From 2bb59c88d49b193f278916ad9cc4de83c0de9604 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Wed, 2 Mar 2022 18:03:54 +0100 Subject: Make tests more platform independent, update docs --- docs/reference/mkinerrmin.html | 226 ++++++++++++++++------------------------- 1 file changed, 85 insertions(+), 141 deletions(-) (limited to 'docs/reference/mkinerrmin.html') diff --git a/docs/reference/mkinerrmin.html b/docs/reference/mkinerrmin.html index f22b4350..b72017fe 100644 --- a/docs/reference/mkinerrmin.html +++ b/docs/reference/mkinerrmin.html @@ -1,68 +1,13 @@ - - - - - - - -Calculate the minimum error to assume in order to pass the variance test — mkinerrmin • mkin - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Calculate the minimum error to assume in order to pass the variance test — mkinerrmin • mkin - - + + - - -
-
- -
- -
+
@@ -149,89 +88,94 @@ the chi-squared test as defined in the FOCUS kinetics report from 2006." /> the chi-squared test as defined in the FOCUS kinetics report from 2006.

-
mkinerrmin(fit, alpha = 0.05)
- -

Arguments

- - - - - - - - - - -
fit

an object of class mkinfit.

alpha

The confidence level chosen for the chi-squared test.

- -

Value

+
+
mkinerrmin(fit, alpha = 0.05)
+
+
+

Arguments

+
fit
+

an object of class mkinfit.

+
alpha
+

The confidence level chosen for the chi-squared test.

+
+
+

Value

A dataframe with the following components:

-
err.min

The -relative error, expressed as a fraction.

n.optim

The number of -optimised parameters attributed to the data series.

df

The number of +

err.min
+

The +relative error, expressed as a fraction.

+
n.optim
+

The number of +optimised parameters attributed to the data series.

+
df
+

The number of remaining degrees of freedom for the chi2 error level calculations. Note that mean values are used for the chi2 statistic and therefore every time -point with observed values in the series only counts one time.

The +point with observed values in the series only counts one time.

+

The dataframe has one row for the total dataset and one further row for each -observed state variable in the model. - -

Details

- -

This function is used internally by summary.mkinfit.

-

References

- -

FOCUS (2006) “Guidance Document on Estimating Persistence +observed state variable in the model.

+
+
+

Details

+

This function is used internally by summary.mkinfit.

+
+
+

References

+

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU -Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC +Registration” Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, -http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

- -

Examples

-
-SFO_SFO = mkinmod(parent = mkinsub("SFO", to = "m1"), - m1 = mkinsub("SFO"), - use_of_ff = "max") -
#> Temporary DLL for differentials generated and loaded
-fit_FOCUS_D = mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE) -
#> Warning: Observations with value of zero were removed from the data
round(mkinerrmin(fit_FOCUS_D), 4) -
#> err.min n.optim df -#> All data 0.0640 4 15 -#> parent 0.0646 2 7 -#> m1 0.0469 2 8
# \dontrun{ - fit_FOCUS_E = mkinfit(SFO_SFO, FOCUS_2006_E, quiet = TRUE) - round(mkinerrmin(fit_FOCUS_E), 4) -
#> err.min n.optim df -#> All data 0.1544 4 13 -#> parent 0.1659 2 7 -#> m1 0.1095 2 6
# } - -
+http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

+
+ +
+

Examples

+

+SFO_SFO = mkinmod(parent = mkinsub("SFO", to = "m1"),
+                  m1 = mkinsub("SFO"),
+                  use_of_ff = "max")
+#> Temporary DLL for differentials generated and loaded
+
+fit_FOCUS_D = mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE)
+round(mkinerrmin(fit_FOCUS_D), 4)
+#>          err.min n.optim df
+#> All data  0.0640       4 15
+#> parent    0.0646       2  7
+#> m1        0.0469       2  8
+# \dontrun{
+  fit_FOCUS_E = mkinfit(SFO_SFO, FOCUS_2006_E, quiet = TRUE)
+  round(mkinerrmin(fit_FOCUS_E), 4)
+#>          err.min n.optim df
+#> All data  0.1544       4 13
+#> parent    0.1659       2  7
+#> m1        0.1095       2  6
+# }
+
+
+
+
- - - + + -- cgit v1.2.1