From 2bb59c88d49b193f278916ad9cc4de83c0de9604 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Wed, 2 Mar 2022 18:03:54 +0100 Subject: Make tests more platform independent, update docs --- docs/reference/summary.nlme.mmkin.html | 626 +++++++++++++++------------------ 1 file changed, 279 insertions(+), 347 deletions(-) (limited to 'docs/reference/summary.nlme.mmkin.html') diff --git a/docs/reference/summary.nlme.mmkin.html b/docs/reference/summary.nlme.mmkin.html index 8df9011d..2bc50dac 100644 --- a/docs/reference/summary.nlme.mmkin.html +++ b/docs/reference/summary.nlme.mmkin.html @@ -1,71 +1,16 @@ - - - - - - - -Summary method for class "nlme.mmkin" — summary.nlme.mmkin • mkin - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -Summary method for class "nlme.mmkin" — summary.nlme.mmkin • mkin - - - - - - - - - - - - - + + -
-
- -
- -
+
@@ -155,295 +94,288 @@ endpoints such as formation fractions and DT50 values. Optionally (default is FALSE), the data are listed in full.

-
# S3 method for nlme.mmkin
-summary(
-  object,
-  data = FALSE,
-  verbose = FALSE,
-  distimes = TRUE,
-  alpha = 0.05,
-  ...
-)
-
-# S3 method for summary.nlme.mmkin
-print(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
- -

Arguments

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
object

an object of class nlme.mmkin

data

logical, indicating whether the full data should be included in -the summary.

verbose

Should the summary be verbose?

distimes

logical, indicating whether DT50 and DT90 values should be -included.

alpha

error level for confidence interval estimation from the t -distribution

...

optional arguments passed to methods like print.

x

an object of class summary.nlme.mmkin

digits

Number of digits to use for printing

- -

Value

+
+
# S3 method for nlme.mmkin
+summary(
+  object,
+  data = FALSE,
+  verbose = FALSE,
+  distimes = TRUE,
+  alpha = 0.05,
+  ...
+)
+
+# S3 method for summary.nlme.mmkin
+print(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
+
-

The summary function returns a list based on the nlme object +

+

Arguments

+
object
+

an object of class nlme.mmkin

+
data
+

logical, indicating whether the full data should be included in +the summary.

+
verbose
+

Should the summary be verbose?

+
distimes
+

logical, indicating whether DT50 and DT90 values should be +included.

+
alpha
+

error level for confidence interval estimation from the t +distribution

+
...
+

optional arguments passed to methods like print.

+
x
+

an object of class summary.nlme.mmkin

+
digits
+

Number of digits to use for printing

+
+
+

Value

+

The summary function returns a list based on the nlme object obtained in the fit, with at least the following additional components

-
nlmeversion, mkinversion, Rversion

The nlme, mkin and R versions used

-
date.fit, date.summary

The dates where the fit and the summary were +

nlmeversion, mkinversion, Rversion
+

The nlme, mkin and R versions used

+
date.fit, date.summary
+

The dates where the fit and the summary were produced

-
diffs

The differential equations used in the degradation model

-
use_of_ff

Was maximum or minimum use made of formation fractions

-
data

The data

-
confint_trans

Transformed parameters as used in the optimisation, with confidence intervals

-
confint_back

Backtransformed parameters, with confidence intervals if available

-
ff

The estimated formation fractions derived from the fitted +

diffs
+

The differential equations used in the degradation model

+
use_of_ff
+

Was maximum or minimum use made of formation fractions

+
data
+

The data

+
confint_trans
+

Transformed parameters as used in the optimisation, with confidence intervals

+
confint_back
+

Backtransformed parameters, with confidence intervals if available

+
ff
+

The estimated formation fractions derived from the fitted model.

-
distimes

The DT50 and DT90 values for each observed variable.

-
SFORB

If applicable, eigenvalues of SFORB components of the model.

-The print method is called for its side effect, i.e. printing the summary. - -

Author

- +
distimes
+

The DT50 and DT90 values for each observed variable.

