From af2e1540cdad2fd00bb6216a38a754ff748629ad Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Fri, 25 Oct 2019 02:10:08 +0200 Subject: Static documentation rebuilt by pkgdown --- docs/reference/ilr.html | 49 +++++++++++++++++++++++++------------------------ 1 file changed, 25 insertions(+), 24 deletions(-) (limited to 'docs/reference/ilr.html') diff --git a/docs/reference/ilr.html b/docs/reference/ilr.html index 925698d9..76ce2233 100644 --- a/docs/reference/ilr.html +++ b/docs/reference/ilr.html @@ -8,11 +8,13 @@ Function to perform isometric log-ratio transformation — ilr • mkin + + @@ -32,13 +34,15 @@ - - + + + @@ -109,7 +113,6 @@ News - @@ -131,40 +134,41 @@
- -

This implementation is a special case of the class of isometric log-ratio transformations.

- +

This implementation is a special case of the class of isometric log-ratio +transformations.

ilr(x)
-  invilr(x)
- + +invilr(x) +

Arguments

- +
x

A numeric vector. Naturally, the forward transformation is only sensible for - vectors with all elements being greater than zero.

A numeric vector. Naturally, the forward transformation is only +sensible for vectors with all elements being greater than zero.

- +

Value

-

The result of the forward or backward transformation. The returned components always - sum to 1 for the case of the inverse log-ratio transformation.

- +

The result of the forward or backward transformation. The returned + components always sum to 1 for the case of the inverse log-ratio + transformation.

References

-

Peter Filzmoser, Karel Hron (2008) Outlier Detection for Compositional Data Using Robust Methods. Math Geosci 40 233-248

- +

Peter Filzmoser, Karel Hron (2008) Outlier Detection for + Compositional Data Using Robust Methods. Math Geosci 40 233-248

See also

-

Another implementation can be found in R package robCompositions.

- +

Another implementation can be found in R package + robCompositions.

Examples

-
# Order matters +
+# Order matters ilr(c(0.1, 1, 10))
#> [1] -1.628174 -2.820079
ilr(c(10, 1, 0.1))
#> [1] 1.628174 2.820079
# Equal entries give ilr transformations with zeros as elements ilr(c(3, 3, 3))
#> [1] 0 0
# Almost equal entries give small numbers ilr(c(0.3, 0.4, 0.3))
#> [1] -0.2034219 0.1174457
# Only the ratio between the numbers counts, not their sum @@ -173,19 +177,16 @@ sum(invilr(c(-10, 0)))
#> [1] 1
# This is why we do not need all elements of the inverse transformation to go back: a <- c(0.1, 0.3, 0.5) b <- invilr(a) -length(b) # Four elements
#> [1] 4
ilr(c(b[1:3], 1 - sum(b[1:3]))) # Gives c(0.1, 0.3, 0.5)
#> [1] 0.1 0.3 0.5
+length(b) # Four elements
#> [1] 4
ilr(c(b[1:3], 1 - sum(b[1:3]))) # Gives c(0.1, 0.3, 0.5)
#> [1] 0.1 0.3 0.5
+