From 7777ff3b019e54364947ff393e2dab782d7cfe3c Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Fri, 10 Apr 2020 08:26:44 +0200 Subject: Improve nlme function docs --- docs/reference/nlme.html | 114 ++++++++++++++++++++++++++++++++++++++++++----- 1 file changed, 102 insertions(+), 12 deletions(-) (limited to 'docs/reference/nlme.html') diff --git a/docs/reference/nlme.html b/docs/reference/nlme.html index b939d1c3..696916a0 100644 --- a/docs/reference/nlme.html +++ b/docs/reference/nlme.html @@ -6,7 +6,7 @@ -Estimation of parameter distributions from mmkin row objects — mean_degparms • mkin +Estimation of parameter distributions from mmkin row objects — nlme_function • mkin @@ -35,8 +35,8 @@ - - + @@ -72,7 +72,7 @@ datasets." /> mkin - 0.9.49.9 + 0.9.49.10 @@ -136,17 +136,17 @@ datasets." />
-

This function sets up and attempts to fit a mixed effects model to +

These functions facilitate setting up a nonlinear mixed effects model for an mmkin row object. An mmkin row object is essentially a list of mkinfit objects that have been obtained by fitting the same model to a list of datasets.

-
mean_degparms(object)
+    
nlme_function(object)
 
-nlme_data(object)
+mean_degparms(object)
 
-nlme_function(object)
+nlme_data(object)

Arguments

@@ -159,12 +159,102 @@ datasets.

