
-#&gt; 399:    93.1200   -6.0135   -1.9803   -4.4351   -0.9531    0.1726    6.8471    3.9166    1.1003    2.9933    0.2028    0.1833    5.7032    1.4673
-#&gt; 400:    93.1204   -6.0139   -1.9803   -4.4351   -0.9531    0.1727    6.8438    3.9191    1.1003    2.9918    0.2027    0.1832    5.7026    1.4671
-#&gt; 401:    93.1198   -6.0139   -1.9804   -4.4351   -0.9530    0.1728    6.8373    3.9186    1.1004    2.9901    0.2027    0.1831    5.7015    1.4670
-#&gt; 402:    93.1199   -6.0141   -1.9804   -4.4351   -0.9530    0.1729    6.8357    3.9194    1.1005    2.9882    0.2027    0.1830    5.7003    1.4671
-#&gt; 403:    93.1196   -6.0155   -1.9804   -4.4350   -0.9530    0.1730    6.8285    3.9255    1.1007    2.9863    0.2026    0.1829    5.7001    1.4671
-#&gt; 404:    93.1183   -6.0164   -1.9805   -4.4350   -0.9531    0.1732    6.8204    3.9308    1.1009    2.9843    0.2026    0.1829    5.7008    1.4670
-#&gt; 405:    93.1178   -6.0161   -1.9805   -4.4350   -0.9532    0.1733    6.8205    3.9286    1.1012    2.9823    0.2025    0.1829    5.7013    1.4669
-#&gt; 406:    93.1176   -6.0171   -1.9806   -4.4348   -0.9533    0.1735    6.8253    3.9319    1.1013    2.9801    0.2025    0.1828    5.7026    1.4666
-#&gt; 407:    93.1168   -6.0185   -1.9807   -4.4348   -0.9533    0.1736    6.8290    3.9373    1.1015    2.9788    0.2024    0.1830    5.7033    1.4664
-#&gt; 408:    93.1165   -6.0198   -1.9808   -4.4349   -0.9534    0.1738    6.8217    3.9428    1.1017    2.9773    0.2023    0.1830    5.7047    1.4663
-#&gt; 409:    93.1165   -6.0210   -1.9809   -4.4350   -0.9534    0.1741    6.8208    3.9505    1.1019    2.9761    0.2021    0.1830    5.7055    1.4661
-#&gt; 410:    93.1169   -6.0230   -1.9810   -4.4351   -0.9535    0.1745    6.8239    3.9617    1.1020    2.9751    0.2020    0.1829    5.7052    1.4658
-#&gt; 411:    93.1166   -6.0237   -1.9811   -4.4353   -0.9536    0.1748    6.8234    3.9664    1.1020    2.9741    0.2019    0.1829    5.7043    1.4657
-#&gt; 412:    93.1164   -6.0235   -1.9812   -4.4355   -0.9536    0.1751    6.8205    3.9643    1.1020    2.9735    0.2017    0.1827    5.7053    1.4654
-#&gt; 413:    93.1182   -6.0232   -1.9814   -4.4356   -0.9537    0.1755    6.8133    3.9615    1.1020    2.9726    0.2016    0.1825    5.7070    1.4650
-#&gt; 414:    93.1190   -6.0226   -1.9815   -4.4360   -0.9537    0.1760    6.8113    3.9578    1.1021    2.9726    0.2015    0.1825    5.7081    1.4648
-#&gt; 415:    93.1183   -6.0226   -1.9817   -4.4364   -0.9538    0.1765    6.8081    3.9557    1.1021    2.9725    0.2014    0.1824    5.7085    1.4646
-#&gt; 416:    93.1185   -6.0238   -1.9818   -4.4369   -0.9538    0.1768    6.8134    3.9617    1.1020    2.9734    0.2013    0.1822    5.7103    1.4645
-#&gt; 417:    93.1190   -6.0245   -1.9819   -4.4373   -0.9540    0.1770    6.8164    3.9664    1.1022    2.9743    0.2012    0.1819    5.7102    1.4650
-#&gt; 418:    93.1219   -6.0256   -1.9818   -4.4376   -0.9542    0.1773    6.8206    3.9710    1.1026    2.9745    0.2011    0.1816    5.7110    1.4655
-#&gt; 419:    93.1255   -6.0261   -1.9817   -4.4381   -0.9543    0.1776    6.8183    3.9714    1.1030    2.9759    0.2010    0.1814    5.7134    1.4659
-#&gt; 420:    93.1294   -6.0262   -1.9816   -4.4385   -0.9546    0.1779    6.8113    3.9704    1.1033    2.9768    0.2009    0.1810    5.7156    1.4666
-#&gt; 421:    93.1319   -6.0259   -1.9815   -4.4392   -0.9547    0.1781    6.7989    3.9685    1.1036    2.9786    0.2008    0.1808    5.7171    1.4676
-#&gt; 422:    93.1338   -6.0263   -1.9814   -4.4398   -0.9548    0.1783    6.7922    3.9681    1.1038    2.9806    0.2006    0.1808    5.7179    1.4681
-#&gt; 423:    93.1353   -6.0266   -1.9813   -4.4406   -0.9550    0.1786    6.7868    3.9674    1.1040    2.9837    0.2006    0.1808    5.7181    1.4687
-#&gt; 424:    93.1374   -6.0270   -1.9811   -4.4414   -0.9550    0.1787    6.7758    3.9674    1.1043    2.9866    0.2004    0.1807    5.7198    1.4693
-#&gt; 425:    93.1383   -6.0270   -1.9811   -4.4420   -0.9551    0.1787    6.7547    3.9674    1.1042    2.9887    0.2003    0.1806    5.7211    1.4702
-#&gt; 426:    93.1400   -6.0268   -1.9811   -4.4427   -0.9551    0.1789    6.7376    3.9654    1.1043    2.9917    0.2002    0.1805    5.7241    1.4706
-#&gt; 427:    93.1391   -6.0268   -1.9811   -4.4433   -0.9552    0.1790    6.7196    3.9634    1.1045    2.9951    0.2001    0.1805    5.7271    1.4710
-#&gt; 428:    93.1404   -6.0268   -1.9810   -4.4442   -0.9552    0.1792    6.7104    3.9628    1.1044    2.9999    0.2000    0.1803    5.7282    1.4712
-#&gt; 429:    93.1431   -6.0265   -1.9810   -4.4450   -0.9553    0.1793    6.7029    3.9612    1.1045    3.0043    0.1999    0.1803    5.7293    1.4716
-#&gt; 430:    93.1464   -6.0263   -1.9809   -4.4457   -0.9554    0.1795    6.6962    3.9606    1.1046    3.0074    0.1999    0.1802    5.7291    1.4724
-#&gt; 431:    93.1485   -6.0267   -1.9809   -4.4460   -0.9555    0.1797    6.6865    3.9623    1.1046    3.0082    0.1998    0.1802    5.7287    1.4726
-#&gt; 432:    93.1509   -6.0277   -1.9808   -4.4462   -0.9556    0.1798    6.6843    3.9658    1.1047    3.0086    0.1998    0.1801    5.7280    1.4727
-#&gt; 433:    93.1528   -6.0289   -1.9806   -4.4464   -0.9557    0.1798    6.6840    3.9714    1.1049    3.0087    0.1998    0.1801    5.7282    1.4729
-#&gt; 434:    93.1555   -6.0286   -1.9804   -4.4467   -0.9557    0.1798    6.6870    3.9693    1.1052    3.0094    0.1997    0.1800    5.7277    1.4729
-#&gt; 435:    93.1574   -6.0290   -1.9803   -4.4467   -0.9558    0.1798    6.6893    3.9712    1.1055    3.0095    0.1996    0.1800    5.7278    1.4727
-#&gt; 436:    93.1594   -6.0299   -1.9802   -4.4468   -0.9558    0.1798    6.6934    3.9749    1.1059    3.0103    0.1996    0.1801    5.7271    1.4727
-#&gt; 437:    93.1600   -6.0311   -1.9800   -4.4469   -0.9558    0.1797    6.7010    3.9812    1.1065    3.0110    0.1996    0.1801    5.7275    1.4727
-#&gt; 438:    93.1617   -6.0318   -1.9799   -4.4471   -0.9559    0.1796    6.7120    3.9865    1.1069    3.0121    0.1995    0.1801    5.7271    1.4727
-#&gt; 439:    93.1634   -6.0329   -1.9798   -4.4472   -0.9559    0.1795    6.7279    3.9930    1.1075    3.0127    0.1995    0.1802    5.7268    1.4727
-#&gt; 440:    93.1644   -6.0332   -1.9797   -4.4473   -0.9559    0.1794    6.7338    3.9962    1.1080    3.0136    0.1994    0.1803    5.7270    1.4726
-#&gt; 441:    93.1654   -6.0335   -1.9795   -4.4477   -0.9558    0.1794    6.7435    3.9988    1.1085    3.0155    0.1994    0.1805    5.7274    1.4728
-#&gt; 442:    93.1670   -6.0340   -1.9792   -4.4480   -0.9558    0.1794    6.7493    4.0028    1.1091    3.0173    0.1993    0.1808    5.7282    1.4729
-#&gt; 443:    93.1685   -6.0346   -1.9790   -4.4485   -0.9558    0.1793    6.7577    4.0073    1.1092    3.0202    0.1992    0.1811    5.7267    1.4732
-#&gt; 444:    93.1671   -6.0346   -1.9789   -4.4491   -0.9558    0.1792    6.7559    4.0069    1.1093    3.0238    0.1992    0.1813    5.7258    1.4733
-#&gt; 445:    93.1655   -6.0355   -1.9789   -4.4497   -0.9557    0.1790    6.7552    4.0127    1.1094    3.0276    0.1992    0.1814    5.7262    1.4733
-#&gt; 446:    93.1641   -6.0361   -1.9787   -4.4501   -0.9557    0.1789    6.7579    4.0169    1.1096    3.0306    0.1991    0.1816    5.7262    1.4732
-#&gt; 447:    93.1628   -6.0363   -1.9786   -4.4503   -0.9556    0.1787    6.7680    4.0196    1.1099    3.0318    0.1991    0.1818    5.7258    1.4729
-#&gt; 448:    93.1629   -6.0371   -1.9787   -4.4509   -0.9556    0.1786    6.7705    4.0248    1.1100    3.0358    0.1990    0.1820    5.7267    1.4725
-#&gt; 449:    93.1626   -6.0381   -1.9785   -4.4510   -0.9556    0.1784    6.7800    4.0298    1.1101    3.0368    0.1989    0.1822    5.7266    1.4722
-#&gt; 450:    93.1614   -6.0386   -1.9782   -4.4514   -0.9556    0.1782    6.7796    4.0316    1.1103    3.0392    0.1989    0.1824    5.7260    1.4720
-#&gt; 451:    93.1603   -6.0397   -1.9779   -4.4518   -0.9556    0.1780    6.7799    4.0381    1.1107    3.0416    0.1988    0.1827    5.7264    1.4720
-#&gt; 452:    93.1610   -6.0406   -1.9775   -4.4522   -0.9556    0.1777    6.7813    4.0424    1.1111    3.0443    0.1988    0.1828    5.7268    1.4719
-#&gt; 453:    93.1618   -6.0414   -1.9771   -4.4523   -0.9556    0.1774    6.7814    4.0490    1.1115    3.0456    0.1987    0.1830    5.7262    1.4721
-#&gt; 454:    93.1625   -6.0415   -1.9767   -4.4525   -0.9555    0.1771    6.7799    4.0499    1.1118    3.0473    0.1986    0.1831    5.7260    1.4723
-#&gt; 455:    93.1636   -6.0412   -1.9765   -4.4528   -0.9555    0.1769    6.7778    4.0489    1.1123    3.0496    0.1985    0.1832    5.7268    1.4722
-#&gt; 456:    93.1653   -6.0401   -1.9762   -4.4532   -0.9554    0.1768    6.7703    4.0441    1.1127    3.0517    0.1983    0.1834    5.7282    1.4725
-#&gt; 457:    93.1672   -6.0396   -1.9760   -4.4535   -0.9554    0.1766    6.7683    4.0427    1.1129    3.0539    0.1982    0.1835    5.7281    1.4727
-#&gt; 458:    93.1692   -6.0398   -1.9757   -4.4539   -0.9554    0.1765    6.7627    4.0450    1.1132    3.0570    0.1981    0.1835    5.7294    1.4729
-#&gt; 459:    93.1708   -6.0402   -1.9756   -4.4542   -0.9554    0.1763    6.7615    4.0483    1.1133    3.0596    0.1980    0.1836    5.7320    1.4728
-#&gt; 460:    93.1710   -6.0401   -1.9755   -4.4544   -0.9553    0.1762    6.7629    4.0487    1.1135    3.0615    0.1979    0.1835    5.7323    1.4730
-#&gt; 461:    93.1708   -6.0403   -1.9755   -4.4546   -0.9552    0.1762    6.7639    4.0492    1.1136    3.0631    0.1978    0.1834    5.7321    1.4729
-#&gt; 462:    93.1707   -6.0405   -1.9755   -4.4548   -0.9552    0.1760    6.7657    4.0506    1.1136    3.0647    0.1977    0.1833    5.7323    1.4727
-#&gt; 463:    93.1690   -6.0403   -1.9755   -4.4548   -0.9551    0.1759    6.7607    4.0494    1.1136    3.0651    0.1976    0.1832    5.7332    1.4726
-#&gt; 464:    93.1673   -6.0400   -1.9755   -4.4548   -0.9551    0.1758    6.7588    4.0480    1.1138    3.0652    0.1975    0.1832    5.7344    1.4724
-#&gt; 465:    93.1657   -6.0399   -1.9755   -4.4548   -0.9550    0.1756    6.7601    4.0474    1.1138    3.0652    0.1974    0.1831    5.7350    1.4724
-#&gt; 466:    93.1656   -6.0406   -1.9754   -4.4548   -0.9549    0.1755    6.7589    4.0514    1.1139    3.0658    0.1973    0.1831    5.7355    1.4723
-#&gt; 467:    93.1657   -6.0408   -1.9753   -4.4548   -0.9549    0.1754    6.7558    4.0525    1.1139    3.0664    0.1972    0.1831    5.7358    1.4725
-#&gt; 468:    93.1664   -6.0411   -1.9752   -4.4551   -0.9548    0.1753    6.7546    4.0551    1.1140    3.0679    0.1971    0.1832    5.7358    1.4723
-#&gt; 469:    93.1667   -6.0412   -1.9751   -4.4552   -0.9547    0.1752    6.7547    4.0554    1.1141    3.0676    0.1970    0.1833    5.7354    1.4721
-#&gt; 470:    93.1664   -6.0413   -1.9750   -4.4552   -0.9546    0.1751    6.7579    4.0564    1.1143    3.0676    0.1969    0.1833    5.7352    1.4718
-#&gt; 471:    93.1656   -6.0411   -1.9750   -4.4553   -0.9545    0.1750    6.7611    4.0555    1.1142    3.0681    0.1968    0.1834    5.7354    1.4715
-#&gt; 472:    93.1644   -6.0408   -1.9751   -4.4554   -0.9544    0.1749    6.7577    4.0542    1.1142    3.0686    0.1968    0.1834    5.7362    1.4712
-#&gt; 473:    93.1632   -6.0405   -1.9751   -4.4554   -0.9543    0.1749    6.7527    4.0526    1.1141    3.0686    0.1967    0.1835    5.7363    1.4708
-#&gt; 474:    93.1619   -6.0405   -1.9752   -4.4555   -0.9542    0.1748    6.7479    4.0521    1.1140    3.0689    0.1967    0.1835    5.7366    1.4705
-#&gt; 475:    93.1609   -6.0413   -1.9753   -4.4557   -0.9542    0.1748    6.7469    4.0558    1.1139    3.0698    0.1967    0.1835    5.7379    1.4702
-#&gt; 476:    93.1607   -6.0411   -1.9754   -4.4556   -0.9542    0.1747    6.7414    4.0549    1.1139    3.0697    0.1966    0.1835    5.7388    1.4698
-#&gt; 477:    93.1597   -6.0413   -1.9754   -4.4560   -0.9542    0.1747    6.7321    4.0560    1.1137    3.0733    0.1966    0.1836    5.7392    1.4697
-#&gt; 478:    93.1591   -6.0421   -1.9754   -4.4563   -0.9542    0.1745    6.7239    4.0608    1.1137    3.0765    0.1965    0.1836    5.7399    1.4697
-#&gt; 479:    93.1589   -6.0438   -1.9754   -4.4564   -0.9542    0.1744    6.7150    4.0719    1.1136    3.0785    0.1964    0.1838    5.7421    1.4695
-#&gt; 480:    93.1594   -6.0459   -1.9754   -4.4566   -0.9542    0.1742    6.7102    4.0895    1.1135    3.0807    0.1964    0.1839    5.7446    1.4695
-#&gt; 481:    93.1604   -6.0472   -1.9754   -4.4570   -0.9542    0.1741    6.7104    4.1016    1.1135    3.0848    0.1964    0.1841    5.7456    1.4693
-#&gt; 482:    93.1584   -6.0486   -1.9754   -4.4573   -0.9542    0.1739    6.7061    4.1152    1.1136    3.0877    0.1964    0.1842    5.7464    1.4690
-#&gt; 483:    93.1561   -6.0501   -1.9754   -4.4576   -0.9541    0.1737    6.7067    4.1286    1.1135    3.0903    0.1963    0.1843    5.7475    1.4688
-#&gt; 484:    93.1545   -6.0507   -1.9754   -4.4578   -0.9541    0.1737    6.7113    4.1362    1.1134    3.0918    0.1963    0.1845    5.7488    1.4687
-#&gt; 485:    93.1524   -6.0507   -1.9754   -4.4583   -0.9540    0.1736    6.7094    4.1381    1.1134    3.0970    0.1964    0.1847    5.7496    1.4685
-#&gt; 486:    93.1510   -6.0508   -1.9754   -4.4586   -0.9540    0.1735    6.7118    4.1405    1.1134    3.0996    0.1964    0.1847    5.7502    1.4682
-#&gt; 487:    93.1495   -6.0507   -1.9755   -4.4591   -0.9539    0.1734    6.7128    4.1406    1.1134    3.1037    0.1965    0.1848    5.7510    1.4680
-#&gt; 488:    93.1494   -6.0502   -1.9756   -4.4597   -0.9538    0.1734    6.7171    4.1384    1.1135    3.1081    0.1965    0.1848    5.7508    1.4677
-#&gt; 489:    93.1497   -6.0497   -1.9756   -4.4604   -0.9538    0.1734    6.7188    4.1358    1.1135    3.1133    0.1966    0.1847    5.7499    1.4675
-#&gt; 490:    93.1507   -6.0486   -1.9757   -4.4607   -0.9538    0.1735    6.7206    4.1319    1.1136    3.1157    0.1967    0.1847    5.7498    1.4672
-#&gt; 491:    93.1507   -6.0476   -1.9757   -4.4612   -0.9537    0.1735    6.7141    4.1270    1.1136    3.1187    0.1968    0.1846    5.7503    1.4672
-#&gt; 492:    93.1507   -6.0470   -1.9758   -4.4618   -0.9536    0.1735    6.7140    4.1238    1.1139    3.1218    0.1969    0.1846    5.7511    1.4669
-#&gt; 493:    93.1513   -6.0468   -1.9758   -4.4623   -0.9535    0.1736    6.7214    4.1232    1.1141    3.1246    0.1970    0.1845    5.7514    1.4668
-#&gt; 494:    93.1511   -6.0467   -1.9759   -4.4629   -0.9534    0.1737    6.7332    4.1232    1.1144    3.1278    0.1971    0.1845    5.7512    1.4664
-#&gt; 495:    93.1511   -6.0464   -1.9761   -4.4635   -0.9533    0.1738    6.7377    4.1218    1.1145    3.1309    0.1972    0.1845    5.7515    1.4661
-#&gt; 496:    93.1498   -6.0465   -1.9762   -4.4639   -0.9532    0.1739    6.7412    4.1241    1.1147    3.1325    0.1974    0.1845    5.7514    1.4657
-#&gt; 497:    93.1482   -6.0467   -1.9764   -4.4644   -0.9532    0.1741    6.7506    4.1259    1.1149    3.1346    0.1975    0.1846    5.7513    1.4652
-#&gt; 498:    93.1479   -6.0465   -1.9765   -4.4647   -0.9531    0.1743    6.7588    4.1263    1.1150    3.1357    0.1977    0.1846    5.7511    1.4648
-#&gt; 499:    93.1462   -6.0455   -1.9766   -4.4651   -0.9530    0.1745    6.7659    4.1219    1.1152    3.1374    0.1978    0.1847    5.7515    1.4645
-#&gt; 500:    93.1455   -6.0439   -1.9768   -4.4657   -0.9529    0.1747    6.7747    4.1151    1.1154    3.1404    0.1980    0.1848    5.7516    1.4641</div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
-#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#&gt; F: Forward difference gradient approximation
-#&gt; C: Central difference gradient approximation
-#&gt; M: Mixed forward and central difference gradient approximation
-#&gt; Unscaled parameters for Omegas=chol(solve(omega));
-#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
-#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
-#&gt; |    #| Objective Fun |  parent_0 |  log_k_A1 |f_parent_qlogis |    log_k1 |
-#&gt; |.....................|    log_k2 |  g_qlogis |sigma_parent |  sigma_A1 |
-#&gt; |.....................|        o1 |        o2 |        o3 |        o4 |
-#&gt; <span style='text-decoration: underline;'>|.....................|        o5 |        o6 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    1</span>|     488.12318 |     1.000 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8511 |   -0.8703 |
-#&gt; |.....................|   -0.8778 |   -0.8746 |   -0.8686 |   -0.8728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8750 |   -0.8689 |...........|...........|</span>
-#&gt; |    U|     488.12318 |     93.43 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     488.12318</span> |     93.43 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    G|    Gill Diff. |     52.24 |     2.364 |   -0.1419 |   0.08101 |
-#&gt; |.....................|   -0.5200 |   0.08781 |    -28.20 |    -16.37 |
-#&gt; |.....................|     14.83 |     13.24 |    -12.01 |    -2.482 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     5.466 |    -10.09 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    2</span>|     2642.5634 |    0.2192 |    -1.035 |   -0.9096 |   -0.9332 |
-#&gt; |.....................|   -0.9743 |   -0.8898 |   -0.4296 |   -0.6255 |
-#&gt; |.....................|    -1.099 |    -1.073 |   -0.6891 |   -0.8357 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.9567 |   -0.7180 |...........|...........|</span>
-#&gt; |    U|     2642.5634 |     20.48 |    -5.348 |   -0.9517 |    -1.954 |
-#&gt; |.....................|    -4.421 |    0.1928 |     2.469 |     1.224 |
-#&gt; |.....................|    0.5606 |    0.7036 |     1.386 |     1.005 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.7896 |     1.336 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     2642.5634</span> |     20.48 |  0.004759 |    0.2785 |    0.1417 |
-#&gt; |.....................|   0.01202 |    0.5480 |     2.469 |     1.224 |
-#&gt; |.....................|    0.5606 |    0.7036 |     1.386 |     1.005 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.7896 |     1.336 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    3</span>|     546.98314 |    0.9219 |    -1.004 |   -0.9115 |   -0.9321 |
-#&gt; |.....................|   -0.9813 |   -0.8886 |   -0.8089 |   -0.8458 |
-#&gt; |.....................|   -0.9000 |   -0.8944 |   -0.8506 |   -0.8691 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8831 |   -0.8538 |...........|...........|</span>
-#&gt; |    U|     546.98314 |     86.13 |    -5.316 |   -0.9535 |    -1.953 |
-#&gt; |.....................|    -4.428 |    0.1930 |     2.082 |     1.104 |
-#&gt; |.....................|    0.7044 |    0.8599 |     1.196 |    0.9723 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8529 |     1.178 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     546.98314</span> |     86.13 |  0.004913 |    0.2782 |    0.1419 |
-#&gt; |.....................|   0.01193 |    0.5481 |     2.082 |     1.104 |
-#&gt; |.....................|    0.7044 |    0.8599 |     1.196 |    0.9723 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8529 |     1.178 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    4</span>|     506.37737 |    0.9922 |    -1.000 |   -0.9117 |   -0.9320 |
-#&gt; |.....................|   -0.9820 |   -0.8885 |   -0.8469 |   -0.8679 |
-#&gt; |.....................|   -0.8800 |   -0.8766 |   -0.8668 |   -0.8724 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8758 |   -0.8674 |...........|...........|</span>
-#&gt; |    U|     506.37737 |     92.70 |    -5.313 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.043 |     1.092 |
-#&gt; |.....................|    0.7187 |    0.8755 |     1.177 |    0.9691 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8592 |     1.163 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     506.37737</span> |     92.70 |  0.004928 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01193 |    0.5481 |     2.043 |     1.092 |
-#&gt; |.....................|    0.7187 |    0.8755 |     1.177 |    0.9691 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8592 |     1.163 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    5</span>|     506.42840 |    0.9992 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8507 |   -0.8701 |
-#&gt; |.....................|   -0.8780 |   -0.8748 |   -0.8684 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8751 |   -0.8687 |...........|...........|</span>
-#&gt; |    U|      506.4284 |     93.35 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.091 |
-#&gt; |.....................|    0.7202 |    0.8771 |     1.175 |    0.9688 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8598 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      506.4284</span> |     93.35 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.091 |
-#&gt; |.....................|    0.7202 |    0.8771 |     1.175 |    0.9688 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8598 |     1.161 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    6</span>|     506.47762 |    0.9999 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8511 |   -0.8703 |
-#&gt; |.....................|   -0.8778 |   -0.8746 |   -0.8686 |   -0.8728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8750 |   -0.8689 |...........|...........|</span>
-#&gt; |    U|     506.47762 |     93.42 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     506.47762</span> |     93.42 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    7</span>|     506.48298 |     1.000 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8511 |   -0.8703 |
-#&gt; |.....................|   -0.8778 |   -0.8746 |   -0.8686 |   -0.8728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8750 |   -0.8689 |...........|...........|</span>
-#&gt; |    U|     506.48298 |     93.43 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     506.48298</span> |     93.43 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    8</span>|     506.48363 |     1.000 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8511 |   -0.8703 |
-#&gt; |.....................|   -0.8778 |   -0.8746 |   -0.8686 |   -0.8728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8750 |   -0.8689 |...........|...........|</span>
-#&gt; |    U|     506.48363 |     93.43 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     506.48363</span> |     93.43 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    9</span>|     506.48371 |     1.000 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8511 |   -0.8703 |
-#&gt; |.....................|   -0.8778 |   -0.8746 |   -0.8686 |   -0.8728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8750 |   -0.8689 |...........|...........|</span>
-#&gt; |    U|     506.48371 |     93.43 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     506.48371</span> |     93.43 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   10</span>|     506.48371 |     1.000 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8511 |   -0.8703 |
-#&gt; |.....................|   -0.8778 |   -0.8746 |   -0.8686 |   -0.8728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8750 |   -0.8689 |...........|...........|</span>
-#&gt; |    U|     506.48371 |     93.43 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     506.48371</span> |     93.43 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   11</span>|     506.48371 |     1.000 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8511 |   -0.8703 |
-#&gt; |.....................|   -0.8778 |   -0.8746 |   -0.8686 |   -0.8728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8750 |   -0.8689 |...........|...........|</span>
-#&gt; |    U|     506.48371 |     93.43 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     506.48371</span> |     93.43 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   12</span>|     506.48371 |     1.000 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8511 |   -0.8703 |
-#&gt; |.....................|   -0.8778 |   -0.8746 |   -0.8686 |   -0.8728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8750 |   -0.8689 |...........|...........|</span>
-#&gt; |    U|     506.48371 |     93.43 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     506.48371</span> |     93.43 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   13</span>|     506.48371 |     1.000 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8511 |   -0.8703 |
-#&gt; |.....................|   -0.8778 |   -0.8746 |   -0.8686 |   -0.8728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8750 |   -0.8689 |...........|...........|</span>
-#&gt; |    U|     506.48371 |     93.43 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     506.48371</span> |     93.43 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   14</span>|     506.48371 |     1.000 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8511 |   -0.8703 |
-#&gt; |.....................|   -0.8778 |   -0.8746 |   -0.8686 |   -0.8728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8750 |   -0.8689 |...........|...........|</span>
-#&gt; |    U|     506.48371 |     93.43 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     506.48371</span> |     93.43 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   15</span>|     506.48371 |     1.000 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8511 |   -0.8703 |
-#&gt; |.....................|   -0.8778 |   -0.8746 |   -0.8686 |   -0.8728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8750 |   -0.8689 |...........|...........|</span>
-#&gt; |    U|     506.48371 |     93.43 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     506.48371</span> |     93.43 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   16</span>|     506.48371 |     1.000 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8511 |   -0.8703 |
-#&gt; |.....................|   -0.8778 |   -0.8746 |   -0.8686 |   -0.8728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8750 |   -0.8689 |...........|...........|</span>
-#&gt; |    U|     506.48371 |     93.43 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     506.48371</span> |     93.43 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   17</span>|     506.48371 |     1.000 |    -1.000 |   -0.9117 |   -0.9319 |
-#&gt; |.....................|   -0.9821 |   -0.8885 |   -0.8511 |   -0.8703 |
-#&gt; |.....................|   -0.8778 |   -0.8746 |   -0.8686 |   -0.8728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8750 |   -0.8689 |...........|...........|</span>
-#&gt; |    U|     506.48371 |     93.43 |    -5.312 |   -0.9537 |    -1.953 |
-#&gt; |.....................|    -4.429 |    0.1930 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     506.48371</span> |     93.43 |  0.004930 |    0.2781 |    0.1419 |
-#&gt; |.....................|   0.01192 |    0.5481 |     2.039 |     1.090 |
-#&gt; |.....................|    0.7203 |    0.8772 |     1.175 |    0.9687 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8599 |     1.161 |...........|...........|</span>
-#&gt; calculating covariance matrix
-#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='error'>Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 1.22 0.089 1.31</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
+#&gt; <span class='message'>cmt(A1);</span>
+#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
+#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
+#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
+#&gt; <span class='message'>rx_expr_8~ETA[5]+THETA[5];</span>
+#&gt; <span class='message'>rx_expr_12~exp(-(rx_expr_8));</span>
+#&gt; <span class='message'>rx_expr_14~t*rx_expr_12;</span>
+#&gt; <span class='message'>rx_expr_15~1+rx_expr_14;</span>
+#&gt; <span class='message'>rx_expr_17~rx_expr_7-(rx_expr_8);</span>
+#&gt; <span class='message'>rx_expr_19~exp(rx_expr_17);</span>
+#&gt; <span class='message'>d/dt(parent)=-rx_expr_19*parent/(rx_expr_15);</span>
+#&gt; <span class='message'>rx_expr_9~ETA[2]+THETA[2];</span>
+#&gt; <span class='message'>rx_expr_11~exp(rx_expr_9);</span>
+#&gt; <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_19*parent*f_parent_to_A1/(rx_expr_15);</span>
+#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
+#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
+#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
+#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_13~rx_expr_5*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_lambda_~rx_expr_13+rx_expr_3;</span>
+#&gt; <span class='message'>rx_hi_~rx_expr_13+rx_expr_3;</span>
+#&gt; <span class='message'>rx_low_~0;</span>
+#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_10~parent*(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_16~rx_expr_10*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_16)*(rx_expr_0)+(rx_expr_4+rx_expr_16)*(rx_expr_2)*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_r_=(rx_expr_0)*Rx_pow_di(THETA[7],2)+(rx_expr_2)*(rx_expr_1)*Rx_pow_di(THETA[6],2);</span>
+#&gt; <span class='message'>parent_0=THETA[1];</span>
+#&gt; <span class='message'>log_k_A1=THETA[2];</span>
+#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
+#&gt; <span class='message'>log_alpha=THETA[4];</span>
+#&gt; <span class='message'>log_beta=THETA[5];</span>
+#&gt; <span class='message'>sigma_parent=THETA[6];</span>
+#&gt; <span class='message'>sigma_A1=THETA[7];</span>
+#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
+#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
+#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
+#&gt; <span class='message'>eta.log_alpha=ETA[4];</span>
+#&gt; <span class='message'>eta.log_beta=ETA[5];</span>
+#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
+#&gt; <span class='message'>k_A1=rx_expr_11;</span>
+#&gt; <span class='message'>alpha=exp(rx_expr_7);</span>
+#&gt; <span class='message'>beta=exp(rx_expr_8);</span>
+#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
+#&gt; <span class='message'>tad=tad();</span>
+#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt &lt;- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control &lt;- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret &lt;- new.env(parent = emptyenv())    }    else {        .ret &lt;- env    }    .ret$origData &lt;- data    .ret$etaNames &lt;- etaNames    .ret$thetaFixed &lt;- fixed    .ret$control &lt;- control    .ret$control$focei.mu.ref &lt;- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel &lt;- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel &lt;- TRUE        model &lt;- RxODE::rxGetLin(PKpars)        pred &lt;- eval(parse(text = "function(){return(Central);}"))    }    .square &lt;- function(x) x * x    .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames &lt;- .parNames &lt;- c()    .ret$adjLik &lt;- control$adjLik    .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0    if (!exists("noLik", envir = .ret)) {        .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol &lt;- .atol            .ret$control$rxControl$rtol &lt;- .rtol            .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol &lt;- .ssAtol            .ret$control$rxControl$ssRtol &lt;- .ssRtol        }        .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)        .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) &lt;- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) &gt; 0) {            .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) &gt; 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars &lt;- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol &lt;- .atol                .ret$control$rxControl$rtol &lt;- .rtol            }            .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)            .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) &lt;- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) &gt; 0) {                .covNames &lt;- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) &gt; 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars &lt;- .ret$model$extra.pars        }        else {            .extraPars &lt;- NULL        }    }    .ret$skipCov &lt;- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp &lt;- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) &lt; length(inits$THTA)) {                .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp &lt;- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr &lt;- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp &lt;- (.tmp | .uifErr)        }        .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms &lt;- thetaNames    }    .ret$thetaNames &lt;- .nms    .thetaReset$thetaNames &lt;- .nms    if (length(lower) == 1) {        lower &lt;- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper &lt;- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars &lt;- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) &gt; 0) {            inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars)            .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars))            lower &lt;- c(lower, .lowerErr)            upper &lt;- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID &lt;- 0    if (is.null(data$AMT))         data$AMT &lt;- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] &lt;- as.double(data[[.v]])    }    .ret$dataSav &lt;- data    .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w &lt;- which(tolower(names(data)) == "limit")    .limitName &lt;- NULL    if (length(.w) == 1L) {        .limitName &lt;- names(data)[.w]    }    .censName &lt;- NULL    .w &lt;- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName &lt;- names(data[.w])    }    data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh &lt;- .parseOM(inits$OMGA)        .nlh &lt;- sapply(.lh, length)        .osplt &lt;- rep(1:length(.lh), .nlh)        .lini &lt;- list(inits$THTA, unlist(.lh))        .nlini &lt;- sapply(.lini, length)        .nsplt &lt;- rep(1:length(.lini), .nlini)        .om0 &lt;- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames &lt;- .ret$etaNames        }        else {            .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType &lt;- .ret$rxInv$xType        .om0a &lt;- .om0        .om0a &lt;- .om0a/control$diagOmegaBoundLower        .om0b &lt;- .om0        .om0b &lt;- .om0b * control$diagOmegaBoundUpper        .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a))        .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a))        .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega &lt;- length(.omdf$lower)        .ret$control$neta &lt;- sum(.omdf$diag)        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)        lower &lt;- c(lower, .omdf$lower)        upper &lt;- c(upper, .omdf$upper)    }    else {        .ret$control$nomega &lt;- 0        .ret$control$neta &lt;- 0        .ret$xType &lt;- -1        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)    }    .ret$lower &lt;- lower    .ret$upper &lt;- upper    .ret$thetaIni &lt;- inits$THTA    .scaleC &lt;- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC &lt;- rep(NA_real_, length(lower))    }    else {        .scaleC &lt;- as.double(control$scaleC)        if (length(lower) &gt; length(.scaleC)) {            .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) &lt; length(.scaleC)) {            .scaleC &lt;- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC &lt;- .scaleC    if (exists("uif", envir = .ret)) {        .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- 1        }        .ini &lt;- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b &lt;- .ret$logitThetasLow[.i]            .c &lt;- .ret$logitThetasHi[.i]            .a &lt;- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) &amp; !is.null(control$etaMat)) {        .ret$etaMat &lt;- control$etaMat    }    else {        .ret$etaMat &lt;- etaMat    }    .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp &lt;- .ret$uif$logThetasList        .ret$logThetas &lt;- .tmp[[1]]        .ret$logThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasList        .ret$logitThetas &lt;- .tmp[[1]]        .ret$logitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListLow        .ret$logitThetasLow &lt;- .tmp[[1]]        .ret$logitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListHi        .ret$logitThetasHi &lt;- .tmp[[1]]        .ret$logitThetasHiF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasList        .ret$probitThetas &lt;- .tmp[[1]]        .ret$probitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListLow        .ret$probitThetasLow &lt;- .tmp[[1]]        .ret$probitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListHi        .ret$probitThetasHi &lt;- .tmp[[1]]        .ret$probitThetasHiF &lt;- .tmp[[2]]    }    else {        .ret$logThetasF &lt;- integer(0)        .ret$logitThetasF &lt;- integer(0)        .ret$logitThetasHiF &lt;- numeric(0)        .ret$logitThetasLowF &lt;- numeric(0)        .ret$logitThetas &lt;- integer(0)        .ret$logitThetasHi &lt;- numeric(0)        .ret$logitThetasLow &lt;- numeric(0)        .ret$probitThetasF &lt;- integer(0)        .ret$probitThetasHiF &lt;- numeric(0)        .ret$probitThetasLowF &lt;- numeric(0)        .ret$probitThetas &lt;- integer(0)        .ret$probitThetasHi &lt;- numeric(0)        .ret$probitThetasLow &lt;- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan &lt;- length(.ret$thetaIni)            .ret$nobs &lt;- sum(data$EVID == 0)        }    }    .ret$control$printTop &lt;- TRUE    .ret$control$nF &lt;- 0    .est0 &lt;- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq &lt;- 0L    }    .fitFun &lt;- function(.ret) {        this.env &lt;- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 &lt;- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm &lt;- names(.ret$thetaIni)                .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta &lt;- .thetaReset$omegaTheta                .ret$control$printTop &lt;- FALSE                .ret$etaMat &lt;- .thetaReset$etaMat                .ret$control$etaMat &lt;- .thetaReset$etaMat                .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations                .ret$control$nF &lt;- .thetaReset$nF                .ret$control$gillRetC &lt;- .thetaReset$gillRetC                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillDf &lt;- .thetaReset$gillDf                .ret$control$gillDf2 &lt;- .thetaReset$gillDf2                .ret$control$gillErr &lt;- .thetaReset$gillErr                .ret$control$rEps &lt;- .thetaReset$rEps                .ret$control$aEps &lt;- .thetaReset$aEps                .ret$control$rEpsC &lt;- .thetaReset$rEpsC                .ret$control$aEpsC &lt;- .thetaReset$aEpsC                .ret$control$c1 &lt;- .thetaReset$c1                .ret$control$c2 &lt;- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations &lt;- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun &lt;- .bobyqa                  .ret$control$outerOpt &lt;- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 &lt;- try(.fitFun(.ret))    .n &lt;- 1    while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations !=         0 &amp;&amp; .n &lt;= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF &lt;- 0        .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew &lt;- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] &lt; lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] &gt; upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni &lt;- .estNew        .ret0 &lt;- try(.fitFun(.ret))        .n &lt;- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret &lt;- .ret0    if (exists("parHistData", .ret)) {        .tmp &lt;- .ret$parHistData        .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter &lt;- .tmp$iter        .tmp &lt;- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) &lt;- c("val", "par", "iter")        .ret$parHist &lt;- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas &lt;- .ret$ranef        .thetas &lt;- .ret$fixef        .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table &lt;- tableControl()    }    if (control$calcTables) {        .ret &lt;- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 6.784 0.418 7.2</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'>→ generate SAEM model</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='error'>Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 1.357 0.096 1.452</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_obs</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
+#&gt; <span class='message'>cmt(A1);</span>
+#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
+#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
+#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
+#&gt; <span class='message'>rx_expr_8~ETA[6]+THETA[6];</span>
+#&gt; <span class='message'>rx_expr_9~ETA[5]+THETA[5];</span>
+#&gt; <span class='message'>rx_expr_12~exp(rx_expr_7);</span>
+#&gt; <span class='message'>rx_expr_13~exp(rx_expr_9);</span>
+#&gt; <span class='message'>rx_expr_15~t*rx_expr_12;</span>
+#&gt; <span class='message'>rx_expr_16~t*rx_expr_13;</span>
+#&gt; <span class='message'>rx_expr_17~exp(-(rx_expr_8));</span>
+#&gt; <span class='message'>rx_expr_19~1+rx_expr_17;</span>
+#&gt; <span class='message'>rx_expr_24~1/(rx_expr_19);</span>
+#&gt; <span class='message'>rx_expr_26~(rx_expr_24);</span>
+#&gt; <span class='message'>rx_expr_27~1-rx_expr_26;</span>
+#&gt; <span class='message'>d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));</span>
+#&gt; <span class='message'>rx_expr_10~ETA[2]+THETA[2];</span>
+#&gt; <span class='message'>rx_expr_14~exp(rx_expr_10);</span>
+#&gt; <span class='message'>d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));</span>
+#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
+#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
+#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
+#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_18~rx_expr_5*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_lambda_~rx_expr_18+rx_expr_3;</span>
+#&gt; <span class='message'>rx_hi_~rx_expr_18+rx_expr_3;</span>
+#&gt; <span class='message'>rx_low_~0;</span>
+#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_11~parent*(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_22~rx_expr_11*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_22)*(rx_expr_0)+(rx_expr_4+rx_expr_22)*(rx_expr_2)*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_r_=(rx_expr_0)*Rx_pow_di(THETA[8],2)+(rx_expr_2)*(rx_expr_1)*Rx_pow_di(THETA[7],2);</span>
+#&gt; <span class='message'>parent_0=THETA[1];</span>
+#&gt; <span class='message'>log_k_A1=THETA[2];</span>
+#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
+#&gt; <span class='message'>log_k1=THETA[4];</span>
+#&gt; <span class='message'>log_k2=THETA[5];</span>
+#&gt; <span class='message'>g_qlogis=THETA[6];</span>
+#&gt; <span class='message'>sigma_parent=THETA[7];</span>
+#&gt; <span class='message'>sigma_A1=THETA[8];</span>
+#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
+#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
+#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
+#&gt; <span class='message'>eta.log_k1=ETA[4];</span>
+#&gt; <span class='message'>eta.log_k2=ETA[5];</span>
+#&gt; <span class='message'>eta.g_qlogis=ETA[6];</span>
+#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
+#&gt; <span class='message'>k_A1=rx_expr_14;</span>
+#&gt; <span class='message'>k1=rx_expr_12;</span>
+#&gt; <span class='message'>k2=rx_expr_13;</span>
+#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
+#&gt; <span class='message'>g=1/(rx_expr_19);</span>
+#&gt; <span class='message'>tad=tad();</span>
+#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt &lt;- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control &lt;- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret &lt;- new.env(parent = emptyenv())    }    else {        .ret &lt;- env    }    .ret$origData &lt;- data    .ret$etaNames &lt;- etaNames    .ret$thetaFixed &lt;- fixed    .ret$control &lt;- control    .ret$control$focei.mu.ref &lt;- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel &lt;- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel &lt;- TRUE        model &lt;- RxODE::rxGetLin(PKpars)        pred &lt;- eval(parse(text = "function(){return(Central);}"))    }    .square &lt;- function(x) x * x    .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames &lt;- .parNames &lt;- c()    .ret$adjLik &lt;- control$adjLik    .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0    if (!exists("noLik", envir = .ret)) {        .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol &lt;- .atol            .ret$control$rxControl$rtol &lt;- .rtol            .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol &lt;- .ssAtol            .ret$control$rxControl$ssRtol &lt;- .ssRtol        }        .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)        .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) &lt;- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) &gt; 0) {            .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) &gt; 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars &lt;- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol &lt;- .atol                .ret$control$rxControl$rtol &lt;- .rtol            }            .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)            .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) &lt;- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) &gt; 0) {                .covNames &lt;- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) &gt; 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars &lt;- .ret$model$extra.pars        }        else {            .extraPars &lt;- NULL        }    }    .ret$skipCov &lt;- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp &lt;- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) &lt; length(inits$THTA)) {                .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp &lt;- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr &lt;- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp &lt;- (.tmp | .uifErr)        }        .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms &lt;- thetaNames    }    .ret$thetaNames &lt;- .nms    .thetaReset$thetaNames &lt;- .nms    if (length(lower) == 1) {        lower &lt;- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper &lt;- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars &lt;- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) &gt; 0) {            inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars)            .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars))            lower &lt;- c(lower, .lowerErr)            upper &lt;- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID &lt;- 0    if (is.null(data$AMT))         data$AMT &lt;- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] &lt;- as.double(data[[.v]])    }    .ret$dataSav &lt;- data    .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w &lt;- which(tolower(names(data)) == "limit")    .limitName &lt;- NULL    if (length(.w) == 1L) {        .limitName &lt;- names(data)[.w]    }    .censName &lt;- NULL    .w &lt;- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName &lt;- names(data[.w])    }    data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh &lt;- .parseOM(inits$OMGA)        .nlh &lt;- sapply(.lh, length)        .osplt &lt;- rep(1:length(.lh), .nlh)        .lini &lt;- list(inits$THTA, unlist(.lh))        .nlini &lt;- sapply(.lini, length)        .nsplt &lt;- rep(1:length(.lini), .nlini)        .om0 &lt;- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames &lt;- .ret$etaNames        }        else {            .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType &lt;- .ret$rxInv$xType        .om0a &lt;- .om0        .om0a &lt;- .om0a/control$diagOmegaBoundLower        .om0b &lt;- .om0        .om0b &lt;- .om0b * control$diagOmegaBoundUpper        .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a))        .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a))        .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega &lt;- length(.omdf$lower)        .ret$control$neta &lt;- sum(.omdf$diag)        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)        lower &lt;- c(lower, .omdf$lower)        upper &lt;- c(upper, .omdf$upper)    }    else {        .ret$control$nomega &lt;- 0        .ret$control$neta &lt;- 0        .ret$xType &lt;- -1        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)    }    .ret$lower &lt;- lower    .ret$upper &lt;- upper    .ret$thetaIni &lt;- inits$THTA    .scaleC &lt;- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC &lt;- rep(NA_real_, length(lower))    }    else {        .scaleC &lt;- as.double(control$scaleC)        if (length(lower) &gt; length(.scaleC)) {            .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) &lt; length(.scaleC)) {            .scaleC &lt;- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC &lt;- .scaleC    if (exists("uif", envir = .ret)) {        .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- 1        }        .ini &lt;- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b &lt;- .ret$logitThetasLow[.i]            .c &lt;- .ret$logitThetasHi[.i]            .a &lt;- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) &amp; !is.null(control$etaMat)) {        .ret$etaMat &lt;- control$etaMat    }    else {        .ret$etaMat &lt;- etaMat    }    .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp &lt;- .ret$uif$logThetasList        .ret$logThetas &lt;- .tmp[[1]]        .ret$logThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasList        .ret$logitThetas &lt;- .tmp[[1]]        .ret$logitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListLow        .ret$logitThetasLow &lt;- .tmp[[1]]        .ret$logitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListHi        .ret$logitThetasHi &lt;- .tmp[[1]]        .ret$logitThetasHiF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasList        .ret$probitThetas &lt;- .tmp[[1]]        .ret$probitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListLow        .ret$probitThetasLow &lt;- .tmp[[1]]        .ret$probitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListHi        .ret$probitThetasHi &lt;- .tmp[[1]]        .ret$probitThetasHiF &lt;- .tmp[[2]]    }    else {        .ret$logThetasF &lt;- integer(0)        .ret$logitThetasF &lt;- integer(0)        .ret$logitThetasHiF &lt;- numeric(0)        .ret$logitThetasLowF &lt;- numeric(0)        .ret$logitThetas &lt;- integer(0)        .ret$logitThetasHi &lt;- numeric(0)        .ret$logitThetasLow &lt;- numeric(0)        .ret$probitThetasF &lt;- integer(0)        .ret$probitThetasHiF &lt;- numeric(0)        .ret$probitThetasLowF &lt;- numeric(0)        .ret$probitThetas &lt;- integer(0)        .ret$probitThetasHi &lt;- numeric(0)        .ret$probitThetasLow &lt;- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan &lt;- length(.ret$thetaIni)            .ret$nobs &lt;- sum(data$EVID == 0)        }    }    .ret$control$printTop &lt;- TRUE    .ret$control$nF &lt;- 0    .est0 &lt;- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq &lt;- 0L    }    .fitFun &lt;- function(.ret) {        this.env &lt;- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 &lt;- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm &lt;- names(.ret$thetaIni)                .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta &lt;- .thetaReset$omegaTheta                .ret$control$printTop &lt;- FALSE                .ret$etaMat &lt;- .thetaReset$etaMat                .ret$control$etaMat &lt;- .thetaReset$etaMat                .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations                .ret$control$nF &lt;- .thetaReset$nF                .ret$control$gillRetC &lt;- .thetaReset$gillRetC                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillDf &lt;- .thetaReset$gillDf                .ret$control$gillDf2 &lt;- .thetaReset$gillDf2                .ret$control$gillErr &lt;- .thetaReset$gillErr                .ret$control$rEps &lt;- .thetaReset$rEps                .ret$control$aEps &lt;- .thetaReset$aEps                .ret$control$rEpsC &lt;- .thetaReset$rEpsC                .ret$control$aEpsC &lt;- .thetaReset$aEpsC                .ret$control$c1 &lt;- .thetaReset$c1                .ret$control$c2 &lt;- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations &lt;- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun &lt;- .bobyqa                  .ret$control$outerOpt &lt;- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 &lt;- try(.fitFun(.ret))    .n &lt;- 1    while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations !=         0 &amp;&amp; .n &lt;= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF &lt;- 0        .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew &lt;- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] &lt; lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] &gt; upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni &lt;- .estNew        .ret0 &lt;- try(.fitFun(.ret))        .n &lt;- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret &lt;- .ret0    if (exists("parHistData", .ret)) {        .tmp &lt;- .ret$parHistData        .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter &lt;- .tmp$iter        .tmp &lt;- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) &lt;- c("val", "par", "iter")        .ret$parHist &lt;- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas &lt;- .ret$ranef        .thetas &lt;- .ret$fixef        .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table &lt;- tableControl()    }    if (control$calcTables) {        .ret &lt;- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 15.17 0.353 15.52</span></div><div class='input'>
 <span class='co'># Identical two-component error for all variables is only possible with</span>
 <span class='co'># est = 'focei' in nlmixr</span>
 <span class='va'>f_nlmixr_fomc_sfo_focei_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
-#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#&gt; F: Forward difference gradient approximation
-#&gt; C: Central difference gradient approximation
-#&gt; M: Mixed forward and central difference gradient approximation
-#&gt; Unscaled parameters for Omegas=chol(solve(omega));
-#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
-#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
-#&gt; |    #| Objective Fun |  parent_0 |  log_k_A1 |f_parent_qlogis | log_alpha |
-#&gt; |.....................|  log_beta | sigma_low |  rsd_high |        o1 |
-#&gt; |.....................|        o2 |        o3 |        o4 |        o5 |
-#&gt; |<span style='font-weight: bold;'>    1</span>|     504.82714 |     1.000 |    -1.000 |   -0.9114 |   -0.8944 |
-#&gt; |.....................|   -0.8457 |   -0.8687 |   -0.8916 |   -0.8768 |
-#&gt; |.....................|   -0.8745 |   -0.8676 |   -0.8705 |   -0.8704 |
-#&gt; |    U|     504.82714 |     93.12 |    -5.303 |   -0.9442 |   -0.1065 |
-#&gt; |.....................|     2.291 |     1.160 |   0.03005 |    0.7578 |
-#&gt; |.....................|    0.8738 |     1.213 |     1.069 |     1.072 |
-#&gt; |    X|<span style='font-weight: bold;'>     504.82714</span> |     93.12 |  0.004975 |    0.2801 |    0.8989 |
-#&gt; |.....................|     9.884 |     1.160 |   0.03005 |    0.7578 |
-#&gt; |.....................|    0.8738 |     1.213 |     1.069 |     1.072 |
-#&gt; |    G|    Gill Diff. |     73.79 |     2.406 |   0.05615 |    0.2285 |
-#&gt; |.....................|  0.009051 |    -72.42 |    -25.46 |     1.201 |
-#&gt; |.....................|     11.89 |    -10.88 |    -9.982 |    -10.81 |
-#&gt; |<span style='font-weight: bold;'>    2</span>|     4107.3121 |    0.3213 |    -1.022 |   -0.9119 |   -0.8965 |
-#&gt; |.....................|   -0.8458 |   -0.2026 |   -0.6574 |   -0.8879 |
-#&gt; |.....................|   -0.9839 |   -0.7675 |   -0.7787 |   -0.7710 |
-#&gt; |    U|     4107.3121 |     29.92 |    -5.326 |   -0.9447 |   -0.1086 |
-#&gt; |.....................|     2.291 |     1.546 |   0.03357 |    0.7494 |
-#&gt; |.....................|    0.7782 |     1.335 |     1.167 |     1.179 |
-#&gt; |    X|<span style='font-weight: bold;'>     4107.3121</span> |     29.92 |  0.004866 |    0.2800 |    0.8971 |
-#&gt; |.....................|     9.883 |     1.546 |   0.03357 |    0.7494 |
-#&gt; |.....................|    0.7782 |     1.335 |     1.167 |     1.179 |
-#&gt; |<span style='font-weight: bold;'>    3</span>|     528.17103 |    0.9321 |    -1.002 |   -0.9115 |   -0.8946 |
-#&gt; |.....................|   -0.8457 |   -0.8021 |   -0.8682 |   -0.8779 |
-#&gt; |.....................|   -0.8854 |   -0.8576 |   -0.8613 |   -0.8605 |
-#&gt; |    U|     528.17103 |     86.80 |    -5.306 |   -0.9442 |   -0.1067 |
-#&gt; |.....................|     2.291 |     1.198 |   0.03041 |    0.7570 |
-#&gt; |.....................|    0.8642 |     1.226 |     1.079 |     1.083 |
-#&gt; |    X|<span style='font-weight: bold;'>     528.17103</span> |     86.80 |  0.004964 |    0.2800 |    0.8988 |
-#&gt; |.....................|     9.884 |     1.198 |   0.03041 |    0.7570 |
-#&gt; |.....................|    0.8642 |     1.226 |     1.079 |     1.083 |
-#&gt; |<span style='font-weight: bold;'>    4</span>|     503.95550 |    0.9892 |    -1.000 |   -0.9114 |   -0.8944 |
-#&gt; |.....................|   -0.8457 |   -0.8581 |   -0.8879 |   -0.8770 |
-#&gt; |.....................|   -0.8762 |   -0.8660 |   -0.8691 |   -0.8689 |
-#&gt; |    U|      503.9555 |     92.11 |    -5.304 |   -0.9442 |   -0.1066 |
-#&gt; |.....................|     2.291 |     1.166 |   0.03011 |    0.7577 |
-#&gt; |.....................|    0.8723 |     1.215 |     1.070 |     1.074 |
-#&gt; |    X|<span style='font-weight: bold;'>      503.9555</span> |     92.11 |  0.004973 |    0.2801 |    0.8989 |
-#&gt; |.....................|     9.884 |     1.166 |   0.03011 |    0.7577 |
-#&gt; |.....................|    0.8723 |     1.215 |     1.070 |     1.074 |
-#&gt; |    F| Forward Diff. |    -82.12 |     2.266 |   -0.2557 |    0.1457 |
-#&gt; |.....................|   -0.3150 |    -70.09 |    -26.27 |     1.274 |
-#&gt; |.....................|     9.305 |    -11.84 |    -9.592 |    -10.45 |
-#&gt; |<span style='font-weight: bold;'>    5</span>|     503.06948 |     1.000 |    -1.001 |   -0.9114 |   -0.8944 |
-#&gt; |.....................|   -0.8456 |   -0.8479 |   -0.8841 |   -0.8772 |
-#&gt; |.....................|   -0.8776 |   -0.8643 |   -0.8677 |   -0.8674 |
-#&gt; |    U|     503.06948 |     93.16 |    -5.304 |   -0.9442 |   -0.1066 |
-#&gt; |.....................|     2.291 |     1.172 |   0.03017 |    0.7575 |
-#&gt; |.....................|    0.8711 |     1.217 |     1.072 |     1.075 |
-#&gt; |    X|<span style='font-weight: bold;'>     503.06948</span> |     93.16 |  0.004971 |    0.2801 |    0.8989 |
-#&gt; |.....................|     9.884 |     1.172 |   0.03017 |    0.7575 |
-#&gt; |.....................|    0.8711 |     1.217 |     1.072 |     1.075 |
-#&gt; |    F| Forward Diff. |     78.20 |     2.380 |   0.07920 |    0.2489 |
-#&gt; |.....................|   0.04185 |    -69.32 |    -24.13 |     1.306 |
-#&gt; |.....................|     9.997 |    -11.88 |    -9.541 |    -10.51 |
-#&gt; |<span style='font-weight: bold;'>    6</span>|     502.21512 |    0.9895 |    -1.001 |   -0.9114 |   -0.8945 |
-#&gt; |.....................|   -0.8456 |   -0.8375 |   -0.8805 |   -0.8774 |
-#&gt; |.....................|   -0.8791 |   -0.8625 |   -0.8662 |   -0.8658 |
-#&gt; |    U|     502.21512 |     92.14 |    -5.304 |   -0.9442 |   -0.1066 |
-#&gt; |.....................|     2.291 |     1.178 |   0.03022 |    0.7574 |
-#&gt; |.....................|    0.8698 |     1.220 |     1.073 |     1.077 |
-#&gt; |    X|<span style='font-weight: bold;'>     502.21512</span> |     92.14 |  0.004969 |    0.2801 |    0.8989 |
-#&gt; |.....................|     9.884 |     1.178 |   0.03022 |    0.7574 |
-#&gt; |.....................|    0.8698 |     1.220 |     1.073 |     1.077 |
-#&gt; |    F| Forward Diff. |    -79.18 |     2.245 |   -0.2400 |    0.1569 |
-#&gt; |.....................|   -0.2882 |    -67.02 |    -25.09 |     1.000 |
-#&gt; |.....................|     9.365 |    -11.67 |    -9.440 |    -10.32 |
-#&gt; |<span style='font-weight: bold;'>    7</span>|     501.33312 |     1.000 |    -1.001 |   -0.9114 |   -0.8945 |
-#&gt; |.....................|   -0.8456 |   -0.8270 |   -0.8765 |   -0.8775 |
-#&gt; |.....................|   -0.8805 |   -0.8607 |   -0.8647 |   -0.8642 |
-#&gt; |    U|     501.33312 |     93.14 |    -5.305 |   -0.9441 |   -0.1067 |
-#&gt; |.....................|     2.291 |     1.184 |   0.03028 |    0.7573 |
-#&gt; |.....................|    0.8685 |     1.222 |     1.075 |     1.079 |
-#&gt; |    X|<span style='font-weight: bold;'>     501.33312</span> |     93.14 |  0.004968 |    0.2801 |    0.8988 |
-#&gt; |.....................|     9.884 |     1.184 |   0.03028 |    0.7573 |
-#&gt; |.....................|    0.8685 |     1.222 |     1.075 |     1.079 |
-#&gt; |    F| Forward Diff. |     73.96 |     2.351 |   0.08380 |    0.2565 |
-#&gt; |.....................|   0.05289 |    -66.42 |    -23.08 |    0.9343 |
-#&gt; |.....................|     11.48 |    -11.71 |    -9.377 |    -10.38 |
-#&gt; |<span style='font-weight: bold;'>    8</span>|     500.50460 |    0.9897 |    -1.002 |   -0.9114 |   -0.8946 |
-#&gt; |.....................|   -0.8456 |   -0.8163 |   -0.8728 |   -0.8777 |
-#&gt; |.....................|   -0.8824 |   -0.8588 |   -0.8632 |   -0.8625 |
-#&gt; |    U|      500.5046 |     92.16 |    -5.305 |   -0.9442 |   -0.1067 |
-#&gt; |.....................|     2.291 |     1.190 |   0.03034 |    0.7572 |
-#&gt; |.....................|    0.8669 |     1.224 |     1.077 |     1.081 |
-#&gt; |    X|<span style='font-weight: bold;'>      500.5046</span> |     92.16 |  0.004966 |    0.2801 |    0.8988 |
-#&gt; |.....................|     9.884 |     1.190 |   0.03034 |    0.7572 |
-#&gt; |.....................|    0.8669 |     1.224 |     1.077 |     1.081 |
-#&gt; |    F| Forward Diff. |    -76.85 |     2.219 |   -0.2273 |    0.1675 |
-#&gt; |.....................|   -0.2752 |    -63.09 |    -23.56 |     1.068 |
-#&gt; |.....................|     8.794 |    -11.52 |    -9.279 |    -10.19 |
-#&gt; |<span style='font-weight: bold;'>    9</span>|     499.65692 |     1.000 |    -1.002 |   -0.9113 |   -0.8946 |
-#&gt; |.....................|   -0.8456 |   -0.8056 |   -0.8689 |   -0.8779 |
-#&gt; |.....................|   -0.8839 |   -0.8568 |   -0.8617 |   -0.8608 |
-#&gt; |    U|     499.65692 |     93.14 |    -5.306 |   -0.9441 |   -0.1067 |
-#&gt; |.....................|     2.291 |     1.196 |   0.03040 |    0.7570 |
-#&gt; |.....................|    0.8655 |     1.226 |     1.078 |     1.082 |
-#&gt; |    X|<span style='font-weight: bold;'>     499.65692</span> |     93.14 |  0.004964 |    0.2801 |    0.8988 |
-#&gt; |.....................|     9.885 |     1.196 |   0.03040 |    0.7570 |
-#&gt; |.....................|    0.8655 |     1.226 |     1.078 |     1.082 |
-#&gt; |    F| Forward Diff. |     72.32 |     2.320 |   0.09176 |    0.2615 |
-#&gt; |.....................|   0.06934 |    -62.36 |    -21.54 |     1.140 |
-#&gt; |.....................|     9.404 |    -11.56 |    -9.216 |    -10.24 |
-#&gt; |<span style='font-weight: bold;'>   10</span>|     498.81870 |    0.9902 |    -1.003 |   -0.9114 |   -0.8946 |
-#&gt; |.....................|   -0.8456 |   -0.7946 |   -0.8650 |   -0.8781 |
-#&gt; |.....................|   -0.8856 |   -0.8548 |   -0.8600 |   -0.8589 |
-#&gt; |    U|      498.8187 |     92.21 |    -5.306 |   -0.9441 |   -0.1068 |
-#&gt; |.....................|     2.291 |     1.203 |   0.03045 |    0.7569 |
-#&gt; |.....................|    0.8641 |     1.229 |     1.080 |     1.084 |
-#&gt; |    X|<span style='font-weight: bold;'>      498.8187</span> |     92.21 |  0.004962 |    0.2801 |    0.8987 |
-#&gt; |.....................|     9.885 |     1.203 |   0.03045 |    0.7569 |
-#&gt; |.....................|    0.8641 |     1.229 |     1.080 |     1.084 |
-#&gt; |    F| Forward Diff. |    -70.56 |     2.198 |   -0.2057 |    0.1798 |
-#&gt; |.....................|   -0.2468 |    -59.74 |    -22.28 |    0.8150 |
-#&gt; |.....................|     7.180 |    -11.33 |    -9.109 |    -10.05 |
-#&gt; |<span style='font-weight: bold;'>   11</span>|     497.99655 |     1.000 |    -1.003 |   -0.9113 |   -0.8947 |
-#&gt; |.....................|   -0.8455 |   -0.7835 |   -0.8609 |   -0.8782 |
-#&gt; |.....................|   -0.8869 |   -0.8527 |   -0.8583 |   -0.8571 |
-#&gt; |    U|     497.99655 |     93.13 |    -5.306 |   -0.9441 |   -0.1068 |
-#&gt; |.....................|     2.291 |     1.209 |   0.03052 |    0.7568 |
-#&gt; |.....................|    0.8629 |     1.231 |     1.082 |     1.086 |
-#&gt; |    X|<span style='font-weight: bold;'>     497.99655</span> |     93.13 |  0.004960 |    0.2801 |    0.8987 |
-#&gt; |.....................|     9.885 |     1.209 |   0.03052 |    0.7568 |
-#&gt; |.....................|    0.8629 |     1.231 |     1.082 |     1.086 |
-#&gt; |    F| Forward Diff. |     69.16 |     2.293 |    0.1087 |    0.2725 |
-#&gt; |.....................|   0.08752 |    -59.63 |    -20.54 |    0.7584 |
-#&gt; |.....................|     10.86 |    -11.45 |    -9.094 |    -10.13 |
-#&gt; |<span style='font-weight: bold;'>   12</span>|     497.16410 |    0.9907 |    -1.003 |   -0.9113 |   -0.8947 |
-#&gt; |.....................|   -0.8455 |   -0.7720 |   -0.8569 |   -0.8784 |
-#&gt; |.....................|   -0.8889 |   -0.8505 |   -0.8566 |   -0.8551 |
-#&gt; |    U|      497.1641 |     92.25 |    -5.307 |   -0.9441 |   -0.1069 |
-#&gt; |.....................|     2.291 |     1.216 |   0.03058 |    0.7566 |
-#&gt; |.....................|    0.8612 |     1.234 |     1.084 |     1.088 |
-#&gt; |    X|<span style='font-weight: bold;'>      497.1641</span> |     92.25 |  0.004958 |    0.2801 |    0.8987 |
-#&gt; |.....................|     9.885 |     1.216 |   0.03058 |    0.7566 |
-#&gt; |.....................|    0.8612 |     1.234 |     1.084 |     1.088 |
-#&gt; |    F| Forward Diff. |    -65.09 |     2.175 |   -0.1829 |    0.1920 |
-#&gt; |.....................|   -0.2233 |    -56.76 |    -21.02 |    0.6415 |
-#&gt; |.....................|     9.983 |    -11.18 |    -8.930 |    -9.895 |
-#&gt; |<span style='font-weight: bold;'>   13</span>|     496.40281 |     1.000 |    -1.004 |   -0.9113 |   -0.8948 |
-#&gt; |.....................|   -0.8455 |   -0.7609 |   -0.8528 |   -0.8785 |
-#&gt; |.....................|   -0.8909 |   -0.8483 |   -0.8548 |   -0.8532 |
-#&gt; |    U|     496.40281 |     93.15 |    -5.307 |   -0.9441 |   -0.1069 |
-#&gt; |.....................|     2.291 |     1.222 |   0.03064 |    0.7566 |
-#&gt; |.....................|    0.8594 |     1.237 |     1.086 |     1.091 |
-#&gt; |    X|<span style='font-weight: bold;'>     496.40281</span> |     93.15 |  0.004955 |    0.2801 |    0.8986 |
-#&gt; |.....................|     9.885 |     1.222 |   0.03064 |    0.7566 |
-#&gt; |.....................|    0.8594 |     1.237 |     1.086 |     1.091 |
-#&gt; |    F| Forward Diff. |     70.05 |     2.265 |    0.1236 |    0.2851 |
-#&gt; |.....................|    0.1152 |    -55.71 |    -19.12 |    0.8701 |
-#&gt; |.....................|     7.394 |    -11.22 |    -8.890 |    -9.949 |
-#&gt; |<span style='font-weight: bold;'>   14</span>|     495.59236 |    0.9910 |    -1.004 |   -0.9113 |   -0.8948 |
-#&gt; |.....................|   -0.8455 |   -0.7494 |   -0.8488 |   -0.8787 |
-#&gt; |.....................|   -0.8926 |   -0.8459 |   -0.8530 |   -0.8511 |
-#&gt; |    U|     495.59236 |     92.28 |    -5.308 |   -0.9441 |   -0.1070 |
-#&gt; |.....................|     2.291 |     1.229 |   0.03070 |    0.7564 |
-#&gt; |.....................|    0.8580 |     1.240 |     1.088 |     1.093 |
-#&gt; |    X|<span style='font-weight: bold;'>     495.59236</span> |     92.28 |  0.004953 |    0.2801 |    0.8986 |
-#&gt; |.....................|     9.885 |     1.229 |   0.03070 |    0.7564 |
-#&gt; |.....................|    0.8580 |     1.240 |     1.088 |     1.093 |
-#&gt; |    F| Forward Diff. |    -61.97 |     2.150 |   -0.1619 |    0.2028 |
-#&gt; |.....................|   -0.2007 |    -53.46 |    -19.76 |    0.5341 |
-#&gt; |.....................|     9.715 |    -10.96 |    -8.745 |    -9.729 |
-#&gt; |<span style='font-weight: bold;'>   15</span>|     494.82198 |     1.000 |    -1.005 |   -0.9113 |   -0.8949 |
-#&gt; |.....................|   -0.8455 |   -0.7378 |   -0.8446 |   -0.8788 |
-#&gt; |.....................|   -0.8946 |   -0.8435 |   -0.8510 |   -0.8489 |
-#&gt; |    U|     494.82198 |     93.11 |    -5.308 |   -0.9441 |   -0.1070 |
-#&gt; |.....................|     2.291 |     1.235 |   0.03076 |    0.7563 |
-#&gt; |.....................|    0.8562 |     1.243 |     1.090 |     1.095 |
-#&gt; |    X|<span style='font-weight: bold;'>     494.82198</span> |     93.11 |  0.004951 |    0.2801 |    0.8985 |
-#&gt; |.....................|     9.886 |     1.235 |   0.03076 |    0.7563 |
-#&gt; |.....................|    0.8562 |     1.243 |     1.090 |     1.095 |
-#&gt; |    F| Forward Diff. |     62.35 |     2.229 |    0.1203 |    0.2879 |
-#&gt; |.....................|    0.1180 |    -52.16 |    -17.88 |    0.7550 |
-#&gt; |.....................|     8.431 |    -10.99 |    -8.665 |    -9.736 |
-#&gt; |<span style='font-weight: bold;'>   16</span>|     494.07821 |    0.9910 |    -1.005 |   -0.9113 |   -0.8949 |
-#&gt; |.....................|   -0.8455 |   -0.7261 |   -0.8406 |   -0.8789 |
-#&gt; |.....................|   -0.8966 |   -0.8410 |   -0.8490 |   -0.8467 |
-#&gt; |    U|     494.07821 |     92.28 |    -5.309 |   -0.9441 |   -0.1071 |
-#&gt; |.....................|     2.291 |     1.242 |   0.03082 |    0.7562 |
-#&gt; |.....................|    0.8544 |     1.246 |     1.092 |     1.098 |
-#&gt; |    X|<span style='font-weight: bold;'>     494.07821</span> |     92.28 |  0.004948 |    0.2801 |    0.8985 |
-#&gt; |.....................|     9.885 |     1.242 |   0.03082 |    0.7562 |
-#&gt; |.....................|    0.8544 |     1.246 |     1.092 |     1.098 |
-#&gt; |    F| Forward Diff. |    -62.97 |     2.119 |   -0.1628 |    0.2103 |
-#&gt; |.....................|   -0.1835 |    -49.97 |    -18.50 |    0.4855 |
-#&gt; |.....................|     6.275 |    -10.75 |    -8.529 |    -9.546 |
-#&gt; |<span style='font-weight: bold;'>   17</span>|     493.31030 |    0.9997 |    -1.006 |   -0.9113 |   -0.8950 |
-#&gt; |.....................|   -0.8455 |   -0.7143 |   -0.8363 |   -0.8790 |
-#&gt; |.....................|   -0.8981 |   -0.8383 |   -0.8469 |   -0.8443 |
-#&gt; |    U|      493.3103 |     93.08 |    -5.309 |   -0.9441 |   -0.1071 |
-#&gt; |.....................|     2.291 |     1.249 |   0.03089 |    0.7561 |
-#&gt; |.....................|    0.8531 |     1.249 |     1.094 |     1.100 |
-#&gt; |    X|<span style='font-weight: bold;'>      493.3103</span> |     93.08 |  0.004946 |    0.2801 |    0.8984 |
-#&gt; |.....................|     9.886 |     1.249 |   0.03089 |    0.7561 |
-#&gt; |.....................|    0.8531 |     1.249 |     1.094 |     1.100 |
-#&gt; |    F| Forward Diff. |     56.08 |     2.195 |    0.1067 |    0.2931 |
-#&gt; |.....................|    0.1254 |    -49.64 |    -16.98 |    0.3491 |
-#&gt; |.....................|     8.549 |    -10.78 |    -8.455 |    -9.552 |
-#&gt; |<span style='font-weight: bold;'>   18</span>|     492.59068 |    0.9914 |    -1.006 |   -0.9113 |   -0.8951 |
-#&gt; |.....................|   -0.8455 |   -0.7023 |   -0.8321 |   -0.8791 |
-#&gt; |.....................|   -0.9000 |   -0.8355 |   -0.8448 |   -0.8419 |
-#&gt; |    U|     492.59068 |     92.32 |    -5.310 |   -0.9441 |   -0.1072 |
-#&gt; |.....................|     2.291 |     1.256 |   0.03095 |    0.7561 |
-#&gt; |.....................|    0.8514 |     1.252 |     1.096 |     1.103 |
-#&gt; |    X|<span style='font-weight: bold;'>     492.59068</span> |     92.32 |  0.004943 |    0.2801 |    0.8983 |
-#&gt; |.....................|     9.885 |     1.256 |   0.03095 |    0.7561 |
-#&gt; |.....................|    0.8514 |     1.252 |     1.096 |     1.103 |
-#&gt; |    F| Forward Diff. |    -58.13 |     2.097 |   -0.1289 |    0.2246 |
-#&gt; |.....................|   -0.1582 |    -47.13 |    -17.33 |    0.3097 |
-#&gt; |.....................|     7.738 |    -10.54 |    -8.304 |    -9.345 |
-#&gt; |<span style='font-weight: bold;'>   19</span>|     491.88063 |    0.9998 |    -1.007 |   -0.9113 |   -0.8951 |
-#&gt; |.....................|   -0.8455 |   -0.6905 |   -0.8279 |   -0.8791 |
-#&gt; |.....................|   -0.9022 |   -0.8327 |   -0.8426 |   -0.8394 |
-#&gt; |    U|     491.88063 |     93.10 |    -5.310 |   -0.9441 |   -0.1073 |
-#&gt; |.....................|     2.291 |     1.263 |   0.03101 |    0.7561 |
-#&gt; |.....................|    0.8496 |     1.256 |     1.099 |     1.105 |
-#&gt; |    X|<span style='font-weight: bold;'>     491.88063</span> |     93.10 |  0.004940 |    0.2801 |    0.8983 |
-#&gt; |.....................|     9.886 |     1.263 |   0.03101 |    0.7561 |
-#&gt; |.....................|    0.8496 |     1.256 |     1.099 |     1.105 |
-#&gt; |    F| Forward Diff. |     56.71 |     2.166 |    0.1292 |    0.3076 |
-#&gt; |.....................|    0.1542 |    -45.57 |    -15.60 |    0.4873 |
-#&gt; |.....................|     6.413 |    -10.51 |    -8.202 |    -9.332 |
-#&gt; |<span style='font-weight: bold;'>   20</span>|     491.19020 |    0.9917 |    -1.008 |   -0.9113 |   -0.8952 |
-#&gt; |.....................|   -0.8455 |   -0.6785 |   -0.8237 |   -0.8792 |
-#&gt; |.....................|   -0.9039 |   -0.8296 |   -0.8402 |   -0.8366 |
-#&gt; |    U|      491.1902 |     92.34 |    -5.311 |   -0.9441 |   -0.1074 |
-#&gt; |.....................|     2.291 |     1.270 |   0.03107 |    0.7560 |
-#&gt; |.....................|    0.8481 |     1.259 |     1.101 |     1.108 |
-#&gt; |    X|<span style='font-weight: bold;'>      491.1902</span> |     92.34 |  0.004937 |    0.2801 |    0.8982 |
-#&gt; |.....................|     9.885 |     1.270 |   0.03107 |    0.7560 |
-#&gt; |.....................|    0.8481 |     1.259 |     1.101 |     1.108 |
-#&gt; |    F| Forward Diff. |    -55.56 |     2.070 |   -0.1130 |    0.2359 |
-#&gt; |.....................|   -0.1346 |    -44.07 |    -16.23 |    0.1008 |
-#&gt; |.....................|     7.464 |    -10.26 |    -8.060 |    -9.125 |
-#&gt; |<span style='font-weight: bold;'>   21</span>|     490.47868 |    0.9993 |    -1.008 |   -0.9113 |   -0.8953 |
-#&gt; |.....................|   -0.8455 |   -0.6665 |   -0.8194 |   -0.8791 |
-#&gt; |.....................|   -0.9059 |   -0.8264 |   -0.8377 |   -0.8337 |
-#&gt; |    U|     490.47868 |     93.05 |    -5.312 |   -0.9441 |   -0.1075 |
-#&gt; |.....................|     2.291 |     1.277 |   0.03114 |    0.7561 |
-#&gt; |.....................|    0.8463 |     1.263 |     1.104 |     1.111 |
-#&gt; |    X|<span style='font-weight: bold;'>     490.47868</span> |     93.05 |  0.004934 |    0.2801 |    0.8981 |
-#&gt; |.....................|     9.885 |     1.277 |   0.03114 |    0.7561 |
-#&gt; |.....................|    0.8463 |     1.263 |     1.104 |     1.111 |
-#&gt; |    F| Forward Diff. |     47.93 |     2.132 |    0.1269 |    0.3117 |
-#&gt; |.....................|    0.1562 |    -43.27 |    -14.78 |   0.06906 |
-#&gt; |.....................|     9.295 |    -10.26 |    -7.955 |    -9.092 |
-#&gt; |<span style='font-weight: bold;'>   22</span>|     489.84765 |    0.9918 |    -1.009 |   -0.9114 |   -0.8954 |
-#&gt; |.....................|   -0.8456 |   -0.6545 |   -0.8153 |   -0.8790 |
-#&gt; |.....................|   -0.9090 |   -0.8231 |   -0.8352 |   -0.8308 |
-#&gt; |    U|     489.84765 |     92.35 |    -5.312 |   -0.9441 |   -0.1076 |
-#&gt; |.....................|     2.291 |     1.284 |   0.03120 |    0.7562 |
-#&gt; |.....................|    0.8436 |     1.267 |     1.107 |     1.115 |
-#&gt; |    X|<span style='font-weight: bold;'>     489.84765</span> |     92.35 |  0.004930 |    0.2801 |    0.8980 |
-#&gt; |.....................|     9.885 |     1.284 |   0.03120 |    0.7562 |
-#&gt; |.....................|    0.8436 |     1.267 |     1.107 |     1.115 |
-#&gt; |    F| Forward Diff. |    -55.71 |     2.038 |   -0.1283 |    0.2328 |
-#&gt; |.....................|   -0.1164 |    -41.15 |    -15.14 |  0.009736 |
-#&gt; |.....................|     8.505 |    -10.03 |    -7.805 |    -8.885 |
-#&gt; |<span style='font-weight: bold;'>   23</span>|     489.17644 |    0.9994 |    -1.010 |   -0.9113 |   -0.8955 |
-#&gt; |.....................|   -0.8456 |   -0.6429 |   -0.8112 |   -0.8788 |
-#&gt; |.....................|   -0.9126 |   -0.8197 |   -0.8325 |   -0.8278 |
-#&gt; |    U|     489.17644 |     93.06 |    -5.313 |   -0.9441 |   -0.1077 |
-#&gt; |.....................|     2.291 |     1.290 |   0.03126 |    0.7563 |
-#&gt; |.....................|    0.8405 |     1.272 |     1.109 |     1.118 |
-#&gt; |    X|<span style='font-weight: bold;'>     489.17644</span> |     93.06 |  0.004927 |    0.2801 |    0.8979 |
-#&gt; |.....................|     9.885 |     1.290 |   0.03126 |    0.7563 |
-#&gt; |.....................|    0.8405 |     1.272 |     1.109 |     1.118 |
-#&gt; |    F| Forward Diff. |     46.87 |     2.093 |    0.1493 |    0.3243 |
-#&gt; |.....................|    0.1838 |    -40.03 |    -13.57 |    0.1411 |
-#&gt; |.....................|     5.593 |    -9.957 |    -7.669 |    -8.831 |
-#&gt; |<span style='font-weight: bold;'>   24</span>|     488.58015 |    0.9920 |    -1.011 |   -0.9114 |   -0.8957 |
-#&gt; |.....................|   -0.8457 |   -0.6309 |   -0.8071 |   -0.8787 |
-#&gt; |.....................|   -0.9147 |   -0.8159 |   -0.8297 |   -0.8244 |
-#&gt; |    U|     488.58015 |     92.37 |    -5.314 |   -0.9442 |   -0.1078 |
-#&gt; |.....................|     2.291 |     1.297 |   0.03132 |    0.7564 |
-#&gt; |.....................|    0.8386 |     1.276 |     1.112 |     1.121 |
-#&gt; |    X|<span style='font-weight: bold;'>     488.58015</span> |     92.37 |  0.004923 |    0.2801 |    0.8978 |
-#&gt; |.....................|     9.884 |     1.297 |   0.03132 |    0.7564 |
-#&gt; |.....................|    0.8386 |     1.276 |     1.112 |     1.121 |
-#&gt; |    F| Forward Diff. |    -53.50 |     2.005 |   -0.1078 |    0.2446 |
-#&gt; |.....................|  -0.09190 |    -37.89 |    -13.87 |   0.05672 |
-#&gt; |.....................|     4.909 |    -9.713 |    -7.511 |    -8.606 |
-#&gt; |<span style='font-weight: bold;'>   25</span>|     487.93833 |    0.9991 |    -1.011 |   -0.9114 |   -0.8958 |
-#&gt; |.....................|   -0.8457 |   -0.6190 |   -0.8030 |   -0.8785 |
-#&gt; |.....................|   -0.9153 |   -0.8117 |   -0.8266 |   -0.8207 |
-#&gt; |    U|     487.93833 |     93.04 |    -5.315 |   -0.9442 |   -0.1080 |
-#&gt; |.....................|     2.291 |     1.304 |   0.03139 |    0.7566 |
-#&gt; |.....................|    0.8381 |     1.281 |     1.116 |     1.125 |
-#&gt; |    X|<span style='font-weight: bold;'>     487.93833</span> |     93.04 |  0.004918 |    0.2801 |    0.8977 |
-#&gt; |.....................|     9.883 |     1.304 |   0.03139 |    0.7566 |
-#&gt; |.....................|    0.8381 |     1.281 |     1.116 |     1.125 |
-#&gt; |    F| Forward Diff. |     41.92 |     2.065 |    0.1569 |    0.3320 |
-#&gt; |.....................|    0.1961 |    -37.34 |    -12.63 |   0.01172 |
-#&gt; |.....................|     5.301 |    -9.646 |    -7.360 |    -8.530 |
-#&gt; |<span style='font-weight: bold;'>   26</span>|     487.37063 |    0.9925 |    -1.012 |   -0.9115 |   -0.8960 |
-#&gt; |.....................|   -0.8458 |   -0.6069 |   -0.7990 |   -0.8783 |
-#&gt; |.....................|   -0.9161 |   -0.8073 |   -0.8233 |   -0.8168 |
-#&gt; |    U|     487.37063 |     92.42 |    -5.316 |   -0.9443 |   -0.1081 |
-#&gt; |.....................|     2.291 |     1.311 |   0.03145 |    0.7567 |
-#&gt; |.....................|    0.8374 |     1.287 |     1.119 |     1.130 |
-#&gt; |    X|<span style='font-weight: bold;'>     487.37063</span> |     92.42 |  0.004913 |    0.2800 |    0.8975 |
-#&gt; |.....................|     9.882 |     1.311 |   0.03145 |    0.7567 |
-#&gt; |.....................|    0.8374 |     1.287 |     1.119 |     1.130 |
-#&gt; |    F| Forward Diff. |    -47.84 |     1.989 |  -0.08553 |    0.2559 |
-#&gt; |.....................|  -0.06263 |    -35.59 |    -12.91 |  -0.09336 |
-#&gt; |.....................|     8.020 |    -9.356 |    -7.180 |    -8.291 |
-#&gt; |<span style='font-weight: bold;'>   27</span>|     486.76802 |    0.9991 |    -1.014 |   -0.9115 |   -0.8962 |
-#&gt; |.....................|   -0.8459 |   -0.5954 |   -0.7952 |   -0.8779 |
-#&gt; |.....................|   -0.9197 |   -0.8027 |   -0.8200 |   -0.8127 |
-#&gt; |    U|     486.76802 |     93.03 |    -5.317 |   -0.9443 |   -0.1083 |
-#&gt; |.....................|     2.291 |     1.318 |   0.03150 |    0.7570 |
-#&gt; |.....................|    0.8342 |     1.292 |     1.123 |     1.134 |
-#&gt; |    X|<span style='font-weight: bold;'>     486.76802</span> |     93.03 |  0.004908 |    0.2800 |    0.8973 |
-#&gt; |.....................|     9.881 |     1.318 |   0.03150 |    0.7570 |
-#&gt; |.....................|    0.8342 |     1.292 |     1.123 |     1.134 |
-#&gt; |    F| Forward Diff. |     39.28 |     2.032 |    0.1697 |    0.3409 |
-#&gt; |.....................|    0.2161 |    -34.26 |    -11.60 |  -0.04206 |
-#&gt; |.....................|     6.414 |    -9.258 |    -7.014 |    -8.183 |
-#&gt; |<span style='font-weight: bold;'>   28</span>|     486.25961 |    0.9924 |    -1.015 |   -0.9116 |   -0.8964 |
-#&gt; |.....................|   -0.8461 |   -0.5843 |   -0.7916 |   -0.8775 |
-#&gt; |.....................|   -0.9242 |   -0.7980 |   -0.8166 |   -0.8086 |
-#&gt; |    U|     486.25961 |     92.41 |    -5.318 |   -0.9444 |   -0.1086 |
-#&gt; |.....................|     2.290 |     1.324 |   0.03156 |    0.7573 |
-#&gt; |.....................|    0.8303 |     1.298 |     1.126 |     1.138 |
-#&gt; |    X|<span style='font-weight: bold;'>     486.25961</span> |     92.41 |  0.004902 |    0.2800 |    0.8971 |
-#&gt; |.....................|     9.880 |     1.324 |   0.03156 |    0.7573 |
-#&gt; |.....................|    0.8303 |     1.298 |     1.126 |     1.138 |
-#&gt; |    F| Forward Diff. |    -50.63 |     1.945 |  -0.07307 |    0.2626 |
-#&gt; |.....................|  -0.04930 |    -33.11 |    -12.03 |   -0.1686 |
