From e48c1f2ef990a622722e416c8d301430db4f5081 Mon Sep 17 00:00:00 2001
From: Johannes Ranke
+# If we disregards ill-defined rate constants, the results
+# look more plausible, but the truth is likely to be in
+# between these variants
+plot(mixed(dmta_sfo_sfo3p_tc), test_log_parms = TRUE)
+
+# Therefore we use nonlinear mixed-effects models
+# f_dmta_nlme_tc <- nlme(dmta_sfo_sfo3p_tc)
+# nlme reaches maxIter = 50 without convergence
+f_dmta_saem_tc <- saem(dmta_sfo_sfo3p_tc)
+# I am commenting out the convergence plot as rendering them
+# with pkgdown fails (at least without further tweaks to the
+# graphics device used)
+#saemix::plot(f_dmta_saem_tc$so, plot.type = "convergence")
+summary(f_dmta_saem_tc)
+#> saemix version used for fitting: 3.0
+#> mkin version used for pre-fitting: 1.1.0
+#> R version used for fitting: 4.1.3
+#> Date of fit: Wed Mar 16 14:32:04 2022
+#> Date of summary: Wed Mar 16 14:32:04 2022
+#>
+#> Equations:
+#> d_DMTA/dt = - k_DMTA * DMTA
+#> d_M23/dt = + f_DMTA_to_M23 * k_DMTA * DMTA - k_M23 * M23
+#> d_M27/dt = + f_DMTA_to_M27 * k_DMTA * DMTA - k_M27 * M27 + k_M31 * M31
+#> d_M31/dt = + f_DMTA_to_M31 * k_DMTA * DMTA - k_M31 * M31
+#>
+#> Data:
+#> 563 observations of 4 variable(s) grouped in 6 datasets
+#>
+#> Model predictions using solution type deSolve
+#>
+#> Fitted in 927.963 s
+#> Using 300, 100 iterations and 9 chains
+#>
+#> Variance model: Two-component variance function
+#>
+#> Mean of starting values for individual parameters:
+#> DMTA_0 log_k_DMTA log_k_M23 log_k_M27 log_k_M31 f_DMTA_ilr_1
+#> 95.5662 -2.9048 -3.8130 -4.1600 -4.1486 0.1341
+#> f_DMTA_ilr_2 f_DMTA_ilr_3
+#> 0.1385 -1.6700
+#>
+#> Fixed degradation parameter values:
+#> None
+#>
+#> Results:
+#>
+#> Likelihood computed by importance sampling
+#> AIC BIC logLik
+#> 2276 2272 -1120
+#>
+#> Optimised parameters:
+#> est. lower upper
+#> DMTA_0 88.5943 84.3961 92.7925
+#> log_k_DMTA -3.0466 -3.5609 -2.5322
+#> log_k_M23 -4.0684 -4.9340 -3.2029
+#> log_k_M27 -3.8628 -4.2627 -3.4628
+#> log_k_M31 -3.9803 -4.4804 -3.4801
+#> f_DMTA_ilr_1 0.1304 -0.2186 0.4795
+#> f_DMTA_ilr_2 0.1490 -0.2559 0.5540
+#> f_DMTA_ilr_3 -1.3970 -1.6976 -1.0964
+#>
+#> Correlation:
+#> DMTA_0 l__DMTA lg__M23 lg__M27 lg__M31 f_DMTA__1 f_DMTA__2
+#> log_k_DMTA 0.0309
+#> log_k_M23 -0.0231 -0.0031
+#> log_k_M27 -0.0381 -0.0048 0.0039
+#> log_k_M31 -0.0251 -0.0031 0.0021 0.0830
+#> f_DMTA_ilr_1 -0.0046 -0.0006 0.0417 -0.0437 0.0328
+#> f_DMTA_ilr_2 -0.0008 -0.0002 0.0214 -0.0270 -0.0909 -0.0361
+#> f_DMTA_ilr_3 -0.1832 -0.0135 0.0434 0.0804 0.0395 -0.0070 0.0059
+#>
+#> Random effects:
+#> est. lower upper
+#> SD.DMTA_0 3.3651 -0.9655 7.6956
+#> SD.log_k_DMTA 0.6415 0.2774 1.0055
+#> SD.log_k_M23 1.0176 0.3809 1.6543
+#> SD.log_k_M27 0.4538 0.1522 0.7554
+#> SD.log_k_M31 0.5684 0.1905 0.9464
+#> SD.f_DMTA_ilr_1 0.4111 0.1524 0.6699
+#> SD.f_DMTA_ilr_2 0.4788 0.1808 0.7768
+#> SD.f_DMTA_ilr_3 0.3501 0.1316 0.5685
+#>
+#> Variance model:
+#> est. lower upper
+#> a.1 0.9349 0.8395 1.0302
+#> b.1 0.1344 0.1176 0.1512
+#>
+#> Backtransformed parameters:
+#> est. lower upper
+#> DMTA_0 88.59431 84.396147 92.79246
+#> k_DMTA 0.04752 0.028413 0.07948
+#> k_M23 0.01710 0.007198 0.04064
+#> k_M27 0.02101 0.014084 0.03134
+#> k_M31 0.01868 0.011329 0.03080
+#> f_DMTA_to_M23 0.14498 NA NA
+#> f_DMTA_to_M27 0.12056 NA NA
+#> f_DMTA_to_M31 0.11015 NA NA
+#>
+#> Resulting formation fractions:
+#> ff
+#> DMTA_M23 0.1450
+#> DMTA_M27 0.1206
+#> DMTA_M31 0.1101
+#> DMTA_sink 0.6243
+#>
+#> Estimated disappearance times:
+#> DT50 DT90
+#> DMTA 14.59 48.45
+#> M23 40.52 134.62
+#> M27 32.99 109.60
+#> M31 37.11 123.26
+# As the confidence interval for the random effects of DMTA_0
+# includes zero, we could try an alternative model without
+# such random effects
+# f_dmta_saem_tc_2 <- saem(dmta_sfo_sfo3p_tc,
+# covariance.model = diag(c(0, rep(1, 7))))
+# saemix::plot(f_dmta_saem_tc_2$so, plot.type = "convergence")
+# This does not perform better judged by AIC and BIC
+saemix::compare.saemix(f_dmta_saem_tc$so, f_dmta_saem_tc_2$so)
+#> Error in saemix::compare.saemix(f_dmta_saem_tc$so, f_dmta_saem_tc_2$so): object 'f_dmta_saem_tc_2' not found
# }
--
cgit v1.2.3