From 95178837d3f91e84837628446b5fd468179af2b9 Mon Sep 17 00:00:00 2001
From: Johannes Ranke Arguments
@@ -321,6 +323,41 @@ Per default, parameters in the kinetic models are internally transformed in
errors follow a lognormal distribution for large values, not a normal
distribution as assumed by this method.
If the error model is "const", the error model algorithm is ignored, + because no special algorithm is needed and unweighted (also known as + ordinary) least squares fitting can be applied.
+The default algorithm "d_3" will directly minimize the negative + log-likelihood and - independently - also use the three step algorithm + described below. The fit with the higher likelihood is returned.
+The algorithm "direct" will directly minimize the negative + log-likelihood.
+The algorithm "twostep" will minimize the negative log-likelihood + after an initial unweighted leas squares optimisation step.
+The algorithm "threestep" starts with unweighted least squares, + then optimizes only the error model using the degradation model + parameters found, and then minimizes the negative log-likelihood + with free degradation and error model parameters.
+The algorithm "fourstep" starts with unweighted least squares, + then optimizes only the error model using the degradation model + parameters found, then optimizes the degradation model again + with fixed error model parameters, and finally minimizes the negative + log-likelihood with free degradation and error model parameters.
+The algorithm "IRLS" starts with unweighted least squares, + and then iterates optimization of the error model parameters and subsequent + optimization of the degradation model using those error model parameters, + until the error model parameters converge.
Tolerance for the convergence criterion calculated from the error model + parameters in IRLS fits.
Maximum number of iterations in IRLS fits.
Should a trace of the parameter values be listed?
-- cgit v1.2.3 From b6027bbd157734e1c7f8c3ba6373451f5c85fc38 Mon Sep 17 00:00:00 2001 From: Johannes Ranke# Use shorthand notation for parent only degradation fit <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE) -summary(fit)#> mkin version used for fitting: 0.9.49.4 +summary(fit)#> mkin version used for fitting: 0.9.49.5 #> R version used for fitting: 3.6.0 -#> Date of fit: Wed May 8 20:50:50 2019 -#> Date of summary: Wed May 8 20:50:50 2019 +#> Date of fit: Tue Jun 4 15:01:15 2019 +#> Date of summary: Tue Jun 4 15:01:15 2019 #> #> Equations: #> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent #> #> Model predictions using solution type analytical #> -#> Fitted using 222 model solutions performed in 0.456 s +#> Fitted using 222 model solutions performed in 0.461 s #> #> Error model: #> Constant variance @@ -443,7 +480,7 @@ Per default, parameters in the kinetic models are internally transformed in m1 = mkinsub("SFO"))#># Fit the model to the FOCUS example dataset D using defaults print(system.time(fit <- mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "eigen", quiet = TRUE)))#> Warning: Observations with value of zero were removed from the data#> User System verstrichen -#> 1.488 0.000 1.488coef(fit)#> NULLendpoints(fit)#> $ff +#> 1.521 0.000 1.526coef(fit)#> NULLendpoints(fit)#> $ff #> parent_sink parent_m1 m1_sink #> 0.485524 0.514476 1.000000 #> @@ -515,7 +552,7 @@ Per default, parameters in the kinetic models are internally transformed in #> Sum of squared residuals at call 126: 371.2134 #> Sum of squared residuals at call 135: 371.2134 #> Negative log-likelihood at call 145: 97.22429#>#> User System verstrichen -#> 1.086 0.000 1.087coef(fit.deSolve)#> NULLendpoints(fit.deSolve)#> $ff +#> 1.093 0.000 1.093coef(fit.deSolve)#> NULLendpoints(fit.deSolve)#> $ff #> parent_sink parent_m1 m1_sink #> 0.485524 0.514476 1.000000 #> @@ -545,10 +582,10 @@ Per default, parameters in the kinetic models are internally transformed in fit.SFORB_SFO <- mkinfit(SFORB_SFO, FOCUS_2006_D, parms.ini = fit.SFORB$bparms.ode, quiet = TRUE)#> Warning: Observations with value of zero were removed from the data# Weighted fits, including IRLS SFO_SFO.ff <- mkinmod(parent = mkinsub("SFO", "m1"), - m1 = mkinsub("SFO"), use_of_ff = "max")#>f.noweight <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, quiet = TRUE)#> Warning: Observations with value of zero were removed from the datasummary(f.noweight)#>f.noweight <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, quiet = TRUE)#> Warning: Observations with value of zero were removed from the datasummary(f.noweight)#> mkin version used for fitting: 0.9.49.5 #> R version used for fitting: 3.6.0 -#> Date of fit: Wed May 8 20:51:06 2019 -#> Date of summary: Wed May 8 20:51:06 2019 +#> Date of fit: Tue Jun 4 15:01:31 2019 +#> Date of summary: Tue Jun 4 15:01:31 2019 #> #> Equations: #> d_parent/dt = - k_parent * parent @@ -556,7 +593,7 @@ Per default, parameters in the kinetic models are internally transformed in #> #> Model predictions using solution type deSolve #> -#> Fitted using 421 model solutions performed in 1.082 s +#> Fitted using 421 model solutions performed in 1.096 s #> #> Error model: #> Constant variance @@ -663,10 +700,10 @@ Per default, parameters in the kinetic models are internally transformed in #> 100 m1 31.04 31.98163 -9.416e-01 #> 100 m1 33.13 31.98163 1.148e+00 #> 120 m1 25.15 28.78984 -3.640e+00 -#> 120 m1 33.31 28.78984 4.520e+00f.obs <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, error_model = "obs", quiet = TRUE)#> Warning: Observations with value of zero were removed from the datasummary(f.obs)#> mkin version used for fitting: 0.9.49.4 +#> 120 m1 33.31 28.78984 4.520e+00f.obs <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, error_model = "obs", quiet = TRUE)#> Warning: Observations with value of zero were removed from the datasummary(f.obs)#> mkin version used for fitting: 0.9.49.5 #> R version used for fitting: 3.6.0 -#> Date of fit: Wed May 8 20:51:08 2019 -#> Date of summary: Wed May 8 20:51:08 2019 +#> Date of fit: Tue Jun 4 15:01:34 2019 +#> Date of summary: Tue Jun 4 15:01:34 2019 #> #> Equations: #> d_parent/dt = - k_parent * parent @@ -674,19 +711,19 @@ Per default, parameters in the kinetic models are internally transformed in #> #> Model predictions using solution type deSolve #> -#> Fitted using 758 model solutions performed in 1.971 s +#> Fitted using 979 model solutions performed in 2.603 s #> #> Error model: #> Variance unique to each observed variable #> #> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> sigma_parent 3.0000 error -#> sigma_m1 3.0000 error +#> value type +#> parent_0 100.750000 state +#> k_parent 0.100000 deparm +#> k_m1 0.100100 deparm +#> f_parent_to_m1 0.500000 deparm +#> sigma_parent 3.398909 error +#> sigma_m1 2.857157 error #> #> Starting values for the transformed parameters actually optimised: #> value lower upper @@ -694,8 +731,8 @@ Per default, parameters in the kinetic models are internally transformed in #> log_k_parent -2.302585 -Inf Inf #> log_k_m1 -2.301586 -Inf Inf #> f_parent_ilr_1 0.000000 -Inf Inf -#> sigma_parent 3.000000 0 Inf -#> sigma_m1 3.000000 0 Inf +#> sigma_parent 3.398909 0 Inf +#> sigma_m1 2.857157 0 Inf #> #> Fixed parameter values: #> value type @@ -715,14 +752,14 @@ Per default, parameters in the kinetic models are internally transformed in #> parent_0 1.00000 0.51078 -0.19133 -0.59997 0.035670 #> log_k_parent 0.51078 1.00000 -0.37458 -0.59239 0.069833 #> log_k_m1 -0.19133 -0.37458 1.00000 0.74398 -0.026158 -#> f_parent_ilr_1 -0.59997 -0.59239 0.74398 1.00000 -0.041368 +#> f_parent_ilr_1 -0.59997 -0.59239 0.74398 1.00000 -0.041369 #> sigma_parent 0.03567 0.06983 -0.02616 -0.04137 1.000000 -#> sigma_m1 -0.03385 -0.06627 0.02482 0.03925 -0.004628 +#> sigma_m1 -0.03385 -0.06627 0.02482 0.03926 -0.004628 #> sigma_m1 #> parent_0 -0.033847 #> log_k_parent -0.066265 -#> log_k_m1 0.024821 -#> f_parent_ilr_1 0.039255 +#> log_k_m1 0.024823 +#> f_parent_ilr_1 0.039256 #> sigma_parent -0.004628 #> sigma_m1 1.000000 #> @@ -786,17 +823,17 @@ Per default, parameters in the kinetic models are internally transformed in #> 21 m1 46.44 41.65115 4.789e+00 #> 35 m1 41.22 43.29465 -2.075e+00 #> 35 m1 37.95 43.29465 -5.345e+00 -#> 50 m1 41.19 41.19948 -9.481e-03 +#> 50 m1 41.19 41.19948 -9.479e-03 #> 50 m1 40.01 41.19948 -1.189e+00 -#> 75 m1 40.09 36.44036 3.650e+00 -#> 75 m1 33.85 36.44036 -2.590e+00 -#> 100 m1 31.04 31.98774 -9.477e-01 -#> 100 m1 33.13 31.98774 1.142e+00 -#> 120 m1 25.15 28.80430 -3.654e+00 -#> 120 m1 33.31 28.80430 4.506e+00f.tc <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, error_model = "tc", quiet = TRUE)#> Warning: Observations with value of zero were removed from the datasummary(f.tc)#> mkin version used for fitting: 0.9.49.4 +#> 75 m1 40.09 36.44035 3.650e+00 +#> 75 m1 33.85 36.44035 -2.590e+00 +#> 100 m1 31.04 31.98773 -9.477e-01 +#> 100 m1 33.13 31.98773 1.142e+00 +#> 120 m1 25.15 28.80429 -3.654e+00 +#> 120 m1 33.31 28.80429 4.506e+00f.tc <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, error_model = "tc", quiet = TRUE)#> Warning: Observations with value of zero were removed from the datasummary(f.tc)#> mkin version used for fitting: 0.9.49.5 #> R version used for fitting: 3.6.0 -#> Date of fit: Wed May 8 20:51:11 2019 -#> Date of summary: Wed May 8 20:51:11 2019 +#> Date of fit: Tue Jun 4 15:01:43 2019 +#> Date of summary: Tue Jun 4 15:01:43 2019 #> #> Equations: #> d_parent/dt = - k_parent * parent @@ -804,28 +841,28 @@ Per default, parameters in the kinetic models are internally transformed in #> #> Model predictions using solution type deSolve #> -#> Fitted using 821 model solutions performed in 3.29 s +#> Fitted using 2289 model solutions performed in 9.499 s #> #> Error model: #> Two-component variance function #> #> Starting values for parameters to be optimised: -#> value type -#> parent_0 100.7500 state -#> k_parent 0.1000 deparm -#> k_m1 0.1001 deparm -#> f_parent_to_m1 0.5000 deparm -#> sigma_low 0.1000 error -#> rsd_high 0.1000 error +#> value type +#> parent_0 1.007500e+02 state +#> k_parent 1.000000e-01 deparm +#> k_m1 1.001000e-01 deparm +#> f_parent_to_m1 5.000000e-01 deparm +#> sigma_low 5.641148e-03 error +#> rsd_high 8.430766e-02 error #> #> Starting values for the transformed parameters actually optimised: -#> value lower upper -#> parent_0 100.750000 -Inf Inf -#> log_k_parent -2.302585 -Inf Inf -#> log_k_m1 -2.301586 -Inf Inf -#> f_parent_ilr_1 0.000000 -Inf Inf -#> sigma_low 0.100000 0 Inf -#> rsd_high 0.100000 0 Inf +#> value lower upper +#> parent_0 100.750000000 -Inf Inf +#> log_k_parent -2.302585093 -Inf Inf +#> log_k_m1 -2.301585593 -Inf Inf +#> f_parent_ilr_1 0.000000000 -Inf Inf +#> sigma_low 0.005641148 0 Inf +#> rsd_high 0.084307660 0 Inf #> #> Fixed parameter values: #> value type @@ -856,7 +893,7 @@ Per default, parameters in the kinetic models are