+
SFORB
+

If applicable, eigenvalues of SFORB components of the model.

+

The print method is called for its side effect, i.e. printing the summary.

+
+
+

Author

Johannes Ranke for the mkin specific parts José Pinheiro and Douglas Bates for the components inherited from nlme

+
-

Examples

-
-# Generate five datasets following SFO kinetics -sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) -dt50_sfo_in_pop <- 50 -k_in_pop <- log(2) / dt50_sfo_in_pop -set.seed(1234) -k_in <- rlnorm(5, log(k_in_pop), 0.5) -SFO <- mkinmod(parent = mkinsub("SFO")) - -pred_sfo <- function(k) { - mkinpredict(SFO, - c(k_parent = k), - c(parent = 100), - sampling_times) -} - -ds_sfo_mean <- lapply(k_in, pred_sfo) -names(ds_sfo_mean) <- paste("ds", 1:5) - -set.seed(12345) -ds_sfo_syn <- lapply(ds_sfo_mean, function(ds) { - add_err(ds, - sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2), - n = 1)[[1]] -}) - -# Evaluate using mmkin and nlme -library(nlme) -f_mmkin <- mmkin("SFO", ds_sfo_syn, quiet = TRUE, error_model = "tc", cores = 1) -
#> Warning: Optimisation did not converge: -#> iteration limit reached without convergence (10)
f_nlme <- nlme(f_mmkin) -
#> Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)
summary(f_nlme, data = TRUE) -
#> nlme version used for fitting: 3.1.152 -#> mkin version used for pre-fitting: 1.0.4 -#> R version used for fitting: 4.0.4 -#> Date of fit: Wed Mar 31 19:18:24 2021 -#> Date of summary: Wed Mar 31 19:18:24 2021 -#> -#> Equations: -#> d_parent/dt = - k_parent * parent -#> -#> Data: -#> 90 observations of 1 variable(s) grouped in 5 datasets -#> -#> Model predictions using solution type analytical -#> -#> Fitted in 0.537 s using 4 iterations -#> -#> Variance model: Two-component variance function -#> -#> Mean of starting values for individual parameters: -#> parent_0 log_k_parent -#> 101.569 -4.454 -#> -#> Fixed degradation parameter values: -#> None -#> -#> Results: -#> -#> AIC BIC logLik -#> 584.5 599.5 -286.2 -#> -#> Optimised, transformed parameters with symmetric confidence intervals: -#> lower est. upper -#> parent_0 99.371 101.592 103.814 -#> log_k_parent -4.973 -4.449 -3.926 -#> -#> Correlation: -#> prnt_0 -#> log_k_parent 0.051 -#> -#> Random effects: -#> Formula: list(parent_0 ~ 1, log_k_parent ~ 1) -#> Level: ds -#> Structure: Diagonal -#> parent_0 log_k_parent Residual -#> StdDev: 6.924e-05 0.5863 1 -#> -#> Variance function: -#> Structure: Constant plus proportion of variance covariate -#> Formula: ~fitted(.) -#> Parameter estimates: -#> const prop -#> 0.0001208853 0.0789968036 -#> -#> Backtransformed parameters with asymmetric confidence intervals: -#> lower