Value

-

A named vector containing mean values of the fitted degradation model parameters

-

A groupedData data object

-

A function that can be used with nlme

+

A function that can be used with link{nlme}

+

A named vector containing mean values of the fitted degradation model parameters

+

A groupedData object

Examples

-

+    
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) +m_SFO <- mkinmod(parent = mkinsub("SFO")) +d_SFO_1 <- mkinpredict(m_SFO, + c(k_parent_sink = 0.1), + c(parent = 98), sampling_times) +d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time") +d_SFO_2 <- mkinpredict(m_SFO, + c(k_parent_sink = 0.05), + c(parent = 102), sampling_times) +d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time") +d_SFO_3 <- mkinpredict(m_SFO, + c(k_parent_sink = 0.02), + c(parent = 103), sampling_times) +d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time") + +d1 <- add_err(d_SFO_1, function(value) 3, n = 1) +d2 <- add_err(d_SFO_2, function(value) 2, n = 1) +d3 <- add_err(d_SFO_3, function(value) 4, n = 1) +ds <- c(d1 = d1, d2 = d2, d3 = d3) + +f <- mmkin("SFO", ds, cores = 1, quiet = TRUE) +mean_dp <- mean_degparms(f) +grouped_data <- nlme_data(f) +nlme_f <- nlme_function(f) + +library(nlme) +m_nlme <- nlme(value ~ nlme_f(name, time, parent_0, log_k_parent_sink), + data = grouped_data, + fixed = parent_0 + log_k_parent_sink ~ 1, + random = pdDiag(parent_0 + log_k_parent_sink ~ 1), + start = mean_dp)
#> Error in nlme_f(name, time, parent_0, log_k_parent_sink): konnte Funktion "nlme_f" nicht finden
summary(m_nlme)
#> Error in summary(m_nlme): Objekt 'm_nlme' nicht gefunden
+# \dontrun{ + # Test on some real data + ds_2 <- lapply(experimental_data_for_UBA_2019[6:10], + function(x) x$data[c("name", "time", "value")]) + m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), + A1 = mkinsub("SFO"), use_of_ff = "min")
#> Successfully compiled differential equation model from auto-generated C code.
m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"), + A1 = mkinsub("SFO"), use_of_ff = "max")
#> Successfully compiled differential equation model from auto-generated C code.
m_fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"), + A1 = mkinsub("SFO"))
#> Successfully compiled differential equation model from auto-generated C code.
m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), + A1 = mkinsub("SFO"))
#> Successfully compiled differential equation model from auto-generated C code.
m_sforb_sfo <- mkinmod(parent = mkinsub("SFORB", "A1"), + A1 = mkinsub("SFO"))
#> Successfully compiled differential equation model from auto-generated C code.
+ f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo, + "SFO-SFO-ff" = m_sfo_sfo_ff, + "FOMC-SFO" = m_fomc_sfo, + "DFOP-SFO" = m_dfop_sfo, + "SFORB-SFO" = m_sforb_sfo), + ds_2) + + grouped_data_2 <- nlme_data(f_2["SFO-SFO", ]) + + mean_dp_sfo_sfo <- mean_degparms(f_2["SFO-SFO", ]) + mean_dp_sfo_sfo_ff <- mean_degparms(f_2["SFO-SFO-ff", ]) + mean_dp_fomc_sfo <- mean_degparms(f_2["FOMC-SFO", ]) + mean_dp_dfop_sfo <- mean_degparms(f_2["DFOP-SFO", ]) + mean_dp_sforb_sfo <- mean_degparms(f_2["SFORB-SFO", ]) + + nlme_f_sfo_sfo <- nlme_function(f_2["SFO-SFO", ]) + nlme_f_sfo_sfo_ff <- nlme_function(f_2["SFO-SFO-ff", ]) + nlme_f_fomc_sfo <- nlme_function(f_2["FOMC-SFO", ]) + + # Allowing for correlations between random effects leads to non-convergence + f_nlme_sfo_sfo <- nlme(value ~ nlme_f_sfo_sfo(name, time, + parent_0, log_k_parent_sink, log_k_parent_A1, log_k_A1_sink), + data = grouped_data_2, + fixed = parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1, + random = pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1), + start = mean_dp_sfo_sfo)
#> Error in nlme_f_sfo_sfo(name, time, parent_0, log_k_parent_sink, log_k_parent_A1, log_k_A1_sink): konnte Funktion "nlme_f_sfo_sfo" nicht finden
+ # The same model fitted with transformed formation fractions does not converge + f_nlme_sfo_sfo_ff <- nlme(value ~ nlme_f_sfo_sfo_ff(name, time, + parent_0, log_k_parent, log_k_A1, f_parent_ilr_1), + data = grouped_data_2, + fixed = parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1, + random = pdDiag(parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1), + start = mean_dp_sfo_sfo_ff)
#> Error in nlme_f_sfo_sfo_ff(name, time, parent_0, log_k_parent, log_k_A1, f_parent_ilr_1): konnte Funktion "nlme_f_sfo_sfo_ff" nicht finden
+ # It does converge with this version of reduced random effects + f_nlme_sfo_sfo_ff <- nlme(value ~ nlme_f_sfo_sfo_ff(name, time, + parent_0, log_k_parent, log_k_A1, f_parent_ilr_1), + data = grouped_data_2, + fixed = parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1, + random = pdDiag(parent_0 + log_k_parent ~ 1), + start = mean_dp_sfo_sfo_ff)
#> Error in nlme_f_sfo_sfo_ff(name, time, parent_0, log_k_parent, log_k_A1, f_parent_ilr_1): konnte Funktion "nlme_f_sfo_sfo_ff" nicht finden
+ f_nlme_fomc_sfo <- nlme(value ~ nlme_f_fomc_sfo(name, time, + parent_0, log_alpha, log_beta, log_k_A1, f_parent_ilr_1), + data = grouped_data_2, + fixed = parent_0 + log_alpha + log_beta + log_k_A1 + f_parent_ilr_1 ~ 1, + random = pdDiag(parent_0 + log_alpha + log_beta + log_k_A1 + f_parent_ilr_1 ~ 1), + start = mean_dp_fomc_sfo)
#> Error in nlme_f_fomc_sfo(name, time, parent_0, log_alpha, log_beta, log_k_A1, f_parent_ilr_1): konnte Funktion "nlme_f_fomc_sfo" nicht finden
+ # DFOP-SFO and SFORB-SFO did not converge with full random effects + + anova(f_nlme_fomc_sfo, f_nlme_sfo_sfo)
#> Error in anova(f_nlme_fomc_sfo, f_nlme_sfo_sfo): Objekt 'f_nlme_fomc_sfo' nicht gefunden
# } +