From 8b7edd4eaf0d196e674a085f744d1a69260a6c91 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Thu, 16 Nov 2023 06:02:05 +0100 Subject: Update pkgdown docs to bootstrap 5 with search --- docs/reference/aw.html | 192 ++++++++++++++++++++----------------------------- 1 file changed, 78 insertions(+), 114 deletions(-) (limited to 'docs/reference/aw.html') diff --git a/docs/reference/aw.html b/docs/reference/aw.html index 5740d67d..953d9e22 100644 --- a/docs/reference/aw.html +++ b/docs/reference/aw.html @@ -1,122 +1,90 @@ -Calculate Akaike weights for model averaging — aw • mkinCalculate Akaike weights for model averaging — aw • mkin + + Skip to contents -
-
-
- + + +
+
+
+
-
+

Akaike weights are calculated based on the relative expected Kullback-Leibler information as specified by Burnham and Anderson (2004).

-
+
+

Usage

aw(object, ...)
 
 # S3 method for mkinfit
@@ -132,8 +100,8 @@ by Burnham and Anderson (2004).

aw(object, ...)
-
-

Arguments

+
+

Arguments

object

An mmkin column object, containing two or more mkinfit models that have been fitted to the same data, @@ -147,15 +115,15 @@ as dots arguments.

further mkinfit objects in the method for mkinfit objects.

-
-

References

+
+

References

Burnham KP and Anderson DR (2004) Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research 33(2) 261-304

-
-

Examples

+
+

Examples

# \dontrun{
 f_sfo <- mkinfit("SFO", FOCUS_2006_D, quiet = TRUE)
 f_dfop <- mkinfit("DFOP", FOCUS_2006_D, quiet = TRUE)
@@ -174,26 +142,22 @@ Inference: Understanding AIC and BIC in Model Selection.
 # }
 
-
- -
+
-
- -- cgit v1.2.1