est. upper -#> parent_0 99.370882 101.59243 103.81398 -#> k_parent 0.006923 0.01168 0.01972 -#> -#> Estimated disappearance times: -#> DT50 DT90 -#> parent 59.32 197.1 -#> -#> Data: -#> ds name time observed predicted residual std standardized -#> ds 1 parent 0 104.1 101.592 2.50757 8.0255 0.312451 -#> ds 1 parent 0 105.0 101.592 3.40757 8.0255 0.424594 -#> ds 1 parent 1 98.5 100.796 -2.29571 7.9625 -0.288313 -#> ds 1 parent 1 96.1 100.796 -4.69571 7.9625 -0.589725 -#> ds 1 parent 3 101.9 99.221 2.67904 7.8381 0.341796 -#> ds 1 parent 3 85.2 99.221 -14.02096 7.8381 -1.788812 -#> ds 1 parent 7 99.1 96.145 2.95512 7.5951 0.389081 -#> ds 1 parent 7 93.0 96.145 -3.14488 7.5951 -0.414065 -#> ds 1 parent 14 88.1 90.989 -2.88944 7.1879 -0.401987 -#> ds 1 parent 14 84.1 90.989 -6.88944 7.1879 -0.958480 -#> ds 1 parent 28 80.2 81.493 -1.29305 6.4377 -0.200857 -#> ds 1 parent 28 91.3 81.493 9.80695 6.4377 1.523364 -#> ds 1 parent 60 65.1 63.344 1.75642 5.0039 0.351008 -#> ds 1 parent 60 65.8 63.344 2.45642 5.0039 0.490898 -#> ds 1 parent 90 47.8 50.018 -2.21764 3.9512 -0.561252 -#> ds 1 parent 90 53.5 50.018 3.48236 3.9512 0.881335 -#> ds 1 parent 120 37.6 39.495 -1.89515 3.1200 -0.607423 -#> ds 1 parent 120 39.3 39.495 -0.19515 3.1200 -0.062549 -#> ds 2 parent 0 107.9 101.592 6.30757 8.0255 0.785943 -#> ds 2 parent 0 102.1 101.592 0.50757 8.0255 0.063245 -#> ds 2 parent 1 103.8 100.058 3.74159 7.9043 0.473361 -#> ds 2 parent 1 108.6 100.058 8.54159 7.9043 1.080626 -#> ds 2 parent 3 91.0 97.060 -6.05952 7.6674 -0.790297 -#> ds 2 parent 3 84.9 97.060 -12.15952 7.6674 -1.585874 -#> ds 2 parent 7 79.3 91.329 -12.02867 7.2147 -1.667251 -#> ds 2 parent 7 100.9 91.329 9.57133 7.2147 1.326647 -#> ds 2 parent 14 77.3 82.102 -4.80185 6.4858 -0.740366 -#> ds 2 parent 14 83.5 82.102 1.39815 6.4858 0.215571 -#> ds 2 parent 28 66.8 66.351 0.44945 5.2415 0.085748 -#> ds 2 parent 28 63.3 66.351 -3.05055 5.2415 -0.582002 -#> ds 2 parent 60 40.8 40.775 0.02474 3.2211 0.007679 -#> ds 2 parent 60 44.8 40.775 4.02474 3.2211 1.249485 -#> ds 2 parent 90 27.8 25.832 1.96762 2.0407 0.964198 -#> ds 2 parent 90 27.0 25.832 1.16762 2.0407 0.572171 -#> ds 2 parent 120 15.2 16.366 -1.16561 1.2928 -0.901595 -#> ds 2 parent 120 15.5 16.366 -0.86561 1.2928 -0.669547 -#> ds 3 parent 0 97.7 101.592 -3.89243 8.0255 -0.485009 -#> ds 3 parent 0 88.2 101.592 -13.39243 8.0255 -1.668739 -#> ds 3 parent 1 109.9 99.218 10.68196 7.8379 1.362858 -#> ds 3 parent 1 97.8 99.218 -1.41804 7.8379 -0.180921 -#> ds 3 parent 3 100.5 94.634 5.86555 7.4758 0.784603 -#> ds 3 parent 3 77.4 94.634 -17.23445 7.4758 -2.305360 -#> ds 3 parent 7 78.3 86.093 -7.79273 6.8011 -1.145813 -#> ds 3 parent 7 90.3 86.093 4.20727 6.8011 0.618620 -#> ds 3 parent 14 76.0 72.958 3.04222 5.7634 0.527848 -#> ds 3 parent 14 79.1 72.958 6.14222 5.7634 1.065722 -#> ds 3 parent 28 46.0 52.394 -6.39404 4.1390 -1.544842 -#> ds 3 parent 28 53.4 52.394 1.00596 4.1390 0.243046 -#> ds 3 parent 60 25.1 24.582 0.51786 1.9419 0.266676 -#> ds 3 parent 60 21.4 24.582 -3.18214 1.9419 -1.638664 -#> ds 3 parent 90 11.0 12.092 -1.09202 0.9552 -1.143199 -#> ds 3 parent 90 14.2 12.092 2.10798 0.9552 2.206776 -#> ds 3 parent 120 5.8 5.948 -0.14810 0.4699 -0.315178 -#> ds 3 parent 120 6.1 5.948 0.15190 0.4699 0.323282 -#> ds 4 parent 0 95.3 101.592 -6.29243 8.0255 -0.784057 -#> ds 4 parent 0 102.0 101.592 0.40757 8.0255 0.050784 -#> ds 4 parent 1 104.4 101.125 3.27549 7.9885 0.410025 -#> ds 4 parent 1 105.4 101.125 4.27549 7.9885 0.535205 -#> ds 4 parent 3 113.7 100.195 13.50487 7.9151 1.706218 -#> ds 4 parent 3 82.3 100.195 -17.89513 7.9151 -2.260886 -#> ds 4 parent 7 98.1 98.362 -0.26190 7.7703 -0.033706 -#> ds 4 parent 7 87.8 98.362 -10.56190 7.7703 -1.359270 -#> ds 4 parent 14 97.9 95.234 2.66590 7.5232 0.354357 -#> ds 4 parent 14 104.8 95.234 9.56590 7.5232 1.271521 -#> ds 4 parent 28 85.0 89.274 -4.27372 7.0523 -0.606001 -#> ds 4 parent 28 77.2 89.274 -12.07372 7.0523 -1.712017 -#> ds 4 parent 60 82.2 77.013 5.18661 6.0838 0.852526 -#> ds 4 parent 60 86.1 77.013 9.08661 6.0838 1.493571 -#> ds 4 parent 90 70.5 67.053 3.44692 5.2970 0.650733 -#> ds 4 parent 90 61.7 67.053 -5.35308 5.2970 -1.010591 -#> ds 4 parent 120 60.0 58.381 1.61905 4.6119 0.351058 -#> ds 4 parent 120 56.4 58.381 -1.98095 4.6119 -0.429530 -#> ds 5 parent 0 92.6 101.592 -8.99243 8.0255 -1.120485 -#> ds 5 parent 0 116.5 101.592 14.90757 8.0255 1.857531 -#> ds 5 parent 1 108.0 99.914 8.08560 7.8929 1.024413 -#> ds 5 parent 1 104.9 99.914 4.98560 7.8929 0.631655 -#> ds 5 parent 3 100.5 96.641 3.85898 7.6343 0.505477 -#> ds 5 parent 3 89.5 96.641 -7.14102 7.6343 -0.935382 -#> ds 5 parent 7 91.7 90.412 1.28752 7.1423 0.180267 -#> ds 5 parent 7 95.1 90.412 4.68752 7.1423 0.656304 -#> ds 5 parent 14 82.2 80.463 1.73715 6.3563 0.273295 -#> ds 5 parent 14 84.5 80.463 4.03715 6.3563 0.635141 -#> ds 5 parent 28 60.5 63.728 -3.22788 5.0343 -0.641178 -#> ds 5 parent 28 72.8 63.728 9.07212 5.0343 1.802062 -#> ds 5 parent 60 38.3 37.399 0.90061 2.9544 0.304835 -#> ds 5 parent 60 40.7 37.399 3.30061 2.9544 1.117174 -#> ds 5 parent 90 22.5 22.692 -0.19165 1.7926 -0.106913 -#> ds 5 parent 90 20.8 22.692 -1.89165 1.7926 -1.055273 -#> ds 5 parent 120 13.4 13.768 -0.36790 1.0876 -0.338259 -#> ds 5 parent 120 13.8 13.768 0.03210 1.0876 0.029517
-
+
+

