From b5ee48a86e4b1d4c05aaadb80b44954e2e994ebc Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Wed, 27 May 2020 07:12:51 +0200 Subject: Add docs generated using released version 0.9.52 --- docs/reference/nlme.html | 31 ++++++++++++++----------------- 1 file changed, 14 insertions(+), 17 deletions(-) (limited to 'docs/reference/nlme.html') diff --git a/docs/reference/nlme.html b/docs/reference/nlme.html index 3462e52e..85929929 100644 --- a/docs/reference/nlme.html +++ b/docs/reference/nlme.html @@ -43,7 +43,7 @@ +datasets." /> @@ -75,7 +75,7 @@ datasets. They are used internally by the nlme.mmkin() method." /> mkin - 0.9.50.3 + 0.9.50.2 @@ -112,9 +112,6 @@ datasets. They are used internally by the nlme.mmkin() method." />
  • Example evaluation of NAFTA SOP Attachment examples
  • -
  • - Some benchmark timings -
  • @@ -150,7 +147,7 @@ datasets. They are used internally by the nlme.mmkin() method." />

    These functions facilitate setting up a nonlinear mixed effects model for an mmkin row object. An mmkin row object is essentially a list of mkinfit objects that have been obtained by fitting the same model to a list of -datasets. They are used internally by the nlme.mmkin() method.

    +datasets.

    nlme_function(object)
    @@ -178,7 +175,7 @@ datasets. They are used internally by the nlme.m
     

    If random is FALSE (default), a named vector containing mean values of the fitted degradation model parameters. If random is TRUE, a list with fixed and random effects, in the format required by the start argument of -nlme for the case of a single grouping variable ds.

    +nlme for the case of a single grouping variable ds?

    A groupedData object

    See also

    @@ -225,28 +222,28 @@ nlme for the case of a single grouping variable ds.

    #> Model: value ~ nlme_f(name, time, parent_0, log_k_parent_sink) #> Data: grouped_data #> AIC BIC logLik -#> 298.2781 307.7372 -144.1391 +#> 252.7798 262.1358 -121.3899 #> #> Random effects: #> Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1) #> Level: ds #> Structure: Diagonal -#> parent_0 log_k_parent_sink Residual -#> StdDev: 0.9374733 0.7098105 3.83543 +#> parent_0 log_k_parent_sink Residual +#> StdDev: 0.004139378 0.6800778 2.489396 #> #> Fixed effects: parent_0 + log_k_parent_sink ~ 1 -#> Value Std.Error DF t-value p-value -#> parent_0 101.76838 1.1445444 45 88.91606 0 -#> log_k_parent_sink -3.05444 0.4195622 45 -7.28008 0 +#> Value Std.Error DF t-value p-value +#> parent_0 101.74884 0.6456057 44 157.60213 0 +#> log_k_parent_sink -3.05575 0.4015812 44 -7.60929 0 #> Correlation: #> prnt_0 -#> log_k_parent_sink 0.034 +#> log_k_parent_sink 0.026 #> #> Standardized Within-Group Residuals: -#> Min Q1 Med Q3 Max -#> -2.6169360 -0.2185329 0.0574070 0.5720937 3.0459868 +#> Min Q1 Med Q3 Max +#> -2.13168782 -0.68780415 0.08282907 0.85913228 2.95298904 #> -#> Number of Observations: 49 +#> Number of Observations: 48 #> Number of Groups: 3
    plot(augPred(m_nlme, level = 0:1), layout = c(3, 1))
    # augPred does not seem to work on fits with more than one state # variable -- cgit v1.2.1