internally transformed in #> Estimate t value Pr(>t) Lower Upper #> parent_0 1.007e+02 38.4300 1.180e-28 95.400000 1.061e+02 #> k_parent 1.006e-01 112.8000 1.718e-43 0.098760 1.024e-01 -#> k_m1 5.167e-03 10.9500 1.172e-12 0.004290 6.223e-03 +#> k_m1 5.167e-03 10.9500 1.171e-12 0.004290 6.223e-03 #> f_parent_to_m1 5.084e-01 26.0100 2.146e-23 0.468600 5.481e-01 #> sigma_low 3.050e-03 0.6314 2.661e-01 -0.006786 1.289e-02 #> rsd_high 7.928e-02 8.4170 6.418e-10 0.060100 9.847e-02 @@ -879,18 +916,18 @@ Per default, parameters in the kinetic models are internally transformed in #> #> Data: #> time variable observed predicted residual -#> 0 parent 99.46 100.73433 -1.274329 -#> 0 parent 102.04 100.73433 1.305671 -#> 1 parent 93.50 91.09750 2.402495 -#> 1 parent 92.50 91.09750 1.402495 -#> 3 parent 63.23 74.50140 -11.271403 -#> 3 parent 68.99 74.50140 -5.511403 -#> 7 parent 52.32 49.82880 2.491205 -#> 7 parent 55.13 49.82880 5.301205 -#> 14 parent 27.27 24.64809 2.621909 -#> 14 parent 26.64 24.64809 1.991909 -#> 21 parent 11.50 12.19231 -0.692315 -#> 21 parent 11.64 12.19231 -0.552315 +#> 0 parent 99.46 100.73434 -1.274339 +#> 0 parent 102.04 100.73434 1.305661 +#> 1 parent 93.50 91.09751 2.402486 +#> 1 parent 92.50 91.09751 1.402486 +#> 3 parent 63.23 74.50141 -11.271410 +#> 3 parent 68.99 74.50141 -5.511410 +#> 7 parent 52.32 49.82880 2.491201 +#> 7 parent 55.13 49.82880 5.301201 +#> 14 parent 27.27 24.64809 2.621908 +#> 14 parent 26.64 24.64809 1.991908 +#> 21 parent 11.50 12.19232 -0.692315 +#> 21 parent 11.64 12.19232 -0.552315 #> 35 parent 2.85 2.98327 -0.133266 #> 35 parent 2.91 2.98327 -0.073266 #> 50 parent 0.69 0.66013 0.029874 @@ -899,24 +936,24 @@ Per default, parameters in the kinetic models are internally transformed in #> 75 parent 0.06 0.05344 0.006562 #> 1 m1 4.84 4.88645 -0.046451 #> 1 m1 5.64 4.88645 0.753549 -#> 3 m1 12.91 13.22867 -0.318668 -#> 3 m1 12.96 13.22867 -0.268668 -#> 7 m1 22.97 25.36416 -2.394164 -#> 7 m1 24.47 25.36416 -0.894164 -#> 14 m1 41.69 37.00974 4.680265 -#> 14 m1 33.21 37.00974 -3.799735 -#> 21 m1 44.37 41.90133 2.468670 -#> 21 m1 46.44 41.90133 4.538670 -#> 35 m1 41.22 43.45691 -2.236914 -#> 35 m1 37.95 43.45691 -5.506914 -#> 50 m1 41.19 41.34199 -0.151988 -#> 50 m1 40.01 41.34199 -1.331988 -#> 75 m1 40.09 36.61471 3.475290 -#> 75 m1 33.85 36.61471 -2.764710 -#> 100 m1 31.04 32.20083 -1.160830 -#> 100 m1 33.13 32.20083 0.929170 -#> 120 m1 25.15 29.04131 -3.891312 -#> 120 m1 33.31 29.04131 4.268688+#> 3 m1 12.91 13.22867 -0.318669 +#> 3 m1 12.96 13.22867 -0.268669 +#> 7 m1 22.97 25.36417 -2.394166 +#> 7 m1 24.47 25.36417 -0.894166 +#> 14 m1 41.69 37.00974 4.680263 +#> 14 m1 33.21 37.00974 -3.799737 +#> 21 m1 44.37 41.90133 2.468669 +#> 21 m1 46.44 41.90133 4.538669 +#> 35 m1 41.22 43.45691 -2.236913 +#> 35 m1 37.95 43.45691 -5.506913 +#> 50 m1 41.19 41.34199 -0.151985 +#> 50 m1 40.01 41.34199 -1.331985 +#> 75 m1 40.09 36.61471 3.475295 +#> 75 m1 33.85 36.61471 -2.764705 +#> 100 m1 31.04 32.20082 -1.160823 +#> 100 m1 33.13 32.20082 0.929177 +#> 120 m1 25.15 29.04130 -3.891304 +#> 120 m1 33.31 29.04130 4.268696
FOCUS_D.Rmd## mkin version used for fitting: 0.9.49.5
## R version used for fitting: 3.6.0
-## Date of fit: Tue Jun 4 15:03:18 2019
-## Date of summary: Tue Jun 4 15:03:18 2019
+## Date of fit: Wed Jun 5 15:10:49 2019
+## Date of summary: Wed Jun 5 15:10:50 2019
##
## Equations:
## d_parent/dt = - k_parent_sink * parent - k_parent_m1 * parent
@@ -177,10 +177,11 @@
##
## Model predictions using solution type deSolve
##
-## Fitted using 389 model solutions performed in 0.978 s
+## Fitted using 389 model solutions performed in 0.984 s
##
-## Error model:
-## Constant variance
+## Error model: Constant variance
+##
+## Error model algorithm: d_3
##
## Starting values for parameters to be optimised:
## value type
diff --git a/docs/articles/FOCUS_L.html b/docs/articles/FOCUS_L.html
index 75b2cf10..4388edd2 100644
--- a/docs/articles/FOCUS_L.html
+++ b/docs/articles/FOCUS_L.html
@@ -88,7 +88,7 @@
Example evaluation of FOCUS Laboratory Data L1 to L3
Johannes Ranke
- 2019-06-04
+ 2019-06-05
FOCUS_L.Rmd
@@ -114,18 +114,19 @@
summary(m.L1.SFO)
## mkin version used for fitting: 0.9.49.5
## R version used for fitting: 3.6.0
-## Date of fit: Tue Jun 4 15:03:20 2019
-## Date of summary: Tue Jun 4 15:03:20 2019
+## Date of fit: Wed Jun 5 15:10:52 2019
+## Date of summary: Wed Jun 5 15:10:52 2019
##
## Equations:
## d_parent/dt = - k_parent_sink * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 133 model solutions performed in 0.28 s
+## Fitted using 133 model solutions performed in 0.277 s
##
-## Error model:
-## Constant variance
+## Error model: Constant variance
+##
+## Error model algorithm: d_3
##
## Starting values for parameters to be optimised:
## value type
@@ -215,8 +216,8 @@
## finite result is doubtful
## mkin version used for fitting: 0.9.49.5
## R version used for fitting: 3.6.0
-## Date of fit: Tue Jun 4 15:03:22 2019
-## Date of summary: Tue Jun 4 15:03:22 2019
+## Date of fit: Wed Jun 5 15:10:54 2019
+## Date of summary: Wed Jun 5 15:10:54 2019
##
##
## Warning: Optimisation did not converge:
@@ -228,10 +229,11 @@
##
## Model predictions using solution type analytical
##
-## Fitted using 899 model solutions performed in 1.868 s
+## Fitted using 899 model solutions performed in 1.877 s
+##
+## Error model: Constant variance
##
-## Error model:
-## Constant variance
+## Error model algorithm: d_3