Examples

+

+# Generate five datasets following SFO kinetics
+sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+dt50_sfo_in_pop <- 50
+k_in_pop <- log(2) / dt50_sfo_in_pop
+set.seed(1234)
+k_in <- rlnorm(5, log(k_in_pop), 0.5)
+SFO <- mkinmod(parent = mkinsub("SFO"))
+
+pred_sfo <- function(k) {
+  mkinpredict(SFO,
+    c(k_parent = k),
+    c(parent = 100),
+    sampling_times)
+}
+
+ds_sfo_mean <- lapply(k_in, pred_sfo)
+names(ds_sfo_mean) <- paste("ds", 1:5)
+
+set.seed(12345)
+ds_sfo_syn <- lapply(ds_sfo_mean, function(ds) {
+  add_err(ds,
+    sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),
+    n = 1)[[1]]
+})
+
+# Evaluate using mmkin and nlme
+library(nlme)
+f_mmkin <- mmkin("SFO", ds_sfo_syn, quiet = TRUE, error_model = "tc", cores = 1)
+f_nlme <- nlme(f_mmkin)
+summary(f_nlme, data = TRUE)
+#> nlme version used for fitting:      3.1.155 
+#> mkin version used for pre-fitting:  1.1.0 
+#> R version used for fitting:         4.1.2 
+#> Date of fit:     Wed Mar  2 13:42:16 2022 
+#> Date of summary: Wed Mar  2 13:42:16 2022 
+#> 
+#> Equations:
+#> d_parent/dt = - k_parent * parent
+#> 
+#> Data:
+#> 90 observations of 1 variable(s) grouped in 5 datasets
+#> 
+#> Model predictions using solution type analytical 
+#> 
+#> Fitted in 0.545 s using 4 iterations
+#> 
+#> Variance model: Two-component variance function 
+#> 
+#> Mean of starting values for individual parameters:
+#>     parent_0 log_k_parent 
+#>      101.569       -4.454 
+#> 
+#> Fixed degradation parameter values:
+#> None
+#> 
+#> Results:
+#> 
+#>     AIC   BIC logLik
+#>   584.5 599.5 -286.2
+#> 
+#> Optimised, transformed parameters with symmetric confidence intervals:
+#>               lower    est.   upper
+#> parent_0     99.371 101.592 103.814
+#> log_k_parent -4.973  -4.449  -3.926
+#> 
+#> Correlation: 
+#>              parnt_0
+#> log_k_parent 0.0507 
+#> 
+#> Random effects:
+#>  Formula: list(parent_0 ~ 1, log_k_parent ~ 1)
+#>  Level: ds
+#>  Structure: Diagonal
+#>          parent_0 log_k_parent Residual
+#> StdDev: 6.924e-05       0.5863        1
+#> 
+#> Variance function:
+#>  Structure: Constant plus proportion of variance covariate
+#>  Formula: ~fitted(.) 
+#>  Parameter estimates:
+#>        const         prop 
+#> 0.0001208853 0.0789968036 
+#> 
+#> Backtransformed parameters with asymmetric confidence intervals:
+#>              lower      est.     upper
+#> parent_0 99.370882 101.59243 103.81398
+#> k_parent  0.006923   0.01168   0.01972
+#> 
+#> Estimated disappearance times:
+#>         DT50  DT90
+#> parent 59.32 197.1
+#> 
+#> Data:
+#>    ds   name time observed predicted  residual    std standardized
+#>  ds 1 parent    0    104.1   101.592   2.50757 8.0255     0.312451
+#>  ds 1 parent    0    105.0   101.592   3.40757 8.0255     0.424594
+#>  ds 1 parent    1     98.5   100.796  -2.29571 7.9625    -0.288313
+#>  ds 1 parent    1     96.1   100.796  -4.69571 7.9625    -0.589725
+#>  ds 1 parent    3    101.9    99.221   2.67904 7.8381     0.341796
