From 38f9e15f0c972c1516ae737a2bca8d7789581bbd Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Thu, 6 Oct 2016 09:19:21 +0200 Subject: Static documentation rebuilt by pkgdown::build_site() --- docs/reference/mkinerrmin.html | 150 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 150 insertions(+) create mode 100644 docs/reference/mkinerrmin.html (limited to 'docs/reference/mkinerrmin.html') diff --git a/docs/reference/mkinerrmin.html b/docs/reference/mkinerrmin.html new file mode 100644 index 00000000..cd9faf1a --- /dev/null +++ b/docs/reference/mkinerrmin.html @@ -0,0 +1,150 @@ + + + + + + + + +mkinerrmin. mkin + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + +
+ + + +
+
+ +

This function uses optimize in order to iteratively find the +smallest relative error still resulting in passing the chi-squared test +as defined in the FOCUS kinetics report from 2006.

+ + +
mkinerrmin(fit, alpha = 0.05)
+ +

Arguments

+
+
fit
+
+ an object of class mkinfit. +
+
alpha
+
+ The confidence level chosen for the chi-squared test. +
+
+ +
+

Value

+ +

A dataframe with the following components:

+

The dataframe has one row for the total dataset and one further row for + each observed state variable in the model.

+
+ +
+

Details

+ +

This function is used internally by summary.mkinfit.

+
+ +
+

References

+ +

FOCUS (2006) “Guidance Document on Estimating Persistence and + Degradation Kinetics from Environmental Fate Studies on Pesticides in EU + Registration” Report of the FOCUS Work Group on Degradation Kinetics, + EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, + http://focus.jrc.ec.europa.eu/dk

+
+ +

Examples

+
SFO_SFO = mkinmod(parent = list(type = "SFO", to = "m1"), + m1 = list(type = "SFO"), + use_of_ff = "max")
Successfully compiled differential equation model from auto-generated C code.
+fit_FOCUS_D = mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE) +round(mkinerrmin(fit_FOCUS_D), 4)
#> err.min n.optim df +#> All data 0.0640 4 15 +#> parent 0.0646 2 7 +#> m1 0.0469 2 8 +#>
fit_FOCUS_E = mkinfit(SFO_SFO, FOCUS_2006_E, quiet = TRUE) +round(mkinerrmin(fit_FOCUS_E), 4)
#> err.min n.optim df +#> All data 0.1544 4 13 +#> parent 0.1659 2 7 +#> m1 0.1095 2 6 +#>
+
+
+
+
+ + +
+ + + -- cgit v1.2.1