##
## Starting values for parameters to be optimised:
## value type
@@ -319,18 +321,19 @@
## mkin version used for fitting: 0.9.49.5
## R version used for fitting: 3.6.0
-## Date of fit: Tue Jun 4 15:03:23 2019
-## Date of summary: Tue Jun 4 15:03:23 2019
+## Date of fit: Wed Jun 5 15:10:55 2019
+## Date of summary: Wed Jun 5 15:10:55 2019
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 239 model solutions performed in 0.484 s
+## Fitted using 239 model solutions performed in 0.492 s
##
-## Error model:
-## Constant variance
+## Error model: Constant variance
+##
+## Error model algorithm: d_3
##
## Starting values for parameters to be optimised:
## value type
@@ -394,8 +397,8 @@
## mkin version used for fitting: 0.9.49.5
## R version used for fitting: 3.6.0
-## Date of fit: Tue Jun 4 15:03:25 2019
-## Date of summary: Tue Jun 4 15:03:25 2019
+## Date of fit: Wed Jun 5 15:10:56 2019
+## Date of summary: Wed Jun 5 15:10:56 2019
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
@@ -404,10 +407,11 @@
##
## Model predictions using solution type analytical
##
-## Fitted using 572 model solutions performed in 1.193 s
+## Fitted using 572 model solutions performed in 1.183 s
+##
+## Error model: Constant variance
##
-## Error model:
-## Constant variance
+## Error model algorithm: d_3
##
## Starting values for parameters to be optimised:
## value type
@@ -493,8 +497,8 @@
## mkin version used for fitting: 0.9.49.5
## R version used for fitting: 3.6.0
-## Date of fit: Tue Jun 4 15:03:26 2019
-## Date of summary: Tue Jun 4 15:03:27 2019
+## Date of fit: Wed Jun 5 15:10:58 2019
+## Date of summary: Wed Jun 5 15:10:58 2019
##
## Equations:
## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) *
@@ -503,10 +507,11 @@
##
## Model predictions using solution type analytical
##
-## Fitted using 373 model solutions performed in 0.767 s
+## Fitted using 373 model solutions performed in 0.773 s
##
-## Error model:
-## Constant variance
+## Error model: Constant variance
+##
+## Error model algorithm: d_3
##
## Starting values for parameters to be optimised:
## value type
@@ -598,8 +603,8 @@
## mkin version used for fitting: 0.9.49.5
## R version used for fitting: 3.6.0
-## Date of fit: Tue Jun 4 15:03:27 2019
-## Date of summary: Tue Jun 4 15:03:28 2019
+## Date of fit: Wed Jun 5 15:10:59 2019
+## Date of summary: Wed Jun 5 15:10:59 2019
##
## Equations:
## d_parent/dt = - k_parent_sink * parent
@@ -608,8 +613,9 @@
##
## Fitted using 142 model solutions performed in 0.288 s
##
-## Error model:
-## Constant variance
+## Error model: Constant variance
+##
+## Error model algorithm: d_3
##
## Starting values for parameters to be optimised:
## value type
@@ -662,18 +668,19 @@
## mkin version used for fitting: 0.9.49.5
## R version used for fitting: 3.6.0
-## Date of fit: Tue Jun 4 15:03:28 2019
-## Date of summary: Tue Jun 4 15:03:28 2019
+## Date of fit: Wed Jun 5 15:10:59 2019
+## Date of summary: Wed Jun 5 15:10:59 2019
##
## Equations:
## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
##
## Model predictions using solution type analytical
##
-## Fitted using 224 model solutions performed in 0.449 s
+## Fitted using 224 model solutions performed in 0.453 s
+##
+## Error model: Constant variance
##
-## Error model:
-## Constant variance
+## Error model algorithm: d_3
##
## Starting values for parameters to be optimised:
## value type
diff --git a/docs/articles/mkin.html b/docs/articles/mkin.html
index 09b1b8ea..5977d642 100644
--- a/docs/articles/mkin.html
+++ b/docs/articles/mkin.html
@@ -88,7 +88,7 @@
Introduction to mkin
Johannes Ranke
- 2019-06-04
+ 2019-06-05
mkin.Rmd
diff --git a/docs/articles/twa.html b/docs/articles/twa.html
index ede27942..f98026e7 100644
--- a/docs/articles/twa.html
+++ b/docs/articles/twa.html
@@ -88,7 +88,7 @@
Calculation of time weighted average concentrations with mkin
Johannes Ranke
- 2019-06-04
+ 2019-06-05
twa.Rmd
diff --git a/docs/articles/web_only/FOCUS_Z.html b/docs/articles/web_only/FOCUS_Z.html
index 555400df..542deb14 100644
--- a/docs/articles/web_only/FOCUS_Z.html
+++ b/docs/articles/web_only/FOCUS_Z.html
@@ -88,7 +88,7 @@
Example evaluation of FOCUS dataset Z
Johannes Ranke
- 2019-06-04
+ 2019-06-05
FOCUS_Z.Rmd
diff --git a/docs/articles/web_only/NAFTA_examples.html b/docs/articles/web_only/NAFTA_examples.html
index 7f3cc76b..4cd16437 100644
--- a/docs/articles/web_only/NAFTA_examples.html
+++ b/docs/articles/web_only/NAFTA_examples.html
@@ -88,7 +88,7 @@
Evaluation of example datasets from Attachment 1 to the US EPA SOP for the NAFTA guidance
Johannes Ranke
- 2019-06-04
+ 2019-06-05
NAFTA_examples.Rmd
diff --git a/docs/articles/web_only/benchmarks.html b/docs/articles/web_only/benchmarks.html
index 43f8d238..507bdb61 100644
--- a/docs/articles/web_only/benchmarks.html
+++ b/docs/articles/web_only/benchmarks.html
@@ -88,7 +88,7 @@
Benchmark timings for mkin on various systems
Johannes Ranke
- 2019-06-04
+ 2019-06-05
benchmarks.Rmd
@@ -202,77 +202,77 @@
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 7.064
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 7.296
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 5.936
-## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 5.805
+## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 5.828
## t2
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 11.019
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 22.889