-#&gt; |.....................|     7.510 |    -8.984 |    -6.802 |    -7.934 |
-#&gt; |<span style='font-weight: bold;'>   29</span>|     485.66844 |    0.9985 |    -1.016 |   -0.9117 |   -0.8967 |
-#&gt; |.....................|   -0.8462 |   -0.5738 |   -0.7881 |   -0.8769 |
-#&gt; |.....................|   -0.9293 |   -0.7927 |   -0.8129 |   -0.8039 |
-#&gt; |    U|     485.66844 |     92.98 |    -5.319 |   -0.9445 |   -0.1089 |
-#&gt; |.....................|     2.290 |     1.331 |   0.03161 |    0.7578 |
-#&gt; |.....................|    0.8259 |     1.304 |     1.130 |     1.143 |
-#&gt; |    X|<span style='font-weight: bold;'>     485.66844</span> |     92.98 |  0.004895 |    0.2800 |    0.8969 |
-#&gt; |.....................|     9.878 |     1.331 |   0.03161 |    0.7578 |
-#&gt; |.....................|    0.8259 |     1.304 |     1.130 |     1.143 |
-#&gt; |    F| Forward Diff. |     30.24 |     1.977 |    0.1746 |    0.3455 |
-#&gt; |.....................|    0.2218 |    -32.22 |    -10.87 |   -0.2249 |
-#&gt; |.....................|     4.336 |    -8.820 |    -6.615 |    -7.812 |
-#&gt; |<span style='font-weight: bold;'>   30</span>|     485.23968 |    0.9921 |    -1.017 |   -0.9119 |   -0.8970 |
-#&gt; |.....................|   -0.8465 |   -0.5622 |   -0.7845 |   -0.8762 |
-#&gt; |.....................|   -0.9314 |   -0.7876 |   -0.8094 |   -0.7994 |
-#&gt; |    U|     485.23968 |     92.38 |    -5.321 |   -0.9447 |   -0.1091 |
-#&gt; |.....................|     2.290 |     1.337 |   0.03166 |    0.7583 |
-#&gt; |.....................|    0.8240 |     1.310 |     1.134 |     1.148 |
-#&gt; |    X|<span style='font-weight: bold;'>     485.23968</span> |     92.38 |  0.004889 |    0.2800 |    0.8966 |
-#&gt; |.....................|     9.876 |     1.337 |   0.03166 |    0.7583 |
-#&gt; |.....................|    0.8240 |     1.310 |     1.134 |     1.148 |
-#&gt; |    F| Forward Diff. |    -56.59 |     1.902 |  -0.07536 |    0.2678 |
-#&gt; |.....................|  -0.04797 |    -30.46 |    -11.14 |  -0.09043 |
-#&gt; |.....................|     3.742 |    -8.533 |    -6.412 |    -7.541 |
-#&gt; |<span style='font-weight: bold;'>   31</span>|     484.69662 |    0.9984 |    -1.019 |   -0.9121 |   -0.8974 |
-#&gt; |.....................|   -0.8467 |   -0.5517 |   -0.7813 |   -0.8754 |
-#&gt; |.....................|   -0.9289 |   -0.7816 |   -0.8053 |   -0.7941 |
-#&gt; |    U|     484.69662 |     92.97 |    -5.322 |   -0.9448 |   -0.1095 |
-#&gt; |.....................|     2.290 |     1.343 |   0.03171 |    0.7589 |
-#&gt; |.....................|    0.8262 |     1.318 |     1.138 |     1.154 |
-#&gt; |    X|<span style='font-weight: bold;'>     484.69662</span> |     92.97 |  0.004881 |    0.2799 |    0.8963 |
-#&gt; |.....................|     9.873 |     1.343 |   0.03171 |    0.7589 |
-#&gt; |.....................|    0.8262 |     1.318 |     1.138 |     1.154 |
-#&gt; |    F| Forward Diff. |     27.47 |     1.960 |    0.1737 |    0.3487 |
-#&gt; |.....................|    0.2320 |    -29.84 |    -10.04 |   -0.2714 |
-#&gt; |.....................|     5.731 |    -8.337 |    -6.228 |    -7.371 |
-#&gt; |<span style='font-weight: bold;'>   32</span>|     484.27605 |    0.9928 |    -1.021 |   -0.9123 |   -0.8978 |
-#&gt; |.....................|   -0.8471 |   -0.5404 |   -0.7779 |   -0.8746 |
-#&gt; |.....................|   -0.9302 |   -0.7757 |   -0.8014 |   -0.7889 |
-#&gt; |    U|     484.27605 |     92.45 |    -5.324 |   -0.9451 |   -0.1099 |
-#&gt; |.....................|     2.289 |     1.350 |   0.03176 |    0.7595 |
-#&gt; |.....................|    0.8251 |     1.325 |     1.143 |     1.159 |
-#&gt; |    X|<span style='font-weight: bold;'>     484.27605</span> |     92.45 |  0.004872 |    0.2799 |    0.8959 |
-#&gt; |.....................|     9.870 |     1.350 |   0.03176 |    0.7595 |
-#&gt; |.....................|    0.8251 |     1.325 |     1.143 |     1.159 |
-#&gt; |    F| Forward Diff. |    -48.28 |     1.894 |  -0.05804 |    0.2769 |
-#&gt; |.....................|  -0.01457 |    -28.21 |    -10.24 |   -0.1977 |
-#&gt; |.....................|     5.253 |    -8.027 |    -5.998 |    -7.085 |
-#&gt; |<span style='font-weight: bold;'>   33</span>|     483.77365 |    0.9986 |    -1.023 |   -0.9126 |   -0.8983 |
-#&gt; |.....................|   -0.8475 |   -0.5309 |   -0.7752 |   -0.8734 |
-#&gt; |.....................|   -0.9343 |   -0.7690 |   -0.7970 |   -0.7831 |
-#&gt; |    U|     483.77365 |     92.99 |    -5.326 |   -0.9453 |   -0.1104 |
-#&gt; |.....................|     2.289 |     1.355 |   0.03180 |    0.7604 |
-#&gt; |.....................|    0.8215 |     1.333 |     1.147 |     1.166 |
-#&gt; |    X|<span style='font-weight: bold;'>     483.77365</span> |     92.99 |  0.004861 |    0.2798 |    0.8954 |
-#&gt; |.....................|     9.866 |     1.355 |   0.03180 |    0.7604 |
-#&gt; |.....................|    0.8215 |     1.333 |     1.147 |     1.166 |
-#&gt; |    F| Forward Diff. |     28.59 |     1.923 |    0.1952 |    0.3548 |
-#&gt; |.....................|    0.2608 |    -27.76 |    -9.333 |   -0.3645 |
-#&gt; |.....................|     3.958 |    -7.814 |    -5.777 |    -6.894 |
-#&gt; |<span style='font-weight: bold;'>   34</span>|     483.37086 |    0.9934 |    -1.025 |   -0.9129 |   -0.8989 |
-#&gt; |.....................|   -0.8480 |   -0.5203 |   -0.7721 |   -0.8720 |
-#&gt; |.....................|   -0.9349 |   -0.7624 |   -0.7928 |   -0.7774 |
-#&gt; |    U|     483.37086 |     92.51 |    -5.329 |   -0.9456 |   -0.1110 |
-#&gt; |.....................|     2.289 |     1.362 |   0.03185 |    0.7615 |
-#&gt; |.....................|    0.8209 |     1.341 |     1.152 |     1.172 |
-#&gt; |    X|<span style='font-weight: bold;'>     483.37086</span> |     92.51 |  0.004850 |    0.2798 |    0.8949 |
-#&gt; |.....................|     9.861 |     1.362 |   0.03185 |    0.7615 |
-#&gt; |.....................|    0.8209 |     1.341 |     1.152 |     1.172 |
-#&gt; |    F| Forward Diff. |    -41.16 |     1.862 |  -0.03265 |    0.2828 |
-#&gt; |.....................|   0.01951 |    -26.43 |    -9.488 |   -0.2833 |
-#&gt; |.....................|     3.545 |    -7.469 |    -5.528 |    -6.584 |
-#&gt; |<span style='font-weight: bold;'>   35</span>|     482.96272 |    0.9987 |    -1.028 |   -0.9132 |   -0.8995 |
-#&gt; |.....................|   -0.8485 |   -0.5103 |   -0.7694 |   -0.8702 |
-#&gt; |.....................|   -0.9315 |   -0.7558 |   -0.7888 |   -0.7716 |
-#&gt; |    U|     482.96272 |     92.99 |    -5.332 |   -0.9459 |   -0.1117 |
-#&gt; |.....................|     2.288 |     1.367 |   0.03189 |    0.7629 |
-#&gt; |.....................|    0.8240 |     1.349 |     1.156 |     1.178 |
-#&gt; |    X|<span style='font-weight: bold;'>     482.96272</span> |     92.99 |  0.004836 |    0.2797 |    0.8943 |
-#&gt; |.....................|     9.856 |     1.367 |   0.03189 |    0.7629 |
-#&gt; |.....................|    0.8240 |     1.349 |     1.156 |     1.178 |
-#&gt; |    F| Forward Diff. |     28.21 |     1.908 |    0.1917 |    0.3504 |
-#&gt; |.....................|    0.2712 |    -25.82 |    -8.599 |   -0.3385 |
-#&gt; |.....................|     4.050 |    -7.278 |    -5.334 |    -6.398 |
-#&gt; |<span style='font-weight: bold;'>   36</span>|     482.60011 |    0.9939 |    -1.032 |   -0.9136 |   -0.9003 |
-#&gt; |.....................|   -0.8492 |   -0.4998 |   -0.7669 |   -0.8684 |
-#&gt; |.....................|   -0.9296 |   -0.7490 |   -0.7849 |   -0.7659 |
-#&gt; |    U|     482.60011 |     92.55 |    -5.335 |   -0.9462 |   -0.1124 |
-#&gt; |.....................|     2.287 |     1.373 |   0.03193 |    0.7642 |
-#&gt; |.....................|    0.8256 |     1.357 |     1.160 |     1.184 |
-#&gt; |    X|<span style='font-weight: bold;'>     482.60011</span> |     92.55 |  0.004820 |    0.2796 |    0.8937 |
-#&gt; |.....................|     9.849 |     1.373 |   0.03193 |    0.7642 |
-#&gt; |.....................|    0.8256 |     1.357 |     1.160 |     1.184 |
-#&gt; |    F| Forward Diff. |    -36.31 |     1.855 |  -0.03781 |    0.2769 |
-#&gt; |.....................|   0.03076 |    -24.99 |    -8.890 |   -0.4685 |
-#&gt; |.....................|     7.176 |    -6.892 |    -5.117 |    -6.081 |
-#&gt; |<span style='font-weight: bold;'>   37</span>|     482.21198 |    0.9982 |    -1.035 |   -0.9138 |   -0.9009 |
-#&gt; |.....................|   -0.8497 |   -0.4920 |   -0.7653 |   -0.8661 |
-#&gt; |.....................|   -0.9399 |   -0.7441 |   -0.7821 |   -0.7617 |
-#&gt; |    U|     482.21198 |     92.95 |    -5.338 |   -0.9465 |   -0.1130 |
-#&gt; |.....................|     2.287 |     1.378 |   0.03195 |    0.7659 |
-#&gt; |.....................|    0.8166 |     1.363 |     1.163 |     1.189 |
-#&gt; |    X|<span style='font-weight: bold;'>     482.21198</span> |     92.95 |  0.004805 |    0.2796 |    0.8931 |
-#&gt; |.....................|     9.844 |     1.378 |   0.03195 |    0.7659 |
-#&gt; |.....................|    0.8166 |     1.363 |     1.163 |     1.189 |
-#&gt; |    F| Forward Diff. |     20.01 |     1.850 |    0.1852 |    0.3312 |
-#&gt; |.....................|    0.2616 |    -23.95 |    -7.997 |   -0.3393 |
-#&gt; |.....................|     4.985 |    -6.711 |    -4.923 |    -5.940 |
-#&gt; |<span style='font-weight: bold;'>   38</span>|     481.96846 |    0.9924 |    -1.037 |   -0.9141 |   -0.9014 |
-#&gt; |.....................|   -0.8503 |   -0.4828 |   -0.7630 |   -0.8646 |
-#&gt; |.....................|   -0.9490 |   -0.7399 |   -0.7795 |   -0.7579 |
-#&gt; |    U|     481.96846 |     92.41 |    -5.341 |   -0.9468 |   -0.1136 |
-#&gt; |.....................|     2.286 |     1.383 |   0.03199 |    0.7671 |
-#&gt; |.....................|    0.8087 |     1.368 |     1.166 |     1.193 |
-#&gt; |    X|<span style='font-weight: bold;'>     481.96846</span> |     92.41 |  0.004793 |    0.2795 |    0.8927 |
-#&gt; |.....................|     9.838 |     1.383 |   0.03199 |    0.7671 |
-#&gt; |.....................|    0.8087 |     1.368 |     1.166 |     1.193 |
-#&gt; |    F| Forward Diff. |    -59.26 |     1.761 |  -0.08116 |    0.2547 |
-#&gt; |.....................|  -0.02692 |    -22.78 |    -8.366 |   -0.2344 |
-#&gt; |.....................|     4.087 |    -6.524 |    -4.792 |    -5.748 |
-#&gt; |<span style='font-weight: bold;'>   39</span>|     481.52549 |    0.9980 |    -1.042 |   -0.9148 |   -0.9024 |
-#&gt; |.....................|   -0.8514 |   -0.4755 |   -0.7621 |   -0.8625 |
-#&gt; |.....................|   -0.9558 |   -0.7333 |   -0.7761 |   -0.7520 |
-#&gt; |    U|     481.52549 |     92.93 |    -5.345 |   -0.9474 |   -0.1146 |
-#&gt; |.....................|     2.285 |     1.388 |   0.03200 |    0.7686 |
-#&gt; |.....................|    0.8027 |     1.376 |     1.170 |     1.199 |
-#&gt; |    X|<span style='font-weight: bold;'>     481.52549</span> |     92.93 |  0.004770 |    0.2794 |    0.8917 |
-#&gt; |.....................|     9.827 |     1.388 |   0.03200 |    0.7686 |
-#&gt; |.....................|    0.8027 |     1.376 |     1.170 |     1.199 |
-#&gt; |    F| Forward Diff. |     14.56 |     1.771 |    0.1903 |    0.3270 |
-#&gt; |.....................|    0.2641 |    -22.44 |    -7.508 |   -0.4496 |
-#&gt; |.....................|     2.566 |    -6.373 |    -4.622 |    -5.584 |
-#&gt; |<span style='font-weight: bold;'>   40</span>|     481.26396 |    0.9932 |    -1.045 |   -0.9155 |   -0.9032 |
-#&gt; |.....................|   -0.8523 |   -0.4642 |   -0.7593 |   -0.8605 |
-#&gt; |.....................|   -0.9543 |   -0.7272 |   -0.7727 |   -0.7469 |
-#&gt; |    U|     481.26396 |     92.49 |    -5.349 |   -0.9480 |   -0.1154 |
-#&gt; |.....................|     2.284 |     1.394 |   0.03204 |    0.7702 |
-#&gt; |.....................|    0.8040 |     1.384 |     1.173 |     1.205 |
-#&gt; |    X|<span style='font-weight: bold;'>     481.26396</span> |     92.49 |  0.004753 |    0.2793 |    0.8910 |
-#&gt; |.....................|     9.818 |     1.394 |   0.03204 |    0.7702 |
-#&gt; |.....................|    0.8040 |     1.384 |     1.173 |     1.205 |
-#&gt; |    F| Forward Diff. |    -49.84 |     1.721 |  -0.06329 |    0.2500 |
-#&gt; |.....................|  0.003387 |    -21.58 |    -7.808 |   -0.4470 |
-#&gt; |.....................|     3.805 |    -6.020 |    -4.412 |    -5.292 |
-#&gt; |<span style='font-weight: bold;'>   41</span>|     480.91101 |    0.9981 |    -1.051 |   -0.9163 |   -0.9044 |
-#&gt; |.....................|   -0.8537 |   -0.4552 |   -0.7584 |   -0.8559 |
-#&gt; |.....................|   -0.9510 |   -0.7207 |   -0.7698 |   -0.7416 |
-#&gt; |    U|     480.91101 |     92.94 |    -5.355 |   -0.9488 |   -0.1166 |
-#&gt; |.....................|     2.283 |     1.399 |   0.03206 |    0.7737 |
-#&gt; |.....................|    0.8069 |     1.392 |     1.176 |     1.210 |
-#&gt; |    X|<span style='font-weight: bold;'>     480.91101</span> |     92.94 |  0.004727 |    0.2791 |    0.8900 |
-#&gt; |.....................|     9.804 |     1.399 |   0.03206 |    0.7737 |
-#&gt; |.....................|    0.8069 |     1.392 |     1.176 |     1.210 |
-#&gt; |    F| Forward Diff. |     16.05 |     1.751 |    0.1631 |    0.3020 |
-#&gt; |.....................|    0.2540 |    -20.90 |    -6.928 |   -0.3893 |
-#&gt; |.....................|     4.288 |    -5.817 |    -4.263 |    -5.144 |
-#&gt; |<span style='font-weight: bold;'>   42</span>|     480.64341 |    0.9941 |    -1.056 |   -0.9169 |   -0.9053 |
-#&gt; |.....................|   -0.8549 |   -0.4456 |   -0.7571 |   -0.8527 |
-#&gt; |.....................|   -0.9585 |   -0.7158 |   -0.7673 |   -0.7373 |
-#&gt; |    U|     480.64341 |     92.57 |    -5.360 |   -0.9493 |   -0.1175 |
-#&gt; |.....................|     2.282 |     1.405 |   0.03208 |    0.7761 |
-#&gt; |.....................|    0.8004 |     1.398 |     1.179 |     1.215 |
-#&gt; |    X|<span style='font-weight: bold;'>     480.64341</span> |     92.57 |  0.004703 |    0.2790 |    0.8892 |
-#&gt; |.....................|     9.793 |     1.405 |   0.03208 |    0.7761 |
-#&gt; |.....................|    0.8004 |     1.398 |     1.179 |     1.215 |
-#&gt; |    F| Forward Diff. |    -40.16 |     1.680 |  -0.01378 |    0.2424 |
-#&gt; |.....................|   0.03021 |    -20.27 |    -7.228 |   -0.4675 |
-#&gt; |.....................|     4.140 |    -5.523 |    -4.100 |    -4.903 |
-#&gt; |<span style='font-weight: bold;'>   43</span>|     480.34062 |    0.9982 |    -1.062 |   -0.9177 |   -0.9064 |
-#&gt; |.....................|   -0.8561 |   -0.4387 |   -0.7572 |   -0.8486 |
-#&gt; |.....................|   -0.9687 |   -0.7122 |   -0.7655 |   -0.7338 |
-#&gt; |    U|     480.34062 |     92.95 |    -5.365 |   -0.9501 |   -0.1185 |
-#&gt; |.....................|     2.280 |     1.409 |   0.03207 |    0.7792 |
-#&gt; |.....................|    0.7914 |     1.402 |     1.181 |     1.219 |
-#&gt; |    X|<span style='font-weight: bold;'>     480.34062</span> |     92.95 |  0.004675 |    0.2789 |    0.8883 |
-#&gt; |.....................|     9.781 |     1.409 |   0.03207 |    0.7792 |
-#&gt; |.....................|    0.7914 |     1.402 |     1.181 |     1.219 |
-#&gt; |<span style='font-weight: bold;'>   44</span>|     480.11354 |    0.9982 |    -1.069 |   -0.9186 |   -0.9075 |
-#&gt; |.....................|   -0.8576 |   -0.4327 |   -0.7582 |   -0.8437 |
-#&gt; |.....................|   -0.9807 |   -0.7086 |   -0.7639 |   -0.7301 |
-#&gt; |    U|     480.11354 |     92.95 |    -5.372 |   -0.9510 |   -0.1197 |
-#&gt; |.....................|     2.279 |     1.412 |   0.03206 |    0.7829 |
-#&gt; |.....................|    0.7810 |     1.406 |     1.183 |     1.223 |
-#&gt; |    X|<span style='font-weight: bold;'>     480.11354</span> |     92.95 |  0.004643 |    0.2787 |    0.8872 |
-#&gt; |.....................|     9.767 |     1.412 |   0.03206 |    0.7829 |
-#&gt; |.....................|    0.7810 |     1.406 |     1.183 |     1.223 |
-#&gt; |<span style='font-weight: bold;'>   45</span>|     479.24256 |    0.9982 |    -1.100 |   -0.9228 |   -0.9129 |
-#&gt; |.....................|   -0.8642 |   -0.4061 |   -0.7626 |   -0.8221 |
-#&gt; |.....................|    -1.034 |   -0.6924 |   -0.7565 |   -0.7138 |
-#&gt; |    U|     479.24256 |     92.95 |    -5.404 |   -0.9550 |   -0.1250 |
-#&gt; |.....................|     2.272 |     1.428 |   0.03199 |    0.7993 |
-#&gt; |.....................|    0.7344 |     1.426 |     1.191 |     1.240 |
-#&gt; |    X|<span style='font-weight: bold;'>     479.24256</span> |     92.95 |  0.004500 |    0.2779 |    0.8825 |
-#&gt; |.....................|     9.702 |     1.428 |   0.03199 |    0.7993 |
-#&gt; |.....................|    0.7344 |     1.426 |     1.191 |     1.240 |
-#&gt; |<span style='font-weight: bold;'>   46</span>|     477.60836 |     1.003 |    -1.228 |   -0.9400 |   -0.9346 |
-#&gt; |.....................|   -0.8912 |   -0.2901 |   -0.7784 |   -0.7332 |
-#&gt; |.....................|    -1.206 |   -0.6258 |   -0.7257 |   -0.6466 |
-#&gt; |    U|     477.60836 |     93.40 |    -5.531 |   -0.9712 |   -0.1467 |
-#&gt; |.....................|     2.245 |     1.495 |   0.03176 |    0.8667 |
-#&gt; |.....................|    0.5843 |     1.507 |     1.224 |     1.312 |
-#&gt; |    X|<span style='font-weight: bold;'>     477.60836</span> |     93.40 |  0.003961 |    0.2746 |    0.8635 |
-#&gt; |.....................|     9.444 |     1.495 |   0.03176 |    0.8667 |
-#&gt; |.....................|    0.5843 |     1.507 |     1.224 |     1.312 |
-#&gt; |    F| Forward Diff. |     50.81 |    0.8332 |    0.6263 |   0.04339 |
-#&gt; |.....................|    0.5543 |    -9.740 |    -2.969 |    0.1978 |
-#&gt; |.....................|    -10.28 |    -2.761 |    -1.505 |    -1.849 |
-#&gt; |<span style='font-weight: bold;'>   47</span>|     476.77966 |     1.006 |    -1.398 |   -0.9862 |   -0.9532 |
-#&gt; |.....................|   -0.9413 |  -0.07616 |   -0.7687 |   -0.6374 |
-#&gt; |.....................|   -0.9573 |   -0.5395 |   -0.7103 |   -0.5930 |
-#&gt; |    U|     476.77966 |     93.71 |    -5.701 |    -1.015 |   -0.1654 |
-#&gt; |.....................|     2.195 |     1.619 |   0.03190 |    0.9393 |
-#&gt; |.....................|    0.8014 |     1.612 |     1.240 |     1.369 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.77966</span> |     93.71 |  0.003342 |    0.2660 |    0.8476 |
-#&gt; |.....................|     8.982 |     1.619 |   0.03190 |    0.9393 |
-#&gt; |.....................|    0.8014 |     1.612 |     1.240 |     1.369 |
-#&gt; |    F| Forward Diff. |     100.8 |    0.5681 |    -2.148 |   -0.2910 |
-#&gt; |.....................|   -0.6169 |    0.8458 |    0.8586 |    0.3650 |
-#&gt; |.....................|     3.820 |     1.443 |   -0.7364 |    0.2440 |
-#&gt; |<span style='font-weight: bold;'>   48</span>|     478.65806 |    0.9952 |    -1.512 |   -0.6913 |   -0.9031 |
-#&gt; |.....................|   -0.8317 |  -0.01918 |   -0.7109 |   -0.6555 |
-#&gt; |.....................|   -0.9083 |   -0.7021 |   -0.6121 |   -0.6260 |
-#&gt; |    U|     478.65806 |     92.67 |    -5.815 |   -0.7363 |   -0.1152 |
-#&gt; |.....................|     2.305 |     1.652 |   0.03277 |    0.9255 |
-#&gt; |.....................|    0.8442 |     1.414 |     1.345 |     1.334 |
-#&gt; |    X|<span style='font-weight: bold;'>     478.65806</span> |     92.67 |  0.002982 |    0.3238 |    0.8912 |
-#&gt; |.....................|     10.02 |     1.652 |   0.03277 |    0.9255 |
-#&gt; |.....................|    0.8442 |     1.414 |     1.345 |     1.334 |
-#&gt; |<span style='font-weight: bold;'>   49</span>|     476.83500 |    0.9931 |    -1.426 |   -0.9118 |   -0.9406 |
-#&gt; |.....................|   -0.9137 |  -0.06192 |   -0.7543 |   -0.6420 |
-#&gt; |.....................|   -0.9454 |   -0.5805 |   -0.6855 |   -0.6013 |
-#&gt; |    U|       476.835 |     92.48 |    -5.730 |   -0.9445 |   -0.1527 |
-#&gt; |.....................|     2.223 |     1.627 |   0.03212 |    0.9358 |
-#&gt; |.....................|    0.8118 |     1.562 |     1.267 |     1.361 |
-#&gt; |    X|<span style='font-weight: bold;'>       476.835</span> |     92.48 |  0.003247 |    0.2800 |    0.8584 |
-#&gt; |.....................|     9.234 |     1.627 |   0.03212 |    0.9358 |
-#&gt; |.....................|    0.8118 |     1.562 |     1.267 |     1.361 |
-#&gt; |<span style='font-weight: bold;'>   50</span>|     476.86775 |    0.9928 |    -1.411 |   -0.9513 |   -0.9473 |
-#&gt; |.....................|   -0.9284 |  -0.06958 |   -0.7620 |   -0.6396 |
-#&gt; |.....................|   -0.9520 |   -0.5587 |   -0.6987 |   -0.5969 |
-#&gt; |    U|     476.86775 |     92.44 |    -5.715 |   -0.9819 |   -0.1595 |
-#&gt; |.....................|     2.208 |     1.623 |   0.03200 |    0.9376 |
-#&gt; |.....................|    0.8060 |     1.588 |     1.252 |     1.365 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.86775</span> |     92.44 |  0.003297 |    0.2725 |    0.8526 |
-#&gt; |.....................|     9.099 |     1.623 |   0.03200 |    0.9376 |
-#&gt; |.....................|    0.8060 |     1.588 |     1.252 |     1.365 |
-#&gt; |<span style='font-weight: bold;'>   51</span>|     476.94436 |    0.9926 |    -1.403 |   -0.9724 |   -0.9509 |
-#&gt; |.....................|   -0.9362 |  -0.07366 |   -0.7662 |   -0.6383 |
-#&gt; |.....................|   -0.9556 |   -0.5471 |   -0.7057 |   -0.5945 |
-#&gt; |    U|     476.94436 |     92.42 |    -5.706 |    -1.002 |   -0.1630 |
-#&gt; |.....................|     2.200 |     1.621 |   0.03194 |    0.9386 |
-#&gt; |.....................|    0.8029 |     1.602 |     1.245 |     1.368 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.94436</span> |     92.42 |  0.003324 |    0.2686 |    0.8496 |
-#&gt; |.....................|     9.028 |     1.621 |   0.03194 |    0.9386 |
-#&gt; |.....................|    0.8029 |     1.602 |     1.245 |     1.368 |
-#&gt; |<span style='font-weight: bold;'>   52</span>|     476.64580 |    0.9959 |    -1.398 |   -0.9860 |   -0.9532 |
-#&gt; |.....................|   -0.9413 |  -0.07625 |   -0.7688 |   -0.6374 |
-#&gt; |.....................|   -0.9577 |   -0.5396 |   -0.7102 |   -0.5930 |
-#&gt; |    U|      476.6458 |     92.74 |    -5.701 |    -1.015 |   -0.1653 |
-#&gt; |.....................|     2.195 |     1.619 |   0.03190 |    0.9392 |
-#&gt; |.....................|    0.8011 |     1.611 |     1.240 |     1.369 |
-#&gt; |    X|<span style='font-weight: bold;'>      476.6458</span> |     92.74 |  0.003342 |    0.2661 |    0.8476 |
-#&gt; |.....................|     8.983 |     1.619 |   0.03190 |    0.9392 |
-#&gt; |.....................|    0.8011 |     1.611 |     1.240 |     1.369 |
-#&gt; |    F| Forward Diff. |    -76.03 |    0.4748 |    -3.401 |   -0.5335 |
-#&gt; |.....................|    -1.858 |     1.570 |   -0.1336 |    0.2990 |
-#&gt; |.....................|     3.107 |     1.921 |   -0.6340 |    0.6252 |
-#&gt; |<span style='font-weight: bold;'>   53</span>|     476.45477 |     1.000 |    -1.400 |   -0.9787 |   -0.9521 |
-#&gt; |.....................|   -0.9380 |  -0.07508 |   -0.7683 |   -0.6381 |
-#&gt; |.....................|   -0.9567 |   -0.5427 |   -0.7079 |   -0.5935 |
-#&gt; |    U|     476.45477 |     93.14 |    -5.704 |    -1.008 |   -0.1642 |
-#&gt; |.....................|     2.199 |     1.620 |   0.03191 |    0.9387 |
-#&gt; |.....................|    0.8019 |     1.608 |     1.243 |     1.369 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.45477</span> |     93.14 |  0.003334 |    0.2674 |    0.8486 |
-#&gt; |.....................|     9.012 |     1.620 |   0.03191 |    0.9387 |
-#&gt; |.....................|    0.8019 |     1.608 |     1.243 |     1.369 |
-#&gt; |    F| Forward Diff. |    0.2803 |    0.4975 |    -2.426 |   -0.4122 |
-#&gt; |.....................|    -1.237 |     1.245 |    0.3711 |    0.1250 |
-#&gt; |.....................|     4.601 |     1.480 |   -0.5654 |    0.4236 |
-#&gt; |<span style='font-weight: bold;'>   54</span>|     476.38303 |    0.9998 |    -1.401 |   -0.9743 |   -0.9513 |
-#&gt; |.....................|   -0.9358 |  -0.07732 |   -0.7690 |   -0.6383 |
-#&gt; |.....................|   -0.9650 |   -0.5454 |   -0.7069 |   -0.5943 |
-#&gt; |    U|     476.38303 |     93.10 |    -5.704 |    -1.004 |   -0.1635 |
-#&gt; |.....................|     2.201 |     1.618 |   0.03190 |    0.9385 |
-#&gt; |.....................|    0.7947 |     1.604 |     1.244 |     1.368 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.38303</span> |     93.10 |  0.003331 |    0.2682 |    0.8492 |
-#&gt; |.....................|     9.032 |     1.618 |   0.03190 |    0.9385 |
-#&gt; |.....................|    0.7947 |     1.604 |     1.244 |     1.368 |
-#&gt; |<span style='font-weight: bold;'>   55</span>|     476.22864 |    0.9983 |    -1.404 |   -0.9612 |   -0.9491 |
-#&gt; |.....................|   -0.9291 |  -0.08404 |   -0.7710 |   -0.6390 |
-#&gt; |.....................|   -0.9898 |   -0.5533 |   -0.7039 |   -0.5966 |
-#&gt; |    U|     476.22864 |     92.96 |    -5.707 |   -0.9912 |   -0.1612 |
-#&gt; |.....................|     2.207 |     1.614 |   0.03187 |    0.9380 |
-#&gt; |.....................|    0.7730 |     1.595 |     1.247 |     1.366 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.22864</span> |     92.96 |  0.003322 |    0.2707 |    0.8511 |
-#&gt; |.....................|     9.093 |     1.614 |   0.03187 |    0.9380 |
-#&gt; |.....................|    0.7730 |     1.595 |     1.247 |     1.366 |
-#&gt; |<span style='font-weight: bold;'>   56</span>|     476.57199 |    0.9958 |    -1.445 |   -0.8532 |   -0.9271 |
-#&gt; |.....................|   -0.8725 |  -0.06353 |   -0.7679 |   -0.6421 |
-#&gt; |.....................|   -0.9751 |   -0.5970 |   -0.6712 |   -0.6082 |
-#&gt; |    U|     476.57199 |     92.73 |    -5.749 |   -0.8892 |   -0.1393 |
-#&gt; |.....................|     2.264 |     1.626 |   0.03191 |    0.9357 |
-#&gt; |.....................|    0.7859 |     1.542 |     1.282 |     1.353 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.57199</span> |     92.73 |  0.003186 |    0.2913 |    0.8700 |
-#&gt; |.....................|     9.623 |     1.626 |   0.03191 |    0.9357 |
-#&gt; |.....................|    0.7859 |     1.542 |     1.282 |     1.353 |
-#&gt; |    F| Forward Diff. |    -32.75 |    0.5399 |    -1.515 |   -0.3941 |
-#&gt; |.....................|    -1.151 |     1.245 |   0.03890 |    0.2327 |
-#&gt; |.....................|     2.518 |    0.9004 |   -0.2852 |    0.3306 |
-#&gt; |<span style='font-weight: bold;'>   57</span>|     476.21990 |    0.9982 |    -1.515 |   -0.9538 |   -0.8974 |
-#&gt; |.....................|   -0.8289 |   -0.1020 |   -0.7526 |   -0.6734 |
-#&gt; |.....................|   -0.9899 |   -0.5334 |   -0.6863 |   -0.5986 |
-#&gt; |    U|      476.2199 |     92.95 |    -5.819 |   -0.9842 |   -0.1096 |
-#&gt; |.....................|     2.308 |     1.604 |   0.03214 |    0.9120 |
-#&gt; |.....................|    0.7729 |     1.619 |     1.266 |     1.364 |
-#&gt; |    X|<span style='font-weight: bold;'>      476.2199</span> |     92.95 |  0.002972 |    0.2721 |    0.8962 |
-#&gt; |.....................|     10.05 |     1.604 |   0.03214 |    0.9120 |
-#&gt; |.....................|    0.7729 |     1.619 |     1.266 |     1.364 |
-#&gt; |    F| Forward Diff. |    -17.29 |    0.1752 |    -1.213 |    0.7541 |
-#&gt; |.....................|     1.907 |    0.8055 |   -0.1948 |  -0.02118 |
-#&gt; |.....................|     1.522 |     1.784 |    0.5826 |    0.3001 |
-#&gt; |<span style='font-weight: bold;'>   58</span>|     476.15328 |    0.9997 |    -1.587 |   -0.9380 |   -0.8926 |
-#&gt; |.....................|   -0.8393 |   -0.1057 |   -0.7294 |   -0.6920 |
-#&gt; |.....................|   -0.9908 |   -0.5546 |   -0.6943 |   -0.5998 |
-#&gt; |    U|     476.15328 |     93.09 |    -5.890 |   -0.9693 |   -0.1048 |
-#&gt; |.....................|     2.297 |     1.602 |   0.03249 |    0.8979 |
-#&gt; |.....................|    0.7721 |     1.593 |     1.257 |     1.362 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.15328</span> |     93.09 |  0.002766 |    0.2750 |    0.9005 |
-#&gt; |.....................|     9.947 |     1.602 |   0.03249 |    0.8979 |
-#&gt; |.....................|    0.7721 |     1.593 |     1.257 |     1.362 |
-#&gt; |    F| Forward Diff. |     9.478 |  -0.04668 |  -0.07764 |    0.8847 |
-#&gt; |.....................|     1.686 |     1.059 |    0.2200 |  -0.09397 |
-#&gt; |.....................|     3.078 |    0.7416 |    0.1570 |    0.2315 |
-#&gt; |<span style='font-weight: bold;'>   59</span>|     476.01802 |     1.000 |    -1.651 |   -0.9570 |   -0.8992 |
-#&gt; |.....................|   -0.8607 |   -0.1274 |   -0.7088 |   -0.7141 |
-#&gt; |.....................|    -1.015 |   -0.5543 |   -0.6984 |   -0.6027 |
-#&gt; |    U|     476.01802 |     93.12 |    -5.954 |   -0.9872 |   -0.1113 |
-#&gt; |.....................|     2.276 |     1.589 |   0.03280 |    0.8811 |
-#&gt; |.....................|    0.7512 |     1.594 |     1.253 |     1.359 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.01802</span> |     93.12 |  0.002594 |    0.2715 |    0.8947 |
-#&gt; |.....................|     9.736 |     1.589 |   0.03280 |    0.8811 |
-#&gt; |.....................|    0.7512 |     1.594 |     1.253 |     1.359 |
-#&gt; |<span style='font-weight: bold;'>   60</span>|     476.22711 |     1.004 |    -1.844 |    -1.014 |   -0.9185 |
-#&gt; |.....................|   -0.9244 |   -0.1921 |   -0.6470 |   -0.7805 |
-#&gt; |.....................|    -1.085 |   -0.5529 |   -0.7106 |   -0.6114 |
-#&gt; |    U|     476.22711 |     93.52 |    -6.147 |    -1.041 |   -0.1307 |
-#&gt; |.....................|     2.212 |     1.552 |   0.03373 |    0.8308 |
-#&gt; |.....................|    0.6895 |     1.595 |     1.240 |     1.350 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.22711</span> |     93.52 |  0.002140 |    0.2610 |    0.8775 |
-#&gt; |.....................|     9.136 |     1.552 |   0.03373 |    0.8308 |
-#&gt; |.....................|    0.6895 |     1.595 |     1.240 |     1.350 |
-#&gt; |    F| Forward Diff. |     11.37 |   -0.1053 |    -1.010 |    0.7448 |
-#&gt; |.....................|     1.048 |    0.2820 |    0.2022 |   -0.3140 |
-#&gt; |.....................|    0.8239 |    0.7199 |  -0.08354 |   0.05077 |
-#&gt; |<span style='font-weight: bold;'>   61</span>|     477.73164 |    0.9986 |    -1.783 |   -0.8482 |    -1.092 |
-#&gt; |.....................|   -0.9355 |   -0.2068 |   -0.7199 |   -0.6608 |
-#&gt; |.....................|    -1.022 |   -0.4554 |   -0.5612 |   -0.5707 |
-#&gt; |    U|     477.73164 |     92.99 |    -6.086 |   -0.8845 |   -0.3044 |
-#&gt; |.....................|     2.201 |     1.543 |   0.03264 |    0.9215 |
-#&gt; |.....................|    0.7445 |     1.714 |     1.399 |     1.393 |
-#&gt; |    X|<span style='font-weight: bold;'>     477.73164</span> |     92.99 |  0.002274 |    0.2922 |    0.7376 |
-#&gt; |.....................|     9.035 |     1.543 |   0.03264 |    0.9215 |
-#&gt; |.....................|    0.7445 |     1.714 |     1.399 |     1.393 |
-#&gt; |<span style='font-weight: bold;'>   62</span>|     476.07192 |    0.9962 |    -1.664 |   -0.9459 |   -0.9184 |
-#&gt; |.....................|   -0.8684 |   -0.1353 |   -0.7100 |   -0.7087 |
-#&gt; |.....................|    -1.016 |   -0.5448 |   -0.6848 |   -0.5995 |
-#&gt; |    U|     476.07192 |     92.76 |    -5.967 |   -0.9768 |   -0.1306 |
-#&gt; |.....................|     2.268 |     1.585 |   0.03278 |    0.8852 |
-#&gt; |.....................|    0.7503 |     1.605 |     1.267 |     1.362 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.07192</span> |     92.76 |  0.002561 |    0.2735 |    0.8776 |
-#&gt; |.....................|     9.662 |     1.585 |   0.03278 |    0.8852 |
-#&gt; |.....................|    0.7503 |     1.605 |     1.267 |     1.362 |
-#&gt; |<span style='font-weight: bold;'>   63</span>|     476.10587 |    0.9957 |    -1.654 |   -0.9539 |   -0.9043 |
-#&gt; |.....................|   -0.8630 |   -0.1295 |   -0.7092 |   -0.7126 |
-#&gt; |.....................|    -1.015 |   -0.5521 |   -0.6949 |   -0.6019 |
-#&gt; |    U|     476.10587 |     92.72 |    -5.958 |   -0.9843 |   -0.1164 |
-#&gt; |.....................|     2.274 |     1.588 |   0.03280 |    0.8822 |
-#&gt; |.....................|    0.7508 |     1.596 |     1.257 |     1.360 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.10587</span> |     92.72 |  0.002586 |    0.2720 |    0.8901 |
-#&gt; |.....................|     9.714 |     1.588 |   0.03280 |    0.8822 |
-#&gt; |.....................|    0.7508 |     1.596 |     1.257 |     1.360 |
-#&gt; |<span style='font-weight: bold;'>   64</span>|     476.02413 |    0.9981 |    -1.651 |   -0.9568 |   -0.8993 |
-#&gt; |.....................|   -0.8609 |   -0.1274 |   -0.7088 |   -0.7140 |
-#&gt; |.....................|    -1.015 |   -0.5544 |   -0.6984 |   -0.6027 |
-#&gt; |    U|     476.02413 |     92.94 |    -5.954 |   -0.9870 |   -0.1114 |
-#&gt; |.....................|     2.276 |     1.589 |   0.03280 |    0.8812 |
-#&gt; |.....................|    0.7511 |     1.593 |     1.253 |     1.359 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.02413</span> |     92.94 |  0.002594 |    0.2715 |    0.8946 |
-#&gt; |.....................|     9.735 |     1.589 |   0.03280 |    0.8812 |
-#&gt; |.....................|    0.7511 |     1.593 |     1.253 |     1.359 |
-#&gt; |<span style='font-weight: bold;'>   65</span>|     476.01367 |    0.9993 |    -1.651 |   -0.9569 |   -0.8992 |
-#&gt; |.....................|   -0.8608 |   -0.1274 |   -0.7088 |   -0.7141 |
-#&gt; |.....................|    -1.015 |   -0.5543 |   -0.6984 |   -0.6027 |
-#&gt; |    U|     476.01367 |     93.05 |    -5.954 |   -0.9871 |   -0.1114 |
-#&gt; |.....................|     2.276 |     1.589 |   0.03280 |    0.8812 |
-#&gt; |.....................|    0.7512 |     1.594 |     1.253 |     1.359 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.01367</span> |     93.05 |  0.002594 |    0.2715 |    0.8946 |
-#&gt; |.....................|     9.736 |     1.589 |   0.03280 |    0.8812 |
-#&gt; |.....................|    0.7512 |     1.594 |     1.253 |     1.359 |
-#&gt; |    F| Forward Diff. |   -0.2880 |   -0.1104 |    -1.088 |    0.7255 |
-#&gt; |.....................|    0.9655 |  -0.09765 |   0.02713 |   -0.4308 |
-#&gt; |.....................|     1.898 |    0.6709 |  -0.08067 |   0.06084 |
-#&gt; |<span style='font-weight: bold;'>   66</span>|     476.01068 |    0.9993 |    -1.651 |   -0.9566 |   -0.8994 |
-#&gt; |.....................|   -0.8610 |   -0.1274 |   -0.7088 |   -0.7139 |
-#&gt; |.....................|    -1.015 |   -0.5545 |   -0.6983 |   -0.6027 |
-#&gt; |    U|     476.01068 |     93.06 |    -5.954 |   -0.9868 |   -0.1116 |
-#&gt; |.....................|     2.276 |     1.589 |   0.03280 |    0.8813 |
-#&gt; |.....................|    0.7507 |     1.593 |     1.253 |     1.359 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.01068</span> |     93.06 |  0.002595 |    0.2715 |    0.8944 |
-#&gt; |.....................|     9.733 |     1.589 |   0.03280 |    0.8813 |
-#&gt; |.....................|    0.7507 |     1.593 |     1.253 |     1.359 |
-#&gt; |<span style='font-weight: bold;'>   67</span>|     476.00249 |    0.9996 |    -1.651 |   -0.9556 |   -0.9000 |
-#&gt; |.....................|   -0.8619 |   -0.1273 |   -0.7089 |   -0.7136 |
-#&gt; |.....................|    -1.017 |   -0.5551 |   -0.6983 |   -0.6027 |
-#&gt; |    U|     476.00249 |     93.08 |    -5.954 |   -0.9860 |   -0.1122 |
-#&gt; |.....................|     2.275 |     1.589 |   0.03280 |    0.8815 |
-#&gt; |.....................|    0.7493 |     1.593 |     1.253 |     1.359 |
-#&gt; |    X|<span style='font-weight: bold;'>     476.00249</span> |     93.08 |  0.002595 |    0.2717 |    0.8939 |
-#&gt; |.....................|     9.725 |     1.589 |   0.03280 |    0.8815 |
-#&gt; |.....................|    0.7493 |     1.593 |     1.253 |     1.359 |
-#&gt; |<span style='font-weight: bold;'>   68</span>|     475.98648 |    0.9997 |    -1.654 |   -0.9518 |   -0.9062 |
-#&gt; |.....................|   -0.8643 |   -0.1288 |   -0.7101 |   -0.7095 |
-#&gt; |.....................|    -1.019 |   -0.5521 |   -0.6956 |   -0.6031 |
-#&gt; |    U|     475.98648 |     93.09 |    -5.957 |   -0.9823 |   -0.1183 |
-#&gt; |.....................|     2.272 |     1.589 |   0.03278 |    0.8846 |
-#&gt; |.....................|    0.7477 |     1.596 |     1.256 |     1.359 |
-#&gt; |    X|<span style='font-weight: bold;'>     475.98648</span> |     93.09 |  0.002587 |    0.2724 |    0.8884 |
-#&gt; |.....................|     9.702 |     1.589 |   0.03278 |    0.8846 |
-#&gt; |.....................|    0.7477 |     1.596 |     1.256 |     1.359 |
-#&gt; |<span style='font-weight: bold;'>   69</span>|     475.97179 |    0.9994 |    -1.666 |   -0.9399 |   -0.9282 |
-#&gt; |.....................|   -0.8710 |   -0.1347 |   -0.7147 |   -0.6948 |
-#&gt; |.....................|    -1.020 |   -0.5387 |   -0.6854 |   -0.6045 |
-#&gt; |    U|     475.97179 |     93.06 |    -5.969 |   -0.9711 |   -0.1404 |
-#&gt; |.....................|     2.266 |     1.585 |   0.03271 |    0.8957 |
-#&gt; |.....................|    0.7463 |     1.612 |     1.267 |     1.357 |
-#&gt; |    X|<span style='font-weight: bold;'>     475.97179</span> |     93.06 |  0.002557 |    0.2747 |    0.8690 |
-#&gt; |.....................|     9.637 |     1.585 |   0.03271 |    0.8957 |
-#&gt; |.....................|    0.7463 |     1.612 |     1.267 |     1.357 |
-#&gt; |    F| Forward Diff. |     1.543 |   -0.1187 |  -0.09427 |   0.04746 |
-#&gt; |.....................|    0.7019 |    0.1743 |  0.004057 |   -0.1664 |
-#&gt; |.....................|     1.824 |     1.487 |    0.8060 |   -0.1087 |
-#&gt; |<span style='font-weight: bold;'>   70</span>|     475.93640 |    0.9984 |    -1.664 |   -0.9398 |   -0.9470 |
-#&gt; |.....................|   -0.8662 |   -0.1315 |   -0.7271 |   -0.6595 |
-#&gt; |.....................|    -1.030 |   -0.5499 |   -0.6986 |   -0.5913 |
-#&gt; |    U|      475.9364 |     92.96 |    -5.967 |   -0.9710 |   -0.1592 |
-#&gt; |.....................|     2.270 |     1.587 |   0.03253 |    0.9225 |
-#&gt; |.....................|    0.7382 |     1.599 |     1.253 |     1.371 |
-#&gt; |    X|<span style='font-weight: bold;'>      475.9364</span> |     92.96 |  0.002561 |    0.2747 |    0.8529 |
-#&gt; |.....................|     9.682 |     1.587 |   0.03253 |    0.9225 |
-#&gt; |.....................|    0.7382 |     1.599 |     1.253 |     1.371 |
-#&gt; |    F| Forward Diff. |    -18.02 |  -0.07507 |   -0.1675 |   -0.4306 |
-#&gt; |.....................|    0.8222 |   -0.4249 |   -0.3576 |  -0.06909 |
-#&gt; |.....................|   -0.1553 |    0.7789 |  -0.06902 |    0.4423 |
-#&gt; |<span style='font-weight: bold;'>   71</span>|     475.93449 |    0.9995 |    -1.655 |   -0.9484 |   -0.9330 |
-#&gt; |.....................|   -0.8784 |   -0.1258 |   -0.7357 |   -0.6330 |
-#&gt; |.....................|    -1.033 |   -0.5716 |   -0.6758 |   -0.5988 |
-#&gt; |    U|     475.93449 |     93.07 |    -5.959 |   -0.9791 |   -0.1451 |
-#&gt; |.....................|     2.258 |     1.590 |   0.03240 |    0.9426 |
-#&gt; |.....................|    0.7351 |     1.573 |     1.277 |     1.363 |
-#&gt; |    X|<span style='font-weight: bold;'>     475.93449</span> |     93.07 |  0.002583 |    0.2731 |    0.8649 |
-#&gt; |.....................|     9.566 |     1.590 |   0.03240 |    0.9426 |
-#&gt; |.....................|    0.7351 |     1.573 |     1.277 |     1.363 |
-#&gt; |    F| Forward Diff. |    -1.432 |  -0.03245 |   -0.4539 |  -0.04331 |
-#&gt; |.....................|    0.5695 |  -0.03993 |   -0.2223 |    0.1396 |
-#&gt; |.....................|   -0.3709 |  -0.08203 |     1.409 |   0.03273 |
-#&gt; |<span style='font-weight: bold;'>   72</span>|     475.92305 |     1.001 |    -1.648 |   -0.9418 |   -0.9189 |
-#&gt; |.....................|   -0.8867 |   -0.1240 |   -0.7358 |   -0.6284 |
-#&gt; |.....................|    -1.035 |   -0.5652 |   -0.6857 |   -0.6066 |
-#&gt; |    U|     475.92305 |     93.18 |    -5.952 |   -0.9729 |   -0.1311 |
-#&gt; |.....................|     2.250 |     1.591 |   0.03240 |    0.9461 |
-#&gt; |.....................|    0.7335 |     1.580 |     1.266 |     1.355 |
-#&gt; |    X|<span style='font-weight: bold;'>     475.92305</span> |     93.18 |  0.002602 |    0.2743 |    0.8772 |
-#&gt; |.....................|     9.486 |     1.591 |   0.03240 |    0.9461 |
-#&gt; |.....................|    0.7335 |     1.580 |     1.266 |     1.355 |
-#&gt; |    F| Forward Diff. |     18.31 |  0.001701 |   0.03033 |    0.3531 |
-#&gt; |.....................|    0.4204 |   0.05655 |  -0.08057 |    0.1734 |
-#&gt; |.....................|   -0.4632 |    0.1099 |    0.8178 |   -0.3689 |
-#&gt; |<span style='font-weight: bold;'>   73</span>|     475.91938 |    0.9986 |    -1.638 |   -0.9366 |   -0.9070 |
-#&gt; |.....................|   -0.8945 |   -0.1236 |   -0.7244 |   -0.6267 |
-#&gt; |.....................|    -1.037 |   -0.5623 |   -0.6914 |   -0.6147 |
-#&gt; |    U|     475.91938 |     92.99 |    -5.941 |   -0.9680 |   -0.1192 |
-#&gt; |.....................|     2.242 |     1.592 |   0.03257 |    0.9474 |
-#&gt; |.....................|    0.7320 |     1.584 |     1.260 |     1.346 |
-#&gt; |    X|<span style='font-weight: bold;'>     475.91938</span> |     92.99 |  0.002629 |    0.2753 |    0.8877 |
-#&gt; |.....................|     9.412 |     1.592 |   0.03257 |    0.9474 |
-#&gt; |.....................|    0.7320 |     1.584 |     1.260 |     1.346 |
-#&gt; |    F| Forward Diff. |    -15.99 |   0.01876 |   0.07238 |    0.5908 |
-#&gt; |.....................|  -0.09055 |    0.2914 |   -0.2119 |    0.1409 |
-#&gt; |.....................|    0.4365 |    0.1061 |    0.4376 |   -0.5157 |
-#&gt; |<span style='font-weight: bold;'>   74</span>|     475.91938 |    0.9986 |    -1.638 |   -0.9366 |   -0.9070 |
-#&gt; |.....................|   -0.8945 |   -0.1236 |   -0.7244 |   -0.6267 |
-#&gt; |.....................|    -1.037 |   -0.5623 |   -0.6914 |   -0.6147 |
-#&gt; |    U|     475.91938 |     92.99 |    -5.941 |   -0.9680 |   -0.1192 |
-#&gt; |.....................|     2.242 |     1.592 |   0.03257 |    0.9474 |
-#&gt; |.....................|    0.7320 |     1.584 |     1.260 |     1.346 |
-#&gt; |    X|<span style='font-weight: bold;'>     475.91938</span> |     92.99 |  0.002629 |    0.2753 |    0.8877 |
-#&gt; |.....................|     9.412 |     1.592 |   0.03257 |    0.9474 |
-#&gt; |.....................|    0.7320 |     1.584 |     1.260 |     1.346 |
-#&gt; calculating covariance matrix
-#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
-#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#&gt; F: Forward difference gradient approximation
-#&gt; C: Central difference gradient approximation
-#&gt; M: Mixed forward and central difference gradient approximation
-#&gt; Unscaled parameters for Omegas=chol(solve(omega));
-#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
-#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
-#&gt; |    #| Objective Fun |  parent_0 |  log_k_A1 |f_parent_qlogis |    log_k1 |
-#&gt; |.....................|    log_k2 |  g_qlogis | sigma_low |  rsd_high |
-#&gt; |.....................|        o1 |        o2 |        o3 |        o4 |
-#&gt; <span style='text-decoration: underline;'>|.....................|        o5 |        o6 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    1</span>|     495.80376 |     1.000 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8915 |
-#&gt; |.....................|   -0.8776 |   -0.8741 |   -0.8681 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8749 |   -0.8675 |...........|...........|</span>
-#&gt; |    U|     495.80376 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     495.80376</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    G|    Gill Diff. |     40.10 |     2.344 |  -0.09792 |   0.01304 |
-#&gt; |.....................|   -0.4854 |    0.6353 |    -29.93 |    -20.00 |
-#&gt; |.....................|     1.261 |     9.993 |    -12.68 |   -0.7774 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     8.106 |    -12.55 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    2</span>|     2936.2793 |    0.3119 |    -1.040 |   -0.9093 |   -0.9382 |
-#&gt; |.....................|   -0.9801 |   -0.8941 |   -0.3619 |   -0.5483 |
-#&gt; |.....................|   -0.8992 |    -1.046 |   -0.6506 |   -0.8594 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.014 |   -0.6521 |...........|...........|</span>
-#&gt; |    U|     2936.2793 |     28.54 |    -5.229 |   -0.8860 |    -2.190 |
-#&gt; |.....................|    -4.622 |    0.4539 |     1.041 |   0.06759 |
-#&gt; |.....................|    0.7138 |    0.7431 |     1.443 |    0.9756 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.7388 |     1.478 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     2936.2793</span> |     28.54 |  0.005360 |    0.2919 |    0.1119 |
-#&gt; |.....................|  0.009832 |    0.6116 |     1.041 |   0.06759 |
-#&gt; |.....................|    0.7138 |    0.7431 |     1.443 |    0.9756 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.7388 |     1.478 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    3</span>|     515.54714 |    0.9312 |    -1.004 |   -0.9108 |   -0.9380 |
-#&gt; |.....................|   -0.9876 |   -0.8843 |   -0.8242 |   -0.8571 |
-#&gt; |.....................|   -0.8797 |   -0.8912 |   -0.8464 |   -0.8714 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8888 |   -0.8460 |...........|...........|</span>
-#&gt; |    U|     515.54714 |     85.19 |    -5.193 |   -0.8873 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4584 |    0.8493 |   0.05868 |
-#&gt; |.....................|    0.7280 |    0.8815 |     1.211 |    0.9641 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8462 |     1.242 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     515.54714</span> |     85.19 |  0.005557 |    0.2917 |    0.1119 |
-#&gt; |.....................|  0.009758 |    0.6126 |    0.8493 |   0.05868 |
-#&gt; |.....................|    0.7280 |    0.8815 |     1.211 |    0.9641 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8462 |     1.242 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    4</span>|     501.46574 |    0.9922 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9884 |   -0.8833 |   -0.8697 |   -0.8876 |
-#&gt; |.....................|   -0.8778 |   -0.8761 |   -0.8657 |   -0.8726 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8765 |   -0.8650 |...........|...........|</span>
-#&gt; |    U|     501.46574 |     90.77 |    -5.189 |   -0.8874 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8304 |   0.05781 |
-#&gt; |.....................|    0.7294 |    0.8952 |     1.188 |    0.9629 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8568 |     1.219 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.46574</span> |     90.77 |  0.005577 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009751 |    0.6127 |    0.8304 |   0.05781 |
-#&gt; |.....................|    0.7294 |    0.8952 |     1.188 |    0.9629 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8568 |     1.219 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    5</span>|     501.84206 |    0.9992 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9884 |   -0.8832 |   -0.8749 |   -0.8911 |
-#&gt; |.....................|   -0.8776 |   -0.8743 |   -0.8679 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8751 |   -0.8673 |...........|...........|</span>
-#&gt; |    U|     501.84206 |     91.41 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8283 |   0.05771 |
-#&gt; |.....................|    0.7296 |    0.8967 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8580 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.84206</span> |     91.41 |  0.005579 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8283 |   0.05771 |
-#&gt; |.....................|    0.7296 |    0.8967 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8580 |     1.216 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    6</span>|     501.90183 |    0.9999 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8914 |
-#&gt; |.....................|   -0.8776 |   -0.8741 |   -0.8681 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8749 |   -0.8675 |...........|...........|</span>
-#&gt; |    U|     501.90183 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05770 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.90183</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05770 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    7</span>|     501.90808 |     1.000 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8915 |
-#&gt; |.....................|   -0.8776 |   -0.8741 |   -0.8681 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8749 |   -0.8675 |...........|...........|</span>
-#&gt; |    U|     501.90808 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.90808</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    8</span>|     501.90873 |     1.000 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8915 |
-#&gt; |.....................|   -0.8776 |   -0.8741 |   -0.8681 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8749 |   -0.8675 |...........|...........|</span>
-#&gt; |    U|     501.90873 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.90873</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    9</span>|     501.90880 |     1.000 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8915 |
-#&gt; |.....................|   -0.8776 |   -0.8741 |   -0.8681 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8749 |   -0.8675 |...........|...........|</span>
-#&gt; |    U|      501.9088 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      501.9088</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   10</span>|     501.90881 |     1.000 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8915 |
-#&gt; |.....................|   -0.8776 |   -0.8741 |   -0.8681 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8749 |   -0.8675 |...........|...........|</span>
-#&gt; |    U|     501.90881 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.90881</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   11</span>|     501.90882 |     1.000 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8915 |
-#&gt; |.....................|   -0.8776 |   -0.8741 |   -0.8681 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8749 |   -0.8675 |...........|...........|</span>
-#&gt; |    U|     501.90882 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.90882</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   12</span>|     501.90882 |     1.000 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8915 |
-#&gt; |.....................|   -0.8776 |   -0.8741 |   -0.8681 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8749 |   -0.8675 |...........|...........|</span>
-#&gt; |    U|     501.90882 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.90882</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   13</span>|     501.90882 |     1.000 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8915 |
-#&gt; |.....................|   -0.8776 |   -0.8741 |   -0.8681 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8749 |   -0.8675 |...........|...........|</span>
-#&gt; |    U|     501.90882 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.90882</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   14</span>|     501.90882 |     1.000 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8915 |
-#&gt; |.....................|   -0.8776 |   -0.8741 |   -0.8681 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8749 |   -0.8675 |...........|...........|</span>
-#&gt; |    U|     501.90882 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.90882</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   15</span>|     501.90882 |     1.000 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8915 |
-#&gt; |.....................|   -0.8776 |   -0.8741 |   -0.8681 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8749 |   -0.8675 |...........|...........|</span>
-#&gt; |    U|     501.90882 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.90882</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   16</span>|     501.90883 |     1.000 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8915 |
-#&gt; |.....................|   -0.8776 |   -0.8741 |   -0.8681 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8749 |   -0.8675 |...........|...........|</span>
-#&gt; |    U|     501.90883 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.90883</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   17</span>|     501.90883 |     1.000 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8915 |
-#&gt; |.....................|   -0.8776 |   -0.8741 |   -0.8681 |   -0.8727 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8749 |   -0.8675 |...........|...........|</span>
-#&gt; |    U|     501.90883 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.90883</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.7296 |    0.8969 |     1.185 |    0.9628 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.8582 |     1.216 |...........|...........|</span>
-#&gt; calculating covariance matrix
-#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: last objective function was not at minimum, possible problems in optimization</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
+#&gt; <span class='message'>cmt(A1);</span>
+#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
+#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
+#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
+#&gt; <span class='message'>rx_expr_8~ETA[5]+THETA[5];</span>
+#&gt; <span class='message'>rx_expr_14~exp(-(rx_expr_8));</span>
+#&gt; <span class='message'>rx_expr_16~t*rx_expr_14;</span>
+#&gt; <span class='message'>rx_expr_17~1+rx_expr_16;</span>
+#&gt; <span class='message'>rx_expr_19~rx_expr_7-(rx_expr_8);</span>
+#&gt; <span class='message'>rx_expr_21~exp(rx_expr_19);</span>
+#&gt; <span class='message'>d/dt(parent)=-rx_expr_21*parent/(rx_expr_17);</span>
+#&gt; <span class='message'>rx_expr_9~ETA[2]+THETA[2];</span>
+#&gt; <span class='message'>rx_expr_11~exp(rx_expr_9);</span>
+#&gt; <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_21*parent*f_parent_to_A1/(rx_expr_17);</span>
+#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
+#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
+#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
+#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_15~rx_expr_5*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_lambda_~rx_expr_15+rx_expr_3;</span>
+#&gt; <span class='message'>rx_hi_~rx_expr_15+rx_expr_3;</span>
+#&gt; <span class='message'>rx_low_~0;</span>
+#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_10~parent*(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_18~rx_expr_10*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_18)*(rx_expr_0)+(rx_expr_4+rx_expr_18)*(rx_expr_2)*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_expr_12~Rx_pow_di(THETA[7],2);</span>
+#&gt; <span class='message'>rx_expr_13~Rx_pow_di(THETA[6],2);</span>
+#&gt; <span class='message'>rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_18)*(rx_expr_0)+(rx_expr_4+rx_expr_18)*(rx_expr_2)*(rx_expr_1)),2)*rx_expr_12+rx_expr_13)*(rx_expr_0)+(rx_expr_12*Rx_pow_di(((rx_expr_4+rx_expr_18)*(rx_expr_1)),2)+rx_expr_13)*(rx_expr_2)*(rx_expr_1);</span>
+#&gt; <span class='message'>parent_0=THETA[1];</span>
+#&gt; <span class='message'>log_k_A1=THETA[2];</span>
+#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
+#&gt; <span class='message'>log_alpha=THETA[4];</span>
+#&gt; <span class='message'>log_beta=THETA[5];</span>
+#&gt; <span class='message'>sigma_low=THETA[6];</span>
+#&gt; <span class='message'>rsd_high=THETA[7];</span>
+#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
+#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
+#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
+#&gt; <span class='message'>eta.log_alpha=ETA[4];</span>
+#&gt; <span class='message'>eta.log_beta=ETA[5];</span>
+#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
+#&gt; <span class='message'>k_A1=rx_expr_11;</span>
+#&gt; <span class='message'>alpha=exp(rx_expr_7);</span>
+#&gt; <span class='message'>beta=exp(rx_expr_8);</span>
+#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
+#&gt; <span class='message'>tad=tad();</span>
+#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt &lt;- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control &lt;- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret &lt;- new.env(parent = emptyenv())    }    else {        .ret &lt;- env    }    .ret$origData &lt;- data    .ret$etaNames &lt;- etaNames    .ret$thetaFixed &lt;- fixed    .ret$control &lt;- control    .ret$control$focei.mu.ref &lt;- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel &lt;- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel &lt;- TRUE        model &lt;- RxODE::rxGetLin(PKpars)        pred &lt;- eval(parse(text = "function(){return(Central);}"))    }    .square &lt;- function(x) x * x    .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames &lt;- .parNames &lt;- c()    .ret$adjLik &lt;- control$adjLik    .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0    if (!exists("noLik", envir = .ret)) {        .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol &lt;- .atol            .ret$control$rxControl$rtol &lt;- .rtol            .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol &lt;- .ssAtol            .ret$control$rxControl$ssRtol &lt;- .ssRtol        }        .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)        .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) &lt;- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) &gt; 0) {            .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) &gt; 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars &lt;- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol &lt;- .atol                .ret$control$rxControl$rtol &lt;- .rtol            }            .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)            .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) &lt;- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) &gt; 0) {                .covNames &lt;- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) &gt; 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars &lt;- .ret$model$extra.pars        }        else {            .extraPars &lt;- NULL        }    }    .ret$skipCov &lt;- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp &lt;- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) &lt; length(inits$THTA)) {                .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp &lt;- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr &lt;- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp &lt;- (.tmp | .uifErr)        }        .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms &lt;- thetaNames    }    .ret$thetaNames &lt;- .nms    .thetaReset$thetaNames &lt;- .nms    if (length(lower) == 1) {        lower &lt;- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper &lt;- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars &lt;- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) &gt; 0) {            inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars)            .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars))            lower &lt;- c(lower, .lowerErr)            upper &lt;- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID &lt;- 0    if (is.null(data$AMT))         data$AMT &lt;- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] &lt;- as.double(data[[.v]])    }    .ret$dataSav &lt;- data    .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w &lt;- which(tolower(names(data)) == "limit")    .limitName &lt;- NULL    if (length(.w) == 1L) {        .limitName &lt;- names(data)[.w]    }    .censName &lt;- NULL    .w &lt;- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName &lt;- names(data[.w])    }    data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh &lt;- .parseOM(inits$OMGA)        .nlh &lt;- sapply(.lh, length)        .osplt &lt;- rep(1:length(.lh), .nlh)        .lini &lt;- list(inits$THTA, unlist(.lh))        .nlini &lt;- sapply(.lini, length)        .nsplt &lt;- rep(1:length(.lini), .nlini)        .om0 &lt;- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames &lt;- .ret$etaNames        }        else {            .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType &lt;- .ret$rxInv$xType        .om0a &lt;- .om0        .om0a &lt;- .om0a/control$diagOmegaBoundLower        .om0b &lt;- .om0        .om0b &lt;- .om0b * control$diagOmegaBoundUpper        .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a))        .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a))        .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega &lt;- length(.omdf$lower)        .ret$control$neta &lt;- sum(.omdf$diag)        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)        lower &lt;- c(lower, .omdf$lower)        upper &lt;- c(upper, .omdf$upper)    }    else {        .ret$control$nomega &lt;- 0        .ret$control$neta &lt;- 0        .ret$xType &lt;- -1        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)    }    .ret$lower &lt;- lower    .ret$upper &lt;- upper    .ret$thetaIni &lt;- inits$THTA    .scaleC &lt;- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC &lt;- rep(NA_real_, length(lower))    }    else {        .scaleC &lt;- as.double(control$scaleC)        if (length(lower) &gt; length(.scaleC)) {            .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) &lt; length(.scaleC)) {            .scaleC &lt;- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC &lt;- .scaleC    if (exists("uif", envir = .ret)) {        .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- 1        }        .ini &lt;- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b &lt;- .ret$logitThetasLow[.i]            .c &lt;- .ret$logitThetasHi[.i]            .a &lt;- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) &amp; !is.null(control$etaMat)) {        .ret$etaMat &lt;- control$etaMat    }    else {        .ret$etaMat &lt;- etaMat    }    .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp &lt;- .ret$uif$logThetasList        .ret$logThetas &lt;- .tmp[[1]]        .ret$logThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasList        .ret$logitThetas &lt;- .tmp[[1]]        .ret$logitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListLow        .ret$logitThetasLow &lt;- .tmp[[1]]        .ret$logitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListHi        .ret$logitThetasHi &lt;- .tmp[[1]]        .ret$logitThetasHiF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasList        .ret$probitThetas &lt;- .tmp[[1]]        .ret$probitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListLow        .ret$probitThetasLow &lt;- .tmp[[1]]        .ret$probitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListHi        .ret$probitThetasHi &lt;- .tmp[[1]]        .ret$probitThetasHiF &lt;- .tmp[[2]]    }    else {        .ret$logThetasF &lt;- integer(0)        .ret$logitThetasF &lt;- integer(0)        .ret$logitThetasHiF &lt;- numeric(0)        .ret$logitThetasLowF &lt;- numeric(0)        .ret$logitThetas &lt;- integer(0)        .ret$logitThetasHi &lt;- numeric(0)        .ret$logitThetasLow &lt;- numeric(0)        .ret$probitThetasF &lt;- integer(0)        .ret$probitThetasHiF &lt;- numeric(0)        .ret$probitThetasLowF &lt;- numeric(0)        .ret$probitThetas &lt;- integer(0)        .ret$probitThetasHi &lt;- numeric(0)        .ret$probitThetasLow &lt;- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan &lt;- length(.ret$thetaIni)            .ret$nobs &lt;- sum(data$EVID == 0)        }    }    .ret$control$printTop &lt;- TRUE    .ret$control$nF &lt;- 0    .est0 &lt;- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq &lt;- 0L    }    .fitFun &lt;- function(.ret) {        this.env &lt;- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 &lt;- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm &lt;- names(.ret$thetaIni)                .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta &lt;- .thetaReset$omegaTheta                .ret$control$printTop &lt;- FALSE                .ret$etaMat &lt;- .thetaReset$etaMat                .ret$control$etaMat &lt;- .thetaReset$etaMat                .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations                .ret$control$nF &lt;- .thetaReset$nF                .ret$control$gillRetC &lt;- .thetaReset$gillRetC                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillDf &lt;- .thetaReset$gillDf                .ret$control$gillDf2 &lt;- .thetaReset$gillDf2                .ret$control$gillErr &lt;- .thetaReset$gillErr                .ret$control$rEps &lt;- .thetaReset$rEps                .ret$control$aEps &lt;- .thetaReset$aEps                .ret$control$rEpsC &lt;- .thetaReset$rEpsC                .ret$control$aEpsC &lt;- .thetaReset$aEpsC                .ret$control$c1 &lt;- .thetaReset$c1                .ret$control$c2 &lt;- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations &lt;- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun &lt;- .bobyqa                  .ret$control$outerOpt &lt;- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 &lt;- try(.fitFun(.ret))    .n &lt;- 1    while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations !=         0 &amp;&amp; .n &lt;= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF &lt;- 0        .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew &lt;- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] &lt; lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] &gt; upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni &lt;- .estNew        .ret0 &lt;- try(.fitFun(.ret))        .n &lt;- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret &lt;- .ret0    if (exists("parHistData", .ret)) {        .tmp &lt;- .ret$parHistData        .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter &lt;- .tmp$iter        .tmp &lt;- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) &lt;- c("val", "par", "iter")        .ret$parHist &lt;- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas &lt;- .ret$ranef        .thetas &lt;- .ret$fixef        .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table &lt;- tableControl()    }    if (control$calcTables) {        .ret &lt;- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 8.708 0.429 9.135</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
+#&gt; <span class='message'>cmt(A1);</span>
+#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
+#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
+#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
+#&gt; <span class='message'>rx_expr_8~ETA[6]+THETA[6];</span>
+#&gt; <span class='message'>rx_expr_9~ETA[5]+THETA[5];</span>
+#&gt; <span class='message'>rx_expr_12~exp(rx_expr_7);</span>
+#&gt; <span class='message'>rx_expr_13~exp(rx_expr_9);</span>
+#&gt; <span class='message'>rx_expr_15~t*rx_expr_12;</span>
+#&gt; <span class='message'>rx_expr_16~t*rx_expr_13;</span>
+#&gt; <span class='message'>rx_expr_19~exp(-(rx_expr_8));</span>
+#&gt; <span class='message'>rx_expr_21~1+rx_expr_19;</span>
+#&gt; <span class='message'>rx_expr_26~1/(rx_expr_21);</span>
+#&gt; <span class='message'>rx_expr_28~(rx_expr_26);</span>
+#&gt; <span class='message'>rx_expr_29~1-rx_expr_28;</span>
+#&gt; <span class='message'>d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_21)+exp(rx_expr_9-rx_expr_16)*(rx_expr_29))/(exp(-t*rx_expr_12)/(rx_expr_21)+exp(-t*rx_expr_13)*(rx_expr_29));</span>
+#&gt; <span class='message'>rx_expr_10~ETA[2]+THETA[2];</span>
+#&gt; <span class='message'>rx_expr_14~exp(rx_expr_10);</span>
+#&gt; <span class='message'>d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_21)+exp(rx_expr_9-rx_expr_16)*(rx_expr_29))/(exp(-t*rx_expr_12)/(rx_expr_21)+exp(-t*rx_expr_13)*(rx_expr_29));</span>
+#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
+#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
+#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
+#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_20~rx_expr_5*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_lambda_~rx_expr_20+rx_expr_3;</span>
+#&gt; <span class='message'>rx_hi_~rx_expr_20+rx_expr_3;</span>
+#&gt; <span class='message'>rx_low_~0;</span>
+#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_11~parent*(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_24~rx_expr_11*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_24)*(rx_expr_0)+(rx_expr_4+rx_expr_24)*(rx_expr_2)*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_expr_17~Rx_pow_di(THETA[8],2);</span>
+#&gt; <span class='message'>rx_expr_18~Rx_pow_di(THETA[7],2);</span>
+#&gt; <span class='message'>rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_24)*(rx_expr_0)+(rx_expr_4+rx_expr_24)*(rx_expr_2)*(rx_expr_1)),2)*rx_expr_17+rx_expr_18)*(rx_expr_0)+(rx_expr_17*Rx_pow_di(((rx_expr_4+rx_expr_24)*(rx_expr_1)),2)+rx_expr_18)*(rx_expr_2)*(rx_expr_1);</span>
+#&gt; <span class='message'>parent_0=THETA[1];</span>
+#&gt; <span class='message'>log_k_A1=THETA[2];</span>
+#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
+#&gt; <span class='message'>log_k1=THETA[4];</span>
+#&gt; <span class='message'>log_k2=THETA[5];</span>
+#&gt; <span class='message'>g_qlogis=THETA[6];</span>
+#&gt; <span class='message'>sigma_low=THETA[7];</span>
+#&gt; <span class='message'>rsd_high=THETA[8];</span>
+#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
+#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
+#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
+#&gt; <span class='message'>eta.log_k1=ETA[4];</span>
+#&gt; <span class='message'>eta.log_k2=ETA[5];</span>
+#&gt; <span class='message'>eta.g_qlogis=ETA[6];</span>
+#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
+#&gt; <span class='message'>k_A1=rx_expr_14;</span>
+#&gt; <span class='message'>k1=rx_expr_12;</span>
+#&gt; <span class='message'>k2=rx_expr_13;</span>
+#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
+#&gt; <span class='message'>g=1/(rx_expr_21);</span>
+#&gt; <span class='message'>tad=tad();</span>
+#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt &lt;- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control &lt;- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret &lt;- new.env(parent = emptyenv())    }    else {        .ret &lt;- env    }    .ret$origData &lt;- data    .ret$etaNames &lt;- etaNames    .ret$thetaFixed &lt;- fixed    .ret$control &lt;- control    .ret$control$focei.mu.ref &lt;- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel &lt;- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel &lt;- TRUE        model &lt;- RxODE::rxGetLin(PKpars)        pred &lt;- eval(parse(text = "function(){return(Central);}"))    }    .square &lt;- function(x) x * x    .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames &lt;- .parNames &lt;- c()    .ret$adjLik &lt;- control$adjLik    .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0    if (!exists("noLik", envir = .ret)) {        .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol &lt;- .atol            .ret$control$rxControl$rtol &lt;- .rtol            .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol &lt;- .ssAtol            .ret$control$rxControl$ssRtol &lt;- .ssRtol        }        .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)        .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) &lt;- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) &gt; 0) {            .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) &gt; 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars &lt;- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol &lt;- .atol                .ret$control$rxControl$rtol &lt;- .rtol            }            .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)            .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) &lt;- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) &gt; 0) {                .covNames &lt;- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) &gt; 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars &lt;- .ret$model$extra.pars        }        else {            .extraPars &lt;- NULL        }    }    .ret$skipCov &lt;- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp &lt;- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) &lt; length(inits$THTA)) {                .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp &lt;- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr &lt;- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp &lt;- (.tmp | .uifErr)        }        .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms &lt;- thetaNames    }    .ret$thetaNames &lt;- .nms    .thetaReset$thetaNames &lt;- .nms    if (length(lower) == 1) {        lower &lt;- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper &lt;- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars &lt;- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) &gt; 0) {            inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars)            .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars))            lower &lt;- c(lower, .lowerErr)            upper &lt;- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID &lt;- 0    if (is.null(data$AMT))         data$AMT &lt;- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] &lt;- as.double(data[[.v]])    }    .ret$dataSav &lt;- data    .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w &lt;- which(tolower(names(data)) == "limit")    .limitName &lt;- NULL    if (length(.w) == 1L) {        .limitName &lt;- names(data)[.w]    }    .censName &lt;- NULL    .w &lt;- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName &lt;- names(data[.w])    }    data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh &lt;- .parseOM(inits$OMGA)        .nlh &lt;- sapply(.lh, length)        .osplt &lt;- rep(1:length(.lh), .nlh)        .lini &lt;- list(inits$THTA, unlist(.lh))        .nlini &lt;- sapply(.lini, length)        .nsplt &lt;- rep(1:length(.lini), .nlini)        .om0 &lt;- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames &lt;- .ret$etaNames        }        else {            .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType &lt;- .ret$rxInv$xType        .om0a &lt;- .om0        .om0a &lt;- .om0a/control$diagOmegaBoundLower        .om0b &lt;- .om0        .om0b &lt;- .om0b * control$diagOmegaBoundUpper        .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a))        .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a))        .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega &lt;- length(.omdf$lower)        .ret$control$neta &lt;- sum(.omdf$diag)        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)        lower &lt;- c(lower, .omdf$lower)        upper &lt;- c(upper, .omdf$upper)    }    else {        .ret$control$nomega &lt;- 0        .ret$control$neta &lt;- 0        .ret$xType &lt;- -1        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)    }    .ret$lower &lt;- lower    .ret$upper &lt;- upper    .ret$thetaIni &lt;- inits$THTA    .scaleC &lt;- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC &lt;- rep(NA_real_, length(lower))    }    else {        .scaleC &lt;- as.double(control$scaleC)        if (length(lower) &gt; length(.scaleC)) {            .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) &lt; length(.scaleC)) {            .scaleC &lt;- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC &lt;- .scaleC    if (exists("uif", envir = .ret)) {        .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- 1        }        .ini &lt;- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b &lt;- .ret$logitThetasLow[.i]            .c &lt;- .ret$logitThetasHi[.i]            .a &lt;- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) &amp; !is.null(control$etaMat)) {        .ret$etaMat &lt;- control$etaMat    }    else {        .ret$etaMat &lt;- etaMat    }    .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp &lt;- .ret$uif$logThetasList        .ret$logThetas &lt;- .tmp[[1]]        .ret$logThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasList        .ret$logitThetas &lt;- .tmp[[1]]        .ret$logitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListLow        .ret$logitThetasLow &lt;- .tmp[[1]]        .ret$logitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListHi        .ret$logitThetasHi &lt;- .tmp[[1]]        .ret$logitThetasHiF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasList        .ret$probitThetas &lt;- .tmp[[1]]        .ret$probitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListLow        .ret$probitThetasLow &lt;- .tmp[[1]]        .ret$probitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListHi        .ret$probitThetasHi &lt;- .tmp[[1]]        .ret$probitThetasHiF &lt;- .tmp[[2]]    }    else {        .ret$logThetasF &lt;- integer(0)        .ret$logitThetasF &lt;- integer(0)        .ret$logitThetasHiF &lt;- numeric(0)        .ret$logitThetasLowF &lt;- numeric(0)        .ret$logitThetas &lt;- integer(0)        .ret$logitThetasHi &lt;- numeric(0)        .ret$logitThetasLow &lt;- numeric(0)        .ret$probitThetasF &lt;- integer(0)        .ret$probitThetasHiF &lt;- numeric(0)        .ret$probitThetasLowF &lt;- numeric(0)        .ret$probitThetas &lt;- integer(0)        .ret$probitThetasHi &lt;- numeric(0)        .ret$probitThetasLow &lt;- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan &lt;- length(.ret$thetaIni)            .ret$nobs &lt;- sum(data$EVID == 0)        }    }    .ret$control$printTop &lt;- TRUE    .ret$control$nF &lt;- 0    .est0 &lt;- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq &lt;- 0L    }    .fitFun &lt;- function(.ret) {        this.env &lt;- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 &lt;- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm &lt;- names(.ret$thetaIni)                .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta &lt;- .thetaReset$omegaTheta                .ret$control$printTop &lt;- FALSE                .ret$etaMat &lt;- .thetaReset$etaMat                .ret$control$etaMat &lt;- .thetaReset$etaMat                .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations                .ret$control$nF &lt;- .thetaReset$nF                .ret$control$gillRetC &lt;- .thetaReset$gillRetC                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillDf &lt;- .thetaReset$gillDf                .ret$control$gillDf2 &lt;- .thetaReset$gillDf2                .ret$control$gillErr &lt;- .thetaReset$gillErr                .ret$control$rEps &lt;- .thetaReset$rEps                .ret$control$aEps &lt;- .thetaReset$aEps                .ret$control$rEpsC &lt;- .thetaReset$rEpsC                .ret$control$aEpsC &lt;- .thetaReset$aEpsC                .ret$control$c1 &lt;- .thetaReset$c1                .ret$control$c2 &lt;- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations &lt;- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun &lt;- .bobyqa                  .ret$control$outerOpt &lt;- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 &lt;- try(.fitFun(.ret))    .n &lt;- 1    while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations !=         0 &amp;&amp; .n &lt;= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF &lt;- 0        .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew &lt;- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] &lt; lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] &gt; upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni &lt;- .estNew        .ret0 &lt;- try(.fitFun(.ret))        .n &lt;- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret &lt;- .ret0    if (exists("parHistData", .ret)) {        .tmp &lt;- .ret$parHistData        .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter &lt;- .tmp$iter        .tmp &lt;- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) &lt;- c("val", "par", "iter")        .ret$parHist &lt;- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas &lt;- .ret$ranef        .thetas &lt;- .ret$fixef        .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table &lt;- tableControl()    }    if (control$calcTables) {        .ret &lt;- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 18.05 0.446 18.5</span></div><div class='input'>
 <span class='co'># Two-component error by variable is possible with both estimation methods</span>
 <span class='co'># Variance by variable is supported by 'saem' and 'focei'</span>
 <span class='va'>f_nlmixr_fomc_sfo_saem_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
   error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; 1:    92.2740   -5.2361    0.2113    1.9393   -2.0029    2.8805    1.6298    0.7279    0.7192    0.4382    6.7264    0.4769    7.2363    0.6178
-#&gt; 2:    93.1532   -5.3060    0.0602    2.0735   -2.0177    2.7365    1.5483    0.6915    0.8577    0.4163    7.5229    0.0003    8.5494    0.0006
-#&gt; 3:    9.3232e+01  -5.5491e+00   5.1555e-02   2.4627e+00  -1.4981e+00   2.5997e+00   1.4709e+00   6.5697e-01   8.1480e-01   3.9549e-01   4.6581e+00   4.3492e-05   5.3112e+00   1.7818e-04
-#&gt; 4:    9.3109e+01  -5.6749e+00   3.7928e-02   2.4274e+00  -1.3355e+00   2.4697e+00   1.3973e+00   6.2412e-01   7.7406e-01   3.7572e-01   3.5252e+00   9.5643e-05   4.0990e+00   4.6584e-05
-#&gt; 5:    9.3327e+01  -5.8341e+00  -1.6798e-02   2.4024e+00  -1.2129e+00   2.3462e+00   1.3274e+00   5.9292e-01   7.3536e-01   3.5693e-01   3.3259e+00   1.6901e-05   3.5218e+00   4.0075e-05
-#&gt; 6:    9.3449e+01  -6.0745e+00  -6.1031e-02   2.3458e+00  -1.2034e+00   2.2289e+00   1.8700e+00   5.6327e-01   6.9859e-01   3.3908e-01   2.9533e+00   6.5587e-07   3.1056e+00   2.1346e-02
-#&gt; 7:    93.2519   -6.0564   -0.0590    2.3588   -1.1293    2.1174    1.8910    0.5351    0.6637    0.3221    2.8211    0.0082    2.8507    0.0251
-#&gt; 8:    93.0343   -5.9362   -0.0851    2.2949   -1.0760    2.0116    1.7964    0.5084    0.6305    0.3060    2.5340    0.0181    2.6368    0.0243
-#&gt; 9:    93.1444   -6.1910   -0.1199    2.2709   -1.1077    1.9110    1.8664    0.4829    0.5990    0.2907    2.3768    0.0191    2.3601    0.0284