+#>  ds 1 parent    3     85.2    99.221 -14.02096 7.8381    -1.788812
+#>  ds 1 parent    7     99.1    96.145   2.95512 7.5951     0.389081
+#>  ds 1 parent    7     93.0    96.145  -3.14488 7.5951    -0.414065
+#>  ds 1 parent   14     88.1    90.989  -2.88944 7.1879    -0.401987
+#>  ds 1 parent   14     84.1    90.989  -6.88944 7.1879    -0.958480
+#>  ds 1 parent   28     80.2    81.493  -1.29305 6.4377    -0.200857
+#>  ds 1 parent   28     91.3    81.493   9.80695 6.4377     1.523364
+#>  ds 1 parent   60     65.1    63.344   1.75642 5.0039     0.351008
+#>  ds 1 parent   60     65.8    63.344   2.45642 5.0039     0.490898
+#>  ds 1 parent   90     47.8    50.018  -2.21764 3.9512    -0.561252
+#>  ds 1 parent   90     53.5    50.018   3.48236 3.9512     0.881335
+#>  ds 1 parent  120     37.6    39.495  -1.89515 3.1200    -0.607423
+#>  ds 1 parent  120     39.3    39.495  -0.19515 3.1200    -0.062549
+#>  ds 2 parent    0    107.9   101.592   6.30757 8.0255     0.785943
+#>  ds 2 parent    0    102.1   101.592   0.50757 8.0255     0.063245
+#>  ds 2 parent    1    103.8   100.058   3.74159 7.9043     0.473361
+#>  ds 2 parent    1    108.6   100.058   8.54159 7.9043     1.080626
+#>  ds 2 parent    3     91.0    97.060  -6.05952 7.6674    -0.790297
+#>  ds 2 parent    3     84.9    97.060 -12.15952 7.6674    -1.585874
+#>  ds 2 parent    7     79.3    91.329 -12.02867 7.2147    -1.667251
+#>  ds 2 parent    7    100.9    91.329   9.57133 7.2147     1.326647
+#>  ds 2 parent   14     77.3    82.102  -4.80185 6.4858    -0.740366
+#>  ds 2 parent   14     83.5    82.102   1.39815 6.4858     0.215571
+#>  ds 2 parent   28     66.8    66.351   0.44945 5.2415     0.085748
+#>  ds 2 parent   28     63.3    66.351  -3.05055 5.2415    -0.582002
+#>  ds 2 parent   60     40.8    40.775   0.02474 3.2211     0.007679
+#>  ds 2 parent   60     44.8    40.775   4.02474 3.2211     1.249485
+#>  ds 2 parent   90     27.8    25.832   1.96762 2.0407     0.964198
+#>  ds 2 parent   90     27.0    25.832   1.16762 2.0407     0.572171
+#>  ds 2 parent  120     15.2    16.366  -1.16561 1.2928    -0.901595
+#>  ds 2 parent  120     15.5    16.366  -0.86561 1.2928    -0.669547
+#>  ds 3 parent    0     97.7   101.592  -3.89243 8.0255    -0.485009
+#>  ds 3 parent    0     88.2   101.592 -13.39243 8.0255    -1.668739
+#>  ds 3 parent    1    109.9    99.218  10.68196 7.8379     1.362858
+#>  ds 3 parent    1     97.8    99.218  -1.41804 7.8379    -0.180921
+#>  ds 3 parent    3    100.5    94.634   5.86555 7.4758     0.784603
+#>  ds 3 parent    3     77.4    94.634 -17.23445 7.4758    -2.305360
+#>  ds 3 parent    7     78.3    86.093  -7.79273 6.8011    -1.145813
+#>  ds 3 parent    7     90.3    86.093   4.20727 6.8011     0.618620
+#>  ds 3 parent   14     76.0    72.958   3.04222 5.7634     0.527848
+#>  ds 3 parent   14     79.1    72.958   6.14222 5.7634     1.065722
+#>  ds 3 parent   28     46.0    52.394  -6.39404 4.1390    -1.544842
+#>  ds 3 parent   28     53.4    52.394   1.00596 4.1390     0.243046
