From f39815aa87272849f8e0c808099c4cee780c2a81 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Thu, 3 Nov 2016 14:33:05 +0100 Subject: Static documentation rebuilt by pkgdown::build_site() Using pkgdown with PR hadley/pkgdown#212 --- docs/reference/ilr.html | 39 +++++++++++++++------------------------ 1 file changed, 15 insertions(+), 24 deletions(-) (limited to 'docs/reference/ilr.html') diff --git a/docs/reference/ilr.html b/docs/reference/ilr.html index 82accca4..d2551059 100644 --- a/docs/reference/ilr.html +++ b/docs/reference/ilr.html @@ -61,7 +61,12 @@ @@ -107,31 +112,17 @@

Another implementation can be found in R package robCompositions.

-

- - Examples -

+

Examples

# Order matters -ilr(c(0.1, 1, 10))
#> [1] -1.628174 -2.820079 -#>
ilr(c(10, 1, 0.1))
#> [1] 1.628174 2.820079 -#>
# Equal entries give ilr transformations with zeros as elements -ilr(c(3, 3, 3))
#> [1] 0 0 -#>
# Almost equal entries give small numbers -ilr(c(0.3, 0.4, 0.3))
#> [1] -0.2034219 0.1174457 -#>
# Only the ratio between the numbers counts, not their sum -invilr(ilr(c(0.7, 0.29, 0.01)))
#> [1] 0.70 0.29 0.01 -#>
invilr(ilr(2.1 * c(0.7, 0.29, 0.01)))
#> [1] 0.70 0.29 0.01 -#>
# Inverse transformation of larger numbers gives unequal elements -invilr(-10)
#> [1] 7.213536e-07 9.999993e-01 -#>
invilr(c(-10, 0))
#> [1] 7.207415e-07 9.991507e-01 8.486044e-04 -#>
# The sum of the elements of the inverse ilr is 1 -sum(invilr(c(-10, 0)))
#> [1] 1 -#>
# This is why we do not need all elements of the inverse transformation to go back: +ilr(c(0.1, 1, 10))
#> [1] -1.628174 -2.820079
ilr(c(10, 1, 0.1))
#> [1] 1.628174 2.820079
# Equal entries give ilr transformations with zeros as elements +ilr(c(3, 3, 3))
#> [1] 0 0
# Almost equal entries give small numbers +ilr(c(0.3, 0.4, 0.3))
#> [1] -0.2034219 0.1174457
# Only the ratio between the numbers counts, not their sum +invilr(ilr(c(0.7, 0.29, 0.01)))
#> [1] 0.70 0.29 0.01
invilr(ilr(2.1 * c(0.7, 0.29, 0.01)))
#> [1] 0.70 0.29 0.01
# Inverse transformation of larger numbers gives unequal elements +invilr(-10)
#> [1] 7.213536e-07 9.999993e-01
invilr(c(-10, 0))
#> [1] 7.207415e-07 9.991507e-01 8.486044e-04
# The sum of the elements of the inverse ilr is 1 +sum(invilr(c(-10, 0)))
#> [1] 1
# This is why we do not need all elements of the inverse transformation to go back: a <- c(0.1, 0.3, 0.5) b <- invilr(a) -length(b) # Four elements
#> [1] 4 -#>
ilr(c(b[1:3], 1 - sum(b[1:3]))) # Gives c(0.1, 0.3, 0.5)
#> [1] 0.1 0.3 0.5 -#>
+length(b) # Four elements
#> [1] 4
ilr(c(b[1:3], 1 - sum(b[1:3]))) # Gives c(0.1, 0.3, 0.5)
#> [1] 0.1 0.3 0.5