-#&gt; 10:    93.2748   -6.4970   -0.1598    2.2235   -1.1034    2.1024    3.1968    0.4588    0.5690    0.2762    2.1991    0.0255    2.2790    0.0316
-#&gt; 11:    93.4141   -6.4463   -0.1698    2.1876   -1.0890    1.9973    3.0370    0.4358    0.5406    0.2624    2.1469    0.0266    2.1681    0.0325
-#&gt; 12:    93.4935   -6.5467   -0.1715    2.1666   -1.0952    1.8974    3.7848    0.4141    0.5135    0.2493    1.9137    0.0292    2.0701    0.0331
-#&gt; 13:    93.6730   -6.4173   -0.1752    2.1387   -1.0753    1.8026    3.7278    0.3934    0.4879    0.2368    1.9084    0.0272    2.0289    0.0369
-#&gt; 14:    93.5721   -6.2146   -0.1738    2.1854   -1.0740    2.0902    3.5415    0.3737    0.4635    0.2250    1.9861    0.0239    2.0052    0.0347
-#&gt; 15:    93.6638   -6.3103   -0.1693    2.1828   -1.0327    2.0702    3.3644    0.3720    0.4403    0.2137    1.8947    0.0247    1.9865    0.0375
-#&gt; 16:    93.4156   -6.0957   -0.1666    2.1755   -1.0737    2.6391    3.1962    0.3691    0.4183    0.2030    1.9089    0.0241    2.0159    0.0360
-#&gt; 17:    93.4257   -6.1494   -0.1705    2.1664   -1.0589    2.5072    3.0714    0.3697    0.3974    0.1929    1.8253    0.0268    2.0391    0.0301
-#&gt; 18:    93.5593   -6.1696   -0.1780    2.1670   -1.0129    2.3818    3.7604    0.3725    0.3775    0.1832    1.8529    0.0304    1.8784    0.0298
-#&gt; 19:    93.5027   -6.2960   -0.1791    2.1543   -1.0325    2.6052    4.5501    0.3942    0.3586    0.1741    1.8082    0.0328    1.8654    0.0335
-#&gt; 20:    93.4480   -6.4389   -0.1776    2.1772   -1.0485    2.6607    5.1881    0.3894    0.3554    0.1654    1.8032    0.0322    1.9018    0.0312
-#&gt; 21:    93.6411   -6.2893   -0.1750    2.1759   -1.0350    2.5276    4.9287    0.3817    0.3386    0.1605    1.8533    0.0264    1.9317    0.0301
-#&gt; 22:    93.9320   -6.1469   -0.1750    2.1910   -1.0527    2.4013    4.6823    0.3720    0.3642    0.1525    1.8949    0.0273    1.8977    0.0310
-#&gt; 23:    93.6074   -6.3097   -0.1502    2.2111   -1.0155    2.2812    4.6643    0.3832    0.4236    0.1449    1.7075    0.0340    1.7367    0.0337
-#&gt; 24:    93.7425   -6.4598   -0.1446    2.2249   -1.0011    2.7056    6.0597    0.3949    0.4075    0.1479    1.7180    0.0360    1.7786    0.0302
-#&gt; 25:    94.1822   -6.3674   -0.1496    2.1917   -1.0011    3.4724    5.7567    0.3897    0.4355    0.1465    1.6977    0.0356    1.8373    0.0328
-#&gt; 26:    94.0446   -6.3235   -0.1496    2.2004   -1.0414    3.5912    5.4688    0.3897    0.4438    0.1405    1.6765    0.0344    1.8262    0.0355
-#&gt; 27:    94.4454   -6.2148   -0.1370    2.2360   -1.0220    4.6238    5.1954    0.3702    0.4216    0.1335    1.7209    0.0349    1.7702    0.0336
-#&gt; 28:    94.1837   -6.1301   -0.1376    2.2253   -1.0261    4.3926    4.9356    0.3644    0.4005    0.1345    1.6968    0.0290    1.8540    0.0316
-#&gt; 29:    94.0681   -5.8726   -0.1440    2.2237   -1.0400    4.1730    4.6889    0.3750    0.4055    0.1464    1.7084    0.0329    1.7379    0.0407
-#&gt; 30:    94.5866   -5.9141   -0.1416    2.2045   -1.0350    3.9896    4.4544    0.3770    0.3852    0.1769    1.6009    0.0326    1.8718    0.0350
-#&gt; 31:    94.1640   -6.0370   -0.1382    2.2140   -1.0189    5.4942    4.2317    0.3759    0.3809    0.1680    1.5887    0.0386    1.8918    0.0286
-#&gt; 32:    94.5952   -5.8349   -0.1373    2.2374   -1.0283    5.2195    4.0201    0.3745    0.3835    0.1636    1.6451    0.0375    1.7459    0.0382
-#&gt; 33:    95.0936   -5.8145   -0.1356    2.2325   -1.0037    4.9634    3.8191    0.3614    0.3644    0.1677    1.6313    0.0414    1.6809    0.0399
-#&gt; 34:    94.7033   -5.8916   -0.1208    2.2687   -0.9896    5.4935    3.6281    0.3741    0.3536    0.1701    1.5923    0.0376    1.2962    0.0644
-#&gt; 35:    94.8127   -5.9839   -0.1122    2.2615   -0.9983    5.2188    3.7348    0.3817    0.3661    0.1712    1.5848    0.0313    1.1651    0.0752
-#&gt; 36:    94.6798   -5.8938   -0.1203    2.2441   -1.0009    4.9578    3.5480    0.3835    0.3478    0.1708    1.5525    0.0313    1.1527    0.0712
-#&gt; 37:    93.9759   -5.8017   -0.1274    2.2346   -1.0021    4.7100    3.3706    0.3868    0.3350    0.1622    1.6278    0.0256    1.7263    0.0372
-#&gt; 38:    94.2013   -5.8617   -0.1206    2.2570   -1.0125    4.4745    3.2021    0.3754    0.3520    0.1574    1.5396    0.0290    1.0653    0.0746
-#&gt; 39:    94.1314   -5.7645   -0.1261    2.2381   -1.0361    4.2507    3.0420    0.3804    0.3521    0.1543    1.6280    0.0267    1.1461    0.0755
-#&gt; 40:    93.7934   -5.8654   -0.1206    2.2417   -1.0503    4.0382    2.8899    0.3624    0.3413    0.1747    1.6231    0.0239    1.5698    0.0513
-#&gt; 41:    93.8756   -6.0150   -0.1171    2.2581   -1.0313    3.8363    3.3629    0.3809    0.3369    0.1944    1.6461    0.0217    1.7762    0.0345
-#&gt; 42:    94.0644   -5.9723   -0.1136    2.2769   -1.0295    3.6445    3.2171    0.3702    0.3394    0.1920    1.5035    0.0416    1.5148    0.0475
-#&gt; 43:    93.7394   -5.9927   -0.1233    2.2650   -1.0374    3.4622    3.0562    0.3735    0.3370    0.1824    1.6022    0.0379    1.5080    0.0468
-#&gt; 44:    93.5428   -5.9784   -0.1187    2.2780   -1.0279    3.2891    2.9495    0.3732    0.3289    0.1742    1.5456    0.0471    1.4361    0.0517
-#&gt; 45:    93.2885   -5.9836   -0.1273    2.2650   -1.0100    3.1247    3.2884    0.3768    0.3719    0.1655    1.6579    0.0336    1.4031    0.0585
-#&gt; 46:    93.4080   -5.9261   -0.1371    2.2513   -1.0159    3.4180    3.1630    0.3709    0.3762    0.1711    1.7365    0.0269    1.4612    0.0530
-#&gt; 47:    93.4548   -5.8101   -0.1372    2.2650   -1.0058    3.2471    3.0049    0.3703    0.3921    0.1797    1.7161    0.0300    1.4813    0.0524
-#&gt; 48:    93.1829   -5.6877   -0.1391    2.2594   -1.0035    3.0848    2.8546    0.3690    0.3901    0.1707    1.7558    0.0292    1.5856    0.0487
-#&gt; 49:    93.1860   -5.8153   -0.1349    2.2793   -0.9905    2.9305    2.7119    0.3619    0.3877    0.1690    1.7255    0.0299    1.6143    0.0465
-#&gt; 50:    93.5597   -5.7551   -0.1334    2.2669   -0.9808    2.7840    2.5763    0.3652    0.3795    0.1716    1.6690    0.0290    1.4895    0.0536
-#&gt; 51:    93.5952   -5.8089   -0.1358    2.2626   -1.0100    2.6448    2.4475    0.3640    0.4246    0.1630    1.5892    0.0344    1.3958    0.0604
-#&gt; 52:    93.3111   -5.9181   -0.1323    2.2489   -0.9909    2.5126    2.8739    0.3695    0.4337    0.1549    1.5200    0.0329    1.2246    0.0685
-#&gt; 53:    93.4921   -6.0837   -0.1307    2.2513   -1.0031    2.3869    3.6029    0.3678    0.4363    0.1682    1.4683    0.0336    1.2917    0.0665
-#&gt; 54:    93.4808   -6.2019   -0.1488    2.2068   -1.0207    2.2676    4.1833    0.3952    0.4145    0.1598    1.6478    0.0325    1.2418    0.0659
-#&gt; 55:    93.5453   -6.2747   -0.1411    2.2297   -1.0122    2.1542    4.5107    0.3941    0.4044    0.1556    1.5685    0.0358    1.3236    0.0654
-#&gt; 56:    94.0212   -6.2713   -0.1355    2.2228   -1.0205    2.0465    5.1718    0.3901    0.4101    0.1516    1.5568    0.0341    1.1952    0.0736
-#&gt; 57:    93.7155   -6.2511   -0.1574    2.1899   -1.0374    1.9442    4.9132    0.3991    0.3974    0.1442    1.5528    0.0364    1.5497    0.0485
-#&gt; 58:    93.9064   -6.2021   -0.1543    2.1935   -1.0277    1.8470    4.6676    0.3935    0.3944    0.1458    1.5590    0.0354    1.3512    0.0613
-#&gt; 59:    93.9059   -6.3971   -0.1550    2.1899   -1.0124    1.7546    5.8885    0.3925    0.3943    0.1446    1.5641    0.0373    1.4293    0.0550
-#&gt; 60:    93.8600   -6.2474   -0.1552    2.1978   -0.9930    1.7661    5.5941    0.3905    0.4078    0.1532    1.5235    0.0364    1.5442    0.0477
-#&gt; 61:    93.8936   -6.3077   -0.1568    2.2022   -1.0084    1.7122    5.3507    0.3946    0.4146    0.1455    1.5154    0.0342    1.3664    0.0587
-#&gt; 62:    93.6133   -6.1446   -0.1473    2.2277   -1.0195    1.6266    5.0832    0.3794    0.4254    0.1383    1.5586    0.0330    1.1663    0.0705
-#&gt; 63:    93.5549   -6.3005   -0.1437    2.2302   -1.0096    1.5452    5.0969    0.3651    0.4262    0.1349    1.5730    0.0323    1.2501    0.0668
-#&gt; 64:    93.3212   -6.1190   -0.1428    2.2309   -1.0005    1.4826    4.8421    0.3661    0.4181    0.1443    1.6657    0.0259    1.3409    0.0627
-#&gt; 65:    93.2534   -5.9614   -0.1492    2.2310   -0.9865    1.4084    4.6000    0.3735    0.4186    0.1695    1.6883    0.0235    1.4446    0.0563
-#&gt; 66:    93.3429   -5.9786   -0.1401    2.2198   -0.9934    1.3380    4.3700    0.3807    0.4094    0.1610    1.6697    0.0270    1.1164    0.0778
-#&gt; 67:    93.5657   -6.2158   -0.1405    2.2326   -0.9891    1.2711    4.4653    0.3827    0.4063    0.1530    1.5851    0.0316    1.3581    0.0590
-#&gt; 68:    93.4898   -5.9763   -0.1375    2.2431   -0.9837    1.2076    4.2420    0.3771    0.4127    0.1453    1.6134    0.0325    1.1459    0.0744
-#&gt; 69:    93.4995   -6.1375   -0.1412    2.2423   -1.0003    1.3178    4.3907    0.3746    0.4202    0.1403    1.6223    0.0304    1.3354    0.0608
-#&gt; 70:    93.4369   -6.1690   -0.1395    2.2472   -1.0047    1.6239    4.5654    0.3793    0.4087    0.1400    1.6317    0.0349    1.4812    0.0494
-#&gt; 71:    93.4041   -6.3637   -0.1489    2.2348   -1.0125    1.5427    5.3897    0.3603    0.3883    0.1330    1.5954    0.0303    1.3502    0.0612
-#&gt; 72:    93.1755   -6.4067   -0.1441    2.2492   -0.9859    1.4656    6.3554    0.3423    0.3688    0.1388    1.6135    0.0287    1.6402    0.0435
-#&gt; 73:    93.0023   -6.7319   -0.1526    2.2550   -0.9800    1.3923    7.6438    0.3341    0.3504    0.1462    1.5491    0.0312    1.3997    0.0554
-#&gt; 74:    92.8952   -6.7189   -0.1530    2.2393   -0.9936    1.5478    7.2616    0.3344    0.3329    0.1503    1.5626    0.0326    1.3340    0.0634
-#&gt; 75:    93.0812   -6.8015   -0.1546    2.2265   -0.9751    1.4704    8.9537    0.3501    0.3162    0.1438    1.6019    0.0268    1.1663    0.0715
-#&gt; 76:    93.1080   -6.1728   -0.1515    2.2259   -1.0010    1.3969    8.5060    0.3407    0.3015    0.1398    1.6484    0.0279    1.3118    0.0637
-#&gt; 77:    92.9248   -6.3432   -0.1573    2.2221   -0.9819    1.4456    8.0807    0.3506    0.3002    0.1442    1.5947    0.0294    1.6368    0.0407
-#&gt; 78:    93.0194   -6.1448   -0.1611    2.2228   -0.9831    1.3733    7.6767    0.3487    0.3046    0.1369    1.6471    0.0254    1.4261    0.0529
-#&gt; 79:    92.9378   -6.6970   -0.1593    2.2313   -0.9910    1.3046   10.0158    0.3460    0.2999    0.1386    1.6108    0.0267    1.5818    0.0420
-#&gt; 80:    93.0293   -6.3275   -0.1579    2.2290   -0.9753    1.3191    9.5150    0.3543    0.2960    0.1490    1.6570    0.0259    1.5435    0.0431
-#&gt; 81:    93.1417   -6.2258   -0.1607    2.2285   -0.9399    1.4131    9.0393    0.3514    0.3020    0.1415    1.6990    0.0236    1.6875    0.0364
-#&gt; 82:    92.9115   -6.1764   -0.1555    2.2204   -0.9471    1.3424    8.5873    0.3502    0.2954    0.1540    1.6780    0.0216    1.2280    0.0687
-#&gt; 83:    93.0528   -6.3505   -0.1559    2.2391   -0.9651    1.2753    8.1579    0.3499    0.2903    0.1706    1.6924    0.0242    1.6807    0.0465
-#&gt; 84:    93.0032   -6.2300   -0.1596    2.2300   -0.9232    1.2115    7.9391    0.3470    0.2995    0.1858    1.7153    0.0259    1.7160    0.0406
-#&gt; 85:    93.0518   -6.3704   -0.1434    2.2696   -0.9330    1.1510    8.3071    0.3504    0.2916    0.1765    1.7072    0.0275    1.5494    0.0490
-#&gt; 86:    93.1344   -6.3566   -0.1424    2.2595   -0.9512    1.0934    9.2972    0.3520    0.2869    0.1677    1.6609    0.0253    1.5022    0.0508
-#&gt; 87:    93.2468   -6.3860   -0.1449    2.2505   -0.9601    1.0387    8.8323    0.3474    0.3046    0.1593    1.6326    0.0262    1.3048    0.0626
-#&gt; 88:    93.2286   -6.3886   -0.1466    2.2452   -0.9870    0.9868    8.3907    0.3474    0.2894    0.1513    1.6554    0.0245    1.6330    0.0376
-#&gt; 89:    93.2892   -6.0277   -0.1469    2.2403   -0.9694    0.9375    7.9712    0.3451    0.2904    0.1438    1.6795    0.0251    1.6691    0.0365
-#&gt; 90:    93.1766   -6.1076   -0.1460    2.2502   -0.9729    0.8906    7.5726    0.3458    0.2932    0.1481    1.6182    0.0331    1.5854    0.0401
-#&gt; 91:    93.3300   -6.0932   -0.1559    2.2356   -0.9551    0.8461    7.1940    0.3771    0.2883    0.1512    1.6728    0.0272    1.6098    0.0401
-#&gt; 92:    93.2470   -6.4839   -0.1592    2.2265   -1.0016    0.8038    6.8343    0.3813    0.2923    0.1597    1.7017    0.0300    1.6084    0.0423
-#&gt; 93:    93.2272   -6.2819   -0.1612    2.2356   -1.0073    0.7636    6.4926    0.3849    0.2816    0.1722    1.5422    0.0420    1.4772    0.0493
-#&gt; 94:    93.1441   -6.1805   -0.1571    2.2274   -1.0106    0.7254    6.1680    0.3878    0.2811    0.1636    1.5998    0.0403    1.4386    0.0535
-#&gt; 95:    92.7747   -6.2274   -0.1709    2.2191   -1.0042    0.6891    5.8596    0.3909    0.2905    0.1591    1.7184    0.0282    1.6086    0.0519
-#&gt; 96:    92.9830   -6.3291   -0.1603    2.2297   -1.0053    0.6547    5.5666    0.3774    0.2850    0.1512    1.7427    0.0284    1.7548    0.0384
-#&gt; 97:    92.9302   -6.3943   -0.1608    2.2211   -0.9643    0.6219    5.2882    0.3817    0.2828    0.1589    1.7080    0.0295    1.7102    0.0398
-#&gt; 98:    92.7704   -6.3554   -0.1679    2.1894   -0.9736    0.5908    5.4196    0.3864    0.2813    0.1560    1.7234    0.0240    1.2269    0.0685
-#&gt; 99:    92.7596   -6.2138   -0.1687    2.2088   -0.9744    0.5613    5.1486    0.3939    0.2983    0.1482    1.6732    0.0250    1.5718    0.0497
-#&gt; 100:    92.6608   -6.2662   -0.1687    2.2180   -1.0107    0.5332    5.1471    0.3939    0.2927    0.1408    1.8434    0.0232    1.7316    0.0413
-#&gt; 101:    92.7024   -6.1288   -0.1643    2.2096   -1.0032    0.5066    4.8898    0.3934    0.2807    0.1349    1.7055    0.0253    1.5883    0.0439
-#&gt; 102:    92.8885   -6.3175   -0.1697    2.2208   -0.9967    0.4812    4.9699    0.3888    0.2912    0.1371    1.7311    0.0284    1.6455    0.0402
-#&gt; 103:    92.9487   -6.2493   -0.1677    2.1861   -0.9874    0.4572    4.9605    0.3907    0.2844    0.1626    1.6898    0.0279    1.6252    0.0409
-#&gt; 104:    92.9633   -6.2534   -0.1731    2.1797   -0.9790    0.4343    4.8675    0.4015    0.2784    0.1758    1.6516    0.0268    1.6901    0.0360
-#&gt; 105:    93.0513   -6.0656   -0.1748    2.1802   -0.9876    0.4126    4.6241    0.4041    0.2801    0.1670    1.6863    0.0269    1.6208    0.0366
-#&gt; 106:    93.0600   -6.2162   -0.1860    2.1783   -0.9702    0.4570    4.5504    0.4451    0.2761    0.1586    1.6859    0.0274    1.5273    0.0437
-#&gt; 107:    93.1856   -6.1826   -0.1801    2.1796   -0.9813    0.4341    4.7286    0.4517    0.2807    0.1575    1.6268    0.0341    1.2548    0.0630
-#&gt; 108:    93.2401   -6.2943   -0.1783    2.1808   -0.9806    0.4124    5.3114    0.4502    0.2786    0.1496    1.6676    0.0291    1.4627    0.0484
-#&gt; 109:    93.0988   -6.1669   -0.1655    2.2018   -0.9682    0.4036    5.0458    0.4302    0.3195    0.1435    1.6524    0.0295    1.5759    0.0447
-#&gt; 110:    93.2129   -6.3104   -0.1748    2.1876   -0.9837    0.4825    5.6408    0.4430    0.3306    0.1595    1.6068    0.0326    1.6295    0.0388
-#&gt; 111:    93.1292   -5.9096   -0.1740    2.1932   -0.9674    0.5262    5.3587    0.4444    0.3233    0.1646    1.5777    0.0334    1.6590    0.0374
-#&gt; 112:    93.2723   -5.8153   -0.1706    2.1920   -0.9761    0.5109    5.0908    0.4486    0.3180    0.1634    1.6128    0.0321    1.6551    0.0396
-#&gt; 113:    93.3171   -6.0458   -0.1666    2.1879   -0.9740    0.5530    4.8362    0.4508    0.3303    0.1607    1.5862    0.0325    1.2705    0.0643
-#&gt; 114:    93.1717   -5.9615   -0.1655    2.1638   -0.9773    0.5254    4.5944    0.4472    0.3283    0.1657    1.6307    0.0287    1.2995    0.0677
-#&gt; 115:    93.1917   -6.0856   -0.1592    2.1576   -1.0269    0.4991    4.3647    0.4349    0.3464    0.1574    1.6430    0.0354    1.2812    0.0714
-#&gt; 116:    93.1287   -5.9635   -0.1609    2.1640   -0.9985    0.4741    4.1465    0.4237    0.3408    0.1495    1.6910    0.0269    1.2338    0.0738
-#&gt; 117:    93.1184   -5.8768   -0.1603    2.1842   -0.9557    0.4504    3.9392    0.4211    0.3293    0.1420    1.6447    0.0257    1.2680    0.0705
-#&gt; 118:    93.2207   -5.7436   -0.1654    2.1709   -0.9816    0.4279    3.7422    0.4158    0.3298    0.1349    1.6860    0.0238    1.1436    0.0780
-#&gt; 119:    93.3064   -5.8397   -0.1713    2.1722   -1.0093    0.4065    3.5551    0.4100    0.3429    0.1384    1.6612    0.0262    1.6491    0.0458
-#&gt; 120:    93.2749   -5.8221   -0.1737    2.1643   -1.0166    0.3862    3.3773    0.4044    0.3305    0.1527    1.6516    0.0232    1.7832    0.0410
-#&gt; 121:    93.1620   -5.9756   -0.1579    2.2018   -1.0007    0.3818    3.2992    0.3841    0.3433    0.1620    1.6648    0.0251    1.3408    0.0665
-#&gt; 122:    93.2070   -6.0164   -0.1540    2.2154   -1.0196    0.4217    3.5598    0.3649    0.3436    0.1539    1.6757    0.0287    1.3019    0.0652
-#&gt; 123:    93.1588   -5.7424   -0.1581    2.2142   -0.9985    0.5270    3.3818    0.3491    0.3584    0.1655    1.6321    0.0237    1.3494    0.0644
-#&gt; 124:    93.1496   -5.6257   -0.1463    2.2264   -0.9767    0.5914    3.2127    0.3347    0.3738    0.1573    1.6553    0.0226    1.5964    0.0544
-#&gt; 125:    93.0224   -5.8536   -0.1742    2.1859   -0.9939    0.6381    3.0521    0.3840    0.3692    0.1664    1.6009    0.0246    1.4169    0.0652
-#&gt; 126:    93.0788   -5.6973   -0.1778    2.1772   -0.9574    0.6062    2.8995    0.3710    0.3630    0.1839    1.5256    0.0312    1.5566    0.0518
-#&gt; 127:    93.1613   -5.5833   -0.1729    2.1806   -0.9588    0.5759    2.7545    0.3532    0.3464    0.1878    1.5708    0.0307    1.6405    0.0476
-#&gt; 128:    93.2043   -5.6742   -0.1746    2.1919   -0.9814    0.7099    2.6168    0.3569    0.3422    0.1848    1.6236    0.0312    1.5066    0.0517
-#&gt; 129:    93.1963   -5.7026   -0.1770    2.1853   -0.9814    0.6744    2.4859    0.3544    0.3390    0.1774    1.6150    0.0293    1.5712    0.0479
-#&gt; 130:    93.1669   -5.7260   -0.1826    2.1565   -0.9959    0.6407    2.3616    0.3750    0.3249    0.1685    1.6347    0.0215    1.5556    0.0535
-#&gt; 131:    93.0792   -5.7201   -0.1971    2.1339   -1.0057    0.7376    2.2436    0.3901    0.3086    0.1616    1.7653    0.0206    1.6640    0.0458
-#&gt; 132:    92.8580   -5.8266   -0.1877    2.1512   -0.9940    0.7008    2.3272    0.3895    0.3161    0.1863    1.6050    0.0231    1.5123    0.0558
-#&gt; 133:    92.8479   -5.8397   -0.1834    2.1637   -0.9815    0.7195    2.4732    0.3875    0.3060    0.1877    1.6197    0.0217    1.4131    0.0617
-#&gt; 134:    92.9218   -5.8317   -0.1903    2.1709   -0.9903    0.6835    2.5070    0.3808    0.3147    0.1857    1.7298    0.0225    1.5493    0.0521
-#&gt; 135:    92.7533   -5.7287   -0.1909    2.1670   -0.9674    0.6493    2.3817    0.3792    0.3156    0.1981    1.7074    0.0222    1.2776    0.0718
-#&gt; 136:    92.7255   -5.9071   -0.1787    2.1826   -0.9826    0.6169    2.8147    0.3603    0.3172    0.1882    1.6242    0.0288    1.2313    0.0682
-#&gt; 137:    92.7882   -5.9574   -0.1847    2.1549   -0.9848    0.5860    3.0538    0.3651    0.3206    0.1787    1.5640    0.0277    1.1609    0.0716
-#&gt; 138:    92.8155   -5.9445   -0.1719    2.1750   -0.9838    0.5567    3.3525    0.3568    0.3390    0.1698    1.5507    0.0259    1.0634    0.0816
-#&gt; 139:    92.9393   -6.0638   -0.1726    2.1840   -0.9888    0.5289    4.1627    0.3562    0.3453    0.1613    1.5792    0.0259    1.5189    0.0533
-#&gt; 140:    93.0330   -6.1823   -0.1726    2.1984   -0.9850    0.5024    4.3153    0.3562    0.3506    0.1533    1.6467    0.0248    1.5734    0.0459
-#&gt; 141:    93.0651   -6.1847   -0.1702    2.2183   -0.9749    0.4773    4.1656    0.3604    0.3626    0.1527    1.5887    0.0272    1.5613    0.0433
-#&gt; 142:    93.0350   -5.9581   -0.1641    2.2133   -0.9707    0.4535    3.9574    0.3642    0.3541    0.1662    1.5904    0.0246    1.4665    0.0556
-#&gt; 143:    92.9215   -5.7798   -0.1642    2.2269   -0.9665    0.5015    3.7595    0.3665    0.3626    0.1667    1.6019    0.0275    1.3379    0.0563
-#&gt; 144:    93.0132   -5.6752   -0.1629    2.2273   -0.9468    0.4764    3.5715    0.3648    0.3555    0.1648    1.5218    0.0320    1.1736    0.0695
-#&gt; 145:    92.9596   -5.8104   -0.1449    2.2498   -0.9730    0.4526    3.3929    0.3465    0.3524    0.1670    1.5918    0.0284    1.3067    0.0630
-#&gt; 146:    92.7925   -5.7223   -0.1458    2.2463   -0.9569    0.5591    3.2233    0.3443    0.3492    0.1587    1.6175    0.0260    1.0691    0.0729
-#&gt; 147:    92.8399   -5.8322   -0.1478    2.2485   -0.9474    0.5312    3.2015    0.3422    0.3536    0.1507    1.6257    0.0255    1.2184    0.0622
-#&gt; 148:    92.8390   -5.9554   -0.1498    2.2490   -0.9550    0.5046    3.6305    0.3387    0.3597    0.1615    1.5994    0.0263    1.2274    0.0638
-#&gt; 149:    92.8158   -5.9697   -0.1511    2.2337   -0.9812    0.4794    3.8244    0.3386    0.3894    0.1559    1.5723    0.0255    1.0661    0.0760
-#&gt; 150:    92.8379   -6.0841   -0.1532    2.2323   -0.9832    0.4554    4.3416    0.3340    0.3840    0.1575    1.5375    0.0272    1.1589    0.0677
-#&gt; 151:    92.6741   -6.3268   -0.1572    2.2252   -0.9782    0.4327    5.9395    0.3389    0.3859    0.1584    1.5384    0.0252    1.2809    0.0638
-#&gt; 152:    92.7165   -6.3594   -0.1527    2.2233   -1.0007    0.4210    5.8433    0.3384    0.3915    0.1324    1.5861    0.0254    1.0728    0.0756
-#&gt; 153:    92.6823   -6.2114   -0.1640    2.2160   -0.9861    0.5285    5.4117    0.3473    0.3878    0.1376    1.6150    0.0255    1.2105    0.0659
-#&gt; 154:    92.4787   -6.1829   -0.1622    2.2055   -0.9571    0.5031    5.7087    0.3490    0.3748    0.1345    1.5749    0.0250    1.0579    0.0741
-#&gt; 155:    92.4780   -6.4925   -0.1675    2.2190   -0.9301    0.4020    7.4764    0.3587    0.3785    0.1287    1.5959    0.0258    1.1342    0.0709
-#&gt; 156:    92.5151   -6.2825   -0.1673    2.2194   -0.9174    0.3603    5.6463    0.3589    0.3848    0.1202    1.5413    0.0301    1.1866    0.0674
-#&gt; 157:    92.5140   -6.0058   -0.1644    2.2312   -0.9298    0.3857    4.2481    0.3610    0.3706    0.1281    1.5944    0.0292    1.2712    0.0631
-#&gt; 158:    92.5669   -5.8692   -0.1673    2.2493   -0.9413    0.4751    3.7632    0.3600    0.3572    0.1383    1.6202    0.0323    1.4797    0.0499
-#&gt; 159:    92.4844   -6.0078   -0.1540    2.2464   -0.9423    0.4626    4.6774    0.3587    0.3603    0.1450    1.6404    0.0280    1.3577    0.0587
-#&gt; 160:    92.5182   -6.1231   -0.1504    2.2518   -0.9274    0.4153    5.0466    0.3616    0.3633    0.1373    1.5891    0.0297    1.2392    0.0653
-#&gt; 161:    92.5665   -5.9062   -0.1569    2.2563   -0.9412    0.3989    4.3594    0.3541    0.3719    0.1433    1.6242    0.0314    1.2822    0.0627
-#&gt; 162:    92.5749   -6.0936   -0.1507    2.2752   -0.9474    0.3140    4.4065    0.3438    0.3921    0.1320    1.5013    0.0378    1.1647    0.0662
-#&gt; 163:    92.6248   -6.1392   -0.1565    2.2499   -0.9499    0.2129    4.6022    0.3512    0.3890    0.1425    1.4936    0.0336    1.4339    0.0494
-#&gt; 164:    92.6486   -6.3898   -0.1590    2.2519   -0.9574    0.1948    5.7817    0.3564    0.3925    0.1308    1.5218    0.0326    1.2197    0.0630
-#&gt; 165:    92.6600   -6.3261   -0.1606    2.2464   -0.9815    0.3054    5.9162    0.3611    0.3979    0.1433    1.5747    0.0316    1.2062    0.0632
-#&gt; 166:    92.7951   -6.3068   -0.1630    2.2428   -0.9542    0.3144    5.7041    0.3597    0.3766    0.1612    1.5464    0.0317    1.2649    0.0617
-#&gt; 167:    92.8541   -6.4919   -0.1642    2.2275   -0.9505    0.3509    6.3858    0.3639    0.3713    0.1581    1.5543    0.0315    1.3546    0.0574
-#&gt; 168:    92.6848   -6.3299   -0.1618    2.2329   -0.9494    0.4645    5.7127    0.3700    0.3698    0.1544    1.5058    0.0340    1.1747    0.0685
-#&gt; 169:    92.5817   -6.0236   -0.1572    2.2583   -0.9510    0.6725    3.9864    0.3672    0.3812    0.1763    1.4445    0.0386    1.3230    0.0583
-#&gt; 170:    92.7223   -5.9170   -0.1609    2.2456   -0.9485    0.5137    3.7991    0.3712    0.3714    0.1601    1.5502    0.0385    1.3393    0.0547
-#&gt; 171:    92.6532   -5.9417   -0.1544    2.2294   -0.9448    0.6206    3.9052    0.3789    0.3634    0.1487    1.5809    0.0314    1.1226    0.0711
-#&gt; 172:    92.4803   -5.7302   -0.1414    2.2679   -0.9255    0.7853    2.7901    0.3598    0.3666    0.1508    1.5531    0.0341    1.1785    0.0667
-#&gt; 173:    92.3172   -5.7462   -0.1405    2.2823   -0.9193    1.2505    2.9155    0.3579    0.3678    0.1480    1.4894    0.0434    1.2288    0.0618
-#&gt; 174:    92.4674   -5.6638   -0.1415    2.2775   -0.9054    1.0653    2.8138    0.3623    0.3740    0.1371    1.5301    0.0393    1.0790    0.0669
-#&gt; 175:    92.5581   -5.6388   -0.1338    2.2878   -0.9154    0.6617    2.5216    0.3471    0.3719    0.1546    1.5231    0.0361    1.0672    0.0723
-#&gt; 176:    92.7218   -5.7548   -0.1249    2.3099   -0.9203    0.4464    2.8226    0.3570    0.3978    0.1570    1.4938    0.0354    1.1125    0.0655
-#&gt; 177:    92.7655   -5.6769   -0.1232    2.3114   -0.9257    0.5291    2.5249    0.3571    0.4023    0.1657    1.4392    0.0386    1.1149    0.0663
-#&gt; 178:    92.7966   -5.6766   -0.1219    2.3202   -0.9142    0.4897    2.3359    0.3605    0.3944    0.1720    1.4792    0.0401    1.1665    0.0637
-#&gt; 179:    92.8304   -5.7678   -0.1133    2.3352   -0.9262    0.5428    2.8512    0.3552    0.4191    0.1716    1.4994    0.0410    1.0651    0.0701
-#&gt; 180:    92.8413   -5.7485   -0.1124    2.3452   -0.9494    0.5179    2.6552    0.3555    0.4025    0.1778    1.5102    0.0383    1.1541    0.0670
-#&gt; 181:    92.7078   -5.7437   -0.1145    2.3257   -0.9482    0.6237    2.5673    0.3564    0.3851    0.1897    1.5373    0.0335    1.1413    0.0698
-#&gt; 182:    92.6278   -5.7965   -0.1115    2.3341   -0.9763    0.7558    2.7421    0.3541    0.3850    0.1625    1.5720    0.0309    1.1164    0.0758
-#&gt; 183:    92.4359   -5.7826   -0.1211    2.3204   -0.9481    1.2089    3.0954    0.3598    0.3813    0.1384    1.6391    0.0333    1.2142    0.0646
-#&gt; 184:    92.4840   -5.9143   -0.1218    2.2965   -0.9330    1.2610    4.0248    0.3752    0.3549    0.1597    1.6019    0.0292    1.0945    0.0767
-#&gt; 185:    92.5659   -5.8333   -0.1223    2.2914   -0.9090    1.0578    3.9752    0.3706    0.3640    0.1769    1.5858    0.0287    1.7070    0.0404
-#&gt; 186:    92.5157   -5.9540   -0.1274    2.2967   -0.9678    1.0199    3.7413    0.3625    0.3766    0.1354    1.5905    0.0321    1.2521    0.0660
-#&gt; 187:    92.6988   -5.8607   -0.1193    2.2922   -0.9685    1.1721    2.9764    0.3511    0.3823    0.1347    1.5790    0.0352    1.1477    0.0746
-#&gt; 188:    92.7427   -5.9073   -0.1166    2.3166   -0.9529    1.3606    2.9747    0.3487    0.3981    0.1322    1.5315    0.0344    1.3014    0.0594
-#&gt; 189:    92.6288   -5.8326   -0.1075    2.3268   -0.9543    1.3459    3.2341    0.3388    0.3983    0.1622    1.5374    0.0334    1.5390    0.0504
-#&gt; 190:    92.8047   -5.6198   -0.1064    2.3212   -0.9148    1.6280    2.5774    0.3319    0.4086    0.1656    1.5159    0.0321    1.5423    0.0515
-#&gt; 191:    92.7642   -5.5780   -0.1105    2.3041   -0.9414    1.5723    2.6038    0.3402    0.4111    0.1612    1.5254    0.0321    1.1206    0.0792
-#&gt; 192:    92.7137   -5.5650   -0.1087    2.3014   -0.9399    1.1968    2.0552    0.3412    0.4267    0.1418    1.4910    0.0332    0.9683    0.0834
-#&gt; 193:    93.0503   -5.6414   -0.1060    2.3050   -0.9563    1.0067    2.2362    0.3434    0.4179    0.1371    1.5947    0.0279    1.0349    0.0813
-#&gt; 194:    93.1071   -5.6349   -0.1048    2.3170   -0.9613    1.1495    2.6224    0.3451    0.4086    0.1419    1.6235    0.0276    1.0558    0.0792
-#&gt; 195:    93.0741   -5.7863   -0.1052    2.3293   -0.9605    1.1597    3.0814    0.3440    0.4342    0.1394    1.5248    0.0348    1.0554    0.0771
-#&gt; 196:    93.0768   -5.6986   -0.0911    2.3395   -0.9537    1.1388    2.7165    0.3463    0.4303    0.1467    1.5960    0.0324    1.1195    0.0755
-#&gt; 197:    92.8638   -5.7840   -0.1009    2.3420   -0.9699    1.0231    2.8293    0.3625    0.4272    0.1849    1.5366    0.0360    1.3691    0.0602
-#&gt; 198:    92.8979   -5.8328   -0.0905    2.3497   -0.9668    0.8847    2.7469    0.3509    0.4357    0.1842    1.5501    0.0361    1.1744    0.0715
-#&gt; 199:    92.7817   -6.0173   -0.0946    2.3477   -0.9729    0.8131    3.4886    0.3517    0.4471    0.1906    1.4350    0.0393    1.2311    0.0693
-#&gt; 200:    92.6353   -6.0362   -0.0924    2.3396   -0.9621    0.8259    3.3916    0.3556    0.4569    0.1867    1.4397    0.0350    1.0910    0.0793
-#&gt; 201:    92.6908   -6.0423   -0.0917    2.3400   -0.9564    0.6766    3.6159    0.3552    0.4565    0.1735    1.4506    0.0362    1.0646    0.0794
-#&gt; 202:    92.6302   -6.0238   -0.0919    2.3443   -0.9546    0.5824    3.6723    0.3555    0.4576    0.1716    1.4800    0.0363    1.0519    0.0791
-#&gt; 203:    92.6040   -6.0387   -0.0944    2.3405   -0.9579    0.5710    3.9080    0.3583    0.4476    0.1752    1.4934    0.0373    1.0842    0.0762
-#&gt; 204:    92.6042   -6.0088   -0.0965    2.3351   -0.9580    0.6145    3.8412    0.3608    0.4413    0.1720    1.5047    0.0374    1.0694    0.0760
-#&gt; 205:    92.5887   -6.0107   -0.0968    2.3362   -0.9576    0.6432    3.8854    0.3606    0.4405    0.1711    1.4896    0.0380    1.0615    0.0750
-#&gt; 206:    92.6452   -5.9990   -0.0992    2.3311   -0.9581    0.6728    3.8231    0.3636    0.4339    0.1683    1.4904    0.0379    1.0630    0.0747
-#&gt; 207:    92.6867   -5.9760   -0.1012    2.3283   -0.9606    0.6907    3.6867    0.3665    0.4303    0.1665    1.4908    0.0376    1.0656    0.0739
-#&gt; 208:    92.6867   -5.9652   -0.1033    2.3252   -0.9611    0.6656    3.6185    0.3680    0.4271    0.1656    1.4972    0.0369    1.0944    0.0724
-#&gt; 209:    92.6807   -5.9535   -0.1051    2.3225   -0.9621    0.6532    3.5653    0.3669    0.4249    0.1641    1.4992    0.0366    1.1029    0.0721
-#&gt; 210:    92.6772   -5.9392   -0.1067    2.3185   -0.9611    0.6492    3.4774    0.3661    0.4220    0.1620    1.5034    0.0360    1.0982    0.0723
-#&gt; 211:    92.6803   -5.9099   -0.1089    2.3129   -0.9619    0.6462    3.3783    0.3656    0.4218    0.1622    1.5094    0.0354    1.1060    0.0725
-#&gt; 212:    92.7033   -5.9046   -0.1110    2.3085   -0.9606    0.6467    3.3879    0.3653    0.4222    0.1602    1.5099    0.0350    1.1004    0.0726
-#&gt; 213:    92.7143   -5.9026   -0.1135    2.3046   -0.9594    0.6326    3.3887    0.3646    0.4214    0.1585    1.5139    0.0347    1.1050    0.0722
-#&gt; 214:    92.7156   -5.9151   -0.1157    2.3011   -0.9590    0.6186    3.4587    0.3637    0.4205    0.1571    1.5149    0.0344    1.1060    0.0720
-#&gt; 215:    92.7185   -5.9240   -0.1177    2.2984   -0.9585    0.6226    3.5192    0.3630    0.4190    0.1564    1.5155    0.0342    1.1159    0.0713
-#&gt; 216:    92.7133   -5.9331   -0.1197    2.2953   -0.9575    0.6253    3.5505    0.3630    0.4179    0.1552    1.5199    0.0338    1.1276    0.0708
-#&gt; 217:    92.7111   -5.9341   -0.1215    2.2924   -0.9579    0.6200    3.5565    0.3627    0.4170    0.1542    1.5238    0.0337    1.1409    0.0702
-#&gt; 218:    92.7142   -5.9390   -0.1226    2.2901   -0.9588    0.6110    3.5792    0.3623    0.4162    0.1541    1.5236    0.0335    1.1378    0.0704
-#&gt; 219:    92.7121   -5.9351   -0.1233    2.2891   -0.9587    0.6083    3.5562    0.3617    0.4154    0.1535    1.5280    0.0335    1.1518    0.0697
-#&gt; 220:    92.7133   -5.9467   -0.1244    2.2876   -0.9591    0.6158    3.6036    0.3614    0.4147    0.1542    1.5273    0.0334    1.1572    0.0693
-#&gt; 221:    92.7206   -5.9543   -0.1253    2.2856   -0.9602    0.6252    3.6357    0.3610    0.4131    0.1540    1.5272    0.0335    1.1591    0.0692
-#&gt; 222:    92.7267   -5.9436   -0.1262    2.2840   -0.9608    0.6377    3.5725    0.3608    0.4118    0.1540    1.5302    0.0334    1.1735    0.0683
-#&gt; 223:    92.7364   -5.9346   -0.1268    2.2825   -0.9619    0.6430    3.5288    0.3606    0.4117    0.1542    1.5327    0.0332    1.1883    0.0676
-#&gt; 224:    92.7464   -5.9269   -0.1274    2.2822   -0.9621    0.6394    3.4906    0.3604    0.4107    0.1541    1.5342    0.0334    1.2022    0.0667
-#&gt; 225:    92.7572   -5.9244   -0.1278    2.2813   -0.9616    0.6340    3.4677    0.3603    0.4100    0.1535    1.5345    0.0334    1.2129    0.0661
-#&gt; 226:    92.7662   -5.9237   -0.1282    2.2803   -0.9615    0.6336    3.4532    0.3603    0.4101    0.1532    1.5326    0.0334    1.2151    0.0661
-#&gt; 227:    92.7778   -5.9193   -0.1286    2.2792   -0.9628    0.6280    3.4339    0.3604    0.4096    0.1527    1.5323    0.0334    1.2217    0.0658
-#&gt; 228:    92.7824   -5.9112   -0.1289    2.2782   -0.9636    0.6217    3.3964    0.3607    0.4091    0.1525    1.5316    0.0335    1.2255    0.0658
-#&gt; 229:    92.7895   -5.9077   -0.1291    2.2770   -0.9646    0.6178    3.3717    0.3607    0.4096    0.1521    1.5326    0.0334    1.2247    0.0660
-#&gt; 230:    92.7987   -5.9153   -0.1297    2.2758   -0.9648    0.6177    3.4004    0.3603    0.4098    0.1517    1.5333    0.0334    1.2321    0.0656
-#&gt; 231:    92.8081   -5.9176   -0.1308    2.2735   -0.9654    0.6185    3.4195    0.3596    0.4086    0.1513    1.5361    0.0331    1.2359    0.0656
-#&gt; 232:    92.8119   -5.9161   -0.1318    2.2715   -0.9658    0.6140    3.4221    0.3590    0.4075    0.1513    1.5387    0.0330    1.2434    0.0653
-#&gt; 233:    92.8117   -5.9111   -0.1329    2.2694   -0.9662    0.6096    3.4008    0.3586    0.4065    0.1511    1.5410    0.0328    1.2426    0.0654
-#&gt; 234:    92.8132   -5.9040   -0.1339    2.2672   -0.9660    0.6097    3.3787    0.3583    0.4059    0.1506    1.5425    0.0325    1.2463    0.0654
-#&gt; 235:    92.8117   -5.8978   -0.1347    2.2653   -0.9661    0.6020    3.3558    0.3579    0.4051    0.1502    1.5443    0.0324    1.2439    0.0657
-#&gt; 236:    92.8050   -5.8967   -0.1355    2.2638   -0.9663    0.5963    3.3466    0.3575    0.4046    0.1495    1.5453    0.0322    1.2377    0.0661
-#&gt; 237:    92.7975   -5.9004   -0.1362    2.2625   -0.9668    0.5891    3.3624    0.3571    0.4043    0.1491    1.5460    0.0321    1.2334    0.0664
-#&gt; 238:    92.7965   -5.9036   -0.1371    2.2613   -0.9670    0.5828    3.3683    0.3569    0.4037    0.1488    1.5486    0.0320    1.2405    0.0662
-#&gt; 239:    92.8006   -5.9067   -0.1376    2.2607   -0.9677    0.5767    3.3801    0.3568    0.4027    0.1490    1.5487    0.0319    1.2478    0.0658
-#&gt; 240:    92.8061   -5.9102   -0.1382    2.2597   -0.9678    0.5697    3.3876    0.3566    0.4014    0.1489    1.5499    0.0319    1.2545    0.0654
-#&gt; 241:    92.8111   -5.9132   -0.1388    2.2589   -0.9684    0.5647    3.3986    0.3567    0.4004    0.1489    1.5507    0.0319    1.2607    0.0651
-#&gt; 242:    92.8157   -5.9119   -0.1395    2.2577   -0.9686    0.5610    3.3902    0.3568    0.3995    0.1490    1.5524    0.0319    1.2673    0.0647
-#&gt; 243:    92.8204   -5.9142   -0.1401    2.2567   -0.9689    0.5597    3.3991    0.3570    0.3983    0.1492    1.5526    0.0319    1.2728    0.0646
-#&gt; 244:    92.8272   -5.9129   -0.1408    2.2558   -0.9689    0.5598    3.3989    0.3574    0.3972    0.1493    1.5542    0.0319    1.2805    0.0642
-#&gt; 245:    92.8361   -5.9152   -0.1414    2.2548   -0.9693    0.5617    3.4133    0.3580    0.3959    0.1500    1.5541    0.0318    1.2876    0.0638
-#&gt; 246:    92.8432   -5.9122   -0.1420    2.2536   -0.9695    0.5627    3.4039    0.3584    0.3946    0.1507    1.5546    0.0318    1.2944    0.0633
-#&gt; 247:    92.8481   -5.9125   -0.1426    2.2524   -0.9695    0.5574    3.4087    0.3588    0.3931    0.1515    1.5556    0.0318    1.3003    0.0629
-#&gt; 248:    92.8486   -5.9123   -0.1433    2.2515   -0.9693    0.5545    3.4095    0.3594    0.3916    0.1519    1.5583    0.0317    1.3043    0.0626
-#&gt; 249:    92.8515   -5.9123   -0.1439    2.2505   -0.9694    0.5547    3.4088    0.3600    0.3904    0.1523    1.5605    0.0316    1.3087    0.0623
-#&gt; 250:    92.8521   -5.9139   -0.1443    2.2493   -0.9691    0.5589    3.4212    0.3604    0.3894    0.1525    1.5617    0.0316    1.3081    0.0624
-#&gt; 251:    92.8530   -5.9118   -0.1450    2.2484   -0.9683    0.5562    3.4138    0.3612    0.3884    0.1528    1.5615    0.0316    1.3066    0.0625
-#&gt; 252:    92.8568   -5.9075   -0.1457    2.2474   -0.9681    0.5506    3.3889    0.3619    0.3875    0.1531    1.5620    0.0315    1.3067    0.0625
-#&gt; 253:    92.8603   -5.9070   -0.1464    2.2467   -0.9682    0.5476    3.3746    0.3622    0.3867    0.1539    1.5640    0.0314    1.3122    0.0622
-#&gt; 254:    92.8653   -5.9077   -0.1470    2.2457   -0.9688    0.5448    3.3656    0.3626    0.3858    0.1546    1.5641    0.0314    1.3147    0.0620
-#&gt; 255:    92.8686   -5.9059   -0.1477    2.2445   -0.9688    0.5406    3.3533    0.3630    0.3850    0.1549    1.5637    0.0314    1.3155    0.0619
-#&gt; 256:    92.8706   -5.9011   -0.1483    2.2435   -0.9685    0.5384    3.3300    0.3634    0.3841    0.1550    1.5644    0.0313    1.3161    0.0617
-#&gt; 257:    92.8721   -5.8957   -0.1488    2.2426   -0.9683    0.5398    3.3084    0.3638    0.3833    0.1552    1.5647    0.0313    1.3158    0.0617
-#&gt; 258:    92.8725   -5.8928   -0.1493    2.2419   -0.9680    0.5392    3.2921    0.3641    0.3822    0.1552    1.5665    0.0312    1.3184    0.0614
-#&gt; 259:    92.8718   -5.8915   -0.1498    2.2411   -0.9680    0.5367    3.2850    0.3644    0.3815    0.1553    1.5668    0.0312    1.3202    0.0613
-#&gt; 260:    92.8701   -5.8928   -0.1499    2.2409   -0.9679    0.5339    3.2888    0.3652    0.3802    0.1552    1.5675    0.0312    1.3215    0.0612
-#&gt; 261:    92.8700   -5.8961   -0.1499    2.2407   -0.9679    0.5302    3.2976    0.3659    0.3789    0.1551    1.5677    0.0312    1.3197    0.0613
-#&gt; 262:    92.8683   -5.9013   -0.1500    2.2407   -0.9678    0.5282    3.3236    0.3666    0.3778    0.1549    1.5684    0.0312    1.3184    0.0613
-#&gt; 263:    92.8662   -5.9021   -0.1498    2.2407   -0.9677    0.5271    3.3285    0.3670    0.3767    0.1547    1.5682    0.0313    1.3156    0.0615
-#&gt; 264:    92.8631   -5.9059   -0.1495    2.2409   -0.9675    0.5244    3.3527    0.3673    0.3755    0.1547    1.5677    0.0313    1.3139    0.0616
-#&gt; 265:    92.8635   -5.9042   -0.1492    2.2411   -0.9675    0.5220    3.3541    0.3675    0.3745    0.1545    1.5676    0.0313    1.3098    0.0618
-#&gt; 266:    92.8636   -5.9033   -0.1490    2.2411   -0.9673    0.5208    3.3523    0.3680    0.3735    0.1546    1.5679    0.0312    1.3087    0.0619
-#&gt; 267:    92.8639   -5.9035   -0.1489    2.2413   -0.9673    0.5208    3.3566    0.3685    0.3726    0.1546    1.5676    0.0312    1.3072    0.0621
-#&gt; 268:    92.8620   -5.9065   -0.1487    2.2413   -0.9674    0.5191    3.3797    0.3689    0.3717    0.1545    1.5676    0.0312    1.3103    0.0620
-#&gt; 269:    92.8593   -5.9073   -0.1486    2.2416   -0.9672    0.5192    3.3885    0.3693    0.3710    0.1545    1.5685    0.0312    1.3136    0.0618
-#&gt; 270:    92.8549   -5.9087   -0.1487    2.2418   -0.9672    0.5209    3.4007    0.3695    0.3703    0.1544    1.5703    0.0312    1.3177    0.0615
-#&gt; 271:    92.8519   -5.9089   -0.1487    2.2416   -0.9671    0.5227    3.4043    0.3696    0.3697    0.1545    1.5705    0.0312    1.3216    0.0613
-#&gt; 272:    92.8493   -5.9084   -0.1488    2.2416   -0.9669    0.5223    3.3999    0.3698    0.3693    0.1543    1.5707    0.0311    1.3206    0.0614
-#&gt; 273:    92.8479   -5.9090   -0.1486    2.2416   -0.9667    0.5230    3.3980    0.3701    0.3689    0.1544    1.5699    0.0311    1.3192    0.0615
-#&gt; 274:    92.8456   -5.9108   -0.1485    2.2417   -0.9667    0.5249    3.4024    0.3705    0.3684    0.1544    1.5688    0.0311    1.3169    0.0617
-#&gt; 275:    92.8440   -5.9131   -0.1483    2.2422   -0.9666    0.5253    3.4117    0.3707    0.3677    0.1542    1.5690    0.0311    1.3166    0.0616
-#&gt; 276:    92.8425   -5.9132   -0.1482    2.2426   -0.9662    0.5241    3.4171    0.3709    0.3670    0.1540    1.5689    0.0311    1.3142    0.0617
-#&gt; 277:    92.8412   -5.9139   -0.1481    2.2430   -0.9660    0.5214    3.4228    0.3711    0.3663    0.1540    1.5687    0.0311    1.3173    0.0615
-#&gt; 278:    92.8398   -5.9139   -0.1479    2.2432   -0.9659    0.5184    3.4254    0.3712    0.3654    0.1540    1.5684    0.0311    1.3148    0.0617
-#&gt; 279:    92.8386   -5.9156   -0.1478    2.2433   -0.9661    0.5157    3.4338    0.3713    0.3649    0.1539    1.5682    0.0311    1.3136    0.0618
-#&gt; 280:    92.8378   -5.9173   -0.1478    2.2428   -0.9663    0.5127    3.4381    0.3714    0.3643    0.1537    1.5679    0.0311    1.3104    0.0621
-#&gt; 281:    92.8364   -5.9188   -0.1479    2.2423   -0.9666    0.5089    3.4418    0.3716    0.3634    0.1533    1.5674    0.0311    1.3071    0.0623
-#&gt; 282:    92.8377   -5.9179   -0.1481    2.2418   -0.9668    0.5045    3.4355    0.3717    0.3626    0.1530    1.5686    0.0311    1.3055    0.0624
-#&gt; 283:    92.8385   -5.9157   -0.1485    2.2410   -0.9667    0.5014    3.4260    0.3720    0.3616    0.1527    1.5699    0.0311    1.3072    0.0622
-#&gt; 284:    92.8388   -5.9156   -0.1489    2.2403   -0.9666    0.4977    3.4274    0.3723    0.3605    0.1525    1.5705    0.0310    1.3081    0.0621
-#&gt; 285:    92.8374   -5.9156   -0.1492    2.2395   -0.9668    0.4944    3.4215    0.3727    0.3594    0.1525    1.5716    0.0310    1.3103    0.0619
-#&gt; 286:    92.8376   -5.9168   -0.1496    2.2388   -0.9672    0.4915    3.4197    0.3731    0.3583    0.1526    1.5724    0.0310    1.3141    0.0617
-#&gt; 287:    92.8393   -5.9176   -0.1498    2.2380   -0.9673    0.4886    3.4177    0.3735    0.3572    0.1523    1.5737    0.0309    1.3155    0.0615
-#&gt; 288:    92.8400   -5.9206   -0.1502    2.2372   -0.9675    0.4873    3.4259    0.3739    0.3562    0.1523    1.5739    0.0309    1.3160    0.0614
-#&gt; 289:    92.8404   -5.9217   -0.1506    2.2362   -0.9678    0.4845    3.4269    0.3744    0.3552    0.1524    1.5735    0.0309    1.3165    0.0614
-#&gt; 290:    92.8395   -5.9255   -0.1510    2.2354   -0.9680    0.4830    3.4395    0.3748    0.3543    0.1521    1.5737    0.0308    1.3159    0.0615
-#&gt; 291:    92.8384   -5.9274   -0.1513    2.2345   -0.9680    0.4841    3.4460    0.3752    0.3533    0.1518    1.5742    0.0309    1.3173    0.0613
-#&gt; 292:    92.8384   -5.9276   -0.1515    2.2342   -0.9681    0.4865    3.4437    0.3755    0.3525    0.1516    1.5738    0.0309    1.3163    0.0614
-#&gt; 293:    92.8385   -5.9281   -0.1517    2.2338   -0.9681    0.4882    3.4446    0.3757    0.3516    0.1513    1.5738    0.0308    1.3143    0.0614
-#&gt; 294:    92.8400   -5.9277   -0.1519    2.2335   -0.9680    0.4871    3.4449    0.3758    0.3508    0.1512    1.5736    0.0308    1.3149    0.0614
-#&gt; 295:    92.8414   -5.9279   -0.1520    2.2331   -0.9680    0.4842    3.4523    0.3760    0.3502    0.1510    1.5740    0.0308    1.3153    0.0614
-#&gt; 296:    92.8424   -5.9282   -0.1521    2.2329   -0.9681    0.4835    3.4589    0.3760    0.3496    0.1509    1.5743    0.0307    1.3180    0.0613
-#&gt; 297:    92.8409   -5.9281   -0.1522    2.2325   -0.9683    0.4827    3.4636    0.3760    0.3491    0.1509    1.5745    0.0307    1.3216    0.0611
-#&gt; 298:    92.8395   -5.9276   -0.1522    2.2322   -0.9684    0.4819    3.4641    0.3761    0.3486    0.1508    1.5744    0.0307    1.3226    0.0612
-#&gt; 299:    92.8388   -5.9305   -0.1524    2.2321   -0.9686    0.4800    3.4829    0.3761    0.3481    0.1507    1.5745    0.0307    1.3218    0.0612
-#&gt; 300:    92.8375   -5.9329   -0.1524    2.2321   -0.9683    0.4792    3.4982    0.3761    0.3477    0.1505    1.5745    0.0307    1.3205    0.0613
-#&gt; 301:    92.8359   -5.9337   -0.1524    2.2321   -0.9680    0.4788    3.5056    0.3762    0.3473    0.1503    1.5746    0.0306    1.3182    0.0614
-#&gt; 302:    92.8346   -5.9360   -0.1524    2.2322   -0.9678    0.4800    3.5237    0.3763    0.3470    0.1500    1.5744    0.0306    1.3174    0.0614
-#&gt; 303:    92.8338   -5.9387   -0.1524    2.2324   -0.9674    0.4795    3.5444    0.3764    0.3467    0.1501    1.5738    0.0307    1.3181    0.0613
-#&gt; 304:    92.8318   -5.9436   -0.1524    2.2327   -0.9673    0.4787    3.5819    0.3766    0.3464    0.1502    1.5735    0.0307    1.3191    0.0612
-#&gt; 305:    92.8300   -5.9486   -0.1524    2.2327   -0.9673    0.4794    3.6200    0.3766    0.3460    0.1502    1.5726    0.0308    1.3198    0.0611
-#&gt; 306:    92.8294   -5.9540   -0.1524    2.2328   -0.9673    0.4788    3.6681    0.3766    0.3456    0.1502    1.5723    0.0309    1.3214    0.0610
-#&gt; 307:    92.8287   -5.9579   -0.1525    2.2330   -0.9669    0.4779    3.7052    0.3766    0.3452    0.1498    1.5735    0.0309    1.3235    0.0609
-#&gt; 308:    92.8290   -5.9624   -0.1524    2.2332   -0.9669    0.4775    3.7470    0.3766    0.3448    0.1500    1.5737    0.0309    1.3265    0.0607
-#&gt; 309:    92.8293   -5.9653   -0.1524    2.2333   -0.9668    0.4774    3.7756    0.3766    0.3443    0.1499    1.5736    0.0309    1.3290    0.0605
-#&gt; 310:    92.8289   -5.9672   -0.1523    2.2335   -0.9669    0.4762    3.7957    0.3767    0.3438    0.1499    1.5736    0.0309    1.3316    0.0603
-#&gt; 311:    92.8301   -5.9702   -0.1521    2.2337   -0.9670    0.4755    3.8172    0.3767    0.3432    0.1498    1.5737    0.0309    1.3324    0.0603
-#&gt; 312:    92.8322   -5.9715   -0.1520    2.2341   -0.9670    0.4742    3.8229    0.3767    0.3427    0.1496    1.5734    0.0309    1.3309    0.0603
-#&gt; 313:    92.8338   -5.9713   -0.1517    2.2342   -0.9672    0.4737    3.8202    0.3766    0.3422    0.1494    1.5733    0.0309    1.3306    0.0604
-#&gt; 314:    92.8360   -5.9711   -0.1515    2.2343   -0.9675    0.4725    3.8154    0.3767    0.3417    0.1493    1.5733    0.0309    1.3322    0.0603
-#&gt; 315:    92.8378   -5.9694   -0.1514    2.2343   -0.9680    0.4714    3.8051    0.3767    0.3414    0.1494    1.5734    0.0309    1.3352    0.0601
-#&gt; 316:    92.8400   -5.9683   -0.1514    2.2343   -0.9682    0.4705    3.7984    0.3767    0.3410    0.1495    1.5735    0.0309    1.3354    0.0602
-#&gt; 317:    92.8422   -5.9689   -0.1513    2.2344   -0.9686    0.4695    3.7961    0.3768    0.3406    0.1497    1.5735    0.0309    1.3362    0.0602
-#&gt; 318:    92.8440   -5.9696   -0.1510    2.2347   -0.9689    0.4681    3.7934    0.3769    0.3403    0.1499    1.5731    0.0309    1.3381    0.0601
-#&gt; 319:    92.8458   -5.9710   -0.1508    2.2350   -0.9692    0.4668    3.7913    0.3769    0.3401    0.1500    1.5723    0.0309    1.3403    0.0599
-#&gt; 320:    92.8474   -5.9719   -0.1506    2.2353   -0.9695    0.4667    3.7876    0.3769    0.3400    0.1502    1.5714    0.0309    1.3423    0.0598
-#&gt; 321:    92.8494   -5.9710   -0.1503    2.2355   -0.9696    0.4673    3.7790    0.3769    0.3397    0.1503    1.5709    0.0309    1.3439    0.0597
-#&gt; 322:    92.8511   -5.9693   -0.1501    2.2359   -0.9698    0.4690    3.7674    0.3769    0.3395    0.1503    1.5708    0.0309    1.3451    0.0596
-#&gt; 323:    92.8528   -5.9700   -0.1498    2.2364   -0.9699    0.4696    3.7641    0.3768    0.3394    0.1504    1.5701    0.0310    1.3470    0.0594
-#&gt; 324:    92.8547   -5.9695   -0.1495    2.2369   -0.9699    0.4703    3.7567    0.3767    0.3392    0.1505    1.5698    0.0310    1.3485    0.0593
-#&gt; 325:    92.8563   -5.9678   -0.1490    2.2376   -0.9702    0.4701    3.7473    0.3769    0.3395    0.1505    1.5702    0.0311    1.3494    0.0592
-#&gt; 326:    92.8582   -5.9676   -0.1486    2.2382   -0.9703    0.4709    3.7434    0.3771    0.3397    0.1506    1.5700    0.0311    1.3479    0.0593
-#&gt; 327:    92.8603   -5.9665   -0.1481    2.2389   -0.9704    0.4716    3.7361    0.3769    0.3399    0.1507    1.5699    0.0311    1.3471    0.0594
-#&gt; 328:    92.8622   -5.9671   -0.1477    2.2397   -0.9704    0.4726    3.7379    0.3767    0.3398    0.1507    1.5698    0.0311    1.3481    0.0593
-#&gt; 329:    92.8639   -5.9667   -0.1473    2.2405   -0.9707    0.4735    3.7366    0.3766    0.3398    0.1506    1.5696    0.0311    1.3482    0.0593
-#&gt; 330:    92.8663   -5.9673   -0.1469    2.2413   -0.9708    0.4736    3.7382    0.3765    0.3397    0.1506    1.5691    0.0312    1.3492    0.0592
-#&gt; 331:    92.8674   -5.9670   -0.1464    2.2420   -0.9710    0.4740    3.7350    0.3763    0.3397    0.1507    1.5689    0.0312    1.3512    0.0591
-#&gt; 332:    92.8681   -5.9664   -0.1460    2.2428   -0.9710    0.4737    3.7311    0.3762    0.3396    0.1509    1.5687    0.0312    1.3527    0.0590
-#&gt; 333:    92.8683   -5.9649   -0.1456    2.2436   -0.9708    0.4727    3.7232    0.3760    0.3397    0.1509    1.5686    0.0312    1.3505    0.0591
-#&gt; 334:    92.8690   -5.9642   -0.1452    2.2444   -0.9707    0.4723    3.7194    0.3758    0.3399    0.1511    1.5682    0.0312    1.3490    0.0592
-#&gt; 335:    92.8698   -5.9656   -0.1447    2.2454   -0.9707    0.4722    3.7289    0.3756    0.3400    0.1512    1.5674    0.0313    1.3476    0.0592
-#&gt; 336:    92.8691   -5.9664   -0.1443    2.2463   -0.9706    0.4724    3.7333    0.3753    0.3401    0.1511    1.5669    0.0313    1.3455    0.0593
-#&gt; 337:    92.8687   -5.9670   -0.1440    2.2471   -0.9705    0.4742    3.7378    0.3749    0.3402    0.1510    1.5665    0.0314    1.3433    0.0594
-#&gt; 338:    92.8683   -5.9663   -0.1435    2.2480   -0.9703    0.4747    3.7370    0.3746    0.3405    0.1510    1.5663    0.0313    1.3402    0.0595
-#&gt; 339:    92.8682   -5.9650   -0.1431    2.2488   -0.9701    0.4760    3.7332    0.3743    0.3408    0.1509    1.5661    0.0313    1.3374    0.0597
-#&gt; 340:    92.8684   -5.9639   -0.1427    2.2496   -0.9699    0.4774    3.7283    0.3739    0.3411    0.1510    1.5658    0.0313    1.3358    0.0597
-#&gt; 341:    92.8685   -5.9610   -0.1423    2.2504   -0.9696    0.4782    3.7169    0.3735    0.3413    0.1510    1.5661    0.0313    1.3338    0.0598
-#&gt; 342:    92.8681   -5.9581   -0.1419    2.2512   -0.9696    0.4802    3.7060    0.3731    0.3416    0.1511    1.5661    0.0313    1.3316    0.0599
-#&gt; 343:    92.8671   -5.9557   -0.1414    2.2521   -0.9697    0.4821    3.6971    0.3726    0.3419    0.1510    1.5667    0.0313    1.3292    0.0601
-#&gt; 344:    92.8662   -5.9550   -0.1409    2.2531   -0.9696    0.4825    3.6931    0.3722    0.3424    0.1509    1.5660    0.0314    1.3269    0.0602
-#&gt; 345:    92.8651   -5.9542   -0.1405    2.2542   -0.9696    0.4825    3.6886    0.3717    0.3429    0.1511    1.5645    0.0315    1.3252    0.0602
-#&gt; 346:    92.8636   -5.9534   -0.1401    2.2549   -0.9696    0.4822    3.6821    0.3714    0.3432    0.1510    1.5638    0.0315    1.3231    0.0603
-#&gt; 347:    92.8622   -5.9532   -0.1397    2.2557   -0.9696    0.4815    3.6782    0.3712    0.3435    0.1509    1.5636    0.0315    1.3220    0.0604
-#&gt; 348:    92.8593   -5.9538   -0.1394    2.2566   -0.9697    0.4813    3.6787    0.3709    0.3438    0.1508    1.5634    0.0315    1.3202    0.0605
-#&gt; 349:    92.8574   -5.9532   -0.1389    2.2574   -0.9697    0.4808    3.6739    0.3706    0.3440    0.1506    1.5630    0.0316    1.3179    0.0606
-#&gt; 350:    92.8561   -5.9528   -0.1385    2.2583   -0.9697    0.4801    3.6705    0.3703    0.3443    0.1505    1.5625    0.0316    1.3161    0.0607
-#&gt; 351:    92.8541   -5.9518   -0.1381    2.2591   -0.9697    0.4804    3.6650    0.3700    0.3446    0.1505    1.5619    0.0316    1.3141    0.0608
-#&gt; 352:    92.8528   -5.9516   -0.1377    2.2599   -0.9700    0.4818    3.6626    0.3698    0.3449    0.1504    1.5614    0.0316    1.3122    0.0609
-#&gt; 353:    92.8506   -5.9518   -0.1373    2.2607   -0.9700    0.4836    3.6601    0.3697    0.3451    0.1506    1.5604    0.0317    1.3116    0.0610
-#&gt; 354:    92.8482   -5.9507   -0.1369    2.2615   -0.9700    0.4852    3.6520    0.3696    0.3451    0.1506    1.5595    0.0317    1.3099    0.0611
-#&gt; 355:    92.8459   -5.9500   -0.1365    2.2624   -0.9699    0.4873    3.6467    0.3695    0.3454    0.1505    1.5589    0.0318    1.3090    0.0611
-#&gt; 356:    92.8441   -5.9494   -0.1361    2.2632   -0.9700    0.4893    3.6407    0.3696    0.3456    0.1505    1.5581    0.0319    1.3083    0.0612
-#&gt; 357:    92.8425   -5.9492   -0.1356    2.2641   -0.9700    0.4906    3.6359    0.3696    0.3459    0.1506    1.5568    0.0320    1.3082    0.0612
-#&gt; 358:    92.8414   -5.9487   -0.1351    2.2649   -0.9700    0.4914    3.6300    0.3697    0.3460    0.1506    1.5559    0.0321    1.3064    0.0613
-#&gt; 359:    92.8395   -5.9487   -0.1346    2.2657   -0.9700    0.4923    3.6262    0.3699    0.3462    0.1507    1.5558    0.0321    1.3050    0.0614
-#&gt; 360:    92.8373   -5.9478   -0.1341    2.2666   -0.9700    0.4922    3.6206    0.3700    0.3465    0.1509    1.5553    0.0322    1.3061    0.0614
-#&gt; 361:    92.8353   -5.9475   -0.1337    2.2673   -0.9699    0.4912    3.6183    0.3700    0.3469    0.1510    1.5549    0.0322    1.3051    0.0614
-#&gt; 362:    92.8339   -5.9474   -0.1333    2.2681   -0.9699    0.4896    3.6164    0.3700    0.3472    0.1510    1.5549    0.0322    1.3041    0.0616
-#&gt; 363:    92.8318   -5.9470   -0.1328    2.2690   -0.9696    0.4882    3.6136    0.3700    0.3476    0.1510    1.5541    0.0323    1.3035    0.0616
-#&gt; 364:    92.8305   -5.9460   -0.1325    2.2697   -0.9695    0.4863    3.6099    0.3701    0.3477    0.1510    1.5533    0.0324    1.3028    0.0616
-#&gt; 365:    92.8300   -5.9451   -0.1320    2.2705   -0.9693    0.4851    3.6083    0.3703    0.3479    0.1511    1.5535    0.0324    1.3017    0.0617
-#&gt; 366:    92.8290   -5.9444   -0.1317    2.2710   -0.9691    0.4841    3.6062    0.3707    0.3476    0.1512    1.5534    0.0325    1.3013    0.0617
-#&gt; 367:    92.8279   -5.9438   -0.1313    2.2715   -0.9688    0.4829    3.6026    0.3711    0.3473    0.1513    1.5537    0.0325    1.2996    0.0618
-#&gt; 368:    92.8270   -5.9437   -0.1310    2.2721   -0.9687    0.4824    3.6015    0.3715    0.3471    0.1513    1.5535    0.0325    1.2984    0.0619
-#&gt; 369:    92.8268   -5.9444   -0.1306    2.2726   -0.9686    0.4829    3.6042    0.3718    0.3469    0.1514    1.5530    0.0325    1.2983    0.0619
-#&gt; 370:    92.8268   -5.9455   -0.1303    2.2732   -0.9686    0.4833    3.6099    0.3721    0.3466    0.1513    1.5526    0.0326    1.2971    0.0619
-#&gt; 371:    92.8269   -5.9462   -0.1300    2.2737   -0.9686    0.4842    3.6169    0.3723    0.3465    0.1512    1.5516    0.0326    1.2961    0.0619
-#&gt; 372:    92.8272   -5.9465   -0.1297    2.2741   -0.9685    0.4852    3.6242    0.3726    0.3463    0.1512    1.5507    0.0327    1.2950    0.0620
-#&gt; 373:    92.8275   -5.9456   -0.1294    2.2746   -0.9686    0.4861    3.6219    0.3729    0.3461    0.1511    1.5501    0.0328    1.2946    0.0620
-#&gt; 374:    92.8278   -5.9445   -0.1291    2.2750   -0.9687    0.4867    3.6175    0.3730    0.3461    0.1509    1.5496    0.0328    1.2942    0.0620
-#&gt; 375:    92.8285   -5.9438   -0.1289    2.2753   -0.9689    0.4874    3.6118    0.3731    0.3459    0.1509    1.5491    0.0329    1.2938    0.0620
-#&gt; 376:    92.8286   -5.9439   -0.1287    2.2755   -0.9689    0.4876    3.6100    0.3733    0.3458    0.1508    1.5488    0.0329    1.2930    0.0621
-#&gt; 377:    92.8289   -5.9431   -0.1285    2.2758   -0.9690    0.4870    3.6054    0.3735    0.3456    0.1508    1.5487    0.0329    1.2921    0.0621
-#&gt; 378:    92.8293   -5.9428   -0.1284    2.2760   -0.9689    0.4865    3.6019    0.3737    0.3454    0.1508    1.5484    0.0329    1.2910    0.0622
-#&gt; 379:    92.8294   -5.9441   -0.1282    2.2763   -0.9688    0.4857    3.6077    0.3739    0.3451    0.1507    1.5480    0.0329    1.2907    0.0622
-#&gt; 380:    92.8296   -5.9448   -0.1281    2.2766   -0.9688    0.4844    3.6104    0.3741    0.3448    0.1506    1.5475    0.0329    1.2901    0.0622
-#&gt; 381:    92.8301   -5.9461   -0.1280    2.2767   -0.9689    0.4833    3.6194    0.3743    0.3444    0.1505    1.5476    0.0329    1.2893    0.0622
-#&gt; 382:    92.8312   -5.9464   -0.1278    2.2768   -0.9689    0.4823    3.6237    0.3745    0.3441    0.1505    1.5476    0.0329    1.2881    0.0622
-#&gt; 383:    92.8317   -5.9459   -0.1277    2.2770   -0.9687    0.4817    3.6282    0.3747    0.3438    0.1504    1.5479    0.0329    1.2875    0.0622
-#&gt; 384:    92.8325   -5.9458   -0.1276    2.2772   -0.9686    0.4818    3.6293    0.3749    0.3434    0.1503    1.5481    0.0329    1.2863    0.0623
-#&gt; 385:    92.8337   -5.9449   -0.1275    2.2773   -0.9685    0.4832    3.6263    0.3751    0.3431    0.1503    1.5481    0.0330    1.2860    0.0622
-#&gt; 386:    92.8346   -5.9455   -0.1274    2.2773   -0.9682    0.4834    3.6283    0.3754    0.3427    0.1501    1.5483    0.0330    1.2851    0.0623
-#&gt; 387:    92.8353   -5.9460   -0.1273    2.2775   -0.9681    0.4831    3.6303    0.3756    0.3424    0.1499    1.5486    0.0330    1.2836    0.0623
-#&gt; 388:    92.8365   -5.9462   -0.1272    2.2777   -0.9680    0.4831    3.6294    0.3759    0.3420    0.1498    1.5486    0.0330    1.2830    0.0624
-#&gt; 389:    92.8378   -5.9456   -0.1271    2.2779   -0.9678    0.4830    3.6260    0.3762    0.3416    0.1497    1.5486    0.0330    1.2816    0.0624
-#&gt; 390:    92.8397   -5.9454   -0.1270    2.2779   -0.9678    0.4835    3.6245    0.3765    0.3413    0.1496    1.5488    0.0330    1.2805    0.0625
-#&gt; 391:    92.8416   -5.9461   -0.1269    2.2780   -0.9679    0.4841    3.6273    0.3768    0.3409    0.1497    1.5486    0.0330    1.2816    0.0624
-#&gt; 392:    92.8430   -5.9471   -0.1269    2.2779   -0.9679    0.4844    3.6293    0.3771    0.3408    0.1498    1.5483    0.0330    1.2830    0.0623
-#&gt; 393:    92.8444   -5.9478   -0.1269    2.2779   -0.9680    0.4841    3.6310    0.3774    0.3407    0.1500    1.5485    0.0330    1.2842    0.0623
-#&gt; 394:    92.8458   -5.9492   -0.1268    2.2779   -0.9680    0.4839    3.6370    0.3775    0.3407    0.1502    1.5484    0.0330    1.2847    0.0622
-#&gt; 395:    92.8474   -5.9501   -0.1268    2.2780   -0.9681    0.4830    3.6391    0.3777    0.3406    0.1503    1.5485    0.0330    1.2849    0.0622
-#&gt; 396:    92.8484   -5.9500   -0.1267    2.2781   -0.9682    0.4820    3.6369    0.3778    0.3406    0.1504    1.5490    0.0330    1.2850    0.0622
-#&gt; 397:    92.8497   -5.9490   -0.1267    2.2782   -0.9680    0.4813    3.6308    0.3779    0.3407    0.1504    1.5494    0.0330    1.2848    0.0622
-#&gt; 398:    92.8511   -5.9478   -0.1267    2.2782   -0.9679    0.4811    3.6256    0.3780    0.3407    0.1505    1.5498    0.0330    1.2844    0.0622
-#&gt; 399:    92.8531   -5.9467   -0.1266    2.2782   -0.9680    0.4804    3.6208    0.3781    0.3407    0.1505    1.5505    0.0330    1.2842    0.0623
-#&gt; 400:    92.8545   -5.9465   -0.1266    2.2782   -0.9679    0.4793    3.6175    0.3783    0.3406    0.1505    1.5506    0.0329    1.2833    0.0623
-#&gt; 401:    92.8558   -5.9458   -0.1266    2.2781   -0.9679    0.4787    3.6135    0.3784    0.3406    0.1506    1.5506    0.0329    1.2836    0.0623
-#&gt; 402:    92.8571   -5.9454   -0.1266    2.2780   -0.9678    0.4788    3.6122    0.3786    0.3405    0.1506    1.5508    0.0329    1.2841    0.0623
-#&gt; 403:    92.8583   -5.9454   -0.1267    2.2778   -0.9679    0.4794    3.6115    0.3790    0.3402    0.1507    1.5508    0.0330    1.2859    0.0622
-#&gt; 404:    92.8593   -5.9466   -0.1268    2.2776   -0.9681    0.4787    3.6149    0.3793    0.3401    0.1508    1.5507    0.0330    1.2875    0.0621
-#&gt; 405:    92.8598   -5.9475   -0.1269    2.2774   -0.9681    0.4781    3.6208    0.3796    0.3399    0.1509    1.5507    0.0330    1.2888    0.0620
-#&gt; 406:    92.8596   -5.9480   -0.1269    2.2773   -0.9680    0.4776    3.6238    0.3798    0.3397    0.1509    1.5508    0.0330    1.2895    0.0619
-#&gt; 407:    92.8588   -5.9487   -0.1270    2.2773   -0.9679    0.4773    3.6289    0.3801    0.3395    0.1508    1.5510    0.0331    1.2887    0.0619
-#&gt; 408:    92.8587   -5.9489   -0.1271    2.2771   -0.9677    0.4777    3.6323    0.3804    0.3391    0.1508    1.5513    0.0331    1.2878    0.0620
-#&gt; 409:    92.8585   -5.9498   -0.1272    2.2770   -0.9677    0.4791    3.6383    0.3806    0.3389    0.1506    1.5512    0.0331    1.2865    0.0621
-#&gt; 410:    92.8574   -5.9522   -0.1272    2.2769   -0.9676    0.4810    3.6538    0.3809    0.3387    0.1507    1.5509    0.0331    1.2855    0.0621
-#&gt; 411:    92.8568   -5.9532   -0.1272    2.2767   -0.9675    0.4817    3.6651    0.3811    0.3385    0.1507    1.5508    0.0332    1.2842    0.0622
-#&gt; 412:    92.8562   -5.9535   -0.1273    2.2767   -0.9674    0.4819    3.6756    0.3812    0.3383    0.1507    1.5509    0.0332    1.2851    0.0621
-#&gt; 413:    92.8559   -5.9542   -0.1274    2.2766   -0.9672    0.4824    3.6881    0.3814    0.3381    0.1507    1.5514    0.0332    1.2848    0.0621
-#&gt; 414:    92.8556   -5.9550   -0.1274    2.2765   -0.9670    0.4835    3.6990    0.3815    0.3379    0.1507    1.5519    0.0332    1.2838    0.0622
-#&gt; 415:    92.8551   -5.9566   -0.1274    2.2764   -0.9669    0.4838    3.7133    0.3816    0.3377    0.1506    1.5522    0.0332    1.2828    0.0623
-#&gt; 416:    92.8547   -5.9581   -0.1275    2.2764   -0.9668    0.4848    3.7276    0.3818    0.3374    0.1504    1.5526    0.0332    1.2814    0.0623
-#&gt; 417:    92.8538   -5.9581   -0.1274    2.2764   -0.9667    0.4856    3.7321    0.3818    0.3372    0.1503    1.5532    0.0332    1.2800    0.0624
-#&gt; 418:    92.8527   -5.9590   -0.1273    2.2766   -0.9665    0.4869    3.7398    0.3817    0.3372    0.1502    1.5532    0.0332    1.2787    0.0625
-#&gt; 419:    92.8524   -5.9596   -0.1272    2.2768   -0.9663    0.4869    3.7467    0.3817    0.3372    0.1501    1.5531    0.0332    1.2779    0.0625
-#&gt; 420:    92.8520   -5.9598   -0.1271    2.2771   -0.9662    0.4863    3.7494    0.3817    0.3372    0.1501    1.5528    0.0332    1.2774    0.0625
-#&gt; 421:    92.8516   -5.9601   -0.1270    2.2772   -0.9661    0.4855    3.7541    0.3817    0.3372    0.1500    1.5527    0.0333    1.2763    0.0625
-#&gt; 422:    92.8509   -5.9602   -0.1270    2.2775   -0.9659    0.4855    3.7554    0.3818    0.3371    0.1499    1.5525    0.0333    1.2753    0.0626
-#&gt; 423:    92.8497   -5.9608   -0.1269    2.2777   -0.9658    0.4855    3.7590    0.3819    0.3371    0.1499    1.5524    0.0334    1.2746    0.0626
-#&gt; 424:    92.8490   -5.9620   -0.1269    2.2779   -0.9658    0.4852    3.7657    0.3820    0.3370    0.1498    1.5521    0.0334    1.2740    0.0626
-#&gt; 425:    92.8481   -5.9615   -0.1268    2.2780   -0.9657    0.4852    3.7639    0.3819    0.3369    0.1497    1.5520    0.0334    1.2741    0.0625
-#&gt; 426:    92.8471   -5.9611   -0.1267    2.2783   -0.9656    0.4859    3.7632    0.3819    0.3369    0.1495    1.5520    0.0335    1.2744    0.0625
-#&gt; 427:    92.8470   -5.9605   -0.1266    2.2784   -0.9655    0.4856    3.7616    0.3819    0.3368    0.1494    1.5522    0.0335    1.2739    0.0625
-#&gt; 428:    92.8464   -5.9602   -0.1266    2.2786   -0.9653    0.4851    3.7603    0.3820    0.3367    0.1493    1.5522    0.0335    1.2731    0.0625
-#&gt; 429:    92.8450   -5.9593   -0.1265    2.2788   -0.9652    0.4852    3.7573    0.3820    0.3366    0.1493    1.5525    0.0335    1.2720    0.0626
-#&gt; 430:    92.8440   -5.9590   -0.1264    2.2789   -0.9651    0.4862    3.7586    0.3821    0.3365    0.1493    1.5524    0.0335    1.2710    0.0627
-#&gt; 431:    92.8428   -5.9583   -0.1263    2.2791   -0.9649    0.4868    3.7575    0.3821    0.3365    0.1493    1.5522    0.0335    1.2698    0.0627
-#&gt; 432:    92.8417   -5.9583   -0.1262    2.2793   -0.9649    0.4881    3.7580    0.3821    0.3365    0.1493    1.5518    0.0335    1.2683    0.0628
-#&gt; 433:    92.8404   -5.9589   -0.1261    2.2796   -0.9648    0.4888    3.7614    0.3821    0.3364    0.1494    1.5513    0.0335    1.2681    0.0628
-#&gt; 434:    92.8392   -5.9585   -0.1260    2.2798   -0.9646    0.4900    3.7602    0.3821    0.3363    0.1494    1.5509    0.0336    1.2686    0.0627
-#&gt; 435:    92.8376   -5.9587   -0.1260    2.2801   -0.9645    0.4913    3.7622    0.3822    0.3362    0.1494    1.5506    0.0336    1.2677    0.0627
-#&gt; 436:    92.8367   -5.9581   -0.1259    2.2802   -0.9646    0.4912    3.7594    0.3821    0.3361    0.1494    1.5504    0.0336    1.2684    0.0627
-#&gt; 437:    92.8352   -5.9588   -0.1259    2.2803   -0.9647    0.4910    3.7634    0.3821    0.3360    0.1494    1.5501    0.0337    1.2695    0.0626
-#&gt; 438:    92.8332   -5.9592   -0.1259    2.2804   -0.9648    0.4913    3.7649    0.3821    0.3358    0.1494    1.5498    0.0337    1.2705    0.0625
-#&gt; 439:    92.8310   -5.9589   -0.1258    2.2805   -0.9648    0.4916    3.7630    0.3821    0.3357    0.1494    1.5497    0.0337    1.2713    0.0625
-#&gt; 440:    92.8292   -5.9590   -0.1258    2.2806   -0.9649    0.4915    3.7620    0.3821    0.3355    0.1493    1.5494    0.0338    1.2712    0.0625
-#&gt; 441:    92.8276   -5.9590   -0.1258    2.2808   -0.9650    0.4915    3.7619    0.3822    0.3353    0.1493    1.5493    0.0338    1.2712    0.0625
-#&gt; 442:    92.8258   -5.9587   -0.1257    2.2809   -0.9650    0.4927    3.7592    0.3822    0.3351    0.1493    1.5493    0.0338    1.2707    0.0625
-#&gt; 443:    92.8241   -5.9586   -0.1256    2.2811   -0.9651    0.4941    3.7563    0.3822    0.3350    0.1493    1.5491    0.0338    1.2704    0.0625
-#&gt; 444:    92.8228   -5.9591   -0.1256    2.2812   -0.9651    0.4954    3.7566    0.3822    0.3349    0.1493    1.5488    0.0339    1.2703    0.0625
-#&gt; 445:    92.8210   -5.9596   -0.1256    2.2813   -0.9652    0.4972    3.7573    0.3821    0.3348    0.1493    1.5484    0.0339    1.2702    0.0625
-#&gt; 446:    92.8193   -5.9595   -0.1255    2.2815   -0.9652    0.4989    3.7551    0.3821    0.3348    0.1494    1.5482    0.0339    1.2708    0.0624
-#&gt; 447:    92.8183   -5.9598   -0.1255    2.2817   -0.9652    0.5002    3.7548    0.3820    0.3347    0.1494    1.5478    0.0339    1.2710    0.0624
-#&gt; 448:    92.8177   -5.9607   -0.1255    2.2818   -0.9653    0.5019    3.7585    0.3819    0.3347    0.1495    1.5475    0.0340    1.2711    0.0624
-#&gt; 449:    92.8171   -5.9613   -0.1254    2.2819   -0.9654    0.5040    3.7592    0.3819    0.3347    0.1495    1.5474    0.0340    1.2711    0.0624
-#&gt; 450:    92.8164   -5.9621   -0.1253    2.2821   -0.9655    0.5060    3.7632    0.3818    0.3346    0.1495    1.5470    0.0340    1.2704    0.0624
-#&gt; 451:    92.8157   -5.9628   -0.1253    2.2822   -0.9655    0.5082    3.7655    0.3816    0.3346    0.1495    1.5469    0.0340    1.2699    0.0625
-#&gt; 452:    92.8157   -5.9633   -0.1252    2.2824   -0.9656    0.5092    3.7657    0.3815    0.3346    0.1495    1.5468    0.0340    1.2691    0.0625
-#&gt; 453:    92.8155   -5.9631   -0.1252    2.2823   -0.9657    0.5099    3.7646    0.3815    0.3347    0.1494    1.5470    0.0340    1.2684    0.0625
-#&gt; 454:    92.8149   -5.9627   -0.1252    2.2823   -0.9656    0.5110    3.7623    0.3815    0.3347    0.1495    1.5470    0.0340    1.2678    0.0626
-#&gt; 455:    92.8147   -5.9626   -0.1253    2.2822   -0.9656    0.5118    3.7610    0.3816    0.3347    0.1495    1.5471    0.0340    1.2675    0.0626
-#&gt; 456:    92.8146   -5.9631   -0.1253    2.2821   -0.9657    0.5124    3.7612    0.3817    0.3348    0.1495    1.5473    0.0340    1.2684    0.0625
-#&gt; 457:    92.8146   -5.9639   -0.1253    2.2820   -0.9658    0.5131    3.7636    0.3817    0.3347    0.1494    1.5471    0.0340    1.2683    0.0625
-#&gt; 458:    92.8142   -5.9641   -0.1254    2.2818   -0.9658    0.5143    3.7637    0.3817    0.3347    0.1493    1.5472    0.0340    1.2679    0.0626
-#&gt; 459:    92.8129   -5.9636   -0.1254    2.2818   -0.9660    0.5155    3.7609    0.3817    0.3347    0.1493    1.5474    0.0340    1.2692    0.0625
-#&gt; 460:    92.8118   -5.9630   -0.1254    2.2817   -0.9660    0.5155    3.7563    0.3818    0.3347    0.1493    1.5476    0.0340    1.2703    0.0624
-#&gt; 461:    92.8102   -5.9625   -0.1255    2.2816   -0.9661    0.5159    3.7525    0.3818    0.3347    0.1493    1.5478    0.0340    1.2711    0.0624
-#&gt; 462:    92.8090   -5.9628   -0.1255    2.2814   -0.9661    0.5163    3.7520    0.3819    0.3347    0.1492    1.5481    0.0340    1.2708    0.0624
-#&gt; 463:    92.8075   -5.9633   -0.1256    2.2813   -0.9660    0.5180    3.7534    0.3819    0.3347    0.1491    1.5484    0.0340    1.2705    0.0624
-#&gt; 464:    92.8066   -5.9628   -0.1256    2.2812   -0.9659    0.5194    3.7507    0.3820    0.3347    0.1490    1.5485    0.0340    1.2702    0.0624
-#&gt; 465:    92.8058   -5.9627   -0.1257    2.2811   -0.9658    0.5212    3.7506    0.3820    0.3347    0.1490    1.5484    0.0340    1.2696    0.0625
-#&gt; 466:    92.8055   -5.9624   -0.1258    2.2808   -0.9656    0.5227    3.7510    0.3821    0.3347    0.1489    1.5487    0.0340    1.2704    0.0624
-#&gt; 467:    92.8052   -5.9624   -0.1260    2.2805   -0.9656    0.5242    3.7518    0.3822    0.3346    0.1488    1.5488    0.0340    1.2715    0.0623
-#&gt; 468:    92.8054   -5.9623   -0.1261    2.2803   -0.9654    0.5260    3.7545    0.3823    0.3346    0.1487    1.5493    0.0340    1.2730    0.0623
-#&gt; 469:    92.8052   -5.9629   -0.1262    2.2803   -0.9654    0.5278    3.7617    0.3824    0.3346    0.1486    1.5495    0.0340    1.2737    0.0622
-#&gt; 470:    92.8055   -5.9638   -0.1263    2.2802   -0.9653    0.5290    3.7667    0.3825    0.3347    0.1486    1.5494    0.0341    1.2729    0.0623
-#&gt; 471:    92.8061   -5.9645   -0.1263    2.2801   -0.9653    0.5293    3.7702    0.3825    0.3347    0.1485    1.5494    0.0341    1.2724    0.0623
-#&gt; 472:    92.8057   -5.9645   -0.1264    2.2800   -0.9653    0.5288    3.7699    0.3826    0.3347    0.1484    1.5495    0.0341    1.2728    0.0623
-#&gt; 473:    92.8053   -5.9643   -0.1265    2.2799   -0.9652    0.5282    3.7701    0.3827    0.3347    0.1483    1.5494    0.0341    1.2721    0.0623
-#&gt; 474:    92.8049   -5.9638   -0.1266    2.2798   -0.9653    0.5273    3.7676    0.3828    0.3347    0.1483    1.5495    0.0341    1.2722    0.0623
-#&gt; 475:    92.8041   -5.9639   -0.1267    2.2796   -0.9654    0.5269    3.7668    0.3829    0.3347    0.1482    1.5495    0.0341    1.2721    0.0623
-#&gt; 476:    92.8032   -5.9641   -0.1269    2.2794   -0.9653    0.5260    3.7681    0.3830    0.3347    0.1481    1.5496    0.0341    1.2716    0.0623
-#&gt; 477:    92.8026   -5.9634   -0.1270    2.2792   -0.9653    0.5249    3.7647    0.3831    0.3347    0.1480    1.5500    0.0341    1.2716    0.0623
-#&gt; 478:    92.8021   -5.9627   -0.1271    2.2789   -0.9653    0.5241    3.7606    0.3832    0.3346    0.1480    1.5500    0.0341    1.2718    0.0623
-#&gt; 479:    92.8019   -5.9623   -0.1272    2.2787   -0.9654    0.5241    3.7581    0.3833    0.3345    0.1480    1.5502    0.0342    1.2714    0.0624
-#&gt; 480:    92.8017   -5.9631   -0.1274    2.2784   -0.9654    0.5241    3.7606    0.3835    0.3344    0.1479    1.5503    0.0342    1.2711    0.0624
-#&gt; 481:    92.8020   -5.9638   -0.1275    2.2781   -0.9654    0.5237    3.7659    0.3837    0.3343    0.1478    1.5508    0.0342    1.2720    0.0624
-#&gt; 482:    92.8024   -5.9640   -0.1278    2.2777   -0.9654    0.5228    3.7668    0.3838    0.3342    0.1478    1.5512    0.0342    1.2729    0.0623
-#&gt; 483:    92.8017   -5.9645   -0.1280    2.2773   -0.9654    0.5224    3.7676    0.3840    0.3341    0.1478    1.5515    0.0342    1.2741    0.0622
-#&gt; 484:    92.8012   -5.9642   -0.1281    2.2771   -0.9653    0.5221    3.7649    0.3841    0.3340    0.1478    1.5521    0.0341    1.2747    0.0622
-#&gt; 485:    92.8009   -5.9642   -0.1283    2.2769   -0.9653    0.5214    3.7635    0.3842    0.3339    0.1479    1.5523    0.0341    1.2752    0.0622
-#&gt; 486:    92.8002   -5.9639   -0.1284    2.2767   -0.9652    0.5213    3.7609    0.3842    0.3339    0.1480    1.5523    0.0341    1.2760    0.0621
-#&gt; 487:    92.7998   -5.9636   -0.1285    2.2767   -0.9652    0.5212    3.7603    0.3842    0.3339    0.1480    1.5525    0.0341    1.2762    0.0621
-#&gt; 488:    92.7995   -5.9634   -0.1285    2.2766   -0.9652    0.5218    3.7592    0.3841    0.3339    0.1480    1.5530    0.0341    1.2773    0.0621
-#&gt; 489:    92.7996   -5.9630   -0.1286    2.2765   -0.9653    0.5220    3.7578    0.3841    0.3339    0.1480    1.5532    0.0341    1.2778    0.0621
-#&gt; 490:    92.8001   -5.9629   -0.1287    2.2764   -0.9652    0.5226    3.7573    0.3841    0.3339    0.1479    1.5533    0.0341    1.2788    0.0620
-#&gt; 491:    92.8001   -5.9629   -0.1287    2.2762   -0.9651    0.5225    3.7568    0.3841    0.3338    0.1479    1.5533    0.0341    1.2790    0.0620
-#&gt; 492:    92.8005   -5.9625   -0.1288    2.2761   -0.9651    0.5228    3.7544    0.3840    0.3339    0.1479    1.5536    0.0341    1.2797    0.0619
-#&gt; 493:    92.8010   -5.9626   -0.1289    2.2759   -0.9651    0.5228    3.7544    0.3840    0.3339    0.1479    1.5537    0.0340    1.2795    0.0620
-#&gt; 494:    92.8014   -5.9623   -0.1290    2.2757   -0.9651    0.5239    3.7523    0.3839    0.3340    0.1479    1.5540    0.0340    1.2790    0.0620
-#&gt; 495:    92.8017   -5.9617   -0.1291    2.2755   -0.9652    0.5244    3.7491    0.3838    0.3341    0.1480    1.5540    0.0340    1.2787    0.0621
-#&gt; 496:    92.8019   -5.9613   -0.1291    2.2754   -0.9652    0.5246    3.7459    0.3837    0.3341    0.1481    1.5539    0.0340    1.2802    0.0620
-#&gt; 497:    92.8023   -5.9611   -0.1292    2.2753   -0.9653    0.5252    3.7447    0.3836    0.3340    0.1482    1.5539    0.0340    1.2814    0.0620
-#&gt; 498:    92.8025   -5.9615   -0.1292    2.2752   -0.9653    0.5254    3.7446    0.3836    0.3339    0.1483    1.5539    0.0340    1.2825    0.0619
-#&gt; 499:    92.8033   -5.9616   -0.1292    2.2751   -0.9654    0.5254    3.7447    0.3836    0.3338    0.1483    1.5538    0.0340    1.2834    0.0619
-#&gt; 500:    92.8041   -5.9630   -0.1292    2.2752   -0.9655    0.5248    3.7529    0.3836    0.3337    0.1484    1.5538    0.0340    1.2841    0.0619</div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='error'>Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 0.763 0.036 0.799</span></div><div class='input'><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"FOMC-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
   error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
-#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#&gt; F: Forward difference gradient approximation
-#&gt; C: Central difference gradient approximation
-#&gt; M: Mixed forward and central difference gradient approximation
-#&gt; Unscaled parameters for Omegas=chol(solve(omega));
-#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
-#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
-#&gt; |    #| Objective Fun |  parent_0 |  log_k_A1 |f_parent_qlogis | log_alpha |
-#&gt; |.....................|  log_beta |sigma_low_parent |rsd_high_parent |sigma_low_A1 |
-#&gt; |.....................|rsd_high_A1 |        o1 |        o2 |        o3 |
-#&gt; <span style='text-decoration: underline;'>|.....................|        o4 |        o5 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    1</span>|     504.82714 |     1.000 |    -1.000 |   -0.9114 |   -0.8944 |
-#&gt; |.....................|   -0.8457 |   -0.8687 |   -0.8916 |   -0.8687 |
-#&gt; |.....................|   -0.8916 |   -0.8768 |   -0.8745 |   -0.8676 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8705 |   -0.8704 |...........|...........|</span>
-#&gt; |    U|     504.82714 |     93.12 |    -5.303 |   -0.9442 |   -0.1065 |
-#&gt; |.....................|     2.291 |     1.160 |   0.03005 |     1.160 |
-#&gt; |.....................|   0.03005 |    0.7578 |    0.8738 |     1.213 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.069 |     1.072 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     504.82714</span> |     93.12 |  0.004975 |    0.2801 |    0.8989 |
-#&gt; |.....................|     9.884 |     1.160 |   0.03005 |     1.160 |
-#&gt; |.....................|   0.03005 |    0.7578 |    0.8738 |     1.213 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.069 |     1.072 |...........|...........|</span>
-#&gt; |    G|    Gill Diff. |     73.79 |     2.406 |   0.05615 |    0.2285 |
-#&gt; |.....................|  0.009051 |    -73.50 |    -23.10 |    0.2441 |
-#&gt; |.....................|    -2.663 |     1.201 |     11.89 |    -10.88 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -9.982 |    -10.81 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    2</span>|     4109.9562 |    0.3228 |    -1.022 |   -0.9119 |   -0.8965 |
-#&gt; |.....................|   -0.8458 |   -0.1941 |   -0.6796 |   -0.8709 |
-#&gt; |.....................|   -0.8672 |   -0.8879 |   -0.9836 |   -0.7677 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7789 |   -0.7712 |...........|...........|</span>
-#&gt; |    U|     4109.9562 |     30.05 |    -5.326 |   -0.9447 |   -0.1086 |
-#&gt; |.....................|     2.291 |     1.551 |   0.03324 |     1.158 |
-#&gt; |.....................|   0.03042 |    0.7495 |    0.7784 |     1.335 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.167 |     1.178 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     4109.9562</span> |     30.05 |  0.004866 |    0.2800 |    0.8971 |
-#&gt; |.....................|     9.883 |     1.551 |   0.03324 |     1.158 |
-#&gt; |.....................|   0.03042 |    0.7495 |    0.7784 |     1.335 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.167 |     1.178 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    3</span>|     527.72868 |    0.9323 |    -1.002 |   -0.9115 |   -0.8946 |
-#&gt; |.....................|   -0.8457 |   -0.8012 |   -0.8704 |   -0.8689 |
-#&gt; |.....................|   -0.8892 |   -0.8779 |   -0.8854 |   -0.8576 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8613 |   -0.8605 |...........|...........|</span>
-#&gt; |    U|     527.72868 |     86.81 |    -5.306 |   -0.9442 |   -0.1067 |
-#&gt; |.....................|     2.291 |     1.199 |   0.03037 |     1.159 |
-#&gt; |.....................|   0.03009 |    0.7570 |    0.8642 |     1.226 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.079 |     1.083 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     527.72868</span> |     86.81 |  0.004964 |    0.2800 |    0.8988 |
-#&gt; |.....................|     9.884 |     1.199 |   0.03037 |     1.159 |
-#&gt; |.....................|   0.03009 |    0.7570 |    0.8642 |     1.226 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.079 |     1.083 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    4</span>|     503.94655 |    0.9891 |    -1.000 |   -0.9114 |   -0.8944 |
-#&gt; |.....................|   -0.8457 |   -0.8578 |   -0.8882 |   -0.8687 |
-#&gt; |.....................|   -0.8912 |   -0.8770 |   -0.8762 |   -0.8660 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8690 |   -0.8688 |...........|...........|</span>
-#&gt; |    U|     503.94655 |     92.10 |    -5.304 |   -0.9442 |   -0.1066 |
-#&gt; |.....................|     2.291 |     1.166 |   0.03011 |     1.160 |
-#&gt; |.....................|   0.03006 |    0.7577 |    0.8722 |     1.215 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.070 |     1.074 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     503.94655</span> |     92.10 |  0.004973 |    0.2801 |    0.8989 |
-#&gt; |.....................|     9.884 |     1.166 |   0.03011 |     1.160 |
-#&gt; |.....................|   0.03006 |    0.7577 |    0.8722 |     1.215 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.070 |     1.074 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -83.20 |     2.270 |   -0.2572 |    0.1460 |
-#&gt; |.....................|   -0.3233 |    -71.29 |    -24.25 |    0.7297 |
-#&gt; |.....................|    -2.130 |     1.329 |     9.332 |    -11.82 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -9.604 |    -10.42 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    5</span>|     503.03407 |     1.000 |    -1.001 |   -0.9114 |   -0.8944 |
-#&gt; |.....................|   -0.8456 |   -0.8473 |   -0.8847 |   -0.8688 |
-#&gt; |.....................|   -0.8909 |   -0.8772 |   -0.8776 |   -0.8642 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8676 |   -0.8673 |...........|...........|</span>
-#&gt; |    U|     503.03407 |     93.15 |    -5.304 |   -0.9442 |   -0.1066 |
-#&gt; |.....................|     2.291 |     1.172 |   0.03016 |     1.159 |
-#&gt; |.....................|   0.03007 |    0.7575 |    0.8710 |     1.217 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.072 |     1.075 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     503.03407</span> |     93.15 |  0.004971 |    0.2801 |    0.8989 |
-#&gt; |.....................|     9.884 |     1.172 |   0.03016 |     1.159 |
-#&gt; |.....................|   0.03007 |    0.7575 |    0.8710 |     1.217 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.072 |     1.075 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     79.23 |     2.386 |   0.06830 |    0.2424 |
-#&gt; |.....................|   0.02121 |    -70.84 |    -22.28 |   -0.5289 |
-#&gt; |.....................|    -2.713 |     1.149 |     11.82 |    -11.86 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -9.567 |    -10.47 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    6</span>|     502.12413 |    0.9895 |    -1.001 |   -0.9114 |   -0.8945 |
-#&gt; |.....................|   -0.8456 |   -0.8365 |   -0.8812 |   -0.8687 |
-#&gt; |.....................|   -0.8905 |   -0.8774 |   -0.8794 |   -0.8624 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8662 |   -0.8657 |...........|...........|</span>
-#&gt; |    U|     502.12413 |     92.14 |    -5.304 |   -0.9442 |   -0.1066 |
-#&gt; |.....................|     2.291 |     1.178 |   0.03021 |     1.160 |
-#&gt; |.....................|   0.03007 |    0.7574 |    0.8695 |     1.220 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.073 |     1.077 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     502.12413</span> |     92.14 |  0.004969 |    0.2801 |    0.8989 |
-#&gt; |.....................|     9.884 |     1.178 |   0.03021 |     1.160 |
-#&gt; |.....................|   0.03007 |    0.7574 |    0.8695 |     1.220 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.073 |     1.077 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -77.28 |     2.252 |   -0.2503 |    0.1427 |