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 12.558
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 21.239
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 20.545
-## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 35.748
+## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 35.869
## t3
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 3.764
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 4.649
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 4.786
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 4.510
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 4.446
-## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 4.403
+## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 4.412
## t4
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 14.347
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 13.789
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 8.461
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 13.805
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 15.335
-## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 30.613
+## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 30.497
## t5
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 9.495
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 6.395
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 5.675
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 7.386
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 6.002
-## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 10.309
+## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 10.329
## t6
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 2.623
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 2.542
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 2.723
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 2.643
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 2.635
-## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 2.546
+## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 2.548
## t7
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 4.587
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 4.128
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 4.478
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 4.374
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 4.259
-## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 4.214
+## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 4.192
## t8
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 7.525
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 4.632
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 4.862
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 7.02
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 4.737
-## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 7.871
+## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 7.827
## t9
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 16.621
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 8.171
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 7.618
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 11.124
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 7.763
-## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 15.738
+## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 15.653
## t10
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 8.576
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 3.676
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 3.579
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 5.388
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 3.427
-## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 7.763
+## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 7.762
## t11
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.48.1 31.267
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.1 5.636
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.2 5.574
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.3 7.365
## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.4 5.626
-## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 10.527
+## Linux, AMD Ryzen 7 1700 Eight-Core Processor, mkin version 0.9.49.5 10.512
diff --git a/docs/articles/web_only/compiled_models.html b/docs/articles/web_only/compiled_models.html
index f3062c66..5f0301fc 100644
--- a/docs/articles/web_only/compiled_models.html
+++ b/docs/articles/web_only/compiled_models.html
@@ -88,7 +88,7 @@
Performance benefit by using compiled model definitions in mkin
Johannes Ranke
- 2019-06-04
+ 2019-06-05
compiled_models.Rmd
@@ -163,9 +163,9 @@
## Warning in mkinfit(SFO_SFO, FOCUS_2006_D, solution_type = "deSolve", quiet
## = TRUE): Observations with value of zero were removed from the data
## test replications elapsed relative user.self sys.self
-## 3 deSolve, compiled 3 3.053 1.000 3.052 0
-## 1 deSolve, not compiled 3 28.457 9.321 28.442 0
-## 2 Eigenvalue based 3 4.296 1.407 4.293 0
+## 3 deSolve, compiled 3 3.041 1.000 3.039 0
+## 1 deSolve, not compiled 3 28.429 9.349 28.415 0
+## 2 Eigenvalue based 3 4.291 1.411 4.288 0
## user.child sys.child
## 3 0 0
## 1 0 0
@@ -214,8 +214,8 @@
## Warning in mkinfit(FOMC_SFO, FOCUS_2006_D, quiet = TRUE): Observations with
## value of zero were removed from the data
## test replications elapsed relative user.self sys.self
-## 2 deSolve, compiled 3 4.828 1.000 4.825 0
-## 1 deSolve, not compiled 3 53.153 11.009 53.125 0
