From 082be7baa35d7e8131a70ca8cc061d90e08fa584 Mon Sep 17 00:00:00 2001 From: Johannes Ranke Date: Wed, 15 Apr 2020 01:27:02 +0200 Subject: A plot method for nlme.mmkin fits --- docs/reference/index.html | 23 ++- docs/reference/nlme.html | 32 ++-- docs/reference/nlme.mmkin.html | 301 +++++++++++++++++++++++++++++++++++ docs/reference/plot.nlme.mmkin-1.png | Bin 0 -> 32297 bytes docs/reference/plot.nlme.mmkin.html | 252 +++++++++++++++++++++++++++++ 5 files changed, 592 insertions(+), 16 deletions(-) create mode 100644 docs/reference/nlme.mmkin.html create mode 100644 docs/reference/plot.nlme.mmkin-1.png create mode 100644 docs/reference/plot.nlme.mmkin.html (limited to 'docs/reference') diff --git a/docs/reference/index.html b/docs/reference/index.html index 31f7678c..3c5f1b38 100644 --- a/docs/reference/index.html +++ b/docs/reference/index.html @@ -270,12 +270,32 @@ of an mmkin object

AIC(<mmkin>) BIC(<mmkin>)

Calculate the AIC for a column of an mmkin object

+ + + + +

Mixed models

+

Create and work with nonlinear mixed models

+ + + + + +

nlme(<mmkin>)

+ +

Create an nlme model for an mmkin row object

+ + + +

plot(<nlme.mmkin>)

+ +

Plot a fitted nonlinear mixed model obtained via an mmkin row object

nlme_function() mean_degparms() nlme_data()

-

Estimation of parameter distributions from mmkin row objects

+

Helper functions to create nlme models from mmkin row objects

@@ -576,6 +596,7 @@ kinetic models fitted with mkinfit

  • Main functions
  • Show results
  • Work with mmkin objects
  • +
  • Mixed models
  • Datasets and known results
  • NAFTA guidance
  • Helper functions mainly used internally
  • diff --git a/docs/reference/nlme.html b/docs/reference/nlme.html index 1b05f882..981845fe 100644 --- a/docs/reference/nlme.html +++ b/docs/reference/nlme.html @@ -6,7 +6,7 @@ -Estimation of parameter distributions from mmkin row objects — nlme_function • mkin +Helper functions to create nlme models from mmkin row objects — nlme_function • mkin @@ -35,7 +35,7 @@ - +
    @@ -255,37 +255,39 @@ datasets.

    nlme_f_sfo_sfo <- nlme_function(f_2["SFO-SFO", ]) nlme_f_sfo_sfo_ff <- nlme_function(f_2["SFO-SFO-ff", ]) nlme_f_fomc_sfo <- nlme_function(f_2["FOMC-SFO", ]) + assign("nlme_f_sfo_sfo", nlme_f_sfo_sfo, globalenv()) + assign("nlme_f_sfo_sfo_ff", nlme_f_sfo_sfo_ff, globalenv()) + assign("nlme_f_fomc_sfo", nlme_f_fomc_sfo, globalenv()) - # Allowing for correlations between random effects leads to non-convergence + # Allowing for correlations between random effects (not shown) + # leads to non-convergence f_nlme_sfo_sfo <- nlme(value ~ nlme_f_sfo_sfo(name, time, parent_0, log_k_parent_sink, log_k_parent_A1, log_k_A1_sink), data = grouped_data_2, fixed = parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1, random = pdDiag(parent_0 + log_k_parent_sink + log_k_parent_A1 + log_k_A1_sink ~ 1), - start = mean_dp_sfo_sfo)
    #> Error in nlme_f_sfo_sfo(name, time, parent_0, log_k_parent_sink, log_k_parent_A1, log_k_A1_sink): konnte Funktion "nlme_f_sfo_sfo" nicht finden
    + start = mean_dp_sfo_sfo) + # augPred does not see to work on this object, so no plot is shown + # The same model fitted with transformed formation fractions does not converge f_nlme_sfo_sfo_ff <- nlme(value ~ nlme_f_sfo_sfo_ff(name, time, parent_0, log_k_parent, log_k_A1, f_parent_ilr_1), data = grouped_data_2, fixed = parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1, random = pdDiag(parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1), - start = mean_dp_sfo_sfo_ff)
    #> Error in nlme_f_sfo_sfo_ff(name, time, parent_0, log_k_parent, log_k_A1, f_parent_ilr_1): konnte Funktion "nlme_f_sfo_sfo_ff" nicht finden
    - # It does converge with this version of reduced random effects - f_nlme_sfo_sfo_ff <- nlme(value ~ nlme_f_sfo_sfo_ff(name, time, - parent_0, log_k_parent, log_k_A1, f_parent_ilr_1), - data = grouped_data_2, - fixed = parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1, - random = pdDiag(parent_0 + log_k_parent ~ 1), - start = mean_dp_sfo_sfo_ff)
    #> Error in nlme_f_sfo_sfo_ff(name, time, parent_0, log_k_parent, log_k_A1, f_parent_ilr_1): konnte Funktion "nlme_f_sfo_sfo_ff" nicht finden
    + start = mean_dp_sfo_sfo_ff)
    #> Error in nlme.formula(value ~ nlme_f_sfo_sfo_ff(name, time, parent_0, log_k_parent, log_k_A1, f_parent_ilr_1), data = grouped_data_2, fixed = parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1, random = pdDiag(parent_0 + log_k_parent + log_k_A1 + f_parent_ilr_1 ~ 1), start = mean_dp_sfo_sfo_ff): step halving factor reduced below minimum in PNLS step
    f_nlme_fomc_sfo <- nlme(value ~ nlme_f_fomc_sfo(name, time, parent_0, log_alpha, log_beta, log_k_A1, f_parent_ilr_1), data = grouped_data_2, fixed = parent_0 + log_alpha + log_beta + log_k_A1 + f_parent_ilr_1 ~ 1, random = pdDiag(parent_0 + log_alpha + log_beta + log_k_A1 + f_parent_ilr_1 ~ 1), - start = mean_dp_fomc_sfo)
    #> Error in nlme_f_fomc_sfo(name, time, parent_0, log_alpha, log_beta, log_k_A1, f_parent_ilr_1): konnte Funktion "nlme_f_fomc_sfo" nicht finden
    + start = mean_dp_fomc_sfo) + # DFOP-SFO and SFORB-SFO did not converge with full random effects - anova(f_nlme_fomc_sfo, f_nlme_sfo_sfo)
    #> Error in anova(f_nlme_fomc_sfo, f_nlme_sfo_sfo): Objekt 'f_nlme_fomc_sfo' nicht gefunden
    # } + anova(f_nlme_fomc_sfo, f_nlme_sfo_sfo)
    #> Model df AIC BIC logLik Test L.Ratio p-value +#> f_nlme_fomc_sfo 1 11 932.5817 967.0755 -455.2909 +#> f_nlme_sfo_sfo 2 9 1089.2492 1117.4714 -535.6246 1 vs 2 160.6675 <.0001
    # }