-#&gt; |.....................|   -0.3238 |    -69.21 |    -23.25 |    0.3943 |
-#&gt; |.....................|    -2.493 |     1.092 |     10.79 |    -11.67 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -9.485 |    -10.25 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    7</span>|     501.24651 |     1.000 |    -1.001 |   -0.9114 |   -0.8945 |
-#&gt; |.....................|   -0.8456 |   -0.8257 |   -0.8776 |   -0.8688 |
-#&gt; |.....................|   -0.8901 |   -0.8775 |   -0.8811 |   -0.8606 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8647 |   -0.8641 |...........|...........|</span>
-#&gt; |    U|     501.24651 |     93.15 |    -5.305 |   -0.9441 |   -0.1067 |
-#&gt; |.....................|     2.291 |     1.184 |   0.03026 |     1.160 |
-#&gt; |.....................|   0.03008 |    0.7573 |    0.8680 |     1.222 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.075 |     1.079 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     501.24651</span> |     93.15 |  0.004968 |    0.2801 |    0.8988 |
-#&gt; |.....................|     9.885 |     1.184 |   0.03026 |     1.160 |
-#&gt; |.....................|   0.03008 |    0.7573 |    0.8680 |     1.222 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.075 |     1.079 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     78.96 |     2.363 |   0.07229 |    0.2390 |
-#&gt; |.....................|   0.02239 |    -67.81 |    -20.97 |    0.1381 |
-#&gt; |.....................|    -2.125 |     1.379 |     9.797 |    -11.70 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -9.438 |    -10.29 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    8</span>|     500.35160 |    0.9896 |    -1.002 |   -0.9114 |   -0.8945 |
-#&gt; |.....................|   -0.8456 |   -0.8148 |   -0.8742 |   -0.8688 |
-#&gt; |.....................|   -0.8898 |   -0.8778 |   -0.8827 |   -0.8587 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8632 |   -0.8625 |...........|...........|</span>
-#&gt; |    U|      500.3516 |     92.15 |    -5.305 |   -0.9441 |   -0.1067 |
-#&gt; |.....................|     2.291 |     1.191 |   0.03032 |     1.159 |
-#&gt; |.....................|   0.03008 |    0.7571 |    0.8666 |     1.224 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.077 |     1.081 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      500.3516</span> |     92.15 |  0.004966 |    0.2801 |    0.8988 |
-#&gt; |.....................|     9.885 |     1.191 |   0.03032 |     1.159 |
-#&gt; |.....................|   0.03008 |    0.7571 |    0.8666 |     1.224 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.077 |     1.081 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -75.23 |     2.232 |   -0.2459 |    0.1501 |
-#&gt; |.....................|   -0.3253 |    -66.87 |    -22.19 |    0.4436 |
-#&gt; |.....................|    -2.150 |    0.9434 |     9.182 |    -11.49 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -9.350 |    -10.07 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>    9</span>|     499.45361 |     1.000 |    -1.002 |   -0.9113 |   -0.8946 |
-#&gt; |.....................|   -0.8455 |   -0.8036 |   -0.8705 |   -0.8689 |
-#&gt; |.....................|   -0.8894 |   -0.8779 |   -0.8842 |   -0.8568 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8616 |   -0.8608 |...........|...........|</span>
-#&gt; |    U|     499.45361 |     93.12 |    -5.306 |   -0.9441 |   -0.1067 |
-#&gt; |.....................|     2.291 |     1.197 |   0.03037 |     1.159 |
-#&gt; |.....................|   0.03009 |    0.7570 |    0.8653 |     1.226 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.078 |     1.082 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     499.45361</span> |     93.12 |  0.004964 |    0.2801 |    0.8988 |
-#&gt; |.....................|     9.885 |     1.197 |   0.03037 |     1.159 |
-#&gt; |.....................|   0.03009 |    0.7570 |    0.8653 |     1.226 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.078 |     1.082 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     73.21 |     2.337 |   0.06584 |    0.2472 |
-#&gt; |.....................|  0.008903 |    -65.96 |    -20.21 |   -0.3457 |
-#&gt; |.....................|    -2.677 |     1.048 |     11.29 |    -11.53 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -9.311 |    -10.11 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   10</span>|     498.59105 |    0.9896 |    -1.003 |   -0.9113 |   -0.8946 |
-#&gt; |.....................|   -0.8455 |   -0.7924 |   -0.8671 |   -0.8688 |
-#&gt; |.....................|   -0.8890 |   -0.8781 |   -0.8861 |   -0.8548 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8600 |   -0.8591 |...........|...........|</span>
-#&gt; |    U|     498.59105 |     92.15 |    -5.306 |   -0.9441 |   -0.1068 |
-#&gt; |.....................|     2.291 |     1.204 |   0.03042 |     1.159 |
-#&gt; |.....................|   0.03009 |    0.7568 |    0.8636 |     1.229 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.080 |     1.084 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     498.59105</span> |     92.15 |  0.004962 |    0.2801 |    0.8987 |
-#&gt; |.....................|     9.885 |     1.204 |   0.03042 |     1.159 |
-#&gt; |.....................|   0.03009 |    0.7568 |    0.8636 |     1.229 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.080 |     1.084 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -74.43 |     2.211 |   -0.2431 |    0.1502 |
-#&gt; |.....................|   -0.3305 |    -64.40 |    -21.08 |    0.5329 |
-#&gt; |.....................|    -2.487 |    0.9319 |     8.926 |    -11.33 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -9.217 |    -9.888 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   11</span>|     497.71590 |     1.000 |    -1.003 |   -0.9113 |   -0.8946 |
-#&gt; |.....................|   -0.8455 |   -0.7811 |   -0.8634 |   -0.8689 |
-#&gt; |.....................|   -0.8885 |   -0.8783 |   -0.8877 |   -0.8529 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8584 |   -0.8573 |...........|...........|</span>
-#&gt; |    U|      497.7159 |     93.11 |    -5.306 |   -0.9441 |   -0.1068 |
-#&gt; |.....................|     2.291 |     1.210 |   0.03048 |     1.159 |
-#&gt; |.....................|   0.03010 |    0.7567 |    0.8622 |     1.231 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.082 |     1.086 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      497.7159</span> |     93.11 |  0.004960 |    0.2801 |    0.8987 |
-#&gt; |.....................|     9.886 |     1.210 |   0.03048 |     1.159 |
-#&gt; |.....................|   0.03010 |    0.7567 |    0.8622 |     1.231 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.082 |     1.086 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     71.79 |     2.312 |   0.07434 |    0.2557 |
-#&gt; |.....................|  0.006614 |    -63.04 |    -18.95 |    0.3164 |
-#&gt; |.....................|    -2.117 |     1.342 |     9.274 |    -11.35 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -9.172 |    -9.924 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   12</span>|     496.86264 |    0.9898 |    -1.003 |   -0.9113 |   -0.8947 |
-#&gt; |.....................|   -0.8455 |   -0.7696 |   -0.8599 |   -0.8690 |
-#&gt; |.....................|   -0.8881 |   -0.8785 |   -0.8894 |   -0.8508 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8567 |   -0.8555 |...........|...........|</span>
-#&gt; |    U|     496.86264 |     92.17 |    -5.307 |   -0.9441 |   -0.1068 |
-#&gt; |.....................|     2.291 |     1.217 |   0.03053 |     1.159 |
-#&gt; |.....................|   0.03011 |    0.7565 |    0.8607 |     1.234 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.084 |     1.088 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     496.86264</span> |     92.17 |  0.004958 |    0.2801 |    0.8987 |
-#&gt; |.....................|     9.886 |     1.217 |   0.03053 |     1.159 |
-#&gt; |.....................|   0.03011 |    0.7565 |    0.8607 |     1.234 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.084 |     1.088 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -71.54 |     2.190 |   -0.2371 |    0.1482 |
-#&gt; |.....................|   -0.3369 |    -61.67 |    -19.90 |    0.9419 |
-#&gt; |.....................|    -2.139 |     1.041 |     7.036 |    -11.13 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -9.064 |    -9.692 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   13</span>|     495.99097 |    0.9997 |    -1.004 |   -0.9113 |   -0.8947 |
-#&gt; |.....................|   -0.8454 |   -0.7580 |   -0.8562 |   -0.8692 |
-#&gt; |.....................|   -0.8877 |   -0.8787 |   -0.8907 |   -0.8487 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8550 |   -0.8537 |...........|...........|</span>
-#&gt; |    U|     495.99097 |     93.09 |    -5.307 |   -0.9441 |   -0.1069 |
-#&gt; |.....................|     2.291 |     1.224 |   0.03059 |     1.159 |
-#&gt; |.....................|   0.03011 |    0.7564 |    0.8596 |     1.236 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.085 |     1.090 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     495.99097</span> |     93.09 |  0.004956 |    0.2801 |    0.8987 |
-#&gt; |.....................|     9.886 |     1.224 |   0.03059 |     1.159 |
-#&gt; |.....................|   0.03011 |    0.7564 |    0.8596 |     1.236 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.085 |     1.090 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     67.48 |     2.282 |   0.05510 |    0.2442 |
-#&gt; |.....................|  -0.01700 |    -60.62 |    -17.93 |    0.4372 |
-#&gt; |.....................|    -2.100 |     1.212 |     9.042 |    -11.17 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -9.025 |    -9.723 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   14</span>|     495.15472 |    0.9899 |    -1.004 |   -0.9113 |   -0.8948 |
-#&gt; |.....................|   -0.8454 |   -0.7463 |   -0.8527 |   -0.8693 |
-#&gt; |.....................|   -0.8873 |   -0.8789 |   -0.8924 |   -0.8465 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8533 |   -0.8518 |...........|...........|</span>
-#&gt; |    U|     495.15472 |     92.18 |    -5.308 |   -0.9441 |   -0.1069 |
-#&gt; |.....................|     2.291 |     1.231 |   0.03064 |     1.159 |
-#&gt; |.....................|   0.03012 |    0.7562 |    0.8581 |     1.239 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.087 |     1.092 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     495.15472</span> |     92.18 |  0.004954 |    0.2801 |    0.8986 |
-#&gt; |.....................|     9.886 |     1.231 |   0.03064 |     1.159 |
-#&gt; |.....................|   0.03012 |    0.7562 |    0.8581 |     1.239 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.087 |     1.092 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -68.93 |     2.171 |   -0.2257 |    0.1488 |
-#&gt; |.....................|   -0.3348 |    -59.34 |    -18.81 |     1.070 |
-#&gt; |.....................|    -2.082 |     1.016 |     8.208 |    -10.96 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -8.930 |    -9.498 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   15</span>|     494.30065 |    0.9995 |    -1.005 |   -0.9112 |   -0.8948 |
-#&gt; |.....................|   -0.8453 |   -0.7344 |   -0.8490 |   -0.8695 |
-#&gt; |.....................|   -0.8869 |   -0.8792 |   -0.8941 |   -0.8443 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8515 |   -0.8499 |...........|...........|</span>
-#&gt; |    U|     494.30065 |     93.07 |    -5.308 |   -0.9440 |   -0.1069 |
-#&gt; |.....................|     2.291 |     1.237 |   0.03069 |     1.159 |
-#&gt; |.....................|   0.03013 |    0.7561 |    0.8567 |     1.242 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.089 |     1.094 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     494.30065</span> |     93.07 |  0.004951 |    0.2801 |    0.8986 |
-#&gt; |.....................|     9.887 |     1.237 |   0.03069 |     1.159 |
-#&gt; |.....................|   0.03013 |    0.7561 |    0.8567 |     1.242 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.089 |     1.094 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     65.20 |     2.260 |   0.06851 |    0.2416 |
-#&gt; |.....................|  -0.02143 |    -58.42 |    -17.03 |    0.3665 |
-#&gt; |.....................|    -2.202 |     1.112 |     7.377 |    -10.96 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -8.866 |    -9.510 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   16</span>|     493.48608 |    0.9901 |    -1.005 |   -0.9112 |   -0.8948 |
-#&gt; |.....................|   -0.8453 |   -0.7225 |   -0.8455 |   -0.8696 |
-#&gt; |.....................|   -0.8865 |   -0.8794 |   -0.8956 |   -0.8421 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8496 |   -0.8479 |...........|...........|</span>
-#&gt; |    U|     493.48608 |     92.19 |    -5.309 |   -0.9440 |   -0.1070 |
-#&gt; |.....................|     2.291 |     1.244 |   0.03075 |     1.159 |
-#&gt; |.....................|   0.03013 |    0.7559 |    0.8553 |     1.244 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.091 |     1.096 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     493.48608</span> |     92.19 |  0.004949 |    0.2801 |    0.8985 |
-#&gt; |.....................|     9.887 |     1.244 |   0.03075 |     1.159 |
-#&gt; |.....................|   0.03013 |    0.7559 |    0.8553 |     1.244 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.091 |     1.096 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -66.94 |     2.152 |   -0.2367 |    0.1452 |
-#&gt; |.....................|   -0.3412 |    -57.13 |    -17.84 |     1.057 |
-#&gt; |.....................|    -2.129 |    0.9540 |     6.557 |    -10.77 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -8.770 |    -9.285 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   17</span>|     492.64670 |    0.9993 |    -1.006 |   -0.9112 |   -0.8949 |
-#&gt; |.....................|   -0.8453 |   -0.7105 |   -0.8419 |   -0.8698 |
-#&gt; |.....................|   -0.8860 |   -0.8796 |   -0.8969 |   -0.8398 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8478 |   -0.8460 |...........|...........|</span>
-#&gt; |    U|      492.6467 |     93.06 |    -5.309 |   -0.9440 |   -0.1070 |
-#&gt; |.....................|     2.291 |     1.251 |   0.03080 |     1.159 |
-#&gt; |.....................|   0.03014 |    0.7557 |    0.8542 |     1.247 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.093 |     1.098 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      492.6467</span> |     93.06 |  0.004947 |    0.2801 |    0.8985 |
-#&gt; |.....................|     9.888 |     1.251 |   0.03080 |     1.159 |
-#&gt; |.....................|   0.03014 |    0.7557 |    0.8542 |     1.247 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.093 |     1.098 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     62.51 |     2.244 |   0.07930 |    0.2506 |
-#&gt; |.....................|  -0.02305 |    -56.21 |    -16.10 |    0.4420 |
-#&gt; |.....................|    -2.202 |     1.071 |     7.160 |    -10.75 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -8.705 |    -9.292 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   18</span>|     491.85024 |    0.9902 |    -1.006 |   -0.9112 |   -0.8949 |
-#&gt; |.....................|   -0.8453 |   -0.6983 |   -0.8384 |   -0.8699 |
-#&gt; |.....................|   -0.8855 |   -0.8798 |   -0.8984 |   -0.8374 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8459 |   -0.8439 |...........|...........|</span>
-#&gt; |    U|     491.85024 |     92.21 |    -5.310 |   -0.9440 |   -0.1071 |
-#&gt; |.....................|     2.291 |     1.258 |   0.03085 |     1.159 |
-#&gt; |.....................|   0.03015 |    0.7556 |    0.8529 |     1.250 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.095 |     1.100 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     491.85024</span> |     92.21 |  0.004944 |    0.2801 |    0.8985 |
-#&gt; |.....................|     9.888 |     1.258 |   0.03085 |     1.159 |
-#&gt; |.....................|   0.03015 |    0.7556 |    0.8529 |     1.250 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.095 |     1.100 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -64.39 |     2.132 |   -0.2231 |    0.1507 |
-#&gt; |.....................|   -0.3455 |    -54.91 |    -16.84 |     1.107 |
-#&gt; |.....................|    -2.130 |    0.9153 |     6.361 |    -10.56 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -8.604 |    -9.065 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   19</span>|     491.03181 |    0.9992 |    -1.007 |   -0.9112 |   -0.8950 |
-#&gt; |.....................|   -0.8452 |   -0.6860 |   -0.8347 |   -0.8702 |
-#&gt; |.....................|   -0.8850 |   -0.8800 |   -0.8997 |   -0.8350 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8439 |   -0.8419 |...........|...........|</span>
-#&gt; |    U|     491.03181 |     93.04 |    -5.310 |   -0.9440 |   -0.1071 |
-#&gt; |.....................|     2.291 |     1.265 |   0.03091 |     1.159 |
-#&gt; |.....................|   0.03015 |    0.7554 |    0.8517 |     1.253 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.097 |     1.103 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     491.03181</span> |     93.04 |  0.004942 |    0.2801 |    0.8984 |
-#&gt; |.....................|     9.888 |     1.265 |   0.03091 |     1.159 |
-#&gt; |.....................|   0.03015 |    0.7554 |    0.8517 |     1.253 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.097 |     1.103 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     59.97 |     2.217 |   0.06954 |    0.2512 |
-#&gt; |.....................|  -0.03854 |    -54.10 |    -15.21 |    0.3955 |
-#&gt; |.....................|    -2.336 |     1.047 |     8.162 |    -10.81 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -8.706 |    -9.233 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   20</span>|     490.24998 |    0.9904 |    -1.007 |   -0.9112 |   -0.8950 |
-#&gt; |.....................|   -0.8452 |   -0.6737 |   -0.8313 |   -0.8703 |
-#&gt; |.....................|   -0.8845 |   -0.8803 |   -0.9015 |   -0.8325 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8419 |   -0.8397 |...........|...........|</span>
-#&gt; |    U|     490.24998 |     92.22 |    -5.311 |   -0.9440 |   -0.1072 |
-#&gt; |.....................|     2.291 |     1.273 |   0.03096 |     1.159 |
-#&gt; |.....................|   0.03016 |    0.7552 |    0.8502 |     1.256 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.099 |     1.105 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     490.24998</span> |     92.22 |  0.004939 |    0.2801 |    0.8984 |
-#&gt; |.....................|     9.889 |     1.273 |   0.03096 |     1.159 |
-#&gt; |.....................|   0.03016 |    0.7552 |    0.8502 |     1.256 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.099 |     1.105 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -61.40 |     2.114 |   -0.2172 |    0.1580 |
-#&gt; |.....................|   -0.3477 |    -53.15 |    -16.02 |    0.7982 |
-#&gt; |.....................|    -2.483 |    0.7215 |     9.240 |    -10.34 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -8.435 |    -8.843 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   21</span>|     489.45580 |    0.9991 |    -1.008 |   -0.9111 |   -0.8951 |
-#&gt; |.....................|   -0.8451 |   -0.6614 |   -0.8278 |   -0.8705 |
-#&gt; |.....................|   -0.8839 |   -0.8804 |   -0.9038 |   -0.8300 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8398 |   -0.8376 |...........|...........|</span>
-#&gt; |    U|      489.4558 |     93.03 |    -5.311 |   -0.9439 |   -0.1072 |
-#&gt; |.....................|     2.291 |     1.280 |   0.03101 |     1.159 |
-#&gt; |.....................|   0.03017 |    0.7551 |    0.8482 |     1.259 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.102 |     1.107 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      489.4558</span> |     93.03 |  0.004937 |    0.2801 |    0.8983 |
-#&gt; |.....................|     9.889 |     1.280 |   0.03101 |     1.159 |
-#&gt; |.....................|   0.03017 |    0.7551 |    0.8482 |     1.259 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.102 |     1.107 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     58.20 |     2.191 |   0.07193 |    0.2543 |
-#&gt; |.....................|  -0.04201 |    -51.69 |    -14.22 |    0.6968 |
-#&gt; |.....................|    -2.088 |     1.024 |     8.024 |    -10.34 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -8.364 |    -8.845 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   22</span>|     488.71859 |    0.9903 |    -1.008 |   -0.9111 |   -0.8951 |
-#&gt; |.....................|   -0.8451 |   -0.6491 |   -0.8245 |   -0.8707 |
-#&gt; |.....................|   -0.8833 |   -0.8807 |   -0.9059 |   -0.8275 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8378 |   -0.8354 |...........|...........|</span>
-#&gt; |    U|     488.71859 |     92.21 |    -5.312 |   -0.9439 |   -0.1073 |
-#&gt; |.....................|     2.291 |     1.287 |   0.03106 |     1.158 |
-#&gt; |.....................|   0.03018 |    0.7549 |    0.8463 |     1.262 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.104 |     1.110 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     488.71859</span> |     92.21 |  0.004934 |    0.2801 |    0.8983 |
-#&gt; |.....................|     9.890 |     1.287 |   0.03106 |     1.158 |
-#&gt; |.....................|   0.03018 |    0.7549 |    0.8463 |     1.262 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.104 |     1.110 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -62.72 |     2.087 |   -0.2158 |    0.1536 |
-#&gt; |.....................|   -0.3560 |    -50.59 |    -14.96 |     1.289 |
-#&gt; |.....................|    -2.066 |    0.8753 |     7.259 |    -10.12 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -8.247 |    -8.604 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   23</span>|     487.91801 |    0.9987 |    -1.009 |   -0.9111 |   -0.8952 |
-#&gt; |.....................|   -0.8450 |   -0.6366 |   -0.8210 |   -0.8711 |
-#&gt; |.....................|   -0.8828 |   -0.8809 |   -0.9078 |   -0.8248 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8356 |   -0.8332 |...........|...........|</span>
-#&gt; |    U|     487.91801 |     93.00 |    -5.312 |   -0.9439 |   -0.1073 |
-#&gt; |.....................|     2.292 |     1.294 |   0.03112 |     1.158 |
-#&gt; |.....................|   0.03019 |    0.7547 |    0.8446 |     1.265 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.106 |     1.112 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     487.91801</span> |     93.00 |  0.004931 |    0.2801 |    0.8982 |
-#&gt; |.....................|     9.890 |     1.294 |   0.03112 |     1.158 |
-#&gt; |.....................|   0.03019 |    0.7547 |    0.8446 |     1.265 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.106 |     1.112 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     52.73 |     2.162 |   0.07610 |    0.2481 |
-#&gt; |.....................|  -0.05835 |    -50.28 |    -13.63 |    0.1991 |
-#&gt; |.....................|    -2.681 |    0.6961 |     9.479 |    -10.12 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -8.180 |    -8.607 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   24</span>|     487.19380 |    0.9906 |    -1.009 |   -0.9111 |   -0.8952 |
-#&gt; |.....................|   -0.8450 |   -0.6240 |   -0.8177 |   -0.8712 |
-#&gt; |.....................|   -0.8820 |   -0.8811 |   -0.9103 |   -0.8222 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8335 |   -0.8310 |...........|...........|</span>
-#&gt; |    U|      487.1938 |     92.24 |    -5.313 |   -0.9439 |   -0.1074 |
-#&gt; |.....................|     2.292 |     1.301 |   0.03116 |     1.158 |
-#&gt; |.....................|   0.03020 |    0.7546 |    0.8424 |     1.269 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.108 |     1.114 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      487.1938</span> |     92.24 |  0.004929 |    0.2801 |    0.8982 |
-#&gt; |.....................|     9.891 |     1.301 |   0.03116 |     1.158 |
-#&gt; |.....................|   0.03020 |    0.7546 |    0.8424 |     1.269 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.108 |     1.114 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -58.70 |     2.065 |   -0.2024 |    0.1592 |
-#&gt; |.....................|   -0.3563 |    -48.58 |    -14.05 |     1.280 |
-#&gt; |.....................|    -2.114 |    0.8980 |     5.535 |    -9.882 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -8.046 |    -8.364 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   25</span>|     486.45861 |    0.9990 |    -1.010 |   -0.9111 |   -0.8953 |
-#&gt; |.....................|   -0.8449 |   -0.6115 |   -0.8144 |   -0.8715 |
-#&gt; |.....................|   -0.8813 |   -0.8813 |   -0.9121 |   -0.8195 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8313 |   -0.8287 |...........|...........|</span>
-#&gt; |    U|     486.45861 |     93.03 |    -5.313 |   -0.9439 |   -0.1074 |
-#&gt; |.....................|     2.292 |     1.309 |   0.03121 |     1.158 |
-#&gt; |.....................|   0.03021 |    0.7545 |    0.8409 |     1.272 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.111 |     1.117 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     486.45861</span> |     93.03 |  0.004926 |    0.2801 |    0.8981 |
-#&gt; |.....................|     9.892 |     1.309 |   0.03121 |     1.158 |
-#&gt; |.....................|   0.03021 |    0.7545 |    0.8409 |     1.272 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.111 |     1.117 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     56.64 |     2.141 |   0.09518 |    0.2574 |
-#&gt; |.....................|  -0.04938 |    -48.45 |    -12.81 |    0.1110 |
-#&gt; |.....................|    -2.819 |    0.7463 |     7.804 |    -9.858 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -7.976 |    -8.366 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   26</span>|     485.70463 |    0.9912 |    -1.011 |   -0.9111 |   -0.8954 |
-#&gt; |.....................|   -0.8448 |   -0.5987 |   -0.8113 |   -0.8717 |
-#&gt; |.....................|   -0.8805 |   -0.8815 |   -0.9139 |   -0.8166 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8290 |   -0.8264 |...........|...........|</span>
-#&gt; |    U|     485.70463 |     92.30 |    -5.314 |   -0.9439 |   -0.1075 |
-#&gt; |.....................|     2.292 |     1.316 |   0.03126 |     1.158 |
-#&gt; |.....................|   0.03022 |    0.7543 |    0.8393 |     1.275 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.113 |     1.119 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     485.70463</span> |     92.30 |  0.004923 |    0.2801 |    0.8981 |
-#&gt; |.....................|     9.892 |     1.316 |   0.03126 |     1.158 |
-#&gt; |.....................|   0.03022 |    0.7543 |    0.8393 |     1.275 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.113 |     1.119 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -49.75 |     2.049 |   -0.1896 |    0.1657 |
-#&gt; |.....................|   -0.3394 |    -47.06 |    -13.27 |    0.8968 |
-#&gt; |.....................|    -2.558 |    0.5259 |     7.006 |    -9.655 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -7.860 |    -8.128 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   27</span>|     485.03383 |    0.9993 |    -1.011 |   -0.9111 |   -0.8954 |
-#&gt; |.....................|   -0.8447 |   -0.5860 |   -0.8081 |   -0.8719 |
-#&gt; |.....................|   -0.8796 |   -0.8816 |   -0.9160 |   -0.8138 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8267 |   -0.8240 |...........|...........|</span>
-#&gt; |    U|     485.03383 |     93.05 |    -5.315 |   -0.9439 |   -0.1076 |
-#&gt; |.....................|     2.292 |     1.323 |   0.03131 |     1.158 |
-#&gt; |.....................|   0.03024 |    0.7542 |    0.8375 |     1.279 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.116 |     1.122 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     485.03383</span> |     93.05 |  0.004920 |    0.2801 |    0.8980 |
-#&gt; |.....................|     9.893 |     1.323 |   0.03131 |     1.158 |
-#&gt; |.....................|   0.03024 |    0.7542 |    0.8375 |     1.279 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.116 |     1.122 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     59.36 |     2.117 |    0.1128 |    0.2587 |
-#&gt; |.....................|  -0.03694 |    -45.49 |    -11.65 |    0.8714 |
-#&gt; |.....................|    -2.196 |    0.9711 |     7.208 |    -9.629 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -7.785 |    -8.123 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   28</span>|     484.30050 |    0.9913 |    -1.012 |   -0.9111 |   -0.8955 |
-#&gt; |.....................|   -0.8447 |   -0.5733 |   -0.8052 |   -0.8723 |
-#&gt; |.....................|   -0.8788 |   -0.8818 |   -0.9181 |   -0.8109 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8243 |   -0.8216 |...........|...........|</span>
-#&gt; |    U|      484.3005 |     92.30 |    -5.315 |   -0.9439 |   -0.1077 |
-#&gt; |.....................|     2.292 |     1.331 |   0.03135 |     1.157 |
-#&gt; |.....................|   0.03025 |    0.7541 |    0.8357 |     1.282 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.118 |     1.124 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      484.3005</span> |     92.30 |  0.004916 |    0.2801 |    0.8979 |
-#&gt; |.....................|     9.894 |     1.331 |   0.03135 |     1.157 |
-#&gt; |.....................|   0.03025 |    0.7541 |    0.8357 |     1.282 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.118 |     1.124 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -49.13 |     2.024 |   -0.1788 |    0.1668 |
-#&gt; |.....................|   -0.3408 |    -44.74 |    -12.30 |     1.348 |
-#&gt; |.....................|    -2.137 |    0.7757 |     5.010 |    -9.393 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -7.651 |    -7.866 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   29</span>|     483.61888 |    0.9988 |    -1.013 |   -0.9110 |   -0.8956 |
-#&gt; |.....................|   -0.8446 |   -0.5603 |   -0.8022 |   -0.8729 |
-#&gt; |.....................|   -0.8781 |   -0.8821 |   -0.9194 |   -0.8078 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8218 |   -0.8191 |...........|...........|</span>
-#&gt; |    U|     483.61888 |     93.00 |    -5.316 |   -0.9438 |   -0.1077 |
-#&gt; |.....................|     2.292 |     1.338 |   0.03140 |     1.157 |
-#&gt; |.....................|   0.03026 |    0.7539 |    0.8345 |     1.286 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.121 |     1.127 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     483.61888</span> |     93.00 |  0.004913 |    0.2801 |    0.8979 |
-#&gt; |.....................|     9.895 |     1.338 |   0.03140 |     1.157 |
-#&gt; |.....................|   0.03026 |    0.7539 |    0.8345 |     1.286 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.121 |     1.127 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     51.77 |     2.082 |   0.08733 |    0.2462 |
-#&gt; |.....................|  -0.07383 |    -44.60 |    -11.22 |    0.3023 |
-#&gt; |.....................|    -2.722 |    0.5489 |     8.672 |    -9.371 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -7.562 |    -7.848 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   30</span>|     482.91165 |    0.9915 |    -1.013 |   -0.9110 |   -0.8957 |
-#&gt; |.....................|   -0.8445 |   -0.5473 |   -0.7995 |   -0.8732 |
-#&gt; |.....................|   -0.8770 |   -0.8822 |   -0.9219 |   -0.8047 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8192 |   -0.8165 |...........|...........|</span>
-#&gt; |    U|     482.91165 |     92.33 |    -5.317 |   -0.9438 |   -0.1078 |
-#&gt; |.....................|     2.292 |     1.346 |   0.03144 |     1.157 |
-#&gt; |.....................|   0.03027 |    0.7538 |    0.8323 |     1.290 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.124 |     1.130 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     482.91165</span> |     92.33 |  0.004909 |    0.2801 |    0.8978 |
-#&gt; |.....................|     9.895 |     1.346 |   0.03144 |     1.157 |
-#&gt; |.....................|   0.03027 |    0.7538 |    0.8323 |     1.290 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.124 |     1.130 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -45.50 |     2.003 |   -0.1660 |    0.1702 |
-#&gt; |.....................|   -0.3374 |    -43.33 |    -11.63 |    0.9930 |
-#&gt; |.....................|    -2.511 |    0.4656 |     7.949 |    -9.128 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -7.427 |    -7.608 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   31</span>|     482.28997 |    0.9991 |    -1.014 |   -0.9110 |   -0.8957 |
-#&gt; |.....................|   -0.8444 |   -0.5346 |   -0.7968 |   -0.8735 |
-#&gt; |.....................|   -0.8759 |   -0.8822 |   -0.9253 |   -0.8017 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8168 |   -0.8141 |...........|...........|</span>
-#&gt; |    U|     482.28997 |     93.03 |    -5.317 |   -0.9438 |   -0.1079 |
-#&gt; |.....................|     2.292 |     1.353 |   0.03148 |     1.157 |
-#&gt; |.....................|   0.03029 |    0.7538 |    0.8294 |     1.293 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.126 |     1.132 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     482.28997</span> |     93.03 |  0.004906 |    0.2801 |    0.8977 |
-#&gt; |.....................|     9.896 |     1.353 |   0.03148 |     1.157 |
-#&gt; |.....................|   0.03029 |    0.7538 |    0.8294 |     1.293 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.126 |     1.132 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     55.95 |     2.054 |    0.1106 |    0.2465 |
-#&gt; |.....................|  -0.05340 |    -42.18 |    -10.21 |    0.8261 |
-#&gt; |.....................|    -2.234 |    0.9104 |     5.096 |    -9.114 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -7.334 |    -7.590 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   32</span>|     481.60550 |    0.9915 |    -1.015 |   -0.9110 |   -0.8958 |
-#&gt; |.....................|   -0.8443 |   -0.5217 |   -0.7945 |   -0.8740 |
-#&gt; |.....................|   -0.8749 |   -0.8824 |   -0.9274 |   -0.7984 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8142 |   -0.8115 |...........|...........|</span>
-#&gt; |    U|      481.6055 |     92.33 |    -5.318 |   -0.9438 |   -0.1080 |
-#&gt; |.....................|     2.292 |     1.361 |   0.03151 |     1.156 |
-#&gt; |.....................|   0.03031 |    0.7536 |    0.8276 |     1.297 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.129 |     1.135 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      481.6055</span> |     92.33 |  0.004902 |    0.2801 |    0.8977 |
-#&gt; |.....................|     9.897 |     1.361 |   0.03151 |     1.156 |
-#&gt; |.....................|   0.03031 |    0.7536 |    0.8276 |     1.297 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.129 |     1.135 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -45.82 |     1.973 |   -0.1624 |    0.1674 |
-#&gt; |.....................|   -0.3387 |    -41.15 |    -10.74 |     1.410 |
-#&gt; |.....................|    -2.130 |    0.6088 |     4.422 |    -8.852 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -7.186 |    -7.335 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   33</span>|     480.97343 |    0.9986 |    -1.016 |   -0.9110 |   -0.8959 |
-#&gt; |.....................|   -0.8442 |   -0.5084 |   -0.7922 |   -0.8748 |
-#&gt; |.....................|   -0.8740 |   -0.8826 |   -0.9278 |   -0.7950 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8114 |   -0.8088 |...........|...........|</span>
-#&gt; |    U|     480.97343 |     92.98 |    -5.319 |   -0.9438 |   -0.1081 |
-#&gt; |.....................|     2.292 |     1.368 |   0.03155 |     1.156 |
-#&gt; |.....................|   0.03032 |    0.7534 |    0.8272 |     1.301 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.132 |     1.138 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     480.97343</span> |     92.98 |  0.004897 |    0.2801 |    0.8976 |
-#&gt; |.....................|     9.898 |     1.368 |   0.03155 |     1.156 |
-#&gt; |.....................|   0.03032 |    0.7534 |    0.8272 |     1.301 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.132 |     1.138 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     47.76 |     2.024 |   0.09167 |    0.2404 |
-#&gt; |.....................|  -0.07393 |    -40.22 |    -9.470 |     1.031 |
-#&gt; |.....................|    -2.098 |    0.8752 |     6.346 |    -8.797 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -7.089 |    -7.296 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   34</span>|     480.33235 |    0.9916 |    -1.017 |   -0.9110 |   -0.8960 |
-#&gt; |.....................|   -0.8441 |   -0.4952 |   -0.7903 |   -0.8757 |
-#&gt; |.....................|   -0.8731 |   -0.8830 |   -0.9294 |   -0.7914 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8086 |   -0.8060 |...........|...........|</span>
-#&gt; |    U|     480.33235 |     92.33 |    -5.320 |   -0.9438 |   -0.1082 |
-#&gt; |.....................|     2.292 |     1.376 |   0.03158 |     1.155 |
-#&gt; |.....................|   0.03033 |    0.7532 |    0.8258 |     1.306 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.135 |     1.141 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     480.33235</span> |     92.33 |  0.004893 |    0.2801 |    0.8975 |
-#&gt; |.....................|     9.899 |     1.376 |   0.03158 |     1.155 |
-#&gt; |.....................|   0.03033 |    0.7532 |    0.8258 |     1.306 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.135 |     1.141 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -44.82 |     1.956 |   -0.1640 |    0.1653 |
-#&gt; |.....................|   -0.3374 |    -39.36 |    -9.982 |     1.432 |
-#&gt; |.....................|    -2.136 |    0.6770 |     5.747 |    -8.552 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -6.943 |    -7.038 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   35</span>|     479.71253 |    0.9984 |    -1.018 |   -0.9110 |   -0.8961 |
-#&gt; |.....................|   -0.8439 |   -0.4821 |   -0.7885 |   -0.8768 |
-#&gt; |.....................|   -0.8721 |   -0.8833 |   -0.9319 |   -0.7879 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8057 |   -0.8033 |...........|...........|</span>
-#&gt; |    U|     479.71253 |     92.97 |    -5.321 |   -0.9438 |   -0.1083 |
-#&gt; |.....................|     2.293 |     1.384 |   0.03160 |     1.155 |
-#&gt; |.....................|   0.03035 |    0.7529 |    0.8236 |     1.310 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.138 |     1.144 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     479.71253</span> |     92.97 |  0.004888 |    0.2801 |    0.8974 |
-#&gt; |.....................|     9.901 |     1.384 |   0.03160 |     1.155 |
-#&gt; |.....................|   0.03035 |    0.7529 |    0.8236 |     1.310 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.138 |     1.144 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     45.27 |     2.001 |   0.09802 |    0.2411 |
-#&gt; |.....................|  -0.07361 |    -39.48 |    -9.147 |    0.2467 |
-#&gt; |.....................|    -2.886 |    0.4583 |     7.836 |    -8.475 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -6.831 |    -7.001 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   36</span>|     479.08241 |    0.9920 |    -1.019 |   -0.9110 |   -0.8962 |
-#&gt; |.....................|   -0.8438 |   -0.4691 |   -0.7871 |   -0.8771 |
-#&gt; |.....................|   -0.8704 |   -0.8833 |   -0.9359 |   -0.7844 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8029 |   -0.8006 |...........|...........|</span>
-#&gt; |    U|     479.08241 |     92.37 |    -5.322 |   -0.9438 |   -0.1084 |
-#&gt; |.....................|     2.293 |     1.391 |   0.03163 |     1.155 |
-#&gt; |.....................|   0.03037 |    0.7529 |    0.8201 |     1.314 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.141 |     1.147 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     479.08241</span> |     92.37 |  0.004883 |    0.2801 |    0.8973 |
-#&gt; |.....................|     9.902 |     1.391 |   0.03163 |     1.155 |
-#&gt; |.....................|   0.03037 |    0.7529 |    0.8201 |     1.314 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.141 |     1.147 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -39.48 |     1.926 |   -0.1378 |    0.1752 |
-#&gt; |.....................|   -0.3206 |    -38.45 |    -9.498 |    0.8453 |
-#&gt; |.....................|    -2.699 |    0.3871 |     5.589 |    -8.242 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -6.674 |    -6.762 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   37</span>|     478.53604 |    0.9990 |    -1.019 |   -0.9110 |   -0.8964 |
-#&gt; |.....................|   -0.8437 |   -0.4561 |   -0.7854 |   -0.8772 |
-#&gt; |.....................|   -0.8684 |   -0.8832 |   -0.9392 |   -0.7811 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8002 |   -0.7981 |...........|...........|</span>
-#&gt; |    U|     478.53604 |     93.02 |    -5.323 |   -0.9438 |   -0.1085 |
-#&gt; |.....................|     2.293 |     1.399 |   0.03165 |     1.155 |
-#&gt; |.....................|   0.03040 |    0.7530 |    0.8172 |     1.318 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.144 |     1.150 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     478.53604</span> |     93.02 |  0.004879 |    0.2801 |    0.8972 |
-#&gt; |.....................|     9.903 |     1.399 |   0.03165 |     1.155 |
-#&gt; |.....................|   0.03040 |    0.7530 |    0.8172 |     1.318 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.144 |     1.150 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     52.06 |     1.969 |    0.1359 |    0.2508 |
-#&gt; |.....................|  -0.04337 |    -37.95 |    -8.435 |    0.2680 |
-#&gt; |.....................|    -2.930 |    0.5186 |     5.955 |    -8.188 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -6.576 |    -6.741 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   38</span>|     477.90297 |    0.9924 |    -1.021 |   -0.9111 |   -0.8965 |
-#&gt; |.....................|   -0.8436 |   -0.4428 |   -0.7846 |   -0.8771 |
-#&gt; |.....................|   -0.8659 |   -0.8830 |   -0.9416 |   -0.7776 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7975 |   -0.7955 |...........|...........|</span>
-#&gt; |    U|     477.90297 |     92.41 |    -5.324 |   -0.9439 |   -0.1086 |
-#&gt; |.....................|     2.293 |     1.406 |   0.03166 |     1.155 |
-#&gt; |.....................|   0.03044 |    0.7531 |    0.8151 |     1.323 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.147 |     1.152 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     477.90297</span> |     92.41 |  0.004873 |    0.2801 |    0.8971 |
-#&gt; |.....................|     9.904 |     1.406 |   0.03166 |     1.155 |
-#&gt; |.....................|   0.03044 |    0.7531 |    0.8151 |     1.323 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.147 |     1.152 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -35.48 |     1.900 |   -0.1171 |    0.1805 |
-#&gt; |.....................|   -0.3013 |    -36.12 |    -8.554 |     1.521 |
-#&gt; |.....................|    -2.082 |    0.5139 |     5.057 |    -7.934 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -6.421 |    -6.501 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   39</span>|     477.39487 |    0.9991 |    -1.022 |   -0.9111 |   -0.8966 |
-#&gt; |.....................|   -0.8434 |   -0.4296 |   -0.7836 |   -0.8780 |
-#&gt; |.....................|   -0.8642 |   -0.8831 |   -0.9436 |   -0.7740 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7946 |   -0.7928 |...........|...........|</span>
-#&gt; |    U|     477.39487 |     93.04 |    -5.325 |   -0.9439 |   -0.1088 |
-#&gt; |.....................|     2.293 |     1.414 |   0.03168 |     1.154 |
-#&gt; |.....................|   0.03047 |    0.7531 |    0.8134 |     1.327 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.150 |     1.155 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     477.39487</span> |     93.04 |  0.004868 |    0.2801 |    0.8969 |
-#&gt; |.....................|     9.906 |     1.414 |   0.03168 |     1.154 |
-#&gt; |.....................|   0.03047 |    0.7531 |    0.8134 |     1.327 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.150 |     1.155 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     53.22 |     1.947 |    0.1564 |    0.2562 |
-#&gt; |.....................|  -0.02756 |    -35.38 |    -7.440 |     1.129 |
-#&gt; |.....................|    -2.109 |    0.8531 |     5.389 |    -7.888 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -6.311 |    -6.462 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   40</span>|     476.77835 |    0.9927 |    -1.023 |   -0.9112 |   -0.8968 |
-#&gt; |.....................|   -0.8433 |   -0.4165 |   -0.7840 |   -0.8801 |
-#&gt; |.....................|   -0.8630 |   -0.8835 |   -0.9455 |   -0.7699 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7913 |   -0.7897 |...........|...........|</span>
-#&gt; |    U|     476.77835 |     92.44 |    -5.326 |   -0.9439 |   -0.1090 |
-#&gt; |.....................|     2.293 |     1.422 |   0.03167 |     1.153 |
-#&gt; |.....................|   0.03048 |    0.7527 |    0.8117 |     1.332 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.153 |     1.159 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     476.77835</span> |     92.44 |  0.004861 |    0.2801 |    0.8968 |
-#&gt; |.....................|     9.907 |     1.422 |   0.03167 |     1.153 |
-#&gt; |.....................|   0.03048 |    0.7527 |    0.8117 |     1.332 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.153 |     1.159 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -31.48 |     1.878 |  -0.09989 |    0.1868 |
-#&gt; |.....................|   -0.2862 |    -34.69 |    -7.934 |     1.303 |
-#&gt; |.....................|    -2.230 |    0.5238 |     3.299 |    -7.623 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -6.137 |    -6.207 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   41</span>|     476.29140 |    0.9988 |    -1.024 |   -0.9112 |   -0.8970 |
-#&gt; |.....................|   -0.8432 |   -0.4030 |   -0.7837 |   -0.8817 |
-#&gt; |.....................|   -0.8615 |   -0.8839 |   -0.9453 |   -0.7660 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7883 |   -0.7869 |...........|...........|</span>
-#&gt; |    U|      476.2914 |     93.01 |    -5.328 |   -0.9440 |   -0.1091 |
-#&gt; |.....................|     2.293 |     1.430 |   0.03168 |     1.152 |
-#&gt; |.....................|   0.03051 |    0.7524 |    0.8119 |     1.337 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.157 |     1.162 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      476.2914</span> |     93.01 |  0.004855 |    0.2801 |    0.8966 |
-#&gt; |.....................|     9.909 |     1.430 |   0.03168 |     1.152 |
-#&gt; |.....................|   0.03051 |    0.7524 |    0.8119 |     1.337 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.157 |     1.162 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     48.73 |     1.930 |    0.1514 |    0.2545 |
-#&gt; |.....................|  -0.03521 |    -34.01 |    -6.934 |     1.004 |
-#&gt; |.....................|    -2.133 |    0.7968 |     5.252 |    -7.528 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -6.021 |    -6.137 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   42</span>|     475.72593 |    0.9927 |    -1.026 |   -0.9113 |   -0.8972 |
-#&gt; |.....................|   -0.8430 |   -0.3897 |   -0.7848 |   -0.8834 |
-#&gt; |.....................|   -0.8598 |   -0.8844 |   -0.9451 |   -0.7619 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7851 |   -0.7840 |...........|...........|</span>
-#&gt; |    U|     475.72593 |     92.44 |    -5.329 |   -0.9441 |   -0.1094 |
-#&gt; |.....................|     2.294 |     1.437 |   0.03166 |     1.151 |
-#&gt; |.....................|   0.03053 |    0.7521 |    0.8121 |     1.342 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |     1.165 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     475.72593</span> |     92.44 |  0.004847 |    0.2801 |    0.8964 |
-#&gt; |.....................|     9.910 |     1.437 |   0.03166 |     1.151 |
-#&gt; |.....................|   0.03053 |    0.7521 |    0.8121 |     1.342 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.160 |     1.165 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -31.62 |     1.868 |   -0.1026 |    0.1833 |
-#&gt; |.....................|   -0.2884 |    -33.06 |    -7.282 |     1.547 |
-#&gt; |.....................|    -2.194 |    0.5347 |     3.320 |    -7.249 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.852 |    -5.889 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   43</span>|     475.25217 |    0.9986 |    -1.027 |   -0.9113 |   -0.8974 |
-#&gt; |.....................|   -0.8428 |   -0.3762 |   -0.7856 |   -0.8854 |
-#&gt; |.....................|   -0.8580 |   -0.8849 |   -0.9453 |   -0.7580 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7821 |   -0.7812 |...........|...........|</span>
-#&gt; |    U|     475.25217 |     92.99 |    -5.331 |   -0.9441 |   -0.1096 |
-#&gt; |.....................|     2.294 |     1.445 |   0.03165 |     1.150 |
-#&gt; |.....................|   0.03056 |    0.7517 |    0.8119 |     1.346 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.163 |     1.168 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     475.25217</span> |     92.99 |  0.004840 |    0.2801 |    0.8962 |
-#&gt; |.....................|     9.912 |     1.445 |   0.03165 |     1.150 |
-#&gt; |.....................|   0.03056 |    0.7517 |    0.8119 |     1.346 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.163 |     1.168 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     45.01 |     1.918 |    0.1424 |    0.2472 |
-#&gt; |.....................|  -0.04139 |    -32.61 |    -6.424 |    0.9161 |
-#&gt; |.....................|    -2.151 |    0.6354 |     5.209 |    -7.174 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.746 |    -5.822 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   44</span>|     474.72079 |    0.9929 |    -1.029 |   -0.9114 |   -0.8977 |
-#&gt; |.....................|   -0.8427 |   -0.3629 |   -0.7879 |   -0.8876 |
-#&gt; |.....................|   -0.8559 |   -0.8852 |   -0.9458 |   -0.7541 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7790 |   -0.7785 |...........|...........|</span>
-#&gt; |    U|     474.72079 |     92.46 |    -5.333 |   -0.9442 |   -0.1098 |
-#&gt; |.....................|     2.294 |     1.453 |   0.03161 |     1.149 |
-#&gt; |.....................|   0.03059 |    0.7515 |    0.8114 |     1.351 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.167 |     1.171 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     474.72079</span> |     92.46 |  0.004831 |    0.2800 |    0.8960 |
-#&gt; |.....................|     9.913 |     1.453 |   0.03161 |     1.149 |
-#&gt; |.....................|   0.03059 |    0.7515 |    0.8114 |     1.351 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.167 |     1.171 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -29.98 |     1.856 |  -0.09377 |    0.1852 |
-#&gt; |.....................|   -0.2753 |    -32.15 |    -6.889 |     1.072 |
-#&gt; |.....................|    -2.266 |    0.4091 |     3.274 |    -6.876 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.564 |    -5.585 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   45</span>|     474.26379 |    0.9985 |    -1.031 |   -0.9115 |   -0.8979 |
-#&gt; |.....................|   -0.8425 |   -0.3491 |   -0.7895 |   -0.8887 |
-#&gt; |.....................|   -0.8536 |   -0.8852 |   -0.9464 |   -0.7506 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7762 |   -0.7761 |...........|...........|</span>
-#&gt; |    U|     474.26379 |     92.98 |    -5.335 |   -0.9443 |   -0.1101 |
-#&gt; |.....................|     2.294 |     1.461 |   0.03159 |     1.148 |
-#&gt; |.....................|   0.03063 |    0.7515 |    0.8109 |     1.355 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.170 |     1.173 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     474.26379</span> |     92.98 |  0.004822 |    0.2800 |    0.8958 |
-#&gt; |.....................|     9.915 |     1.461 |   0.03159 |     1.148 |
-#&gt; |.....................|   0.03063 |    0.7515 |    0.8109 |     1.355 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.170 |     1.173 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     42.78 |     1.902 |    0.1464 |    0.2388 |
-#&gt; |.....................|  -0.03417 |    -31.28 |    -5.931 |    0.8375 |
-#&gt; |.....................|    -2.202 |    0.7305 |     5.128 |    -6.841 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.479 |    -5.554 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   46</span>|     473.76810 |    0.9929 |    -1.033 |   -0.9117 |   -0.8982 |
-#&gt; |.....................|   -0.8424 |   -0.3358 |   -0.7928 |   -0.8897 |
-#&gt; |.....................|   -0.8508 |   -0.8855 |   -0.9473 |   -0.7471 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7734 |   -0.7737 |...........|...........|</span>
-#&gt; |    U|      473.7681 |     92.46 |    -5.337 |   -0.9444 |   -0.1104 |
-#&gt; |.....................|     2.294 |     1.469 |   0.03154 |     1.147 |
-#&gt; |.....................|   0.03067 |    0.7512 |    0.8101 |     1.360 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.173 |     1.176 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      473.7681</span> |     92.46 |  0.004812 |    0.2800 |    0.8955 |
-#&gt; |.....................|     9.917 |     1.469 |   0.03154 |     1.147 |
-#&gt; |.....................|   0.03067 |    0.7512 |    0.8101 |     1.360 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.173 |     1.176 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -30.83 |     1.832 |   -0.1003 |    0.1743 |
-#&gt; |.....................|   -0.2686 |    -30.77 |    -6.362 |     1.107 |
-#&gt; |.....................|    -2.234 |    0.4249 |     4.678 |    -6.593 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.329 |    -5.340 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   47</span>|     473.32508 |    0.9983 |    -1.035 |   -0.9117 |   -0.8984 |
-#&gt; |.....................|   -0.8422 |   -0.3229 |   -0.7959 |   -0.8909 |
-#&gt; |.....................|   -0.8482 |   -0.8859 |   -0.9520 |   -0.7438 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7708 |   -0.7715 |...........|...........|</span>
-#&gt; |    U|     473.32508 |     92.96 |    -5.339 |   -0.9445 |   -0.1106 |
-#&gt; |.....................|     2.294 |     1.476 |   0.03149 |     1.147 |
-#&gt; |.....................|   0.03071 |    0.7509 |    0.8061 |     1.364 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.175 |     1.178 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     473.32508</span> |     92.96 |  0.004802 |    0.2800 |    0.8953 |
-#&gt; |.....................|     9.918 |     1.476 |   0.03149 |     1.147 |
-#&gt; |.....................|   0.03071 |    0.7509 |    0.8061 |     1.364 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.175 |     1.178 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     38.19 |     1.865 |    0.1554 |    0.2504 |
-#&gt; |.....................|  -0.02116 |    -30.15 |    -5.522 |    0.8218 |
-#&gt; |.....................|    -2.215 |    0.6878 |     4.772 |    -6.537 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.232 |    -5.315 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   48</span>|     472.87290 |    0.9930 |    -1.038 |   -0.9119 |   -0.8988 |
-#&gt; |.....................|   -0.8421 |   -0.3103 |   -0.8002 |   -0.8921 |
-#&gt; |.....................|   -0.8451 |   -0.8864 |   -0.9564 |   -0.7407 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7684 |   -0.7695 |...........|...........|</span>
-#&gt; |    U|      472.8729 |     92.47 |    -5.341 |   -0.9447 |   -0.1109 |
-#&gt; |.....................|     2.294 |     1.483 |   0.03143 |     1.146 |
-#&gt; |.....................|   0.03075 |    0.7506 |    0.8022 |     1.367 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.178 |     1.180 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      472.8729</span> |     92.47 |  0.004791 |    0.2800 |    0.8950 |
-#&gt; |.....................|     9.919 |     1.483 |   0.03143 |     1.146 |
-#&gt; |.....................|   0.03075 |    0.7506 |    0.8022 |     1.367 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.178 |     1.180 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -31.43 |     1.786 |  -0.07853 |    0.1828 |
-#&gt; |.....................|   -0.2451 |    -29.69 |    -5.937 |     1.129 |
-#&gt; |.....................|    -2.237 |    0.5225 |     4.143 |    -6.356 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.097 |    -5.139 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   49</span>|     472.45068 |    0.9981 |    -1.040 |   -0.9121 |   -0.8991 |
-#&gt; |.....................|   -0.8421 |   -0.2974 |   -0.8046 |   -0.8935 |
-#&gt; |.....................|   -0.8420 |   -0.8871 |   -0.9597 |   -0.7375 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7660 |   -0.7674 |...........|...........|</span>
-#&gt; |    U|     472.45068 |     92.94 |    -5.343 |   -0.9449 |   -0.1112 |
-#&gt; |.....................|     2.294 |     1.491 |   0.03136 |     1.145 |
-#&gt; |.....................|   0.03080 |    0.7500 |    0.7993 |     1.371 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.180 |     1.183 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     472.45068</span> |     92.94 |  0.004780 |    0.2799 |    0.8947 |
-#&gt; |.....................|     9.919 |     1.491 |   0.03136 |     1.145 |
-#&gt; |.....................|   0.03080 |    0.7500 |    0.7993 |     1.371 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.180 |     1.183 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     34.69 |     1.825 |    0.1712 |    0.2558 |
-#&gt; |.....................| 0.0008262 |    -30.15 |    -5.461 |   0.02383 |
-#&gt; |.....................|    -3.011 |    0.3236 |     4.609 |    -6.242 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.997 |    -5.107 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   50</span>|     472.02915 |    0.9936 |    -1.042 |   -0.9125 |   -0.8995 |
-#&gt; |.....................|   -0.8422 |   -0.2847 |   -0.8092 |   -0.8923 |
-#&gt; |.....................|   -0.8364 |   -0.8868 |   -0.9626 |   -0.7353 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7644 |   -0.7660 |...........|...........|</span>
-#&gt; |    U|     472.02915 |     92.52 |    -5.345 |   -0.9452 |   -0.1116 |
-#&gt; |.....................|     2.294 |     1.498 |   0.03129 |     1.146 |
-#&gt; |.....................|   0.03088 |    0.7503 |    0.7968 |     1.374 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.182 |     1.184 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     472.02915</span> |     92.52 |  0.004770 |    0.2799 |    0.8944 |
-#&gt; |.....................|     9.918 |     1.498 |   0.03129 |     1.146 |
-#&gt; |.....................|   0.03088 |    0.7503 |    0.7968 |     1.374 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.182 |     1.184 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -26.29 |     1.758 |  -0.04843 |    0.1910 |
-#&gt; |.....................|   -0.1997 |    -28.69 |    -5.506 |     1.097 |
-#&gt; |.....................|    -2.285 |    0.4947 |     2.297 |    -6.079 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.892 |    -4.970 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   51</span>|     471.69520 |    0.9992 |    -1.044 |   -0.9127 |   -0.8998 |
-#&gt; |.....................|   -0.8423 |   -0.2715 |   -0.8127 |   -0.8918 |
-#&gt; |.....................|   -0.8317 |   -0.8866 |   -0.9606 |   -0.7330 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7627 |   -0.7642 |...........|...........|</span>
-#&gt; |    U|      471.6952 |     93.04 |    -5.347 |   -0.9454 |   -0.1120 |
-#&gt; |.....................|     2.294 |     1.506 |   0.03124 |     1.146 |
-#&gt; |.....................|   0.03096 |    0.7504 |    0.7985 |     1.377 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.184 |     1.186 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      471.6952</span> |     93.04 |  0.004761 |    0.2798 |    0.8941 |
-#&gt; |.....................|     9.917 |     1.506 |   0.03124 |     1.146 |
-#&gt; |.....................|   0.03096 |    0.7504 |    0.7985 |     1.377 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.184 |     1.186 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     46.70 |     1.815 |    0.2108 |    0.2607 |
-#&gt; |.....................|   0.05766 |    -27.95 |    -4.639 |    0.9041 |
-#&gt; |.....................|    -2.201 |    0.7590 |     4.326 |    -6.078 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.851 |    -4.972 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   52</span>|     471.30240 |    0.9939 |    -1.046 |   -0.9131 |   -0.9002 |
-#&gt; |.....................|   -0.8425 |   -0.2596 |   -0.8187 |   -0.8939 |
-#&gt; |.....................|   -0.8280 |   -0.8876 |   -0.9571 |   -0.7302 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7606 |   -0.7622 |...........|...........|</span>
-#&gt; |    U|      471.3024 |     92.55 |    -5.350 |   -0.9458 |   -0.1124 |
-#&gt; |.....................|     2.294 |     1.513 |   0.03115 |     1.145 |
-#&gt; |.....................|   0.03101 |    0.7497 |    0.8016 |     1.380 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.186 |     1.188 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      471.3024</span> |     92.55 |  0.004750 |    0.2797 |    0.8937 |
-#&gt; |.....................|     9.915 |     1.513 |   0.03115 |     1.145 |
-#&gt; |.....................|   0.03101 |    0.7497 |    0.8016 |     1.380 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.186 |     1.188 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -23.61 |     1.763 |  -0.06060 |    0.1836 |
-#&gt; |.....................|   -0.1912 |    -28.31 |    -5.279 |    0.6597 |
-#&gt; |.....................|    -2.739 |    0.2048 |     5.941 |    -5.864 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.747 |    -4.787 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   53</span>|     470.94339 |    0.9985 |    -1.048 |   -0.9133 |   -0.9006 |
-#&gt; |.....................|   -0.8426 |   -0.2476 |   -0.8235 |   -0.8946 |
-#&gt; |.....................|   -0.8237 |   -0.8877 |   -0.9629 |   -0.7278 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7587 |   -0.7604 |...........|...........|</span>
-#&gt; |    U|     470.94339 |     92.98 |    -5.352 |   -0.9460 |   -0.1127 |
-#&gt; |.....................|     2.294 |     1.520 |   0.03108 |     1.145 |
-#&gt; |.....................|   0.03108 |    0.7496 |    0.7965 |     1.383 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.188 |     1.190 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     470.94339</span> |     92.98 |  0.004740 |    0.2797 |    0.8934 |
-#&gt; |.....................|     9.914 |     1.520 |   0.03108 |     1.145 |
-#&gt; |.....................|   0.03108 |    0.7496 |    0.7965 |     1.383 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.188 |     1.190 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     36.04 |     1.791 |    0.1836 |    0.2544 |
-#&gt; |.....................|   0.04274 |    -27.03 |    -4.370 |    0.9159 |
-#&gt; |.....................|    -2.217 |    0.6791 |     4.141 |    -5.840 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.667 |    -4.764 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   54</span>|     470.60274 |    0.9931 |    -1.051 |   -0.9136 |   -0.9010 |
-#&gt; |.....................|   -0.8428 |   -0.2366 |   -0.8300 |   -0.8957 |
-#&gt; |.....................|   -0.8190 |   -0.8879 |   -0.9681 |   -0.7257 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7570 |   -0.7588 |...........|...........|</span>
-#&gt; |    U|     470.60274 |     92.48 |    -5.354 |   -0.9463 |   -0.1131 |
-#&gt; |.....................|     2.294 |     1.526 |   0.03098 |     1.144 |
-#&gt; |.....................|   0.03115 |    0.7494 |    0.7919 |     1.386 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.190 |     1.192 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     470.60274</span> |     92.48 |  0.004728 |    0.2796 |    0.8930 |
-#&gt; |.....................|     9.912 |     1.526 |   0.03098 |     1.144 |
-#&gt; |.....................|   0.03115 |    0.7494 |    0.7919 |     1.386 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.190 |     1.192 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -35.91 |     1.718 |  -0.07847 |    0.1786 |
-#&gt; |.....................|   -0.1996 |    -26.69 |    -4.843 |     1.231 |
-#&gt; |.....................|    -2.229 |    0.5625 |     3.489 |    -5.662 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.557 |    -4.604 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   55</span>|     470.25392 |    0.9977 |    -1.054 |   -0.9140 |   -0.9015 |
-#&gt; |.....................|   -0.8431 |   -0.2250 |   -0.8375 |   -0.8987 |
-#&gt; |.....................|   -0.8153 |   -0.8894 |   -0.9673 |   -0.7229 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7550 |   -0.7569 |...........|...........|</span>
-#&gt; |    U|     470.25392 |     92.90 |    -5.357 |   -0.9467 |   -0.1136 |
-#&gt; |.....................|     2.293 |     1.533 |   0.03087 |     1.142 |
-#&gt; |.....................|   0.03120 |    0.7483 |    0.7927 |     1.389 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.192 |     1.194 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     470.25392</span> |     92.90 |  0.004715 |    0.2796 |    0.8926 |
-#&gt; |.....................|     9.909 |     1.533 |   0.03087 |     1.142 |
-#&gt; |.....................|   0.03120 |    0.7483 |    0.7927 |     1.389 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.192 |     1.194 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     23.42 |     1.753 |    0.1414 |    0.2393 |
-#&gt; |.....................|   0.01691 |    -26.51 |    -4.262 |    0.6993 |
-#&gt; |.....................|    -2.408 |    0.5525 |     2.318 |    -5.573 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.475 |    -4.572 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   56</span>|     469.96066 |    0.9934 |    -1.056 |   -0.9144 |   -0.9019 |
-#&gt; |.....................|   -0.8434 |   -0.2128 |   -0.8432 |   -0.9002 |
-#&gt; |.....................|   -0.8113 |   -0.8903 |   -0.9627 |   -0.7205 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7531 |   -0.7551 |...........|...........|</span>
-#&gt; |    U|     469.96066 |     92.50 |    -5.359 |   -0.9470 |   -0.1140 |
-#&gt; |.....................|     2.293 |     1.540 |   0.03078 |     1.141 |
-#&gt; |.....................|   0.03126 |    0.7476 |    0.7967 |     1.392 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.194 |     1.196 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     469.96066</span> |     92.50 |  0.004704 |    0.2795 |    0.8922 |
-#&gt; |.....................|     9.906 |     1.540 |   0.03078 |     1.141 |
-#&gt; |.....................|   0.03126 |    0.7476 |    0.7967 |     1.392 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.194 |     1.196 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -33.10 |     1.713 |  -0.09549 |    0.1710 |
-#&gt; |.....................|   -0.1943 |    -25.89 |    -4.557 |     1.045 |
-#&gt; |.....................|    -2.243 |    0.5648 |     3.834 |    -5.392 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.399 |    -4.402 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   57</span>|     469.66426 |    0.9983 |    -1.059 |   -0.9147 |   -0.9023 |
-#&gt; |.....................|   -0.8437 |   -0.2012 |   -0.8503 |   -0.9014 |
-#&gt; |.....................|   -0.8068 |   -0.8914 |   -0.9589 |   -0.7186 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7515 |   -0.7537 |...........|...........|</span>
-#&gt; |    U|     469.66426 |     92.95 |    -5.362 |   -0.9473 |   -0.1144 |
-#&gt; |.....................|     2.293 |     1.547 |   0.03068 |     1.141 |
-#&gt; |.....................|   0.03133 |    0.7468 |    0.8000 |     1.394 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.196 |     1.197 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     469.66426</span> |     92.95 |  0.004691 |    0.2794 |    0.8919 |
-#&gt; |.....................|     9.903 |     1.547 |   0.03068 |     1.141 |
-#&gt; |.....................|   0.03133 |    0.7468 |    0.8000 |     1.394 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.196 |     1.197 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     29.48 |     1.769 |    0.1441 |    0.2362 |
-#&gt; |.....................|   0.03493 |    -25.40 |    -3.876 |    0.7581 |
-#&gt; |.....................|    -2.246 |    0.6653 |     4.370 |    -5.362 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.340 |    -4.389 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   58</span>|     469.35361 |    0.9940 |    -1.062 |   -0.9149 |   -0.9027 |
-#&gt; |.....................|   -0.8440 |   -0.1900 |   -0.8585 |   -0.9032 |
-#&gt; |.....................|   -0.8026 |   -0.8931 |   -0.9615 |   -0.7168 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7497 |   -0.7523 |...........|...........|</span>
-#&gt; |    U|     469.35361 |     92.56 |    -5.365 |   -0.9475 |   -0.1149 |
-#&gt; |.....................|     2.293 |     1.553 |   0.03055 |     1.140 |
-#&gt; |.....................|   0.03139 |    0.7454 |    0.7977 |     1.396 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.198 |     1.199 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     469.35361</span> |     92.56 |  0.004677 |    0.2794 |    0.8915 |
-#&gt; |.....................|     9.900 |     1.553 |   0.03055 |     1.140 |
-#&gt; |.....................|   0.03139 |    0.7454 |    0.7977 |     1.396 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.198 |     1.199 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -26.71 |     1.702 |  -0.07338 |    0.1729 |
-#&gt; |.....................|   -0.1601 |    -26.00 |    -4.465 |    0.4354 |
-#&gt; |.....................|    -2.821 |    0.3110 |     5.728 |    -5.228 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.240 |    -4.266 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   59</span>|     469.04262 |    0.9978 |    -1.064 |   -0.9151 |   -0.9031 |
-#&gt; |.....................|   -0.8443 |   -0.1798 |   -0.8657 |   -0.9030 |
-#&gt; |.....................|   -0.7971 |   -0.8938 |   -0.9685 |   -0.7157 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7487 |   -0.7515 |...........|...........|</span>
-#&gt; |    U|     469.04262 |     92.91 |    -5.368 |   -0.9477 |   -0.1152 |
-#&gt; |.....................|     2.292 |     1.559 |   0.03044 |     1.140 |
-#&gt; |.....................|   0.03147 |    0.7450 |    0.7916 |     1.398 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.199 |     1.200 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     469.04262</span> |     92.91 |  0.004665 |    0.2794 |    0.8912 |
-#&gt; |.....................|     9.897 |     1.559 |   0.03044 |     1.140 |
-#&gt; |.....................|   0.03147 |    0.7450 |    0.7916 |     1.398 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.199 |     1.200 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   60</span>|     468.78438 |    0.9975 |    -1.068 |   -0.9154 |   -0.9036 |
-#&gt; |.....................|   -0.8447 |   -0.1709 |   -0.8764 |   -0.9025 |
-#&gt; |.....................|   -0.7900 |   -0.8946 |   -0.9771 |   -0.7153 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7482 |   -0.7514 |...........|...........|</span>
-#&gt; |    U|     468.78438 |     92.88 |    -5.371 |   -0.9479 |   -0.1157 |
-#&gt; |.....................|     2.292 |     1.564 |   0.03028 |     1.140 |
-#&gt; |.....................|   0.03158 |    0.7443 |    0.7841 |     1.398 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.200 |     1.200 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     468.78438</span> |     92.88 |  0.004649 |    0.2793 |    0.8907 |
-#&gt; |.....................|     9.893 |     1.564 |   0.03028 |     1.140 |
-#&gt; |.....................|   0.03158 |    0.7443 |    0.7841 |     1.398 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.200 |     1.200 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   61</span>|     467.65199 |    0.9960 |    -1.083 |   -0.9167 |   -0.9058 |
-#&gt; |.....................|   -0.8469 |   -0.1283 |   -0.9284 |   -0.9002 |
-#&gt; |.....................|   -0.7560 |   -0.8987 |    -1.018 |   -0.7133 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7456 |   -0.7506 |...........|...........|</span>
-#&gt; |    U|     467.65199 |     92.74 |    -5.387 |   -0.9492 |   -0.1179 |
-#&gt; |.....................|     2.290 |     1.589 |   0.02950 |     1.141 |
-#&gt; |.....................|   0.03209 |    0.7413 |    0.7481 |     1.401 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.202 |     1.201 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     467.65199</span> |     92.74 |  0.004577 |    0.2791 |    0.8887 |
-#&gt; |.....................|     9.872 |     1.589 |   0.02950 |     1.141 |
-#&gt; |.....................|   0.03209 |    0.7413 |    0.7481 |     1.401 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.202 |     1.201 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   62</span>|     464.96560 |    0.9898 |    -1.148 |   -0.9222 |   -0.9151 |
-#&gt; |.....................|   -0.8556 |   0.04847 |    -1.144 |   -0.8910 |
-#&gt; |.....................|   -0.6148 |   -0.9154 |    -1.189 |   -0.7051 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7350 |   -0.7474 |...........|...........|</span>
-#&gt; |    U|      464.9656 |     92.17 |    -5.451 |   -0.9543 |   -0.1273 |
-#&gt; |.....................|     2.281 |     1.691 |   0.02626 |     1.147 |
-#&gt; |.....................|   0.03421 |    0.7285 |    0.5986 |     1.411 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.214 |     1.204 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      464.9656</span> |     92.17 |  0.004291 |    0.2780 |    0.8805 |
-#&gt; |.....................|     9.786 |     1.691 |   0.02626 |     1.147 |
-#&gt; |.....................|   0.03421 |    0.7285 |    0.5986 |     1.411 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.214 |     1.204 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -134.9 |    0.8693 |    0.2607 |    0.2086 |
-#&gt; |.....................|    0.2111 |    -19.53 |    -3.427 |     3.399 |
-#&gt; |.....................|    -2.172 |     1.526 |    -11.79 |    -4.993 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -3.321 |    -4.659 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   63</span>|     458.88877 |     1.003 |    -1.235 |   -0.9465 |   -0.9328 |
-#&gt; |.....................|   -0.8841 |    0.3192 |    -1.460 |   -0.9475 |
-#&gt; |.....................|   -0.4237 |   -0.9768 |    -1.134 |   -0.6574 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7075 |   -0.6995 |...........|...........|</span>
-#&gt; |    U|     458.88877 |     93.40 |    -5.538 |   -0.9774 |   -0.1450 |
-#&gt; |.....................|     2.252 |     1.848 |   0.02152 |     1.114 |
-#&gt; |.....................|   0.03709 |    0.6820 |    0.6469 |     1.468 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.243 |     1.255 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     458.88877</span> |     93.40 |  0.003933 |    0.2734 |    0.8651 |
-#&gt; |.....................|     9.511 |     1.848 |   0.02152 |     1.114 |
-#&gt; |.....................|   0.03709 |    0.6820 |    0.6469 |     1.468 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.243 |     1.255 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   64</span>|     455.19412 |     1.006 |    -1.330 |   -0.9732 |   -0.9522 |
-#&gt; |.....................|   -0.9154 |    0.6143 |    -1.806 |    -1.009 |
-#&gt; |.....................|   -0.2144 |    -1.044 |    -1.075 |   -0.6056 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6776 |   -0.6473 |...........|...........|</span>
-#&gt; |    U|     455.19412 |     93.67 |    -5.634 |    -1.003 |   -0.1644 |
-#&gt; |.....................|     2.221 |     2.019 |   0.01631 |     1.078 |
-#&gt; |.....................|   0.04023 |    0.6311 |    0.6989 |     1.531 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.275 |     1.311 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     455.19412</span> |     93.67 |  0.003576 |    0.2684 |    0.8484 |
-#&gt; |.....................|     9.218 |     2.019 |   0.01631 |     1.078 |
-#&gt; |.....................|   0.04023 |    0.6311 |    0.6989 |     1.531 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.275 |     1.311 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     18.82 |    0.9889 |    -1.032 |   -0.1489 |
-#&gt; |.....................|    0.2009 |    -8.117 |   -0.5123 |    0.1656 |
-#&gt; |.....................|    -2.314 |    -3.473 |   -0.8284 |    0.3432 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.8357 |   0.04588 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   65</span>|     458.62552 |     1.004 |    -1.494 |   -0.8145 |   -0.9319 |
-#&gt; |.....................|   -0.9630 |     1.033 |    -2.192 |    -1.036 |
-#&gt; |.....................|    0.2529 |   -0.5036 |   -0.8838 |   -0.8679 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7178 |   -0.8209 |...........|...........|</span>
-#&gt; |    U|     458.62552 |     93.52 |    -5.797 |   -0.8527 |   -0.1440 |
-#&gt; |.....................|     2.174 |     2.262 |   0.01051 |     1.062 |
-#&gt; |.....................|   0.04725 |     1.041 |    0.8656 |     1.213 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.232 |     1.125 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     458.62552</span> |     93.52 |  0.003036 |    0.2989 |    0.8659 |
-#&gt; |.....................|     8.789 |     2.262 |   0.01051 |     1.062 |
-#&gt; |.....................|   0.04725 |     1.041 |    0.8656 |     1.213 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.232 |     1.125 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   66</span>|     454.48694 |     1.003 |    -1.384 |   -0.9206 |   -0.9455 |
-#&gt; |.....................|   -0.9312 |    0.7538 |    -1.934 |    -1.018 |
-#&gt; |.....................|  -0.05956 |   -0.8649 |    -1.011 |   -0.6924 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6908 |   -0.7048 |...........|...........|</span>
-#&gt; |    U|     454.48694 |     93.41 |    -5.688 |   -0.9529 |   -0.1576 |
-#&gt; |.....................|     2.205 |     2.100 |   0.01439 |     1.073 |
-#&gt; |.....................|   0.04256 |    0.7669 |    0.7542 |     1.426 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.261 |     1.250 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     454.48694</span> |     93.41 |  0.003387 |    0.2783 |    0.8542 |
-#&gt; |.....................|     9.074 |     2.100 |   0.01439 |     1.073 |
-#&gt; |.....................|   0.04256 |    0.7669 |    0.7542 |     1.426 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.261 |     1.250 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -11.88 |    0.8805 |     1.030 | 0.0001663 |
-#&gt; |.....................|   -0.3119 |    -6.748 |    -1.151 |    0.2517 |
-#&gt; |.....................|    -3.379 |     3.981 |     5.317 |    -4.395 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.890 |    -2.785 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   67</span>|     453.47854 |     1.004 |    -1.455 |   -0.9097 |   -0.9308 |
-#&gt; |.....................|   -0.9364 |    0.8078 |    -2.047 |    -1.046 |
-#&gt; |.....................|    0.2383 |   -0.8443 |   -0.9977 |   -0.6524 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6789 |   -0.6970 |...........|...........|</span>
-#&gt; |    U|     453.47854 |     93.48 |    -5.759 |   -0.9426 |   -0.1429 |
-#&gt; |.....................|     2.200 |     2.132 |   0.01270 |     1.056 |
-#&gt; |.....................|   0.04703 |    0.7825 |    0.7661 |     1.474 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.274 |     1.258 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     453.47854</span> |     93.48 |  0.003156 |    0.2804 |    0.8668 |
-#&gt; |.....................|     9.026 |     2.132 |   0.01270 |     1.056 |
-#&gt; |.....................|   0.04703 |    0.7825 |    0.7661 |     1.474 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.274 |     1.258 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -7.580 |    0.7096 |     1.748 |    0.4450 |
-#&gt; |.....................|   -0.3063 |    -5.686 |    -1.090 |     2.089 |
-#&gt; |.....................|    -1.806 |     4.661 |     3.477 |    -2.550 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.063 |    -2.646 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   68</span>|     452.65869 |     1.010 |    -1.604 |   -0.9910 |   -0.9601 |
-#&gt; |.....................|   -0.9321 |    0.9548 |    -2.236 |    -1.333 |
-#&gt; |.....................|    0.7427 |   -0.9083 |    -1.017 |   -0.7899 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7453 |   -0.6781 |...........|...........|</span>
-#&gt; |    U|     452.65869 |     94.06 |    -5.907 |    -1.019 |   -0.1723 |
-#&gt; |.....................|     2.204 |     2.217 |  0.009851 |    0.8906 |
-#&gt; |.....................|   0.05461 |    0.7340 |    0.7490 |     1.308 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.203 |     1.278 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     452.65869</span> |     94.06 |  0.002719 |    0.2652 |    0.8418 |