+## 2 deSolve, compiled 3 4.927 1.000 4.924 0
+## 1 deSolve, not compiled 3 53.138 10.785 53.108 0
## user.child sys.child
## 2 0 0
## 1 0 0
diff --git a/docs/reference/Extract.mmkin.html b/docs/reference/Extract.mmkin.html
index 1d1da50e..37c0b361 100644
--- a/docs/reference/Extract.mmkin.html
+++ b/docs/reference/Extract.mmkin.html
@@ -172,16 +172,16 @@
cores = 1, quiet = TRUE)
fits["FOMC", ]#> dataset
#> model B C
-#> FOMC List,36 List,36
+#> FOMC List,37 List,37
#> attr(,"class")
#> [1] "mmkin" fits[, "B"]#> dataset
#> model B
-#> SFO List,36
-#> FOMC List,36
+#> SFO List,37
+#> FOMC List,37
#> attr(,"class")
#> [1] "mmkin" fits["SFO", "B"]#> dataset
#> model B
-#> SFO List,36
+#> SFO List,37
#> attr(,"class")
#> [1] "mmkin"
head(
diff --git a/docs/reference/experimental_data_for_UBA.html b/docs/reference/experimental_data_for_UBA.html
index 3e8d20ef..bb94fd11 100644
--- a/docs/reference/experimental_data_for_UBA.html
+++ b/docs/reference/experimental_data_for_UBA.html
@@ -37,7 +37,30 @@
and advance error model specifications. The fact that these data and some
results are shown here do not imply a license to use them in the context of
pesticide registrations, as the use of the data may be constrained by
- data protection regulations." />
+ data protection regulations.
+Preprocessing of data was performed based on the recommendations of the FOCUS
+ kinetics workgroup (FOCUS, 2014) as described below.
+Datasets 1 and 2 are from the Renewal Assessment Report (RAR) for imazamox
+ (France, 2015, p. 15). For setting values reported as zero, an LOQ of 0.1
+ was assumed. Metabolite residues reported for day zero were added to the
+ parent compound residues.
+Datasets 3 and 4 are from the Renewal Assessment Report (RAR) for isofetamid
+ (Belgium, 2014, p. 8) and show the data for two different radiolabels. For
+ dataset 4, the value given for the metabolite in the day zero sampling
+ in replicate B was added to the parent compound, following the respective
+ FOCUS recommendation.
+Dataset 5 is from the Renewal Assessment Report (RAR) for ethofumesate
+ (Austria, 2015, p. 16).
+Datasets 6 to 10 are from the Renewal Assessment Report (RAR) for glyphosate
+ (Germany, 2013a, pages 8, 28, 50, 51). For the initial sampling,
+ the residues given for the metabolite were added to the parent
+ value, following the recommendation of the FOCUS kinetics workgroup.
+Dataset 11 is from the Renewal Assessment Report (RAR) for 2,4-D
+ (Germany, 2013b, p. 644). Values reported as zero were set to NA, with
+ the exception of the day three sampling of metabolite A2, which was set
+ to one half of the LOD reported to be 1% AR.
+Dataset 12 is from the Renewal Assessment Report (RAR) for thifensulfuron-methyl
+ (United Kingdom, 2014, p. 81)." />
@@ -139,6 +162,29 @@
results are shown here do not imply a license to use them in the context of
pesticide registrations, as the use of the data may be constrained by
data protection regulations.
+Preprocessing of data was performed based on the recommendations of the FOCUS
+ kinetics workgroup (FOCUS, 2014) as described below.
+Datasets 1 and 2 are from the Renewal Assessment Report (RAR) for imazamox
+ (France, 2015, p. 15). For setting values reported as zero, an LOQ of 0.1
+ was assumed. Metabolite residues reported for day zero were added to the
+ parent compound residues.
+Datasets 3 and 4 are from the Renewal Assessment Report (RAR) for isofetamid
+ (Belgium, 2014, p. 8) and show the data for two different radiolabels. For
+ dataset 4, the value given for the metabolite in the day zero sampling
+ in replicate B was added to the parent compound, following the respective
+ FOCUS recommendation.
+Dataset 5 is from the Renewal Assessment Report (RAR) for ethofumesate
+ (Austria, 2015, p. 16).
+Datasets 6 to 10 are from the Renewal Assessment Report (RAR) for glyphosate
+ (Germany, 2013a, pages 8, 28, 50, 51). For the initial sampling,
+ the residues given for the metabolite were added to the parent
+ value, following the recommendation of the FOCUS kinetics workgroup.
+Dataset 11 is from the Renewal Assessment Report (RAR) for 2,4-D
+ (Germany, 2013b, p. 644). Values reported as zero were set to NA, with
+ the exception of the day three sampling of metabolite A2, which was set
+ to one half of the LOD reported to be 1% AR.
+Dataset 12 is from the Renewal Assessment Report (RAR) for thifensulfuron-methyl
+ (United Kingdom, 2014, p. 81).
@@ -154,8 +200,24 @@
Source
- Ranke (2019) Documentation of results obtained for the error model expertise
+
+
Austria (2015). Ethofumesate Renewal Assessment Report Volume 3 Annex B.8 (AS)
+Belgium (2014). Isofetamid (IKF-5411) Draft Assessment Report Volume 3 Annex B.8 (AS)
+France (2015). Imazamox Draft Renewal Assessment Report Volume 3 Annex B.8 (AS)
+FOCUS (2014) “Generic guidance for Estimating Persistence and
+ Degradation Kinetics from Environmental Fate Studies on Pesticides in EU
+ Registration” Report of the FOCUS Work Group on Degradation Kinetics,
+ Version 1.1, 18 December 2014
+ http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
+Germany (2013a). Renewal Assessment Report Glyphosate Volume 3 Annex B.8: Environmental Fate
+ and Behaviour
+Germany (2013b). Renewal Assessment Report 2,4-D Volume 3 Annex B.8: Fate and behaviour in the
+ environment
+Ranke (2019) Documentation of results obtained for the error model expertise
written for the German Umweltbundesamt.