+#>  ds 3 parent   60     25.1    24.582   0.51786 1.9419     0.266676
+#>  ds 3 parent   60     21.4    24.582  -3.18214 1.9419    -1.638664
+#>  ds 3 parent   90     11.0    12.092  -1.09202 0.9552    -1.143199
+#>  ds 3 parent   90     14.2    12.092   2.10798 0.9552     2.206776
+#>  ds 3 parent  120      5.8     5.948  -0.14810 0.4699    -0.315178
+#>  ds 3 parent  120      6.1     5.948   0.15190 0.4699     0.323282
+#>  ds 4 parent    0     95.3   101.592  -6.29243 8.0255    -0.784057
+#>  ds 4 parent    0    102.0   101.592   0.40757 8.0255     0.050784
+#>  ds 4 parent    1    104.4   101.125   3.27549 7.9885     0.410025
+#>  ds 4 parent    1    105.4   101.125   4.27549 7.9885     0.535205
+#>  ds 4 parent    3    113.7   100.195  13.50487 7.9151     1.706218
+#>  ds 4 parent    3     82.3   100.195 -17.89513 7.9151    -2.260886
+#>  ds 4 parent    7     98.1    98.362  -0.26190 7.7703    -0.033706
+#>  ds 4 parent    7     87.8    98.362 -10.56190 7.7703    -1.359270
+#>  ds 4 parent   14     97.9    95.234   2.66590 7.5232     0.354357
+#>  ds 4 parent   14    104.8    95.234   9.56590 7.5232     1.271521
+#>  ds 4 parent   28     85.0    89.274  -4.27372 7.0523    -0.606001
+#>  ds 4 parent   28     77.2    89.274 -12.07372 7.0523    -1.712017
+#>  ds 4 parent   60     82.2    77.013   5.18661 6.0838     0.852526
+#>  ds 4 parent   60     86.1    77.013   9.08661 6.0838     1.493571
+#>  ds 4 parent   90     70.5    67.053   3.44692 5.2970     0.650733
+#>  ds 4 parent   90     61.7    67.053  -5.35308 5.2970    -1.010591
+#>  ds 4 parent  120     60.0    58.381   1.61905 4.6119     0.351058
+#>  ds 4 parent  120     56.4    58.381  -1.98095 4.6119    -0.429530
+#>  ds 5 parent    0     92.6   101.592  -8.99243 8.0255    -1.120485
+#>  ds 5 parent    0    116.5   101.592  14.90757 8.0255     1.857531
+#>  ds 5 parent    1    108.0    99.914   8.08560 7.8929     1.024413
+#>  ds 5 parent    1    104.9    99.914   4.98560 7.8929     0.631655
+#>  ds 5 parent    3    100.5    96.641   3.85898 7.6343     0.505477
+#>  ds 5 parent    3     89.5    96.641  -7.14102 7.6343    -0.935382
+#>  ds 5 parent    7     91.7    90.412   1.28752 7.1423     0.180267
+#>  ds 5 parent    7     95.1    90.412   4.68752 7.1423     0.656304
+#>  ds 5 parent   14     82.2    80.463   1.73715 6.3563     0.273295
+#>  ds 5 parent   14     84.5    80.463   4.03715 6.3563     0.635141
+#>  ds 5 parent   28     60.5    63.728  -3.22788 5.0343    -0.641178
+#>  ds 5 parent   28     72.8    63.728   9.07212 5.0343     1.802062
+#>  ds 5 parent   60     38.3    37.399   0.90061 2.9544     0.304835
+#>  ds 5 parent   60     40.7    37.399   3.30061 2.9544     1.117174
+#>  ds 5 parent   90     22.5    22.692  -0.19165 1.7926    -0.106913
+#>  ds 5 parent   90     20.8    22.692  -1.89165 1.7926    -1.055273
+#>  ds 5 parent  120     13.4    13.768  -0.36790 1.0876    -0.338259
+#>  ds 5 parent  120     13.8    13.768   0.03210 1.0876     0.029517
+
+
+
+
- - - + + -- cgit v1.2.1