-#&gt; |.....................|     9.065 |     2.217 |  0.009851 |    0.8906 |
-#&gt; |.....................|   0.05461 |    0.7340 |    0.7490 |     1.308 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.203 |     1.278 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     87.74 |    0.4343 |   -0.7887 |   -0.2527 |
-#&gt; |.....................|   -0.1232 |    -3.287 |   -0.3715 |    -5.728 |
-#&gt; |.....................|    -3.469 |     4.620 |     5.104 |    -8.863 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -5.024 |    -1.180 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   69</span>|     455.46876 |     1.000 |    -1.721 |   -0.9929 |    -1.109 |
-#&gt; |.....................|   -0.8905 |     1.109 |    -2.343 |    -1.386 |
-#&gt; |.....................|     1.193 |    -1.162 |   -0.9750 |   -0.9277 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.5804 |   -0.9245 |...........|...........|</span>
-#&gt; |    U|     455.46876 |     93.13 |    -6.025 |    -1.021 |   -0.3216 |
-#&gt; |.....................|     2.246 |     2.306 |  0.008241 |    0.8595 |
-#&gt; |.....................|   0.06138 |    0.5417 |    0.7859 |     1.140 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.379 |     1.014 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     455.46876</span> |     93.13 |  0.002419 |    0.2648 |    0.7250 |
-#&gt; |.....................|     9.450 |     2.306 |  0.008241 |    0.8595 |
-#&gt; |.....................|   0.06138 |    0.5417 |    0.7859 |     1.140 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.379 |     1.014 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   70</span>|     453.13548 |    0.9926 |    -1.633 |   -0.9913 |   -0.9976 |
-#&gt; |.....................|   -0.9216 |    0.9941 |    -2.263 |    -1.345 |
-#&gt; |.....................|    0.8563 |   -0.9728 |    -1.008 |   -0.8230 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7030 |   -0.7398 |...........|...........|</span>
-#&gt; |    U|     453.13548 |     92.43 |    -5.937 |    -1.020 |   -0.2097 |
-#&gt; |.....................|     2.215 |     2.240 |  0.009448 |    0.8833 |
-#&gt; |.....................|   0.05632 |    0.6851 |    0.7575 |     1.268 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.248 |     1.212 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     453.13548</span> |     92.43 |  0.002640 |    0.2651 |    0.8108 |
-#&gt; |.....................|     9.161 |     2.240 |  0.009448 |    0.8833 |
-#&gt; |.....................|   0.05632 |    0.6851 |    0.7575 |     1.268 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.248 |     1.212 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   71</span>|     453.54485 |    0.9910 |    -1.615 |   -0.9910 |   -0.9747 |
-#&gt; |.....................|   -0.9280 |    0.9706 |    -2.247 |    -1.337 |
-#&gt; |.....................|    0.7875 |   -0.9341 |    -1.014 |   -0.8015 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7281 |   -0.7020 |...........|...........|</span>
-#&gt; |    U|     453.54485 |     92.28 |    -5.919 |    -1.019 |   -0.1868 |
-#&gt; |.....................|     2.209 |     2.226 |  0.009694 |    0.8882 |
-#&gt; |.....................|   0.05529 |    0.7144 |    0.7517 |     1.294 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.221 |     1.253 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     453.54485</span> |     92.28 |  0.002688 |    0.2651 |    0.8296 |
-#&gt; |.....................|     9.103 |     2.226 |  0.009694 |    0.8882 |
-#&gt; |.....................|   0.05529 |    0.7144 |    0.7517 |     1.294 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.221 |     1.253 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   72</span>|     453.87696 |    0.9902 |    -1.606 |   -0.9909 |   -0.9627 |
-#&gt; |.....................|   -0.9313 |    0.9582 |    -2.238 |    -1.332 |
-#&gt; |.....................|    0.7513 |   -0.9138 |    -1.018 |   -0.7903 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7413 |   -0.6822 |...........|...........|</span>
-#&gt; |    U|     453.87696 |     92.21 |    -5.909 |    -1.019 |   -0.1748 |
-#&gt; |.....................|     2.205 |     2.219 |  0.009824 |    0.8908 |
-#&gt; |.....................|   0.05474 |    0.7298 |    0.7487 |     1.307 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.207 |     1.274 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     453.87696</span> |     92.21 |  0.002714 |    0.2652 |    0.8396 |
-#&gt; |.....................|     9.072 |     2.219 |  0.009824 |    0.8908 |
-#&gt; |.....................|   0.05474 |    0.7298 |    0.7487 |     1.307 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.207 |     1.274 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   73</span>|     452.40810 |     1.003 |    -1.604 |   -0.9910 |   -0.9601 |
-#&gt; |.....................|   -0.9321 |    0.9550 |    -2.236 |    -1.332 |
-#&gt; |.....................|    0.7430 |   -0.9087 |    -1.018 |   -0.7892 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7449 |   -0.6781 |...........|...........|</span>
-#&gt; |    U|      452.4081 |     93.41 |    -5.907 |    -1.019 |   -0.1722 |
-#&gt; |.....................|     2.204 |     2.217 |  0.009851 |    0.8908 |
-#&gt; |.....................|   0.05462 |    0.7337 |    0.7487 |     1.309 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.203 |     1.278 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      452.4081</span> |     93.41 |  0.002719 |    0.2652 |    0.8418 |
-#&gt; |.....................|     9.065 |     2.217 |  0.009851 |    0.8908 |
-#&gt; |.....................|   0.05462 |    0.7337 |    0.7487 |     1.309 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.203 |     1.278 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -20.28 |    0.3985 |   -0.9900 |   -0.3302 |
-#&gt; |.....................|   -0.4580 |    -3.509 |   -0.7634 |    -5.125 |
-#&gt; |.....................|    -3.224 |     3.921 |     4.784 |    -8.607 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.910 |    -1.049 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   74</span>|     452.35774 |     1.005 |    -1.605 |   -0.9906 |   -0.9617 |
-#&gt; |.....................|   -0.9314 |    0.9567 |    -2.238 |    -1.332 |
-#&gt; |.....................|    0.7462 |   -0.9112 |    -1.018 |   -0.7890 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7417 |   -0.6810 |...........|...........|</span>
-#&gt; |    U|     452.35774 |     93.58 |    -5.909 |    -1.019 |   -0.1738 |
-#&gt; |.....................|     2.205 |     2.218 |  0.009828 |    0.8908 |
-#&gt; |.....................|   0.05467 |    0.7317 |    0.7485 |     1.309 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.207 |     1.275 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     452.35774</span> |     93.58 |  0.002715 |    0.2652 |    0.8405 |
-#&gt; |.....................|     9.072 |     2.218 |  0.009828 |    0.8908 |
-#&gt; |.....................|   0.05467 |    0.7317 |    0.7485 |     1.309 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.207 |     1.275 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     9.319 |    0.4042 |   -0.9262 |   -0.3428 |
-#&gt; |.....................|   -0.3413 |    -3.482 |   -0.6441 |    -5.151 |
-#&gt; |.....................|    -3.223 |     3.864 |     4.863 |    -8.623 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.770 |    -1.217 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   75</span>|     452.31017 |     1.003 |    -1.607 |   -0.9902 |   -0.9631 |
-#&gt; |.....................|   -0.9307 |    0.9586 |    -2.239 |    -1.332 |
-#&gt; |.....................|    0.7493 |   -0.9137 |    -1.019 |   -0.7876 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7383 |   -0.6834 |...........|...........|</span>
-#&gt; |    U|     452.31017 |     93.41 |    -5.910 |    -1.019 |   -0.1752 |
-#&gt; |.....................|     2.206 |     2.219 |  0.009807 |    0.8910 |
-#&gt; |.....................|   0.05471 |    0.7298 |    0.7478 |     1.310 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.210 |     1.273 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     452.31017</span> |     93.41 |  0.002711 |    0.2653 |    0.8393 |
-#&gt; |.....................|     9.078 |     2.219 |  0.009807 |    0.8910 |
-#&gt; |.....................|   0.05471 |    0.7298 |    0.7478 |     1.310 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.210 |     1.273 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -20.20 |    0.3903 |   -0.9767 |   -0.3983 |
-#&gt; |.....................|   -0.4106 |    -3.495 |   -0.7375 |    -5.052 |
-#&gt; |.....................|    -3.297 |     3.718 |     4.704 |    -8.538 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.606 |    -1.295 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   76</span>|     452.25868 |     1.005 |    -1.609 |   -0.9898 |   -0.9648 |
-#&gt; |.....................|   -0.9300 |    0.9604 |    -2.241 |    -1.332 |
-#&gt; |.....................|    0.7529 |   -0.9160 |    -1.019 |   -0.7870 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7354 |   -0.6858 |...........|...........|</span>
-#&gt; |    U|     452.25868 |     93.58 |    -5.912 |    -1.018 |   -0.1770 |
-#&gt; |.....................|     2.207 |     2.220 |  0.009778 |    0.8908 |
-#&gt; |.....................|   0.05477 |    0.7281 |    0.7476 |     1.311 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.213 |     1.270 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     452.25868</span> |     93.58 |  0.002707 |    0.2654 |    0.8378 |
-#&gt; |.....................|     9.084 |     2.220 |  0.009778 |    0.8908 |
-#&gt; |.....................|   0.05477 |    0.7281 |    0.7476 |     1.311 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.213 |     1.270 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     8.768 |    0.3959 |   -0.9108 |   -0.4152 |
-#&gt; |.....................|   -0.2985 |    -3.789 |   -0.7277 |    -5.480 |
-#&gt; |.....................|    -3.800 |     3.463 |     7.165 |    -8.525 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.480 |    -1.429 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   77</span>|     452.20380 |     1.003 |    -1.610 |   -0.9896 |   -0.9665 |
-#&gt; |.....................|   -0.9299 |    0.9625 |    -2.243 |    -1.331 |
-#&gt; |.....................|    0.7574 |   -0.9182 |    -1.020 |   -0.7855 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7330 |   -0.6868 |...........|...........|</span>
-#&gt; |    U|      452.2038 |     93.42 |    -5.913 |    -1.018 |   -0.1787 |
-#&gt; |.....................|     2.207 |     2.221 |  0.009753 |    0.8912 |
-#&gt; |.....................|   0.05483 |    0.7265 |    0.7464 |     1.313 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.216 |     1.269 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      452.2038</span> |     93.42 |  0.002704 |    0.2654 |    0.8364 |
-#&gt; |.....................|     9.085 |     2.221 |  0.009753 |    0.8912 |
-#&gt; |.....................|   0.05483 |    0.7265 |    0.7464 |     1.313 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.216 |     1.269 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -17.51 |    0.3875 |   -0.9566 |   -0.4713 |
-#&gt; |.....................|   -0.3666 |    -3.384 |   -0.7134 |    -4.862 |
-#&gt; |.....................|    -3.257 |     3.566 |     3.539 |    -8.382 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.308 |    -1.428 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   78</span>|     452.15674 |     1.006 |    -1.611 |   -0.9895 |   -0.9681 |
-#&gt; |.....................|   -0.9296 |    0.9646 |    -2.244 |    -1.331 |
-#&gt; |.....................|    0.7624 |   -0.9204 |    -1.020 |   -0.7847 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7317 |   -0.6876 |...........|...........|</span>
-#&gt; |    U|     452.15674 |     93.63 |    -5.915 |    -1.018 |   -0.1803 |
-#&gt; |.....................|     2.207 |     2.222 |  0.009729 |    0.8915 |
-#&gt; |.....................|   0.05491 |    0.7248 |    0.7463 |     1.314 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.217 |     1.268 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     452.15674</span> |     93.63 |  0.002700 |    0.2654 |    0.8350 |
-#&gt; |.....................|     9.088 |     2.222 |  0.009729 |    0.8915 |
-#&gt; |.....................|   0.05491 |    0.7248 |    0.7463 |     1.314 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.217 |     1.268 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     16.34 |    0.3942 |   -0.8917 |   -0.4820 |
-#&gt; |.....................|   -0.2498 |    -3.403 |   -0.6022 |    -5.023 |
-#&gt; |.....................|    -3.383 |     3.482 |     3.627 |    -8.397 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.266 |    -1.517 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   79</span>|     452.11013 |     1.004 |    -1.613 |   -0.9892 |   -0.9692 |
-#&gt; |.....................|   -0.9285 |    0.9667 |    -2.245 |    -1.330 |
-#&gt; |.....................|    0.7674 |   -0.9230 |    -1.020 |   -0.7840 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7312 |   -0.6887 |...........|...........|</span>
-#&gt; |    U|     452.11013 |     93.48 |    -5.917 |    -1.018 |   -0.1814 |
-#&gt; |.....................|     2.208 |     2.224 |  0.009710 |    0.8921 |
-#&gt; |.....................|   0.05499 |    0.7229 |    0.7466 |     1.315 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.218 |     1.267 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     452.11013</span> |     93.48 |  0.002694 |    0.2655 |    0.8341 |
-#&gt; |.....................|     9.098 |     2.224 |  0.009710 |    0.8921 |
-#&gt; |.....................|   0.05499 |    0.7229 |    0.7466 |     1.315 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.218 |     1.267 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -8.858 |    0.3784 |   -0.9339 |   -0.5242 |
-#&gt; |.....................|   -0.2958 |    -3.274 |   -0.6451 |    -4.716 |
-#&gt; |.....................|    -3.235 |     3.524 |     3.578 |    -8.323 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.226 |    -1.527 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   80</span>|     452.06081 |     1.006 |    -1.615 |   -0.9885 |   -0.9698 |
-#&gt; |.....................|   -0.9277 |    0.9688 |    -2.247 |    -1.329 |
-#&gt; |.....................|    0.7723 |   -0.9255 |    -1.020 |   -0.7822 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7302 |   -0.6891 |...........|...........|</span>
-#&gt; |    U|     452.06081 |     93.65 |    -5.919 |    -1.017 |   -0.1820 |
-#&gt; |.....................|     2.209 |     2.225 |  0.009693 |    0.8927 |
-#&gt; |.....................|   0.05506 |    0.7209 |    0.7465 |     1.317 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.219 |     1.266 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     452.06081</span> |     93.65 |  0.002689 |    0.2656 |    0.8336 |
-#&gt; |.....................|     9.105 |     2.225 |  0.009693 |    0.8927 |
-#&gt; |.....................|   0.05506 |    0.7209 |    0.7465 |     1.317 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.219 |     1.266 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     18.08 |    0.3814 |   -0.8701 |   -0.5179 |
-#&gt; |.....................|   -0.1901 |    -3.027 |   -0.4828 |    -4.583 |
-#&gt; |.....................|    -3.046 |     3.385 |     4.724 |    -8.292 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.215 |    -1.583 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   81</span>|     452.00089 |     1.004 |    -1.618 |   -0.9864 |   -0.9698 |
-#&gt; |.....................|   -0.9276 |    0.9701 |    -2.249 |    -1.331 |
-#&gt; |.....................|    0.7751 |   -0.9261 |    -1.021 |   -0.7787 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7281 |   -0.6889 |...........|...........|</span>
-#&gt; |    U|     452.00089 |     93.48 |    -5.921 |    -1.015 |   -0.1820 |
-#&gt; |.....................|     2.209 |     2.226 |  0.009656 |    0.8916 |
-#&gt; |.....................|   0.05510 |    0.7205 |    0.7459 |     1.321 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.221 |     1.267 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     452.00089</span> |     93.48 |  0.002683 |    0.2660 |    0.8336 |
-#&gt; |.....................|     9.107 |     2.226 |  0.009656 |    0.8916 |
-#&gt; |.....................|   0.05510 |    0.7205 |    0.7459 |     1.321 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.221 |     1.267 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -8.141 |    0.3688 |   -0.8752 |   -0.5418 |
-#&gt; |.....................|   -0.2687 |    -3.191 |   -0.6153 |    -4.612 |
-#&gt; |.....................|    -3.168 |     3.248 |     4.602 |    -8.159 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -4.118 |    -1.545 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   82</span>|     451.94404 |     1.006 |    -1.619 |   -0.9850 |   -0.9696 |
-#&gt; |.....................|   -0.9279 |    0.9711 |    -2.251 |    -1.332 |
-#&gt; |.....................|    0.7767 |   -0.9258 |    -1.022 |   -0.7739 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7256 |   -0.6877 |...........|...........|</span>
-#&gt; |    U|     451.94404 |     93.65 |    -5.922 |    -1.014 |   -0.1817 |
-#&gt; |.....................|     2.209 |     2.226 |  0.009627 |    0.8908 |
-#&gt; |.....................|   0.05512 |    0.7207 |    0.7445 |     1.327 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.224 |     1.268 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     451.94404</span> |     93.65 |  0.002679 |    0.2663 |    0.8338 |
-#&gt; |.....................|     9.104 |     2.226 |  0.009627 |    0.8908 |
-#&gt; |.....................|   0.05512 |    0.7207 |    0.7445 |     1.327 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.224 |     1.268 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   83</span>|     451.90577 |     1.006 |    -1.621 |   -0.9832 |   -0.9693 |
-#&gt; |.....................|   -0.9284 |    0.9716 |    -2.254 |    -1.336 |
-#&gt; |.....................|    0.7778 |   -0.9242 |    -1.023 |   -0.7696 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7233 |   -0.6864 |...........|...........|</span>
-#&gt; |    U|     451.90577 |     93.65 |    -5.925 |    -1.012 |   -0.1815 |
-#&gt; |.....................|     2.208 |     2.227 |  0.009581 |    0.8887 |
-#&gt; |.....................|   0.05514 |    0.7219 |    0.7437 |     1.332 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.226 |     1.269 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     451.90577</span> |     93.65 |  0.002673 |    0.2666 |    0.8340 |
-#&gt; |.....................|     9.099 |     2.227 |  0.009581 |    0.8887 |
-#&gt; |.....................|   0.05514 |    0.7219 |    0.7437 |     1.332 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.226 |     1.269 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   84</span>|     451.74017 |     1.006 |    -1.632 |   -0.9740 |   -0.9682 |
-#&gt; |.....................|   -0.9311 |    0.9738 |    -2.270 |    -1.354 |
-#&gt; |.....................|    0.7839 |   -0.9163 |    -1.028 |   -0.7474 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.7117 |   -0.6796 |...........|...........|</span>
-#&gt; |    U|     451.74017 |     93.64 |    -5.935 |    -1.003 |   -0.1804 |
-#&gt; |.....................|     2.205 |     2.228 |  0.009348 |    0.8780 |
-#&gt; |.....................|   0.05523 |    0.7279 |    0.7400 |     1.359 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.239 |     1.277 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     451.74017</span> |     93.64 |  0.002645 |    0.2683 |    0.8350 |
-#&gt; |.....................|     9.074 |     2.228 |  0.009348 |    0.8780 |
-#&gt; |.....................|   0.05523 |    0.7279 |    0.7400 |     1.359 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.239 |     1.277 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   85</span>|     451.58673 |     1.005 |    -1.675 |   -0.9364 |   -0.9637 |
-#&gt; |.....................|   -0.9422 |    0.9828 |    -2.333 |    -1.429 |
-#&gt; |.....................|    0.8084 |   -0.8841 |    -1.045 |   -0.6570 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6645 |   -0.6522 |...........|...........|</span>
-#&gt; |    U|     451.58673 |     93.57 |    -5.978 |   -0.9678 |   -0.1758 |
-#&gt; |.....................|     2.194 |     2.233 |  0.008399 |    0.8346 |
-#&gt; |.....................|   0.05560 |    0.7523 |    0.7245 |     1.469 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.289 |     1.306 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     451.58673</span> |     93.57 |  0.002533 |    0.2753 |    0.8388 |
-#&gt; |.....................|     8.974 |     2.233 |  0.008399 |    0.8346 |
-#&gt; |.....................|   0.05560 |    0.7523 |    0.7245 |     1.469 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.289 |     1.306 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     7.829 |    0.3494 |    0.8366 |   -0.4922 |
-#&gt; |.....................|   -0.7083 |    -3.782 |   -0.9020 |    -9.523 |
-#&gt; |.....................|    -4.571 |     4.733 |     3.935 |    -3.194 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    -1.280 |    0.5510 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   86</span>|     450.56328 |     1.003 |    -1.760 |   -0.9418 |   -0.9563 |
-#&gt; |.....................|   -0.9480 |     1.050 |    -2.445 |    -1.421 |
-#&gt; |.....................|    0.9402 |   -0.9310 |    -1.041 |   -0.6107 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6547 |   -0.6413 |...........|...........|</span>
-#&gt; |    U|     450.56328 |     93.41 |    -6.064 |   -0.9728 |   -0.1684 |
-#&gt; |.....................|     2.189 |     2.272 |  0.006706 |    0.8396 |
-#&gt; |.....................|   0.05758 |    0.7168 |    0.7280 |     1.525 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.300 |     1.318 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     450.56328</span> |     93.41 |  0.002326 |    0.2743 |    0.8450 |
-#&gt; |.....................|     8.923 |     2.272 |  0.006706 |    0.8396 |
-#&gt; |.....................|   0.05758 |    0.7168 |    0.7280 |     1.525 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.300 |     1.318 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   87</span>|     449.70344 |     1.004 |    -1.916 |   -0.9511 |   -0.9429 |
-#&gt; |.....................|   -0.9589 |     1.170 |    -2.653 |    -1.409 |
-#&gt; |.....................|     1.180 |    -1.015 |    -1.032 |   -0.5274 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6372 |   -0.6210 |...........|...........|</span>
-#&gt; |    U|     449.70344 |     93.47 |    -6.220 |   -0.9817 |   -0.1550 |
-#&gt; |.....................|     2.178 |     2.342 |  0.003591 |    0.8462 |
-#&gt; |.....................|   0.06119 |    0.6534 |    0.7360 |     1.626 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.318 |     1.340 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     449.70344</span> |     93.47 |  0.001990 |    0.2726 |    0.8564 |
-#&gt; |.....................|     8.826 |     2.342 |  0.003591 |    0.8462 |
-#&gt; |.....................|   0.06119 |    0.6534 |    0.7360 |     1.626 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.318 |     1.340 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -19.90 |   -0.3168 |    0.4549 |    0.1875 |
-#&gt; |.....................|    -1.116 |   -0.4934 |  -0.07687 |    -3.113 |
-#&gt; |.....................|    -2.715 |    -1.586 |     5.430 |     3.365 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.3009 |     1.974 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   88</span>|     451.98935 |     1.002 |    -1.890 |    -1.062 |    -1.052 |
-#&gt; |.....................|   -0.7983 |     1.243 |    -2.828 |    -1.513 |
-#&gt; |.....................|     1.600 |    -1.043 |    -1.029 |   -0.6268 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.3463 |   -0.6648 |...........|...........|</span>
-#&gt; |    U|     451.98935 |     93.35 |    -6.193 |    -1.087 |   -0.2643 |
-#&gt; |.....................|     2.338 |     2.384 | 0.0009551 |    0.7857 |
-#&gt; |.....................|   0.06749 |    0.6319 |    0.7389 |     1.506 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.629 |     1.293 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     451.98935</span> |     93.35 |  0.002043 |    0.2523 |    0.7677 |
-#&gt; |.....................|     10.36 |     2.384 | 0.0009551 |    0.7857 |
-#&gt; |.....................|   0.06749 |    0.6319 |    0.7389 |     1.506 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.629 |     1.293 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   89</span>|     449.56377 |     1.005 |    -1.911 |   -0.9716 |   -0.9631 |
-#&gt; |.....................|   -0.9292 |     1.184 |    -2.685 |    -1.428 |
-#&gt; |.....................|     1.258 |    -1.020 |    -1.032 |   -0.5459 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.5835 |   -0.6292 |...........|...........|</span>
-#&gt; |    U|     449.56377 |     93.56 |    -6.215 |    -1.001 |   -0.1752 |
-#&gt; |.....................|     2.207 |     2.350 |  0.003105 |    0.8351 |
-#&gt; |.....................|   0.06235 |    0.6495 |    0.7362 |     1.604 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.376 |     1.331 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     449.56377</span> |     93.56 |  0.002000 |    0.2687 |    0.8393 |
-#&gt; |.....................|     9.092 |     2.350 |  0.003105 |    0.8351 |
-#&gt; |.....................|   0.06235 |    0.6495 |    0.7362 |     1.604 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.376 |     1.331 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -8.503 |   -0.3085 |   -0.7128 |   -0.4858 |
-#&gt; |.....................|   -0.1462 |   -0.3349 |  -0.04630 |    -2.615 |
-#&gt; |.....................|    -2.539 |    -1.761 |     5.421 |     2.664 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     3.069 |     1.771 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   90</span>|     449.37295 |     1.008 |    -1.883 |   -0.9569 |   -0.9753 |
-#&gt; |.....................|   -0.9112 |     1.201 |    -2.710 |    -1.458 |
-#&gt; |.....................|     1.352 |    -1.030 |    -1.036 |   -0.5467 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.5933 |   -0.6460 |...........|...........|</span>
-#&gt; |    U|     449.37295 |     93.89 |    -6.186 |   -0.9871 |   -0.1875 |
-#&gt; |.....................|     2.225 |     2.360 |  0.002726 |    0.8181 |
-#&gt; |.....................|   0.06377 |    0.6417 |    0.7326 |     1.603 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.365 |     1.313 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     449.37295</span> |     93.89 |  0.002058 |    0.2715 |    0.8291 |
-#&gt; |.....................|     9.256 |     2.360 |  0.002726 |    0.8181 |
-#&gt; |.....................|   0.06377 |    0.6417 |    0.7326 |     1.603 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.365 |     1.313 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     31.95 |   -0.2055 |    0.2861 |   -0.8772 |
-#&gt; |.....................|    0.4589 |  0.008909 |   0.01409 |    -2.994 |
-#&gt; |.....................|    -2.511 |    -2.129 |     5.021 |     2.567 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     2.446 |     1.004 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   91</span>|     449.07232 |     1.007 |    -1.848 |   -0.9883 |   -0.9607 |
-#&gt; |.....................|   -0.9269 |     1.208 |    -2.721 |    -1.473 |
-#&gt; |.....................|     1.446 |    -1.013 |    -1.041 |   -0.5472 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6000 |   -0.6251 |...........|...........|</span>
-#&gt; |    U|     449.07232 |     93.73 |    -6.151 |    -1.017 |   -0.1729 |
-#&gt; |.....................|     2.210 |     2.364 |  0.002568 |    0.8093 |
-#&gt; |.....................|   0.06518 |    0.6543 |    0.7283 |     1.602 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.358 |     1.335 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     449.07232</span> |     93.73 |  0.002130 |    0.2656 |    0.8412 |
-#&gt; |.....................|     9.113 |     2.364 |  0.002568 |    0.8093 |
-#&gt; |.....................|   0.06518 |    0.6543 |    0.7283 |     1.602 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.358 |     1.335 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   92</span>|     449.34581 |     1.013 |    -1.744 |    -1.083 |   -0.9172 |
-#&gt; |.....................|   -0.9739 |     1.229 |    -2.752 |    -1.520 |
-#&gt; |.....................|     1.728 |   -0.9642 |    -1.054 |   -0.5478 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6192 |   -0.5619 |...........|...........|</span>
-#&gt; |    U|     449.34581 |     94.33 |    -6.047 |    -1.106 |   -0.1294 |
-#&gt; |.....................|     2.163 |     2.376 |  0.002092 |    0.7821 |
-#&gt; |.....................|   0.06942 |    0.6916 |    0.7169 |     1.601 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.337 |     1.403 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     449.34581</span> |     94.33 |  0.002364 |    0.2486 |    0.8787 |
-#&gt; |.....................|     8.694 |     2.376 |  0.002092 |    0.7821 |
-#&gt; |.....................|   0.06942 |    0.6916 |    0.7169 |     1.601 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.337 |     1.403 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     11.36 |  -0.08356 |    -1.544 |   -0.3785 |
-#&gt; |.....................|  -0.02879 |    0.1985 |   0.04898 |    -2.532 |
-#&gt; |.....................|    -2.210 |    -1.428 |     5.624 |     2.440 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     2.104 |     1.894 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   93</span>|     449.83746 |    0.9966 |    -1.806 |   -0.8436 |   -0.9213 |
-#&gt; |.....................|    -1.016 |     1.236 |    -2.752 |    -1.567 |
-#&gt; |.....................|     1.816 |    -1.085 |    -1.056 |   -0.6567 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.5363 |   -0.5852 |...........|...........|</span>
-#&gt; |    U|     449.83746 |     92.80 |    -6.109 |   -0.8802 |   -0.1335 |
-#&gt; |.....................|     2.121 |     2.380 |  0.002093 |    0.7548 |
-#&gt; |.....................|   0.07074 |    0.5997 |    0.7149 |     1.469 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.426 |     1.378 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     449.83746</span> |     92.80 |  0.002222 |    0.2931 |    0.8750 |
-#&gt; |.....................|     8.340 |     2.380 |  0.002093 |    0.7548 |
-#&gt; |.....................|   0.07074 |    0.5997 |    0.7149 |     1.469 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.426 |     1.378 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   94</span>|     449.05525 |     1.000 |    -1.836 |   -0.9477 |   -0.9497 |
-#&gt; |.....................|   -0.9515 |     1.216 |    -2.730 |    -1.498 |
-#&gt; |.....................|     1.549 |    -1.033 |    -1.047 |   -0.5784 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.5830 |   -0.6146 |...........|...........|</span>
-#&gt; |    U|     449.05525 |     93.13 |    -6.140 |   -0.9784 |   -0.1618 |
-#&gt; |.....................|     2.185 |     2.368 |  0.002436 |    0.7946 |
-#&gt; |.....................|   0.06673 |    0.6395 |    0.7230 |     1.564 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.376 |     1.346 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     449.05525</span> |     93.13 |  0.002156 |    0.2732 |    0.8506 |
-#&gt; |.....................|     8.891 |     2.368 |  0.002436 |    0.7946 |
-#&gt; |.....................|   0.06673 |    0.6395 |    0.7230 |     1.564 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.376 |     1.346 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -56.82 |  -0.05113 |    0.4930 |  -0.04031 |
-#&gt; |.....................|    -1.049 |   0.03445 |  -0.05944 |    -2.319 |
-#&gt; |.....................|    -2.208 |    -2.328 |     3.545 |    0.3775 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     2.643 |     2.387 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   95</span>|     448.75128 |     1.006 |    -1.837 |   -0.9543 |   -0.9497 |
-#&gt; |.....................|   -0.9537 |     1.219 |    -2.732 |    -1.514 |
-#&gt; |.....................|     1.608 |    -1.030 |    -1.050 |   -0.5750 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.5860 |   -0.6263 |...........|...........|</span>
-#&gt; |    U|     448.75128 |     93.69 |    -6.140 |   -0.9847 |   -0.1618 |
-#&gt; |.....................|     2.183 |     2.370 |  0.002396 |    0.7854 |
-#&gt; |.....................|   0.06761 |    0.6415 |    0.7208 |     1.568 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.373 |     1.334 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     448.75128</span> |     93.69 |  0.002154 |    0.2720 |    0.8506 |
-#&gt; |.....................|     8.872 |     2.370 |  0.002396 |    0.7854 |
-#&gt; |.....................|   0.06761 |    0.6415 |    0.7208 |     1.568 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.373 |     1.334 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     6.795 |  -0.02569 |    0.3964 |   0.03329 |
-#&gt; |.....................|   -0.8574 |    0.1774 |   0.01390 |    -2.462 |
-#&gt; |.....................|    -2.149 |    -2.476 |     3.910 |     1.045 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     2.743 |     2.014 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   96</span>|     448.60805 |     1.005 |    -1.844 |   -0.9658 |   -0.9658 |
-#&gt; |.....................|   -0.9330 |     1.222 |    -2.731 |    -1.528 |
-#&gt; |.....................|     1.652 |    -1.023 |    -1.051 |   -0.5597 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.5993 |   -0.6478 |...........|...........|</span>
-#&gt; |    U|     448.60805 |     93.55 |    -6.147 |   -0.9955 |   -0.1780 |
-#&gt; |.....................|     2.204 |     2.372 |  0.002406 |    0.7773 |
-#&gt; |.....................|   0.06828 |    0.6470 |    0.7198 |     1.587 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.359 |     1.311 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     448.60805</span> |     93.55 |  0.002140 |    0.2698 |    0.8370 |
-#&gt; |.....................|     9.057 |     2.372 |  0.002406 |    0.7773 |
-#&gt; |.....................|   0.06828 |    0.6470 |    0.7198 |     1.587 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.359 |     1.311 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   97</span>|     448.54893 |     1.004 |    -1.854 |   -0.9831 |   -0.9905 |
-#&gt; |.....................|   -0.9018 |     1.226 |    -2.730 |    -1.550 |
-#&gt; |.....................|     1.719 |    -1.013 |    -1.051 |   -0.5361 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6188 |   -0.6800 |...........|...........|</span>
-#&gt; |    U|     448.54893 |     93.53 |    -6.157 |    -1.012 |   -0.2026 |
-#&gt; |.....................|     2.235 |     2.374 |  0.002422 |    0.7645 |
-#&gt; |.....................|   0.06928 |    0.6548 |    0.7192 |     1.616 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.338 |     1.276 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     448.54893</span> |     93.53 |  0.002118 |    0.2666 |    0.8166 |
-#&gt; |.....................|     9.344 |     2.374 |  0.002422 |    0.7645 |
-#&gt; |.....................|   0.06928 |    0.6548 |    0.7192 |     1.616 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.338 |     1.276 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -11.31 |  -0.05480 |    -1.344 |    -1.332 |
-#&gt; |.....................|    0.5363 |    0.1616 |  -0.02955 |    -2.282 |
-#&gt; |.....................|    -1.949 |    -1.541 |     5.051 |     2.875 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.005 |   -0.6800 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   98</span>|     448.23423 |     1.005 |    -1.862 |   -0.9802 |   -0.9885 |
-#&gt; |.....................|   -0.8649 |     1.225 |    -2.731 |    -1.570 |
-#&gt; |.....................|     1.863 |   -0.9934 |    -1.058 |   -0.5422 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6330 |   -0.6404 |...........|...........|</span>
-#&gt; |    U|     448.23423 |     93.60 |    -6.165 |    -1.009 |   -0.2007 |
-#&gt; |.....................|     2.272 |     2.374 |  0.002415 |    0.7529 |
-#&gt; |.....................|   0.07145 |    0.6695 |    0.7131 |     1.608 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.323 |     1.319 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     448.23423</span> |     93.60 |  0.002101 |    0.2671 |    0.8182 |
-#&gt; |.....................|     9.695 |     2.374 |  0.002415 |    0.7529 |
-#&gt; |.....................|   0.07145 |    0.6695 |    0.7131 |     1.608 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.323 |     1.319 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>   99</span>|     448.52797 |     1.003 |    -1.887 |   -0.9721 |   -0.9832 |
-#&gt; |.....................|   -0.7539 |     1.222 |    -2.732 |    -1.631 |
-#&gt; |.....................|     2.296 |   -0.9358 |    -1.078 |   -0.5592 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6753 |   -0.5215 |...........|...........|</span>
-#&gt; |    U|     448.52797 |     93.41 |    -6.190 |    -1.001 |   -0.1954 |
-#&gt; |.....................|     2.383 |     2.371 |  0.002396 |    0.7173 |
-#&gt; |.....................|   0.07796 |    0.7131 |    0.6963 |     1.588 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.277 |     1.446 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     448.52797</span> |     93.41 |  0.002050 |    0.2687 |    0.8225 |
-#&gt; |.....................|     10.83 |     2.371 |  0.002396 |    0.7173 |
-#&gt; |.....................|   0.07796 |    0.7131 |    0.6963 |     1.588 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.277 |     1.446 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -1.417 |  -0.03842 |    -1.058 |    -1.257 |
-#&gt; |.....................|     1.697 |    0.2446 |   0.02601 |    -1.725 |
-#&gt; |.....................|    -1.728 |   -0.7541 |     3.822 |     2.423 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.4552 |     1.132 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  100</span>|     447.48636 |     1.010 |    -1.889 |    -1.018 |   -0.9136 |
-#&gt; |.....................|   -0.9465 |     1.241 |    -2.741 |    -1.706 |
-#&gt; |.....................|     2.465 |   -0.9635 |    -1.095 |   -0.5705 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6276 |   -0.6598 |...........|...........|</span>
-#&gt; |    U|     447.48636 |     94.00 |    -6.193 |    -1.045 |   -0.1257 |
-#&gt; |.....................|     2.190 |     2.383 |  0.002265 |    0.6743 |
-#&gt; |.....................|   0.08050 |    0.6921 |    0.6807 |     1.574 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.328 |     1.298 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.48636</span> |     94.00 |  0.002044 |    0.2602 |    0.8818 |
-#&gt; |.....................|     8.935 |     2.383 |  0.002265 |    0.6743 |
-#&gt; |.....................|   0.08050 |    0.6921 |    0.6807 |     1.574 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.328 |     1.298 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     49.18 |   0.06228 |    -2.520 |     1.219 |
-#&gt; |.....................|   -0.3402 |    0.5332 |   0.01803 |    -1.013 |
-#&gt; |.....................|   -0.7363 |    0.9697 |     2.720 |    0.6118 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.4882 |   -0.1519 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  101</span>|     448.59314 |     1.009 |    -1.906 |   -0.9798 |    -1.202 |
-#&gt; |.....................|    -1.107 |     1.243 |    -2.730 |    -1.791 |
-#&gt; |.....................|     2.989 |   -0.9474 |    -1.110 |   -0.5914 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6423 |   -0.5882 |...........|...........|</span>
-#&gt; |    U|     448.59314 |     93.96 |    -6.209 |    -1.009 |   -0.4139 |
-#&gt; |.....................|     2.029 |     2.384 |  0.002422 |    0.6247 |
-#&gt; |.....................|   0.08837 |    0.7043 |    0.6679 |     1.549 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.313 |     1.375 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     448.59314</span> |     93.96 |  0.002010 |    0.2672 |    0.6611 |
-#&gt; |.....................|     7.610 |     2.384 |  0.002422 |    0.6247 |
-#&gt; |.....................|   0.08837 |    0.7043 |    0.6679 |     1.549 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.313 |     1.375 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  102</span>|     447.34338 |     1.004 |    -1.893 |    -1.010 |   -0.9727 |
-#&gt; |.....................|   -0.9794 |     1.241 |    -2.739 |    -1.723 |
-#&gt; |.....................|     2.572 |   -0.9603 |    -1.099 |   -0.5748 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6307 |   -0.6452 |...........|...........|</span>
-#&gt; |    U|     447.34338 |     93.48 |    -6.196 |    -1.037 |   -0.1848 |
-#&gt; |.....................|     2.157 |     2.383 |  0.002297 |    0.6642 |
-#&gt; |.....................|   0.08211 |    0.6946 |    0.6778 |     1.569 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.325 |     1.314 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.34338</span> |     93.48 |  0.002037 |    0.2617 |    0.8313 |
-#&gt; |.....................|     8.647 |     2.383 |  0.002297 |    0.6642 |
-#&gt; |.....................|   0.08211 |    0.6946 |    0.6778 |     1.569 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.325 |     1.314 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -27.99 |   0.05620 |    -2.283 |   -0.5861 |
-#&gt; |.....................|    -1.399 |    0.3409 |  -0.05316 |   -0.7185 |
-#&gt; |.....................|   -0.6589 |    0.7167 |     1.472 |    0.2167 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.2339 |    0.7351 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  103</span>|     447.24116 |     1.004 |    -1.898 |   -0.9880 |   -0.9438 |
-#&gt; |.....................|   -0.9421 |     1.243 |    -2.723 |    -1.759 |
-#&gt; |.....................|     2.683 |   -0.9737 |    -1.096 |   -0.5790 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6284 |   -0.6557 |...........|...........|</span>
-#&gt; |    U|     447.24116 |     93.50 |    -6.201 |    -1.017 |   -0.1559 |
-#&gt; |.....................|     2.195 |     2.384 |  0.002530 |    0.6435 |
-#&gt; |.....................|   0.08377 |    0.6844 |    0.6802 |     1.564 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.328 |     1.302 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.24116</span> |     93.50 |  0.002027 |    0.2657 |    0.8556 |
-#&gt; |.....................|     8.976 |     2.384 |  0.002530 |    0.6435 |
-#&gt; |.....................|   0.08377 |    0.6844 |    0.6802 |     1.564 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.328 |     1.302 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -22.25 |   0.02611 |    -1.124 |    0.2366 |
-#&gt; |.....................|   -0.4078 |    0.2597 |  -0.06938 |   -0.8187 |
-#&gt; |.....................|   -0.5375 |  0.002218 |     1.533 |   -0.1306 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.2372 |    0.1318 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  104</span>|     447.36545 |     1.010 |    -1.910 |   -0.9563 |    -1.018 |
-#&gt; |.....................|   -0.9640 |     1.238 |    -2.696 |    -1.806 |
-#&gt; |.....................|     2.921 |   -0.9760 |    -1.100 |   -0.5866 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6320 |   -0.6434 |...........|...........|</span>
-#&gt; |    U|     447.36545 |     94.05 |    -6.214 |   -0.9866 |   -0.2304 |
-#&gt; |.....................|     2.173 |     2.381 |  0.002941 |    0.6159 |
-#&gt; |.....................|   0.08734 |    0.6827 |    0.6770 |     1.554 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.324 |     1.315 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.36545</span> |     94.05 |  0.002002 |    0.2716 |    0.7942 |
-#&gt; |.....................|     8.780 |     2.381 |  0.002941 |    0.6159 |
-#&gt; |.....................|   0.08734 |    0.6827 |    0.6770 |     1.554 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.324 |     1.315 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  105</span>|     447.25244 |     1.009 |    -1.902 |   -0.9770 |   -0.9694 |
-#&gt; |.....................|   -0.9495 |     1.241 |    -2.714 |    -1.775 |
-#&gt; |.....................|     2.765 |   -0.9745 |    -1.097 |   -0.5816 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6297 |   -0.6515 |...........|...........|</span>
-#&gt; |    U|     447.25244 |     93.94 |    -6.205 |    -1.006 |   -0.1815 |
-#&gt; |.....................|     2.187 |     2.383 |  0.002671 |    0.6341 |
-#&gt; |.....................|   0.08500 |    0.6838 |    0.6790 |     1.560 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.326 |     1.307 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.25244</span> |     93.94 |  0.002018 |    0.2677 |    0.8340 |
-#&gt; |.....................|     8.909 |     2.383 |  0.002671 |    0.6341 |
-#&gt; |.....................|   0.08500 |    0.6838 |    0.6790 |     1.560 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.326 |     1.307 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  106</span>|     447.24908 |     1.008 |    -1.900 |   -0.9828 |   -0.9557 |
-#&gt; |.....................|   -0.9455 |     1.242 |    -2.719 |    -1.766 |
-#&gt; |.....................|     2.721 |   -0.9741 |    -1.097 |   -0.5802 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6290 |   -0.6537 |...........|...........|</span>
-#&gt; |    U|     447.24908 |     93.91 |    -6.203 |    -1.012 |   -0.1678 |
-#&gt; |.....................|     2.191 |     2.383 |  0.002596 |    0.6392 |
-#&gt; |.....................|   0.08434 |    0.6841 |    0.6795 |     1.562 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.327 |     1.304 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.24908</span> |     93.91 |  0.002023 |    0.2667 |    0.8455 |
-#&gt; |.....................|     8.945 |     2.383 |  0.002596 |    0.6392 |
-#&gt; |.....................|   0.08434 |    0.6841 |    0.6795 |     1.562 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.327 |     1.304 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  107</span>|     447.25180 |     1.008 |    -1.899 |   -0.9855 |   -0.9493 |
-#&gt; |.....................|   -0.9436 |     1.242 |    -2.721 |    -1.762 |
-#&gt; |.....................|     2.700 |   -0.9739 |    -1.097 |   -0.5796 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6287 |   -0.6548 |...........|...........|</span>
-#&gt; |    U|      447.2518 |     93.89 |    -6.202 |    -1.014 |   -0.1614 |
-#&gt; |.....................|     2.193 |     2.383 |  0.002560 |    0.6416 |
-#&gt; |.....................|   0.08403 |    0.6843 |    0.6798 |     1.563 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.327 |     1.303 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>      447.2518</span> |     93.89 |  0.002025 |    0.2662 |    0.8509 |
-#&gt; |.....................|     8.962 |     2.383 |  0.002560 |    0.6416 |
-#&gt; |.....................|   0.08403 |    0.6843 |    0.6798 |     1.563 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.327 |     1.303 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  108</span>|     447.25421 |     1.008 |    -1.898 |   -0.9869 |   -0.9460 |
-#&gt; |.....................|   -0.9426 |     1.242 |    -2.722 |    -1.760 |
-#&gt; |.....................|     2.690 |   -0.9738 |    -1.096 |   -0.5792 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6286 |   -0.6553 |...........|...........|</span>
-#&gt; |    U|     447.25421 |     93.88 |    -6.202 |    -1.015 |   -0.1582 |
-#&gt; |.....................|     2.194 |     2.384 |  0.002542 |    0.6428 |
-#&gt; |.....................|   0.08388 |    0.6843 |    0.6799 |     1.563 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.327 |     1.303 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.25421</span> |     93.88 |  0.002026 |    0.2659 |    0.8537 |
-#&gt; |.....................|     8.970 |     2.384 |  0.002542 |    0.6428 |
-#&gt; |.....................|   0.08388 |    0.6843 |    0.6799 |     1.563 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.327 |     1.303 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  109</span>|     447.24978 |     1.008 |    -1.898 |   -0.9878 |   -0.9438 |
-#&gt; |.....................|   -0.9420 |     1.242 |    -2.723 |    -1.759 |
-#&gt; |.....................|     2.683 |   -0.9737 |    -1.096 |   -0.5790 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6285 |   -0.6557 |...........|...........|</span>
-#&gt; |    U|     447.24978 |     93.86 |    -6.201 |    -1.016 |   -0.1560 |
-#&gt; |.....................|     2.195 |     2.384 |  0.002530 |    0.6436 |
-#&gt; |.....................|   0.08377 |    0.6844 |    0.6800 |     1.564 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.328 |     1.302 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.24978</span> |     93.86 |  0.002027 |    0.2657 |    0.8556 |
-#&gt; |.....................|     8.976 |     2.384 |  0.002530 |    0.6436 |
-#&gt; |.....................|   0.08377 |    0.6844 |    0.6800 |     1.564 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.328 |     1.302 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  110</span>|     447.22094 |     1.006 |    -1.898 |   -0.9879 |   -0.9438 |
-#&gt; |.....................|   -0.9420 |     1.243 |    -2.723 |    -1.759 |
-#&gt; |.....................|     2.683 |   -0.9737 |    -1.096 |   -0.5790 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6284 |   -0.6557 |...........|...........|</span>
-#&gt; |    U|     447.22094 |     93.66 |    -6.201 |    -1.016 |   -0.1560 |
-#&gt; |.....................|     2.195 |     2.384 |  0.002530 |    0.6435 |
-#&gt; |.....................|   0.08377 |    0.6844 |    0.6801 |     1.564 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.328 |     1.302 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.22094</span> |     93.66 |  0.002027 |    0.2657 |    0.8556 |
-#&gt; |.....................|     8.976 |     2.384 |  0.002530 |    0.6435 |
-#&gt; |.....................|   0.08377 |    0.6844 |    0.6801 |     1.564 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.328 |     1.302 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    0.7136 |   0.03206 |    -1.028 |    0.2620 |
-#&gt; |.....................|   -0.3312 |    0.3050 |  -0.05505 |   -0.8960 |
-#&gt; |.....................|   -0.4549 |   0.03409 |     2.494 |   -0.1555 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.2265 |    0.1085 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  111</span>|     447.21344 |     1.005 |    -1.898 |   -0.9873 |   -0.9440 |
-#&gt; |.....................|   -0.9418 |     1.242 |    -2.723 |    -1.758 |
-#&gt; |.....................|     2.683 |   -0.9737 |    -1.098 |   -0.5789 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6286 |   -0.6557 |...........|...........|</span>
-#&gt; |    U|     447.21344 |     93.62 |    -6.201 |    -1.016 |   -0.1561 |
-#&gt; |.....................|     2.195 |     2.384 |  0.002531 |    0.6439 |
-#&gt; |.....................|   0.08377 |    0.6844 |    0.6789 |     1.564 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.327 |     1.302 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.21344</span> |     93.62 |  0.002027 |    0.2658 |    0.8555 |
-#&gt; |.....................|     8.978 |     2.384 |  0.002531 |    0.6439 |
-#&gt; |.....................|   0.08377 |    0.6844 |    0.6789 |     1.564 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.327 |     1.302 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -4.689 |   0.03686 |    -1.013 |    0.2539 |
-#&gt; |.....................|   -0.3408 |    0.6592 |   0.03740 |   -0.5502 |
-#&gt; |.....................|   -0.2201 |    0.3219 |     2.382 |   -0.1778 |
-#&gt; <span style='text-decoration: underline;'>|.....................|    0.2028 |   0.08770 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  112</span>|     447.19216 |     1.006 |    -1.899 |   -0.9854 |   -0.9463 |
-#&gt; |.....................|   -0.9420 |     1.239 |    -2.724 |    -1.756 |
-#&gt; |.....................|     2.680 |   -0.9744 |    -1.101 |   -0.5784 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6293 |   -0.6560 |...........|...........|</span>
-#&gt; |    U|     447.19216 |     93.64 |    -6.203 |    -1.014 |   -0.1585 |
-#&gt; |.....................|     2.195 |     2.382 |  0.002523 |    0.6453 |
-#&gt; |.....................|   0.08373 |    0.6839 |    0.6759 |     1.564 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.327 |     1.302 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.19216</span> |     93.64 |  0.002024 |    0.2662 |    0.8535 |
-#&gt; |.....................|     8.976 |     2.382 |  0.002523 |    0.6453 |
-#&gt; |.....................|   0.08373 |    0.6839 |    0.6759 |     1.564 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.327 |     1.302 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  113</span>|     447.14896 |     1.005 |    -1.904 |   -0.9796 |   -0.9535 |
-#&gt; |.....................|   -0.9426 |     1.230 |    -2.725 |    -1.748 |
-#&gt; |.....................|     2.670 |   -0.9764 |    -1.111 |   -0.5767 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6315 |   -0.6570 |...........|...........|</span>
-#&gt; |    U|     447.14896 |     93.56 |    -6.208 |    -1.009 |   -0.1657 |
-#&gt; |.....................|     2.194 |     2.376 |  0.002500 |    0.6498 |
-#&gt; |.....................|   0.08358 |    0.6823 |    0.6675 |     1.566 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.324 |     1.301 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.14896</span> |     93.56 |  0.002014 |    0.2673 |    0.8473 |
-#&gt; |.....................|     8.971 |     2.376 |  0.002500 |    0.6498 |
-#&gt; |.....................|   0.08358 |    0.6823 |    0.6675 |     1.566 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.324 |     1.301 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  114</span>|     447.12523 |     1.003 |    -1.923 |   -0.9566 |   -0.9821 |
-#&gt; |.....................|   -0.9448 |     1.194 |    -2.731 |    -1.717 |
-#&gt; |.....................|     2.632 |   -0.9846 |    -1.149 |   -0.5701 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6401 |   -0.6607 |...........|...........|</span>
-#&gt; |    U|     447.12523 |     93.36 |    -6.227 |   -0.9868 |   -0.1943 |
-#&gt; |.....................|     2.192 |     2.355 |  0.002410 |    0.6677 |
-#&gt; |.....................|   0.08300 |    0.6762 |    0.6336 |     1.574 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.315 |     1.297 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.12523</span> |     93.36 |  0.001976 |    0.2715 |    0.8234 |
-#&gt; |.....................|     8.951 |     2.355 |  0.002410 |    0.6677 |
-#&gt; |.....................|   0.08300 |    0.6762 |    0.6336 |     1.574 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.315 |     1.297 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |    -42.78 |    0.1470 |    0.5793 |   -0.8455 |
-#&gt; |.....................|   -0.3546 |   -0.4331 |   -0.1071 |  -0.02049 |
-#&gt; |.....................|   -0.3358 |   -0.3904 |    -2.177 |    0.2043 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.1377 |   -0.3207 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  115</span>|     447.09924 |     1.007 |    -1.940 |   -0.9416 |    -1.018 |
-#&gt; |.....................|   -0.9550 |     1.181 |    -2.719 |    -1.734 |
-#&gt; |.....................|     2.734 |   -0.9861 |    -1.153 |   -0.5706 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6433 |   -0.6564 |...........|...........|</span>
-#&gt; |    U|     447.09924 |     93.80 |    -6.243 |   -0.9727 |   -0.2297 |
-#&gt; |.....................|     2.182 |     2.348 |  0.002591 |    0.6578 |
-#&gt; |.....................|   0.08453 |    0.6750 |    0.6303 |     1.574 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.312 |     1.301 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.09924</span> |     93.80 |  0.001943 |    0.2743 |    0.7947 |
-#&gt; |.....................|     8.860 |     2.348 |  0.002591 |    0.6578 |
-#&gt; |.....................|   0.08453 |    0.6750 |    0.6303 |     1.574 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.312 |     1.301 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     15.04 |    0.1387 |     1.646 |    -1.777 |
-#&gt; |.....................|   -0.3749 |   -0.5049 |  -0.07528 |    0.1505 |
-#&gt; |.....................|   -0.2071 |   -0.6675 |    -2.129 |    0.2735 |
-#&gt; <span style='text-decoration: underline;'>|.....................|  -0.05533 |   -0.2849 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  116</span>|     447.06926 |     1.008 |    -1.968 |   -0.9759 |   -0.9363 |
-#&gt; |.....................|   -0.9300 |     1.192 |    -2.714 |    -1.733 |
-#&gt; |.....................|     2.676 |   -0.9757 |    -1.142 |   -0.5672 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6383 |   -0.6598 |...........|...........|</span>
-#&gt; |    U|     447.06926 |     93.90 |    -6.272 |    -1.005 |   -0.1484 |
-#&gt; |.....................|     2.207 |     2.354 |  0.002664 |    0.6586 |
-#&gt; |.....................|   0.08367 |    0.6829 |    0.6398 |     1.578 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.317 |     1.298 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.06926</span> |     93.90 |  0.001889 |    0.2679 |    0.8621 |
-#&gt; |.....................|     9.084 |     2.354 |  0.002664 |    0.6586 |
-#&gt; |.....................|   0.08367 |    0.6829 |    0.6398 |     1.578 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.317 |     1.298 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     31.57 |   0.06960 |   -0.1881 |    0.5445 |
-#&gt; |.....................|    0.2088 |   -0.3879 |  -0.06801 |   -0.3419 |
-#&gt; |.....................|   -0.4021 |   0.02711 |    -1.273 |    0.2199 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.1004 |   -0.4182 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  117</span>|     447.12806 |     1.006 |    -2.047 |   -0.9734 |   -0.9587 |
-#&gt; |.....................|   -0.9336 |     1.189 |    -2.704 |    -1.764 |
-#&gt; |.....................|     2.737 |   -0.9879 |    -1.112 |   -0.5826 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6349 |   -0.6438 |...........|...........|</span>
-#&gt; |    U|     447.12806 |     93.67 |    -6.350 |    -1.003 |   -0.1708 |
-#&gt; |.....................|     2.203 |     2.352 |  0.002825 |    0.6405 |
-#&gt; |.....................|   0.08458 |    0.6737 |    0.6664 |     1.559 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.321 |     1.315 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.12806</span> |     93.67 |  0.001747 |    0.2684 |    0.8430 |
-#&gt; |.....................|     9.052 |     2.352 |  0.002825 |    0.6405 |
-#&gt; |.....................|   0.08458 |    0.6737 |    0.6664 |     1.559 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.321 |     1.315 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  118</span>|     447.05003 |     1.006 |    -1.997 |   -0.9750 |   -0.9445 |
-#&gt; |.....................|   -0.9313 |     1.191 |    -2.710 |    -1.744 |
-#&gt; |.....................|     2.698 |   -0.9801 |    -1.131 |   -0.5728 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6370 |   -0.6539 |...........|...........|</span>
-#&gt; |    U|     447.05003 |     93.71 |    -6.300 |    -1.004 |   -0.1566 |
-#&gt; |.....................|     2.205 |     2.354 |  0.002723 |    0.6520 |
-#&gt; |.....................|   0.08400 |    0.6796 |    0.6495 |     1.571 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.318 |     1.304 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.05003</span> |     93.71 |  0.001836 |    0.2681 |    0.8551 |
-#&gt; |.....................|     9.073 |     2.354 |  0.002723 |    0.6520 |
-#&gt; |.....................|   0.08400 |    0.6796 |    0.6495 |     1.571 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.318 |     1.304 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     4.860 |  -0.01375 |   -0.2473 |    0.2780 |
-#&gt; |.....................|   0.08862 |   -0.4372 |  -0.08802 |   -0.3404 |
-#&gt; |.....................|   -0.3654 |   -0.2345 |   -0.3468 |   0.08396 |
-#&gt; <span style='text-decoration: underline;'>|.....................|  -0.01035 |  -0.06837 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  119</span>|     447.04716 |     1.006 |    -1.989 |   -0.9725 |   -0.9518 |
-#&gt; |.....................|   -0.9334 |     1.193 |    -2.718 |    -1.756 |
-#&gt; |.....................|     2.735 |   -0.9825 |    -1.129 |   -0.5738 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6372 |   -0.6523 |...........|...........|</span>
-#&gt; |    U|     447.04716 |     93.69 |    -6.292 |    -1.002 |   -0.1639 |
-#&gt; |.....................|     2.203 |     2.355 |  0.002610 |    0.6452 |
-#&gt; |.....................|   0.08456 |    0.6777 |    0.6509 |     1.570 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.318 |     1.306 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.04716</span> |     93.69 |  0.001850 |    0.2686 |    0.8488 |
-#&gt; |.....................|     9.053 |     2.355 |  0.002610 |    0.6452 |
-#&gt; |.....................|   0.08456 |    0.6777 |    0.6509 |     1.570 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.318 |     1.306 |...........|...........|</span>
-#&gt; |    F| Forward Diff. |     2.456 | -0.007589 |   -0.1181 |   0.06051 |
-#&gt; |.....................|   0.03158 |   -0.4028 |  -0.08358 |   -0.4018 |
-#&gt; |.....................|   -0.3358 |   -0.3459 |   -0.2609 |   0.03632 |
-#&gt; <span style='text-decoration: underline;'>|.....................|  -0.03277 |   0.02331 |...........|...........|</span>
-#&gt; |<span style='font-weight: bold;'>  120</span>|     447.04716 |     1.006 |    -1.989 |   -0.9725 |   -0.9518 |
-#&gt; |.....................|   -0.9334 |     1.193 |    -2.718 |    -1.756 |
-#&gt; |.....................|     2.735 |   -0.9825 |    -1.129 |   -0.5738 |
-#&gt; <span style='text-decoration: underline;'>|.....................|   -0.6372 |   -0.6523 |...........|...........|</span>
-#&gt; |    U|     447.04716 |     93.69 |    -6.292 |    -1.002 |   -0.1639 |
-#&gt; |.....................|     2.203 |     2.355 |  0.002610 |    0.6452 |
-#&gt; |.....................|   0.08456 |    0.6777 |    0.6509 |     1.570 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.318 |     1.306 |...........|...........|</span>
-#&gt; |    X|<span style='font-weight: bold;'>     447.04716</span> |     93.69 |  0.001850 |    0.2686 |    0.8488 |
-#&gt; |.....................|     9.053 |     2.355 |  0.002610 |    0.6452 |
-#&gt; |.....................|   0.08456 |    0.6777 |    0.6509 |     1.570 |
-#&gt; <span style='text-decoration: underline;'>|.....................|     1.318 |     1.306 |...........|...........|</span>
-#&gt; calculating covariance matrix
-#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
+#&gt; <span class='message'>cmt(A1);</span>
+#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
+#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
+#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
+#&gt; <span class='message'>rx_expr_8~ETA[5]+THETA[5];</span>
+#&gt; <span class='message'>rx_expr_12~exp(-(rx_expr_8));</span>
+#&gt; <span class='message'>rx_expr_14~t*rx_expr_12;</span>
+#&gt; <span class='message'>rx_expr_15~1+rx_expr_14;</span>
+#&gt; <span class='message'>rx_expr_17~rx_expr_7-(rx_expr_8);</span>
+#&gt; <span class='message'>rx_expr_19~exp(rx_expr_17);</span>
+#&gt; <span class='message'>d/dt(parent)=-rx_expr_19*parent/(rx_expr_15);</span>
+#&gt; <span class='message'>rx_expr_9~ETA[2]+THETA[2];</span>
+#&gt; <span class='message'>rx_expr_11~exp(rx_expr_9);</span>
+#&gt; <span class='message'>d/dt(A1)=-rx_expr_11*A1+rx_expr_19*parent*f_parent_to_A1/(rx_expr_15);</span>
+#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
+#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
+#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
+#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_13~rx_expr_5*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_lambda_~rx_expr_13+rx_expr_3;</span>
+#&gt; <span class='message'>rx_hi_~rx_expr_13+rx_expr_3;</span>
+#&gt; <span class='message'>rx_low_~0;</span>
+#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_10~parent*(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_16~rx_expr_10*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_16)*(rx_expr_0)+(rx_expr_4+rx_expr_16)*(rx_expr_2)*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_r_=(Rx_pow_di(((rx_expr_4+rx_expr_16)*(rx_expr_0)+(rx_expr_4+rx_expr_16)*(rx_expr_2)*(rx_expr_1)),2)*Rx_pow_di(THETA[9],2)+Rx_pow_di(THETA[8],2))*(rx_expr_0)+(Rx_pow_di(THETA[7],2)*Rx_pow_di(((rx_expr_4+rx_expr_16)*(rx_expr_1)),2)+Rx_pow_di(THETA[6],2))*(rx_expr_2)*(rx_expr_1);</span>
+#&gt; <span class='message'>parent_0=THETA[1];</span>
+#&gt; <span class='message'>log_k_A1=THETA[2];</span>
+#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
+#&gt; <span class='message'>log_alpha=THETA[4];</span>
+#&gt; <span class='message'>log_beta=THETA[5];</span>
+#&gt; <span class='message'>sigma_low_parent=THETA[6];</span>
+#&gt; <span class='message'>rsd_high_parent=THETA[7];</span>
+#&gt; <span class='message'>sigma_low_A1=THETA[8];</span>
+#&gt; <span class='message'>rsd_high_A1=THETA[9];</span>
+#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
+#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
+#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
+#&gt; <span class='message'>eta.log_alpha=ETA[4];</span>
+#&gt; <span class='message'>eta.log_beta=ETA[5];</span>
+#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
+#&gt; <span class='message'>k_A1=rx_expr_11;</span>
+#&gt; <span class='message'>alpha=exp(rx_expr_7);</span>
+#&gt; <span class='message'>beta=exp(rx_expr_8);</span>
+#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
+#&gt; <span class='message'>tad=tad();</span>
+#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt &lt;- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control &lt;- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret &lt;- new.env(parent = emptyenv())    }    else {        .ret &lt;- env    }    .ret$origData &lt;- data    .ret$etaNames &lt;- etaNames    .ret$thetaFixed &lt;- fixed    .ret$control &lt;- control    .ret$control$focei.mu.ref &lt;- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel &lt;- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel &lt;- TRUE        model &lt;- RxODE::rxGetLin(PKpars)        pred &lt;- eval(parse(text = "function(){return(Central);}"))    }    .square &lt;- function(x) x * x    .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames &lt;- .parNames &lt;- c()    .ret$adjLik &lt;- control$adjLik    .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0    if (!exists("noLik", envir = .ret)) {        .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol &lt;- .atol            .ret$control$rxControl$rtol &lt;- .rtol            .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol &lt;- .ssAtol            .ret$control$rxControl$ssRtol &lt;- .ssRtol        }        .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)        .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) &lt;- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) &gt; 0) {            .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) &gt; 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars &lt;- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol &lt;- .atol                .ret$control$rxControl$rtol &lt;- .rtol            }            .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)            .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) &lt;- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) &gt; 0) {                .covNames &lt;- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) &gt; 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars &lt;- .ret$model$extra.pars        }        else {            .extraPars &lt;- NULL        }    }    .ret$skipCov &lt;- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp &lt;- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) &lt; length(inits$THTA)) {                .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp &lt;- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr &lt;- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp &lt;- (.tmp | .uifErr)        }        .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms &lt;- thetaNames    }    .ret$thetaNames &lt;- .nms    .thetaReset$thetaNames &lt;- .nms    if (length(lower) == 1) {        lower &lt;- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper &lt;- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars &lt;- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) &gt; 0) {            inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars)            .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars))            lower &lt;- c(lower, .lowerErr)            upper &lt;- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID &lt;- 0    if (is.null(data$AMT))         data$AMT &lt;- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] &lt;- as.double(data[[.v]])    }    .ret$dataSav &lt;- data    .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w &lt;- which(tolower(names(data)) == "limit")    .limitName &lt;- NULL    if (length(.w) == 1L) {        .limitName &lt;- names(data)[.w]    }    .censName &lt;- NULL    .w &lt;- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName &lt;- names(data[.w])    }    data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh &lt;- .parseOM(inits$OMGA)        .nlh &lt;- sapply(.lh, length)        .osplt &lt;- rep(1:length(.lh), .nlh)        .lini &lt;- list(inits$THTA, unlist(.lh))        .nlini &lt;- sapply(.lini, length)        .nsplt &lt;- rep(1:length(.lini), .nlini)        .om0 &lt;- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames &lt;- .ret$etaNames        }        else {            .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType &lt;- .ret$rxInv$xType        .om0a &lt;- .om0        .om0a &lt;- .om0a/control$diagOmegaBoundLower        .om0b &lt;- .om0        .om0b &lt;- .om0b * control$diagOmegaBoundUpper        .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a))        .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a))        .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega &lt;- length(.omdf$lower)        .ret$control$neta &lt;- sum(.omdf$diag)        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)        lower &lt;- c(lower, .omdf$lower)        upper &lt;- c(upper, .omdf$upper)    }    else {        .ret$control$nomega &lt;- 0        .ret$control$neta &lt;- 0        .ret$xType &lt;- -1        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)    }    .ret$lower &lt;- lower    .ret$upper &lt;- upper    .ret$thetaIni &lt;- inits$THTA    .scaleC &lt;- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC &lt;- rep(NA_real_, length(lower))    }    else {        .scaleC &lt;- as.double(control$scaleC)        if (length(lower) &gt; length(.scaleC)) {            .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) &lt; length(.scaleC)) {            .scaleC &lt;- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC &lt;- .scaleC    if (exists("uif", envir = .ret)) {        .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- 1        }        .ini &lt;- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b &lt;- .ret$logitThetasLow[.i]            .c &lt;- .ret$logitThetasHi[.i]            .a &lt;- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) &amp; !is.null(control$etaMat)) {        .ret$etaMat &lt;- control$etaMat    }    else {        .ret$etaMat &lt;- etaMat    }    .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp &lt;- .ret$uif$logThetasList        .ret$logThetas &lt;- .tmp[[1]]        .ret$logThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasList        .ret$logitThetas &lt;- .tmp[[1]]        .ret$logitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListLow        .ret$logitThetasLow &lt;- .tmp[[1]]        .ret$logitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListHi        .ret$logitThetasHi &lt;- .tmp[[1]]        .ret$logitThetasHiF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasList        .ret$probitThetas &lt;- .tmp[[1]]        .ret$probitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListLow        .ret$probitThetasLow &lt;- .tmp[[1]]        .ret$probitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListHi        .ret$probitThetasHi &lt;- .tmp[[1]]        .ret$probitThetasHiF &lt;- .tmp[[2]]    }    else {        .ret$logThetasF &lt;- integer(0)        .ret$logitThetasF &lt;- integer(0)        .ret$logitThetasHiF &lt;- numeric(0)        .ret$logitThetasLowF &lt;- numeric(0)        .ret$logitThetas &lt;- integer(0)        .ret$logitThetasHi &lt;- numeric(0)        .ret$logitThetasLow &lt;- numeric(0)        .ret$probitThetasF &lt;- integer(0)        .ret$probitThetasHiF &lt;- numeric(0)        .ret$probitThetasLowF &lt;- numeric(0)        .ret$probitThetas &lt;- integer(0)        .ret$probitThetasHi &lt;- numeric(0)        .ret$probitThetasLow &lt;- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan &lt;- length(.ret$thetaIni)            .ret$nobs &lt;- sum(data$EVID == 0)        }    }    .ret$control$printTop &lt;- TRUE    .ret$control$nF &lt;- 0    .est0 &lt;- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq &lt;- 0L    }    .fitFun &lt;- function(.ret) {        this.env &lt;- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 &lt;- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm &lt;- names(.ret$thetaIni)                .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta &lt;- .thetaReset$omegaTheta                .ret$control$printTop &lt;- FALSE                .ret$etaMat &lt;- .thetaReset$etaMat                .ret$control$etaMat &lt;- .thetaReset$etaMat                .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations                .ret$control$nF &lt;- .thetaReset$nF                .ret$control$gillRetC &lt;- .thetaReset$gillRetC                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillDf &lt;- .thetaReset$gillDf                .ret$control$gillDf2 &lt;- .thetaReset$gillDf2                .ret$control$gillErr &lt;- .thetaReset$gillErr                .ret$control$rEps &lt;- .thetaReset$rEps                .ret$control$aEps &lt;- .thetaReset$aEps                .ret$control$rEpsC &lt;- .thetaReset$rEpsC                .ret$control$aEpsC &lt;- .thetaReset$aEpsC                .ret$control$c1 &lt;- .thetaReset$c1                .ret$control$c2 &lt;- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations &lt;- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun &lt;- .bobyqa                  .ret$control$outerOpt &lt;- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 &lt;- try(.fitFun(.ret))    .n &lt;- 1    while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations !=         0 &amp;&amp; .n &lt;= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF &lt;- 0        .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew &lt;- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] &lt; lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] &gt; upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni &lt;- .estNew        .ret0 &lt;- try(.fitFun(.ret))        .n &lt;- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret &lt;- .ret0    if (exists("parHistData", .ret)) {        .tmp &lt;- .ret$parHistData        .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter &lt;- .tmp$iter        .tmp &lt;- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) &lt;- c("val", "par", "iter")        .ret$parHist &lt;- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas &lt;- .ret$ranef        .thetas &lt;- .ret$fixef        .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table &lt;- tableControl()    }    if (control$calcTables) {        .ret &lt;- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 8.196 0.388 8.584</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_saem_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"saem"</span>,
   error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; 1:    9.1294e+01  -5.0486e+00  -1.7441e+00  -3.5640e+00  -2.1387e+00   4.8639e-01   5.5948e+00   1.4680e+00   1.1057e+00   2.3810e+00   4.8150e-01   4.3452e-01   1.0359e+01   2.3790e-05   7.8082e+00   5.1813e-01
-#&gt; 2:    9.1224e+01  -5.2308e+00  -1.9743e+00  -4.0115e+00  -1.8311e+00   9.8058e-02   5.3151e+00   1.3946e+00   1.0504e+00   2.8908e+00   4.5742e-01   5.2252e-01   5.9132e+00   5.7000e-04   6.5362e+00   1.8571e-07
-#&gt; 3:    9.1371e+01  -5.5075e+00  -2.1136e+00  -4.0542e+00  -1.4871e+00  -4.1222e-02   5.0493e+00   1.3249e+00   9.9785e-01   3.4546e+00   4.3455e-01   6.3380e-01   4.0626e+00   1.0302e-05   4.6845e+00   5.0378e-04
-#&gt; 4:    91.3391   -5.7912   -2.1450   -3.9623   -1.3302   -0.1356    4.7969    1.2586    0.9480    3.2819    0.4128    0.6021    3.3624    0.0249    3.6770    0.0248
-#&gt; 5:    91.5018   -6.0214   -2.1492   -3.9323   -1.2118   -0.0647    4.5570    1.1957    0.9006    3.1178    0.3922    0.5720    2.9393    0.0349    3.1610    0.0371
-#&gt; 6:    91.4496   -5.8734   -2.0974   -3.9977   -1.0936   -0.0608    4.3292    1.3347    0.8695    3.1231    0.3726    0.5434    2.5921    0.0366    2.7534    0.0396
-#&gt; 7:    91.6540   -5.8545   -2.1019   -3.9268   -0.9717   -0.1622    4.1127    1.8221    0.8771    2.9670    0.3539    0.5162    2.3468    0.0466    2.4323    0.0474
-#&gt; 8:    91.7226   -5.8139   -2.0764   -4.0030   -0.9804   -0.1283    3.9071    2.3972    0.9978    2.9945    0.3362    0.4904    2.0001    0.0405    2.0620    0.0557
-#&gt; 9:    91.9975   -5.6339   -2.0812   -3.9379   -0.9156   -0.0654    4.4265    2.2773    0.9479    3.0945    0.3194    0.4659    1.8817    0.0397    1.4473    0.0845
-#&gt; 10:    91.9477   -5.6101   -2.0459   -3.8821   -0.9368   -0.0428    4.9868    2.2787    0.9297    3.2162    0.3035    0.4426    1.6910    0.0397    1.3759    0.0892
-#&gt; 11:    92.1798   -5.5425   -2.0676   -3.9349   -0.9248   -0.0339    5.0312    2.1648    0.8832    3.0554    0.2883    0.4205    1.6613    0.0375    1.3387    0.0823
-#&gt; 12:    92.1456   -5.6294   -2.1011   -3.8899   -0.9195   -0.0410    4.7796    2.0565    0.9077    3.1066    0.3013    0.3995    1.6018    0.0393    1.5496    0.0691
-#&gt; 13:    91.6764   -5.5607   -2.0911   -3.8832   -0.9268   -0.0367    4.5407    1.9537    0.9246    3.0425    0.2862    0.3795    1.6900    0.0350    1.4050    0.0712
-#&gt; 14:    91.4832   -5.5007   -2.1133   -3.8869   -0.9208   -0.0202    4.3136    1.8560    0.8795    3.0389    0.2719    0.3605    1.5526    0.0389    1.7056    0.0502
-#&gt; 15:    91.7854   -5.4454   -2.1124   -3.8750   -0.8842   -0.0608    4.0979    1.7632    0.9004    3.0463    0.2583    0.3425    1.6201    0.0384    1.2463    0.0747
-#&gt; 16:    91.7608   -5.4097   -2.1449   -3.8750   -0.8797   -0.0532    3.8930    1.6751    0.9666    3.0463    0.2454    0.3254    1.6086    0.0384    1.0840    0.0850
-#&gt; 17:    91.6692   -5.5401   -2.1688   -3.8762   -0.9022   -0.0101    3.6984    1.8405    1.0323    2.9672    0.2331    0.3091    1.4625    0.0371    1.1135    0.0841
-#&gt; 18:    91.3169   -5.5720   -2.1777   -3.8851   -0.9396    0.0040    3.5135    1.8186    1.0419    3.0783    0.2215    0.2936    1.4778    0.0396    1.3403    0.0732
-#&gt; 19:    91.4384   -5.6696   -2.1469   -3.8892   -0.9318   -0.0103    3.3378    2.2700    1.0489    3.0592    0.2128    0.2790    1.3854    0.0379    1.1760    0.0858
-#&gt; 20:    91.3273   -5.7800   -2.1388   -3.9004   -0.9536   -0.0159    3.1709    2.7506    1.0297    3.0477    0.2021    0.2650    1.4542    0.0419    1.1576    0.0856
-#&gt; 21:    91.7477   -5.7952   -2.1436   -3.9164   -0.9263   -0.0184    3.0124    3.0737    1.0414    3.0435    0.1948    0.2518    1.5026    0.0398    1.1833    0.0791
-#&gt; 22:    91.6492   -6.0575   -2.1196   -3.9168   -0.9471   -0.0153    2.8617    4.1317    1.0322    3.0494    0.1850    0.2392    1.4351    0.0409    1.0739    0.0873
-#&gt; 23:    91.8536   -6.2824   -2.1596   -3.9174   -0.9405    0.0031    2.7187    5.3935    1.0143    3.1085    0.1758    0.2272    1.4534    0.0404    1.0651    0.0805
-#&gt; 24:    92.1616   -6.2246   -2.0912   -3.9224   -0.9338    0.0118    2.5827    5.7533    0.9636    3.0780    0.1741    0.2158    1.5863    0.0336    1.0915    0.0804
-#&gt; 25:    92.2576   -6.2746   -2.1058   -3.9587   -0.9355    0.0189    2.4536    5.4656    0.9706    3.3477    0.1780    0.2051    1.4555    0.0365    1.0838    0.0782
-#&gt; 26:    92.3314   -6.1739   -2.1211   -3.9676   -0.9474    0.0525    2.4934    5.5785    0.9981    3.3705    0.1835    0.1948    1.4433    0.0379    1.1300    0.0783
-#&gt; 27:    92.8206   -6.1111   -2.0900   -3.9787   -0.9472    0.0058    2.5201    5.4329    1.0145    3.5013    0.1856    0.1851    1.4484    0.0391    1.1809    0.0723
-#&gt; 28:    92.8685   -6.0934   -2.0963   -3.9872   -0.9693    0.0053    2.9812    5.1612    0.9925    3.5416    0.1816    0.1758    1.4713    0.0389    1.1766    0.0704
-#&gt; 29:    92.6774   -5.8779   -2.0833   -3.9954   -0.9546   -0.0099    4.3751    4.9032    1.0762    3.5483    0.1755    0.1670    1.4844    0.0378    1.3435    0.0599
-#&gt; 30:    92.6704   -5.9657   -2.0746   -3.9920   -0.9342   -0.0329    4.1563    4.6580    1.0571    3.5382    0.1667    0.1587    1.4510    0.0427    1.2218    0.0678
-#&gt; 31:    92.4139   -5.7428   -2.0922   -3.9765   -0.9178   -0.0302    3.9485    4.4251    1.0210    3.5601    0.1596    0.1507    1.5981    0.0349    1.3086    0.0619