+United Kingdom (2014). Thifensulfuron-methyl - Annex B.8 (Volume 3) to the Report and Proposed
+ Decision of the United Kingdom made to the European Commission under Regulation (EC) No.
+ 1141/2010 for renewal of an active substance
Examples
diff --git a/docs/reference/mkinfit.html b/docs/reference/mkinfit.html
index 8cabcb21..700b6805 100644
--- a/docs/reference/mkinfit.html
+++ b/docs/reference/mkinfit.html
@@ -399,18 +399,19 @@ Per default, parameters in the kinetic models are internally transformed in
fit <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE)
summary(fit)#> mkin version used for fitting: 0.9.49.5
#> R version used for fitting: 3.6.0
-#> Date of fit: Tue Jun 4 15:01:15 2019
-#> Date of summary: Tue Jun 4 15:01:15 2019
+#> Date of fit: Wed Jun 5 15:08:20 2019
+#> Date of summary: Wed Jun 5 15:08:20 2019
#>
#> Equations:
#> d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent
#>
#> Model predictions using solution type analytical
#>
-#> Fitted using 222 model solutions performed in 0.461 s
+#> Fitted using 222 model solutions performed in 0.469 s
#>
-#> Error model:
-#> Constant variance
+#> Error model: Constant variance
+#>
+#> Error model algorithm: d_3
#>
#> Starting values for parameters to be optimised:
#> value type
@@ -480,7 +481,7 @@ Per default, parameters in the kinetic models are internally transformed in
m1 = mkinsub("SFO"))#> # Fit the model to the FOCUS example dataset D using defaults
print(system.time(fit <- mkinfit(SFO_SFO, FOCUS_2006_D,
solution_type = "eigen", quiet = TRUE)))#> Warning: Observations with value of zero were removed from the data#> User System verstrichen
-#> 1.521 0.000 1.526 coef(fit)#> NULLendpoints(fit)#> $ff
+#> 1.579 0.000 1.581 coef(fit)#> NULLendpoints(fit)#> $ff
#> parent_sink parent_m1 m1_sink
#> 0.485524 0.514476 1.000000
#>
@@ -552,7 +553,7 @@ Per default, parameters in the kinetic models are internally transformed in
#> Sum of squared residuals at call 126: 371.2134
#> Sum of squared residuals at call 135: 371.2134
#> Negative log-likelihood at call 145: 97.22429#> #> User System verstrichen
-#> 1.093 0.000 1.093 coef(fit.deSolve)#> NULLendpoints(fit.deSolve)#> $ff
+#> 1.159 0.000 1.160 coef(fit.deSolve)#> NULLendpoints(fit.deSolve)#> $ff
#> parent_sink parent_m1 m1_sink
#> 0.485524 0.514476 1.000000
#>
@@ -584,8 +585,8 @@ Per default, parameters in the kinetic models are internally transformed in
SFO_SFO.ff <- mkinmod(parent = mkinsub("SFO", "m1"),
m1 = mkinsub("SFO"), use_of_ff = "max")#> f.noweight <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, quiet = TRUE)#> Warning: Observations with value of zero were removed from the datasummary(f.noweight)#> mkin version used for fitting: 0.9.49.5
#> R version used for fitting: 3.6.0
-#> Date of fit: Tue Jun 4 15:01:31 2019
-#> Date of summary: Tue Jun 4 15:01:31 2019
+#> Date of fit: Wed Jun 5 15:08:36 2019
+#> Date of summary: Wed Jun 5 15:08:36 2019
#>
#> Equations:
#> d_parent/dt = - k_parent * parent
@@ -593,10 +594,11 @@ Per default, parameters in the kinetic models are internally transformed in
#>
#> Model predictions using solution type deSolve
#>
-#> Fitted using 421 model solutions performed in 1.096 s
+#> Fitted using 421 model solutions performed in 1.181 s
+#>
+#> Error model: Constant variance
#>
-#> Error model:
-#> Constant variance
+#> Error model algorithm: d_3
#>
#> Starting values for parameters to be optimised:
#> value type
@@ -702,8 +704,8 @@ Per default, parameters in the kinetic models are internally transformed in
#> 120 m1 25.15 28.78984 -3.640e+00
#> 120 m1 33.31 28.78984 4.520e+00f.obs <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, error_model = "obs", quiet = TRUE)#> Warning: Observations with value of zero were removed from the datasummary(f.obs)#> mkin version used for fitting: 0.9.49.5
#> R version used for fitting: 3.6.0
-#> Date of fit: Tue Jun 4 15:01:34 2019
-#> Date of summary: Tue Jun 4 15:01:34 2019
+#> Date of fit: Wed Jun 5 15:08:39 2019
+#> Date of summary: Wed Jun 5 15:08:39 2019
#>
#> Equations:
#> d_parent/dt = - k_parent * parent
@@ -711,10 +713,12 @@ Per default, parameters in the kinetic models are internally transformed in
#>
#> Model predictions using solution type deSolve
#>
-#> Fitted using 979 model solutions performed in 2.603 s
+#> Fitted using 979 model solutions performed in 2.672 s
#>
-#> Error model:
-#> Variance unique to each observed variable
+#> Error model: Variance unique to each observed variable
+#>
+#> Error model algorithm: d_3
+#> Direct fitting and three-step fitting yield approximately the same likelihood
#>
