From 8b7edd4eaf0d196e674a085f744d1a69260a6c91 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Thu, 16 Nov 2023 06:02:05 +0100 Subject: Update pkgdown docs to bootstrap 5 with search --- docs/reference/confint.mkinfit.html | 205 +++++++++++++++--------------------- 1 file changed, 87 insertions(+), 118 deletions(-) (limited to 'docs/reference/confint.mkinfit.html') diff --git a/docs/reference/confint.mkinfit.html b/docs/reference/confint.mkinfit.html index 48240abc..4d4fa012 100644 --- a/docs/reference/confint.mkinfit.html +++ b/docs/reference/confint.mkinfit.html @@ -1,5 +1,12 @@ -Confidence intervals for parameters of mkinfit objects — confint.mkinfit • mkinConfidence intervals for parameters of mkinfit objects — confint.mkinfit • mkin + + Skip to contents -
-
-
- + + +
+
+
+
-
+

The default method 'quadratic' is based on the quadratic approximation of the curvature of the likelihood function at the maximum likelihood parameter estimates. @@ -126,7 +98,8 @@ platforms. The speed of the method could likely be improved by using the method of Venzon and Moolgavkar (1988).

-
+
+

Usage

# S3 method for mkinfit
 confint(
   object,
@@ -144,8 +117,8 @@ method of Venzon and Moolgavkar (1988).

)
-
-

Arguments

+
+

Arguments

object

An mkinfit object

@@ -207,15 +180,15 @@ the quadratic method?

Not used

-
-

Value

+
+

Value

A matrix with columns giving lower and upper confidence limits for each parameter.

-
-

References

+
+

References

Bates DM and Watts GW (1988) Nonlinear regression analysis & its applications

Pawitan Y (2013) In all likelihood - Statistical modelling and inference using likelihood. Clarendon Press, Oxford.

@@ -224,8 +197,8 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37, 87–94.

-
-

Examples

+
+

Examples

f <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE)
 confint(f, method = "quadratic")
 #>                2.5%      97.5%
@@ -257,7 +230,7 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37,
 f_d_1 <- mkinfit(SFO_SFO, subset(FOCUS_2006_D, value != 0), quiet = TRUE)
 system.time(ci_profile <- confint(f_d_1, method = "profile", cores = 1, quiet = TRUE))
 #>    user  system elapsed 
-#>   2.578   0.005   2.599 
+#>   1.203   0.000   1.203 
 # Using more cores does not save much time here, as parent_0 takes up most of the time
 # If we additionally exclude parent_0 (the confidence of which is often of
 # minor interest), we get a nice performance improvement if we use at least 4 cores
@@ -265,7 +238,7 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37,
   c("k_parent_sink", "k_parent_m1", "k_m1_sink", "sigma"), cores = n_cores))
 #> Profiling the likelihood
 #>    user  system elapsed 
-#>   0.963   0.255   0.636 
+#>   0.438   0.097   0.301 
 ci_profile
 #>                       2.5%        97.5%
 #> parent_0      96.456003640 1.027703e+02
@@ -400,26 +373,22 @@ Profile-Likelihood Based Confidence Intervals, Applied Statistics, 37,
 # }
 
-
- -
+
-
- -- cgit v1.2.1