-#&gt; 32:    92.8243   -5.8072   -2.1154   -3.9699   -0.9130    0.0065    3.7511    4.2039    1.0622    3.4768    0.1667    0.1432    1.5321    0.0333    1.3779    0.0611
-#&gt; 33:    92.8737   -5.6655   -2.1132   -3.9763   -0.9155    0.0183    3.5635    3.9937    1.1068    3.5075    0.1583    0.1360    1.5351    0.0341    1.2700    0.0673
-#&gt; 34:    93.0233   -5.7429   -2.1022   -3.9648   -0.9057    0.0202    3.3853    3.7940    1.0830    3.4532    0.1504    0.1292    1.5128    0.0368    1.1942    0.0702
-#&gt; 35:    93.1333   -5.7707   -2.1003   -4.0004   -0.9031    0.0201    3.2161    3.6043    1.1161    3.4701    0.1429    0.1228    1.6003    0.0307    1.1387    0.0734
-#&gt; 36:    93.1398   -5.7700   -2.1168   -3.9678   -0.9038    0.0107    3.0553    3.4241    1.1209    3.4126    0.1358    0.1166    1.4919    0.0331    1.0642    0.0755
-#&gt; 37:    92.8847   -5.6651   -2.1538   -3.9634   -0.9176    0.0364    2.9995    3.2529    1.1108    3.3776    0.1402    0.1173    1.5093    0.0396    1.1550    0.0693
-#&gt; 38:    93.2326   -5.5244   -2.1571   -3.9909   -0.9231    0.0179    2.8832    3.0902    1.0763    3.5170    0.1332    0.1205    1.4962    0.0472    1.1657    0.0679
-#&gt; 39:    92.9946   -5.4516   -2.1475   -3.9365   -0.9067    0.0309    3.0986    2.9357    1.0562    3.4194    0.1265    0.1251    1.4786    0.0464    1.1183    0.0721
-#&gt; 40:    93.2028   -5.6148   -2.1367   -3.9235   -0.9048    0.0099    2.9436    2.7889    1.1256    3.3460    0.1241    0.1288    1.4515    0.0459    1.0449    0.0753
-#&gt; 41:    93.1297   -5.4665   -2.0545   -4.0108   -0.9136   -0.0216    2.7964    2.6495    1.1471    3.4754    0.1281    0.1223    1.7359    0.0321    1.0876    0.0780
-#&gt; 42:    93.0469   -5.3767   -2.0820   -4.0213   -0.9361   -0.0264    2.6566    2.5170    1.0897    3.5120    0.1411    0.1162    1.7070    0.0276    1.2377    0.0691
-#&gt; 43:    93.3305   -5.4943   -2.0910   -4.0226   -0.9414   -0.0201    2.5238    2.3912    1.0896    3.4589    0.1621    0.1126    1.5584    0.0393    1.1485    0.0705
-#&gt; 44:    93.2566   -5.4919   -2.1016   -4.0718   -0.9373    0.0024    2.3976    2.2716    1.0451    3.8959    0.1612    0.1162    1.5769    0.0286    1.2778    0.0693
-#&gt; 45:    93.0284   -5.4885   -2.1012   -4.0740   -0.9202   -0.0197    2.2777    2.1580    1.0268    3.9297    0.1553    0.1104    1.5589    0.0289    1.1388    0.0778
-#&gt; 46:    92.7188   -5.5807   -2.1102   -4.0875   -0.9465    0.0076    2.1638    2.2084    0.9840    4.0322    0.1475    0.1048    1.6729    0.0295    1.2763    0.0735
-#&gt; 47:    92.6718   -5.5108   -2.1268   -4.0638   -0.9220    0.0131    2.0556    2.0980    1.0064    3.8306    0.1475    0.0996    1.6527    0.0271    1.3190    0.0659
-#&gt; 48:    92.6727   -5.5268   -2.1326   -4.0693   -0.8999    0.0259    1.9529    2.2445    1.0387    3.8064    0.1459    0.0946    1.6587    0.0283    1.3555    0.0604
-#&gt; 49:    92.5230   -5.5592   -2.1701   -4.0595   -0.9087    0.0350    1.8552    2.5181    1.0238    3.7514    0.1552    0.0899    1.5473    0.0307    1.2437    0.0662
-#&gt; 50:    92.4920   -5.5778   -2.1309   -4.0711   -0.9317    0.0383    1.7625    2.6771    1.0203    3.7435    0.1587    0.0854    1.5727    0.0330    1.2555    0.0611
-#&gt; 51:    92.4606   -5.5485   -2.1346   -4.0687   -0.9148    0.0638    1.6743    2.8079    1.0402    3.6978    0.1513    0.0811    1.5476    0.0335    1.2744    0.0658
-#&gt; 52:    92.6305   -5.6829   -2.1658   -4.0697   -0.9298    0.0848    1.5906    2.8530    1.0565    3.6998    0.1644    0.0798    1.4751    0.0296    1.1351    0.0747
-#&gt; 53:    92.6412   -5.5519   -2.1984   -4.1605   -0.9472    0.0803    1.8328    2.7103    1.0501    4.4111    0.1626    0.0758    1.5735    0.0343    1.2247    0.0643
-#&gt; 54:    92.7616   -5.5718   -2.1826   -4.2028   -0.9382    0.0939    1.9108    2.5748    1.0708    4.7287    0.1775    0.0720    1.4860    0.0299    1.2190    0.0638
-#&gt; 55:    92.8466   -5.6434   -2.1590   -4.0501   -0.9219    0.0660    2.3709    2.4461    1.0399    4.4922    0.1686    0.0684    1.5899    0.0297    1.2586    0.0598
-#&gt; 56:    92.8839   -5.6503   -2.1758   -4.0467   -0.9265    0.0765    2.2523    2.3238    1.0755    4.2676    0.1698    0.0666    1.5357    0.0319    1.1854    0.0633
-#&gt; 57:    92.8882   -5.3950   -2.1926   -4.0282   -0.9455    0.0600    2.4994    2.2076    1.0411    4.0542    0.1684    0.0633    1.5839    0.0342    1.2789    0.0612
-#&gt; 58:    92.9510   -5.4362   -2.1993   -4.0402   -0.9349    0.0576    2.3744    2.0972    1.0184    3.8515    0.1757    0.0604    1.5796    0.0328    1.3027    0.0570
-#&gt; 59:    92.8806   -5.4605   -2.2176   -4.2201   -0.9360    0.0998    2.2557    1.9923    1.0248    5.1421    0.1904    0.0573    1.6469    0.0325    1.4177    0.0534
-#&gt; 60:    92.8606   -5.4697   -2.2016   -4.1707   -0.9218    0.0747    2.1429    1.8927    1.0489    4.8850    0.1809    0.0545    1.5984    0.0318    1.2879    0.0589
-#&gt; 61:    92.8939   -5.5167   -2.2169   -4.1567   -0.9434    0.0680    2.1067    1.9160    1.0677    4.6408    0.1775    0.0517    1.5223    0.0404    1.2033    0.0623
-#&gt; 62:    93.1569   -5.6121   -2.2073   -4.1427   -0.9431    0.0717    2.5977    2.0627    1.0518    4.5133    0.1758    0.0494    1.4644    0.0364    1.1857    0.0621
-#&gt; 63:    93.2362   -5.5056   -2.1832   -4.0832   -0.9433    0.0754    3.4639    1.9596    1.0905    4.2877    0.1851    0.0536    1.5500    0.0320    1.2533    0.0610
-#&gt; 64:    93.3935   -5.4320   -2.1735   -4.0754   -0.9601    0.0719    5.0337    1.8616    1.0723    4.0733    0.1907    0.0649    1.5436    0.0270    1.4154    0.0546
-#&gt; 65:    93.1102   -5.5419   -2.1870   -4.0496   -0.9481    0.0753    5.0250    1.9760    1.1263    3.8696    0.1902    0.0617    1.4779    0.0262    1.1326    0.0712
-#&gt; 66:    92.9832   -5.7640   -2.1941   -4.0532   -0.9444    0.0635    5.2049    2.6553    1.1258    3.7699    0.1915    0.0586    1.4926    0.0307    1.0960    0.0645
-#&gt; 67:    92.6674   -5.6976   -2.1858   -4.0855   -0.9209    0.0562    4.9447    2.5225    1.1285    4.0204    0.1948    0.0556    1.4667    0.0315    1.1023    0.0650
-#&gt; 68:    92.7718   -5.7724   -2.1760   -4.0242   -0.9354    0.0441    4.6975    2.8536    1.1471    3.8194    0.1922    0.0529    1.4283    0.0329    1.1174    0.0664
-#&gt; 69:    92.8377   -5.7554   -2.1833   -4.0670   -0.9412    0.0834    4.4626    2.7404    1.1565    3.7904    0.1826    0.0502    1.4628    0.0318    1.0793    0.0747
-#&gt; 70:    92.6830   -5.9071   -2.2266   -4.0604   -0.9399    0.0730    4.2394    3.5629    1.1459    3.7282    0.1734    0.0477    1.4892    0.0331    1.1526    0.0683
-#&gt; 71:    92.5729   -5.8185   -2.2009   -4.0623   -0.9401    0.0878    4.0275    3.3847    1.0886    3.7348    0.1648    0.0453    1.4739    0.0373    1.0902    0.0678
-#&gt; 72:    92.1755   -6.0270   -2.2108   -4.1507   -0.9564    0.0665    3.8261    3.9851    1.1200    4.1726    0.1617    0.0431    1.4478    0.0348    1.1400    0.0673
-#&gt; 73:    91.8986   -6.0175   -2.1916   -4.1416   -0.9347    0.0243    3.6348    4.0607    1.1553    4.0576    0.1802    0.0409    1.4330    0.0406    1.0914    0.0712
-#&gt; 74:    91.7729   -5.8767   -2.1898   -4.0934   -0.9122    0.0184    3.4531    3.8577    1.1254    3.8547    0.1827    0.0389    1.3372    0.0524    1.0717    0.0687
-#&gt; 75:    91.3098   -5.9950   -2.1572   -4.1349   -0.9427    0.0190    3.4756    3.8000    1.1626    3.8402    0.1969    0.0369    1.3378    0.0501    1.1602    0.0685
-#&gt; 76:    91.3766   -5.8701   -2.2042   -4.1128   -0.9081    0.0539    3.9350    3.6100    1.2348    3.7994    0.1891    0.0369    1.3400    0.0495    1.0656    0.0738
-#&gt; 77:    91.6057   -5.7437   -2.1988   -4.1241   -0.8890    0.0500    5.0868    3.4295    1.1971    3.8470    0.1950    0.0469    1.4928    0.0397    1.1129    0.0700
-#&gt; 78:    91.7868   -5.7832   -2.1844   -4.1102   -0.9104    0.0698    4.8325    3.2580    1.1670    3.6547    0.1993    0.0502    1.4336    0.0340    0.9512    0.0805
-#&gt; 79:    91.7221   -5.7881   -2.2166   -4.1137   -0.9160    0.0672    4.5909    3.0951    1.1582    3.5765    0.1928    0.0486    1.4632    0.0352    1.0210    0.0728
-#&gt; 80:    91.8608   -5.8064   -2.2006   -4.0971   -0.9209    0.0642    4.3613    3.2163    1.1481    3.4758    0.1832    0.0462    1.4368    0.0356    1.0605    0.0710
-#&gt; 81:    91.6423   -5.8749   -2.2037   -4.0893   -0.9187    0.0503    4.1432    3.5329    1.0907    3.5148    0.2011    0.0451    1.4719    0.0346    1.1684    0.0646
-#&gt; 82:    91.8319   -6.0898   -2.2251   -4.0826   -0.9368    0.0842    4.1509    4.4964    1.0606    3.4836    0.1910    0.0428    1.4468    0.0387    1.1605    0.0637
-#&gt; 83:    91.9794   -6.0417   -2.1947   -4.1042   -0.9114    0.0741    6.5949    4.5668    1.1113    3.6409    0.1815    0.0407    1.4780    0.0346    1.1277    0.0634
-#&gt; 84:    91.8669   -6.1877   -2.1979   -4.1052   -0.9300    0.0807    6.2651    5.1958    1.1750    3.6752    0.1724    0.0386    1.4931    0.0278    1.0401    0.0685
-#&gt; 85:    91.6789   -6.0634   -2.1896   -4.1357   -0.9371    0.0933    5.9519    4.9360    1.1259    3.8493    0.1732    0.0367    1.5058    0.0275    1.1356    0.0670
-#&gt; 86:    91.6989   -6.2114   -2.2056   -4.1542   -0.9646    0.0882    5.6543    5.0411    1.1091    3.9411    0.1988    0.0349    1.4099    0.0338    1.1811    0.0636
-#&gt; 87:    92.3758   -6.3779   -2.2062   -4.1739   -0.9385    0.0916    5.3716    6.2290    1.1213    4.0290    0.1889    0.0331    1.4809    0.0306    1.1443    0.0626
-#&gt; 88:    92.2757   -6.2016   -2.2215   -4.1389   -0.9582    0.0942    5.1030    5.9176    1.0797    4.0768    0.1990    0.0315    1.4282    0.0386    1.2235    0.0629
-#&gt; 89:    92.1970   -6.3356   -2.2081   -4.1412   -0.9555    0.1057    4.8478    5.9597    1.1474    4.0677    0.1890    0.0299    1.3856    0.0377    1.1807    0.0640
-#&gt; 90:    92.0813   -6.4550   -2.2045   -4.1524   -0.9553    0.0885    4.6054    6.9999    1.1542    3.9901    0.1880    0.0284    1.3416    0.0416    1.1379    0.0653
-#&gt; 91:    91.7111   -6.5289   -2.2203   -4.1763   -0.9288    0.0823    5.4933    6.9237    1.1601    4.0435    0.1839    0.0360    1.3387    0.0401    1.1768    0.0591
-#&gt; 92:    92.1217   -6.5567   -2.2232   -4.2082   -0.9411    0.0815    8.0692    6.7286    1.1684    3.9422    0.1763    0.0411    1.3740    0.0463    1.1538    0.0613
-#&gt; 93:    92.7497   -6.3512   -2.2463   -4.1806   -0.9633    0.0724    7.6657    6.3922    1.1870    3.8858    0.1796    0.0391    1.4232    0.0454    1.3749    0.0497
-#&gt; 94:    92.2679   -6.3542   -2.2473   -4.1873   -0.9382    0.0711    7.2824    6.0726    1.1940    3.8847    0.1956    0.0371    1.3812    0.0465    1.2897    0.0521
-#&gt; 95:    92.0257   -6.2448   -2.2624   -4.1681   -0.9624    0.0810    6.9183    5.7690    1.1345    3.8091    0.1858    0.0359    1.3026    0.0509    1.3000    0.0530
-#&gt; 96:    91.5166   -5.9442   -2.2924   -4.2449   -0.9238    0.1058    7.1159    5.4805    1.1231    4.2529    0.1953    0.0343    1.4063    0.0445    1.3479    0.0482
-#&gt; 97:    91.1606   -5.8541   -2.2912   -4.2398   -0.8875    0.1101    9.4515    5.2065    1.1256    4.3194    0.2081    0.0337    1.3436    0.0498    1.3317    0.0496
-#&gt; 98:    91.2787   -6.0967   -2.2703   -4.2641   -0.9260    0.0869    8.9789    4.9462    1.2070    4.2238    0.1977    0.0373    1.3124    0.0495    1.1362    0.0653
-#&gt; 99:    91.6449   -5.9441   -2.2562   -4.2355   -0.9312    0.1237    8.5300    4.6988    1.2343    4.0468    0.1878    0.0369    1.3508    0.0462    1.0542    0.0704
-#&gt; 100:    91.7795   -5.8857   -2.2516   -4.3381   -0.9344    0.1291    8.1035    4.4639    1.2355    4.6941    0.1968    0.0393    1.4327    0.0358    1.1170    0.0668
-#&gt; 101:    92.2537   -5.7930   -2.2345   -4.3477   -0.9272    0.1340    8.3402    4.2407    1.1961    4.7638    0.1933    0.0402    1.4683    0.0375    1.1216    0.0626
-#&gt; 102:    92.3920   -6.0193   -2.2332   -4.3487   -0.9155    0.1565   11.1006    4.2977    1.1700    4.8048    0.2260    0.0444    1.4443    0.0342    1.0888    0.0674
-#&gt; 103:    92.0043   -5.7825   -2.2376   -4.2616   -0.9043    0.1686   10.5455    4.0829    1.1587    4.5646    0.2147    0.0422    1.4198    0.0338    1.1639    0.0625
-#&gt; 104:    92.1575   -5.8497   -2.2470   -4.2456   -0.9128    0.1762   10.0183    3.8787    1.1405    4.3364    0.2040    0.0440    1.3919    0.0379    1.2040    0.0582
-#&gt; 105:    92.2784   -5.7971   -2.2582   -4.2100   -0.9128    0.1731    9.5173    3.6848    1.1351    4.1196    0.1938    0.0418    1.3982    0.0404    1.1069    0.0656
-#&gt; 106:    92.4336   -5.7752   -2.2690   -4.3771   -0.8925    0.1644    9.0415    3.5005    1.1547    5.0970    0.1841    0.0476    1.3670    0.0423    1.1716    0.0625
-#&gt; 107:    92.5128   -5.8328   -2.2549   -4.4193   -0.9403    0.2268    8.5894    3.3255    1.1160    5.2711    0.1749    0.0453    1.4023    0.0347    1.0279    0.0757
-#&gt; 108:    92.8926   -5.7266   -2.2606   -4.5037   -0.9392    0.2394    8.1599    3.1592    1.1293    5.9652    0.1661    0.0447    1.3837    0.0346    0.9545    0.0747
-#&gt; 109:    92.4657   -5.8687   -2.2884   -4.4108   -0.9043    0.2611    7.7519    4.0001    1.0729    5.6669    0.1578    0.0424    1.3441    0.0351    0.9758    0.0708
-#&gt; 110:    92.6620   -5.6900   -2.2825   -4.4337   -0.9003    0.2602    7.3643    3.8001    1.0843    5.3836    0.1499    0.0433    1.4652    0.0302    0.9950    0.0722
-#&gt; 111:    92.8949   -5.6946   -2.2661   -4.5240   -0.9233    0.2372    6.9961    3.6101    1.0845    5.8133    0.1551    0.0411    1.5005    0.0327    0.9284    0.0753
-#&gt; 112:    93.4237   -5.6562   -2.2474   -4.4809   -0.9441    0.2322    6.6463    3.4296    1.1498    5.5227    0.1474    0.0409    1.4612    0.0317    0.9336    0.0762
-#&gt; 113:    93.1883   -5.6891   -2.2846   -4.3984   -0.9416    0.2317    6.3140    3.2581    1.1062    5.2465    0.1596    0.0463    1.3924    0.0380    1.0268    0.0698
-#&gt; 114:    93.4464   -5.7087   -2.2902   -4.4274   -0.9401    0.2638    5.9983    3.0952    1.1170    5.0203    0.1516    0.0495    1.4108    0.0361    1.0355    0.0682
-#&gt; 115:    93.1873   -5.8732   -2.2668   -4.5086   -0.9636    0.2516    5.6984    3.3427    1.1141    5.7549    0.1440    0.0490    1.5010    0.0309    1.0443    0.0679
-#&gt; 116:    92.6878   -5.8520   -2.2903   -4.5349   -0.9663    0.2612    5.4135    3.2444    1.1048    5.8809    0.1471    0.0511    1.3910    0.0360    1.0423    0.0702
-#&gt; 117:    92.7775   -5.7892   -2.2897   -4.4572   -0.9544    0.2380    5.1428    3.0822    1.0731    5.5869    0.1397    0.0703    1.3493    0.0360    0.9831    0.0713
-#&gt; 118:    93.1533   -5.8045   -2.2859   -4.4787   -0.9667    0.2150    4.8857    3.0277    1.0872    5.6786    0.1439    0.0812    1.3838    0.0373    1.0547    0.0696
-#&gt; 119:    92.8370   -5.7208   -2.2738   -4.4627   -0.9462    0.2095    4.6414    2.8764    1.1172    5.6197    0.1643    0.0772    1.3394    0.0348    0.9180    0.0803
-#&gt; 120:    92.5430   -5.7795   -2.3004   -4.4203   -0.9479    0.2313    4.4093    2.8377    1.1312    5.3387    0.1655    0.0803    1.2967    0.0360    1.0699    0.0761
-#&gt; 121:    92.5318   -5.6550   -2.2866   -4.5065   -0.9166    0.2321    4.1888    2.6959    1.0994    6.0180    0.1686    0.0763    1.3882    0.0322    0.9895    0.0733
-#&gt; 122:    92.7380   -5.6688   -2.2968   -4.4523   -0.9279    0.2529    3.9794    2.5611    1.0642    5.7171    0.1601    0.0851    1.3786    0.0316    0.9358    0.0742
-#&gt; 123:    93.0753   -5.7451   -2.2896   -4.5423   -0.9371    0.2724    3.7804    2.9938    1.0758    5.9349    0.1521    0.0808    1.4275    0.0339    0.9652    0.0727
-#&gt; 124:    93.2708   -5.8004   -2.2782   -4.4951   -0.9451    0.2590    3.5914    3.0594    1.0875    5.6382    0.1607    0.0768    1.3628    0.0340    1.0577    0.0693
-#&gt; 125:    93.4025   -5.7710   -2.2990   -4.4498   -0.9661    0.2633    3.4118    2.9276    1.0809    5.3563    0.1527    0.0730    1.3816    0.0406    1.0295    0.0671
-#&gt; 126:    93.4928   -5.7054   -2.3002   -4.4087   -0.9394    0.2965    3.4732    2.7812    1.1275    5.0884    0.1481    0.0693    1.2949    0.0423    0.9084    0.0726
-#&gt; 127:    93.6449   -5.6593   -2.2683   -4.3418   -0.9194    0.2560    4.2986    2.6422    1.1070    4.8340    0.1449    0.0707    1.4258    0.0341    0.8802    0.0777
-#&gt; 128:    93.7430   -5.6359   -2.2686   -4.4174   -0.9500    0.2279    5.2477    2.5101    1.1046    5.5376    0.1512    0.0859    1.4523    0.0327    0.8659    0.0826
-#&gt; 129:    93.7432   -5.6851   -2.2849   -4.2019   -0.9660    0.1995    7.2497    2.8789    1.1315    5.2607    0.1762    0.0972    1.3901    0.0357    1.1264    0.0743
-#&gt; 130:    93.2409   -5.8965   -2.2946   -4.1880   -0.9774    0.1719    7.4467    3.2276    1.1464    4.9977    0.1720    0.0924    1.3517    0.0446    1.0461    0.0705
-#&gt; 131:    92.7780   -6.0551   -2.2647   -4.1894   -0.9579    0.1391    7.0744    3.7584    1.1291    4.7478    0.1714    0.0995    1.2542    0.0438    0.9139    0.0777
-#&gt; 132:    92.7157   -6.1161   -2.2501   -4.1784   -0.9651    0.1146    6.7207    3.9259    1.1674    4.5104    0.1712    0.0957    1.2549    0.0473    0.8964    0.0803
-#&gt; 133:    92.2696   -5.8545   -2.2717   -4.1907   -0.9782    0.0985    6.3846    3.7296    1.1652    4.2849    0.1626    0.1198    1.2208    0.0498    0.9730    0.0822
-#&gt; 134:    92.2067   -5.8603   -2.2743   -4.2095   -0.9754    0.1398    6.0654    3.5431    1.1551    4.0706    0.1695    0.1138    1.3022    0.0432    0.9960    0.0795
-#&gt; 135:    92.3979   -5.9500   -2.3053   -4.1938   -0.9425    0.1134    5.7621    3.3660    1.1771    3.8671    0.1610    0.1081    1.3373    0.0462    1.1323    0.0665
-#&gt; 136:    92.3749   -5.8701   -2.2979   -4.2493   -0.9386    0.1504    5.4740    3.3090    1.1638    3.9609    0.1724    0.1027    1.3578    0.0389    1.1943    0.0650
-#&gt; 137:    92.6942   -5.9020   -2.2755   -4.2318   -0.9464    0.1541    5.2003    3.5521    1.1704    3.8948    0.1685    0.0976    1.4170    0.0399    1.1472    0.0626
-#&gt; 138:    92.7234   -5.8085   -2.2653   -4.2164   -0.9662    0.1808    4.9403    3.3745    1.1977    3.8348    0.1694    0.0927    1.4229    0.0387    1.0934    0.0708
-#&gt; 139:    92.7341   -5.7737   -2.2685   -4.1759   -0.9334    0.1554    4.6933    3.2057    1.1971    3.6962    0.1917    0.0881    1.4324    0.0363    1.1669    0.0652
-#&gt; 140:    92.1593   -5.6287   -2.2576   -4.1977   -0.9232    0.1345    4.6967    3.0455    1.1676    3.8133    0.2060    0.0837    1.5032    0.0349    1.1418    0.0678
-#&gt; 141:    92.3199   -5.8323   -2.2451   -4.1948   -0.9447    0.1295    4.9624    3.3893    1.1408    3.8423    0.1957    0.0795    1.4470    0.0325    1.0892    0.0739
-#&gt; 142:    92.7246   -6.1252   -2.2304   -4.1984   -0.9160    0.0816    4.7143    4.6501    1.1420    3.8554    0.1901    0.0755    1.4847    0.0386    1.2815    0.0576
-#&gt; 143:    92.4130   -6.0231   -2.2261   -4.2205   -0.9495    0.1020    4.4786    4.4176    1.1454    4.0301    0.1929    0.0717    1.4103    0.0410    1.0418    0.0739
-#&gt; 144:    92.4006   -5.9898   -2.2232   -4.2429   -0.9553    0.1131    4.2547    4.1967    1.1579    4.2583    0.1904    0.0681    1.4272    0.0339    1.0591    0.0737
-#&gt; 145:    92.5011   -6.2340   -2.2232   -4.1872   -0.9560    0.1322    6.1775    4.8941    1.1594    4.0453    0.1811    0.0647    1.4059    0.0298    1.0219    0.0752
-#&gt; 146:    92.7460   -6.2989   -2.2417   -4.2501   -0.9650    0.1527    5.8686    5.6454    1.1154    4.0076    0.1720    0.0758    1.4027    0.0348    1.1220    0.0689
-#&gt; 147:    93.0630   -6.0839   -2.2217   -4.1822   -0.9661    0.1634    5.5752    5.3631    1.0596    3.8072    0.1743    0.0733    1.3682    0.0393    1.0992    0.0700
-#&gt; 148:    92.7639   -5.8682   -2.2550   -4.1926   -0.9440    0.1599    5.8048    5.0950    1.0858    3.6230    0.1749    0.0696    1.3364    0.0436    1.0967    0.0721
-#&gt; 149:    92.6183   -6.1270   -2.2379   -4.1103   -0.9643    0.1202    5.8027    4.8402    1.1089    3.4860    0.1661    0.0661    1.3061    0.0457    1.0014    0.0724
-#&gt; 150:    92.7472   -6.1515   -2.2199   -4.1027   -0.9611    0.1014    5.6767    4.5982    1.1061    3.6113    0.1578    0.0654    1.3543    0.0405    1.0847    0.0707
-#&gt; 151:    92.9566   -5.8911   -2.2174   -4.0722   -0.9516    0.0992    5.9638    4.3683    1.1057    3.5122    0.1767    0.0621    1.3619    0.0396    1.0158    0.0734
-#&gt; 152:    93.0035   -5.8395   -2.2559   -4.0650   -0.9389    0.0928    4.4799    3.2331    1.0387    3.4826    0.1713    0.0604    1.3425    0.0428    1.1101    0.0635
-#&gt; 153:    92.7242   -5.7832   -2.2538   -4.1288   -0.9159    0.1047    4.6102    3.0838    1.0527    3.8052    0.1718    0.0597    1.3905    0.0398    1.1371    0.0635
-#&gt; 154:    92.2125   -5.9077   -2.2400   -4.0922   -0.9106    0.1033    4.4732    3.8350    1.0261    3.6148    0.1955    0.0643    1.3176    0.0419    1.1130    0.0635
-#&gt; 155:    92.6226   -5.6271   -2.2239   -4.0122   -0.8948    0.0647    4.5553    2.5675    1.0412    3.0513    0.1845    0.0866    1.3266    0.0459    1.0244    0.0680
-#&gt; 156:    92.6532   -5.5576   -2.2251   -4.0066   -0.9006    0.0922    3.8517    2.3273    1.0455    3.0971    0.1928    0.0863    1.4000    0.0394    0.9203    0.0754
-#&gt; 157:    92.5192   -5.4834   -2.2356   -4.0069   -0.9321    0.0904    3.0410    1.8841    0.9867    3.1990    0.1905    0.0816    1.3927    0.0407    1.1517    0.0614
-#&gt; 158:    92.5628   -5.5318   -2.2044   -4.0269   -0.9319    0.0742    3.5124    1.9585    1.0692    3.1835    0.1958    0.0934    1.4038    0.0324    0.9680    0.0758
-#&gt; 159:    92.9690   -5.6416   -2.2134   -4.0156   -0.9556    0.0560    4.3830    2.2442    1.0543    3.2358    0.1873    0.0951    1.3624    0.0375    1.1207    0.0696
-#&gt; 160:    92.9861   -5.5872   -2.2207   -3.9908   -0.9190    0.0417    4.1202    2.1685    1.0711    3.1521    0.1766    0.0913    1.3760    0.0371    1.0970    0.0713
-#&gt; 161:    93.3139   -5.5349   -2.1972   -3.9860   -0.9365    0.0011    4.2865    1.8741    1.0759    3.0304    0.2007    0.0750    1.3650    0.0411    1.1220    0.0662
-#&gt; 162:    93.3324   -5.6135   -2.1579   -4.0151   -0.9507   -0.0091    4.6402    2.0208    1.0535    3.0349    0.1935    0.0764    1.4069    0.0383    1.2550    0.0598
-#&gt; 163:    93.0110   -5.5253   -2.1419   -4.0151   -0.9197   -0.0072    5.8946    1.9087    1.0965    3.0349    0.1833    0.0814    1.5095    0.0290    1.1314    0.0665
-#&gt; 164:    93.0848   -5.4980   -2.1670   -4.0213   -0.9345    0.0150    4.9128    1.8293    1.0379    3.0653    0.1728    0.0835    1.4913    0.0343    1.0589    0.0687
-#&gt; 165:    92.9407   -5.3978   -2.1707   -4.0090   -0.9480    0.0126    3.4620    1.3870    1.0594    3.0115    0.1702    0.0982    1.5550    0.0296    1.0978    0.0694
-#&gt; 166:    93.1504   -5.4880   -2.1890   -3.9958   -0.9511    0.0316    2.7859    1.8457    1.0294    3.0739    0.1738    0.1031    1.5109    0.0308    1.1800    0.0651
-#&gt; 167:    92.8442   -5.4673   -2.1984   -4.0259   -0.9262    0.0243    2.0497    1.6348    1.0469    3.1258    0.1650    0.0981    1.6185    0.0291    1.1733    0.0655
-#&gt; 168:    92.9484   -5.6255   -2.2012   -4.0136   -0.9309    0.0199    1.8121    2.0784    1.0415    3.1795    0.1816    0.0929    1.5727    0.0268    1.4222    0.0543
-#&gt; 169:    93.0266   -5.6135   -2.1677   -4.0179   -0.9279    0.0375    1.7553    2.1663    1.0298    3.1675    0.2013    0.0926    1.5356    0.0274    1.2960    0.0596
-#&gt; 170:    92.9844   -5.6286   -2.1839   -4.0509   -0.9471    0.0414    1.9485    2.4078    1.0656    3.2787    0.2112    0.0950    1.5210    0.0265    1.3069    0.0616
-#&gt; 171:    92.6832   -5.6238   -2.2059   -4.0710   -0.9175    0.0383    1.5941    2.2918    1.1095    3.3435    0.1921    0.0895    1.4678    0.0345    1.2189    0.0618
-#&gt; 172:    92.5302   -5.5653   -2.2086   -4.0429   -0.9412    0.0773    1.5302    2.2565    1.1293    3.2157    0.1924    0.0680    1.4438    0.0367    1.2084    0.0661
-#&gt; 173:    92.3877   -5.5357   -2.2141   -4.0246   -0.9268    0.0866    1.2153    2.0588    1.0844    3.2941    0.2060    0.0726    1.4686    0.0359    1.3683    0.0596
-#&gt; 174:    92.4410   -5.4921   -2.1955   -4.0398   -0.9269    0.0645    1.6903    2.0042    1.1236    3.3646    0.1847    0.0804    1.5533    0.0310    1.2320    0.0675
-#&gt; 175:    92.4192   -5.4726   -2.1945   -4.0271   -0.9222    0.0728    1.1344    1.9292    1.1085    3.3173    0.1875    0.0912    1.5350    0.0302    1.2461    0.0679
-#&gt; 176:    92.3581   -5.5256   -2.2055   -3.9958   -0.9211    0.0720    1.1140    1.8097    1.0898    3.1459    0.2018    0.1104    1.4391    0.0323    1.2240    0.0677
-#&gt; 177:    92.2144   -5.6699   -2.2357   -4.0017   -0.9402    0.0785    1.1932    2.6190    1.0355    3.1852    0.2266    0.1125    1.4705    0.0327    1.2866    0.0621
-#&gt; 178:    92.3608   -5.7040   -2.2245   -4.0242   -0.9642    0.0596    0.7932    2.6061    0.9408    3.1080    0.1958    0.1180    1.5158    0.0365    1.3571    0.0600
-#&gt; 179:    92.4358   -5.6877   -2.2243   -4.0166   -0.9486    0.0595    0.7591    2.3791    0.9241    3.0638    0.1900    0.1257    1.4317    0.0363    1.2359    0.0686
-#&gt; 180:    92.5146   -5.7856   -2.2343   -4.0098   -0.9522    0.0522    0.4573    2.6882    0.9636    3.0406    0.1835    0.1270    1.4631    0.0361    1.2192    0.0701
-#&gt; 181:    92.5469   -5.7684   -2.2220   -4.0549   -0.9488    0.0901    0.4189    2.4963    0.9873    3.1470    0.1744    0.1268    1.5165    0.0336    1.1359    0.0760
-#&gt; 182:    92.5829   -5.7658   -2.2385   -4.0362   -0.9723    0.0572    0.3720    2.5387    0.9203    3.0397    0.1769    0.1636    1.4781    0.0375    1.2697    0.0677
-#&gt; 183:    92.5737   -5.9187   -2.2130   -4.0638   -0.9876    0.0797    0.3084    3.3137    0.9467    3.0532    0.1737    0.1599    1.4288    0.0309    1.3024    0.0617
-#&gt; 184:    92.4989   -5.9837   -2.1994   -4.0476   -0.9737    0.0594    0.2533    3.6658    0.9248    3.1230    0.1776    0.1552    1.3829    0.0316    1.2818    0.0621
-#&gt; 185:    92.5677   -6.0227   -2.2084   -4.0403   -0.9584    0.0609    0.2215    3.8810    0.9134    3.0961    0.1739    0.1473    1.4202    0.0319    1.2731    0.0579
-#&gt; 186:    92.7090   -5.9641   -2.2218   -4.0319   -0.9573    0.0575    0.2917    3.9574    0.9373    3.0666    0.1691    0.1703    1.4378    0.0296    1.2775    0.0601
-#&gt; 187:    92.7358   -6.2503   -2.2003   -4.0534   -0.9742    0.0691    0.3037    5.2011    0.9333    3.0796    0.1647    0.1553    1.4254    0.0293    1.1987    0.0629
-#&gt; 188:    92.6733   -6.1434   -2.1988   -4.0792   -0.9878    0.0860    0.3122    4.9451    0.9080    3.1891    0.1628    0.1558    1.4099    0.0317    1.3162    0.0593
-#&gt; 189:    92.7256   -6.0886   -2.1766   -4.0419   -0.9672    0.0550    0.3758    4.3461    0.9140    3.0795    0.1697    0.1649    1.5310    0.0301    1.3258    0.0566
-#&gt; 190:    92.5144   -6.1827   -2.2159   -4.0525   -0.9677    0.0728    0.3855    4.3370    0.9706    3.0518    0.1486    0.1841    1.4390    0.0295    1.1259    0.0740
-#&gt; 191:    92.6209   -6.1257   -2.2287   -4.1095   -0.9670    0.1034    0.3340    4.3051    0.9486    3.1970    0.1549    0.1776    1.4397    0.0296    1.2004    0.0684
-#&gt; 192:    92.6156   -6.1289   -2.2067   -4.1191   -0.9900    0.1090    0.3069    4.1314    0.9134    3.1476    0.1596    0.1912    1.4380    0.0301    1.1238    0.0720
-#&gt; 193:    92.5434   -5.9782   -2.1800   -4.0845   -0.9547    0.1173    0.2694    3.6834    0.9005    2.9479    0.1582    0.1733    1.4538    0.0294    0.8798    0.0866
-#&gt; 194:    92.5884   -5.7815   -2.2110   -4.0714   -0.9510    0.0928    0.2493    2.8236    0.9615    2.9852    0.1488    0.1730    1.4409    0.0297    1.1446    0.0677
-#&gt; 195:    92.6180   -5.9277   -2.2213   -4.0714   -0.9379    0.1177    0.1993    3.5172    0.8976    2.9852    0.1449    0.1735    1.5012    0.0299    1.2131    0.0618
-#&gt; 196:    92.5920   -5.7723   -2.2496   -4.0669   -0.9184    0.1262    0.2595    3.2454    0.9419    2.9697    0.1600    0.1881    1.4017    0.0338    0.9594    0.0790
-#&gt; 197:    92.6292   -5.8658   -2.2434   -4.0640   -0.9365    0.1216    0.2491    3.3540    0.9267    2.9523    0.1598    0.1749    1.3953    0.0383    1.0788    0.0702
-#&gt; 198:    92.6911   -5.8407   -2.2605   -4.0640   -0.9319    0.1264    0.1930    3.2321    0.8884    2.9523    0.1320    0.1940    1.4026    0.0358    1.0613    0.0704
-#&gt; 199:    92.6480   -5.6988   -2.2599   -4.0668   -0.9395    0.1328    0.1412    2.6535    0.8915    2.9610    0.1573    0.2052    1.4353    0.0360    0.9900    0.0742
-#&gt; 200:    92.7139   -5.6152   -2.2522   -4.0684   -0.9192    0.1589    0.1686    2.4362    0.9098    3.0185    0.1702    0.1705    1.4153    0.0338    1.1747    0.0705
-#&gt; 201:    92.7134   -5.7029   -2.2504   -4.0502   -0.9270    0.1453    0.1499    2.6851    0.8909    2.9484    0.1749    0.1772    1.3851    0.0363    1.1255    0.0714
-#&gt; 202:    92.7087   -5.7236   -2.2421   -4.0499   -0.9364    0.1238    0.1324    2.7215    0.8810    2.9507    0.1694    0.1913    1.3864    0.0365    1.1192    0.0705
-#&gt; 203:    92.7013   -5.7563   -2.2293   -4.0494   -0.9394    0.1134    0.1269    2.8279    0.8866    2.9501    0.1618    0.1915    1.3981    0.0356    1.0942    0.0710
-#&gt; 204:    92.6964   -5.8134   -2.2208   -4.0646   -0.9373    0.1144    0.1192    3.1058    0.8973    3.0279    0.1523    0.1983    1.4126    0.0345    1.0629    0.0723
-#&gt; 205:    92.6936   -5.8441   -2.2195   -4.0787   -0.9373    0.1144    0.1068    3.2553    0.9029    3.0962    0.1473    0.2001    1.4217    0.0344    1.0532    0.0719
-#&gt; 206:    92.6881   -5.8805   -2.2209   -4.0887   -0.9432    0.1187    0.1016    3.4269    0.9126    3.1477    0.1479    0.1957    1.4251    0.0348    1.0697    0.0712
-#&gt; 207:    92.6929   -5.9304   -2.2259   -4.0987   -0.9473    0.1234    0.1028    3.6444    0.9261    3.1982    0.1469    0.1910    1.4170    0.0348    1.0586    0.0717
-#&gt; 208:    92.6907   -5.9413   -2.2275   -4.1043   -0.9482    0.1267    0.1038    3.6864    0.9313    3.2244    0.1467    0.1889    1.4121    0.0343    1.0499    0.0718
-#&gt; 209:    92.6917   -5.9265   -2.2304   -4.1109   -0.9498    0.1289    0.1022    3.5975    0.9363    3.2487    0.1478    0.1863    1.4053    0.0344    1.0521    0.0716
-#&gt; 210:    92.6966   -5.9218   -2.2322   -4.1164   -0.9516    0.1337    0.0984    3.5650    0.9413    3.2688    0.1493    0.1874    1.3949    0.0342    1.0499    0.0719
-#&gt; 211:    92.7020   -5.9160   -2.2351   -4.1209   -0.9542    0.1385    0.0958    3.5091    0.9390    3.2968    0.1503    0.1873    1.3925    0.0345    1.0547    0.0718
-#&gt; 212:    92.7065   -5.9119   -2.2376   -4.1247   -0.9564    0.1432    0.0933    3.4520    0.9373    3.3205    0.1531    0.1901    1.3869    0.0346    1.0625    0.0717
-#&gt; 213:    92.7107   -5.9047   -2.2402   -4.1286   -0.9575    0.1455    0.0930    3.3990    0.9361    3.3369    0.1536    0.1932    1.3814    0.0349    1.0698    0.0712
-#&gt; 214:    92.7110   -5.9061   -2.2415   -4.1321   -0.9585    0.1483    0.0921    3.3864    0.9364    3.3517    0.1542    0.1963    1.3794    0.0348    1.0721    0.0712
-#&gt; 215:    92.7116   -5.9128   -2.2417   -4.1360   -0.9581    0.1510    0.0941    3.4201    0.9347    3.3646    0.1545    0.1988    1.3764    0.0350    1.0731    0.0712
-#&gt; 216:    92.7135   -5.9184   -2.2432   -4.1383   -0.9589    0.1540    0.0957    3.4623    0.9337    3.3698    0.1541    0.2016    1.3761    0.0353    1.0737    0.0714
-#&gt; 217:    92.7143   -5.9262   -2.2453   -4.1428   -0.9604    0.1568    0.0981    3.5202    0.9323    3.3854    0.1542    0.2053    1.3770    0.0352    1.0779    0.0716
-#&gt; 218:    92.7102   -5.9169   -2.2463   -4.1446   -0.9606    0.1604    0.1000    3.4823    0.9305    3.3851    0.1530    0.2083    1.3802    0.0353    1.0819    0.0716
-#&gt; 219:    92.7062   -5.9089   -2.2470   -4.1481   -0.9597    0.1636    0.1000    3.4465    0.9295    3.3874    0.1529    0.2125    1.3779    0.0352    1.0836    0.0716
-#&gt; 220:    92.7027   -5.9052   -2.2480   -4.1509   -0.9594    0.1668    0.1020    3.4302    0.9264    3.3877    0.1531    0.2168    1.3780    0.0352    1.0893    0.0713
-#&gt; 221:    92.7029   -5.8990   -2.2497   -4.1541   -0.9586    0.1696    0.1017    3.4007    0.9227    3.3916    0.1535    0.2208    1.3781    0.0354    1.0925    0.0709
-#&gt; 222:    92.7063   -5.8993   -2.2519   -4.1604   -0.9582    0.1732    0.1025    3.4099    0.9190    3.4135    0.1537    0.2268    1.3791    0.0355    1.1031    0.0702
-#&gt; 223:    92.7090   -5.8932   -2.2537   -4.1669   -0.9573    0.1757    0.1022    3.3946    0.9157    3.4424    0.1543    0.2319    1.3802    0.0356    1.1040    0.0701
-#&gt; 224:    92.7116   -5.8930   -2.2545   -4.1712   -0.9561    0.1774    0.1017    3.3964    0.9133    3.4673    0.1550    0.2355    1.3795    0.0356    1.1018    0.0701
-#&gt; 225:    92.7136   -5.8911   -2.2564   -4.1715   -0.9551    0.1788    0.1016    3.4013    0.9125    3.4628    0.1548    0.2380    1.3756    0.0359    1.1003    0.0700
-#&gt; 226:    92.7153   -5.8883   -2.2569   -4.1711   -0.9536    0.1793    0.1016    3.4046    0.9134    3.4575    0.1549    0.2398    1.3737    0.0360    1.1016    0.0699
-#&gt; 227:    92.7163   -5.8830   -2.2575   -4.1720   -0.9526    0.1796    0.1019    3.3952    0.9129    3.4575    0.1545    0.2407    1.3718    0.0363    1.1015    0.0698
-#&gt; 228:    92.7182   -5.8865   -2.2578   -4.1728   -0.9528    0.1804    0.1017    3.4198    0.9113    3.4576    0.1538    0.2433    1.3722    0.0363    1.1068    0.0695
-#&gt; 229:    92.7199   -5.8965   -2.2578   -4.1718   -0.9523    0.1812    0.1023    3.5030    0.9097    3.4503    0.1529    0.2463    1.3749    0.0363    1.1093    0.0694
-#&gt; 230:    92.7205   -5.8997   -2.2578   -4.1712   -0.9514    0.1825    0.1025    3.5337    0.9071    3.4446    0.1519    0.2497    1.3802    0.0362    1.1115    0.0693
-#&gt; 231:    92.7208   -5.9001   -2.2581   -4.1711   -0.9511    0.1838    0.1044    3.5537    0.9037    3.4423    0.1510    0.2533    1.3834    0.0361    1.1125    0.0693
-#&gt; 232:    92.7183   -5.9041   -2.2588   -4.1715   -0.9504    0.1855    0.1061    3.5958    0.9001    3.4391    0.1503    0.2572    1.3871    0.0362    1.1161    0.0690
-#&gt; 233:    92.7169   -5.9106   -2.2593   -4.1725   -0.9490    0.1866    0.1073    3.6433    0.8968    3.4367    0.1496    0.2609    1.3900    0.0362    1.1179    0.0688
-#&gt; 234:    92.7125   -5.9165   -2.2594   -4.1728   -0.9479    0.1873    0.1098    3.6870    0.8932    3.4321    0.1498    0.2641    1.3907    0.0363    1.1177    0.0687
-#&gt; 235:    92.7072   -5.9203   -2.2592   -4.1729   -0.9472    0.1876    0.1128    3.7229    0.8899    3.4269    0.1506    0.2676    1.3913    0.0364    1.1212    0.0686
-#&gt; 236:    92.7048   -5.9319   -2.2603   -4.1724   -0.9467    0.1879    0.1147    3.7863    0.8879    3.4175    0.1510    0.2705    1.3898    0.0365    1.1181    0.0688
-#&gt; 237:    92.7037   -5.9349   -2.2609   -4.1720   -0.9461    0.1881    0.1152    3.8047    0.8862    3.4096    0.1512    0.2731    1.3891    0.0367    1.1164    0.0688
-#&gt; 238:    92.7027   -5.9359   -2.2605   -4.1715   -0.9459    0.1884    0.1151    3.7997    0.8842    3.4023    0.1516    0.2755    1.3905    0.0366    1.1171    0.0688
-#&gt; 239:    92.7027   -5.9375   -2.2599   -4.1712   -0.9463    0.1881    0.1143    3.8187    0.8835    3.3954    0.1521    0.2780    1.3923    0.0366    1.1193    0.0688
-#&gt; 240:    92.7025   -5.9409   -2.2593   -4.1710   -0.9467    0.1884    0.1135    3.8437    0.8830    3.3888    0.1530    0.2797    1.3939    0.0366    1.1266    0.0685
-#&gt; 241:    92.7006   -5.9429   -2.2589   -4.1703   -0.9469    0.1887    0.1130    3.8580    0.8825    3.3820    0.1529    0.2815    1.3967    0.0364    1.1299    0.0685
-#&gt; 242:    92.6977   -5.9366   -2.2594   -4.1693   -0.9471    0.1887    0.1130    3.8245    0.8810    3.3742    0.1534    0.2833    1.3967    0.0364    1.1323    0.0685
-#&gt; 243:    92.6951   -5.9310   -2.2605   -4.1683   -0.9473    0.1891    0.1131    3.7904    0.8807    3.3666    0.1541    0.2853    1.3953    0.0364    1.1380    0.0683
-#&gt; 244:    92.6928   -5.9289   -2.2610   -4.1680   -0.9471    0.1899    0.1130    3.7709    0.8797    3.3604    0.1545    0.2880    1.3947    0.0364    1.1399    0.0683
-#&gt; 245:    92.6902   -5.9291   -2.2615   -4.1677   -0.9472    0.1914    0.1129    3.7637    0.8787    3.3538    0.1549    0.2898    1.3942    0.0364    1.1440    0.0681
-#&gt; 246:    92.6880   -5.9271   -2.2617   -4.1677   -0.9472    0.1926    0.1131    3.7457    0.8785    3.3500    0.1549    0.2916    1.3938    0.0364    1.1468    0.0681
-#&gt; 247:    92.6865   -5.9264   -2.2613   -4.1676   -0.9471    0.1930    0.1127    3.7331    0.8793    3.3487    0.1551    0.2918    1.3931    0.0364    1.1464    0.0683
-#&gt; 248:    92.6855   -5.9212   -2.2604   -4.1671   -0.9476    0.1935    0.1116    3.7055    0.8795    3.3451    0.1549    0.2923    1.3942    0.0363    1.1453    0.0684
-#&gt; 249:    92.6848   -5.9190   -2.2600   -4.1667   -0.9482    0.1939    0.1110    3.6857    0.8801    3.3428    0.1548    0.2923    1.3942    0.0363    1.1440    0.0685
-#&gt; 250:    92.6858   -5.9194   -2.2605   -4.1663   -0.9489    0.1945    0.1109    3.6821    0.8806    3.3397    0.1547    0.2920    1.3932    0.0363    1.1430    0.0686
-#&gt; 251:    92.6849   -5.9179   -2.2610   -4.1665   -0.9492    0.1950    0.1111    3.6795    0.8814    3.3392    0.1550    0.2919    1.3922    0.0364    1.1434    0.0685
-#&gt; 252:    92.6848   -5.9141   -2.2615   -4.1660   -0.9493    0.1957    0.1110    3.6611    0.8818    3.3363    0.1548    0.2918    1.3919    0.0364    1.1423    0.0686
-#&gt; 253:    92.6837   -5.9110   -2.2637   -4.1634   -0.9493    0.1952    0.1114    3.6462    0.8788    3.3481    0.1550    0.2920    1.3941    0.0363    1.1417    0.0688
-#&gt; 254:    92.6827   -5.9082   -2.2650   -4.1608   -0.9492    0.1944    0.1117    3.6309    0.8753    3.3595    0.1548    0.2921    1.3964    0.0361    1.1415    0.0688
-#&gt; 255:    92.6829   -5.9076   -2.2662   -4.1585   -0.9495    0.1934    0.1118    3.6221    0.8723    3.3737    0.1547    0.2923    1.3977    0.0359    1.1397    0.0689
-#&gt; 256:    92.6821   -5.9079   -2.2672   -4.1559   -0.9495    0.1923    0.1118    3.6279    0.8697    3.3865    0.1547    0.2925    1.3990    0.0357    1.1387    0.0691
-#&gt; 257:    92.6822   -5.9054   -2.2686   -4.1534   -0.9499    0.1914    0.1119    3.6202    0.8673    3.3988    0.1548    0.2923    1.4010    0.0356    1.1438    0.0690
-#&gt; 258:    92.6828   -5.9054   -2.2700   -4.1509   -0.9498    0.1900    0.1121    3.6166    0.8651    3.4085    0.1547    0.2926    1.4028    0.0356    1.1473    0.0688
-#&gt; 259:    92.6842   -5.9087   -2.2710   -4.1474   -0.9496    0.1890    0.1128    3.6314    0.8629    3.4154    0.1548    0.2923    1.4040    0.0355    1.1482    0.0689
-#&gt; 260:    92.6852   -5.9118   -2.2717   -4.1444   -0.9493    0.1885    0.1124    3.6485    0.8606    3.4227    0.1544    0.2919    1.4073    0.0354    1.1518    0.0688
-#&gt; 261:    92.6858   -5.9137   -2.2721   -4.1419   -0.9493    0.1882    0.1122    3.6641    0.8581    3.4314    0.1543    0.2913    1.4106    0.0353    1.1577    0.0684
-#&gt; 262:    92.6861   -5.9117   -2.2726   -4.1394   -0.9493    0.1881    0.1116    3.6572    0.8558    3.4391    0.1541    0.2908    1.4137    0.0352    1.1613    0.0682
-#&gt; 263:    92.6855   -5.9124   -2.2730   -4.1372   -0.9494    0.1875    0.1113    3.6626    0.8533    3.4465    0.1541    0.2905    1.4152    0.0351    1.1636    0.0681
-#&gt; 264:    92.6841   -5.9137   -2.2734   -4.1351   -0.9496    0.1871    0.1109    3.6703    0.8505    3.4529    0.1538    0.2903    1.4156    0.0350    1.1632    0.0681
-#&gt; 265:    92.6833   -5.9153   -2.2741   -4.1327   -0.9498    0.1867    0.1108    3.6816    0.8472    3.4581    0.1535    0.2899    1.4168    0.0350    1.1647    0.0679
-#&gt; 266:    92.6835   -5.9147   -2.2752   -4.1307   -0.9497    0.1865    0.1107    3.6768    0.8450    3.4641    0.1531    0.2896    1.4176    0.0349    1.1640    0.0679
-#&gt; 267:    92.6835   -5.9167   -2.2761   -4.1283   -0.9499    0.1862    0.1105    3.6851    0.8430    3.4700    0.1530    0.2892    1.4178    0.0348    1.1639    0.0679
-#&gt; 268:    92.6841   -5.9141   -2.2767   -4.1269   -0.9503    0.1860    0.1107    3.6718    0.8407    3.4775    0.1533    0.2891    1.4187    0.0348    1.1673    0.0677
-#&gt; 269:    92.6845   -5.9094   -2.2774   -4.1253   -0.9503    0.1855    0.1112    3.6520    0.8384    3.4840    0.1535    0.2890    1.4192    0.0348    1.1686    0.0675
-#&gt; 270:    92.6847   -5.9042   -2.2779   -4.1239   -0.9505    0.1853    0.1107    3.6288    0.8365    3.4895    0.1536    0.2889    1.4192    0.0347    1.1698    0.0675
-#&gt; 271:    92.6849   -5.9000   -2.2785   -4.1228   -0.9506    0.1853    0.1102    3.6083    0.8348    3.4956    0.1536    0.2889    1.4191    0.0346    1.1692    0.0676
-#&gt; 272:    92.6850   -5.8965   -2.2794   -4.1223   -0.9507    0.1853    0.1092    3.5892    0.8331    3.5071    0.1538    0.2889    1.4194    0.0345    1.1700    0.0676
-#&gt; 273:    92.6851   -5.8916   -2.2805   -4.1222   -0.9508    0.1850    0.1089    3.5697    0.8315    3.5211    0.1538    0.2889    1.4209    0.0345    1.1720    0.0675
-#&gt; 274:    92.6849   -5.8898   -2.2815   -4.1218   -0.9506    0.1852    0.1084    3.5607    0.8301    3.5339    0.1542    0.2886    1.4221    0.0344    1.1728    0.0675
-#&gt; 275:    92.6844   -5.8885   -2.2830   -4.1215   -0.9504    0.1855    0.1080    3.5514    0.8284    3.5491    0.1545    0.2883    1.4238    0.0343    1.1756    0.0673
-#&gt; 276:    92.6834   -5.8885   -2.2843   -4.1210   -0.9501    0.1859    0.1077    3.5477    0.8272    3.5648    0.1547    0.2878    1.4243    0.0343    1.1749    0.0674
-#&gt; 277:    92.6829   -5.8892   -2.2858   -4.1208   -0.9500    0.1862    0.1071    3.5505    0.8257    3.5807    0.1552    0.2872    1.4244    0.0343    1.1747    0.0674
-#&gt; 278:    92.6825   -5.8885   -2.2871   -4.1205   -0.9499    0.1862    0.1072    3.5463    0.8245    3.5960    0.1555    0.2866    1.4247    0.0343    1.1742    0.0675
-#&gt; 279:    92.6815   -5.8887   -2.2883   -4.1201   -0.9501    0.1864    0.1072    3.5433    0.8239    3.6088    0.1556    0.2860    1.4247    0.0343    1.1737    0.0676
-#&gt; 280:    92.6800   -5.8901   -2.2896   -4.1211   -0.9503    0.1865    0.1078    3.5481    0.8238    3.6285    0.1556    0.2848    1.4252    0.0344    1.1742    0.0676
-#&gt; 281:    92.6779   -5.8914   -2.2907   -4.1218   -0.9502    0.1865    0.1084    3.5491    0.8240    3.6471    0.1558    0.2838    1.4251    0.0343    1.1732    0.0677
-#&gt; 282:    92.6767   -5.8906   -2.2919   -4.1236   -0.9501    0.1862    0.1091    3.5462    0.8248    3.6747    0.1558    0.2825    1.4250    0.0344    1.1732    0.0677
-#&gt; 283:    92.6750   -5.8895   -2.2928   -4.1253   -0.9499    0.1857    0.1097    3.5418    0.8260    3.7025    0.1555    0.2814    1.4253    0.0344    1.1712    0.0678
-#&gt; 284:    92.6736   -5.8903   -2.2934   -4.1271   -0.9497    0.1854    0.1107    3.5438    0.8269    3.7297    0.1553    0.2800    1.4257    0.0343    1.1698    0.0678
-#&gt; 285:    92.6730   -5.8917   -2.2942   -4.1284   -0.9497    0.1852    0.1116    3.5481    0.8274    3.7528    0.1551    0.2787    1.4260    0.0343    1.1689    0.0678
-#&gt; 286:    92.6715   -5.8913   -2.2947   -4.1285   -0.9492    0.1849    0.1122    3.5473    0.8274    3.7660    0.1550    0.2775    1.4265    0.0342    1.1678    0.0679
-#&gt; 287:    92.6702   -5.8925   -2.2952   -4.1290   -0.9489    0.1846    0.1125    3.5531    0.8268    3.7818    0.1549    0.2764    1.4269    0.0342    1.1673    0.0678
-#&gt; 288:    92.6688   -5.8918   -2.2959   -4.1290   -0.9490    0.1843    0.1126    3.5495    0.8262    3.7946    0.1546    0.2756    1.4275    0.0341    1.1673    0.0678
-#&gt; 289:    92.6673   -5.8907   -2.2966   -4.1295   -0.9490    0.1841    0.1124    3.5445    0.8260    3.8067    0.1543    0.2750    1.4280    0.0342    1.1690    0.0677
-#&gt; 290:    92.6657   -5.8909   -2.2973   -4.1302   -0.9490    0.1838    0.1123    3.5433    0.8260    3.8201    0.1540    0.2744    1.4279    0.0342    1.1687    0.0676
-#&gt; 291:    92.6642   -5.8902   -2.2978   -4.1312   -0.9493    0.1835    0.1124    3.5399    0.8262    3.8365    0.1538    0.2738    1.4279    0.0342    1.1695    0.0676
-#&gt; 292:    92.6635   -5.8917   -2.2983   -4.1316   -0.9495    0.1831    0.1121    3.5453    0.8263    3.8517    0.1535    0.2733    1.4275    0.0342    1.1695    0.0675
-#&gt; 293:    92.6622   -5.8936   -2.2991   -4.1323   -0.9497    0.1830    0.1121    3.5526    0.8265    3.8692    0.1533    0.2728    1.4274    0.0342    1.1701    0.0675
-#&gt; 294:    92.6604   -5.8936   -2.2999   -4.1328   -0.9499    0.1826    0.1126    3.5505    0.8263    3.8838    0.1533    0.2723    1.4273    0.0342    1.1712    0.0675
-#&gt; 295:    92.6593   -5.8924   -2.3007   -4.1329   -0.9498    0.1823    0.1131    3.5443    0.8262    3.9004    0.1531    0.2717    1.4276    0.0342    1.1718    0.0674
-#&gt; 296:    92.6586   -5.8906   -2.3016   -4.1323   -0.9496    0.1822    0.1133    3.5374    0.8266    3.9103    0.1530    0.2707    1.4272    0.0343    1.1714    0.0674
-#&gt; 297:    92.6578   -5.8889   -2.3026   -4.1329   -0.9494    0.1819    0.1139    3.5315    0.8271    3.9280    0.1528    0.2697    1.4267    0.0343    1.1697    0.0675
-#&gt; 298:    92.6575   -5.8885   -2.3036   -4.1330   -0.9490    0.1814    0.1143    3.5303    0.8275    3.9410    0.1527    0.2689    1.4263    0.0344    1.1688    0.0675
-#&gt; 299:    92.6566   -5.8879   -2.3047   -4.1329   -0.9488    0.1807    0.1147    3.5286    0.8282    3.9507    0.1526    0.2679    1.4263    0.0345    1.1680    0.0674
-#&gt; 300:    92.6555   -5.8862   -2.3057   -4.1325   -0.9483    0.1802    0.1151    3.5225    0.8293    3.9582    0.1527    0.2671    1.4261    0.0345    1.1677    0.0674
-#&gt; 301:    92.6545   -5.8854   -2.3067   -4.1326   -0.9480    0.1795    0.1156    3.5191    0.8300    3.9691    0.1530    0.2665    1.4257    0.0346    1.1672    0.0674
-#&gt; 302:    92.6539   -5.8839   -2.3078   -4.1322   -0.9477    0.1788    0.1161    3.5154    0.8309    3.9769    0.1532    0.2657    1.4252    0.0346    1.1664    0.0675
-#&gt; 303:    92.6541   -5.8799   -2.3089   -4.1327   -0.9474    0.1782    0.1161    3.5012    0.8319    3.9913    0.1534    0.2649    1.4242    0.0347    1.1653    0.0675
-#&gt; 304:    92.6554   -5.8766   -2.3096   -4.1326   -0.9472    0.1774    0.1164    3.4879    0.8328    3.9978    0.1536    0.2641    1.4234    0.0348    1.1644    0.0675
-#&gt; 305:    92.6559   -5.8732   -2.3104   -4.1325   -0.9470    0.1764    0.1161    3.4740    0.8334    4.0037    0.1535    0.2633    1.4231    0.0348    1.1634    0.0676
-#&gt; 306:    92.6564   -5.8717   -2.3113   -4.1322   -0.9470    0.1758    0.1161    3.4705    0.8341    4.0097    0.1537    0.2622    1.4236    0.0348    1.1628    0.0676
-#&gt; 307:    92.6573   -5.8703   -2.3121   -4.1320   -0.9469    0.1748    0.1158    3.4630    0.8349    4.0154    0.1538    0.2614    1.4231    0.0348    1.1617    0.0677
-#&gt; 308:    92.6578   -5.8695   -2.3129   -4.1318   -0.9465    0.1738    0.1154    3.4585    0.8356    4.0210    0.1540    0.2607    1.4229    0.0348    1.1604    0.0677
-#&gt; 309:    92.6577   -5.8691   -2.3132   -4.1317   -0.9465    0.1732    0.1151    3.4548    0.8369    4.0270    0.1540    0.2596    1.4233    0.0348    1.1589    0.0678
-#&gt; 310:    92.6580   -5.8680   -2.3135   -4.1309   -0.9466    0.1727    0.1147    3.4472    0.8377    4.0280    0.1540    0.2587    1.4231    0.0348    1.1569    0.0679
-#&gt; 311:    92.6575   -5.8681   -2.3141   -4.1303   -0.9466    0.1722    0.1144    3.4477    0.8384    4.0303    0.1539    0.2577    1.4236    0.0348    1.1557    0.0679
-#&gt; 312:    92.6571   -5.8685   -2.3145   -4.1299   -0.9467    0.1720    0.1143    3.4498    0.8393    4.0328    0.1538    0.2566    1.4237    0.0348    1.1545    0.0680
-#&gt; 313:    92.6559   -5.8685   -2.3150   -4.1296   -0.9469    0.1718    0.1142    3.4483    0.8403    4.0358    0.1537    0.2555    1.4234    0.0348    1.1532    0.0681
-#&gt; 314:    92.6543   -5.8699   -2.3155   -4.1294   -0.9471    0.1715    0.1142    3.4526    0.8404    4.0401    0.1537    0.2546    1.4236    0.0347    1.1522    0.0681
-#&gt; 315:    92.6528   -5.8713   -2.3161   -4.1289   -0.9472    0.1712    0.1144    3.4584    0.8402    4.0427    0.1537    0.2538    1.4234    0.0347    1.1520    0.0682
-#&gt; 316:    92.6510   -5.8726   -2.3166   -4.1283   -0.9472    0.1705    0.1146    3.4647    0.8404    4.0443    0.1537    0.2528    1.4236    0.0347    1.1511    0.0682
-#&gt; 317:    92.6496   -5.8736   -2.3170   -4.1281   -0.9474    0.1699    0.1147    3.4701    0.8406    4.0497    0.1536    0.2520    1.4238    0.0347    1.1504    0.0683
-#&gt; 318:    92.6479   -5.8745   -2.3174   -4.1276   -0.9475    0.1695    0.1153    3.4729    0.8410    4.0511    0.1535    0.2510    1.4238    0.0347    1.1503    0.0683
-#&gt; 319:    92.6463   -5.8773   -2.3175   -4.1272   -0.9476    0.1690    0.1155    3.4868    0.8409    4.0527    0.1535    0.2502    1.4234    0.0347    1.1484    0.0685
-#&gt; 320:    92.6447   -5.8770   -2.3179   -4.1263   -0.9478    0.1684    0.1158    3.4849    0.8407    4.0516    0.1534    0.2493    1.4238    0.0347    1.1483    0.0685
-#&gt; 321:    92.6433   -5.8768   -2.3181   -4.1255   -0.9479    0.1679    0.1161    3.4850    0.8405    4.0511    0.1533    0.2485    1.4238    0.0346    1.1474    0.0686
-#&gt; 322:    92.6425   -5.8766   -2.3182   -4.1246   -0.9480    0.1673    0.1161    3.4839    0.8403    4.0505    0.1530    0.2474    1.4243    0.0346    1.1458    0.0687
-#&gt; 323:    92.6414   -5.8778   -2.3183   -4.1241   -0.9481    0.1669    0.1162    3.4888    0.8402    4.0517    0.1530    0.2466    1.4244    0.0346    1.1454    0.0687
-#&gt; 324:    92.6404   -5.8771   -2.3186   -4.1236   -0.9482    0.1666    0.1161    3.4855    0.8401    4.0525    0.1529    0.2459    1.4247    0.0345    1.1446    0.0687
-#&gt; 325:    92.6396   -5.8753   -2.3188   -4.1231   -0.9483    0.1664    0.1156    3.4767    0.8396    4.0533    0.1529    0.2454    1.4253    0.0345    1.1438    0.0689
-#&gt; 326:    92.6397   -5.8766   -2.3192   -4.1226   -0.9484    0.1663    0.1152    3.4798    0.8389    4.0542    0.1527    0.2449    1.4253    0.0345    1.1431    0.0690
-#&gt; 327:    92.6395   -5.8785   -2.3197   -4.1224   -0.9483    0.1660    0.1151    3.4880    0.8382    4.0557    0.1528    0.2445    1.4250    0.0345    1.1430    0.0690
-#&gt; 328:    92.6397   -5.8805   -2.3202   -4.1221   -0.9483    0.1657    0.1153    3.5011    0.8373    4.0568    0.1528    0.2442    1.4246    0.0345    1.1427    0.0690
-#&gt; 329:    92.6390   -5.8838   -2.3208   -4.1219   -0.9482    0.1655    0.1161    3.5176    0.8365    4.0580    0.1530    0.2439    1.4241    0.0345    1.1429    0.0690
-#&gt; 330:    92.6380   -5.8862   -2.3215   -4.1216   -0.9484    0.1653    0.1166    3.5286    0.8355    4.0584    0.1529    0.2437    1.4234    0.0346    1.1428    0.0690
-#&gt; 331:    92.6367   -5.8867   -2.3223   -4.1206   -0.9484    0.1651    0.1165    3.5288    0.8348    4.0577    0.1528    0.2435    1.4233    0.0346    1.1429    0.0690
-#&gt; 332:    92.6360   -5.8859   -2.3230   -4.1199   -0.9485    0.1650    0.1165    3.5235    0.8343    4.0572    0.1527    0.2433    1.4227    0.0346    1.1429    0.0689
-#&gt; 333:    92.6361   -5.8839   -2.3237   -4.1194   -0.9485    0.1649    0.1162    3.5142    0.8340    4.0564    0.1527    0.2430    1.4224    0.0347    1.1429    0.0689
-#&gt; 334:    92.6359   -5.8824   -2.3244   -4.1190   -0.9486    0.1649    0.1158    3.5070    0.8337    4.0567    0.1527    0.2424    1.4218    0.0347    1.1442    0.0689
-#&gt; 335:    92.6366   -5.8826   -2.3250   -4.1186   -0.9485    0.1645    0.1157    3.5069    0.8334    4.0574    0.1527    0.2419    1.4214    0.0347    1.1448    0.0688
-#&gt; 336:    92.6374   -5.8816   -2.3253   -4.1182   -0.9486    0.1644    0.1158    3.5034    0.8330    4.0580    0.1528    0.2415    1.4212    0.0347    1.1471    0.0687
-#&gt; 337:    92.6378   -5.8810   -2.3258   -4.1176   -0.9487    0.1642    0.1159    3.5023    0.8325    4.0582    0.1528    0.2410    1.4212    0.0347    1.1467    0.0688
-#&gt; 338:    92.6383   -5.8814   -2.3262   -4.1168   -0.9488    0.1637    0.1160    3.5028    0.8322    4.0571    0.1526    0.2409    1.4216    0.0346    1.1456    0.0689
-#&gt; 339:    92.6392   -5.8808   -2.3266   -4.1160   -0.9490    0.1631    0.1161    3.4989    0.8318    4.0566    0.1524    0.2408    1.4220    0.0346    1.1441    0.0690
-#&gt; 340:    92.6393   -5.8810   -2.3269   -4.1152   -0.9491    0.1626    0.1157    3.4997    0.8316    4.0564    0.1524    0.2407    1.4216    0.0346    1.1419    0.0692
-#&gt; 341:    92.6394   -5.8807   -2.3272   -4.1148   -0.9492    0.1619    0.1153    3.4966    0.8308    4.0552    0.1523    0.2405    1.4218    0.0346    1.1415    0.0692
-#&gt; 342:    92.6394   -5.8806   -2.3274   -4.1141   -0.9493    0.1612    0.1146    3.4936    0.8303    4.0537    0.1522    0.2405    1.4221    0.0346    1.1406    0.0692
-#&gt; 343:    92.6398   -5.8819   -2.3277   -4.1134   -0.9494    0.1606    0.1141    3.4961    0.8297    4.0519    0.1522    0.2402    1.4219    0.0347    1.1404    0.0692
-#&gt; 344:    92.6401   -5.8823   -2.3280   -4.1128   -0.9497    0.1599    0.1137    3.4963    0.8293    4.0504    0.1523    0.2400    1.4214    0.0346    1.1404    0.0692
-#&gt; 345:    92.6404   -5.8829   -2.3283   -4.1124   -0.9498    0.1593    0.1136    3.4958    0.8289    4.0494    0.1523    0.2396    1.4214    0.0346    1.1398    0.0692
-#&gt; 346:    92.6405   -5.8829   -2.3283   -4.1119   -0.9499    0.1587    0.1135    3.4953    0.8287    4.0484    0.1522    0.2394    1.4216    0.0346    1.1397    0.0692
-#&gt; 347:    92.6404   -5.8833   -2.3288   -4.1117   -0.9500    0.1582    0.1133    3.4965    0.8289    4.0480    0.1521    0.2391    1.4211    0.0346    1.1388    0.0692
-#&gt; 348:    92.6407   -5.8838   -2.3293   -4.1113   -0.9502    0.1578    0.1132    3.4978    0.8290    4.0471    0.1520    0.2388    1.4209    0.0346    1.1385    0.0692
-#&gt; 349:    92.6409   -5.8847   -2.3299   -4.1110   -0.9503    0.1571    0.1128    3.5024    0.8290    4.0474    0.1519    0.2386    1.4207    0.0347    1.1379    0.0692
-#&gt; 350:    92.6413   -5.8853   -2.3304   -4.1107   -0.9504    0.1567    0.1125    3.5037    0.8287    4.0478    0.1519    0.2383    1.4207    0.0347    1.1366    0.0693
-#&gt; 351:    92.6415   -5.8868   -2.3310   -4.1104   -0.9504    0.1562    0.1122    3.5109    0.8287    4.0490    0.1518    0.2378    1.4208    0.0347    1.1364    0.0693
-#&gt; 352:    92.6413   -5.8882   -2.3316   -4.1103   -0.9504    0.1557    0.1120    3.5196    0.8287    4.0517    0.1517    0.2375    1.4207    0.0346    1.1361    0.0693
-#&gt; 353:    92.6414   -5.8890   -2.3322   -4.1101   -0.9503    0.1553    0.1117    3.5237    0.8290    4.0533    0.1517    0.2371    1.4202    0.0346    1.1345    0.0693
-#&gt; 354:    92.6417   -5.8879   -2.3327   -4.1099   -0.9502    0.1548    0.1115    3.5206    0.8294    4.0546    0.1515    0.2368    1.4200    0.0346    1.1336    0.0694
-#&gt; 355:    92.6417   -5.8882   -2.3333   -4.1096   -0.9500    0.1541    0.1115    3.5265    0.8296    4.0548    0.1514    0.2364    1.4203    0.0346    1.1325    0.0694
-#&gt; 356:    92.6414   -5.8881   -2.3338   -4.1093   -0.9497    0.1535    0.1115    3.5339    0.8299    4.0553    0.1513    0.2362    1.4204    0.0346    1.1318    0.0694
-#&gt; 357:    92.6414   -5.8874   -2.3343   -4.1087   -0.9497    0.1529    0.1117    3.5320    0.8302    4.0548    0.1512    0.2358    1.4205    0.0346    1.1315    0.0694
-#&gt; 358:    92.6415   -5.8865   -2.3349   -4.1087   -0.9497    0.1523    0.1118    3.5274    0.8308    4.0583    0.1510    0.2354    1.4206    0.0346    1.1308    0.0695
-#&gt; 359:    92.6415   -5.8855   -2.3352   -4.1085   -0.9497    0.1518    0.1123    3.5208    0.8308    4.0597    0.1509    0.2349    1.4205    0.0346    1.1298    0.0695
-#&gt; 360:    92.6413   -5.8851   -2.3356   -4.1080   -0.9496    0.1513    0.1125    3.5176    0.8308    4.0606    0.1508    0.2344    1.4207    0.0346    1.1289    0.0695
-#&gt; 361:    92.6412   -5.8854   -2.3359   -4.1076   -0.9498    0.1508    0.1126    3.5187    0.8308    4.0618    0.1508    0.2338    1.4214    0.0345    1.1279    0.0695
-#&gt; 362:    92.6415   -5.8861   -2.3362   -4.1072   -0.9499    0.1503    0.1126    3.5210    0.8306    4.0636    0.1507    0.2333    1.4218    0.0345    1.1273    0.0695
-#&gt; 363:    92.6412   -5.8884   -2.3364   -4.1066   -0.9499    0.1498    0.1126    3.5327    0.8305    4.0646    0.1507    0.2328    1.4221    0.0345    1.1273    0.0695
-#&gt; 364:    92.6411   -5.8895   -2.3367   -4.1062   -0.9501    0.1494    0.1126    3.5366    0.8306    4.0659    0.1507    0.2322    1.4227    0.0345    1.1280    0.0695
-#&gt; 365:    92.6411   -5.8908   -2.3367   -4.1060   -0.9502    0.1489    0.1125    3.5405    0.8307    4.0690    0.1507    0.2317    1.4228    0.0344    1.1280    0.0695
-#&gt; 366:    92.6412   -5.8926   -2.3366   -4.1062   -0.9502    0.1484    0.1125    3.5483    0.8307    4.0724    0.1507    0.2311    1.4228    0.0344    1.1280    0.0695
-#&gt; 367:    92.6406   -5.8940   -2.3366   -4.1059   -0.9503    0.1483    0.1124    3.5557    0.8308    4.0738    0.1507    0.2305    1.4228    0.0344    1.1273    0.0695
-#&gt; 368:    92.6402   -5.8940   -2.3365   -4.1059   -0.9504    0.1483    0.1122    3.5538    0.8306    4.0773    0.1507    0.2299    1.4228    0.0344    1.1266    0.0696
-#&gt; 369:    92.6398   -5.8933   -2.3366   -4.1058   -0.9504    0.1482    0.1122    3.5489    0.8303    4.0796    0.1507    0.2295    1.4228    0.0343    1.1261    0.0696
-#&gt; 370:    92.6394   -5.8928   -2.3366   -4.1059   -0.9504    0.1481    0.1123    3.5445    0.8302    4.0819    0.1506    0.2291    1.4229    0.0343    1.1258    0.0696
-#&gt; 371:    92.6390   -5.8930   -2.3369   -4.1062   -0.9503    0.1481    0.1125    3.5446    0.8299    4.0854    0.1506    0.2285    1.4230    0.0343    1.1257    0.0696
-#&gt; 372:    92.6387   -5.8926   -2.3372   -4.1064   -0.9503    0.1482    0.1125    3.5424    0.8298    4.0887    0.1505    0.2281    1.4234    0.0343    1.1262    0.0696
-#&gt; 373:    92.6385   -5.8927   -2.3376   -4.1067   -0.9502    0.1483    0.1126    3.5447    0.8297    4.0919    0.1504    0.2275    1.4236    0.0343    1.1268    0.0696
-#&gt; 374:    92.6382   -5.8932   -2.3380   -4.1064   -0.9502    0.1481    0.1131    3.5490    0.8295    4.0929    0.1503    0.2272    1.4238    0.0343    1.1267    0.0696
-#&gt; 375:    92.6385   -5.8944   -2.3383   -4.1062   -0.9502    0.1481    0.1136    3.5562    0.8292    4.0936    0.1503    0.2269    1.4240    0.0343    1.1274    0.0695
-#&gt; 376:    92.6388   -5.8942   -2.3387   -4.1061   -0.9502    0.1481    0.1141    3.5575    0.8295    4.0942    0.1502    0.2267    1.4236    0.0343    1.1272    0.0695
-#&gt; 377:    92.6389   -5.8942   -2.3392   -4.1060   -0.9502    0.1482    0.1145    3.5579    0.8298    4.0950    0.1501    0.2264    1.4233    0.0344    1.1272    0.0695
-#&gt; 378:    92.6388   -5.8939   -2.3397   -4.1060   -0.9502    0.1481    0.1150    3.5558    0.8298    4.0959    0.1500    0.2261    1.4232    0.0344    1.1271    0.0695
-#&gt; 379:    92.6388   -5.8934   -2.3399   -4.1062   -0.9500    0.1483    0.1153    3.5521    0.8294    4.0980    0.1500    0.2257    1.4236    0.0344    1.1279    0.0694
-#&gt; 380:    92.6390   -5.8920   -2.3402   -4.1065   -0.9499    0.1484    0.1155    3.5446    0.8292    4.1007    0.1500    0.2254    1.4241    0.0344    1.1285    0.0694
-#&gt; 381:    92.6394   -5.8906   -2.3404   -4.1069   -0.9498    0.1485    0.1157    3.5378    0.8290    4.1040    0.1500    0.2250    1.4249    0.0343    1.1296    0.0694
-#&gt; 382:    92.6403   -5.8893   -2.3406   -4.1085   -0.9498    0.1487    0.1157    3.5319    0.8289    4.1195    0.1500    0.2246    1.4250    0.0343    1.1301    0.0694
-#&gt; 383:    92.6402   -5.8882   -2.3408   -4.1096   -0.9499    0.1488    0.1155    3.5269    0.8287    4.1290    0.1500    0.2243    1.4253    0.0343    1.1300    0.0694
-#&gt; 384:    92.6401   -5.8871   -2.3412   -4.1102   -0.9498    0.1490    0.1155    3.5219    0.8285    4.1340    0.1499    0.2241    1.4254    0.0343    1.1297    0.0694
-#&gt; 385:    92.6396   -5.8867   -2.3417   -4.1105   -0.9497    0.1493    0.1155    3.5195    0.8281    4.1364    0.1498    0.2238    1.4252    0.0343    1.1297    0.0695
-#&gt; 386:    92.6393   -5.8863   -2.3423   -4.1116   -0.9496    0.1497    0.1153    3.5190    0.8280    4.1452    0.1497    0.2235    1.4251    0.0343    1.1307    0.0694
-#&gt; 387:    92.6391   -5.8865   -2.3429   -4.1124   -0.9495    0.1498    0.1155    3.5219    0.8280    4.1502    0.1497    0.2234    1.4247    0.0343    1.1301    0.0695
-#&gt; 388:    92.6389   -5.8861   -2.3436   -4.1129   -0.9494    0.1501    0.1158    3.5228    0.8278    4.1540    0.1496    0.2233    1.4243    0.0343    1.1293    0.0695
-#&gt; 389:    92.6384   -5.8849   -2.3442   -4.1132   -0.9491    0.1504    0.1159    3.5195    0.8276    4.1571    0.1496    0.2231    1.4242    0.0343    1.1284    0.0696
-#&gt; 390:    92.6382   -5.8838   -2.3447   -4.1134   -0.9489    0.1506    0.1159    3.5172    0.8276    4.1603    0.1497    0.2230    1.4242    0.0343    1.1273    0.0697
-#&gt; 391:    92.6380   -5.8821   -2.3454   -4.1140   -0.9486    0.1509    0.1159    3.5134    0.8274    4.1661    0.1498    0.2228    1.4238    0.0343    1.1266    0.0697
-#&gt; 392:    92.6374   -5.8800   -2.3460   -4.1140   -0.9485    0.1513    0.1158    3.5069    0.8274    4.1673    0.1499    0.2226    1.4235    0.0343    1.1258    0.0698
-#&gt; 393:    92.6372   -5.8785   -2.3467   -4.1140   -0.9485    0.1514    0.1159    3.5019    0.8275    4.1684    0.1499    0.2223    1.4232    0.0343    1.1258    0.0698
-#&gt; 394:    92.6372   -5.8765   -2.3473   -4.1142   -0.9485    0.1515    0.1161    3.4955    0.8275    4.1710    0.1499    0.2221    1.4228    0.0344    1.1260    0.0697
-#&gt; 395:    92.6371   -5.8761   -2.3476   -4.1145   -0.9485    0.1515    0.1164    3.4940    0.8273    4.1739    0.1498    0.2220    1.4227    0.0344    1.1254    0.0698
-#&gt; 396:    92.6370   -5.8759   -2.3480   -4.1147   -0.9485    0.1516    0.1166    3.4942    0.8269    4.1764    0.1498    0.2217    1.4222    0.0344    1.1252    0.0698
-#&gt; 397:    92.6371   -5.8756   -2.3483   -4.1149   -0.9486    0.1516    0.1167    3.4914    0.8267    4.1796    0.1498    0.2214    1.4219    0.0344    1.1253    0.0697
-#&gt; 398:    92.6371   -5.8756   -2.3486   -4.1155   -0.9486    0.1518    0.1167    3.4909    0.8268    4.1840    0.1498    0.2210    1.4216    0.0344    1.1250    0.0697
-#&gt; 399:    92.6368   -5.8765   -2.3489   -4.1157   -0.9485    0.1519    0.1170    3.4958    0.8266    4.1866    0.1498    0.2205    1.4213    0.0344    1.1245    0.0698
-#&gt; 400:    92.6368   -5.8769   -2.3491   -4.1158   -0.9485    0.1522    0.1174    3.4972    0.8266    4.1888    0.1499    0.2200    1.4209    0.0344    1.1242    0.0698
-#&gt; 401:    92.6366   -5.8768   -2.3493   -4.1161   -0.9484    0.1524    0.1175    3.4964    0.8267    4.1913    0.1499    0.2196    1.4204    0.0344    1.1240    0.0698
-#&gt; 402:    92.6362   -5.8767   -2.3495   -4.1164   -0.9483    0.1525    0.1176    3.4961    0.8267    4.1937    0.1499    0.2192    1.4201    0.0344    1.1240    0.0698
-#&gt; 403:    92.6362   -5.8769   -2.3497   -4.1166   -0.9483    0.1526    0.1178    3.4981    0.8270    4.1960    0.1499    0.2187    1.4197    0.0345    1.1236    0.0698
-#&gt; 404:    92.6359   -5.8772   -2.3499   -4.1166   -0.9483    0.1527    0.1179    3.4997    0.8272    4.1968    0.1499    0.2183    1.4193    0.0345    1.1232    0.0698
-#&gt; 405:    92.6355   -5.8763   -2.3501   -4.1165   -0.9483    0.1527    0.1180    3.4946    0.8273    4.1976    0.1500    0.2180    1.4189    0.0345    1.1230    0.0698
-#&gt; 406:    92.6351   -5.8768   -2.3503   -4.1164   -0.9482    0.1528    0.1184    3.4953    0.8274    4.1979    0.1500    0.2176    1.4184    0.0345    1.1227    0.0698
-#&gt; 407:    92.6346   -5.8772   -2.3505   -4.1165   -0.9481    0.1527    0.1187    3.4965    0.8275    4.1999    0.1500    0.2173    1.4182    0.0344    1.1222    0.0698
-#&gt; 408:    92.6344   -5.8786   -2.3508   -4.1167   -0.9482    0.1528    0.1190    3.5025    0.8276    4.2020    0.1500    0.2171    1.4178    0.0344    1.1215    0.0699
-#&gt; 409:    92.6342   -5.8806   -2.3511   -4.1168   -0.9484    0.1529    0.1193    3.5134    0.8277    4.2037    0.1500    0.2167    1.4176    0.0344    1.1212    0.0699
-#&gt; 410:    92.6341   -5.8826   -2.3514   -4.1170   -0.9486    0.1531    0.1193    3.5229    0.8279    4.2061    0.1500    0.2163    1.4175    0.0344    1.1212    0.0699
-#&gt; 411:    92.6339   -5.8840   -2.3517   -4.1172   -0.9488    0.1532    0.1192    3.5280    0.8280    4.2087    0.1499    0.2159    1.4175    0.0345    1.1208    0.0699
-#&gt; 412:    92.6338   -5.8850   -2.3520   -4.1175   -0.9489    0.1534    0.1193    3.5311    0.8280    4.2121    0.1497    0.2155    1.4177    0.0345    1.1204    0.0699
-#&gt; 413:    92.6343   -5.8859   -2.3523   -4.1177   -0.9491    0.1536    0.1191    3.5337    0.8282    4.2156    0.1497    0.2151    1.4176    0.0345    1.1198    0.0699
-#&gt; 414:    92.6350   -5.8861   -2.3526   -4.1184   -0.9491    0.1540    0.1191    3.5350    0.8283    4.2209    0.1496    0.2147    1.4177    0.0345    1.1196    0.0699
-#&gt; 415:    92.6354   -5.8866   -2.3528   -4.1191   -0.9492    0.1543    0.1191    3.5373    0.8284    4.2258    0.1496    0.2142    1.4179    0.0345    1.1191    0.0699
-#&gt; 416:    92.6360   -5.8873   -2.3531   -4.1201   -0.9493    0.1548    0.1193    3.5431    0.8286    4.2328    0.1495    0.2137    1.4178    0.0345    1.1187    0.0699
-#&gt; 417:    92.6361   -5.8878   -2.3533   -4.1213   -0.9494    0.1551    0.1192    3.5465    0.8288    4.2415    0.1494    0.2131    1.4182    0.0345    1.1189    0.0699
-#&gt; 418:    92.6366   -5.8883   -2.3535   -4.1221   -0.9495    0.1555    0.1194    3.5499    0.8291    4.2477    0.1493    0.2127    1.4180    0.0345    1.1184    0.0699
-#&gt; 419:    92.6367   -5.8885   -2.3536   -4.1236   -0.9495    0.1560    0.1195    3.5517    0.8292    4.2588    0.1492    0.2123    1.4179    0.0345    1.1180    0.0700
-#&gt; 420:    92.6371   -5.8874   -2.3536   -4.1249   -0.9495    0.1564    0.1197    3.5474    0.8293    4.2666    0.1491    0.2118    1.4181    0.0345    1.1182    0.0700
-#&gt; 421:    92.6374   -5.8860   -2.3537   -4.1263   -0.9494    0.1569    0.1197    3.5416    0.8292    4.2759    0.1492    0.2114    1.4184    0.0345    1.1188    0.0699
-#&gt; 422:    92.6377   -5.8850   -2.3538   -4.1279   -0.9493    0.1572    0.1197    3.5365    0.8292    4.2865    0.1491    0.2110    1.4185    0.0345    1.1188    0.0700
-#&gt; 423:    92.6380   -5.8844   -2.3540   -4.1299   -0.9494    0.1576    0.1196    3.5323    0.8290    4.2999    0.1491    0.2106    1.4186    0.0345    1.1192    0.0699
-#&gt; 424:    92.6382   -5.8842   -2.3541   -4.1312   -0.9495    0.1581    0.1198    3.5309    0.8290    4.3092    0.1491    0.2103    1.4184    0.0345    1.1197    0.0699
-#&gt; 425:    92.6382   -5.8838   -2.3543   -4.1320   -0.9495    0.1584    0.1197    3.5281    0.8289    4.3140    0.1491    0.2099    1.4185    0.0346    1.1196    0.0699
-#&gt; 426:    92.6380   -5.8829   -2.3545   -4.1327   -0.9494    0.1587    0.1196    3.5234    0.8293    4.3183    0.1491    0.2096    1.4182    0.0346    1.1194    0.0699
-#&gt; 427:    92.6375   -5.8823   -2.3548   -4.1335   -0.9494    0.1589    0.1197    3.5189    0.8295    4.3233    0.1492    0.2092    1.4180    0.0346    1.1196    0.0699
-#&gt; 428:    92.6370   -5.8813   -2.3552   -4.1343   -0.9494    0.1592    0.1199    3.5140    0.8295    4.3286    0.1491    0.2088    1.4182    0.0346    1.1198    0.0699
-#&gt; 429:    92.6368   -5.8802   -2.3556   -4.1356   -0.9495    0.1597    0.1202    3.5093    0.8296    4.3372    0.1491    0.2086    1.4182    0.0346    1.1208    0.0699
-#&gt; 430:    92.6370   -5.8794   -2.3560   -4.1366   -0.9496    0.1602    0.1201    3.5058    0.8297    4.3439    0.1492    0.2084    1.4183    0.0346    1.1216    0.0698
-#&gt; 431:    92.6371   -5.8792   -2.3564   -4.1372   -0.9497    0.1606    0.1201    3.5029    0.8298    4.3473    0.1493    0.2082    1.4182    0.0346    1.1215    0.0698
-#&gt; 432:    92.6371   -5.8793   -2.3567   -4.1377   -0.9499    0.1609    0.1201    3.5008    0.8297    4.3499    0.1494    0.2080    1.4180    0.0346    1.1218    0.0698
-#&gt; 433:    92.6370   -5.8799   -2.3570   -4.1387   -0.9501    0.1612    0.1201    3.5014    0.8298    4.3560    0.1495    0.2078    1.4180    0.0346    1.1218    0.0699
-#&gt; 434:    92.6371   -5.8790   -2.3573   -4.1398   -0.9501    0.1615    0.1200    3.4982    0.8300    4.3624    0.1496    0.2076    1.4179    0.0346    1.1213    0.0699
-#&gt; 435:    92.6368   -5.8789   -2.3576   -4.1409   -0.9501    0.1619    0.1199    3.4979    0.8302    4.3697    0.1496    0.2074    1.4176    0.0346    1.1205    0.0699
-#&gt; 436:    92.6365   -5.8792   -2.3579   -4.1424   -0.9500    0.1623    0.1197    3.4987    0.8304    4.3798    0.1497    0.2073    1.4173    0.0346    1.1198    0.0699
-#&gt; 437:    92.6364   -5.8798   -2.3582   -4.1439   -0.9500    0.1627    0.1195    3.5017    0.8307    4.3905    0.1497    0.2071    1.4172    0.0346    1.1191    0.0700
-#&gt; 438:    92.6362   -5.8803   -2.3585   -4.1450   -0.9499    0.1631    0.1193    3.5053    0.8309    4.3973    0.1497    0.2070    1.4172    0.0346    1.1186    0.0700
-#&gt; 439:    92.6361   -5.8811   -2.3588   -4.1463   -0.9498    0.1634    0.1190    3.5101    0.8312    4.4052    0.1496    0.2069    1.4172    0.0346    1.1188    0.0700
-#&gt; 440:    92.6360   -5.8816   -2.3591   -4.1477   -0.9498    0.1637    0.1187    3.5127    0.8315    4.4145    0.1495    0.2068    1.4172    0.0346    1.1189    0.0700
-#&gt; 441:    92.6357   -5.8816   -2.3594   -4.1492   -0.9499    0.1640    0.1185    3.5136    0.8319    4.4252    0.1494    0.2069    1.4175    0.0346    1.1191    0.0700
-#&gt; 442:    92.6356   -5.8819   -2.3596   -4.1501   -0.9500    0.1642    0.1181    3.5151    0.8323    4.4310    0.1494    0.2070    1.4176    0.0346    1.1193    0.0700
-#&gt; 443:    92.6356   -5.8825   -2.3598   -4.1512   -0.9501    0.1643    0.1180    3.5178    0.8324    4.4379    0.1493    0.2071    1.4179    0.0346    1.1196    0.0700
-#&gt; 444:    92.6352   -5.8827   -2.3602   -4.1525   -0.9502    0.1644    0.1180    3.5169    0.8327    4.4458    0.1493    0.2073    1.4178    0.0346    1.1198    0.0700
-#&gt; 445:    92.6348   -5.8828   -2.3605   -4.1534   -0.9502    0.1643    0.1180    3.5178    0.8329    4.4505    0.1493    0.2074    1.4178    0.0346    1.1202    0.0700
-#&gt; 446:    92.6342   -5.8830   -2.3609   -4.1541   -0.9503    0.1643    0.1183    3.5182    0.8331    4.4539    0.1494    0.2077    1.4176    0.0346    1.1199    0.0700
-#&gt; 447:    92.6334   -5.8832   -2.3613   -4.1548   -0.9503    0.1643    0.1188    3.5188    0.8333    4.4571    0.1494    0.2079    1.4172    0.0346    1.1198    0.0700
-#&gt; 448:    92.6331   -5.8833   -2.3616   -4.1557   -0.9503    0.1643    0.1190    3.5190    0.8335    4.4613    0.1494    0.2080    1.4170    0.0346    1.1198    0.0700
-#&gt; 449:    92.6327   -5.8835   -2.3619   -4.1563   -0.9504    0.1641    0.1192    3.5191    0.8335    4.4636    0.1493    0.2081    1.4172    0.0346    1.1196    0.0700
-#&gt; 450:    92.6322   -5.8831   -2.3620   -4.1566   -0.9505    0.1639    0.1194    3.5152    0.8340    4.4647    0.1492    0.2083    1.4172    0.0346    1.1189    0.0700
-#&gt; 451:    92.6315   -5.8835   -2.3622   -4.1569   -0.9505    0.1635    0.1194    3.5192    0.8343    4.4648    0.1492    0.2084    1.4169    0.0346    1.1187    0.0700
-#&gt; 452:    92.6312   -5.8834   -2.3625   -4.1572   -0.9506    0.1632    0.1193    3.5173    0.8345    4.4654    0.1492    0.2086    1.4166    0.0346    1.1183    0.0700
-#&gt; 453:    92.6309   -5.8838   -2.3628   -4.1574   -0.9506    0.1629    0.1193    3.5175    0.8348    4.4660    0.1493    0.2087    1.4166    0.0346    1.1180    0.0700
-#&gt; 454:    92.6307   -5.8832   -2.3629   -4.1574   -0.9507    0.1625    0.1193    3.5128    0.8354    4.4658    0.1493    0.2087    1.4164    0.0346    1.1176    0.0700
-#&gt; 455:    92.6305   -5.8821   -2.3632   -4.1579   -0.9508    0.1624    0.1192    3.5071    0.8360    4.4678    0.1494    0.2089    1.4164    0.0346    1.1171    0.0701
-#&gt; 456:    92.6307   -5.8811   -2.3634   -4.1589   -0.9509    0.1623    0.1190    3.5014    0.8364    4.4730    0.1494    0.2088    1.4168    0.0346    1.1168    0.0701
-#&gt; 457:    92.6307   -5.8808   -2.3636   -4.1597   -0.9509    0.1621    0.1188    3.4980    0.8368    4.4772    0.1494    0.2089    1.4168    0.0347    1.1166    0.0701
-#&gt; 458:    92.6308   -5.8813   -2.3638   -4.1607   -0.9510    0.1621    0.1185    3.4994    0.8369    4.4823    0.1494    0.2088    1.4168    0.0347    1.1161    0.0701
-#&gt; 459:    92.6308   -5.8819   -2.3639   -4.1615   -0.9511    0.1620    0.1184    3.5008    0.8371    4.4861    0.1494    0.2086    1.4167    0.0347    1.1155    0.0701
-#&gt; 460:    92.6309   -5.8824   -2.3642   -4.1621   -0.9511    0.1621    0.1182    3.5024    0.8374    4.4886    0.1493    0.2085    1.4164    0.0347    1.1148    0.0702
-#&gt; 461:    92.6309   -5.8821   -2.3647   -4.1631   -0.9511    0.1621    0.1181    3.5000    0.8378    4.4937    0.1493    0.2084    1.4160    0.0347    1.1141    0.0702
-#&gt; 462:    92.6309   -5.8825   -2.3651   -4.1638   -0.9511    0.1623    0.1180    3.5006    0.8381    4.4975    0.1492    0.2082    1.4156    0.0348    1.1133    0.0702
-#&gt; 463:    92.6307   -5.8824   -2.3656   -4.1654   -0.9510    0.1624    0.1179    3.5000    0.8382    4.5074    0.1491    0.2081    1.4154    0.0348    1.1124    0.0702
-#&gt; 464:    92.6305   -5.8825   -2.3660   -4.1668   -0.9510    0.1625    0.1178    3.5001    0.8384    4.5171    0.1491    0.2080    1.4149    0.0348    1.1115    0.0703
-#&gt; 465:    92.6302   -5.8828   -2.3664   -4.1681   -0.9511    0.1626    0.1179    3.5012    0.8386    4.5247    0.1490    0.2079    1.4151    0.0348    1.1107    0.0703
-#&gt; 466:    92.6300   -5.8827   -2.3668   -4.1697   -0.9511    0.1626    0.1179    3.5005    0.8390    4.5370    0.1490    0.2079    1.4148    0.0349    1.1098    0.0704
-#&gt; 467:    92.6301   -5.8828   -2.3671   -4.1721   -0.9512    0.1628    0.1180    3.4991    0.8393    4.5562    0.1490    0.2078    1.4148    0.0349    1.1092    0.0704
-#&gt; 468:    92.6303   -5.8833   -2.3675   -4.1745   -0.9513    0.1630    0.1181    3.4996    0.8397    4.5756    0.1489    0.2078    1.4148    0.0349    1.1086    0.0704
-#&gt; 469:    92.6304   -5.8835   -2.3680   -4.1759   -0.9513    0.1630    0.1181    3.4991    0.8401    4.5829    0.1490    0.2080    1.4145    0.0349    1.1082    0.0704
-#&gt; 470:    92.6304   -5.8839   -2.3685   -4.1772   -0.9512    0.1630    0.1183    3.4993    0.8405    4.5904    0.1490    0.2081    1.4142    0.0349    1.1079    0.0704
-#&gt; 471:    92.6304   -5.8838   -2.3690   -4.1786   -0.9511    0.1631    0.1182    3.4992    0.8408    4.5981    0.1489    0.2082    1.4143    0.0350    1.1075    0.0704
-#&gt; 472:    92.6301   -5.8839   -2.3695   -4.1800   -0.9511    0.1631    0.1182    3.5005    0.8413    4.6063    0.1488    0.2083    1.4143    0.0350    1.1072    0.0704
-#&gt; 473:    92.6296   -5.8841   -2.3699   -4.1811   -0.9510    0.1630    0.1182    3.5019    0.8417    4.6119    0.1487    0.2085    1.4142    0.0350    1.1065    0.0704
-#&gt; 474:    92.6293   -5.8843   -2.3704   -4.1823   -0.9510    0.1629    0.1184    3.5038    0.8422    4.6182    0.1487    0.2087    1.4145    0.0350    1.1060    0.0704
-#&gt; 475:    92.6293   -5.8851   -2.3709   -4.1839   -0.9509    0.1628    0.1185    3.5084    0.8426    4.6277    0.1487    0.2089    1.4142    0.0351    1.1057    0.0704
-#&gt; 476:    92.6293   -5.8854   -2.3713   -4.1847   -0.9509    0.1627    0.1185    3.5137    0.8430    4.6318    0.1486    0.2092    1.4139    0.0351    1.1057    0.0704
-#&gt; 477:    92.6292   -5.8858   -2.3718   -4.1859   -0.9508    0.1627    0.1183    3.5201    0.8430    4.6397    0.1485    0.2095    1.4139    0.0351    1.1060    0.0704
-#&gt; 478:    92.6291   -5.8871   -2.3722   -4.1867   -0.9508    0.1625    0.1181    3.5291    0.8432    4.6449    0.1483    0.2098    1.4140    0.0351    1.1058    0.0704
-#&gt; 479:    92.6293   -5.8891   -2.3726   -4.1873   -0.9509    0.1623    0.1178    3.5422    0.8435    4.6486    0.1482    0.2100    1.4139    0.0352    1.1056    0.0704
-#&gt; 480:    92.6294   -5.8910   -2.3730   -4.1881   -0.9509    0.1622    0.1175    3.5568    0.8437    4.6535    0.1482    0.2102    1.4140    0.0352    1.1053    0.0705
-#&gt; 481:    92.6297   -5.8919   -2.3734   -4.1888   -0.9509    0.1621    0.1174    3.5650    0.8440    4.6572    0.1482    0.2104    1.4138    0.0353    1.1051    0.0705
-#&gt; 482:    92.6293   -5.8929   -2.3737   -4.1894   -0.9509    0.1619    0.1173    3.5745    0.8444    4.6620    0.1482    0.2107    1.4134    0.0353    1.1047    0.0705
-#&gt; 483:    92.6284   -5.8939   -2.3741   -4.1901   -0.9508    0.1616    0.1176    3.5832    0.8446    4.6672    0.1482    0.2109    1.4131    0.0353    1.1044    0.0705
-#&gt; 484:    92.6276   -5.8943   -2.3744   -4.1904   -0.9507    0.1615    0.1179    3.5877    0.8447    4.6692    0.1483    0.2113    1.4128    0.0353    1.1041    0.0705
-#&gt; 485:    92.6266   -5.8947   -2.3746   -4.1912   -0.9507    0.1616    0.1182    3.5903    0.8448    4.6751    0.1483    0.2115    1.4126    0.0354    1.1042    0.0705
-#&gt; 486:    92.6258   -5.8952   -2.3749   -4.1918   -0.9508    0.1615    0.1185    3.5929    0.8450    4.6799    0.1485    0.2115    1.4125    0.0354    1.1045    0.0704
-#&gt; 487:    92.6250   -5.8956   -2.3750   -4.1923   -0.9509    0.1614    0.1189    3.5922    0.8452    4.6835    0.1486    0.2115    1.4122    0.0354    1.1050    0.0704
-#&gt; 488:    92.6242   -5.8956   -2.3752   -4.1927   -0.9510    0.1613    0.1191    3.5898    0.8453    4.6866    0.1487    0.2115    1.4119    0.0354    1.1051    0.0704
-#&gt; 489:    92.6238   -5.8954   -2.3753   -4.1932   -0.9511    0.1611    0.1190    3.5871    0.8454    4.6905    0.1487    0.2115    1.4118    0.0354    1.1057    0.0704
-#&gt; 490:    92.6237   -5.8951   -2.3754   -4.1936   -0.9511    0.1611    0.1188    3.5839    0.8454    4.6945    0.1487    0.2114    1.4117    0.0354    1.1064    0.0703
-#&gt; 491:    92.6235   -5.8942   -2.3755   -4.1941   -0.9511    0.1610    0.1187    3.5790    0.8455    4.6981    0.1488    0.2115    1.4118    0.0354    1.1068    0.0703
-#&gt; 492:    92.6234   -5.8938   -2.3755   -4.1952   -0.9512    0.1609    0.1186    3.5760    0.8454    4.7074    0.1488    0.2115    1.4119    0.0354    1.1074    0.0703
-#&gt; 493:    92.6236   -5.8938   -2.3755   -4.1958   -0.9512    0.1608    0.1186    3.5747    0.8454    4.7121    0.1488    0.2114    1.4120    0.0354    1.1078    0.0702
-#&gt; 494:    92.6239   -5.8945   -2.3756   -4.1964   -0.9513    0.1607    0.1186    3.5772    0.8455    4.7167    0.1488    0.2115    1.4120    0.0354    1.1082    0.0702
-#&gt; 495:    92.6242   -5.8950   -2.3756   -4.1971   -0.9514    0.1605    0.1187    3.5798    0.8454    4.7227    0.1489    0.2117    1.4122    0.0354    1.1084    0.0702
-#&gt; 496:    92.6242   -5.8962   -2.3757   -4.1978   -0.9514    0.1603    0.1189    3.5870    0.8455    4.7283    0.1489    0.2119    1.4121    0.0354    1.1090    0.0702
-#&gt; 497:    92.6241   -5.8972   -2.3757   -4.1981   -0.9514    0.1602    0.1191    3.5934    0.8454    4.7298    0.1488    0.2120    1.4123    0.0354    1.1096    0.0701
-#&gt; 498:    92.6244   -5.8973   -2.3758   -4.1981   -0.9514    0.1601    0.1190    3.5947    0.8454    4.7296    0.1488    0.2121    1.4123    0.0354    1.1101    0.0701
-#&gt; 499:    92.6244   -5.8968   -2.3759   -4.1980   -0.9514    0.1600    0.1188    3.5935    0.8453    4.7290    0.1488    0.2124    1.4123    0.0354    1.1108    0.0701
-#&gt; 500:    92.6245   -5.8959   -2.3759   -4.1978   -0.9513    0.1597    0.1188    3.5912    0.8452    4.7282    0.1488    0.2126    1.4123    0.0354    1.1111    0.0701</div><div class='output co'>#&gt; <span class='message'>Calculating covariance matrix</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='error'>Error in configsaem(model = model, data = dat, inits = inits, mcmc = .mcmc,     ODEopt = .ODEopt, seed = .seed, distribution = .dist, DEBUG = .DEBUG,     addProp = .addProp, tol = .tol, itmax = .itmax, type = .type,     powRange = .powRange, lambdaRange = .lambdaRange): covariate(s) not found: f_parent_to_A1</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 0.843 0.028 0.871</span></div><div class='input'><span class='va'>f_nlmixr_dfop_sfo_focei_obs_tc</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlmixr/man/nlmixr.html'>nlmixr</a></span><span class='op'>(</span><span class='va'>f_mmkin_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, est <span class='op'>=</span> <span class='st'>"focei"</span>,
   error_model <span class='op'>=</span> <span class='st'>"obs_tc"</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; [1] "CMT"
-#&gt; <span style='font-weight: bold;'>Key:</span> U: Unscaled Parameters; X: Back-transformed parameters; G: Gill difference gradient approximation
-#&gt; F: Forward difference gradient approximation
-#&gt; C: Central difference gradient approximation
-#&gt; M: Mixed forward and central difference gradient approximation
-#&gt; Unscaled parameters for Omegas=chol(solve(omega));
-#&gt; Diagonals are transformed, as specified by foceiControl(diagXform=)
-#&gt; |-----+---------------+-----------+-----------+-----------+-----------|
-#&gt; |    #| Objective Fun |  parent_0 |  log_k_A1 |f_parent_qlogis |    log_k1 |
-#&gt; |.....................|    log_k2 |  g_qlogis |sigma_low_parent |rsd_high_parent |
-#&gt; |.....................|sigma_low_A1 |rsd_high_A1 |        o1 |        o2 |
-#&gt; |.....................|        o3 |        o4 |        o5 |        o6 |
-#&gt; |<span style='font-weight: bold;'>    1</span>|     495.80376 |     1.000 |    -1.000 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9885 |   -0.8832 |   -0.8755 |   -0.8915 |
-#&gt; |.....................|   -0.8755 |   -0.8915 |   -0.8776 |   -0.8741 |
-#&gt; |.....................|   -0.8681 |   -0.8727 |   -0.8749 |   -0.8675 |