#> Starting values for parameters to be optimised:
#> value type
@@ -832,8 +836,8 @@ Per default, parameters in the kinetic models are internally transformed in
#> 120 m1 25.15 28.80429 -3.654e+00
#> 120 m1 33.31 28.80429 4.506e+00f.tc <- mkinfit(SFO_SFO.ff, FOCUS_2006_D, error_model = "tc", quiet = TRUE)#> Warning: Observations with value of zero were removed from the datasummary(f.tc)#> mkin version used for fitting: 0.9.49.5
#> R version used for fitting: 3.6.0
-#> Date of fit: Tue Jun 4 15:01:43 2019
-#> Date of summary: Tue Jun 4 15:01:43 2019
+#> Date of fit: Wed Jun 5 15:08:50 2019
+#> Date of summary: Wed Jun 5 15:08:50 2019
#>
#> Equations:
#> d_parent/dt = - k_parent * parent
@@ -841,10 +845,12 @@ Per default, parameters in the kinetic models are internally transformed in
#>
#> Model predictions using solution type deSolve
#>
-#> Fitted using 2289 model solutions performed in 9.499 s
+#> Fitted using 2289 model solutions performed in 10.959 s
+#>
+#> Error model: Two-component variance function
#>
-#> Error model:
-#> Two-component variance function
+#> Error model algorithm: d_3
+#> Direct fitting and three-step fitting yield approximately the same likelihood
#>
#> Starting values for parameters to be optimised:
#> value type
diff --git a/docs/reference/mkinmod.html b/docs/reference/mkinmod.html
index 2c5f056e..ddab656c 100644
--- a/docs/reference/mkinmod.html
+++ b/docs/reference/mkinmod.html
@@ -234,7 +234,7 @@ For the definition of model types and their parameters, the equations given
SFO_SFO <- mkinmod(
parent = mkinsub("SFO", "m1"),
m1 = mkinsub("SFO"), verbose = TRUE)#> Compilation argument:
-#> /usr/lib/R/bin/R CMD SHLIB filebbe6b539c4f.c 2> filebbe6b539c4f.c.err.txt
+#> /usr/lib/R/bin/R CMD SHLIB file50a55c3108b2.c 2> file50a55c3108b2.c.err.txt
#> Program source:
#> 1: #include <R.h>
#> 2:
diff --git a/docs/reference/mkinpredict.html b/docs/reference/mkinpredict.html
index f339b26a..7e71ec27 100644
--- a/docs/reference/mkinpredict.html
+++ b/docs/reference/mkinpredict.html
@@ -328,17 +328,17 @@
c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
solution_type = "eigen")[201,]))#> time parent m1
#> 201 20 4.978707 27.46227#> User System verstrichen
-#> 0.003 0.000 0.003 system.time(
+#> 0.004 0.000 0.004 system.time(
print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01),
c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
solution_type = "deSolve")[201,]))#> time parent m1
#> 201 20 4.978707 27.46227#> User System verstrichen
-#> 0.002 0.000 0.002 system.time(
+#> 0.003 0.000 0.002 system.time(
print(mkinpredict(SFO_SFO, c(k_parent_m1 = 0.05, k_parent_sink = 0.1, k_m1_sink = 0.01),
c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
solution_type = "deSolve", use_compiled = FALSE)[201,]))#> time parent m1
#> 201 20 4.978707 27.46227#> User System verstrichen
-#> 0.021 0.000 0.022
+#> 0.022 0.000 0.022
#> #> Sum of squared residuals at call 1: 552.5739
#> Sum of squared residuals at call 3: 552.5739
diff --git a/docs/reference/mmkin.html b/docs/reference/mmkin.html
index a830646f..61a029fc 100644
--- a/docs/reference/mmkin.html
+++ b/docs/reference/mmkin.html
@@ -194,8 +194,8 @@
time_1 <- system.time(fits.4 <- mmkin(models, datasets, cores = 1, quiet = TRUE))
time_default#> User System verstrichen
-#> 0.046 0.032 5.094 time_1#> User System verstrichen
-#> 19.798 0.004 19.814
+#> 0.038 0.050 6.779 time_1#> User System verstrichen
+#> 27.209 0.004 27.278 #> $ff
#> parent_M1 parent_sink M1_M2 M1_sink
#> 0.7340481 0.2659519 0.7505684 0.2494316
diff --git a/docs/reference/summary.mkinfit.html b/docs/reference/summary.mkinfit.html
index ffe1edb1..68b36542 100644
--- a/docs/reference/summary.mkinfit.html
+++ b/docs/reference/summary.mkinfit.html
@@ -211,18 +211,19 @@
Examples
#> mkin version used for fitting: 0.9.49.5
#> R version used for fitting: 3.6.0
-#> Date of fit: Tue Jun 4 15:03:02 2019
-#> Date of summary: Tue Jun 4 15:03:02 2019
+#> Date of fit: Wed Jun 5 15:10:34 2019
+#> Date of summary: Wed Jun 5 15:10:34 2019
#>
#> Equations:
#> d_parent/dt = - k_parent_sink * parent
#>
#> Model predictions using solution type analytical
#>
-#> Fitted using 131 model solutions performed in 0.266 s
+#> Fitted using 131 model solutions performed in 0.268 s
#>
-#> Error model:
-#> Constant variance
+#> Error model: Constant variance
+#>
+#> Error model algorithm: d_3
#>
#> Starting values for parameters to be optimised:
#> value type
diff --git a/vignettes/mkin_benchmarks.rda b/vignettes/mkin_benchmarks.rda
index 3e160a06..17cf86ce 100644
Binary files a/vignettes/mkin_benchmarks.rda and b/vignettes/mkin_benchmarks.rda differ
--
cgit v1.2.3