From e5d1df9a9b1f0951d7dfbaf24eee4294470b73e2 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
add_err(
- prediction,
- sdfunc,
- secondary = c("M1", "M2"),
- n = 10,
- LOD = 0.1,
- reps = 2,
- digits = 1,
- seed = NA
-)
add_err(
+ prediction,
+ sdfunc,
+ secondary = c("M1", "M2"),
+ n = 10,
+ LOD = 0.1,
+ reps = 2,
+ digits = 1,
+ seed = NA
+)
A prediction from a kinetic model as produced by
mkinpredict
.
A function taking the predicted value as its only argument and returning a standard deviation that should be used for generating the random error terms for this value.
The names of state variables that should have an initial value of zero
The number of datasets to be generated.
The limit of detection (LOD). Values that are below the LOD after adding the random error will be set to NA.
The number of replicates to be generated within the datasets.
The number of digits to which the values will be rounded.
The seed used for the generation of random numbers. If NA, the seed is not set.
A list of datasets compatible with mmkin
, i.e. the
+
+
+
A list of datasets compatible with mmkin
, i.e. the
components of the list are datasets compatible with mkinfit
.
-# The kinetic model
-m_SFO_SFO <- mkinmod(parent = mkinsub("SFO", "M1"),
- M1 = mkinsub("SFO"), use_of_ff = "max")
+
+# The kinetic model
+m_SFO_SFO <- mkinmod(parent = mkinsub("SFO", "M1"),
+ M1 = mkinsub("SFO"), use_of_ff = "max")
#> Temporary DLL for differentials generated and loaded
-
-# Generate a prediction for a specific set of parameters
-sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
-
-# This is the prediction used for the "Type 2 datasets" on the Piacenza poster
-# from 2015
-d_SFO_SFO <- mkinpredict(m_SFO_SFO,
- c(k_parent = 0.1, f_parent_to_M1 = 0.5,
- k_M1 = log(2)/1000),
- c(parent = 100, M1 = 0),
- sampling_times)
-
-# Add an error term with a constant (independent of the value) standard deviation
-# of 10, and generate three datasets
-d_SFO_SFO_err <- add_err(d_SFO_SFO, function(x) 10, n = 3, seed = 123456789 )
-
-# Name the datasets for nicer plotting
-names(d_SFO_SFO_err) <- paste("Dataset", 1:3)
-
-# Name the model in the list of models (with only one member in this case) for
-# nicer plotting later on. Be quiet and use only one core not to offend CRAN
-# checks
-# \dontrun{
-f_SFO_SFO <- mmkin(list("SFO-SFO" = m_SFO_SFO),
- d_SFO_SFO_err, cores = 1,
- quiet = TRUE)
-
-plot(f_SFO_SFO)
+
+# Generate a prediction for a specific set of parameters
+sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+
+# This is the prediction used for the "Type 2 datasets" on the Piacenza poster
+# from 2015
+d_SFO_SFO <- mkinpredict(m_SFO_SFO,
+ c(k_parent = 0.1, f_parent_to_M1 = 0.5,
+ k_M1 = log(2)/1000),
+ c(parent = 100, M1 = 0),
+ sampling_times)
+
+# Add an error term with a constant (independent of the value) standard deviation
+# of 10, and generate three datasets
+d_SFO_SFO_err <- add_err(d_SFO_SFO, function(x) 10, n = 3, seed = 123456789 )
+
+# Name the datasets for nicer plotting
+names(d_SFO_SFO_err) <- paste("Dataset", 1:3)
+
+# Name the model in the list of models (with only one member in this case) for
+# nicer plotting later on. Be quiet and use only one core not to offend CRAN
+# checks
+# \dontrun{
+f_SFO_SFO <- mmkin(list("SFO-SFO" = m_SFO_SFO),
+ d_SFO_SFO_err, cores = 1,
+ quiet = TRUE)
+
+plot(f_SFO_SFO)
-
-# We would like to inspect the fit for dataset 3 more closely
-# Using double brackets makes the returned object an mkinfit object
-# instead of a list of mkinfit objects, so plot.mkinfit is used
-plot(f_SFO_SFO[[3]], show_residuals = TRUE)
+
+# We would like to inspect the fit for dataset 3 more closely
+# Using double brackets makes the returned object an mkinfit object
+# instead of a list of mkinfit objects, so plot.mkinfit is used
+plot(f_SFO_SFO[[3]], show_residuals = TRUE)
-
-# If we use single brackets, we should give two indices (model and dataset),
-# and plot.mmkin is used
-plot(f_SFO_SFO[1, 3])
+
+# If we use single brackets, we should give two indices (model and dataset),
+# and plot.mmkin is used
+plot(f_SFO_SFO[1, 3])
-# }
-
+# }
+