-#&gt; |    U|     495.80376 |     91.48 |    -5.189 |   -0.8875 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.8280 |   0.05769 |    0.7296 |    0.8969 |
-#&gt; |.....................|     1.185 |    0.9628 |    0.8582 |     1.216 |
-#&gt; |    X|<span style='font-weight: bold;'>     495.80376</span> |     91.48 |  0.005580 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009750 |    0.6128 |    0.8280 |   0.05769 |
-#&gt; |.....................|    0.8280 |   0.05769 |    0.7296 |    0.8969 |
-#&gt; |.....................|     1.185 |    0.9628 |    0.8582 |     1.216 |
-#&gt; |    G|    Gill Diff. |     40.10 |     2.344 |  -0.09792 |   0.01304 |
-#&gt; |.....................|   -0.4854 |    0.6353 |    -23.92 |    -17.76 |
-#&gt; |.....................|    -5.723 |    -2.232 |     1.261 |     9.993 |
-#&gt; |.....................|    -12.68 |   -0.7774 |     8.106 |    -12.55 |
-#&gt; |<span style='font-weight: bold;'>    2</span>|     3318.3701 |    0.2710 |    -1.043 |   -0.9092 |   -0.9382 |
-#&gt; |.....................|   -0.9796 |   -0.8947 |   -0.4406 |   -0.5686 |
-#&gt; |.....................|   -0.7715 |   -0.8509 |   -0.9005 |    -1.056 |
-#&gt; |.....................|   -0.6376 |   -0.8586 |    -1.022 |   -0.6393 |
-#&gt; |    U|     3318.3701 |     24.79 |    -5.231 |   -0.8859 |    -2.190 |
-#&gt; |.....................|    -4.622 |    0.4536 |     1.008 |   0.06701 |
-#&gt; |.....................|    0.8711 |   0.05887 |    0.7129 |    0.7340 |
-#&gt; |.....................|     1.458 |    0.9764 |    0.7317 |     1.493 |
-#&gt; |    X|<span style='font-weight: bold;'>     3318.3701</span> |     24.79 |  0.005347 |    0.2920 |    0.1119 |
-#&gt; |.....................|  0.009837 |    0.6115 |     1.008 |   0.06701 |
-#&gt; |.....................|    0.8711 |   0.05887 |    0.7129 |    0.7340 |
-#&gt; |.....................|     1.458 |    0.9764 |    0.7317 |     1.493 |
-#&gt; |<span style='font-weight: bold;'>    3</span>|     512.37365 |    0.9271 |    -1.004 |   -0.9108 |   -0.9380 |
-#&gt; |.....................|   -0.9876 |   -0.8843 |   -0.8320 |   -0.8592 |
-#&gt; |.....................|   -0.8651 |   -0.8874 |   -0.8799 |   -0.8923 |
-#&gt; |.....................|   -0.8451 |   -0.8713 |   -0.8896 |   -0.8447 |
-#&gt; |    U|     512.37365 |     84.82 |    -5.193 |   -0.8873 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4584 |    0.8460 |   0.05863 |
-#&gt; |.....................|    0.8323 |   0.05781 |    0.7279 |    0.8806 |
-#&gt; |.....................|     1.212 |    0.9641 |    0.8455 |     1.244 |
-#&gt; |    X|<span style='font-weight: bold;'>     512.37365</span> |     84.82 |  0.005556 |    0.2917 |    0.1119 |
-#&gt; |.....................|  0.009759 |    0.6126 |    0.8460 |   0.05863 |
-#&gt; |.....................|    0.8323 |   0.05781 |    0.7279 |    0.8806 |
-#&gt; |.....................|     1.212 |    0.9641 |    0.8455 |     1.244 |
-#&gt; |<span style='font-weight: bold;'>    4</span>|     495.44913 |    0.9909 |    -1.001 |   -0.9110 |   -0.9380 |
-#&gt; |.....................|   -0.9883 |   -0.8833 |   -0.8701 |   -0.8874 |
-#&gt; |.....................|   -0.8742 |   -0.8910 |   -0.8778 |   -0.8764 |
-#&gt; |.....................|   -0.8653 |   -0.8726 |   -0.8767 |   -0.8647 |
-#&gt; |    U|     495.44913 |     90.65 |    -5.189 |   -0.8874 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4589 |    0.8303 |   0.05781 |
-#&gt; |.....................|    0.8286 |   0.05771 |    0.7294 |    0.8949 |
-#&gt; |.....................|     1.189 |    0.9629 |    0.8566 |     1.219 |
-#&gt; |    X|<span style='font-weight: bold;'>     495.44913</span> |     90.65 |  0.005577 |    0.2916 |    0.1119 |
-#&gt; |.....................|  0.009751 |    0.6127 |    0.8303 |   0.05781 |
-#&gt; |.....................|    0.8286 |   0.05771 |    0.7294 |    0.8949 |
-#&gt; |.....................|     1.189 |    0.9629 |    0.8566 |     1.219 |
-#&gt; |    F| Forward Diff. |    -32.24 |     2.221 |   -0.3999 |    0.1183 |
-#&gt; |.....................|   -0.4367 |    0.6696 |    -24.35 |    -18.50 |
-#&gt; |.....................|    -5.733 |    -2.007 |     1.154 |     9.098 |
-#&gt; |.....................|    -12.48 |   -0.2426 |     8.051 |    -12.28 |
-#&gt; |<span style='font-weight: bold;'>    5</span>|     495.09570 |    0.9990 |    -1.001 |   -0.9109 |   -0.9380 |
-#&gt; |.....................|   -0.9882 |   -0.8835 |   -0.8640 |   -0.8828 |
-#&gt; |.....................|   -0.8728 |   -0.8905 |   -0.8781 |   -0.8786 |
-#&gt; |.....................|   -0.8621 |   -0.8725 |   -0.8788 |   -0.8616 |
-#&gt; |    U|      495.0957 |     91.39 |    -5.190 |   -0.8874 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4588 |    0.8328 |   0.05794 |
-#&gt; |.....................|    0.8291 |   0.05772 |    0.7292 |    0.8928 |
-#&gt; |.....................|     1.192 |    0.9630 |    0.8549 |     1.223 |
-#&gt; |    X|<span style='font-weight: bold;'>      495.0957</span> |     91.39 |  0.005574 |    0.2917 |    0.1119 |
-#&gt; |.....................|  0.009752 |    0.6127 |    0.8328 |   0.05794 |
-#&gt; |.....................|    0.8291 |   0.05772 |    0.7292 |    0.8928 |
-#&gt; |.....................|     1.192 |    0.9630 |    0.8549 |     1.223 |
-#&gt; |    F| Forward Diff. |     32.16 |     2.311 |   -0.1335 |   0.03619 |
-#&gt; |.....................|   -0.4432 |    0.6445 |    -23.23 |    -17.46 |
-#&gt; |.....................|    -5.567 |    -2.162 |     1.281 |     9.656 |
-#&gt; |.....................|    -12.09 |   -0.7018 |     7.779 |    -12.29 |
-#&gt; |<span style='font-weight: bold;'>    6</span>|     494.75975 |    0.9908 |    -1.002 |   -0.9109 |   -0.9380 |
-#&gt; |.....................|   -0.9881 |   -0.8836 |   -0.8581 |   -0.8783 |
-#&gt; |.....................|   -0.8714 |   -0.8899 |   -0.8785 |   -0.8811 |
-#&gt; |.....................|   -0.8590 |   -0.8723 |   -0.8807 |   -0.8584 |
-#&gt; |    U|     494.75975 |     90.64 |    -5.190 |   -0.8873 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4587 |    0.8352 |   0.05807 |
-#&gt; |.....................|    0.8297 |   0.05774 |    0.7290 |    0.8906 |
-#&gt; |.....................|     1.196 |    0.9632 |    0.8532 |     1.227 |
-#&gt; |    X|<span style='font-weight: bold;'>     494.75975</span> |     90.64 |  0.005570 |    0.2917 |    0.1119 |
-#&gt; |.....................|  0.009754 |    0.6127 |    0.8352 |   0.05807 |
-#&gt; |.....................|    0.8297 |   0.05774 |    0.7290 |    0.8906 |
-#&gt; |.....................|     1.196 |    0.9632 |    0.8532 |     1.227 |
-#&gt; |    F| Forward Diff. |    -33.18 |     2.192 |   -0.4095 |    0.1210 |
-#&gt; |.....................|   -0.4089 |    0.6743 |    -23.19 |    -17.83 |
-#&gt; |.....................|    -5.624 |    -1.860 |     1.146 |     8.868 |
-#&gt; |.....................|    -11.42 |  -0.05808 |     7.519 |    -12.11 |
-#&gt; |<span style='font-weight: bold;'>    7</span>|     494.42957 |    0.9992 |    -1.002 |   -0.9108 |   -0.9380 |
-#&gt; |.....................|   -0.9880 |   -0.8838 |   -0.8522 |   -0.8738 |
-#&gt; |.....................|   -0.8699 |   -0.8894 |   -0.8788 |   -0.8834 |
-#&gt; |.....................|   -0.8561 |   -0.8723 |   -0.8827 |   -0.8554 |
-#&gt; |    U|     494.42957 |     91.41 |    -5.191 |   -0.8872 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4586 |    0.8377 |   0.05820 |
-#&gt; |.....................|    0.8303 |   0.05775 |    0.7287 |    0.8886 |
-#&gt; |.....................|     1.199 |    0.9632 |    0.8515 |     1.231 |
-#&gt; |    X|<span style='font-weight: bold;'>     494.42957</span> |     91.41 |  0.005567 |    0.2917 |    0.1119 |
-#&gt; |.....................|  0.009755 |    0.6127 |    0.8377 |   0.05820 |
-#&gt; |.....................|    0.8303 |   0.05775 |    0.7287 |    0.8886 |
-#&gt; |.....................|     1.199 |    0.9632 |    0.8515 |     1.231 |
-#&gt; |    F| Forward Diff. |     33.60 |     2.291 |   -0.1177 |   0.03548 |
-#&gt; |.....................|   -0.4327 |    0.6500 |    -23.13 |    -16.67 |
-#&gt; |.....................|    -5.444 |    -2.054 |     1.165 |     9.367 |
-#&gt; |.....................|    -12.23 |    0.1305 |     7.522 |    -12.12 |
-#&gt; |<span style='font-weight: bold;'>    8</span>|     494.10805 |    0.9907 |    -1.003 |   -0.9107 |   -0.9380 |
-#&gt; |.....................|   -0.9879 |   -0.8840 |   -0.8463 |   -0.8696 |
-#&gt; |.....................|   -0.8686 |   -0.8889 |   -0.8791 |   -0.8857 |
-#&gt; |.....................|   -0.8530 |   -0.8723 |   -0.8846 |   -0.8523 |
-#&gt; |    U|     494.10805 |     90.63 |    -5.191 |   -0.8872 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4586 |    0.8401 |   0.05833 |
-#&gt; |.....................|    0.8309 |   0.05777 |    0.7285 |    0.8865 |
-#&gt; |.....................|     1.203 |    0.9632 |    0.8499 |     1.234 |
-#&gt; |    X|<span style='font-weight: bold;'>     494.10805</span> |     90.63 |  0.005564 |    0.2917 |    0.1119 |
-#&gt; |.....................|  0.009756 |    0.6127 |    0.8401 |   0.05833 |
-#&gt; |.....................|    0.8309 |   0.05777 |    0.7285 |    0.8865 |
-#&gt; |.....................|     1.203 |    0.9632 |    0.8499 |     1.234 |
-#&gt; |    F| Forward Diff. |    -33.55 |     2.169 |   -0.4095 |    0.1317 |
-#&gt; |.....................|   -0.3875 |    0.6809 |    -22.57 |    -17.16 |
-#&gt; |.....................|    -5.560 |    -1.906 |     1.113 |     8.554 |
-#&gt; |.....................|    -12.00 |   -0.1191 |     7.606 |    -11.94 |
-#&gt; |<span style='font-weight: bold;'>    9</span>|     493.79074 |    0.9992 |    -1.003 |   -0.9106 |   -0.9381 |
-#&gt; |.....................|   -0.9878 |   -0.8841 |   -0.8406 |   -0.8652 |
-#&gt; |.....................|   -0.8671 |   -0.8884 |   -0.8793 |   -0.8879 |
-#&gt; |.....................|   -0.8500 |   -0.8723 |   -0.8865 |   -0.8493 |
-#&gt; |    U|     493.79074 |     91.41 |    -5.192 |   -0.8871 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4585 |    0.8425 |   0.05845 |
-#&gt; |.....................|    0.8315 |   0.05778 |    0.7283 |    0.8845 |
-#&gt; |.....................|     1.207 |    0.9632 |    0.8482 |     1.238 |
-#&gt; |    X|<span style='font-weight: bold;'>     493.79074</span> |     91.41 |  0.005561 |    0.2917 |    0.1119 |
-#&gt; |.....................|  0.009757 |    0.6127 |    0.8425 |   0.05845 |
-#&gt; |.....................|    0.8315 |   0.05778 |    0.7283 |    0.8845 |
-#&gt; |.....................|     1.207 |    0.9632 |    0.8482 |     1.238 |
-#&gt; |    F| Forward Diff. |     33.91 |     2.267 |   -0.1078 |   0.03893 |
-#&gt; |.....................|   -0.4090 |    0.6560 |    -22.34 |    -15.94 |
-#&gt; |.....................|    -5.274 |    -2.001 |     1.140 |     9.131 |
-#&gt; |.....................|    -12.00 |   -0.1724 |     7.294 |    -11.95 |
-#&gt; |<span style='font-weight: bold;'>   10</span>|     493.48645 |    0.9905 |    -1.004 |   -0.9106 |   -0.9381 |
-#&gt; |.....................|   -0.9877 |   -0.8843 |   -0.8348 |   -0.8611 |
-#&gt; |.....................|   -0.8658 |   -0.8879 |   -0.8796 |   -0.8903 |
-#&gt; |.....................|   -0.8469 |   -0.8723 |   -0.8884 |   -0.8462 |
-#&gt; |    U|     493.48645 |     90.62 |    -5.193 |   -0.8871 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4584 |    0.8449 |   0.05857 |
-#&gt; |.....................|    0.8320 |   0.05780 |    0.7281 |    0.8824 |
-#&gt; |.....................|     1.210 |    0.9632 |    0.8466 |     1.242 |
-#&gt; |    X|<span style='font-weight: bold;'>     493.48645</span> |     90.62 |  0.005558 |    0.2917 |    0.1119 |
-#&gt; |.....................|  0.009758 |    0.6126 |    0.8449 |   0.05857 |
-#&gt; |.....................|    0.8320 |   0.05780 |    0.7281 |    0.8824 |
-#&gt; |.....................|     1.210 |    0.9632 |    0.8466 |     1.242 |
-#&gt; |    F| Forward Diff. |    -34.40 |     2.145 |   -0.4154 |    0.1312 |
-#&gt; |.....................|   -0.3648 |    0.6865 |    -22.08 |    -16.36 |
-#&gt; |.....................|    -5.345 |    -1.756 |     1.231 |     8.303 |
-#&gt; |.....................|    -11.76 |  -0.07864 |     7.355 |    -11.77 |
-#&gt; |<span style='font-weight: bold;'>   11</span>|     493.18511 |    0.9993 |    -1.004 |   -0.9105 |   -0.9381 |
-#&gt; |.....................|   -0.9876 |   -0.8845 |   -0.8292 |   -0.8570 |
-#&gt; |.....................|   -0.8644 |   -0.8875 |   -0.8799 |   -0.8924 |
-#&gt; |.....................|   -0.8439 |   -0.8722 |   -0.8902 |   -0.8432 |
-#&gt; |    U|     493.18511 |     91.42 |    -5.193 |   -0.8870 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4583 |    0.8472 |   0.05869 |
-#&gt; |.....................|    0.8326 |   0.05781 |    0.7279 |    0.8805 |
-#&gt; |.....................|     1.214 |    0.9633 |    0.8450 |     1.246 |
-#&gt; |    X|<span style='font-weight: bold;'>     493.18511</span> |     91.42 |  0.005555 |    0.2917 |    0.1119 |
-#&gt; |.....................|  0.009759 |    0.6126 |    0.8472 |   0.05869 |
-#&gt; |.....................|    0.8326 |   0.05781 |    0.7279 |    0.8805 |
-#&gt; |.....................|     1.214 |    0.9633 |    0.8450 |     1.246 |
-#&gt; |    F| Forward Diff. |     34.43 |     2.240 |   -0.1040 |   0.04282 |
-#&gt; |.....................|   -0.3912 |    0.6547 |    -21.84 |    -15.27 |
-#&gt; |.....................|    -5.158 |    -1.914 |     1.030 |     8.876 |
-#&gt; |.....................|    -11.77 |   -0.1415 |     7.047 |    -11.78 |
-#&gt; |<span style='font-weight: bold;'>   12</span>|     492.89407 |    0.9905 |    -1.005 |   -0.9105 |   -0.9381 |
-#&gt; |.....................|   -0.9875 |   -0.8847 |   -0.8236 |   -0.8530 |
-#&gt; |.....................|   -0.8631 |   -0.8870 |   -0.8802 |   -0.8947 |
-#&gt; |.....................|   -0.8409 |   -0.8722 |   -0.8921 |   -0.8401 |
-#&gt; |    U|     492.89407 |     90.61 |    -5.194 |   -0.8870 |    -2.190 |
-#&gt; |.....................|    -4.630 |    0.4582 |    0.8495 |   0.05880 |
-#&gt; |.....................|    0.8332 |   0.05782 |    0.7277 |    0.8785 |
-#&gt; |.....................|     1.217 |    0.9633 |    0.8434 |     1.249 |
-#&gt; |    X|<span style='font-weight: bold;'>     492.89407</span> |     90.61 |  0.005551 |    0.2917 |    0.1119 |
-#&gt; |.....................|  0.009760 |    0.6126 |    0.8495 |   0.05880 |
-#&gt; |.....................|    0.8332 |   0.05782 |    0.7277 |    0.8785 |
-#&gt; |.....................|     1.217 |    0.9633 |    0.8434 |     1.249 |
-#&gt; |    F| Forward Diff. |    -34.81 |     2.117 |   -0.4182 |    0.1353 |
-#&gt; |.....................|   -0.3428 |    0.6933 |    -21.54 |    -15.66 |
-#&gt; |.....................|    -5.188 |    -1.708 |     1.147 |     8.020 |
-#&gt; |.....................|    -11.52 |  -0.06705 |     7.151 |    -11.60 |
-#&gt; |<span style='font-weight: bold;'>   13</span>|     492.59250 |    0.9992 |    -1.006 |   -0.9104 |   -0.9382 |
-#&gt; |.....................|   -0.9874 |   -0.8848 |   -0.8179 |   -0.8489 |
-#&gt; |.....................|   -0.8617 |   -0.8865 |   -0.8805 |   -0.8968 |
-#&gt; |.....................|   -0.8378 |   -0.8722 |   -0.8940 |   -0.8371 |
-#&gt; |    U|      492.5925 |     91.41 |    -5.194 |   -0.8869 |    -2.190 |
-#&gt; |.....................|    -4.629 |    0.4582 |    0.8519 |   0.05892 |
-#&gt; |.....................|    0.8337 |   0.05784 |    0.7275 |    0.8766 |
-#&gt; |.....................|     1.221 |    0.9633 |    0.8418 |     1.253 |
-#&gt; |    X|<span style='font-weight: bold;'>      492.5925</span> |     91.41 |  0.005548 |    0.2918 |    0.1119 |
-#&gt; |.....................|  0.009760 |    0.6126 |    0.8519 |   0.05892 |
-#&gt; |.....................|    0.8337 |   0.05784 |    0.7275 |    0.8766 |
-#&gt; |.....................|     1.221 |    0.9633 |    0.8418 |     1.253 |
-#&gt; |    F| Forward Diff. |     33.40 |     2.217 |  -0.09736 |   0.04377 |
-#&gt; |.....................|   -0.3664 |    0.6618 |    -21.29 |    -14.62 |
-#&gt; |.....................|    -5.018 |    -1.838 |    0.9818 |     8.628 |
-#&gt; |.....................|    -11.52 |   -0.1307 |     6.857 |    -11.62 |
-#&gt; |<span style='font-weight: bold;'>   14</span>|     492.30478 |    0.9905 |    -1.006 |   -0.9103 |   -0.9382 |
-#&gt; |.....................|   -0.9873 |   -0.8850 |   -0.8121 |   -0.8449 |
-#&gt; |.....................|   -0.8604 |   -0.8860 |   -0.8808 |   -0.8991 |
-#&gt; |.....................|   -0.8347 |   -0.8722 |   -0.8958 |   -0.8339 |
-#&gt; |    U|     492.30478 |     90.62 |    -5.195 |   -0.8868 |    -2.190 |
-#&gt; |.....................|    -4.629 |    0.4581 |    0.8543 |   0.05904 |
-#&gt; |.....................|    0.8343 |   0.05785 |    0.7273 |    0.8745 |
-#&gt; |.....................|     1.225 |    0.9633 |    0.8402 |     1.257 |
-#&gt; |    X|<span style='font-weight: bold;'>     492.30478</span> |     90.62 |  0.005545 |    0.2918 |    0.1119 |
-#&gt; |.....................|  0.009761 |    0.6126 |    0.8543 |   0.05904 |
-#&gt; |.....................|    0.8343 |   0.05785 |    0.7273 |    0.8745 |
-#&gt; |.....................|     1.225 |    0.9633 |    0.8402 |     1.257 |
-#&gt; |    F| Forward Diff. |    -34.08 |     2.096 |   -0.4157 |    0.1370 |
-#&gt; |.....................|   -0.3212 |    0.6979 |    -20.95 |    -14.99 |
-#&gt; |.....................|    -5.046 |    -1.607 |     1.055 |     8.026 |
-#&gt; |.....................|    -11.31 |    0.3535 |     6.819 |    -11.49 |
-#&gt; |<span style='font-weight: bold;'>   15</span>|     492.00325 |    0.9991 |    -1.007 |   -0.9102 |   -0.9382 |
-#&gt; |.....................|   -0.9872 |   -0.8852 |   -0.8063 |   -0.8408 |
-#&gt; |.....................|   -0.8590 |   -0.8856 |   -0.8811 |   -0.9014 |
-#&gt; |.....................|   -0.8316 |   -0.8723 |   -0.8977 |   -0.8307 |
-#&gt; |    U|     492.00325 |     91.40 |    -5.195 |   -0.8867 |    -2.190 |
-#&gt; |.....................|    -4.629 |    0.4580 |    0.8567 |   0.05916 |
-#&gt; |.....................|    0.8349 |   0.05786 |    0.7271 |    0.8725 |
-#&gt; |.....................|     1.229 |    0.9632 |    0.8386 |     1.261 |
-#&gt; |    X|<span style='font-weight: bold;'>     492.00325</span> |     91.40 |  0.005542 |    0.2918 |    0.1119 |
-#&gt; |.....................|  0.009762 |    0.6125 |    0.8567 |   0.05916 |
-#&gt; |.....................|    0.8349 |   0.05786 |    0.7271 |    0.8725 |
-#&gt; |.....................|     1.229 |    0.9632 |    0.8386 |     1.261 |
-#&gt; |    F| Forward Diff. |     32.19 |     2.189 |  -0.09620 |   0.04245 |
-#&gt; |.....................|   -0.3450 |    0.6659 |    -21.28 |    -14.00 |
-#&gt; |.....................|    -4.881 |    -1.759 |     1.243 |     8.359 |
-#&gt; |.....................|    -10.62 |  -0.07477 |     6.614 |    -11.44 |
-#&gt; |<span style='font-weight: bold;'>   16</span>|     491.72015 |    0.9906 |    -1.007 |   -0.9102 |   -0.9382 |
-#&gt; |.....................|   -0.9871 |   -0.8854 |   -0.8003 |   -0.8368 |
-#&gt; |.....................|   -0.8576 |   -0.8851 |   -0.8814 |   -0.9037 |
-#&gt; |.....................|   -0.8285 |   -0.8722 |   -0.8996 |   -0.8275 |
-#&gt; |    U|     491.72015 |     90.62 |    -5.196 |   -0.8867 |    -2.190 |
-#&gt; |.....................|    -4.629 |    0.4579 |    0.8592 |   0.05927 |
-#&gt; |.....................|    0.8354 |   0.05788 |    0.7268 |    0.8703 |
-#&gt; |.....................|     1.232 |    0.9633 |    0.8370 |     1.265 |
-#&gt; |    X|<span style='font-weight: bold;'>     491.72015</span> |     90.62 |  0.005538 |    0.2918 |    0.1119 |
-#&gt; |.....................|  0.009763 |    0.6125 |    0.8592 |   0.05927 |
-#&gt; |.....................|    0.8354 |   0.05788 |    0.7268 |    0.8703 |
-#&gt; |.....................|     1.232 |    0.9633 |    0.8370 |     1.265 |
-#&gt; |    F| Forward Diff. |    -33.41 |     2.074 |   -0.4123 |    0.1389 |
-#&gt; |.....................|   -0.2981 |    0.7039 |    -20.39 |    -14.31 |
-#&gt; |.....................|    -4.887 |    -1.550 |    0.9656 |     7.818 |
-#&gt; |.....................|    -11.05 |   -0.4282 |     6.582 |    -11.31 |
-#&gt; |<span style='font-weight: bold;'>   17</span>|     491.42294 |    0.9990 |    -1.008 |   -0.9101 |   -0.9383 |
-#&gt; |.....................|   -0.9870 |   -0.8856 |   -0.7943 |   -0.8327 |
-#&gt; |.....................|   -0.8562 |   -0.8846 |   -0.8817 |   -0.9060 |
-#&gt; |.....................|   -0.8254 |   -0.8721 |   -0.9015 |   -0.8242 |
-#&gt; |    U|     491.42294 |     91.39 |    -5.197 |   -0.8866 |    -2.190 |
-#&gt; |.....................|    -4.629 |    0.4578 |    0.8616 |   0.05939 |
-#&gt; |.....................|    0.8360 |   0.05789 |    0.7266 |    0.8683 |
-#&gt; |.....................|     1.236 |    0.9634 |    0.8354 |     1.269 |
-#&gt; |    X|<span style='font-weight: bold;'>     491.42294</span> |     91.39 |  0.005535 |    0.2918 |    0.1119 |
-#&gt; |.....................|  0.009764 |    0.6125 |    0.8616 |   0.05939 |
-#&gt; |.....................|    0.8360 |   0.05789 |    0.7266 |    0.8683 |
-#&gt; |.....................|     1.236 |    0.9634 |    0.8354 |     1.269 |
-#&gt; |    F| Forward Diff. |     31.50 |     2.165 |  -0.08876 |   0.04676 |
-#&gt; |.....................|   -0.3226 |    0.6753 |    -20.70 |    -13.34 |
-#&gt; |.....................|    -4.747 |    -1.707 |    0.9017 |     8.141 |
-#&gt; |.....................|    -10.29 |  -0.02981 |     6.402 |    -11.28 |
-#&gt; |<span style='font-weight: bold;'>   18</span>|     491.14065 |    0.9907 |    -1.009 |   -0.9100 |   -0.9383 |
-#&gt; |.....................|   -0.9870 |   -0.8858 |   -0.7882 |   -0.8287 |
-#&gt; |.....................|   -0.8548 |   -0.8841 |   -0.8820 |   -0.9084 |
-#&gt; |.....................|   -0.8223 |   -0.8721 |   -0.9034 |   -0.8208 |
-#&gt; |    U|     491.14065 |     90.64 |    -5.197 |   -0.8866 |    -2.190 |
-#&gt; |.....................|    -4.629 |    0.4577 |    0.8642 |   0.05950 |
-#&gt; |.....................|    0.8366 |   0.05791 |    0.7264 |    0.8661 |
-#&gt; |.....................|     1.240 |    0.9634 |    0.8337 |     1.273 |
-#&gt; |    X|<span style='font-weight: bold;'>     491.14065</span> |     90.64 |  0.005531 |    0.2918 |    0.1119 |
-#&gt; |.....................|  0.009765 |    0.6125 |    0.8642 |   0.05950 |
-#&gt; |.....................|    0.8366 |   0.05791 |    0.7264 |    0.8661 |
-#&gt; |.....................|     1.240 |    0.9634 |    0.8337 |     1.273 |
-#&gt; |    F| Forward Diff. |    -32.29 |     2.052 |   -0.4043 |    0.1403 |
-#&gt; |.....................|   -0.2785 |    0.7107 |    -20.12 |    -13.83 |
-#&gt; |.....................|    -4.879 |    -1.515 |    0.4622 |     7.293 |
-#&gt; |.....................|    -10.82 |   -0.3681 |     6.384 |    -11.14 |
-#&gt; |<span style='font-weight: bold;'>   19</span>|     490.84537 |    0.9989 |    -1.009 |   -0.9099 |   -0.9383 |
-#&gt; |.....................|   -0.9869 |   -0.8860 |   -0.7821 |   -0.8246 |
-#&gt; |.....................|   -0.8533 |   -0.8837 |   -0.8821 |   -0.9106 |
-#&gt; |.....................|   -0.8190 |   -0.8720 |   -0.9053 |   -0.8174 |
-#&gt; |    U|     490.84537 |     91.38 |    -5.198 |   -0.8865 |    -2.190 |
-#&gt; |.....................|    -4.629 |    0.4576 |    0.8667 |   0.05962 |
-#&gt; |.....................|    0.8372 |   0.05792 |    0.7263 |    0.8641 |
-#&gt; |.....................|     1.243 |    0.9635 |    0.8321 |     1.277 |
-#&gt; |    X|<span style='font-weight: bold;'>     490.84537</span> |     91.38 |  0.005528 |    0.2918 |    0.1119 |
-#&gt; |.....................|  0.009766 |    0.6124 |    0.8667 |   0.05962 |
-#&gt; |.....................|    0.8372 |   0.05792 |    0.7263 |    0.8641 |
-#&gt; |.....................|     1.243 |    0.9635 |    0.8321 |     1.277 |
-#&gt; |    F| Forward Diff. |     30.35 |     2.134 |  -0.08371 |   0.04933 |
-#&gt; |.....................|   -0.3000 |    0.6785 |    -20.24 |    -12.73 |
-#&gt; |.....................|    -4.623 |    -1.604 |     1.054 |     8.092 |
-#&gt; |.....................|    -10.77 |   -0.4405 |     6.181 |    -11.10 |
-#&gt; |<span style='font-weight: bold;'>   20</span>|     490.56963 |    0.9908 |    -1.010 |   -0.9099 |   -0.9383 |
-#&gt; |.....................|   -0.9868 |   -0.8862 |   -0.7758 |   -0.8207 |
-#&gt; |.....................|   -0.8519 |   -0.8832 |   -0.8824 |   -0.9131 |
-#&gt; |.....................|   -0.8157 |   -0.8719 |   -0.9072 |   -0.8140 |
-#&gt; |    U|     490.56963 |     90.64 |    -5.199 |   -0.8865 |    -2.190 |
-#&gt; |.....................|    -4.629 |    0.4575 |    0.8693 |   0.05974 |
-#&gt; |.....................|    0.8378 |   0.05793 |    0.7261 |    0.8619 |
-#&gt; |.....................|     1.247 |    0.9636 |    0.8305 |     1.281 |
-#&gt; |    X|<span style='font-weight: bold;'>     490.56963</span> |     90.64 |  0.005524 |    0.2918 |    0.1119 |
-#&gt; |.....................|  0.009767 |    0.6124 |    0.8693 |   0.05974 |
-#&gt; |.....................|    0.8378 |   0.05793 |    0.7261 |    0.8619 |
-#&gt; |.....................|     1.247 |    0.9636 |    0.8305 |     1.281 |
-#&gt; |    F| Forward Diff. |    -31.85 |     2.030 |   -0.4014 |    0.1424 |
-#&gt; |.....................|   -0.2574 |    0.7152 |    -19.39 |    -13.12 |
-#&gt; |.....................|    -4.602 |    -1.387 |    0.5883 |     7.042 |
-#&gt; |.....................|    -10.56 |   -0.3115 |     6.249 |    -10.92 |
-#&gt; |<span style='font-weight: bold;'>   21</span>|     490.28521 |    0.9989 |    -1.011 |   -0.9098 |   -0.9384 |
-#&gt; |.....................|   -0.9867 |   -0.8865 |   -0.7697 |   -0.8166 |
-#&gt; |.....................|   -0.8504 |   -0.8827 |   -0.8826 |   -0.9153 |
-#&gt; |.....................|   -0.8124 |   -0.8718 |   -0.9092 |   -0.8105 |
-#&gt; |    U|     490.28521 |     91.39 |    -5.199 |   -0.8864 |    -2.190 |
-#&gt; |.....................|    -4.629 |    0.4574 |    0.8718 |   0.05985 |
-#&gt; |.....................|    0.8384 |   0.05795 |    0.7259 |    0.8599 |
-#&gt; |.....................|     1.251 |    0.9637 |    0.8288 |     1.285 |
-#&gt; |    X|<span style='font-weight: bold;'>     490.28521</span> |     91.39 |  0.005521 |    0.2919 |    0.1119 |
-#&gt; |.....................|  0.009767 |    0.6124 |    0.8718 |   0.05985 |
-#&gt; |.....................|    0.8384 |   0.05795 |    0.7259 |    0.8599 |
-#&gt; |.....................|     1.251 |    0.9637 |    0.8288 |     1.285 |
-#&gt; |    F| Forward Diff. |     30.53 |     2.112 |  -0.07114 |   0.05276 |
-#&gt; |.....................|   -0.2779 |    0.6845 |    -19.81 |    -12.13 |
-#&gt; |.....................|    -4.498 |    -1.539 |    0.6449 |     7.769 |
-#&gt; |.....................|    -10.55 |   -0.3696 |     5.980 |    -10.93 |
-#&gt; |<span style='font-weight: bold;'>   22</span>|     489.99923 |    0.9911 |    -1.011 |   -0.9097 |   -0.9384 |
-#&gt; |.....................|   -0.9866 |   -0.8867 |   -0.7633 |   -0.8127 |
-#&gt; |.....................|   -0.8489 |   -0.8823 |   -0.8828 |   -0.9178 |
-#&gt; |.....................|   -0.8089 |   -0.8716 |   -0.9111 |   -0.8070 |
-#&gt; |    U|     489.99923 |     90.67 |    -5.200 |   -0.8863 |    -2.190 |
-#&gt; |.....................|    -4.629 |    0.4573 |    0.8745 |   0.05997 |
-#&gt; |.....................|    0.8390 |   0.05796 |    0.7258 |    0.8577 |
-#&gt; |.....................|     1.255 |    0.9638 |    0.8271 |     1.290 |
-#&gt; |    X|<span style='font-weight: bold;'>     489.99923</span> |     90.67 |  0.005517 |    0.2919 |    0.1119 |
-#&gt; |.....................|  0.009768 |    0.6124 |    0.8745 |   0.05997 |
-#&gt; |.....................|    0.8390 |   0.05796 |    0.7258 |    0.8577 |
-#&gt; |.....................|     1.255 |    0.9638 |    0.8271 |     1.290 |
-#&gt; |    F| Forward Diff. |    -29.14 |     2.012 |   -0.3844 |    0.1417 |
-#&gt; |.....................|   -0.2358 |    0.7218 |    -18.90 |    -12.37 |
-#&gt; |.....................|    -4.517 |    -1.329 |    0.4904 |     6.799 |
-#&gt; |.....................|    -10.31 |   -0.2514 |     6.013 |    -10.75 |
-#&gt; |<span style='font-weight: bold;'>   23</span>|     489.73483 |    0.9991 |    -1.012 |   -0.9096 |   -0.9384 |
-#&gt; |.....................|   -0.9865 |   -0.8869 |   -0.7571 |   -0.8087 |
-#&gt; |.....................|   -0.8475 |   -0.8818 |   -0.8829 |   -0.9201 |
-#&gt; |.....................|   -0.8055 |   -0.8715 |   -0.9131 |   -0.8034 |
-#&gt; |    U|     489.73483 |     91.40 |    -5.201 |   -0.8862 |    -2.190 |
-#&gt; |.....................|    -4.629 |    0.4572 |    0.8771 |   0.06008 |
-#&gt; |.....................|    0.8396 |   0.05797 |    0.7257 |    0.8557 |
-#&gt; |.....................|     1.259 |    0.9639 |    0.8254 |     1.294 |
-#&gt; |    X|<span style='font-weight: bold;'>     489.73483</span> |     91.40 |  0.005513 |    0.2919 |    0.1119 |
-#&gt; |.....................|  0.009769 |    0.6123 |    0.8771 |   0.06008 |
-#&gt; |.....................|    0.8396 |   0.05797 |    0.7257 |    0.8557 |
-#&gt; |.....................|     1.259 |    0.9639 |    0.8254 |     1.294 |
-#&gt; |    F| Forward Diff. |     31.68 |     2.089 |  -0.05219 |   0.05312 |
-#&gt; |.....................|   -0.2568 |    0.6912 |    -19.25 |    -11.50 |
-#&gt; |.....................|    -4.291 |    -1.478 |    0.6044 |     7.316 |
-#&gt; |.....................|    -10.30 |   -0.3159 |     5.756 |    -10.75 |
-#&gt; |<span style='font-weight: bold;'>   24</span>|     489.43925 |    0.9914 |    -1.013 |   -0.9096 |   -0.9385 |
-#&gt; |.....................|   -0.9865 |   -0.8872 |   -0.7505 |   -0.8049 |
-#&gt; |.....................|   -0.8460 |   -0.8813 |   -0.8831 |   -0.9225 |
-#&gt; |.....................|   -0.8020 |   -0.8714 |   -0.9150 |   -0.7997 |
-#&gt; |    U|     489.43925 |     90.70 |    -5.201 |   -0.8862 |    -2.190 |
-#&gt; |.....................|    -4.628 |    0.4571 |    0.8798 |   0.06019 |
-#&gt; |.....................|    0.8402 |   0.05799 |    0.7256 |    0.8535 |
-#&gt; |.....................|     1.264 |    0.9640 |    0.8238 |     1.298 |
-#&gt; |    X|<span style='font-weight: bold;'>     489.43925</span> |     90.70 |  0.005509 |    0.2919 |    0.1119 |
-#&gt; |.....................|  0.009770 |    0.6123 |    0.8798 |   0.06019 |
-#&gt; |.....................|    0.8402 |   0.05799 |    0.7256 |    0.8535 |
-#&gt; |.....................|     1.264 |    0.9640 |    0.8238 |     1.298 |
-#&gt; |    F| Forward Diff. |    -26.48 |     1.993 |   -0.3684 |    0.1403 |
-#&gt; |.....................|   -0.2166 |    0.7270 |    -18.36 |    -11.77 |
-#&gt; |.....................|    -4.393 |    -1.275 |    0.4390 |     6.578 |
-#&gt; |.....................|    -10.04 |   -0.2187 |     5.799 |    -10.58 |
-#&gt; |<span style='font-weight: bold;'>   25</span>|     489.19181 |    0.9992 |    -1.013 |   -0.9095 |   -0.9385 |
-#&gt; |.....................|   -0.9864 |   -0.8874 |   -0.7441 |   -0.8009 |
-#&gt; |.....................|   -0.8445 |   -0.8809 |   -0.8833 |   -0.9248 |
-#&gt; |.....................|   -0.7985 |   -0.8714 |   -0.9170 |   -0.7960 |
-#&gt; |    U|     489.19181 |     91.41 |    -5.202 |   -0.8861 |    -2.190 |
-#&gt; |.....................|    -4.628 |    0.4570 |    0.8824 |   0.06031 |
-#&gt; |.....................|    0.8409 |   0.05800 |    0.7255 |    0.8514 |
-#&gt; |.....................|     1.268 |    0.9641 |    0.8221 |     1.303 |
-#&gt; |    X|<span style='font-weight: bold;'>     489.19181</span> |     91.41 |  0.005505 |    0.2919 |    0.1119 |
-#&gt; |.....................|  0.009770 |    0.6123 |    0.8824 |   0.06031 |
-#&gt; |.....................|    0.8409 |   0.05800 |    0.7255 |    0.8514 |
-#&gt; |.....................|     1.268 |    0.9641 |    0.8221 |     1.303 |
-#&gt; |    F| Forward Diff. |     32.48 |     2.067 |  -0.03453 |   0.05414 |
-#&gt; |.....................|   -0.2360 |    0.6938 |    -18.67 |    -10.89 |
-#&gt; |.....................|    -4.178 |    -1.425 |    0.5548 |     7.078 |
-#&gt; |.....................|    -10.01 |   -0.2144 |     5.548 |    -10.57 |
-#&gt; |<span style='font-weight: bold;'>   26</span>|     488.89118 |    0.9917 |    -1.014 |   -0.9094 |   -0.9385 |
-#&gt; |.....................|   -0.9863 |   -0.8877 |   -0.7375 |   -0.7972 |
-#&gt; |.....................|   -0.8430 |   -0.8804 |   -0.8834 |   -0.9272 |
-#&gt; |.....................|   -0.7949 |   -0.8713 |   -0.9189 |   -0.7921 |
-#&gt; |    U|     488.89118 |     90.73 |    -5.203 |   -0.8860 |    -2.190 |
-#&gt; |.....................|    -4.628 |    0.4568 |    0.8852 |   0.06041 |
-#&gt; |.....................|    0.8415 |   0.05801 |    0.7253 |    0.8493 |
-#&gt; |.....................|     1.272 |    0.9642 |    0.8204 |     1.308 |
-#&gt; |    X|<span style='font-weight: bold;'>     488.89118</span> |     90.73 |  0.005501 |    0.2919 |    0.1119 |
-#&gt; |.....................|  0.009771 |    0.6123 |    0.8852 |   0.06041 |
-#&gt; |.....................|    0.8415 |   0.05801 |    0.7253 |    0.8493 |
-#&gt; |.....................|     1.272 |    0.9642 |    0.8204 |     1.308 |
-#&gt; |    F| Forward Diff. |    -24.34 |     1.974 |   -0.3522 |    0.1400 |
-#&gt; |.....................|   -0.1957 |    0.7323 |    -17.88 |    -11.06 |
-#&gt; |.....................|    -4.245 |    -1.195 |    0.3418 |     6.336 |
-#&gt; |.....................|    -9.795 |   -0.1748 |     5.588 |    -10.40 |
-#&gt; |<span style='font-weight: bold;'>   27</span>|     488.65823 |    0.9993 |    -1.015 |   -0.9093 |   -0.9386 |
-#&gt; |.....................|   -0.9862 |   -0.8880 |   -0.7310 |   -0.7933 |
-#&gt; |.....................|   -0.8415 |   -0.8800 |   -0.8835 |   -0.9295 |
-#&gt; |.....................|   -0.7913 |   -0.8712 |   -0.9210 |   -0.7883 |
-#&gt; |    U|     488.65823 |     91.42 |    -5.204 |   -0.8859 |    -2.190 |
-#&gt; |.....................|    -4.628 |    0.4567 |    0.8878 |   0.06053 |
-#&gt; |.....................|    0.8421 |   0.05803 |    0.7253 |    0.8472 |
-#&gt; |.....................|     1.276 |    0.9642 |    0.8187 |     1.312 |
-#&gt; |    X|<span style='font-weight: bold;'>     488.65823</span> |     91.42 |  0.005497 |    0.2919 |    0.1119 |
-#&gt; |.....................|  0.009772 |    0.6122 |    0.8878 |   0.06053 |
-#&gt; |.....................|    0.8421 |   0.05803 |    0.7253 |    0.8472 |
-#&gt; |.....................|     1.276 |    0.9642 |    0.8187 |     1.312 |
-#&gt; |    F| Forward Diff. |     33.05 |     2.045 |  -0.01570 |   0.05526 |
-#&gt; |.....................|   -0.2154 |    0.6997 |    -18.21 |    -10.28 |
-#&gt; |.....................|    -4.052 |    -1.334 |    0.4619 |     6.811 |
-#&gt; |.....................|    -9.752 |   -0.1974 |     5.317 |    -10.39 |
-#&gt; |<span style='font-weight: bold;'>   28</span>|     488.35451 |    0.9920 |    -1.016 |   -0.9093 |   -0.9386 |
-#&gt; |.....................|   -0.9862 |   -0.8883 |   -0.7243 |   -0.7897 |
-#&gt; |.....................|   -0.8399 |   -0.8795 |   -0.8836 |   -0.9319 |
-#&gt; |.....................|   -0.7876 |   -0.8712 |   -0.9229 |   -0.7844 |
-#&gt; |    U|     488.35451 |     90.75 |    -5.204 |   -0.8859 |    -2.190 |
-#&gt; |.....................|    -4.628 |    0.4566 |    0.8906 |   0.06063 |
-#&gt; |.....................|    0.8427 |   0.05804 |    0.7252 |    0.8450 |
-#&gt; |.....................|     1.281 |    0.9643 |    0.8170 |     1.317 |
-#&gt; |    X|<span style='font-weight: bold;'>     488.35451</span> |     90.75 |  0.005493 |    0.2920 |    0.1119 |
-#&gt; |.....................|  0.009772 |    0.6122 |    0.8906 |   0.06063 |
-#&gt; |.....................|    0.8427 |   0.05804 |    0.7252 |    0.8450 |
-#&gt; |.....................|     1.281 |    0.9643 |    0.8170 |     1.317 |
-#&gt; |    F| Forward Diff. |    -22.42 |     1.954 |   -0.3353 |    0.1391 |
-#&gt; |.....................|   -0.1757 |    0.7405 |    -17.32 |    -10.46 |
-#&gt; |.....................|    -4.053 |    -1.161 |    0.2825 |     6.114 |
-#&gt; |.....................|    -9.506 |   -0.1281 |     5.370 |    -10.21 |
-#&gt; |<span style='font-weight: bold;'>   29</span>|     488.13711 |    0.9995 |    -1.016 |   -0.9092 |   -0.9387 |
-#&gt; |.....................|   -0.9861 |   -0.8886 |   -0.7177 |   -0.7858 |
-#&gt; |.....................|   -0.8384 |   -0.8791 |   -0.8837 |   -0.9342 |
-#&gt; |.....................|   -0.7840 |   -0.8711 |   -0.9249 |   -0.7804 |
-#&gt; |    U|     488.13711 |     91.44 |    -5.205 |   -0.8858 |    -2.190 |
-#&gt; |.....................|    -4.628 |    0.4565 |    0.8934 |   0.06074 |
-#&gt; |.....................|    0.8434 |   0.05805 |    0.7251 |    0.8430 |
-#&gt; |.....................|     1.285 |    0.9643 |    0.8153 |     1.322 |
-#&gt; |    X|<span style='font-weight: bold;'>     488.13711</span> |     91.44 |  0.005489 |    0.2920 |    0.1119 |
-#&gt; |.....................|  0.009773 |    0.6122 |    0.8934 |   0.06074 |
-#&gt; |.....................|    0.8434 |   0.05805 |    0.7251 |    0.8430 |
-#&gt; |.....................|     1.285 |    0.9643 |    0.8153 |     1.322 |
-#&gt; |    F| Forward Diff. |     33.81 |     2.022 |  0.006720 |   0.05587 |
-#&gt; |.....................|   -0.1935 |    0.7042 |    -17.76 |    -9.667 |
-#&gt; |.....................|    -3.890 |    -1.276 |    0.4404 |     6.589 |
-#&gt; |.....................|    -9.459 |   -0.1517 |     5.102 |    -10.20 |
-#&gt; |<span style='font-weight: bold;'>   30</span>|     487.82953 |    0.9922 |    -1.017 |   -0.9091 |   -0.9387 |
-#&gt; |.....................|   -0.9861 |   -0.8889 |   -0.7108 |   -0.7824 |
-#&gt; |.....................|   -0.8369 |   -0.8787 |   -0.8838 |   -0.9367 |
-#&gt; |.....................|   -0.7803 |   -0.8711 |   -0.9268 |   -0.7763 |
-#&gt; |    U|     487.82953 |     90.77 |    -5.206 |   -0.8858 |    -2.190 |
-#&gt; |.....................|    -4.628 |    0.4563 |    0.8962 |   0.06084 |
-#&gt; |.....................|    0.8440 |   0.05806 |    0.7251 |    0.8408 |
-#&gt; |.....................|     1.289 |    0.9644 |    0.8136 |     1.327 |
-#&gt; |    X|<span style='font-weight: bold;'>     487.82953</span> |     90.77 |  0.005484 |    0.2920 |    0.1119 |
-#&gt; |.....................|  0.009774 |    0.6121 |    0.8962 |   0.06084 |
-#&gt; |.....................|    0.8440 |   0.05806 |    0.7251 |    0.8408 |
-#&gt; |.....................|     1.289 |    0.9644 |    0.8136 |     1.327 |
-#&gt; |    F| Forward Diff. |    -20.31 |     1.935 |   -0.3119 |    0.1382 |
-#&gt; |.....................|   -0.1555 |    0.7438 |    -16.49 |    -9.852 |
-#&gt; |.....................|    -3.955 |    -1.103 |    0.2044 |     5.876 |
-#&gt; |.....................|    -9.237 |   -0.1098 |     5.167 |    -10.02 |
-#&gt; |<span style='font-weight: bold;'>   31</span>|     487.63293 |    0.9997 |    -1.018 |   -0.9090 |   -0.9388 |
-#&gt; |.....................|   -0.9860 |   -0.8892 |   -0.7043 |   -0.7786 |
-#&gt; |.....................|   -0.8354 |   -0.8782 |   -0.8838 |   -0.9390 |
-#&gt; |.....................|   -0.7766 |   -0.8711 |   -0.9289 |   -0.7723 |
-#&gt; |    U|     487.63293 |     91.46 |    -5.207 |   -0.8857 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4562 |    0.8989 |   0.06095 |
-#&gt; |.....................|    0.8446 |   0.05808 |    0.7250 |    0.8387 |
-#&gt; |.....................|     1.294 |    0.9644 |    0.8119 |     1.332 |
-#&gt; |    X|<span style='font-weight: bold;'>     487.63293</span> |     91.46 |  0.005480 |    0.2920 |    0.1119 |
-#&gt; |.....................|  0.009774 |    0.6121 |    0.8989 |   0.06095 |
-#&gt; |.....................|    0.8446 |   0.05808 |    0.7250 |    0.8387 |
-#&gt; |.....................|     1.294 |    0.9644 |    0.8119 |     1.332 |
-#&gt; |    F| Forward Diff. |     35.34 |     2.001 |   0.03668 |   0.05608 |
-#&gt; |.....................|   -0.1731 |    0.7098 |    -16.98 |    -9.135 |
-#&gt; |.....................|    -3.742 |    -1.209 |    0.3780 |     6.351 |
-#&gt; |.....................|    -9.183 |    0.6525 |     4.885 |    -10.01 |
-#&gt; |<span style='font-weight: bold;'>   32</span>|     487.31820 |    0.9926 |    -1.019 |   -0.9090 |   -0.9388 |
-#&gt; |.....................|   -0.9860 |   -0.8895 |   -0.6975 |   -0.7753 |
-#&gt; |.....................|   -0.8338 |   -0.8778 |   -0.8838 |   -0.9414 |
-#&gt; |.....................|   -0.7728 |   -0.8714 |   -0.9308 |   -0.7679 |
-#&gt; |    U|      487.3182 |     90.81 |    -5.208 |   -0.8856 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4560 |    0.9017 |   0.06104 |
-#&gt; |.....................|    0.8453 |   0.05809 |    0.7250 |    0.8366 |
-#&gt; |.....................|     1.298 |    0.9641 |    0.8102 |     1.337 |
-#&gt; |    X|<span style='font-weight: bold;'>      487.3182</span> |     90.81 |  0.005475 |    0.2920 |    0.1119 |
-#&gt; |.....................|  0.009775 |    0.6121 |    0.9017 |   0.06104 |
-#&gt; |.....................|    0.8453 |   0.05809 |    0.7250 |    0.8366 |
-#&gt; |.....................|     1.298 |    0.9641 |    0.8102 |     1.337 |
-#&gt; |    F| Forward Diff. |    -17.75 |     1.917 |   -0.2852 |    0.1361 |
-#&gt; |.....................|   -0.1360 |    0.7493 |    -16.63 |    -9.386 |
-#&gt; |.....................|    -3.766 |    -1.006 |    0.1674 |     5.665 |
-#&gt; |.....................|    -8.945 |    0.7251 |     4.960 |    -9.828 |
-#&gt; |<span style='font-weight: bold;'>   33</span>|     487.13531 |    0.9998 |    -1.020 |   -0.9089 |   -0.9389 |
-#&gt; |.....................|   -0.9859 |   -0.8898 |   -0.6907 |   -0.7715 |
-#&gt; |.....................|   -0.8323 |   -0.8774 |   -0.8839 |   -0.9437 |
-#&gt; |.....................|   -0.7691 |   -0.8717 |   -0.9328 |   -0.7639 |
-#&gt; |    U|     487.13531 |     91.47 |    -5.208 |   -0.8855 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4559 |    0.9045 |   0.06116 |
-#&gt; |.....................|    0.8459 |   0.05810 |    0.7250 |    0.8345 |
-#&gt; |.....................|     1.303 |    0.9638 |    0.8084 |     1.342 |
-#&gt; |    X|<span style='font-weight: bold;'>     487.13531</span> |     91.47 |  0.005471 |    0.2920 |    0.1118 |
-#&gt; |.....................|  0.009775 |    0.6120 |    0.9045 |   0.06116 |
-#&gt; |.....................|    0.8459 |   0.05810 |    0.7250 |    0.8345 |
-#&gt; |.....................|     1.303 |    0.9638 |    0.8084 |     1.342 |
-#&gt; |    F| Forward Diff. |     35.92 |     1.979 |   0.06301 |   0.05698 |
-#&gt; |.....................|   -0.1526 |    0.7131 |    -16.77 |    -8.520 |
-#&gt; |.....................|    -3.634 |    -1.163 |    0.3177 |     6.099 |
-#&gt; |.....................|    -8.917 |    0.6421 |     4.685 |    -9.820 |
-#&gt; |<span style='font-weight: bold;'>   34</span>|     486.82694 |    0.9926 |    -1.021 |   -0.9088 |   -0.9389 |
-#&gt; |.....................|   -0.9859 |   -0.8902 |   -0.6837 |   -0.7686 |
-#&gt; |.....................|   -0.8308 |   -0.8770 |   -0.8839 |   -0.9460 |
-#&gt; |.....................|   -0.7654 |   -0.8723 |   -0.9347 |   -0.7596 |
-#&gt; |    U|     486.82694 |     90.81 |    -5.209 |   -0.8855 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4557 |    0.9074 |   0.06124 |
-#&gt; |.....................|    0.8465 |   0.05811 |    0.7250 |    0.8324 |
-#&gt; |.....................|     1.307 |    0.9632 |    0.8069 |     1.347 |
-#&gt; |    X|<span style='font-weight: bold;'>     486.82694</span> |     90.81 |  0.005466 |    0.2920 |    0.1118 |
-#&gt; |.....................|  0.009775 |    0.6120 |    0.9074 |   0.06124 |
-#&gt; |.....................|    0.8465 |   0.05811 |    0.7250 |    0.8324 |
-#&gt; |.....................|     1.307 |    0.9632 |    0.8069 |     1.347 |
-#&gt; |    F| Forward Diff. |    -17.49 |     1.895 |   -0.2726 |    0.1382 |
-#&gt; |.....................|   -0.1159 |    0.7566 |    -16.14 |    -8.833 |
-#&gt; |.....................|    -3.638 |   -0.9303 |    0.1285 |     5.442 |
-#&gt; |.....................|    -8.630 |    0.7091 |     4.774 |    -9.639 |
-#&gt; |<span style='font-weight: bold;'>   35</span>|     486.64804 |    0.9998 |    -1.021 |   -0.9087 |   -0.9390 |
-#&gt; |.....................|   -0.9858 |   -0.8905 |   -0.6768 |   -0.7649 |
-#&gt; |.....................|   -0.8293 |   -0.8767 |   -0.8839 |   -0.9483 |
-#&gt; |.....................|   -0.7617 |   -0.8727 |   -0.9367 |   -0.7554 |
-#&gt; |    U|     486.64804 |     91.46 |    -5.210 |   -0.8854 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4556 |    0.9103 |   0.06135 |
-#&gt; |.....................|    0.8472 |   0.05812 |    0.7250 |    0.8304 |
-#&gt; |.....................|     1.311 |    0.9629 |    0.8051 |     1.352 |
-#&gt; |    X|<span style='font-weight: bold;'>     486.64804</span> |     91.46 |  0.005462 |    0.2921 |    0.1118 |
-#&gt; |.....................|  0.009776 |    0.6120 |    0.9103 |   0.06135 |
-#&gt; |.....................|    0.8472 |   0.05812 |    0.7250 |    0.8304 |
-#&gt; |.....................|     1.311 |    0.9629 |    0.8051 |     1.352 |
-#&gt; |    F| Forward Diff. |     35.26 |     1.955 |   0.07649 |   0.05940 |
-#&gt; |.....................|   -0.1319 |    0.7217 |    -16.38 |    -8.030 |
-#&gt; |.....................|    -3.491 |    -1.078 |    0.2504 |     5.851 |
-#&gt; |.....................|    -8.624 |    0.5993 |     4.494 |    -9.625 |
-#&gt; |<span style='font-weight: bold;'>   36</span>|     486.34524 |    0.9928 |    -1.022 |   -0.9087 |   -0.9390 |
-#&gt; |.....................|   -0.9858 |   -0.8909 |   -0.6696 |   -0.7621 |
-#&gt; |.....................|   -0.8278 |   -0.8763 |   -0.8838 |   -0.9506 |
-#&gt; |.....................|   -0.7579 |   -0.8733 |   -0.9385 |   -0.7509 |
-#&gt; |    U|     486.34524 |     90.82 |    -5.211 |   -0.8854 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4554 |    0.9133 |   0.06143 |
-#&gt; |.....................|    0.8478 |   0.05813 |    0.7251 |    0.8283 |
-#&gt; |.....................|     1.316 |    0.9622 |    0.8036 |     1.358 |
-#&gt; |    X|<span style='font-weight: bold;'>     486.34524</span> |     90.82 |  0.005456 |    0.2921 |    0.1118 |
-#&gt; |.....................|  0.009776 |    0.6119 |    0.9133 |   0.06143 |
-#&gt; |.....................|    0.8478 |   0.05813 |    0.7251 |    0.8283 |
-#&gt; |.....................|     1.316 |    0.9622 |    0.8036 |     1.358 |
-#&gt; |    F| Forward Diff. |    -16.53 |     1.875 |   -0.2661 |    0.1390 |
-#&gt; |.....................|  -0.09763 |    0.7654 |    -15.70 |    -8.237 |
-#&gt; |.....................|    -3.491 |   -0.9040 |   0.06392 |     5.213 |
-#&gt; |.....................|    -8.361 |    0.6621 |     4.584 |    -9.445 |
-#&gt; |<span style='font-weight: bold;'>   37</span>|     486.17476 |    0.9998 |    -1.023 |   -0.9086 |   -0.9391 |
-#&gt; |.....................|   -0.9858 |   -0.8913 |   -0.6626 |   -0.7586 |
-#&gt; |.....................|   -0.8262 |   -0.8759 |   -0.8838 |   -0.9529 |
-#&gt; |.....................|   -0.7542 |   -0.8736 |   -0.9406 |   -0.7467 |
-#&gt; |    U|     486.17476 |     91.47 |    -5.212 |   -0.8853 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4552 |    0.9162 |   0.06153 |
-#&gt; |.....................|    0.8484 |   0.05814 |    0.7250 |    0.8263 |
-#&gt; |.....................|     1.320 |    0.9619 |    0.8018 |     1.363 |
-#&gt; |    X|<span style='font-weight: bold;'>     486.17476</span> |     91.47 |  0.005452 |    0.2921 |    0.1118 |
-#&gt; |.....................|  0.009776 |    0.6119 |    0.9162 |   0.06153 |
-#&gt; |.....................|    0.8484 |   0.05814 |    0.7250 |    0.8263 |
-#&gt; |.....................|     1.320 |    0.9619 |    0.8018 |     1.363 |
-#&gt; |    F| Forward Diff. |     35.23 |     1.932 |   0.08715 |   0.05955 |
-#&gt; |.....................|   -0.1122 |    0.7274 |    -16.01 |    -7.627 |
-#&gt; |.....................|    -3.363 |    -1.024 |    0.1942 |     5.616 |
-#&gt; |.....................|    -8.345 |    0.5641 |     4.322 |    -9.424 |
-#&gt; |<span style='font-weight: bold;'>   38</span>|     485.87468 |    0.9930 |    -1.024 |   -0.9086 |   -0.9392 |
-#&gt; |.....................|   -0.9858 |   -0.8917 |   -0.6553 |   -0.7561 |
-#&gt; |.....................|   -0.8248 |   -0.8756 |   -0.8837 |   -0.9551 |
-#&gt; |.....................|   -0.7504 |   -0.8743 |   -0.9424 |   -0.7420 |
-#&gt; |    U|     485.87468 |     90.84 |    -5.213 |   -0.8853 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4550 |    0.9192 |   0.06160 |
-#&gt; |.....................|    0.8490 |   0.05815 |    0.7252 |    0.8243 |
-#&gt; |.....................|     1.325 |    0.9613 |    0.8003 |     1.369 |
-#&gt; |    X|<span style='font-weight: bold;'>     485.87468</span> |     90.84 |  0.005446 |    0.2921 |    0.1118 |
-#&gt; |.....................|  0.009776 |    0.6118 |    0.9192 |   0.06160 |
-#&gt; |.....................|    0.8490 |   0.05815 |    0.7252 |    0.8243 |
-#&gt; |.....................|     1.325 |    0.9613 |    0.8003 |     1.369 |
-#&gt; |    F| Forward Diff. |    -15.16 |     1.855 |   -0.2494 |    0.1393 |
-#&gt; |.....................|  -0.07811 |    0.7704 |    -15.31 |    -7.716 |
-#&gt; |.....................|    -3.357 |   -0.8175 |  -0.03012 |     4.971 |
-#&gt; |.....................|    -8.100 |    0.5955 |     4.407 |    -9.242 |
-#&gt; |<span style='font-weight: bold;'>   39</span>|     485.71812 |     1.000 |    -1.025 |   -0.9085 |   -0.9392 |
-#&gt; |.....................|   -0.9858 |   -0.8921 |   -0.6482 |   -0.7526 |
-#&gt; |.....................|   -0.8232 |   -0.8752 |   -0.8836 |   -0.9573 |
-#&gt; |.....................|   -0.7467 |   -0.8746 |   -0.9444 |   -0.7377 |
-#&gt; |    U|     485.71812 |     91.48 |    -5.214 |   -0.8852 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4548 |    0.9221 |   0.06170 |
-#&gt; |.....................|    0.8497 |   0.05816 |    0.7252 |    0.8222 |
-#&gt; |.....................|     1.329 |    0.9610 |    0.7985 |     1.374 |
-#&gt; |    X|<span style='font-weight: bold;'>     485.71812</span> |     91.48 |  0.005442 |    0.2921 |    0.1118 |
-#&gt; |.....................|  0.009776 |    0.6118 |    0.9221 |   0.06170 |
-#&gt; |.....................|    0.8497 |   0.05816 |    0.7252 |    0.8222 |
-#&gt; |.....................|     1.329 |    0.9610 |    0.7985 |     1.374 |
-#&gt; |    F| Forward Diff. |     36.02 |     1.911 |    0.1144 |   0.05926 |
-#&gt; |.....................|  -0.09370 |    0.7314 |    -15.47 |    -7.071 |
-#&gt; |.....................|    -3.248 |   -0.9743 |    0.1265 |     5.377 |
-#&gt; |.....................|    -7.775 |    0.5175 |     4.130 |    -9.229 |
-#&gt; |<span style='font-weight: bold;'>   40</span>|     485.42108 |    0.9931 |    -1.026 |   -0.9085 |   -0.9393 |
-#&gt; |.....................|   -0.9858 |   -0.8926 |   -0.6408 |   -0.7505 |
-#&gt; |.....................|   -0.8218 |   -0.8750 |   -0.8834 |   -0.9594 |
-#&gt; |.....................|   -0.7430 |   -0.8752 |   -0.9461 |   -0.7328 |
-#&gt; |    U|     485.42108 |     90.85 |    -5.215 |   -0.8852 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4546 |    0.9252 |   0.06176 |
-#&gt; |.....................|    0.8503 |   0.05817 |    0.7254 |    0.8204 |
-#&gt; |.....................|     1.333 |    0.9604 |    0.7970 |     1.380 |
-#&gt; |    X|<span style='font-weight: bold;'>     485.42108</span> |     90.85 |  0.005436 |    0.2921 |    0.1118 |
-#&gt; |.....................|  0.009776 |    0.6117 |    0.9252 |   0.06176 |
-#&gt; |.....................|    0.8503 |   0.05817 |    0.7254 |    0.8204 |
-#&gt; |.....................|     1.333 |    0.9604 |    0.7970 |     1.380 |
-#&gt; |    F| Forward Diff. |    -14.37 |     1.836 |   -0.2333 |    0.1389 |
-#&gt; |.....................|  -0.05951 |    0.7785 |    -14.33 |    -7.292 |
-#&gt; |.....................|    -3.229 |   -0.7699 |  -0.05471 |     4.764 |
-#&gt; |.....................|    -7.801 |    0.5597 |     4.229 |    -9.048 |
-#&gt; |<span style='font-weight: bold;'>   41</span>|     485.26815 |    0.9999 |    -1.027 |   -0.9084 |   -0.9394 |
-#&gt; |.....................|   -0.9858 |   -0.8930 |   -0.6338 |   -0.7470 |
-#&gt; |.....................|   -0.8202 |   -0.8746 |   -0.8833 |   -0.9618 |
-#&gt; |.....................|   -0.7392 |   -0.8755 |   -0.9482 |   -0.7284 |
-#&gt; |    U|     485.26815 |     91.48 |    -5.216 |   -0.8851 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4544 |    0.9281 |   0.06186 |
-#&gt; |.....................|    0.8509 |   0.05818 |    0.7254 |    0.8183 |
-#&gt; |.....................|     1.338 |    0.9601 |    0.7953 |     1.385 |
-#&gt; |    X|<span style='font-weight: bold;'>     485.26815</span> |     91.48 |  0.005431 |    0.2921 |    0.1118 |
-#&gt; |.....................|  0.009776 |    0.6117 |    0.9281 |   0.06186 |
-#&gt; |.....................|    0.8509 |   0.05818 |    0.7254 |    0.8183 |
-#&gt; |.....................|     1.338 |    0.9601 |    0.7953 |     1.385 |
-#&gt; |    F| Forward Diff. |     35.37 |     1.889 |    0.1323 |   0.06297 |
-#&gt; |.....................|  -0.07437 |    0.7390 |    -14.80 |    -6.641 |
-#&gt; |.....................|    -3.116 |   -0.8690 |   0.09880 |     5.162 |
-#&gt; |.....................|    -7.761 |    0.4865 |     3.967 |    -9.019 |
-#&gt; |<span style='font-weight: bold;'>   42</span>|     484.97448 |    0.9934 |    -1.028 |   -0.9084 |   -0.9395 |
-#&gt; |.....................|   -0.9859 |   -0.8935 |   -0.6264 |   -0.7452 |
-#&gt; |.....................|   -0.8188 |   -0.8744 |   -0.8830 |   -0.9639 |
-#&gt; |.....................|   -0.7352 |   -0.8762 |   -0.9500 |   -0.7231 |
-#&gt; |    U|     484.97448 |     90.88 |    -5.217 |   -0.8851 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4542 |    0.9311 |   0.06191 |
-#&gt; |.....................|    0.8515 |   0.05819 |    0.7257 |    0.8164 |
-#&gt; |.....................|     1.343 |    0.9594 |    0.7937 |     1.392 |
-#&gt; |    X|<span style='font-weight: bold;'>     484.97448</span> |     90.88 |  0.005424 |    0.2921 |    0.1118 |
-#&gt; |.....................|  0.009776 |    0.6116 |    0.9311 |   0.06191 |
-#&gt; |.....................|    0.8515 |   0.05819 |    0.7257 |    0.8164 |
-#&gt; |.....................|     1.343 |    0.9594 |    0.7937 |     1.392 |
-#&gt; |    F| Forward Diff. |    -12.51 |     1.817 |   -0.2072 |    0.1320 |
-#&gt; |.....................|  -0.04147 |    0.7868 |    -13.90 |    -6.839 |
-#&gt; |.....................|    -3.097 |   -0.6966 |  -0.09701 |     4.567 |
-#&gt; |.....................|    -7.500 |    0.5336 |     4.059 |    -8.839 |
-#&gt; |<span style='font-weight: bold;'>   43</span>|     484.82513 |    0.9998 |    -1.029 |   -0.9083 |   -0.9395 |
-#&gt; |.....................|   -0.9858 |   -0.8939 |   -0.6193 |   -0.7417 |
-#&gt; |.....................|   -0.8172 |   -0.8741 |   -0.8829 |   -0.9662 |
-#&gt; |.....................|   -0.7313 |   -0.8765 |   -0.9521 |   -0.7185 |
-#&gt; |    U|     484.82513 |     91.47 |    -5.218 |   -0.8851 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4540 |    0.9341 |   0.06202 |
-#&gt; |.....................|    0.8522 |   0.05820 |    0.7257 |    0.8143 |
-#&gt; |.....................|     1.347 |    0.9592 |    0.7919 |     1.397 |
-#&gt; |    X|<span style='font-weight: bold;'>     484.82513</span> |     91.47 |  0.005419 |    0.2921 |    0.1118 |
-#&gt; |.....................|  0.009776 |    0.6116 |    0.9341 |   0.06202 |
-#&gt; |.....................|    0.8522 |   0.05820 |    0.7257 |    0.8143 |
-#&gt; |.....................|     1.347 |    0.9592 |    0.7919 |     1.397 |
-#&gt; |    F| Forward Diff. |     34.86 |     1.871 |    0.1566 |   0.07097 |
-#&gt; |.....................|  -0.05046 |    0.7508 |    -14.35 |    -6.106 |
-#&gt; |.....................|    -2.960 |   -0.8322 |   0.03576 |     4.926 |
-#&gt; |.....................|    -7.463 |    0.4624 |     3.813 |    -8.806 |
-#&gt; |<span style='font-weight: bold;'>   44</span>|     484.54032 |    0.9935 |    -1.030 |   -0.9084 |   -0.9396 |
-#&gt; |.....................|   -0.9859 |   -0.8946 |   -0.6118 |   -0.7403 |
-#&gt; |.....................|   -0.8157 |   -0.8739 |   -0.8825 |   -0.9682 |
-#&gt; |.....................|   -0.7274 |   -0.8772 |   -0.9538 |   -0.7130 |
-#&gt; |    U|     484.54032 |     90.89 |    -5.219 |   -0.8851 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4537 |    0.9372 |   0.06206 |
-#&gt; |.....................|    0.8528 |   0.05820 |    0.7260 |    0.8125 |
-#&gt; |.....................|     1.352 |    0.9585 |    0.7904 |     1.404 |
-#&gt; |    X|<span style='font-weight: bold;'>     484.54032</span> |     90.89 |  0.005412 |    0.2921 |    0.1118 |
-#&gt; |.....................|  0.009775 |    0.6115 |    0.9372 |   0.06206 |
-#&gt; |.....................|    0.8528 |   0.05820 |    0.7260 |    0.8125 |
-#&gt; |.....................|     1.352 |    0.9585 |    0.7904 |     1.404 |
-#&gt; |    F| Forward Diff. |    -11.88 |     1.798 |   -0.1931 |    0.1288 |
-#&gt; |.....................|  -0.02100 |    0.7941 |    -13.56 |    -6.327 |
-#&gt; |.....................|    -2.985 |   -0.6346 |   -0.1369 |     4.355 |
-#&gt; |.....................|    -7.207 |    0.4876 |     3.910 |    -8.603 |
-#&gt; |<span style='font-weight: bold;'>   45</span>|     484.39828 |    0.9999 |    -1.031 |   -0.9082 |   -0.9397 |
-#&gt; |.....................|   -0.9859 |   -0.8950 |   -0.6045 |   -0.7369 |
-#&gt; |.....................|   -0.8141 |   -0.8736 |   -0.8824 |   -0.9706 |
-#&gt; |.....................|   -0.7235 |   -0.8774 |   -0.9559 |   -0.7084 |
-#&gt; |    U|     484.39828 |     91.47 |    -5.220 |   -0.8850 |    -2.191 |
-#&gt; |.....................|    -4.628 |    0.4535 |    0.9402 |   0.06215 |
-#&gt; |.....................|    0.8534 |   0.05821 |    0.7261 |    0.8104 |
-#&gt; |.....................|     1.357 |    0.9582 |    0.7886 |     1.409 |
-#&gt; |    X|<span style='font-weight: bold;'>     484.39828</span> |     91.47 |  0.005407 |    0.2921 |    0.1118 |
-#&gt; |.....................|  0.009775 |    0.6115 |    0.9402 |   0.06215 |
-#&gt; |.....................|    0.8534 |   0.05821 |    0.7261 |    0.8104 |
-#&gt; |.....................|     1.357 |    0.9582 |    0.7886 |     1.409 |
-#&gt; |    F| Forward Diff. |     34.75 |     1.847 |    0.1787 |   0.06647 |
-#&gt; |.....................|  -0.03069 |    0.7556 |    -13.39 |    -5.638 |
-#&gt; |.....................|    -2.842 |   -0.7351 |  -0.07352 |     4.648 |
-#&gt; |.....................|    -7.153 |    0.4383 |     3.662 |    -8.575 |
-#&gt; |<span style='font-weight: bold;'>   46</span>|     484.12389 |    0.9935 |    -1.033 |   -0.9083 |   -0.9398 |
-#&gt; |.....................|   -0.9861 |   -0.8957 |   -0.5972 |   -0.7360 |
-#&gt; |.....................|   -0.8127 |   -0.8736 |   -0.8818 |   -0.9724 |
-#&gt; |.....................|   -0.7196 |   -0.8781 |   -0.9577 |   -0.7026 |
-#&gt; |    U|     484.12389 |     90.89 |    -5.221 |   -0.8851 |    -2.192 |
-#&gt; |.....................|    -4.628 |    0.4532 |    0.9432 |   0.06218 |
-#&gt; |.....................|    0.8540 |   0.05821 |    0.7265 |    0.8087 |
-#&gt; |.....................|     1.361 |    0.9576 |    0.7871 |     1.416 |
-#&gt; |    X|<span style='font-weight: bold;'>     484.12389</span> |     90.89 |  0.005400 |    0.2921 |    0.1117 |
-#&gt; |.....................|  0.009773 |    0.6114 |    0.9432 |   0.06218 |
-#&gt; |.....................|    0.8540 |   0.05821 |    0.7265 |    0.8087 |
-#&gt; |.....................|     1.361 |    0.9576 |    0.7871 |     1.416 |
-#&gt; |    F| Forward Diff. |    -12.23 |     1.776 |   -0.1772 |    0.1286 |
-#&gt; |.....................| -0.003904 |    0.8005 |    -13.23 |    -5.967 |
-#&gt; |.....................|    -2.801 |   -0.5825 |   -0.1993 |     4.126 |
-#&gt; |.....................|    -6.930 |    0.4309 |     3.746 |    -8.373 |
-#&gt; |<span style='font-weight: bold;'>   47</span>|     483.96910 |    0.9995 |    -1.034 |   -0.9082 |   -0.9399 |
-#&gt; |.....................|   -0.9861 |   -0.8963 |   -0.5897 |   -0.7331 |
-#&gt; |.....................|   -0.8111 |   -0.8733 |   -0.8815 |   -0.9747 |
-#&gt; |.....................|   -0.7157 |   -0.8785 |   -0.9598 |   -0.6976 |
-#&gt; |    U|      483.9691 |     91.44 |    -5.222 |   -0.8850 |    -2.192 |
-#&gt; |.....................|    -4.628 |    0.4529 |    0.9464 |   0.06226 |
-#&gt; |.....................|    0.8547 |   0.05822 |    0.7267 |    0.8067 |
-#&gt; |.....................|     1.366 |    0.9573 |    0.7854 |     1.423 |
-#&gt; |    X|<span style='font-weight: bold;'>      483.9691</span> |     91.44 |  0.005394 |    0.2921 |    0.1117 |
-#&gt; |.....................|  0.009773 |    0.6113 |    0.9464 |   0.06226 |
-#&gt; |.....................|    0.8547 |   0.05822 |    0.7267 |    0.8067 |
-#&gt; |.....................|     1.366 |    0.9573 |    0.7854 |     1.423 |
-#&gt; |    F| Forward Diff. |     31.42 |     1.822 |    0.1778 |   0.07033 |
-#&gt; |.....................|  -0.01094 |    0.7681 |    -13.66 |    -5.343 |
-#&gt; |.....................|    -2.704 |   -0.6601 |  -0.05834 |     4.483 |
-#&gt; |.....................|    -6.846 |    0.3977 |     3.514 |    -8.343 |
-#&gt; |<span style='font-weight: bold;'>   48</span>|     483.71026 |    0.9937 |    -1.035 |   -0.9084 |   -0.9400 |
-#&gt; |.....................|   -0.9863 |   -0.8970 |   -0.5817 |   -0.7327 |
-#&gt; |.....................|   -0.8099 |   -0.8734 |   -0.8808 |   -0.9764 |
-#&gt; |.....................|   -0.7120 |   -0.8790 |   -0.9614 |   -0.6918 |
-#&gt; |    U|     483.71026 |     90.90 |    -5.224 |   -0.8851 |    -2.192 |
-#&gt; |.....................|    -4.628 |    0.4526 |    0.9497 |   0.06228 |
-#&gt; |.....................|    0.8552 |   0.05822 |    0.7272 |    0.8052 |
-#&gt; |.....................|     1.370 |    0.9567 |    0.7840 |     1.430 |
-#&gt; |    X|<span style='font-weight: bold;'>     483.71026</span> |     90.90 |  0.005386 |    0.2921 |    0.1117 |
-#&gt; |.....................|  0.009771 |    0.6112 |    0.9497 |   0.06228 |
-#&gt; |.....................|    0.8552 |   0.05822 |    0.7272 |    0.8052 |
-#&gt; |.....................|     1.370 |    0.9567 |    0.7840 |     1.430 |
-#&gt; |    F| Forward Diff. |    -11.41 |     1.753 |   -0.1608 |    0.1222 |
-#&gt; |.....................|   0.01159 |    0.8050 |    -10.44 |    -3.810 |
-#&gt; |.....................|    -1.727 |    0.1311 |     2.133 |     3.863 |
-#&gt; |.....................|    -5.017 |     1.937 |     3.587 |    -8.159 |
-#&gt; |<span style='font-weight: bold;'>   49</span>|     483.59835 |     1.000 |    -1.037 |   -0.9083 |   -0.9401 |
-#&gt; |.....................|   -0.9863 |   -0.8977 |   -0.5748 |   -0.7309 |
-#&gt; |.....................|   -0.8089 |   -0.8737 |   -0.8826 |   -0.9789 |
-#&gt; |.....................|   -0.7088 |   -0.8807 |   -0.9637 |   -0.6861 |
-#&gt; |    U|     483.59835 |     91.50 |    -5.225 |   -0.8850 |    -2.192 |
-#&gt; |.....................|    -4.628 |    0.4523 |    0.9525 |   0.06233 |
-#&gt; |.....................|    0.8556 |   0.05821 |    0.7260 |    0.8029 |
-#&gt; |.....................|     1.374 |    0.9551 |    0.7819 |     1.437 |
-#&gt; |    X|<span style='font-weight: bold;'>     483.59835</span> |     91.50 |  0.005379 |    0.2921 |    0.1117 |
-#&gt; |.....................|  0.009771 |    0.6112 |    0.9525 |   0.06233 |
-#&gt; |.....................|    0.8556 |   0.05821 |    0.7260 |    0.8029 |
-#&gt; |.....................|     1.374 |    0.9551 |    0.7819 |     1.437 |
-#&gt; |    F| Forward Diff. |     35.70 |     1.806 |    0.2381 |   0.06477 |
-#&gt; |.....................|  0.008951 |    0.7715 |    -12.71 |    -4.946 |
-#&gt; |.....................|    -2.552 |   -0.6506 |  -0.07612 |     4.309 |
-#&gt; |.....................|    -6.609 |    0.2622 |     3.318 |    -8.104 |
-#&gt; |<span style='font-weight: bold;'>   50</span>|     483.34903 |    0.9946 |    -1.038 |   -0.9084 |   -0.9402 |
-#&gt; |.....................|   -0.9865 |   -0.8986 |   -0.5687 |   -0.7321 |
-#&gt; |.....................|   -0.8087 |   -0.8746 |   -0.8853 |   -0.9811 |
-#&gt; |.....................|   -0.7064 |   -0.8834 |   -0.9659 |   -0.6790 |
-#&gt; |    U|     483.34903 |     90.99 |    -5.227 |   -0.8851 |    -2.192 |
-#&gt; |.....................|    -4.629 |    0.4518 |    0.9551 |   0.06229 |
-#&gt; |.....................|    0.8557 |   0.05818 |    0.7240 |    0.8009 |
-#&gt; |.....................|     1.377 |    0.9526 |    0.7800 |     1.445 |
-#&gt; |    X|<span style='font-weight: bold;'>     483.34903</span> |     90.99 |  0.005370 |    0.2921 |    0.1117 |
-#&gt; |.....................|  0.009769 |    0.6111 |    0.9551 |   0.06229 |
-#&gt; |.....................|    0.8557 |   0.05818 |    0.7240 |    0.8009 |
-#&gt; |.....................|     1.377 |    0.9526 |    0.7800 |     1.445 |
-#&gt; |    F| Forward Diff. |    -5.120 |     1.736 |  -0.09503 |    0.1090 |
-#&gt; |.....................|   0.03046 |    0.8092 |    -12.63 |    -5.226 |
-#&gt; |.....................|    -2.620 |   -0.5304 |   -0.3057 |     3.753 |
-#&gt; |.....................|    -6.427 |   0.07650 |     3.398 |    -7.915 |
-#&gt; |<span style='font-weight: bold;'>   51</span>|     483.15597 |    0.9980 |    -1.040 |   -0.9083 |   -0.9402 |
-#&gt; |.....................|   -0.9866 |   -0.8991 |   -0.5603 |   -0.7286 |
-#&gt; |.....................|   -0.8069 |   -0.8742 |   -0.8851 |   -0.9836 |
-#&gt; |.....................|   -0.7022 |   -0.8834 |   -0.9682 |   -0.6737 |
-#&gt; |    U|     483.15597 |     91.30 |    -5.228 |   -0.8851 |    -2.192 |
-#&gt; |.....................|    -4.629 |    0.4516 |    0.9585 |   0.06239 |
-#&gt; |.....................|    0.8564 |   0.05819 |    0.7241 |    0.7987 |
-#&gt; |.....................|     1.382 |    0.9525 |    0.7781 |     1.452 |
-#&gt; |    X|<span style='font-weight: bold;'>     483.15597</span> |     91.30 |  0.005364 |    0.2921 |    0.1117 |
-#&gt; |.....................|  0.009769 |    0.6110 |    0.9585 |   0.06239 |
-#&gt; |.....................|    0.8564 |   0.05819 |    0.7241 |    0.7987 |
-#&gt; |.....................|     1.382 |    0.9525 |    0.7781 |     1.452 |
-#&gt; |<span style='font-weight: bold;'>   52</span>|     483.02721 |     1.004 |    -1.042 |   -0.9082 |   -0.9404 |
-#&gt; |.....................|   -0.9866 |   -0.9001 |   -0.5449 |   -0.7222 |
-#&gt; |.....................|   -0.8037 |   -0.8736 |   -0.8847 |   -0.9882 |
-#&gt; |.....................|   -0.6943 |   -0.8835 |   -0.9723 |   -0.6641 |
-#&gt; |    U|     483.02721 |     91.87 |    -5.230 |   -0.8850 |    -2.192 |
-#&gt; |.....................|    -4.629 |    0.4511 |    0.9649 |   0.06258 |
-#&gt; |.....................|    0.8577 |   0.05821 |    0.7244 |    0.7946 |
-#&gt; |.....................|     1.391 |    0.9524 |    0.7746 |     1.463 |
-#&gt; |    X|<span style='font-weight: bold;'>     483.02721</span> |     91.87 |  0.005352 |    0.2921 |    0.1117 |
-#&gt; |.....................|  0.009768 |    0.6109 |    0.9649 |   0.06258 |
-#&gt; |.....................|    0.8577 |   0.05821 |    0.7244 |    0.7946 |
-#&gt; |.....................|     1.391 |    0.9524 |    0.7746 |     1.463 |
-#&gt; |    F| Forward Diff. |     64.04 |     1.793 |    0.5284 |   0.01389 |
-#&gt; |.....................|   0.02898 |    0.7509 |    -12.63 |    -3.976 |
-#&gt; |.....................|    -2.339 |   -0.6213 |    0.1061 |     4.124 |
-#&gt; |.....................|    -6.092 |   0.06517 |     2.880 |    -7.726 |
-#&gt; |<span style='font-weight: bold;'>   53</span>|     482.23689 |    0.9946 |    -1.047 |   -0.9090 |   -0.9407 |
-#&gt; |.....................|   -0.9878 |   -0.9036 |   -0.5201 |   -0.7284 |
-#&gt; |.....................|   -0.8010 |   -0.8752 |   -0.8830 |   -0.9901 |
-#&gt; |.....................|   -0.6858 |   -0.8831 |   -0.9756 |   -0.6451 |
-#&gt; |    U|     482.23689 |     90.99 |    -5.236 |   -0.8857 |    -2.192 |
-#&gt; |.....................|    -4.630 |    0.4496 |    0.9752 |   0.06240 |
-#&gt; |.....................|    0.8589 |   0.05816 |    0.7257 |    0.7929 |
-#&gt; |.....................|     1.401 |    0.9528 |    0.7717 |     1.486 |
-#&gt; |    X|<span style='font-weight: bold;'>     482.23689</span> |     90.99 |  0.005323 |    0.2920 |    0.1116 |
-#&gt; |.....................|  0.009757 |    0.6105 |    0.9752 |   0.06240 |
-#&gt; |.....................|    0.8589 |   0.05816 |    0.7257 |    0.7929 |
-#&gt; |.....................|     1.401 |    0.9528 |    0.7717 |     1.486 |
-#&gt; |    F| Forward Diff. |    -6.401 |     1.688 |  -0.06693 |    0.1101 |
-#&gt; |.....................|   0.07752 |    0.8485 |    -12.38 |    -4.258 |
-#&gt; |.....................|    -2.381 |   -0.3971 |   -0.4532 |     3.327 |
-#&gt; |.....................|    -5.692 |   0.09795 |     3.049 |    -7.221 |
-#&gt; |<span style='font-weight: bold;'>   54</span>|     481.84664 |     1.002 |    -1.052 |   -0.9094 |   -0.9410 |
-#&gt; |.....................|   -0.9885 |   -0.9064 |   -0.4925 |   -0.7287 |
-#&gt; |.....................|   -0.7974 |   -0.8758 |   -0.8811 |   -0.9941 |
-#&gt; |.....................|   -0.6765 |   -0.8831 |   -0.9802 |   -0.6288 |
-#&gt; |    U|     481.84664 |     91.67 |    -5.240 |   -0.8860 |    -2.193 |
-#&gt; |.....................|    -4.631 |    0.4482 |    0.9866 |   0.06239 |
-#&gt; |.....................|    0.8604 |   0.05815 |    0.7270 |    0.7893 |
-#&gt; |.....................|     1.412 |    0.9528 |    0.7678 |     1.506 |
-#&gt; |    X|<span style='font-weight: bold;'>     481.84664</span> |     91.67 |  0.005298 |    0.2919 |    0.1116 |
-#&gt; |.....................|  0.009749 |    0.6102 |    0.9866 |   0.06239 |
-#&gt; |.....................|    0.8604 |   0.05815 |    0.7270 |    0.7893 |
-#&gt; |.....................|     1.412 |    0.9528 |    0.7678 |     1.506 |
-#&gt; |    F| Forward Diff. |     47.13 |     1.726 |    0.4206 |   0.02536 |
-#&gt; |.....................|   0.06828 |    0.8062 |    -11.83 |    -3.346 |
-#&gt; |.....................|    -2.102 |   -0.4847 |  -0.09759 |     3.731 |
-#&gt; |.....................|    -5.096 |   -0.5769 |     2.736 |    -6.997 |
-#&gt; |<span style='font-weight: bold;'>   55</span>|     481.27209 |    0.9943 |    -1.058 |   -0.9105 |   -0.9413 |
-#&gt; |.....................|   -0.9900 |   -0.9106 |   -0.4653 |   -0.7394 |
-#&gt; |.....................|   -0.7957 |   -0.8780 |   -0.8782 |   -0.9956 |
-#&gt; |.....................|   -0.6736 |   -0.8789 |   -0.9829 |   -0.6135 |
-#&gt; |    U|     481.27209 |     90.96 |    -5.246 |   -0.8870 |    -2.193 |
-#&gt; |.....................|    -4.632 |    0.4464 |    0.9978 |   0.06208 |
-#&gt; |.....................|    0.8611 |   0.05808 |    0.7292 |    0.7879 |
-#&gt; |.....................|     1.416 |    0.9569 |    0.7655 |     1.525 |
-#&gt; |    X|<span style='font-weight: bold;'>     481.27209</span> |     90.96 |  0.005268 |    0.2917 |    0.1116 |
-#&gt; |.....................|  0.009735 |    0.6098 |    0.9978 |   0.06208 |
-#&gt; |.....................|    0.8611 |   0.05808 |    0.7292 |    0.7879 |
-#&gt; |.....................|     1.416 |    0.9569 |    0.7655 |     1.525 |
-#&gt; |    F| Forward Diff. |    -10.35 |     1.643 |   -0.1028 |    0.1091 |
-#&gt; |.....................|    0.1039 |    0.8949 |    -11.59 |    -3.607 |
-#&gt; |.....................|    -2.172 |   -0.3207 |   -0.4703 |     3.042 |
-#&gt; |.....................|    -5.188 |    0.5388 |     2.890 |    -6.602 |
-#&gt; |<span style='font-weight: bold;'>   56</span>|     480.86800 |    0.9992 |    -1.064 |   -0.9113 |   -0.9415 |
-#&gt; |.....................|   -0.9915 |   -0.9152 |   -0.4371 |   -0.7498 |
-#&gt; |.....................|   -0.7937 |   -0.8800 |   -0.8752 |   -0.9980 |
-#&gt; |.....................|   -0.6700 |   -0.8785 |   -0.9867 |   -0.5989 |
-#&gt; |    U|       480.868 |     91.41 |    -5.252 |   -0.8877 |    -2.193 |
-#&gt; |.....................|    -4.634 |    0.4442 |     1.010 |   0.06178 |
-#&gt; |.....................|    0.8619 |   0.05803 |    0.7313 |    0.7858 |
-#&gt; |.....................|     1.420 |    0.9572 |    0.7622 |     1.543 |
-#&gt; |    X|<span style='font-weight: bold;'>       480.868</span> |     91.41 |  0.005236 |    0.2916 |    0.1115 |
-#&gt; |.....................|  0.009720 |    0.6093 |     1.010 |   0.06178 |
-#&gt; |.....................|    0.8619 |   0.05803 |    0.7313 |    0.7858 |
-#&gt; |.....................|     1.420 |    0.9572 |    0.7622 |     1.543 |
-#&gt; |<span style='font-weight: bold;'>   57</span>|     480.18757 |    0.9994 |    -1.075 |   -0.9131 |   -0.9420 |
-#&gt; |.....................|   -0.9946 |   -0.9242 |   -0.3882 |   -0.7756 |
-#&gt; |.....................|   -0.7917 |   -0.8845 |   -0.8694 |    -1.000 |
-#&gt; |.....................|   -0.6674 |   -0.8772 |   -0.9919 |   -0.5742 |
-#&gt; |    U|     480.18757 |     91.43 |    -5.264 |   -0.8893 |    -2.194 |
-#&gt; |.....................|    -4.637 |    0.4401 |     1.030 |   0.06104 |
-#&gt; |.....................|    0.8627 |   0.05790 |    0.7356 |    0.7839 |
-#&gt; |.....................|     1.423 |    0.9585 |    0.7577 |     1.573 |
-#&gt; |    X|<span style='font-weight: bold;'>     480.18757</span> |     91.43 |  0.005177 |    0.2913 |    0.1115 |
-#&gt; |.....................|  0.009690 |    0.6083 |     1.030 |   0.06104 |
-#&gt; |.....................|    0.8627 |   0.05790 |    0.7356 |    0.7839 |
-#&gt; |.....................|     1.423 |    0.9585 |    0.7577 |     1.573 |
-#&gt; |<span style='font-weight: bold;'>   58</span>|     477.33677 |     1.000 |    -1.128 |   -0.9215 |   -0.9444 |
-#&gt; |.....................|    -1.009 |   -0.9662 |   -0.1601 |   -0.8958 |
-#&gt; |.....................|   -0.7824 |   -0.9055 |   -0.8420 |    -1.010 |
-#&gt; |.....................|   -0.6551 |   -0.8713 |    -1.016 |   -0.4591 |
-#&gt; |    U|     477.33677 |     91.51 |    -5.317 |   -0.8967 |    -2.196 |
-#&gt; |.....................|    -4.651 |    0.4208 |     1.124 |   0.05757 |
-#&gt; |.....................|    0.8666 |   0.05729 |    0.7556 |    0.7749 |
-#&gt; |.....................|     1.438 |    0.9642 |    0.7367 |     1.713 |
-#&gt; |    X|<span style='font-weight: bold;'>     477.33677</span> |     91.51 |  0.004910 |    0.2897 |    0.1112 |
-#&gt; |.....................|  0.009550 |    0.6037 |     1.124 |   0.05757 |
-#&gt; |.....................|    0.8666 |   0.05729 |    0.7556 |    0.7749 |
-#&gt; |.....................|     1.438 |    0.9642 |    0.7367 |     1.713 |
-#&gt; |<span style='font-weight: bold;'>   59</span>|     470.34077 |     1.005 |    -1.340 |   -0.9551 |   -0.9536 |
-#&gt; |.....................|    -1.067 |    -1.134 |    0.7520 |    -1.376 |
-#&gt; |.....................|   -0.7448 |   -0.9894 |   -0.7326 |    -1.050 |
-#&gt; |.....................|   -0.6055 |   -0.8475 |    -1.115 |  0.001078 |
-#&gt; |    U|     470.34077 |     91.93 |    -5.528 |   -0.9265 |    -2.205 |
-#&gt; |.....................|    -4.709 |    0.3439 |     1.502 |   0.04372 |
-#&gt; |.....................|    0.8821 |   0.05487 |    0.8354 |    0.7391 |
-#&gt; |.....................|     1.496 |    0.9871 |    0.6524 |     2.272 |
-#&gt; |    X|<span style='font-weight: bold;'>     470.34077</span> |     91.93 |  0.003973 |    0.2836 |    0.1102 |
-#&gt; |.....................|  0.009011 |    0.5851 |     1.502 |   0.04372 |
-#&gt; |.....................|    0.8821 |   0.05487 |    0.8354 |    0.7391 |
-#&gt; |.....................|     1.496 |    0.9871 |    0.6524 |     2.272 |
-#&gt; |    F| Forward Diff. |     26.15 |    0.9841 |   -0.2917 |   -0.5557 |
-#&gt; |.....................|    0.1743 |   0.07961 |    -5.483 |    -2.977 |
-#&gt; |.....................|    -1.594 |    -1.883 |     1.921 |     2.622 |
-#&gt; |.....................|    -2.684 |     3.199 |    -3.516 |   -0.2713 |
-#&gt; |<span style='font-weight: bold;'>   60</span>|     503.34963 |     1.001 |    -1.624 |   -0.8890 |   -0.8555 |
-#&gt; |.....................|    -1.160 |    -1.269 |     1.871 |    -1.579 |
-#&gt; |.....................|   -0.5570 |   -0.7566 |   -0.9888 |    -1.205 |
-#&gt; |.....................|   -0.4219 |    -1.204 |   -0.3205 |  0.003684 |
-#&gt; |    U|     503.34963 |     91.54 |    -5.813 |   -0.8679 |    -2.107 |
-#&gt; |.....................|    -4.802 |    0.2817 |     1.965 |   0.03787 |
-#&gt; |.....................|    0.9599 |   0.06159 |    0.6484 |    0.5998 |
-#&gt; |.....................|     1.714 |    0.6438 |     1.334 |     2.275 |
-#&gt; |    X|<span style='font-weight: bold;'>     503.34963</span> |     91.54 |  0.002989 |    0.2957 |    0.1216 |
-#&gt; |.....................|  0.008214 |    0.5700 |     1.965 |   0.03787 |
-#&gt; |.....................|    0.9599 |   0.06159 |    0.6484 |    0.5998 |
-#&gt; |.....................|     1.714 |    0.6438 |     1.334 |     2.275 |
-#&gt; |<span style='font-weight: bold;'>   61</span>|     469.52776 |     1.001 |    -1.377 |   -0.9480 |   -0.9425 |
-#&gt; |.....................|    -1.079 |    -1.153 |    0.9014 |    -1.405 |
-#&gt; |.....................|   -0.7213 |   -0.9635 |   -0.7590 |    -1.066 |
-#&gt; |.....................|   -0.5863 |   -0.9260 |    -1.020 |  0.002305 |
-#&gt; |    U|     469.52776 |     91.55 |    -5.565 |   -0.9203 |    -2.194 |
-#&gt; |.....................|    -4.721 |    0.3353 |     1.564 |   0.04288 |
-#&gt; |.....................|    0.8919 |   0.05562 |    0.8161 |    0.7248 |
-#&gt; |.....................|     1.519 |    0.9115 |    0.7335 |     2.274 |
-#&gt; |    X|<span style='font-weight: bold;'>     469.52776</span> |     91.55 |  0.003829 |    0.2849 |    0.1114 |
-#&gt; |.....................|  0.008907 |    0.5831 |     1.564 |   0.04288 |
-#&gt; |.....................|    0.8919 |   0.05562 |    0.8161 |    0.7248 |
-#&gt; |.....................|     1.519 |    0.9115 |    0.7335 |     2.274 |
-#&gt; |    F| Forward Diff. |    -33.46 |    0.8466 |   -0.2714 |   -0.3437 |
-#&gt; |.....................| -0.005169 |    0.9674 |    -4.363 |    -2.175 |
-#&gt; |.....................|   -0.4723 |    -1.194 |     1.668 |     1.180 |
-#&gt; |.....................|    -1.975 |    -3.231 |     4.715 |    0.6860 |
-#&gt; |<span style='font-weight: bold;'>   62</span>|     468.69396 |     1.009 |    -1.417 |   -0.9407 |   -0.9181 |
-#&gt; |.....................|    -1.088 |    -1.184 |     1.029 |    -1.410 |
-#&gt; |.....................|   -0.7106 |   -0.9016 |   -0.8502 |    -1.110 |
-#&gt; |.....................|   -0.5641 |   -0.8957 |    -1.025 |  -0.08379 |
-#&gt; |    U|     468.69396 |     92.28 |    -5.606 |   -0.9138 |    -2.170 |
-#&gt; |.....................|    -4.730 |    0.3207 |     1.617 |   0.04273 |
-#&gt; |.....................|    0.8963 |   0.05740 |    0.7496 |    0.6857 |
-#&gt; |.....................|     1.546 |    0.9407 |    0.7298 |     2.169 |
-#&gt; |    X|<span style='font-weight: bold;'>     468.69396</span> |     92.28 |  0.003677 |    0.2862 |    0.1142 |
-#&gt; |.....................|  0.008826 |    0.5795 |     1.617 |   0.04273 |
-#&gt; |.....................|    0.8963 |   0.05740 |    0.7496 |    0.6857 |
-#&gt; |.....................|     1.546 |    0.9407 |    0.7298 |     2.169 |
-#&gt; |    F| Forward Diff. |     44.64 |    0.7919 |    0.8591 |   -0.3536 |
-#&gt; |.....................|   -0.1337 |    0.2061 |    -3.251 |     1.076 |
-#&gt; |.....................|    0.6486 |   -0.6734 | -0.006662 |    -4.031 |
-#&gt; |.....................|   -0.9510 |    -1.369 |     2.636 |    0.2207 |
-#&gt; |<span style='font-weight: bold;'>   63</span>|     468.25975 |     1.001 |    -1.457 |   -0.9435 |   -0.8944 |
-#&gt; |.....................|    -1.092 |    -1.207 |     1.162 |    -1.430 |
-#&gt; |.....................|   -0.7163 |   -0.8453 |   -0.9089 |    -1.031 |
-#&gt; |.....................|   -0.5350 |   -0.9084 |    -1.055 |   -0.1705 |
-#&gt; |    U|     468.25975 |     91.62 |    -5.645 |   -0.9163 |    -2.146 |
-#&gt; |.....................|    -4.734 |    0.3104 |     1.671 |   0.04217 |
-#&gt; |.....................|    0.8939 |   0.05903 |    0.7067 |    0.7562 |
-#&gt; |.....................|     1.580 |    0.9284 |    0.7040 |     2.064 |
-#&gt; |    X|<span style='font-weight: bold;'>     468.25975</span> |     91.62 |  0.003534 |    0.2857 |    0.1169 |
-#&gt; |.....................|  0.008791 |    0.5770 |     1.671 |   0.04217 |
-#&gt; |.....................|    0.8939 |   0.05903 |    0.7067 |    0.7562 |
-#&gt; |.....................|     1.580 |    0.9284 |    0.7040 |     2.064 |
-#&gt; |    F| Forward Diff. |    -27.10 |    0.6132 |  -0.09159 |  -0.08800 |
-#&gt; |.....................|   -0.1078 |   -0.3202 |    -2.388 |     1.638 |
-#&gt; |.....................|     1.140 |    0.1171 |    0.1600 |     3.377 |
-#&gt; |.....................|     1.163 |    -2.226 |   -0.6898 |   -0.6683 |
-#&gt; |<span style='font-weight: bold;'>   64</span>|     467.71969 |     1.007 |    -1.501 |   -0.9546 |   -0.8725 |
-#&gt; |.....................|    -1.088 |    -1.196 |     1.309 |    -1.518 |
-#&gt; |.....................|   -0.7729 |   -0.8084 |   -0.9408 |    -1.028 |
-#&gt; |.....................|   -0.5596 |   -0.8715 |    -1.022 |   -0.2167 |
-#&gt; |    U|     467.71969 |     92.14 |    -5.690 |   -0.9262 |    -2.124 |
-#&gt; |.....................|    -4.730 |    0.3152 |     1.732 |   0.03962 |
-#&gt; |.....................|    0.8705 |   0.06009 |    0.6835 |    0.7588 |
-#&gt; |.....................|     1.551 |    0.9640 |    0.7321 |     2.007 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.71969</span> |     92.14 |  0.003381 |    0.2837 |    0.1195 |
-#&gt; |.....................|  0.008831 |    0.5781 |     1.732 |   0.03962 |
-#&gt; |.....................|    0.8705 |   0.06009 |    0.6835 |    0.7588 |
-#&gt; |.....................|     1.551 |    0.9640 |    0.7321 |     2.007 |
-#&gt; |    F| Forward Diff. |     13.64 |    0.5263 |  -0.09449 |  -0.03300 |
-#&gt; |.....................|   -0.2497 |    0.5177 |    -1.944 |     1.719 |
-#&gt; |.....................|   0.02781 |   -0.4546 |    0.1053 |     4.139 |
-#&gt; |.....................|    0.2369 |    0.8861 |     1.752 |   -0.4404 |
-#&gt; |<span style='font-weight: bold;'>   65</span>|     467.30536 |     1.004 |    -1.542 |   -0.9574 |   -0.8551 |
-#&gt; |.....................|    -1.078 |    -1.202 |     1.437 |    -1.633 |
-#&gt; |.....................|   -0.8162 |   -0.7674 |   -0.9588 |    -1.081 |
-#&gt; |.....................|   -0.5907 |   -0.8860 |    -1.037 |   -0.2723 |
-#&gt; |    U|     467.30536 |     91.87 |    -5.731 |   -0.9286 |    -2.107 |
-#&gt; |.....................|    -4.720 |    0.3124 |     1.785 |   0.03631 |
-#&gt; |.....................|    0.8526 |   0.06127 |    0.6704 |    0.7116 |
-#&gt; |.....................|     1.514 |    0.9500 |    0.7187 |     1.940 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.30536</span> |     91.87 |  0.003244 |    0.2832 |    0.1216 |
-#&gt; |.....................|  0.008917 |    0.5775 |     1.785 |   0.03631 |
-#&gt; |.....................|    0.8526 |   0.06127 |    0.6704 |    0.7116 |
-#&gt; |.....................|     1.514 |    0.9500 |    0.7187 |     1.940 |
-#&gt; |    F| Forward Diff. |    -28.84 |    0.5077 |   -0.1377 |   0.05990 |
-#&gt; |.....................|   -0.2272 |    0.7424 |    -2.070 |   -0.4026 |
-#&gt; |.....................|   -0.6342 |   -0.6074 |   -0.7367 |    -1.927 |
-#&gt; |.....................|    -1.174 |   -0.4282 |   -0.2913 |   -0.8226 |
-#&gt; |<span style='font-weight: bold;'>   66</span>|     467.70919 |     1.018 |    -1.590 |   -0.9528 |   -0.8478 |
-#&gt; |.....................|    -1.050 |    -1.273 |     1.541 |    -1.746 |
-#&gt; |.....................|   -0.7981 |   -0.6862 |   -0.9431 |    -1.082 |
-#&gt; |.....................|   -0.5846 |   -0.9179 |    -1.062 |   -0.3171 |
-#&gt; |    U|     467.70919 |     93.14 |    -5.778 |   -0.9245 |    -2.100 |
-#&gt; |.....................|    -4.692 |    0.2799 |     1.829 |   0.03305 |
-#&gt; |.....................|    0.8601 |   0.06362 |    0.6818 |    0.7103 |
-#&gt; |.....................|     1.521 |    0.9193 |    0.6977 |     1.885 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.70919</span> |     93.14 |  0.003094 |    0.2840 |    0.1225 |
-#&gt; |.....................|  0.009168 |    0.5695 |     1.829 |   0.03305 |
-#&gt; |.....................|    0.8601 |   0.06362 |    0.6818 |    0.7103 |
-#&gt; |.....................|     1.521 |    0.9193 |    0.6977 |     1.885 |
-#&gt; |<span style='font-weight: bold;'>   67</span>|     467.47896 |     1.015 |    -1.557 |   -0.9559 |   -0.8529 |
-#&gt; |.....................|    -1.069 |    -1.224 |     1.469 |    -1.667 |
-#&gt; |.....................|   -0.8105 |   -0.7423 |   -0.9538 |    -1.081 |
-#&gt; |.....................|   -0.5885 |   -0.8957 |    -1.045 |   -0.2858 |
-#&gt; |    U|     467.47896 |     92.90 |    -5.746 |   -0.9273 |    -2.105 |
-#&gt; |.....................|    -4.711 |    0.3023 |     1.799 |   0.03531 |
-#&gt; |.....................|    0.8550 |   0.06200 |    0.6740 |    0.7117 |
-#&gt; |.....................|     1.517 |    0.9407 |    0.7123 |     1.923 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.47896</span> |     92.90 |  0.003197 |    0.2835 |    0.1219 |
-#&gt; |.....................|  0.008994 |    0.5750 |     1.799 |   0.03531 |
-#&gt; |.....................|    0.8550 |   0.06200 |    0.6740 |    0.7117 |
-#&gt; |.....................|     1.517 |    0.9407 |    0.7123 |     1.923 |
-#&gt; |<span style='font-weight: bold;'>   68</span>|     467.47242 |     1.015 |    -1.547 |   -0.9569 |   -0.8545 |
-#&gt; |.....................|    -1.075 |    -1.209 |     1.447 |    -1.644 |
-#&gt; |.....................|   -0.8142 |   -0.7594 |   -0.9570 |    -1.080 |
-#&gt; |.....................|   -0.5898 |   -0.8890 |    -1.040 |   -0.2763 |
-#&gt; |    U|     467.47242 |     92.83 |    -5.736 |   -0.9282 |    -2.106 |
-#&gt; |.....................|    -4.717 |    0.3092 |     1.790 |   0.03600 |
-#&gt; |.....................|    0.8534 |   0.06150 |    0.6716 |    0.7121 |
-#&gt; |.....................|     1.515 |    0.9472 |    0.7168 |     1.935 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.47242</span> |     92.83 |  0.003229 |    0.2833 |    0.1217 |
-#&gt; |.....................|  0.008942 |    0.5767 |     1.790 |   0.03600 |
-#&gt; |.....................|    0.8534 |   0.06150 |    0.6716 |    0.7121 |
-#&gt; |.....................|     1.515 |    0.9472 |    0.7168 |     1.935 |
-#&gt; |<span style='font-weight: bold;'>   69</span>|     467.34503 |     1.012 |    -1.542 |   -0.9574 |   -0.8552 |
-#&gt; |.....................|    -1.078 |    -1.203 |     1.437 |    -1.633 |
-#&gt; |.....................|   -0.8160 |   -0.7673 |   -0.9586 |    -1.080 |
-#&gt; |.....................|   -0.5904 |   -0.8859 |    -1.037 |   -0.2720 |
-#&gt; |    U|     467.34503 |     92.56 |    -5.731 |   -0.9286 |    -2.107 |
-#&gt; |.....................|    -4.720 |    0.3123 |     1.786 |   0.03631 |
-#&gt; |.....................|    0.8527 |   0.06128 |    0.6705 |    0.7121 |
-#&gt; |.....................|     1.514 |    0.9501 |    0.7188 |     1.940 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.34503</span> |     92.56 |  0.003244 |    0.2832 |    0.1216 |
-#&gt; |.....................|  0.008918 |    0.5775 |     1.786 |   0.03631 |
-#&gt; |.....................|    0.8527 |   0.06128 |    0.6705 |    0.7121 |
-#&gt; |.....................|     1.514 |    0.9501 |    0.7188 |     1.940 |
-#&gt; |<span style='font-weight: bold;'>   70</span>|     467.25859 |     1.007 |    -1.542 |   -0.9574 |   -0.8552 |
-#&gt; |.....................|    -1.078 |    -1.202 |     1.437 |    -1.633 |
-#&gt; |.....................|   -0.8161 |   -0.7674 |   -0.9587 |    -1.080 |
-#&gt; |.....................|   -0.5906 |   -0.8860 |    -1.037 |   -0.2722 |
-#&gt; |    U|     467.25859 |     92.16 |    -5.731 |   -0.9286 |    -2.107 |
-#&gt; |.....................|    -4.720 |    0.3124 |     1.785 |   0.03631 |
-#&gt; |.....................|    0.8526 |   0.06127 |    0.6704 |    0.7118 |
-#&gt; |.....................|     1.514 |    0.9500 |    0.7187 |     1.940 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.25859</span> |     92.16 |  0.003244 |    0.2832 |    0.1216 |
-#&gt; |.....................|  0.008918 |    0.5775 |     1.785 |   0.03631 |
-#&gt; |.....................|    0.8526 |   0.06127 |    0.6704 |    0.7118 |
-#&gt; |.....................|     1.514 |    0.9500 |    0.7187 |     1.940 |
-#&gt; |    F| Forward Diff. |    0.4422 |    0.5213 |   0.04284 |   0.02840 |
-#&gt; |.....................|   -0.2383 |    0.7531 |    -2.043 |  -0.07081 |
-#&gt; |.....................|   -0.6548 |   -0.6872 |   -0.7073 |    -1.773 |
-#&gt; |.....................|    -1.488 |   -0.4400 |   -0.3907 |   -0.8156 |
-#&gt; |<span style='font-weight: bold;'>   71</span>|     467.25330 |     1.007 |    -1.543 |   -0.9574 |   -0.8552 |
-#&gt; |.....................|    -1.078 |    -1.203 |     1.439 |    -1.633 |
-#&gt; |.....................|   -0.8155 |   -0.7668 |   -0.9581 |    -1.079 |
-#&gt; |.....................|   -0.5893 |   -0.8856 |    -1.037 |   -0.2714 |
-#&gt; |    U|      467.2533 |     92.12 |    -5.731 |   -0.9287 |    -2.107 |
-#&gt; |.....................|    -4.720 |    0.3121 |     1.786 |   0.03631 |
-#&gt; |.....................|    0.8529 |   0.06129 |    0.6709 |    0.7133 |
-#&gt; |.....................|     1.516 |    0.9504 |    0.7190 |     1.941 |
-#&gt; |    X|<span style='font-weight: bold;'>      467.2533</span> |     92.12 |  0.003243 |    0.2832 |    0.1216 |
-#&gt; |.....................|  0.008919 |    0.5774 |     1.786 |   0.03631 |
-#&gt; |.....................|    0.8529 |   0.06129 |    0.6709 |    0.7133 |
-#&gt; |.....................|     1.516 |    0.9504 |    0.7190 |     1.941 |
-#&gt; |    F| Forward Diff. |    -3.065 |    0.5175 |   0.01752 |   0.03302 |
-#&gt; |.....................|   -0.2370 |    0.7457 |    -1.985 |  -0.01476 |
-#&gt; |.....................|   -0.5869 |   -0.6438 |   -0.7222 |    -1.672 |
-#&gt; |.....................|    -1.086 |   -0.3942 |   -0.3461 |   -0.8075 |
-#&gt; |<span style='font-weight: bold;'>   72</span>|     467.24583 |     1.008 |    -1.544 |   -0.9571 |   -0.8551 |
-#&gt; |.....................|    -1.077 |    -1.206 |     1.442 |    -1.635 |
-#&gt; |.....................|   -0.8142 |   -0.7642 |   -0.9569 |    -1.078 |
-#&gt; |.....................|   -0.5901 |   -0.8857 |    -1.037 |   -0.2715 |
-#&gt; |    U|     467.24583 |     92.22 |    -5.733 |   -0.9284 |    -2.107 |
-#&gt; |.....................|    -4.719 |    0.3108 |     1.788 |   0.03626 |
-#&gt; |.....................|    0.8534 |   0.06137 |    0.6718 |    0.7144 |
-#&gt; |.....................|     1.515 |    0.9503 |    0.7191 |     1.941 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.24583</span> |     92.22 |  0.003238 |    0.2832 |    0.1216 |
-#&gt; |.....................|  0.008927 |    0.5771 |     1.788 |   0.03626 |
-#&gt; |.....................|    0.8534 |   0.06137 |    0.6718 |    0.7144 |
-#&gt; |.....................|     1.515 |    0.9503 |    0.7191 |     1.941 |
-#&gt; |    F| Forward Diff. |     6.834 |    0.5162 |   0.08982 |   0.01752 |
-#&gt; |.....................|   -0.2436 |    0.7158 |    -2.020 |  -0.04939 |
-#&gt; |.....................|   -0.5459 |   -0.6263 |   -0.5712 |    -1.499 |
-#&gt; |.....................|    -1.429 |   -0.4150 |   -0.4098 |   -0.8001 |
-#&gt; |<span style='font-weight: bold;'>   73</span>|     467.23713 |     1.007 |    -1.546 |   -0.9569 |   -0.8551 |
-#&gt; |.....................|    -1.076 |    -1.209 |     1.446 |    -1.636 |
-#&gt; |.....................|   -0.8132 |   -0.7618 |   -0.9559 |    -1.076 |
-#&gt; |.....................|   -0.5919 |   -0.8860 |    -1.037 |   -0.2716 |
-#&gt; |    U|     467.23713 |     92.12 |    -5.734 |   -0.9282 |    -2.107 |
-#&gt; |.....................|    -4.718 |    0.3095 |     1.789 |   0.03621 |
-#&gt; |.....................|    0.8538 |   0.06143 |    0.6724 |    0.7154 |
-#&gt; |.....................|     1.513 |    0.9500 |    0.7191 |     1.941 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.23713</span> |     92.12 |  0.003233 |    0.2833 |    0.1216 |
-#&gt; |.....................|  0.008936 |    0.5768 |     1.789 |   0.03621 |
-#&gt; |.....................|    0.8538 |   0.06143 |    0.6724 |    0.7154 |
-#&gt; |.....................|     1.513 |    0.9500 |    0.7191 |     1.941 |
-#&gt; |    F| Forward Diff. |    -3.249 |    0.5067 |   0.04417 |   0.02698 |
-#&gt; |.....................|   -0.2393 |    0.6753 |    -1.942 |   -0.1419 |
-#&gt; |.....................|   -0.5001 |   -0.5983 |   -0.6679 |    -1.518 |
-#&gt; |.....................|    -1.576 |   -0.4506 |   -0.4091 |   -0.8075 |
-#&gt; |<span style='font-weight: bold;'>   74</span>|     467.22826 |     1.008 |    -1.548 |   -0.9568 |   -0.8550 |
-#&gt; |.....................|    -1.074 |    -1.212 |     1.450 |    -1.638 |
-#&gt; |.....................|   -0.8127 |   -0.7593 |   -0.9548 |    -1.076 |
-#&gt; |.....................|   -0.5925 |   -0.8862 |    -1.037 |   -0.2718 |
-#&gt; |    U|     467.22826 |     92.20 |    -5.736 |   -0.9281 |    -2.107 |
-#&gt; |.....................|    -4.716 |    0.3080 |     1.791 |   0.03615 |
-#&gt; |.....................|    0.8540 |   0.06151 |    0.6733 |    0.7160 |
-#&gt; |.....................|     1.512 |    0.9499 |    0.7192 |     1.940 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.22826</span> |     92.20 |  0.003227 |    0.2833 |    0.1216 |
-#&gt; |.....................|  0.008947 |    0.5764 |     1.791 |   0.03615 |
-#&gt; |.....................|    0.8540 |   0.06151 |    0.6733 |    0.7160 |
-#&gt; |.....................|     1.512 |    0.9499 |    0.7192 |     1.940 |
-#&gt; |    F| Forward Diff. |     4.158 |    0.5052 |   0.09162 |   0.01474 |
-#&gt; |.....................|   -0.2441 |    0.6411 |    -1.927 |  0.008374 |
-#&gt; |.....................|   -0.4204 |   -0.5681 |   -0.5325 |    -1.398 |
-#&gt; |.....................|    -1.545 |   -0.4616 |   -0.4623 |   -0.8062 |
-#&gt; |<span style='font-weight: bold;'>   75</span>|     467.21798 |     1.007 |    -1.549 |   -0.9567 |   -0.8549 |
-#&gt; |.....................|    -1.073 |    -1.215 |     1.453 |    -1.641 |
-#&gt; |.....................|   -0.8130 |   -0.7568 |   -0.9541 |    -1.075 |
-#&gt; |.....................|   -0.5920 |   -0.8862 |    -1.036 |   -0.2722 |
-#&gt; |    U|     467.21798 |     92.13 |    -5.738 |   -0.9280 |    -2.107 |
-#&gt; |.....................|    -4.715 |    0.3065 |     1.792 |   0.03607 |
-#&gt; |.....................|    0.8539 |   0.06158 |    0.6738 |    0.7163 |
-#&gt; |.....................|     1.512 |    0.9498 |    0.7195 |     1.940 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.21798</span> |     92.13 |  0.003221 |    0.2833 |    0.1216 |
-#&gt; |.....................|  0.008959 |    0.5760 |     1.792 |   0.03607 |
-#&gt; |.....................|    0.8539 |   0.06158 |    0.6738 |    0.7163 |
-#&gt; |.....................|     1.512 |    0.9498 |    0.7195 |     1.940 |
-#&gt; |    F| Forward Diff. |    -2.820 |    0.4989 |   0.05960 |   0.01935 |
-#&gt; |.....................|   -0.2421 |    0.6061 |    -1.914 |   -0.2151 |
-#&gt; |.....................|   -0.5103 |   -0.6093 |   -0.7625 |    -1.437 |
-#&gt; |.....................|    -1.510 |   -0.4672 |   -0.4489 |   -0.8043 |
-#&gt; |<span style='font-weight: bold;'>   76</span>|     467.20848 |     1.008 |    -1.551 |   -0.9569 |   -0.8547 |
-#&gt; |.....................|    -1.072 |    -1.218 |     1.456 |    -1.643 |
-#&gt; |.....................|   -0.8130 |   -0.7539 |   -0.9520 |    -1.075 |
-#&gt; |.....................|   -0.5920 |   -0.8859 |    -1.036 |   -0.2725 |
-#&gt; |    U|     467.20848 |     92.20 |    -5.740 |   -0.9282 |    -2.106 |
-#&gt; |.....................|    -4.714 |    0.3053 |     1.793 |   0.03601 |
-#&gt; |.....................|    0.8539 |   0.06166 |    0.6753 |    0.7165 |
-#&gt; |.....................|     1.512 |    0.9501 |    0.7200 |     1.939 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.20848</span> |     92.20 |  0.003215 |    0.2833 |    0.1217 |
-#&gt; |.....................|  0.008973 |    0.5757 |     1.793 |   0.03601 |
-#&gt; |.....................|    0.8539 |   0.06166 |    0.6753 |    0.7165 |
-#&gt; |.....................|     1.512 |    0.9501 |    0.7200 |     1.939 |
-#&gt; |    F| Forward Diff. |     3.706 |    0.4993 |    0.1020 |   0.01046 |
-#&gt; |.....................|   -0.2448 |    0.5847 |    -1.899 |   -0.1702 |
-#&gt; |.....................|   -0.3837 |   -0.5516 |   -0.5275 |    -1.370 |
-#&gt; |.....................|    -1.509 |   -0.4527 |   -0.4630 |   -0.7991 |
-#&gt; |<span style='font-weight: bold;'>   77</span>|     467.20140 |     1.007 |    -1.554 |   -0.9572 |   -0.8545 |
-#&gt; |.....................|    -1.070 |    -1.221 |     1.459 |    -1.644 |
-#&gt; |.....................|   -0.8137 |   -0.7511 |   -0.9495 |    -1.075 |
-#&gt; |.....................|   -0.5926 |   -0.8856 |    -1.035 |   -0.2726 |
-#&gt; |    U|      467.2014 |     92.12 |    -5.742 |   -0.9285 |    -2.106 |
-#&gt; |.....................|    -4.712 |    0.3041 |     1.795 |   0.03600 |
-#&gt; |.....................|    0.8536 |   0.06174 |    0.6772 |    0.7169 |
-#&gt; |.....................|     1.512 |    0.9504 |    0.7205 |     1.939 |
-#&gt; |    X|<span style='font-weight: bold;'>      467.2014</span> |     92.12 |  0.003207 |    0.2832 |    0.1217 |
-#&gt; |.....................|  0.008990 |    0.5754 |     1.795 |   0.03600 |
-#&gt; |.....................|    0.8536 |   0.06174 |    0.6772 |    0.7169 |
-#&gt; |.....................|     1.512 |    0.9504 |    0.7205 |     1.939 |
-#&gt; |    F| Forward Diff. |    -4.697 |    0.4875 |   0.03394 |   0.01314 |
-#&gt; |.....................|   -0.2450 |    0.5527 |    -1.903 |   -0.2230 |
-#&gt; |.....................|   -0.3367 |   -0.5055 |   -0.4386 |    -1.334 |
-#&gt; |.....................|    -1.570 |   -0.4518 |   -0.4312 |   -0.7987 |
-#&gt; |<span style='font-weight: bold;'>   78</span>|     467.19155 |     1.008 |    -1.556 |   -0.9574 |   -0.8545 |
-#&gt; |.....................|    -1.067 |    -1.224 |     1.462 |    -1.645 |
-#&gt; |.....................|   -0.8159 |   -0.7492 |   -0.9499 |    -1.074 |
-#&gt; |.....................|   -0.5924 |   -0.8858 |    -1.035 |   -0.2722 |
-#&gt; |    U|     467.19155 |     92.18 |    -5.745 |   -0.9286 |    -2.106 |
-#&gt; |.....................|    -4.709 |    0.3027 |     1.796 |   0.03596 |
-#&gt; |.....................|    0.8527 |   0.06180 |    0.6768 |    0.7173 |
-#&gt; |.....................|     1.512 |    0.9502 |    0.7208 |     1.940 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.19155</span> |     92.18 |  0.003200 |    0.2832 |    0.1217 |
-#&gt; |.....................|  0.009010 |    0.5751 |     1.796 |   0.03596 |
-#&gt; |.....................|    0.8527 |   0.06180 |    0.6768 |    0.7173 |
-#&gt; |.....................|     1.512 |    0.9502 |    0.7208 |     1.940 |
-#&gt; |    F| Forward Diff. |     2.102 |    0.4867 |   0.07498 |  0.004893 |
-#&gt; |.....................|   -0.2442 |    0.5250 |    -1.879 |   -0.1740 |
-#&gt; |.....................|   -0.3775 |   -0.5383 |   -0.4109 |    -1.255 |
-#&gt; |.....................|    -1.562 |   -0.4584 |   -0.4426 |   -0.7882 |
-#&gt; |<span style='font-weight: bold;'>   79</span>|     467.18237 |     1.007 |    -1.558 |   -0.9574 |   -0.8544 |
-#&gt; |.....................|    -1.065 |    -1.226 |     1.465 |    -1.647 |
-#&gt; |.....................|   -0.8177 |   -0.7470 |   -0.9510 |    -1.074 |
-#&gt; |.....................|   -0.5912 |   -0.8859 |    -1.035 |   -0.2717 |
-#&gt; |    U|     467.18237 |     92.12 |    -5.747 |   -0.9286 |    -2.106 |
-#&gt; |.....................|    -4.707 |    0.3016 |     1.797 |   0.03591 |
-#&gt; |.....................|    0.8519 |   0.06186 |    0.6761 |    0.7177 |
-#&gt; |.....................|     1.513 |    0.9501 |    0.7212 |     1.940 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.18237</span> |     92.12 |  0.003193 |    0.2832 |    0.1217 |
-#&gt; |.....................|  0.009031 |    0.5748 |     1.797 |   0.03591 |
-#&gt; |.....................|    0.8519 |   0.06186 |    0.6761 |    0.7177 |
-#&gt; |.....................|     1.513 |    0.9501 |    0.7212 |     1.940 |
-#&gt; |    F| Forward Diff. |    -4.940 |    0.4761 |   0.03110 |  0.006161 |
-#&gt; |.....................|   -0.2415 |    0.4988 |    -1.880 |   -0.2651 |
-#&gt; |.....................|   -0.3787 |   -0.5263 |   -0.4799 |    -1.241 |
-#&gt; |.....................|    -1.481 |   -0.4641 |   -0.4124 |   -0.7761 |
-#&gt; |<span style='font-weight: bold;'>   80</span>|     467.17113 |     1.008 |    -1.561 |   -0.9574 |   -0.8542 |
-#&gt; |.....................|    -1.062 |    -1.228 |     1.469 |    -1.648 |
-#&gt; |.....................|   -0.8192 |   -0.7442 |   -0.9515 |    -1.074 |
-#&gt; |.....................|   -0.5909 |   -0.8858 |    -1.034 |   -0.2714 |
-#&gt; |    U|     467.17113 |     92.19 |    -5.749 |   -0.9286 |    -2.106 |
-#&gt; |.....................|    -4.704 |    0.3008 |     1.799 |   0.03586 |
-#&gt; |.....................|    0.8513 |   0.06194 |    0.6757 |    0.7179 |
-#&gt; |.....................|     1.514 |    0.9502 |    0.7215 |     1.941 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.17113</span> |     92.19 |  0.003185 |    0.2832 |    0.1217 |
-#&gt; |.....................|  0.009056 |    0.5746 |     1.799 |   0.03586 |
-#&gt; |.....................|    0.8513 |   0.06194 |    0.6757 |    0.7179 |
-#&gt; |.....................|     1.514 |    0.9502 |    0.7215 |     1.941 |
-#&gt; |<span style='font-weight: bold;'>   81</span>|     467.15723 |     1.008 |    -1.564 |   -0.9575 |   -0.8538 |
-#&gt; |.....................|    -1.058 |    -1.230 |     1.473 |    -1.651 |
-#&gt; |.....................|   -0.8215 |   -0.7400 |   -0.9524 |    -1.074 |
-#&gt; |.....................|   -0.5906 |   -0.8857 |    -1.034 |   -0.2712 |
-#&gt; |    U|     467.15723 |     92.19 |    -5.753 |   -0.9287 |    -2.106 |
-#&gt; |.....................|    -4.700 |    0.2996 |     1.800 |   0.03578 |
-#&gt; |.....................|    0.8504 |   0.06206 |    0.6750 |    0.7179 |
-#&gt; |.....................|     1.514 |    0.9503 |    0.7219 |     1.941 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.15723</span> |     92.19 |  0.003173 |    0.2832 |    0.1218 |
-#&gt; |.....................|  0.009093 |    0.5743 |     1.800 |   0.03578 |
-#&gt; |.....................|    0.8504 |   0.06206 |    0.6750 |    0.7179 |
-#&gt; |.....................|     1.514 |    0.9503 |    0.7219 |     1.941 |
-#&gt; |<span style='font-weight: bold;'>   82</span>|     467.09153 |     1.008 |    -1.583 |   -0.9578 |   -0.8521 |
-#&gt; |.....................|    -1.038 |    -1.244 |     1.497 |    -1.664 |
-#&gt; |.....................|   -0.8331 |   -0.7187 |   -0.9572 |    -1.074 |
-#&gt; |.....................|   -0.5894 |   -0.8854 |    -1.031 |   -0.2699 |
-#&gt; |    U|     467.09153 |     92.20 |    -5.772 |   -0.9290 |    -2.104 |
-#&gt; |.....................|    -4.680 |    0.2934 |     1.810 |   0.03540 |
-#&gt; |.....................|    0.8456 |   0.06268 |    0.6715 |    0.7181 |
-#&gt; |.....................|     1.516 |    0.9506 |    0.7239 |     1.943 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.09153</span> |     92.20 |  0.003114 |    0.2831 |    0.1220 |
-#&gt; |.....................|  0.009282 |    0.5728 |     1.810 |   0.03540 |
-#&gt; |.....................|    0.8456 |   0.06268 |    0.6715 |    0.7181 |
-#&gt; |.....................|     1.516 |    0.9506 |    0.7239 |     1.943 |
-#&gt; |<span style='font-weight: bold;'>   83</span>|     466.89701 |     1.009 |    -1.658 |   -0.9591 |   -0.8451 |
-#&gt; |.....................|   -0.9556 |    -1.297 |     1.590 |    -1.717 |
-#&gt; |.....................|   -0.8794 |   -0.6338 |   -0.9760 |    -1.073 |
-#&gt; |.....................|   -0.5844 |   -0.8840 |    -1.022 |   -0.2647 |
-#&gt; |    U|     466.89701 |     92.27 |    -5.846 |   -0.9301 |    -2.097 |
-#&gt; |.....................|    -4.598 |    0.2688 |     1.849 |   0.03388 |
-#&gt; |.....................|    0.8264 |   0.06513 |    0.6578 |    0.7186 |
-#&gt; |.....................|     1.521 |    0.9519 |    0.7320 |     1.949 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.89701</span> |     92.27 |  0.002890 |    0.2829 |    0.1228 |
-#&gt; |.....................|   0.01008 |    0.5668 |     1.849 |   0.03388 |
-#&gt; |.....................|    0.8264 |   0.06513 |    0.6578 |    0.7186 |
-#&gt; |.....................|     1.521 |    0.9519 |    0.7320 |     1.949 |
-#&gt; |<span style='font-weight: bold;'>   84</span>|     466.81525 |     1.010 |    -1.758 |   -0.9608 |   -0.8357 |
-#&gt; |.....................|   -0.8455 |    -1.369 |     1.715 |    -1.787 |
-#&gt; |.....................|   -0.9414 |   -0.5201 |    -1.001 |    -1.072 |
-#&gt; |.....................|   -0.5775 |   -0.8822 |    -1.009 |   -0.2576 |
-#&gt; |    U|     466.81525 |     92.41 |    -5.946 |   -0.9316 |    -2.087 |
-#&gt; |.....................|    -4.488 |    0.2358 |     1.901 |   0.03185 |
-#&gt; |.....................|    0.8007 |   0.06841 |    0.6394 |    0.7195 |
-#&gt; |.....................|     1.530 |    0.9537 |    0.7428 |     1.958 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.81525</span> |     92.41 |  0.002615 |    0.2826 |    0.1240 |
-#&gt; |.....................|   0.01125 |    0.5587 |     1.901 |   0.03185 |
-#&gt; |.....................|    0.8007 |   0.06841 |    0.6394 |    0.7195 |
-#&gt; |.....................|     1.530 |    0.9537 |    0.7428 |     1.958 |
-#&gt; |    F| Forward Diff. |     1.005 |   0.03859 |    0.3281 |   -0.1495 |
-#&gt; |.....................|    0.1126 |   -0.4190 |   -0.9638 |    -1.159 |
-#&gt; |.....................|   -0.4187 |   -0.1084 |    -1.236 |     1.865 |
-#&gt; |.....................|   -0.3960 |   -0.4043 |   -0.1671 |    0.1635 |
-#&gt; |<span style='font-weight: bold;'>   85</span>|     467.22945 |     1.009 |    -1.931 |    -1.059 |   -0.7851 |
-#&gt; |.....................|   -0.6667 |    -1.418 |     1.962 |    -1.804 |
-#&gt; |.....................|    -1.038 |   -0.3298 |   -0.7816 |    -1.157 |
-#&gt; |.....................|   -0.5368 |   -0.8226 |   -0.9633 |   -0.3812 |
-#&gt; |    U|     467.22945 |     92.33 |    -6.120 |    -1.019 |    -2.037 |
-#&gt; |.....................|    -4.309 |    0.2137 |     2.003 |   0.03136 |
-#&gt; |.....................|    0.7606 |   0.07390 |    0.7997 |    0.6429 |
-#&gt; |.....................|     1.578 |     1.011 |    0.7823 |     1.807 |
-#&gt; |    X|<span style='font-weight: bold;'>     467.22945</span> |     92.33 |  0.002199 |    0.2652 |    0.1304 |
-#&gt; |.....................|   0.01345 |    0.5532 |     2.003 |   0.03136 |
-#&gt; |.....................|    0.7606 |   0.07390 |    0.7997 |    0.6429 |
-#&gt; |.....................|     1.578 |     1.011 |    0.7823 |     1.807 |
-#&gt; |<span style='font-weight: bold;'>   86</span>|     466.68655 |     1.009 |    -1.812 |   -0.9919 |   -0.8198 |
-#&gt; |.....................|   -0.7896 |    -1.384 |     1.793 |    -1.792 |
-#&gt; |.....................|   -0.9716 |   -0.4604 |   -0.9317 |    -1.100 |
-#&gt; |.....................|   -0.5645 |   -0.8633 |   -0.9948 |   -0.2964 |
-#&gt; |    U|     466.68655 |     92.33 |    -6.001 |   -0.9592 |    -2.072 |
-#&gt; |.....................|    -4.432 |    0.2290 |     1.933 |   0.03172 |
-#&gt; |.....................|    0.7883 |   0.07013 |    0.6901 |    0.6945 |
-#&gt; |.....................|     1.545 |    0.9719 |    0.7553 |     1.910 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.68655</span> |     92.33 |  0.002477 |    0.2770 |    0.1260 |
-#&gt; |.....................|   0.01190 |    0.5570 |     1.933 |   0.03172 |
-#&gt; |.....................|    0.7883 |   0.07013 |    0.6901 |    0.6945 |
-#&gt; |.....................|     1.545 |    0.9719 |    0.7553 |     1.910 |
-#&gt; |    F| Forward Diff. |    -11.18 |   0.05254 |   -0.8763 |  -0.07569 |
-#&gt; |.....................|    0.1998 |   -0.2059 |   -0.4605 |   -0.7124 |
-#&gt; |.....................|   -0.3271 |   0.07217 |    0.9692 |     1.710 |
-#&gt; |.....................|   -0.7229 |    0.7265 |    0.2517 |  -0.09129 |
-#&gt; |<span style='font-weight: bold;'>   87</span>|     466.82655 |     1.009 |    -1.865 |   -0.9192 |   -0.7946 |
-#&gt; |.....................|   -0.7769 |    -1.362 |     1.859 |    -1.827 |
-#&gt; |.....................|   -0.9838 |   -0.4392 |   -0.9155 |    -1.146 |
-#&gt; |.....................|   -0.4995 |   -0.8511 |    -1.000 |   -0.3560 |
-#&gt; |    U|     466.82655 |     92.34 |    -6.054 |   -0.8947 |    -2.046 |
-#&gt; |.....................|    -4.419 |    0.2394 |     1.960 |   0.03072 |
-#&gt; |.....................|    0.7832 |   0.07074 |    0.7019 |    0.6527 |
-#&gt; |.....................|     1.622 |    0.9836 |    0.7506 |     1.838 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.82655</span> |     92.34 |  0.002349 |    0.2901 |    0.1292 |
-#&gt; |.....................|   0.01205 |    0.5596 |     1.960 |   0.03072 |
-#&gt; |.....................|    0.7832 |   0.07074 |    0.7019 |    0.6527 |
-#&gt; |.....................|     1.622 |    0.9836 |    0.7506 |     1.838 |
-#&gt; |<span style='font-weight: bold;'>   88</span>|     466.65072 |     1.010 |    -1.827 |   -0.9719 |   -0.8129 |
-#&gt; |.....................|   -0.7861 |    -1.378 |     1.811 |    -1.801 |
-#&gt; |.....................|   -0.9749 |   -0.4546 |   -0.9274 |    -1.113 |
-#&gt; |.....................|   -0.5467 |   -0.8600 |   -0.9963 |   -0.3127 |
-#&gt; |    U|     466.65072 |     92.43 |    -6.015 |   -0.9415 |    -2.065 |
-#&gt; |.....................|    -4.428 |    0.2318 |     1.940 |   0.03144 |
-#&gt; |.....................|    0.7869 |   0.07030 |    0.6933 |    0.6830 |
-#&gt; |.....................|     1.566 |    0.9750 |    0.7540 |     1.891 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.65072</span> |     92.43 |  0.002441 |    0.2806 |    0.1269 |
-#&gt; |.....................|   0.01194 |    0.5577 |     1.940 |   0.03144 |
-#&gt; |.....................|    0.7869 |   0.07030 |    0.6933 |    0.6830 |
-#&gt; |.....................|     1.566 |    0.9750 |    0.7540 |     1.891 |
-#&gt; |    F| Forward Diff. |    -1.340 |   0.07863 |    0.1180 |  -0.03302 |
-#&gt; |.....................|    0.1973 |  -0.03638 |   -0.4314 |   -0.7320 |
-#&gt; |.....................|   -0.3719 |   0.04356 |    0.7597 |     1.009 |
-#&gt; |.....................|    0.3079 |    0.4883 |   -0.4019 |   -0.3069 |
-#&gt; |<span style='font-weight: bold;'>   89</span>|     466.64054 |     1.012 |    -1.843 |   -0.9769 |   -0.8069 |
-#&gt; |.....................|   -0.7968 |    -1.376 |     1.833 |    -1.786 |
-#&gt; |.....................|   -0.9571 |   -0.4600 |   -0.9463 |    -1.118 |
-#&gt; |.....................|   -0.5553 |   -0.8554 |   -0.9954 |   -0.3119 |
-#&gt; |    U|     466.64054 |     92.56 |    -6.031 |   -0.9459 |    -2.059 |
-#&gt; |.....................|    -4.439 |    0.2329 |     1.949 |   0.03189 |
-#&gt; |.....................|    0.7943 |   0.07014 |    0.6795 |    0.6783 |
-#&gt; |.....................|     1.556 |    0.9795 |    0.7548 |     1.892 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.64054</span> |     92.56 |  0.002403 |    0.2797 |    0.1276 |
-#&gt; |.....................|   0.01181 |    0.5580 |     1.949 |   0.03189 |
-#&gt; |.....................|    0.7943 |   0.07014 |    0.6795 |    0.6783 |
-#&gt; |.....................|     1.556 |    0.9795 |    0.7548 |     1.892 |
-#&gt; |    F| Forward Diff. |     13.35 |   0.06546 |  -0.02976 |   0.01632 |
-#&gt; |.....................|    0.1680 |  -0.06031 |   -0.2101 |    0.2297 |
-#&gt; |.....................|  -0.01975 |    0.1913 |    0.1108 |    0.6100 |
-#&gt; |.....................| -0.008263 |     1.320 |   0.06198 |   -0.2490 |
-#&gt; |<span style='font-weight: bold;'>   90</span>|     466.63994 |     1.010 |    -1.856 |   -0.9836 |   -0.8023 |
-#&gt; |.....................|   -0.8121 |    -1.369 |     1.859 |    -1.781 |
-#&gt; |.....................|   -0.9548 |   -0.4699 |   -0.9506 |    -1.117 |
-#&gt; |.....................|   -0.5644 |   -0.8726 |    -1.009 |   -0.3176 |
-#&gt; |    U|     466.63994 |     92.43 |    -6.045 |   -0.9518 |    -2.054 |
-#&gt; |.....................|    -4.454 |    0.2360 |     1.960 |   0.03203 |
-#&gt; |.....................|    0.7952 |   0.06986 |    0.6763 |    0.6795 |
-#&gt; |.....................|     1.545 |    0.9629 |    0.7430 |     1.885 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.63994</span> |     92.43 |  0.002371 |    0.2785 |    0.1282 |
-#&gt; |.....................|   0.01163 |    0.5587 |     1.960 |   0.03203 |
-#&gt; |.....................|    0.7952 |   0.06986 |    0.6763 |    0.6795 |
-#&gt; |.....................|     1.545 |    0.9629 |    0.7430 |     1.885 |
-#&gt; |    F| Forward Diff. |    0.1431 |   0.02593 |   -0.4247 |   0.08835 |
-#&gt; |.....................|    0.1490 |  -0.08497 |   0.03702 |    0.4153 |
-#&gt; |.....................|  -0.04754 |    0.2015 |   0.06787 |   -0.3581 |
-#&gt; |.....................|   -0.4069 |   0.09362 |   -0.9227 |   -0.5264 |
-#&gt; |<span style='font-weight: bold;'>   91</span>|     466.65402 |     1.008 |    -1.856 |   -0.9767 |   -0.8037 |
-#&gt; |.....................|   -0.8145 |    -1.367 |     1.858 |    -1.788 |
-#&gt; |.....................|   -0.9540 |   -0.4731 |   -0.9517 |    -1.111 |
-#&gt; |.....................|   -0.5579 |   -0.8741 |   -0.9943 |   -0.3092 |
-#&gt; |    U|     466.65402 |     92.22 |    -6.045 |   -0.9458 |    -2.055 |
-#&gt; |.....................|    -4.457 |    0.2367 |     1.960 |   0.03184 |
-#&gt; |.....................|    0.7955 |   0.06976 |    0.6755 |    0.6846 |
-#&gt; |.....................|     1.553 |    0.9615 |    0.7557 |     1.895 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.65402</span> |     92.22 |  0.002370 |    0.2797 |    0.1280 |
-#&gt; |.....................|   0.01160 |    0.5589 |     1.960 |   0.03184 |
-#&gt; |.....................|    0.7955 |   0.06976 |    0.6755 |    0.6846 |
-#&gt; |.....................|     1.553 |    0.9615 |    0.7557 |     1.895 |
-#&gt; |<span style='font-weight: bold;'>   92</span>|     466.63541 |     1.010 |    -1.856 |   -0.9812 |   -0.8028 |
-#&gt; |.....................|   -0.8129 |    -1.368 |     1.858 |    -1.783 |
-#&gt; |.....................|   -0.9545 |   -0.4710 |   -0.9509 |    -1.115 |
-#&gt; |.....................|   -0.5622 |   -0.8731 |    -1.004 |   -0.3147 |
-#&gt; |    U|     466.63541 |     92.36 |    -6.045 |   -0.9498 |    -2.055 |
-#&gt; |.....................|    -4.455 |    0.2363 |     1.960 |   0.03197 |
-#&gt; |.....................|    0.7953 |   0.06982 |    0.6761 |    0.6812 |
-#&gt; |.....................|     1.548 |    0.9624 |    0.7474 |     1.888 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.63541</span> |     92.36 |  0.002371 |    0.2789 |    0.1281 |
-#&gt; |.....................|   0.01162 |    0.5588 |     1.960 |   0.03197 |
-#&gt; |.....................|    0.7953 |   0.06982 |    0.6761 |    0.6812 |
-#&gt; |.....................|     1.548 |    0.9624 |    0.7474 |     1.888 |
-#&gt; |    F| Forward Diff. |    -7.597 |   0.01585 |   -0.3721 |   0.09081 |
-#&gt; |.....................|    0.1473 |  -0.05128 |   0.01723 |    0.2650 |
-#&gt; |.....................|  -0.04930 |    0.2121 |    0.3911 |   -0.1952 |
-#&gt; |.....................|   -0.2951 |   0.01195 |   -0.4116 |   -0.4404 |
-#&gt; |<span style='font-weight: bold;'>   93</span>|     466.62967 |     1.010 |    -1.857 |   -0.9822 |   -0.8038 |
-#&gt; |.....................|   -0.8179 |    -1.367 |     1.859 |    -1.785 |
-#&gt; |.....................|   -0.9524 |   -0.4748 |   -0.9515 |    -1.114 |
-#&gt; |.....................|   -0.5617 |   -0.8740 |    -1.004 |   -0.3130 |
-#&gt; |    U|     466.62967 |     92.43 |    -6.045 |   -0.9507 |    -2.056 |
-#&gt; |.....................|    -4.460 |    0.2370 |     1.960 |   0.03192 |
-#&gt; |.....................|    0.7962 |   0.06971 |    0.6756 |    0.6815 |
-#&gt; |.....................|     1.548 |    0.9616 |    0.7476 |     1.890 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.62967</span> |     92.43 |  0.002369 |    0.2787 |    0.1280 |
-#&gt; |.....................|   0.01156 |    0.5590 |     1.960 |   0.03192 |
-#&gt; |.....................|    0.7962 |   0.06971 |    0.6756 |    0.6815 |
-#&gt; |.....................|     1.548 |    0.9616 |    0.7476 |     1.890 |
-#&gt; |    F| Forward Diff. |    0.1737 |   0.01712 |   -0.3712 |   0.07555 |
-#&gt; |.....................|    0.1320 |  -0.03330 |   -0.1756 |    0.3015 |
-#&gt; |.....................|  -0.06297 |    0.1717 |   0.09645 |   -0.1674 |
-#&gt; |.....................|   -0.2756 |  -0.01624 |   -0.3459 |   -0.4307 |
-#&gt; |<span style='font-weight: bold;'>   94</span>|     466.62779 |     1.010 |    -1.856 |   -0.9797 |   -0.8047 |
-#&gt; |.....................|   -0.8221 |    -1.366 |     1.862 |    -1.786 |
-#&gt; |.....................|   -0.9500 |   -0.4779 |   -0.9517 |    -1.113 |
-#&gt; |.....................|   -0.5623 |   -0.8742 |    -1.003 |   -0.3111 |
-#&gt; |    U|     466.62779 |     92.40 |    -6.045 |   -0.9484 |    -2.056 |
-#&gt; |.....................|    -4.464 |    0.2375 |     1.961 |   0.03188 |
-#&gt; |.....................|    0.7972 |   0.06963 |    0.6755 |    0.6823 |
-#&gt; |.....................|     1.548 |    0.9614 |    0.7480 |     1.893 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.62779</span> |     92.40 |  0.002370 |    0.2792 |    0.1279 |
-#&gt; |.....................|   0.01152 |    0.5591 |     1.961 |   0.03188 |
-#&gt; |.....................|    0.7972 |   0.06963 |    0.6755 |    0.6823 |
-#&gt; |.....................|     1.548 |    0.9614 |    0.7480 |     1.893 |
-#&gt; |    F| Forward Diff. |    -2.926 |   0.01199 |   -0.2808 |   0.07297 |
-#&gt; |.....................|    0.1250 |  -0.02504 |   0.02207 |    0.2419 |
-#&gt; |.....................|  -0.03068 |    0.1983 |    0.3271 |  -0.08125 |
-#&gt; |.....................|   -0.2841 |  -0.05347 |   -0.2873 |   -0.3919 |
-#&gt; |<span style='font-weight: bold;'>   95</span>|     466.62386 |     1.010 |    -1.856 |   -0.9811 |   -0.8057 |
-#&gt; |.....................|   -0.8267 |    -1.365 |     1.862 |    -1.788 |
-#&gt; |.....................|   -0.9479 |   -0.4822 |   -0.9526 |    -1.114 |
-#&gt; |.....................|   -0.5610 |   -0.8741 |    -1.003 |   -0.3093 |
-#&gt; |    U|     466.62386 |     92.43 |    -6.045 |   -0.9497 |    -2.057 |
-#&gt; |.....................|    -4.469 |    0.2377 |     1.961 |   0.03183 |
-#&gt; |.....................|    0.7980 |   0.06950 |    0.6749 |    0.6820 |
-#&gt; |.....................|     1.549 |    0.9614 |    0.7483 |     1.895 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.62386</span> |     92.43 |  0.002370 |    0.2789 |    0.1278 |
-#&gt; |.....................|   0.01146 |    0.5592 |     1.961 |   0.03183 |
-#&gt; |.....................|    0.7980 |   0.06950 |    0.6749 |    0.6820 |
-#&gt; |.....................|     1.549 |    0.9614 |    0.7483 |     1.895 |
-#&gt; |    F| Forward Diff. |    0.1137 |   0.01564 |   -0.3265 |   0.06191 |
-#&gt; |.....................|    0.1094 |  -0.02529 |   0.01125 |    0.2123 |
-#&gt; |.....................|  -0.07598 |    0.1365 |    0.2003 |   -0.1363 |
-#&gt; |.....................|   -0.2276 |  -0.05501 |   -0.2526 |   -0.4116 |
-#&gt; |<span style='font-weight: bold;'>   96</span>|     466.62386 |     1.010 |    -1.856 |   -0.9811 |   -0.8057 |
-#&gt; |.....................|   -0.8267 |    -1.365 |     1.862 |    -1.788 |
-#&gt; |.....................|   -0.9479 |   -0.4822 |   -0.9526 |    -1.114 |
-#&gt; |.....................|   -0.5610 |   -0.8741 |    -1.003 |   -0.3093 |
-#&gt; |    U|     466.62386 |     92.43 |    -6.045 |   -0.9497 |    -2.057 |
-#&gt; |.....................|    -4.469 |    0.2377 |     1.961 |   0.03183 |
-#&gt; |.....................|    0.7980 |   0.06950 |    0.6749 |    0.6820 |
-#&gt; |.....................|     1.549 |    0.9614 |    0.7483 |     1.895 |
-#&gt; |    X|<span style='font-weight: bold;'>     466.62386</span> |     92.43 |  0.002370 |    0.2789 |    0.1278 |
-#&gt; |.....................|   0.01146 |    0.5592 |     1.961 |   0.03183 |
-#&gt; |.....................|    0.7980 |   0.06950 |    0.6749 |    0.6820 |
-#&gt; |.....................|     1.549 |    0.9614 |    0.7483 |     1.895 |
-#&gt; calculating covariance matrix
-#&gt; done</div><div class='output co'>#&gt; <span class='message'>Calculating residuals/tables</span></div><div class='output co'>#&gt; <span class='message'>done</span></div><div class='output co'>#&gt; <span class='warning'>Warning: initial ETAs were nudged; (can control by foceiControl(etaNudge=., etaNudge2=))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: ETAs were reset to zero during optimization; (Can control by foceiControl(resetEtaP=.))</span></div><div class='output co'>#&gt; <span class='warning'>Warning: using R matrix to calculate covariance, can check sandwich or S matrix with $covRS and $covS</span></div><div class='output co'>#&gt; <span class='warning'>Warning: gradient problems with initial estimate and covariance; see $scaleInfo</span></div><div class='input'>
+</div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> parameter labels from comments are typically ignored in non-interactive mode</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BBBB;'>ℹ</span> Need to run with the source intact to parse comments</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ creating full model...</span></div><div class='output co'>#&gt; <span class='message'>→ pruning branches (<span style='color: #262626; background-color: #DADADA;'>`if`</span>/<span style='color: #262626; background-color: #DADADA;'>`else`</span>)...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ loading into <span style='color: #0000BB;'>symengine</span> environment...</span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ calculate jacobian</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate sensitivities</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(f)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ calculate ∂(R²)/∂(η)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in inner model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in EBE model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling inner model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ finding duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ optimizing duplicate expressions in FD model...</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>→ compiling EBE model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>→ compiling events FD model...</span></div><div class='output co'>#&gt; <span class='message'> </span></div><div class='output co'>#&gt; <span class='message'><span style='color: #00BB00;'>✔</span> done</span></div><div class='output co'>#&gt; <span class='message'>Model:</span></div><div class='output co'>#&gt; <span class='message'>cmt(parent);</span>
+#&gt; <span class='message'>cmt(A1);</span>
+#&gt; <span class='message'>rx_expr_6~ETA[1]+THETA[1];</span>
+#&gt; <span class='message'>parent(0)=rx_expr_6;</span>
+#&gt; <span class='message'>rx_expr_7~ETA[4]+THETA[4];</span>
+#&gt; <span class='message'>rx_expr_8~ETA[6]+THETA[6];</span>
+#&gt; <span class='message'>rx_expr_9~ETA[5]+THETA[5];</span>
+#&gt; <span class='message'>rx_expr_12~exp(rx_expr_7);</span>
+#&gt; <span class='message'>rx_expr_13~exp(rx_expr_9);</span>
+#&gt; <span class='message'>rx_expr_15~t*rx_expr_12;</span>
+#&gt; <span class='message'>rx_expr_16~t*rx_expr_13;</span>
+#&gt; <span class='message'>rx_expr_17~exp(-(rx_expr_8));</span>
+#&gt; <span class='message'>rx_expr_19~1+rx_expr_17;</span>
+#&gt; <span class='message'>rx_expr_24~1/(rx_expr_19);</span>
+#&gt; <span class='message'>rx_expr_26~(rx_expr_24);</span>
+#&gt; <span class='message'>rx_expr_27~1-rx_expr_26;</span>
+#&gt; <span class='message'>d/dt(parent)=-parent*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));</span>
+#&gt; <span class='message'>rx_expr_10~ETA[2]+THETA[2];</span>
+#&gt; <span class='message'>rx_expr_14~exp(rx_expr_10);</span>
+#&gt; <span class='message'>d/dt(A1)=-rx_expr_14*A1+parent*f_parent_to_A1*(exp(rx_expr_7-rx_expr_15)/(rx_expr_19)+exp(rx_expr_9-rx_expr_16)*(rx_expr_27))/(exp(-t*rx_expr_12)/(rx_expr_19)+exp(-t*rx_expr_13)*(rx_expr_27));</span>
+#&gt; <span class='message'>rx_expr_0~CMT==2;</span>
+#&gt; <span class='message'>rx_expr_1~CMT==1;</span>
+#&gt; <span class='message'>rx_expr_2~1-(rx_expr_0);</span>
+#&gt; <span class='message'>rx_yj_~2*(rx_expr_2)*(rx_expr_1)+2*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_3~(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_5~(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_18~rx_expr_5*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_lambda_~rx_expr_18+rx_expr_3;</span>
+#&gt; <span class='message'>rx_hi_~rx_expr_18+rx_expr_3;</span>
+#&gt; <span class='message'>rx_low_~0;</span>
+#&gt; <span class='message'>rx_expr_4~A1*(rx_expr_0);</span>
+#&gt; <span class='message'>rx_expr_11~parent*(rx_expr_2);</span>
+#&gt; <span class='message'>rx_expr_22~rx_expr_11*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_pred_=(rx_expr_4+rx_expr_22)*(rx_expr_0)+(rx_expr_4+rx_expr_22)*(rx_expr_2)*(rx_expr_1);</span>
+#&gt; <span class='message'>rx_r_=(rx_expr_0)*(Rx_pow_di(((rx_expr_4+rx_expr_22)*(rx_expr_0)+(rx_expr_4+rx_expr_22)*(rx_expr_2)*(rx_expr_1)),2)*Rx_pow_di(THETA[10],2)+Rx_pow_di(THETA[9],2))+(Rx_pow_di(THETA[8],2)*Rx_pow_di(((rx_expr_4+rx_expr_22)*(rx_expr_1)),2)+Rx_pow_di(THETA[7],2))*(rx_expr_2)*(rx_expr_1);</span>
+#&gt; <span class='message'>parent_0=THETA[1];</span>
+#&gt; <span class='message'>log_k_A1=THETA[2];</span>
+#&gt; <span class='message'>f_parent_qlogis=THETA[3];</span>
+#&gt; <span class='message'>log_k1=THETA[4];</span>
+#&gt; <span class='message'>log_k2=THETA[5];</span>
+#&gt; <span class='message'>g_qlogis=THETA[6];</span>
+#&gt; <span class='message'>sigma_low_parent=THETA[7];</span>
+#&gt; <span class='message'>rsd_high_parent=THETA[8];</span>
+#&gt; <span class='message'>sigma_low_A1=THETA[9];</span>
+#&gt; <span class='message'>rsd_high_A1=THETA[10];</span>
+#&gt; <span class='message'>eta.parent_0=ETA[1];</span>
+#&gt; <span class='message'>eta.log_k_A1=ETA[2];</span>
+#&gt; <span class='message'>eta.f_parent_qlogis=ETA[3];</span>
+#&gt; <span class='message'>eta.log_k1=ETA[4];</span>
+#&gt; <span class='message'>eta.log_k2=ETA[5];</span>
+#&gt; <span class='message'>eta.g_qlogis=ETA[6];</span>
+#&gt; <span class='message'>parent_0_model=rx_expr_6;</span>
+#&gt; <span class='message'>k_A1=rx_expr_14;</span>
+#&gt; <span class='message'>k1=rx_expr_12;</span>
+#&gt; <span class='message'>k2=rx_expr_13;</span>
+#&gt; <span class='message'>f_parent=1/(1+exp(-(ETA[3]+THETA[3])));</span>
+#&gt; <span class='message'>g=1/(rx_expr_19);</span>
+#&gt; <span class='message'>tad=tad();</span>
+#&gt; <span class='message'>dosenum=dosenum();</span></div><div class='output co'>#&gt; <span class='message'>Needed Covariates:</span></div><div class='output co'>#&gt; <span class='message'>[1] "f_parent_to_A1" "CMT"           </span></div><div class='output co'>#&gt; <span class='error'>Error in (function (data, inits, PKpars, model = NULL, pred = NULL, err = NULL,     lower = -Inf, upper = Inf, fixed = NULL, skipCov = NULL,     control = foceiControl(), thetaNames = NULL, etaNames = NULL,     etaMat = NULL, ..., env = NULL, keep = NULL, drop = NULL) {    set.seed(control$seed)    .pt &lt;- proc.time()    RxODE::.setWarnIdSort(FALSE)    on.exit(RxODE::.setWarnIdSort(TRUE))    loadNamespace("n1qn1")    if (!RxODE::rxIs(control, "foceiControl")) {        control &lt;- do.call(foceiControl, control)    }    if (is.null(env)) {        .ret &lt;- new.env(parent = emptyenv())    }    else {        .ret &lt;- env    }    .ret$origData &lt;- data    .ret$etaNames &lt;- etaNames    .ret$thetaFixed &lt;- fixed    .ret$control &lt;- control    .ret$control$focei.mu.ref &lt;- integer(0)    if (is(model, "RxODE") || is(model, "character")) {        .ret$ODEmodel &lt;- TRUE        if (class(pred) != "function") {            stop("pred must be a function specifying the prediction variables in this model.")        }    }    else {        .ret$ODEmodel &lt;- TRUE        model &lt;- RxODE::rxGetLin(PKpars)        pred &lt;- eval(parse(text = "function(){return(Central);}"))    }    .square &lt;- function(x) x * x    .ret$diagXformInv &lt;- c(sqrt = ".square", log = "exp", identity = "identity")[control$diagXform]    if (is.null(err)) {        err &lt;- eval(parse(text = paste0("function(){err", paste(inits$ERROR[[1]],             collapse = ""), "}")))    }    .covNames &lt;- .parNames &lt;- c()    .ret$adjLik &lt;- control$adjLik    .mixed &lt;- !is.null(inits$OMGA) &amp;&amp; length(inits$OMGA) &gt; 0    if (!exists("noLik", envir = .ret)) {        .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))        .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))        .ssAtol &lt;- rep(control$ssAtol, length(RxODE::rxModelVars(model)$state))        .ssRtol &lt;- rep(control$ssRtol, length(RxODE::rxModelVars(model)$state))        .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred, PKpars,             err, grad = (control$derivMethod == 2L), pred.minus.dv = TRUE,             sum.prod = control$sumProd, theta.derivs = FALSE,             optExpression = control$optExpression, interaction = (control$interaction ==                 1L), only.numeric = !.mixed, run.internal = TRUE,             addProp = control$addProp)        if (!is.null(.ret$model$inner)) {            .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.atol)))            .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.rtol)))            .ret$control$rxControl$atol &lt;- .atol            .ret$control$rxControl$rtol &lt;- .rtol            .ssAtol &lt;- c(.ssAtol, rep(control$ssAtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssAtol)))            .ssRtol &lt;- c(.ssRtol, rep(control$ssRtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                 length(.ssRtol)))            .ret$control$rxControl$ssAtol &lt;- .ssAtol            .ret$control$rxControl$ssRtol &lt;- .ssRtol        }        .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)        .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",             "ETA"), "[", numbers, "]", end), .covNames) == -1]        colnames(data) &lt;- sapply(names(data), function(x) {            if (any(x == .covNames)) {                return(x)            }            else {                return(toupper(x))            }        })        .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),             RxODE::rxLhs(.ret$model$pred.only))        if (length(.lhs) &gt; 0) {            .covNames &lt;- .covNames[regexpr(rex::rex(start, or(.lhs),                 end), .covNames) == -1]        }        if (length(.covNames) &gt; 0) {            if (!all(.covNames %in% names(data))) {                message("Model:")                RxODE::rxCat(.ret$model$pred.only)                message("Needed Covariates:")                nlmixrPrint(.covNames)                stop("Not all the covariates are in the dataset.")            }            message("Needed Covariates:")            print(.covNames)        }        .extraPars &lt;- .ret$model$extra.pars    }    else {        if (.ret$noLik) {            .atol &lt;- rep(control$atol, length(RxODE::rxModelVars(model)$state))            .rtol &lt;- rep(control$rtol, length(RxODE::rxModelVars(model)$state))            .ret$model &lt;- RxODE::rxSymPySetupPred(model, pred,                 PKpars, err, grad = FALSE, pred.minus.dv = TRUE,                 sum.prod = control$sumProd, theta.derivs = FALSE,                 optExpression = control$optExpression, run.internal = TRUE,                 only.numeric = TRUE, addProp = control$addProp)            if (!is.null(.ret$model$inner)) {                .atol &lt;- c(.atol, rep(control$atolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.atol)))                .rtol &lt;- c(.rtol, rep(control$rtolSens, length(RxODE::rxModelVars(.ret$model$inner)$state) -                   length(.rtol)))                .ret$control$rxControl$atol &lt;- .atol                .ret$control$rxControl$rtol &lt;- .rtol            }            .covNames &lt;- .parNames &lt;- RxODE::rxParams(.ret$model$pred.only)            .covNames &lt;- .covNames[regexpr(rex::rex(start, or("THETA",                 "ETA"), "[", numbers, "]", end), .covNames) ==                 -1]            colnames(data) &lt;- sapply(names(data), function(x) {                if (any(x == .covNames)) {                  return(x)                }                else {                  return(toupper(x))                }            })            .lhs &lt;- c(names(RxODE::rxInits(.ret$model$pred.only)),                 RxODE::rxLhs(.ret$model$pred.only))            if (length(.lhs) &gt; 0) {                .covNames &lt;- .covNames[regexpr(rex::rex(start,                   or(.lhs), end), .covNames) == -1]            }            if (length(.covNames) &gt; 0) {                if (!all(.covNames %in% names(data))) {                  message("Model:")                  RxODE::rxCat(.ret$model$pred.only)                  message("Needed Covariates:")                  nlmixrPrint(.covNames)                  stop("Not all the covariates are in the dataset.")                }                message("Needed Covariates:")                print(.covNames)            }            .extraPars &lt;- .ret$model$extra.pars        }        else {            .extraPars &lt;- NULL        }    }    .ret$skipCov &lt;- skipCov    if (is.null(skipCov)) {        if (is.null(fixed)) {            .tmp &lt;- rep(FALSE, length(inits$THTA))        }        else {            if (length(fixed) &lt; length(inits$THTA)) {                .tmp &lt;- c(fixed, rep(FALSE, length(inits$THTA) -                   length(fixed)))            }            else {                .tmp &lt;- fixed[1:length(inits$THTA)]            }        }        if (exists("uif", envir = .ret)) {            .uifErr &lt;- .ret$uif$ini$err[!is.na(.ret$uif$ini$ntheta)]            .uifErr &lt;- sapply(.uifErr, function(x) {                if (is.na(x)) {                  return(FALSE)                }                return(!any(x == c("pow2", "tbs", "tbsYj")))            })            .tmp &lt;- (.tmp | .uifErr)        }        .ret$skipCov &lt;- c(.tmp, rep(TRUE, length(.extraPars)))        .ret$control$focei.mu.ref &lt;- .ret$uif$focei.mu.ref    }    if (is.null(.extraPars)) {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)))    }    else {        .nms &lt;- c(sprintf("THETA[%s]", seq_along(inits$THTA)),             sprintf("ERR[%s]", seq_along(.extraPars)))    }    if (!is.null(thetaNames) &amp;&amp; (length(inits$THTA) + length(.extraPars)) ==         length(thetaNames)) {        .nms &lt;- thetaNames    }    .ret$thetaNames &lt;- .nms    .thetaReset$thetaNames &lt;- .nms    if (length(lower) == 1) {        lower &lt;- rep(lower, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        print(inits$THTA)        print(lower)        stop("Lower must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (length(upper) == 1) {        upper &lt;- rep(upper, length(inits$THTA))    }    else if (length(lower) != length(inits$THTA)) {        stop("Upper must be a single constant for all the THETA lower bounds, or match the dimension of THETA.")    }    if (!is.null(.extraPars)) {        .ret$model$extra.pars &lt;- eval(call(control$diagXform,             .ret$model$extra.pars))        if (length(.ret$model$extra.pars) &gt; 0) {            inits$THTA &lt;- c(inits$THTA, .ret$model$extra.pars)            .lowerErr &lt;- rep(control$atol[1] * 10, length(.ret$model$extra.pars))            .upperErr &lt;- rep(Inf, length(.ret$model$extra.pars))            lower &lt;- c(lower, .lowerErr)            upper &lt;- c(upper, .upperErr)        }    }    if (is.null(data$ID))         stop("\"ID\" not found in data")    if (is.null(data$DV))         stop("\"DV\" not found in data")    if (is.null(data$EVID))         data$EVID &lt;- 0    if (is.null(data$AMT))         data$AMT &lt;- 0    for (.v in c("TIME", "AMT", "DV", .covNames)) {        data[[.v]] &lt;- as.double(data[[.v]])    }    .ret$dataSav &lt;- data    .ds &lt;- data[data$EVID != 0 &amp; data$EVID != 2, c("ID", "TIME",         "AMT", "EVID", .covNames)]    .w &lt;- which(tolower(names(data)) == "limit")    .limitName &lt;- NULL    if (length(.w) == 1L) {        .limitName &lt;- names(data)[.w]    }    .censName &lt;- NULL    .w &lt;- which(tolower(names(data)) == "cens")    if (length(.w) == 1L) {        .censName &lt;- names(data[.w])    }    data &lt;- data[data$EVID == 0 | data$EVID == 2, c("ID", "TIME",         "DV", "EVID", .covNames, .limitName, .censName)]    .w &lt;- which(!(names(.ret$dataSav) %in% c(.covNames, keep)))    names(.ret$dataSav)[.w] &lt;- tolower(names(.ret$dataSav[.w]))    if (.mixed) {        .lh &lt;- .parseOM(inits$OMGA)        .nlh &lt;- sapply(.lh, length)        .osplt &lt;- rep(1:length(.lh), .nlh)        .lini &lt;- list(inits$THTA, unlist(.lh))        .nlini &lt;- sapply(.lini, length)        .nsplt &lt;- rep(1:length(.lini), .nlini)        .om0 &lt;- .genOM(.lh)        if (length(etaNames) == dim(.om0)[1]) {            .ret$etaNames &lt;- .ret$etaNames        }        else {            .ret$etaNames &lt;- sprintf("ETA[%d]", seq(1, dim(.om0)[1]))        }        .ret$rxInv &lt;- RxODE::rxSymInvCholCreate(mat = .om0, diag.xform = control$diagXform)        .ret$xType &lt;- .ret$rxInv$xType        .om0a &lt;- .om0        .om0a &lt;- .om0a/control$diagOmegaBoundLower        .om0b &lt;- .om0        .om0b &lt;- .om0b * control$diagOmegaBoundUpper        .om0a &lt;- RxODE::rxSymInvCholCreate(mat = .om0a, diag.xform = control$diagXform)        .om0b &lt;- RxODE::rxSymInvCholCreate(mat = .om0b, diag.xform = control$diagXform)        .omdf &lt;- data.frame(a = .om0a$theta, m = .ret$rxInv$theta,             b = .om0b$theta, diag = .om0a$theta.diag)        .omdf$lower &lt;- with(.omdf, ifelse(a &gt; b, b, a))        .omdf$lower &lt;- with(.omdf, ifelse(lower == m, -Inf, lower))        .omdf$lower &lt;- with(.omdf, ifelse(!diag, -Inf, lower))        .omdf$upper &lt;- with(.omdf, ifelse(a &lt; b, b, a))        .omdf$upper &lt;- with(.omdf, ifelse(upper == m, Inf, upper))        .omdf$upper &lt;- with(.omdf, ifelse(!diag, Inf, upper))        .ret$control$nomega &lt;- length(.omdf$lower)        .ret$control$neta &lt;- sum(.omdf$diag)        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)        lower &lt;- c(lower, .omdf$lower)        upper &lt;- c(upper, .omdf$upper)    }    else {        .ret$control$nomega &lt;- 0        .ret$control$neta &lt;- 0        .ret$xType &lt;- -1        .ret$control$ntheta &lt;- length(lower)        .ret$control$nfixed &lt;- sum(fixed)    }    .ret$lower &lt;- lower    .ret$upper &lt;- upper    .ret$thetaIni &lt;- inits$THTA    .scaleC &lt;- double(length(lower))    if (is.null(control$scaleC)) {        .scaleC &lt;- rep(NA_real_, length(lower))    }    else {        .scaleC &lt;- as.double(control$scaleC)        if (length(lower) &gt; length(.scaleC)) {            .scaleC &lt;- c(.scaleC, rep(NA_real_, length(lower) -                 length(.scaleC)))        }        else if (length(lower) &lt; length(.scaleC)) {            .scaleC &lt;- .scaleC[seq(1, length(lower))]            warning("scaleC control option has more options than estimated population parameters, please check.")        }    }    .ret$scaleC &lt;- .scaleC    if (exists("uif", envir = .ret)) {        .ini &lt;- as.data.frame(.ret$uif$ini)[!is.na(.ret$uif$ini$err),             c("est", "err", "ntheta")]        for (.i in seq_along(.ini$err)) {            if (is.na(.ret$scaleC[.ini$ntheta[.i]])) {                if (any(.ini$err[.i] == c("boxCox", "yeoJohnson",                   "pow2", "tbs", "tbsYj"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 1                }                else if (any(.ini$err[.i] == c("prop", "add",                   "norm", "dnorm", "logn", "dlogn", "lnorm",                   "dlnorm"))) {                  .ret$scaleC[.ini$ntheta[.i]] &lt;- 0.5 * abs(.ini$est[.i])                }            }        }        for (.i in .ini$model$extraProps$powTheta) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- 1        }        .ini &lt;- as.data.frame(.ret$uif$ini)        for (.i in .ini$model$extraProps$factorial) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i] +                   1))        }        for (.i in .ini$model$extraProps$gamma) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- abs(1/digamma(.ini$est[.i]))        }        for (.i in .ini$model$extraProps$log) {            if (is.na(.ret$scaleC[.i]))                 .ret$scaleC[.i] &lt;- log(abs(.ini$est[.i])) * abs(.ini$est[.i])        }        for (.i in .ret$logitThetas) {            .b &lt;- .ret$logitThetasLow[.i]            .c &lt;- .ret$logitThetasHi[.i]            .a &lt;- .ini$est[.i]            if (is.na(.ret$scaleC[.i])) {                .ret$scaleC[.i] &lt;- 1 * (-.b + .c) * exp(-.a)/((1 +                   exp(-.a))^2 * (.b + 1 * (-.b + .c)/(1 + exp(-.a))))            }        }    }    names(.ret$thetaIni) &lt;- sprintf("THETA[%d]", seq_along(.ret$thetaIni))    if (is.null(etaMat) &amp; !is.null(control$etaMat)) {        .ret$etaMat &lt;- control$etaMat    }    else {        .ret$etaMat &lt;- etaMat    }    .ret$setupTime &lt;- (proc.time() - .pt)["elapsed"]    if (exists("uif", envir = .ret)) {        .tmp &lt;- .ret$uif$logThetasList        .ret$logThetas &lt;- .tmp[[1]]        .ret$logThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasList        .ret$logitThetas &lt;- .tmp[[1]]        .ret$logitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListLow        .ret$logitThetasLow &lt;- .tmp[[1]]        .ret$logitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$logitThetasListHi        .ret$logitThetasHi &lt;- .tmp[[1]]        .ret$logitThetasHiF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasList        .ret$probitThetas &lt;- .tmp[[1]]        .ret$probitThetasF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListLow        .ret$probitThetasLow &lt;- .tmp[[1]]        .ret$probitThetasLowF &lt;- .tmp[[2]]        .tmp &lt;- .ret$uif$probitThetasListHi        .ret$probitThetasHi &lt;- .tmp[[1]]        .ret$probitThetasHiF &lt;- .tmp[[2]]    }    else {        .ret$logThetasF &lt;- integer(0)        .ret$logitThetasF &lt;- integer(0)        .ret$logitThetasHiF &lt;- numeric(0)        .ret$logitThetasLowF &lt;- numeric(0)        .ret$logitThetas &lt;- integer(0)        .ret$logitThetasHi &lt;- numeric(0)        .ret$logitThetasLow &lt;- numeric(0)        .ret$probitThetasF &lt;- integer(0)        .ret$probitThetasHiF &lt;- numeric(0)        .ret$probitThetasLowF &lt;- numeric(0)        .ret$probitThetas &lt;- integer(0)        .ret$probitThetasHi &lt;- numeric(0)        .ret$probitThetasLow &lt;- numeric(0)    }    if (exists("noLik", envir = .ret)) {        if (!.ret$noLik) {            .ret$.params &lt;- c(sprintf("THETA[%d]", seq_along(.ret$thetaIni)),                 sprintf("ETA[%d]", seq(1, dim(.om0)[1])))            .ret$.thetan &lt;- length(.ret$thetaIni)            .ret$nobs &lt;- sum(data$EVID == 0)        }    }    .ret$control$printTop &lt;- TRUE    .ret$control$nF &lt;- 0    .est0 &lt;- .ret$thetaIni    if (!is.null(.ret$model$pred.nolhs)) {        .ret$control$predNeq &lt;- length(.ret$model$pred.nolhs$state)    }    else {        .ret$control$predNeq &lt;- 0L    }    .fitFun &lt;- function(.ret) {        this.env &lt;- environment()        assign("err", "theta reset", this.env)        while (this.env$err == "theta reset") {            assign("err", "", this.env)            .ret0 &lt;- tryCatch({                foceiFitCpp_(.ret)            }, error = function(e) {                if (regexpr("theta reset", e$message) != -1) {                  assign("zeroOuter", FALSE, this.env)                  assign("zeroGrad", FALSE, this.env)                  if (regexpr("theta reset0", e$message) != -1) {                    assign("zeroGrad", TRUE, this.env)                  }                  else if (regexpr("theta resetZ", e$message) !=                     -1) {                    assign("zeroOuter", TRUE, this.env)                  }                  assign("err", "theta reset", this.env)                }                else {                  assign("err", e$message, this.env)                }            })            if (this.env$err == "theta reset") {                .nm &lt;- names(.ret$thetaIni)                .ret$thetaIni &lt;- setNames(.thetaReset$thetaIni +                   0, .nm)                .ret$rxInv$theta &lt;- .thetaReset$omegaTheta                .ret$control$printTop &lt;- FALSE                .ret$etaMat &lt;- .thetaReset$etaMat                .ret$control$etaMat &lt;- .thetaReset$etaMat                .ret$control$maxInnerIterations &lt;- .thetaReset$maxInnerIterations                .ret$control$nF &lt;- .thetaReset$nF                .ret$control$gillRetC &lt;- .thetaReset$gillRetC                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillRet &lt;- .thetaReset$gillRet                .ret$control$gillDf &lt;- .thetaReset$gillDf                .ret$control$gillDf2 &lt;- .thetaReset$gillDf2                .ret$control$gillErr &lt;- .thetaReset$gillErr                .ret$control$rEps &lt;- .thetaReset$rEps                .ret$control$aEps &lt;- .thetaReset$aEps                .ret$control$rEpsC &lt;- .thetaReset$rEpsC                .ret$control$aEpsC &lt;- .thetaReset$aEpsC                .ret$control$c1 &lt;- .thetaReset$c1                .ret$control$c2 &lt;- .thetaReset$c2                if (this.env$zeroOuter) {                  message("Posthoc reset")                  .ret$control$maxOuterIterations &lt;- 0L                }                else if (this.env$zeroGrad) {                  message("Theta reset (zero gradient values); Switch to bobyqa")                  RxODE::rxReq("minqa")                  .ret$control$outerOptFun &lt;- .bobyqa                  .ret$control$outerOpt &lt;- -1L                }                else {                  message("Theta reset (ETA drift)")                }            }        }        if (this.env$err != "") {            stop(this.env$err)        }        else {            return(.ret0)        }    }    .ret0 &lt;- try(.fitFun(.ret))    .n &lt;- 1    while (inherits(.ret0, "try-error") &amp;&amp; control$maxOuterIterations !=         0 &amp;&amp; .n &lt;= control$nRetries) {        message(sprintf("Restart %s", .n))        .ret$control$nF &lt;- 0        .estNew &lt;- .est0 + 0.2 * .n * abs(.est0) * stats::runif(length(.est0)) -             0.1 * .n        .estNew &lt;- sapply(seq_along(.est0), function(.i) {            if (.ret$thetaFixed[.i]) {                return(.est0[.i])            }            else if (.estNew[.i] &lt; lower[.i]) {                return(lower + (.Machine$double.eps)^(1/7))            }            else if (.estNew[.i] &gt; upper[.i]) {                return(upper - (.Machine$double.eps)^(1/7))            }            else {                return(.estNew[.i])            }        })        .ret$thetaIni &lt;- .estNew        .ret0 &lt;- try(.fitFun(.ret))        .n &lt;- .n + 1    }    if (inherits(.ret0, "try-error"))         stop("Could not fit data.")    .ret &lt;- .ret0    if (exists("parHistData", .ret)) {        .tmp &lt;- .ret$parHistData        .tmp &lt;- .tmp[.tmp$type == "Unscaled", names(.tmp) !=             "type"]        .iter &lt;- .tmp$iter        .tmp &lt;- .tmp[, names(.tmp) != "iter"]        .ret$parHistStacked &lt;- data.frame(stack(.tmp), iter = .iter)        names(.ret$parHistStacked) &lt;- c("val", "par", "iter")        .ret$parHist &lt;- data.frame(iter = .iter, .tmp)    }    if (.mixed) {        .etas &lt;- .ret$ranef        .thetas &lt;- .ret$fixef        .pars &lt;- .Call(`_nlmixr_nlmixrParameters`, .thetas, .etas)        .ret$shrink &lt;- .Call(`_nlmixr_calcShrinkOnly`, .ret$omega,             .pars$eta.lst, length(.etas$ID))        .updateParFixed(.ret)    }    else {        .updateParFixed(.ret)    }    if (!exists("table", .ret)) {        .ret$table &lt;- tableControl()    }    if (control$calcTables) {        .ret &lt;- addTable(.ret, updateObject = "no", keep = keep,             drop = drop, table = .ret$table)    }    .ret})(data = dat, inits = .FoceiInits, PKpars = .pars, model = .mod,     pred = function() {        return(nlmixr_pred)    }, err = uif$error, lower = uif$focei.lower, upper = uif$focei.upper,     fixed = uif$focei.fixed, thetaNames = uif$focei.names, etaNames = uif$eta.names,     control = control, env = env, keep = .keep, drop = .drop): Not all the covariates are in the dataset.</span></div><div class='output co'>#&gt; <span class='message'>Timing stopped at: 17.73 0.411 18.14</span></div><div class='input'>
 <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span>
   <span class='va'>f_nlmixr_sfo_sfo_focei_const</span><span class='op'>$</span><span class='va'>nm</span>,
   <span class='va'>f_nlmixr_fomc_sfo_focei_const</span><span class='op'>$</span><span class='va'>nm</span>,
@@ -13656,110 +4965,11 @@ obtained by fitting the same model to a list of datasets using <a href='mkinfit.
   <span class='va'>f_nlmixr_dfop_sfo_saem_obs_tc</span><span class='op'>$</span><span class='va'>nm</span>,
   <span class='va'>f_nlmixr_dfop_sfo_focei_obs_tc</span><span class='op'>$</span><span class='va'>nm</span>
 <span class='op'>)</span>
-</div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt; <span class='message'>Calculating -2LL by Gaussian quadrature (nnodes=3,nsd=1.6)</span></div><div class='output co'>#&gt; </div><div class='output co'>#&gt;                                   df       AIC
-#&gt; f_nlmixr_sfo_sfo_focei_const$nm    9 1082.4868
-#&gt; f_nlmixr_fomc_sfo_focei_const$nm  11  814.4317
-#&gt; f_nlmixr_dfop_sfo_focei_const$nm  13  866.0485
-#&gt; f_nlmixr_fomc_sfo_saem_obs$nm     12  791.7256
-#&gt; f_nlmixr_fomc_sfo_focei_obs$nm    12  794.5998
-#&gt; f_nlmixr_dfop_sfo_saem_obs$nm     14  812.0463
-#&gt; f_nlmixr_dfop_sfo_focei_obs$nm    14  846.9228
-#&gt; f_nlmixr_fomc_sfo_focei_tc$nm     12  812.3585
-#&gt; f_nlmixr_dfop_sfo_focei_tc$nm     14  842.3479
-#&gt; f_nlmixr_fomc_sfo_saem_obs_tc$nm  14  817.1261
-#&gt; f_nlmixr_fomc_sfo_focei_obs_tc$nm 14  787.4863
-#&gt; f_nlmixr_dfop_sfo_saem_obs_tc$nm  16  858.3213
-#&gt; f_nlmixr_dfop_sfo_focei_obs_tc$nm 16  811.0630</div><div class='input'><span class='co'># Currently, FOMC-SFO with two-component error by variable fitted by focei gives the</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in AIC(f_nlmixr_sfo_sfo_focei_const$nm, f_nlmixr_fomc_sfo_focei_const$nm,     f_nlmixr_dfop_sfo_focei_const$nm, f_nlmixr_fomc_sfo_saem_obs$nm,     f_nlmixr_fomc_sfo_focei_obs$nm, f_nlmixr_dfop_sfo_saem_obs$nm,     f_nlmixr_dfop_sfo_focei_obs$nm, f_nlmixr_fomc_sfo_focei_tc$nm,     f_nlmixr_dfop_sfo_focei_tc$nm, f_nlmixr_fomc_sfo_saem_obs_tc$nm,     f_nlmixr_fomc_sfo_focei_obs_tc$nm, f_nlmixr_dfop_sfo_saem_obs_tc$nm,     f_nlmixr_dfop_sfo_focei_obs_tc$nm): object 'f_nlmixr_sfo_sfo_focei_const' not found</span></div><div class='input'><span class='co'># Currently, FOMC-SFO with two-component error by variable fitted by focei gives the</span>
 <span class='co'># lowest AIC</span>
 <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span><span class='op'>)</span>
-</div><div class='img'><img src='nlmixr.mmkin-2.png' alt='' width='700' height='433' /></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span><span class='op'>)</span>
-</div><div class='output co'>#&gt; nlmixr version used for fitting:    2.0.4 
-#&gt; mkin version used for pre-fitting:  1.0.5 
-#&gt; R version used for fitting:         4.1.0 
-#&gt; Date of fit:     Fri Jun 11 10:54:54 2021 
-#&gt; Date of summary: Fri Jun 11 10:56:12 2021 
-#&gt; 
-#&gt; Equations:
-#&gt; d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
-#&gt; d_A1/dt = + f_parent_to_A1 * (alpha/beta) * 1/((time/beta) + 1) *
-#&gt;            parent - k_A1 * A1
-#&gt; 
-#&gt; Data:
-#&gt; 170 observations of 2 variable(s) grouped in 5 datasets
-#&gt; 
-#&gt; Degradation model predictions using RxODE
-#&gt; 
-#&gt; Fitted in 23.28 s
-#&gt; 
-#&gt; Variance model: Two-component variance unique to each observed variable 
-#&gt; 
-#&gt; Mean of starting values for individual parameters:
-#&gt;        parent_0        log_k_A1 f_parent_qlogis       log_alpha        log_beta 
-#&gt;         93.1168         -5.3034         -0.9442         -0.1065          2.2909 
-#&gt; 
-#&gt; Mean of starting values for error model parameters:
-#&gt; sigma_low_parent  rsd_high_parent     sigma_low_A1      rsd_high_A1 
-#&gt;          1.15958          0.03005          1.15958          0.03005 
-#&gt; 
-#&gt; Fixed degradation parameter values:
-#&gt; None
-#&gt; 
-#&gt; Results:
-#&gt; 
-#&gt; Likelihood calculated by focei  
-#&gt;     AIC   BIC logLik
-#&gt;   787.5 831.4 -379.7
-#&gt; 
-#&gt; Optimised parameters:
-#&gt;                    est.   lower   upper
-#&gt; parent_0        93.6898 91.2681 96.1114
-#&gt; log_k_A1        -6.2923 -8.3662 -4.2185
-#&gt; f_parent_qlogis -1.0019 -1.3760 -0.6278
-#&gt; log_alpha       -0.1639 -0.6641  0.3363
-#&gt; log_beta         2.2031  1.6723  2.7340
-#&gt; 
-#&gt; Correlation: 
-#&gt;                 prnt_0 lg__A1 f_prn_ lg_lph
-#&gt; log_k_A1         0.368                     
-#&gt; f_parent_qlogis -0.788 -0.401              
-#&gt; log_alpha        0.338  0.942 -0.307       
-#&gt; log_beta        -0.401 -0.761  0.253 -0.555
-#&gt; 
-#&gt; Random effects (omega):
-#&gt;                     eta.parent_0 eta.log_k_A1 eta.f_parent_qlogis eta.log_alpha
-#&gt; eta.parent_0                4.74         0.00              0.0000        0.0000
-#&gt; eta.log_k_A1                0.00         5.57              0.0000        0.0000
-#&gt; eta.f_parent_qlogis         0.00         0.00              0.1646        0.0000
-#&gt; eta.log_alpha               0.00         0.00              0.0000        0.3312
-#&gt; eta.log_beta                0.00         0.00              0.0000        0.0000
-#&gt;                     eta.log_beta
-#&gt; eta.parent_0              0.0000
-#&gt; eta.log_k_A1              0.0000
-#&gt; eta.f_parent_qlogis       0.0000
-#&gt; eta.log_alpha             0.0000
-#&gt; eta.log_beta              0.3438
-#&gt; 
-#&gt; Variance model:
-#&gt; sigma_low_parent  rsd_high_parent     sigma_low_A1      rsd_high_A1 
-#&gt;          2.35467          0.00261          0.64525          0.08456 
-#&gt; 
-#&gt; Backtransformed parameters:
-#&gt;                    est.     lower    upper
-#&gt; parent_0       93.68976 9.127e+01 96.11140
-#&gt; k_A1            0.00185 2.326e-04  0.01472
-#&gt; f_parent_to_A1  0.26857 2.017e-01  0.34801
-#&gt; alpha           0.84879 5.147e-01  1.39971
-#&gt; beta            9.05342 5.325e+00 15.39359
-#&gt; 
-#&gt; Resulting formation fractions:
-#&gt;                 ff
-#&gt; parent_A1   0.2686
-#&gt; parent_sink 0.7314
-#&gt; 
-#&gt; Estimated disappearance times:
-#&gt;          DT50   DT90 DT50back
-#&gt; parent  11.43  127.4    38.35
-#&gt; A1     374.59 1244.4       NA</div><div class='input'><span class='co'># }</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in plot(f_nlmixr_fomc_sfo_focei_obs_tc): object 'f_nlmixr_fomc_sfo_focei_obs_tc' not found</span></div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/summary.html'>summary</a></span><span class='op'>(</span><span class='va'>f_nlmixr_fomc_sfo_focei_obs_tc</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; <span class='error'>Error in summary(f_nlmixr_fomc_sfo_focei_obs_tc): object 'f_nlmixr_fomc_sfo_focei_obs_tc' not found</span></div><div class='input'><span class='co'># }</span>
 </div></pre>
   </div>
   <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
diff --git a/docs/dev/reference/tffm0.html b/docs/dev/reference/tffm0.html
new file mode 100644
index 00000000..d993e8ff
--- /dev/null
+++ b/docs/dev/reference/tffm0.html
@@ -0,0 +1,226 @@
+<!-- Generated by pkgdown: do not edit by hand -->
+<!DOCTYPE html>
+<html lang="en">
+  <head>
+  <meta charset="utf-8">
+<meta http-equiv="X-UA-Compatible" content="IE=edge">
+<meta name="viewport" content="width=device-width, initial-scale=1.0">
+
+<title>Transform formation fractions as in the first published mkin version — tffm0 • mkin</title>
+
+
+<!-- jquery -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script>
+<!-- Bootstrap -->
+
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous" />
+
+<script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script>
+
+<!-- bootstrap-toc -->
+<link rel="stylesheet" href="../bootstrap-toc.css">
+<script src="../bootstrap-toc.js"></script>
+
+<!-- Font Awesome icons -->
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous" />
+<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous" />
+
+<!-- clipboard.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script>
+
+<!-- headroom.js -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script>
+
+<!-- pkgdown -->
+<link href="../pkgdown.css" rel="stylesheet">
+<script src="../pkgdown.js"></script>
+
+
+
+
+<meta property="og:title" content="Transform formation fractions as in the first published mkin version — tffm0" />
+<meta property="og:description" content="The transformed fractions can be restricted between 0 and 1 in model
+optimisations. Therefore this transformation was used originally in mkin. It
+was later replaced by the ilr transformation because the ilr transformed
+fractions can assumed to follow normal distribution. As the ilr
+transformation is not available in RxODE and can therefore not be used in
+the nlmixr modelling language, this transformation is currently used for
+translating mkin models with formation fractions to more than one target
+compartment for fitting with nlmixr in nlmixr_model. However,
+this implementation cannot be used there, as it is not accessible
+from RxODE." />
+
+
+<meta name="robots" content="noindex">
+
+<!-- mathjax -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script>
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script>
+
+<!--[if lt IE 9]>
+<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
+<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
+<![endif]-->
+
+
+
+  </head>
+
+  <body data-spy="scroll" data-target="#toc">
+    <div class="container template-reference-topic">
+      <header>
+      <div class="navbar navbar-default navbar-fixed-top" role="navigation">
+  <div class="container">
+    <div class="navbar-header">
+      <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
+        <span class="sr-only">Toggle navigation</span>
+        <span class="icon-bar"></span>
+        <span class="icon-bar"></span>
+        <span class="icon-bar"></span>
+      </button>
+      <span class="navbar-brand">
+        <a class="navbar-link" href="../index.html">mkin</a>
+        <span class="version label label-info" data-toggle="tooltip" data-placement="bottom" title="In-development version">1.0.5</span>
+      </span>
+    </div>
+
+    <div id="navbar" class="navbar-collapse collapse">
+      <ul class="nav navbar-nav">
+        <li>
+  <a href="../reference/index.html">Functions and data</a>
+</li>
+<li class="dropdown">
+  <a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
+    Articles
+     
+    <span class="caret"></span>
+  </a>
+  <ul class="dropdown-menu" role="menu">
+    <li>
+      <a href="../articles/mkin.html">Introduction to mkin</a>
+    </li>
+    <li>
+      <a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
+    </li>
+    <li>
+      <a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
+    </li>
+    <li>
+      <a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
+    </li>
+    <li>
+      <a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
+    </li>
+    <li>
+      <a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
+    </li>
+    <li>
+      <a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
+    </li>
+    <li>
+      <a href="../articles/web_only/benchmarks.html">Some benchmark timings</a>
+    </li>
+  </ul>
+</li>
+<li>
+  <a href="../news/index.html">News</a>
+</li>
+      </ul>
+      <ul class="nav navbar-nav navbar-right">
+        <li>
+  <a href="https://github.com/jranke/mkin/">
+    <span class="fab fa-github fa-lg"></span>
+     
+  </a>
+</li>
+      </ul>
+      
+    </div><!--/.nav-collapse -->
+  </div><!--/.container -->
+</div><!--/.navbar -->
+
+      
+
+      </header>
+
+<div class="row">
+  <div class="col-md-9 contents">
+    <div class="page-header">
+    <h1>Transform formation fractions as in the first published mkin version</h1>
+    <small class="dont-index">Source: <a href='https://github.com/jranke/mkin/blob/master/R/tffm0.R'><code>R/tffm0.R</code></a></small>
+    <div class="hidden name"><code>tffm0.Rd</code></div>
+    </div>
+
+    <div class="ref-description">
+    <p>The transformed fractions can be restricted between 0 and 1 in model
+optimisations. Therefore this transformation was used originally in mkin. It
+was later replaced by the <a href='ilr.html'>ilr</a> transformation because the ilr transformed
+fractions can assumed to follow normal distribution. As the ilr
+transformation is not available in RxODE and can therefore not be used in
+the nlmixr modelling language, this transformation is currently used for
+translating mkin models with formation fractions to more than one target
+compartment for fitting with nlmixr in <a href='nlmixr.mmkin.html'>nlmixr_model</a>. However,
+this implementation cannot be used there, as it is not accessible
+from RxODE.</p>
+    </div>
+
+    <pre class="usage"><span class='fu'>tffm0</span><span class='op'>(</span><span class='va'>ff</span><span class='op'>)</span>
+
+<span class='fu'>invtffm0</span><span class='op'>(</span><span class='va'>ff_trans</span><span class='op'>)</span></pre>
+
+    <h2 class="hasAnchor" id="arguments"><a class="anchor" href="#arguments"></a>Arguments</h2>
+    <table class="ref-arguments">
+    <colgroup><col class="name" /><col class="desc" /></colgroup>
+    <tr>
+      <th>ff</th>
+      <td><p>Vector of untransformed formation fractions. The sum
+must be smaller or equal to one</p></td>
+    </tr>
+    <tr>
+      <th>ff_trans</th>
+      <td><p>Vector of transformed formation fractions that can be
+restricted to the interval from 0 to 1</p></td>
+    </tr>
+    </table>
+
+    <h2 class="hasAnchor" id="value"><a class="anchor" href="#value"></a>Value</h2>
+
+    <p>A vector of the transformed formation fractions</p>
+<p>A vector of backtransformed formation fractions for natural use in degradation models</p>
+
+    <h2 class="hasAnchor" id="examples"><a class="anchor" href="#examples"></a>Examples</h2>
+    <pre class="examples"><div class='input'><span class='va'>ff_example</span> <span class='op'>&lt;-</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>
+  <span class='fl'>0.10983681</span>, <span class='fl'>0.09035905</span>, <span class='fl'>0.08399383</span>
+<span class='op'>)</span>
+<span class='va'>ff_example_trans</span> <span class='op'>&lt;-</span> <span class='fu'>tffm0</span><span class='op'>(</span><span class='va'>ff_example</span><span class='op'>)</span>
+<span class='fu'>invtffm0</span><span class='op'>(</span><span class='va'>ff_example_trans</span><span class='op'>)</span>
+</div><div class='output co'>#&gt; [1] 0.10983681 0.09035905 0.08399383</div></pre>
+  </div>
+  <div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
+    <nav id="toc" data-toggle="toc" class="sticky-top">
+      <h2 data-toc-skip>Contents</h2>
+    </nav>
+  </div>
+</div>
+
+
+      <footer>
+      <div class="copyright">
+  <p>Developed by Johannes Ranke.</p>
+</div>
+
+<div class="pkgdown">
+  <p>Site built with <a href="https://pkgdown.r-lib.org/">pkgdown</a> 1.6.1.</p>
+</div>
+
+      </footer>
+   </div>
+
+  
+
+
+  </body>
+</html>
+
+
diff --git a/docs/dev/sitemap.xml b/docs/dev/sitemap.xml
index 425e18ad..150840e1 100644
--- a/docs/dev/sitemap.xml
+++ b/docs/dev/sitemap.xml
@@ -213,6 +213,9 @@
   <url>
     <loc>https://pkgdown.jrwb.de/mkin/reference/test_data_from_UBA_2014.html</loc>
   </url>
+  <url>
+    <loc>https://pkgdown.jrwb.de/mkin/reference/tffm0.html</loc>
+  </url>
   <url>
     <loc>https://pkgdown.jrwb.de/mkin/reference/transform_odeparms.html</loc>
   </url>
-- 
cgit v1.2.1